diff --git a/-9E1T4oBgHgl3EQf8gV6/content/2301.03546v1.pdf b/-9E1T4oBgHgl3EQf8gV6/content/2301.03546v1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..c199ac9d426d075c8b7bdb7d82c937ce706d0fb2 --- /dev/null +++ b/-9E1T4oBgHgl3EQf8gV6/content/2301.03546v1.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:dfb11e4348c9751f7ca6bd003ce33df11e941a2c8b3934ca31d087ea793bb6ed +size 705495 diff --git a/-9E1T4oBgHgl3EQf8gV6/vector_store/index.faiss b/-9E1T4oBgHgl3EQf8gV6/vector_store/index.faiss new file mode 100644 index 0000000000000000000000000000000000000000..b12e363907a9b59f38c67e883719241b4ee27bb5 --- /dev/null +++ b/-9E1T4oBgHgl3EQf8gV6/vector_store/index.faiss @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:ce0a95976dd7ae93815e99353955c749ac42464f9d13b7f505d6493e080e2e64 +size 4653101 diff --git a/-9E1T4oBgHgl3EQf8gV6/vector_store/index.pkl b/-9E1T4oBgHgl3EQf8gV6/vector_store/index.pkl new file mode 100644 index 0000000000000000000000000000000000000000..ef9de1acbf50844d0dc3ac0d9175ca45f849d3d7 --- /dev/null +++ b/-9E1T4oBgHgl3EQf8gV6/vector_store/index.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:546213c0bf04d94043fb125e40180786b37447518a74ca10a6ceb4810c9fb566 +size 160743 diff --git a/.gitattributes b/.gitattributes index a9d8205e06abe8ccacc34ac1852e2312195d5af9..0679f1c693c2a1bb39d9fd4fdbe334c8b8387758 100644 --- a/.gitattributes +++ b/.gitattributes @@ -7680,3 +7680,56 @@ FdE0T4oBgHgl3EQfzALi/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -tex a9FIT4oBgHgl3EQfmCsU/content/2301.11307v1.pdf filter=lfs diff=lfs merge=lfs -text itFPT4oBgHgl3EQf0DX1/content/2301.13178v1.pdf filter=lfs diff=lfs merge=lfs -text BNE0T4oBgHgl3EQfPwB8/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +BNE0T4oBgHgl3EQfPwB8/content/2301.02183v1.pdf filter=lfs diff=lfs merge=lfs -text +lNE4T4oBgHgl3EQftQ2k/content/2301.05223v1.pdf filter=lfs diff=lfs merge=lfs -text +XNFJT4oBgHgl3EQfQCwC/content/2301.11488v1.pdf filter=lfs diff=lfs merge=lfs -text +I9AzT4oBgHgl3EQfjv2R/content/2301.01521v1.pdf filter=lfs diff=lfs merge=lfs -text +I9AzT4oBgHgl3EQfjv2R/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +CNAzT4oBgHgl3EQfh_3R/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +k9AzT4oBgHgl3EQfbvzP/content/2301.01392v1.pdf filter=lfs diff=lfs merge=lfs -text +5dAzT4oBgHgl3EQf9_4T/content/2301.01926v1.pdf filter=lfs diff=lfs merge=lfs -text +5dAzT4oBgHgl3EQf9_4T/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +itE0T4oBgHgl3EQf7AJH/content/2301.02770v1.pdf filter=lfs diff=lfs merge=lfs -text +2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf filter=lfs diff=lfs merge=lfs -text +QdAyT4oBgHgl3EQftvmX/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +itE0T4oBgHgl3EQf7AJH/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +xtE4T4oBgHgl3EQfYAyx/content/2301.05046v1.pdf filter=lfs diff=lfs merge=lfs -text +XdFJT4oBgHgl3EQfQCyF/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +kNFAT4oBgHgl3EQfbB0a/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +ONE1T4oBgHgl3EQfZwTX/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +jNE0T4oBgHgl3EQf7ALm/content/2301.02772v1.pdf filter=lfs diff=lfs merge=lfs -text +P9AyT4oBgHgl3EQfUve2/content/2301.00132v1.pdf filter=lfs diff=lfs merge=lfs -text +stAzT4oBgHgl3EQfPPv2/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf filter=lfs diff=lfs merge=lfs -text +5dE2T4oBgHgl3EQfOgbi/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +kb_27/content/kb_27.pdf filter=lfs diff=lfs merge=lfs -text +FdE0T4oBgHgl3EQfzALi/content/2301.02668v1.pdf filter=lfs diff=lfs merge=lfs -text +adE3T4oBgHgl3EQf2ws3/content/2301.04757v1.pdf filter=lfs diff=lfs merge=lfs -text +-9E1T4oBgHgl3EQf8gV6/content/2301.03546v1.pdf filter=lfs diff=lfs merge=lfs -text +NNFAT4oBgHgl3EQfxx6m/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf filter=lfs diff=lfs merge=lfs -text +rNE2T4oBgHgl3EQf1Aga/content/2301.04146v1.pdf filter=lfs diff=lfs merge=lfs -text +kNAzT4oBgHgl3EQfNfsi/content/2301.01148v1.pdf filter=lfs diff=lfs merge=lfs -text +kNAzT4oBgHgl3EQfNfsi/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +eNE4T4oBgHgl3EQfpw2r/content/2301.05195v1.pdf filter=lfs diff=lfs merge=lfs -text +4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf filter=lfs diff=lfs merge=lfs -text +jNE2T4oBgHgl3EQfIAbu/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +19FQT4oBgHgl3EQf1zZe/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +CNE1T4oBgHgl3EQfpgW7/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +eNE4T4oBgHgl3EQfpw2r/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +pdAzT4oBgHgl3EQfAfrM/content/2301.00928v1.pdf filter=lfs diff=lfs merge=lfs -text +k9AzT4oBgHgl3EQfbvzP/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +jNE0T4oBgHgl3EQf7ALm/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +jNE2T4oBgHgl3EQfIAbu/content/2301.03676v1.pdf filter=lfs diff=lfs merge=lfs -text +-9E1T4oBgHgl3EQf8gV6/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +bdE1T4oBgHgl3EQfKwMf/content/2301.02967v1.pdf filter=lfs diff=lfs merge=lfs -text +RdAzT4oBgHgl3EQf0P6C/content/2301.01781v1.pdf filter=lfs diff=lfs merge=lfs -text +i9E3T4oBgHgl3EQf5AsY/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +jdE3T4oBgHgl3EQf5Au-/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +dtFJT4oBgHgl3EQfSSx0/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +0tAyT4oBgHgl3EQfbfeR/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +4dE4T4oBgHgl3EQfBAsA/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +m9E0T4oBgHgl3EQfpwHn/content/2301.02545v1.pdf filter=lfs diff=lfs merge=lfs -text +8NE1T4oBgHgl3EQfBwLj/content/2301.02857v1.pdf filter=lfs diff=lfs merge=lfs -text +5tAzT4oBgHgl3EQf9_5e/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +M9E1T4oBgHgl3EQfZgQt/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text diff --git a/0tAyT4oBgHgl3EQfbfeR/vector_store/index.faiss b/0tAyT4oBgHgl3EQfbfeR/vector_store/index.faiss new file mode 100644 index 0000000000000000000000000000000000000000..2407ab7d7f01590aa677c9a27ec37dc168988394 --- /dev/null +++ b/0tAyT4oBgHgl3EQfbfeR/vector_store/index.faiss @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:4e4d1cabe13d1410f34dcc14fb68f8708baba9da6cc1495b68e9c7129d39dfd2 +size 2949165 diff --git a/19FQT4oBgHgl3EQf1zZe/vector_store/index.faiss b/19FQT4oBgHgl3EQf1zZe/vector_store/index.faiss new file mode 100644 index 0000000000000000000000000000000000000000..6320fa0872f1f6e8ffad01bd6e589d75f2c430c6 --- /dev/null +++ b/19FQT4oBgHgl3EQf1zZe/vector_store/index.faiss @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:fa0834eb787769e5086a4d081a954b3ec801fcb2f7a39c1473884457c11ad6e8 +size 4915245 diff --git a/2NE0T4oBgHgl3EQfdwA8/vector_store/index.pkl b/2NE0T4oBgHgl3EQfdwA8/vector_store/index.pkl new file mode 100644 index 0000000000000000000000000000000000000000..ea09dc006e8e719a1ef52952c602401372544249 --- /dev/null +++ b/2NE0T4oBgHgl3EQfdwA8/vector_store/index.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:afea43c78e67936970af0030452446e85e6751a0808e44af96fb37d3d4d9d77f +size 81140 diff --git a/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf b/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..33388ebc49c365f715c4a8acf23b74ec1b707dca --- /dev/null +++ b/2tAzT4oBgHgl3EQfuP3I/content/2301.01689v1.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:23abe30b145b16ed70baa15fb6c390ce2c646035862db6c3114731868af3977d +size 13553799 diff --git a/3dAzT4oBgHgl3EQfR_t3/content/tmp_files/2301.01225v1.pdf.txt b/3dAzT4oBgHgl3EQfR_t3/content/tmp_files/2301.01225v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..2913b02a4989c372268aa5bdcf2912f313bf1cb7 --- /dev/null +++ b/3dAzT4oBgHgl3EQfR_t3/content/tmp_files/2301.01225v1.pdf.txt @@ -0,0 +1,2853 @@ +1 +Two-Dimensional Golay Complementary Array +Sets With Arbitrary Lengths for +Omnidirectional MIMO Transmission +You-Qi Zhao, Cheng-Yu Pai, Zhen-Ming Huang, Zilong Liu, Senior +Member, IEEE, and Chao-Yu Chen, Member, IEEE +Abstract +This paper presents a coding approach for achieving omnidirectional transmission of certain common +signals in massive multi-input multi-output (MIMO) networks such that the received power at any +direction in a cell remains constant for any given distance. Specifically, two-dimensional (2D) Golay +complementary array set (GCAS) can be used to design optimal massive MIMO precoding matrix so as +to achieve omnidirectional transmission due to its complementary autocorrelation property. In this paper, +novel constructions of new 2D GCASs with arbitrary array lengths are proposed. Our key idea is to +carefully truncate the columns of certain larger arrays generated by 2D generalized Boolean functions. +Finally, the power radiation patterns and numerical results are provided to verify the omnidirectional +property of the GCAS-based precoding. The error performances of the proposed precoding scheme are +presented to validate its superiority over the existing alternatives. +Index Terms +This work was supported by the Ministry of Science and Technology, Taiwan, R.O.C., under Grant MOST 109–2628–E–006– +008–MY3 and MOST 111–2218–E–305–002. +You-Qi Zhao and C.-Y. Pai are with the Department of Engineering Science, National Cheng Kung University, Tainan 701, +Taiwan, R.O.C. (e-mail: n98081505@gs.ncku.edu.tw). +Z.-M. Huang is with the Institute of Computer and Communication Engineering, National Cheng Kung University, Tainan +701, Taiwan, R.O.C. (e-mail: n98101012@gs.ncku.edu.tw). +Zilong Liu is with the School of Computer Science and Electronic Engineering, University of Essex, United Kingdom (e-mail: +zilong.liu@essex.ac.uk). +C.-Y. Chen is with the Department of Electrical Engineering and the Institute of Computer and Communication Engineering, +National Cheng Kung University, Tainan 701, Taiwan, R.O.C. (e-mail: super@mail.ncku.edu.tw). +January 4, 2023 +DRAFT +arXiv:2301.01225v1 [cs.IT] 3 Jan 2023 + +2 +Generalized Boolean function (GBF), Golay complementary array pair (GCAP), Golay comple- +mentary array set (GCAS), omnidirectional precoding (OP), uniform rectangular array (URA). +I. INTRODUCTION +Complementary pairs/sets of sequences have attracted a sustained research interest owing to +their zero aperiodic correlation sums properties. To be specific, a Golay complementary pair +(GCP) refers to a pair of equal-length sequences whose summation of aperiodic autocorrelations +is zero except at the zero time-shift [1]. Such a concept was extended to Golay complementary +set (GCS) with constituent sequences of more than 2 by Tseng and Liu in [2]. Furthermore, a +maximum collection of GCSs is called a set of complete complementary code (CCC) [3] if any +two different GCSs have zero aperiodic cross-correlation sums for all time-shifts. In the literature, +GCSs and CCCs have been widely used for radar sensing [4], channel estimation [5], precoding +for massive multi-input multi-output (MIMO) [6], peak-to-average power ratio (PAPR) reduction +in orthogonal frequency division multiplexing (OFDM) [7]–[13], interference-free multicarrier +code division multiple access [14]–[17], and many other applications [18], [19]. +Recently, there is a surge of research attention to study two-dimensional (2D) Golay com- +plementary array sets (GCASs) [18]-[23], each having zero aperiodic autocorrelation sums +property for two directions of shifts (compared to conventional GCSs and CCCs with time- +shifts only). An important application of the 2D GCASs is for omnidirectional transmission in +MIMO communication systems with a uniform rectangular array (URA) configuration [20], [21]. +In massive MIMO systems, some common messages (e.g., reference signals, synchronization +signals, control signals, etc.) need to be power-uniformly broadcasted to all the angles within +the whole cell. In this paper, we consider space-time block code (STBC) for the harvesting +of the diversity gain. At the base station (BS), the STBC encoded symbols are assigned to +several streams and then mapped onto the antenna arrays in URA by certain 2D GCASs assisted +precoding matrices to achieve uniform power radiation at any angle. +On the other hand, since a large number of antennas are considered in massive MIMO +systems, a huge pilot overhead may be needed to acquire the channel state information (CSI). As +pointed out in [22], this can be alleviated by omnidirectional precoding (OP) based transmission. +For uniform linear arrays (ULAs), Zadoff-Chu (ZC) sequences were adopted to satisfy the +requirements of the omnidirectional property. However, [22] only considered the omnidirectional +January 4, 2023 +DRAFT + +3 +transmission in certain directions. Later in [6], GCSs and CCCs based OP matrices were proposed +to meet the requirement of omnidirectional transmission across all directions. +In [20], [21], [23], [24], 2D GCASs were employed for precoding matrices in URAs by +applying interleaving and Kronecker-product to existing 1D sequences or 2D arrays. As a result, +the array sizes of 2D GCASs are only feasible for certain lengths. A construction of 2D GCASs +of array size pn × pm was proposed in [25] by using permutation ploynomials (PPs) functions +and 2-level autocorrelation sequences, where p is a prime number, m, n are two positive integers, +and p, m, n > 0. Furthermore, a unifying construction framework for 2D GCASs was developed +in [26] by a multivariate polynomial matrix from certain seed para-unitary (PU) matrices. In +[27], [28], Pai and Chen proposed direct constructions of 2D Golay complementary array pairs +(GCAPs) and GCASs with array size 2n × 2m from 2D generliazed Boolean functions (GBFs) +[29] where n, m are integers and n, m ≥ 2. 2D GCAP can be regarded as a case of 2D GCAS +when the set size is equal to 2. Moreover, Pai et al. [30] proposed a direct construction of 2D +CCCs with array size 2n×2m, which have ideal autocorrelations and cross-correlations. Later, Liu +et al. [31] proposed a construction of GCASs with array size pn ×pm by using 2D multivariable +functions, where p is a prime number, n, m are integers, and n, m ≥ 2. Based on [27], [32] +developed a direct construction of GCASs with set size 4 and array size 2n × (2m−1 + 2v) by +using 2D GBFs, where n, m, v are positive number with n, m ≥ 2, and 0 ≤ v ≤ m − 1. +The aforementioned research efforts are generally driven by the need of highly flexible array +sizes of 2D GCASs. Motivated by this, we aim for generating new GCASs with arbitrary array +lengths. The key idea of our proposed constructions is to carefully truncate some columns of +the certain larger arrays generated by 2D GBFs. Thus, our proposed GCASs can be applied to +URAs with various array sizes. In addition, the proposed GCASs can be directly generated from +2D GBFs without the requirements of any specific sequences or tedious sequence operations. In +Table I, we compare the existing parameters of 2D GCASs with our proposed ones. +The remainder of this paper is defined as follows. Section II discusses notations, definitions, +system models, and the omnidirectional transmission in MIMO systems. Section III describes +our proposed constructions of 2D GCASs. Section IV shows the power radiation pattern and bit +error rate (BER) performance based on our proposed 2D GCASs precoding. Finally, Section V +presents the conclusion. +January 4, 2023 +DRAFT + +4 +TABLE I +A COMPARISON OF CONSTRUCTIONS FOR 2D GCASS +Construction +Parameters +Approaches +[26, Th. 5] +(N, N n, N m), N, n, m > 0 +Seed PU matrices +[26, Th. 7] +(2k, 2kn, 2km), n, m, k > 0 +[25, Th. 4] +(p, pn, pm), prime p, n, m > 0 +PPs and 2-level +autocorrelation sequences +[25, Th. 6] +(pk, pkn, pkm), prime p, k, n, m > 0 +[31, Th. 1] +(pk1 +1 pk2 +2 , pn +1 , pm +2 ), primes p1, p2 +2D multivariable functions +[31, Th. 2] +(pk, pn, pm), prime p, n + m ≥ k > 0 +[27], [28], [30] +(2k, 2n, 2m), n, m ≥ k > 0, and k > 0 +2D GBFs +[32] +(4, 2n, 2m−1 + 2v), n, m ≥ 2, and k > 0 +Th. 1 +(2k+1, 2n, 2m−1 + �k−1 +α=1 dα2m−k+α−1 + d02v), +k < m, 0 ≤ v ≤ m − k, dα ∈ {0, 1} +Th. 2 +(2k+1, 2n, 2m−1 + �k−1 +α=1 dα2π1(m−k+α)−1 + d02v), +k < m, 0 ≤ v ≤ m − k, dα ∈ {0, 1} +II. PRELIMINARIES AND DEFINITIONS +A. Notations +Throughout this paper, we present the notations in the following: +• (a)i refers to the i-th element of the vector a. +• (A)i,j denotes the (i, j)-th element of the array A. +• (·)H refers to the conjugate transpose. +• diag(A) refers to the column vector composed of the main diagonal of A. +• (·)∗ refers to the complex conjugation of an element. +• (·)T refers to the transpose. +• vec(·) express stacking one column of the matrix into one another column. +• 1 is a vector whose elements are all 1. +• Let ξ = e2π√−1/q. +• In this paper, q is an even number. +Let X and Y be two arrays of size L1 × L2. Then X and Y can be stated as +X = (Xg,i), Y = (Yg,i), +(1) +where g = 0, 1, · · · , L1 − 1 and i = 0, 1, · · · , L2 − 1. +January 4, 2023 +DRAFT + +5 +Definition 1: Given two arrays X and Y of size L1 × L2, the 2D aperiodic cross-correlation +function (AACF) is defined by +ρ (X, Y; u1, u2) = +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +L1−1−u1 +� +g=0 +L2−1−u2 +� +i=0 +Yg+u1,i+u2X∗ +g,i, 0 ≤ u1 < L1, +0 ≤ u2 < L2; +L1−1−u1 +� +g=0 +L2−1−u2 +� +i=0 +Yg+u1,iX∗ +g,i−u2, 0 < u1 < L1, +−L2 < u2 < 0; +L1−1−u1 +� +g=0 +L2−1−u2 +� +i=0 +Yg,iX∗ +g−u1,i−u2, −L1 < u1 < 0, +−L2 < u2 < 0; +L1−1+u1 +� +g=0 +L2−1−u2 +� +i=0 +Yg,i+u2X∗ +g−u1,i, −L1 < u1 < 0, +0 < u2 < L2. +(2) +When X = Y , then it is called 2D aperiodic autocorrelation function (AACF) and denoted +by ρ(X; u1, u2). If taking L1 = 1, two 2D arrays X and Y are degraded as a 1-D sequence +X = Xi for i = 0, 1, · · · , L2 − 1 and Y = Yi for i = 0, 1, · · · , L2 − 1, respectively. Then the +1-D AACF of 1-D sequence X is related by +ρ(X; u) = +� +� +� +� +� +� +� +L2−1−u +� +i=0 +Xi+uX∗ +i , +0 ≤ u ≤ L2 − 1; +L2−1+u +� +i=0 +XiX∗ +i−u, +−L2 + 1 ≤ u < 0. +(3) +In this paper, q-PSK modulation is employed. Thus, x and y denote q-ary arrays and (1) is +expressed as +X = (Xg,i) = (ξxg,i) = ξx; +Y = (Yg,i) = (ξyg,i) = ξy, +(4) +where x = (xg,i), y = (yg,i), and xg,i, yg,i ∈ Zq = {0, 1, · · · , q−1} for 0 ≤ g < L1, 0 ≤ i < L2. +Consider a set of N L-length sequences can be represented as +C = {X0, X1, · · · , XN−1} +where +Xn = (Xn,0, Xn,1, · · · , Xn,L−1) +for n = 0, 1, · · · , N − 1. +January 4, 2023 +DRAFT + +6 +Definition 2: [19] If a set C consisting of N sequences of length L satisfies +N−1 +� +k=0 +ρ(Xk; u) = +� +� +� +� +� +NL, +u = 0; +0, +u ̸= 0, +(5) +then the set C is called a Golay complementary set of size N, denoted by (N, L)-GCS. The +GCP can be regarded as a special case of the GCS by setting N = 2. +Definition 3: For a GCP (X0, X1), if another GCP (Y0, Y1) meets the following condition: +ρ(X0, Y0; u) + ρ(X1, Y1; u) = 0, for all u, +(6) +then the two GCPs are called the Golay complementary mate of each other. +Definition 4: A pair of arrays X and Y of array size L1 × L2 is called a 2D Golay +complementary array pair if +ρ(X; u1, u2) + ρ(Y ; u1, u2) = +� +� +� +� +� +2L1L2, +u1 = u2 = 0; +0, +u1 ̸= 0 or u2 ̸= 0. +(7) +Definition 5: Let the array set G = {X0, X1, · · · , XN−1} where each array in set G is of +size L1 × L2. If the array set G satisfies +N−1 +� +k=0 +ρ(Xk; u1, u2) = +� +� +� +� +� +NL1L2, +u1 = u2 = 0; +0, +u1 ̸= 0 or u2 ̸= 0, +(8) +the set G is called the Golay complementary array set of set size N denoted by (N, L1, L2)- +GCAS where L2 is defined as the length of the GCAS. If N = 2, the GCAS G is degraded as +a GCAP. +B. Generalized Boolean Functions +A 2D generalized Boolean function (GBF) f in n + m binary variables y1, y2, · · · , yn, +x1, x2, · · · , xm, is a function mapping: Zn +2 ×Zm +2 → Zq, where xi, yg ∈ {0, 1} for i = 1, 2, · · · , m +and g = 1, 2, · · · , n. A monomial of degree r is given by any product of r distinct variables +among y1, y2, · · · , yn, x1, x2, · · · , xm. For instance, x1x3y1y2 is a monomial of degree 4. Next, +the variables z1, z2, · · · , zn+m are defined as +zl = +� +� +� +� +� +yl +if 1 ≤ l ≤ n; +xl−n +if n < l ≤ m + n, +(9) +January 4, 2023 +DRAFT + +7 +which are useful for our proposed constructions. For a 2D GBF with n + m variables, the 2D +Zq-valued array +f = +� +� +� +� +� +� +� +f0,0 +f0,1 +· · · +f0,2m−1 +f1,0 +f1,1 +· · · +f1,2m−1 +... +... +... +... +f2n−1,0 +f2n−1,1 +· · · +f2n−1,2m−1 +� +� +� +� +� +� +� +(10) +of size 2n×2m is given by letting fg,i = f((g1, g2, · · · , gn), (i1, i2, · · · , im)), where (g1, g2, · · · , gn) +and (i1, i2, · · · , im) are binary vector representations of integers g = �n +h=1 gh2h−1 and i = +�n +j=1 ij2j−1, respectively. +Example 1: Taking q = 4, n = 2, and m = 3 for example, the 2D GBF is given as f = +3z5z4 + z2z3 + 2z2. Then the array f of size 4 × 8 corresponding to f can be obtained, i.e., +f = +� +� +� +� +� +� +� +0 +0 +0 +0 +0 +0 +3 +3 +0 +0 +0 +2 +1 +1 +3 +3 +2 +3 +2 +3 +2 +3 +1 +2 +2 +3 +2 +3 +2 +3 +1 +2 +� +� +� +� +� +� +� +. +(11) +The GBF f can be rewritten as f = 3x3x2 + y2x1 + 2y2. In this paper, we consider the array +size ̸= 2n × 2m. Hence, we define the truncated array f (L) corresponding to the 2D GBF f by +ignoring the last 2m − L columns of the corresponding array f. +Example 2: Following the same notations given in Example 1, the truncated array f (6) is +given by +f (6) = +� +� +� +� +� +� +� +0 +0 +0 +0 +0 +0 +0 +0 +0 +2 +1 +1 +2 +3 +2 +3 +2 +3 +2 +3 +2 +3 +2 +3 +� +� +� +� +� +� +� +. +(12) +For simplicity, we use f to stand for f (L) when L is known. +C. System Model +Considering downlink transmission from a BS to UEs where each has one single antenna, +we suppose that the number of antennas at the BS is M = L1 × L2, i.e., the URA consists of +L1 rows and L2 columns. Fig. 1 illustrates the diagram of data downlink transmission. For an +January 4, 2023 +DRAFT + +8 +Fig. 1. Diagram of data transmission through STBC encoding and omnidirectional precoding. +L1 × L2 URA, the steering matrix A(ϕ, θ) at the direction (ϕ, θ) with the (g, i)-th entry can be +expressed as +(A(ϕ, θ))g,i =e−j 2π +λ gdy sin ϕ sin θ−j 2π +λ idx sin ϕ cos θ, +for g = 0, 1, . . . , L1 − 1, i = 0, 1, . . . , L2 − 1, +θ ∈ [0, 2π], ϕ ∈ [0, π/2], +(13) +where dx and dy denote the vertical antenna and horizontal antenna inter-element spacings of +the URA, respectively, and λ denotes the carrier wavelength. To enhance the spatial diversity +and communication reliability, the STBC signal transmission scheme is used. The N ×M STBC +is given by +S ≜ +� +� +� +� +� +� +� +s0(0) +s0(1) +· · · +s0(M − 1) +s1(0) +s1(1) +· · · +s1(M − 1) +... +... +... +... +sN−1(0) +sN−1(1) +· · · +sN−1(M − 1) +� +� +� +� +� +� +� +∈ CN×M +(14) +January 4, 2023 +DRAFT + +So(t) +Xo(t) +7 +Data +Omni- +Space-time +UE1 +Si(t) +directional +xi(t) +block coding +y(t) +... +precoding +V +SN-1(t) +XL;L2 +-1(t) +y +d +d +(t) +xo(t) +x +Omnidirectional +precoding +UE19 +where CN×M refers to the N-by-M complex space and sn(t) denotes the (n, t)-th element of +the STBC at time instant t for t = 0, 1, · · · , M − 1. We define the precoding matrix Wn of size +L1 × L2. The encoded symbols is given by +x(t) = (x0(t), x1(t), · · · , xL1L2−1(t))T = vec +�N−1 +� +n=0 +Wn · sn(t) +� +, for t = 0, 1, · · · , M − 1, +(15) +which are transmitted by the L1L2 antennas of the URA. In the light-of-sight (LOS) channel +without multipaths, the received signal at the direction (ϕ, θ) can be written as +y(t) = +N−1 +� +n=0 +� +vec(A(ϕ, θ))Tvec(Wn) +� +· sn(t) + η(t), t = 0, . . ., M − 1, +(16) +where η(t) is the additive Gaussian white noise (AWGN) at time instant t. +D. Omnidirectional Precoding Matrices Based on 2D Arrays +In this subsection, we list two necessary requirements for the design of OP matrices. Then, +we will connect these two requirements with the conditions of 2D arrays. +Requirement 1 (R1): Omnidirectional transmission. +We consider the MIMO system with URA. Following (16), the received power E at the angle +(ϕ, θ) is represented as +E = +N−1 +� +n=0 +��[vec(A(ϕ, θ))Tvec(Wn)] +��2 . +(17) +Therefore, to satisfy the omnidirectional transmission in the whole cell, (17) must be constant +for all ϕ and θ. +Requirement 2 (R2): Equal average power on each antenna. +To enhance the efficiency of the power amplifier, the average transmission power on all L1×L2 +antennas is required to be equal. We define +W = (vec(W0), vec(W1), · · · , vec(WN−1)) , +(18) +where the array size of W is L1L2 × N. Hence, (15) can be rewritten as +X = (x(0), x(1), · · · , x(M − 1)) = W S. +(19) +January 4, 2023 +DRAFT + +10 +Let s(t) be the t-th column of S. Throughout this paper, we assume E +� +s(t)s(t)H� +=IN. The +transmitted signal on the (l1, l2)-th antenna is (W s)l2L1+l1. The average power on the (l1, l2)-th +antenna can be expressed as +E +� +|(W s)l2L1+l1|2� += +� +W E +� +s(t)s(t)H� +W H� +l2L1+l1,l2L1+l1 += (W W H)l2L1+l1,l2L1+l1. +(20) +Therefore, the condition to guarantee equal power on each antenna is equivalent to +diag(W W H) = N1. +(21) +Next, we will derive two sufficient conditions on the precoding matrices to fulfill requirements +R1 and R2. +Lemma 1: [21] For an L1 × L2 URA, if the precoding matrices W0, W1, · · · , WN−1 of size +L1 × L2 form an (N, L1, L2)-GCAS, then the omnidirectional transmission is achieved. +Lemma 2: For an L1×L2 URA, if the precoding matrices W0, W1, · · · , WN−1 of size L1×L2 +are unimodular, then the average power on each antenna is equal. +Proof: In order to meet the requirement for equal average power on each antenna, the +precoding matrix W must satisfy (21). We let wi = vec(Wi), for i = 0, 1, · · · , N − 1. Then, +diag +� +W W H� += +�N−1 +� +i=0 +|(wi)0|2 , +N−1 +� +i=0 +|(wi)1|2 , · · · , +N−1 +� +i=0 +|(wi)L1L2−1|2 +�T += N1 +(22) +since we have +|(wi)n|2 = 1, +for i = 0, 1, · · · , N − 1 and n = 0, 1, · · · , L1L2 − 1. +(23) +According to (21), the requirement (R2) is fulfilled. +In the sequel, the design of OP matrices W0, W1, · · · , WN−1 are based on Lemma 1 and +Lemma 2. That is, our goal is to construct unimodular GCASs with flexible sizes. +III. GCASS WITH FLEXIBLE ARRAY SIZE +In this section, two constructions of 2D GCASs with arbitrary array lengths based on 2D +GBFs will be proposed. By recalling the function mapping in (9), we present our first theorem +in the following. +January 4, 2023 +DRAFT + +11 +Theorem 1: For any integers q, m, n ≥ 2, and k < m, v is an integer satisfies 0 ≤ v ≤ m−k +and let π be a permutation of {1, 2, · · · m + n − k} satisfying {zπ(1), zπ(2), · · · , zπ(v+n)} = +{z1, z2, · · · , zv+n}. The 2D generalized Boolean function can be written as +f = q +2 +�m+n−k−1 +� +l=1 +zπ(l)zπ(l+1) +� ++ +m+n +� +s=1 +pszs + p0 +(24) +where ps ∈ Zq. The array set +G = +� +f + q +2 +k +� +α=1 +λαzm+n−k+α + q +2λk+1zπ(1) : λα ∈ {0, 1} +� +(25) +is a q-ary (2k+1, 2n, 2m−1 + �k−1 +α=1 dα2m−k+α−1 + d02v)-GCAS where dα ∈ {0, 1}. +Proof: Without loss of generality, we consider L1 = 2n and L2 = 2m−1+�k−1 +α=1 2m−k+α−1+ 2v. +We need to show that +� +c∈G +L1−1−u1 +� +g=0 +L2−1−u2 +� +i=0 +� +ξcg+u1,i+u2−cg,i� += 0 +(26) +for 0 ≤ u1 < 2n, 0 ≤ u2 < 2m−1 + �k−1 +α=1 2m−k+α−1 + 2v and (u1, u2) ̸= (0, 0). Then we let +h = g + u1 and j = i + u2 for any integers g and i. We also let (g1, g2, · · · , gn),(i1, i2, · · · , im), +(h1, h2, · · · , hn), and (j1, j2, · · · , jm) be the binary representations of g, i, h, and j, respectively. +For the ease of presentation, we denote +al = +� +� +� +� +� +gl +for 1 ≤ l ≤ n; +il−n for n < l ≤ n + m; +bl = +� +� +� +� +� +hl +for 1 ≤ l ≤ n; +jl−n for n < l ≤ n + m; +(27) +In what follows, we consider four cases to show that the above formula holds. +Case 1: If aπ(1) ̸= bπ(1), we can find that c′ = c + (q/2)zπ(1) for any arrayc ∈ G satisfying +ch,j − cg,i − c′ +h,j+c′ +g,i = q +2(aπ(1) − bπ(1)) ≡ q +2 +(mod q). +(28) +Therefore, we have +ξch,j−cg,i + ξc′ +h,j−c′ +g,i = 0. +(29) +Case 2: If am+n−k+α ̸= bm+n−k+α, we can find that c′ = c + (q/2)zm+n−k+α for any array +c ∈ G. Similar to Case 1, we have +ξch,j−cg,i + ξc′ +h,j−c′ +g,i = 0. +(30) +January 4, 2023 +DRAFT + +12 +Case 3: If aπ(1) = bπ(1) and am+n−k+α = bm+n−k+α for α = 1, 2, · · · , k. Suppose that α′ +is the largest integer satisfying am+n−k+α′ = bm+n−k+α′ = 0 for α′ ≤ k. Then we assume β +is the smallest integer which satisfies aπ(β) ̸= bπ(β). Let a′ and b′ be integers distinct from a +and b, respectively, only in one position π(β − 1). In other words, a′ +π(β−1) = 1 − aπ(β−1) and +b′ +π(β−1) = 1 − bπ(β−1). If 1 ≤ π(β − 1) ≤ n, by using the above definition, we have +cg′,i − cg,i += q +2 +� +aπ(β−2)g′ +π(β−1) − aπ(β−2)gπ(β−1) + g′ +π(β−1)aπ(β) +−gπ(β−1)aπ(β) +� ++ pπ(β−1)g′ +π2(β−1) − pπ(β−1)gπ(β−1) +≡ q +2(aπ(β−2) + aπ(β)) + pπ(β−1)(1 − 2gπ(β−1)) +(mod q). +(31) +where a′ +π(β−1) = g′ +π(β−1) and aπ(β−1) = gπ(β−1). Since aπ(β−2) = bπ(β−2) and aπ(β−1) = bπ(β−1), +we have +ch,j − cg,i − ch′,j + cg′,i +≡ q +2(aπ(β−2) − bπ(β−2) + aπ(β) − bπ(β)) ++ pπ(β−1)(2hπ(β−1) − 2gπ(β−1)) +≡ q +2(aπ(β) − bπ(β)) ≡ q +2 +(mod q) +(32) +implying ξch,j−cg,i/ξch′,j−cg′,i = −1. We can also obtain +ξch,j−cg,i + ξch′,j−cg′,i = 0. +(33) +If n < π(β − 1) ≤ n + m, note that a′ +π(β−1) = i′ +π(β−1)−n and aπ(β−1) = iπ(β − 1) − n according +to (27). Following the similar argument as given above, we can get ξch,j−cg,i + ξch,j′−cg,i′ = 0. +Case 4: If aπ(1) = bπ(1) and am+n−k+α = bm+n−k+α = 1 for α = 1, 2, · · · , k. We assume β is +the smallest integer such that aπ(β) ̸= bπ(β). Since as = bs = 0 for s = v+n+1, v+n+2, · · · , m+ +n−k, we can obtain π(β) ≤ v+n implying π(β −1) ≤ v+n. If 1 ≤ π(β−1) ≤ n, by following +the similar argument as given above, we have ξch,j−cg,i +ξch′,j−cg′,i = 0. If n < π(β −1) ≤ v+n, +we have ξch,j−cg,i + ξch,j′−cg,i′ = 0. From Cases 1 to 4, the theorem can be proved. +Remark 1: The parameter 2m−1+�k−1 +α=1 dα2m−k+α−1+d02v of the proposed GCASs in Theorem +1 can be any arbitrary length since m, k, v are flexible and dα ∈ {0, 1}. +Example 3: Taking q = 2, m = 6, n = 2, k = 1, and v = 0, we let π = (1, 2, 3, 4, 5, 6, 7). +The generalized Boolean function is f = z1z2 + z2z3 + z3z4 + z4z5 + z5z6 + z6z7 = x1x2 + +x2x3 + x3x4 + x4x5 + y1y2 + y2x1 by setting pk = 0 for k = 0, 1, . . . , m + n. The array set +January 4, 2023 +DRAFT + +13 +TABLE II +THE CONSTRUCTED (4, 4, 33)-GCAS IN EXAMPLE 3 +c0 = +� +� +� +� +� +� +� +0 +1 +1 +1 +1 +0 +1 +1 +1 +0 +0 +0 +1 +0 +1 +1 +1 +0 +0 +0 +0 +1 +0 +0 +1 +0 +0 +0 +1 +0 +1 +1 +1 +1 +0 +0 +0 +0 +1 +0 +0 +0 +1 +1 +1 +0 +1 +0 +0 +0 +1 +1 +1 +1 +0 +1 +1 +0 +1 +1 +1 +0 +1 +0 +0 +1 +1 +0 +0 +0 +0 +1 +0 +0 +0 +1 +1 +1 +0 +1 +0 +0 +0 +1 +1 +1 +1 +0 +1 +1 +0 +1 +1 +1 +0 +1 +0 +0 +0 +1 +0 +0 +0 +0 +1 +0 +0 +0 +1 +1 +1 +0 +1 +0 +0 +0 +1 +1 +1 +1 +0 +1 +1 +0 +1 +1 +1 +0 +1 +0 +0 +1 +� +� +� +� +� +� +� +c1 = +� +� +� +� +� +� +� +0 +0 +1 +0 +1 +1 +1 +0 +1 +1 +0 +1 +1 +1 +1 +0 +1 +1 +0 +1 +0 +0 +0 +1 +1 +1 +0 +1 +1 +1 +1 +0 +1 +1 +1 +0 +1 +0 +0 +0 +1 +0 +0 +1 +0 +0 +0 +0 +1 +0 +0 +1 +0 +1 +1 +1 +0 +0 +0 +1 +0 +0 +0 +0 +1 +1 +1 +1 +0 +1 +0 +0 +0 +1 +0 +0 +1 +0 +0 +0 +0 +1 +0 +0 +1 +0 +1 +1 +1 +0 +0 +0 +1 +0 +0 +0 +0 +1 +0 +1 +1 +0 +1 +0 +0 +0 +1 +0 +0 +1 +0 +0 +0 +0 +1 +0 +0 +1 +0 +1 +1 +1 +0 +0 +0 +1 +0 +0 +0 +0 +1 +1 +� +� +� +� +� +� +� +c2 = +� +� +� +� +� +� +� +0 +1 +1 +1 +1 +0 +1 +1 +1 +0 +0 +0 +1 +0 +1 +1 +1 +0 +0 +0 +0 +1 +0 +0 +1 +0 +0 +0 +1 +0 +1 +1 +1 +1 +0 +0 +0 +0 +1 +0 +0 +0 +1 +1 +1 +0 +1 +0 +0 +0 +1 +1 +1 +1 +0 +1 +1 +0 +1 +1 +1 +0 +1 +0 +0 +1 +0 +1 +1 +1 +1 +0 +1 +1 +1 +0 +0 +0 +1 +0 +1 +1 +1 +0 +0 +0 +0 +1 +0 +0 +1 +0 +0 +0 +1 +0 +1 +1 +1 +0 +1 +1 +1 +1 +0 +1 +1 +1 +0 +0 +0 +1 +0 +1 +1 +1 +0 +0 +0 +0 +1 +0 +0 +1 +0 +0 +0 +1 +0 +1 +1 +0 +� +� +� +� +� +� +� +c3 = +� +� +� +� +� +� +� +0 +0 +1 +0 +1 +1 +1 +0 +1 +1 +0 +1 +1 +1 +1 +0 +1 +1 +0 +1 +0 +0 +0 +1 +1 +1 +0 +1 +1 +1 +1 +0 +1 +1 +1 +0 +1 +0 +0 +0 +1 +0 +0 +1 +0 +0 +0 +0 +1 +0 +0 +1 +0 +1 +1 +1 +0 +0 +0 +1 +0 +0 +0 +0 +1 +1 +0 +0 +1 +0 +1 +1 +1 +0 +1 +1 +0 +1 +1 +1 +1 +0 +1 +1 +0 +1 +0 +0 +0 +1 +1 +1 +0 +1 +1 +1 +1 +0 +1 +0 +0 +1 +0 +1 +1 +1 +0 +1 +1 +0 +1 +1 +1 +1 +0 +1 +1 +0 +1 +0 +0 +0 +1 +1 +1 +0 +1 +1 +1 +1 +0 +0 +� +� +� +� +� +� +� +0 +200 +2 +400 +40 +600 +20 +800 +0 +1000 +0 +-20 +-2 +-40 +Fig. 2. The summation of autocorrelations of constituent arrays in the GCAS in Example 3. +G = {f, f + x8, f + y1, f + x8 + y1} is a GCAS of size 4 and the array size is 4 × 33. We let +G = {c0, c1, c2, c3} and list the constituent arrays in Table II. Fig. 2 shows the AACF sum of +set G is zero at shift u1 ̸= 0 or u2 ̸= 0. Thus, we can find that array set G is a (4, 4, 33)-GCAS. +January 4, 2023 +DRAFT + +14 +Next, we introduce a lemma which illustrates a construction of (4, 2n, 2m−1 +2v)-GCAS from +2D GBFs. +Lemma 3: [32, Th. 1] For nonnegative integers m, n, and v with 0 ≤ v < m − 1, let π1 be +a permutation of {1, 2, · · · , m − 1} and π2 be a permutation of {1, 2, · · · , n}. The 2D GBF is +given by +f =q +2 +�m−2 +� +k=1 +xπ1(k)xπ1(k+1) + +n−1 +� +k=1 +yπ2(k)yπ2(k+1) + xπ1(m−1)xm + xmyπ2(1) +� ++ +m +� +l=1 +plxl + +n +� +s=1 +κsys + p0 +(34) +where pl, κs ∈ Zq. Then the array set +G = +� +f, f + q +2xπ1(1), f + q +2yπ2(n), f + q +2xπ1(1) + q +2yπ2(n) +� +is a (4, 2n, 2m−1 + 2v)-GCAS. +Since the set size of the GCAS from Lemma 3 is limited to 4, we propose a general +construction of 2D GCASs with more flexible array sizes and set sizes which can include Lemma +3 as a special case. +Theorem 2: For any integers q, m, n ≥ 2, and k < m, v is an integer satisfies 0 ≤ v ≤ m−k. +Assume that π1 is a permutation of {1, 2, · · · m} and π2 is a permutation of {1, 2, · · · n}. The +2D generalized Boolean function can be written as +f =q +2 +�m−k−1 +� +l=1 +xπ1(l)xπ1(l+1) + +n−1 +� +s=1 +yπ2(s)yπ2(s+1) + xπ1(m)yπ2(n) +� ++ +m−k +� +l=1 +µlxπ1(l)xπ1(m) + +m +� +l=1 +plxk + +n +� +s=1 +κsys + p0 +(35) +where µl, pl, κs, ∈ Zq. The array set +G = +� +f + q +2 +k−1 +� +α=1 +λαxπ1(m−k+α) + q +2λkyπ2(1) + q +2λk+1xπ1(1) : λα ∈ {0, 1} +� +(36) +is a q-ary (2k+1, 2n, 2m−1 + �k−1 +α=1 dα2π1(m−k+α)−1 + d02v)-GCAS where dα ∈ {0, 1} if the +following three conditions hold. +(C1) {π1(1), π1(2), · · · , π1(v)} = {1, 2, · · · , v} if v > 0; +(C2) π1(m − k + α) < π1(m − k + α + 1) for 1 ≤ α ≤ k − 1 where π1(m) = m; +(C3) For 1 ≤ α ≤ k − 1 and 2 ≤ β ≤ m − k, if π1(β) < π1(m − k + α), then π1(β − 1) < +π1(m − k + α). +January 4, 2023 +DRAFT + +15 +Proof: Similarly, we consider L1 = 2n and L2 = 2m−1 + �k−1 +α=1 2π1(m−k+α)−1 + 2v. Then +we would like to prove that +� +C +ρ(C; u1, u2) = +� +c∈G +L1−1−u1 +� +g=0 +L2−1−u2 +� +i=0 +� +ξcg+u1,i+u2−cg,i� += 0 +(37) +for 0 ≤ u1 < 2n, 0 ≤ u2 < 2m−1 + �k−1 +α=1 2π1(m−k+α)−1 + 2v and (u1, u2) ̸= (0, 0). From (4) +we can find that +c = q +2 +�m−k−1 +� +l=1 +xπ1(l)xπ1(l+1) + +n−1 +� +s=1 +yπ2(s)yπ2(s+1) + xπ1(m)yπ2(n) +� ++ +m−k +� +l=1 +µlxπ1(l)xπ1(m) + +m +� +l=1 +plxl + +n +� +s=1 +κsys + p0 · 1. +(38) +Then we let h = g + u1 and j = i + u2 for any integers g and i. Next, we discuss seven cases +to complete the proof. +Case 1: Assuming u1 > 0, u2 ≥ 0, and gπ2(1) ̸= hπ2(1), we can find an array c′ = c + +(q/2)yπ2(1) ∈ G for any array c ∈ G. Therefore, we can obtain +ch,j − cg,i − c′ +h,j+c′ +g,i = q +2(gπ2(1) − hπ2(1)) ≡ q +2 +(mod q) +(39) +Since gπ2(1) ̸= hπ2(1), we have +ξch,j−cg,i/ξc′ +h,j−c′ +g,i = ξ +q +2 = −1. +(40) +Thus, +ξch,j−cg,i + ξc′ +h,j−c′ +g,i = 0. +(41) +Case 2: If u1 > 0, u2 ≥ 0, and gπ2(1) = hπ2(1). Let β be the smallest integer such that +gπ2(β) ̸= hπ2(β). We define g′ and h′ are two integers which are distinct from g and h only in +one position π2(β − 1), respectively. Then, similar to Case 2 of Theorem 1, we have +ξch,j−cg,i + ξch′,j−cg′,i = 0. +(42) +Case 3: We suppose im ̸= jm, u1 = 0 and u2 > 0. We let g′ be an integer distinct from +i only in one position, i.e., g′ +π2(n) = 1 − gπ2(n). Similar to Case 3 of Theorem 1, we have +ξcg,j−cg,i + ξcg′,j−cg′,i = 0. +Case 4: If u1 = 0, u2 > 0, and iπ1(1) ̸= jπ1(1) or iπ1(m−k+α) ̸= jπ1(m−k+α), we can find an +array c′ = c + (q/2)xπ1(1) ∈ G or c′ = c + (q/2)xπ1(m−k+α) for any array c ∈ G. Similar to +Case 1, we can obtain ξcg,j−cg,i + ξc′ +g,j−c′ +g,i = 0. +January 4, 2023 +DRAFT + +16 +Case 5: Suppose u1 = 0, u2 > 0, iπ1(1) = jπ1(1), and iπ1(m−k+α) = jπ1(m−k+α) for all +α = 1, 2, · · · , k. Suppose that α′ is the largest non-negative integer satisfying iπ1(m−k+α′) = +jπ1(m−k+α′) = 0. Then we assume β is the smallest integer which satisfies iπ1(β) ̸= jπ1(β). +Here, we have is = js = 0 for s = π1(m − k + α′) + 1, π1(m − k + α′) + 2, . . . , m − 1, and +s ̸= π1(m − k + α) for α = α′ + 1, α′ + 2, . . . , k. Hence, it implies π1(β) < π1(m − k + α′) +and π1(β − 1) < π1(m − k + α′) according to the condition (C-3). Let i′ and j′ be integers that +differ from i and j, respectively, in the position π1(β − 1). Similar to Case 2, we have +ξcg,j−cg,i + ξcg,j′−cg,i′ = 0. +(43) +Case 6: Suppose u1 = 0, u2 > 0, iπ1(1) = jπ1(1), and iπ1(m−k+α) = jπ1(m−k+α) = 1 for all +α = 1, 2, · · · , k. Then we assume β is the smallest integer which satisfies iπ1(β) ̸= jπ1(β). Since +is = js = 0 for s = v + 1, v + 2, · · · , m − k and s ̸= π1(m − k + α) for α = 1, 2, . . . , k − 1, we +can obtain π1(β) ≤ v implying π1(β − 1) ≤ v. Similar to Case 2, we have +ξcg,j−cg,i + ξcg,j′−cg,i′ = 0. +(44) +From Cases 1 to 6, the theorem can be proved. +Remark 2: Taking σ2(l) = π2(n − l + 1) for l = 1, 2, . . . , n and π1(m − k + α) = m − k + α +for α = 1, 2, . . . , k in Theorem 2, (34) can be represented as +f =q +2 +�m−k−1 +� +k=1 +xπ1(k)xπ1(k+1) + +n−1 +� +k=1 +yσ2(k)yσ2(k+1) + xmyσ2(1) +� ++ +m−k +� +l=1 +µlxπ1(l)xm ++ +m +� +l=1 +plxl + +n +� +s=1 +κsys + p0 +(45) +where pl, κs ∈ Zq. We can find that the result of Lemma 3 is a special case of Theorem 2 by +simply setting k = 1, µm−1 = q +2, and µl = 0 for l = 1, · · · , m − 2. +Example 4: Taking q = 2, m = 5, n = 2, k = 2, and v = 0, we let π1 = (1, 2, 4, 3, 5) and +π2 = (1, 2). The generalized Boolean function is f = x1x2 + x2x4 + y1y2 + x5y1 by setting +pl, κs = 0. The array set G is a GCAS of size 8 when the truncated size L1 = 4 L2 = 21. We +let G = {c0, c1, · · · , c7} and list the constituent arrays in Table III. Also, their AACF sum is +shown as Fig. 3. +IV. SIMULATION RESULTS +In this section, we present the numerical results including the power radiation pattern and +BER performance by using our proposed 2D GCASs for massive MIMO systems with URA. +January 4, 2023 +DRAFT + +17 +TABLE III +THE CONSTRUCTED (8, 4, 21)-GCAS IN EXAMPLE 4 +c0 = +� +� +� +� +� +� +� +0 +0 +0 +1 +0 +1 +1 +1 +0 +0 +1 +0 +1 +0 +1 +1 +0 +1 +1 +1 +0 +0 +0 +0 +1 +0 +1 +1 +1 +0 +0 +1 +0 +1 +0 +1 +1 +0 +1 +1 +1 +0 +0 +1 +0 +0 +0 +0 +1 +0 +0 +1 +1 +1 +1 +1 +1 +0 +0 +0 +1 +0 +0 +1 +0 +1 +1 +1 +1 +0 +1 +1 +0 +0 +0 +0 +0 +0 +1 +1 +1 +0 +1 +1 +� +� +� +� +� +� +� +c1 = +� +� +� +� +� +� +� +0 +0 +0 +1 +1 +0 +0 +0 +0 +0 +1 +0 +0 +1 +0 +0 +0 +1 +1 +1 +1 +0 +0 +0 +1 +1 +0 +0 +0 +0 +0 +1 +0 +0 +1 +0 +0 +0 +1 +1 +1 +1 +0 +1 +0 +0 +1 +1 +0 +1 +0 +1 +1 +1 +0 +0 +0 +1 +0 +0 +1 +0 +1 +1 +0 +1 +1 +0 +0 +1 +0 +1 +0 +0 +0 +1 +1 +1 +0 +1 +1 +0 +1 +0 +� +� +� +� +� +� +� +c2 = +� +� +� +� +� +� +� +0 +0 +0 +1 +0 +1 +1 +1 +0 +0 +1 +0 +1 +0 +1 +1 +1 +0 +0 +0 +1 +0 +0 +0 +1 +0 +1 +1 +1 +0 +0 +1 +0 +1 +0 +1 +1 +1 +0 +0 +0 +1 +0 +1 +0 +0 +0 +0 +1 +0 +0 +1 +1 +1 +1 +1 +1 +0 +1 +1 +0 +1 +1 +1 +0 +1 +1 +1 +1 +0 +1 +1 +0 +0 +0 +0 +0 +0 +1 +0 +0 +1 +0 +0 +� +� +� +� +� +� +� +c3 = +� +� +� +� +� +� +� +0 +0 +0 +1 +1 +0 +0 +0 +0 +0 +1 +0 +0 +1 +0 +0 +1 +0 +0 +0 +0 +0 +0 +0 +1 +1 +0 +0 +0 +0 +0 +1 +0 +0 +1 +0 +0 +1 +0 +0 +0 +0 +0 +1 +0 +0 +1 +1 +0 +1 +0 +1 +1 +1 +0 +0 +0 +1 +1 +1 +0 +1 +0 +1 +0 +1 +1 +0 +0 +1 +0 +1 +0 +0 +0 +1 +1 +1 +0 +0 +0 +1 +0 +1 +� +� +� +� +� +� +� +c4 = +� +� +� +� +� +� +� +0 +0 +0 +1 +0 +1 +1 +1 +0 +0 +1 +0 +1 +0 +1 +1 +0 +1 +1 +1 +0 +1 +1 +1 +0 +1 +0 +0 +0 +1 +1 +0 +1 +0 +1 +0 +0 +1 +0 +0 +0 +1 +0 +1 +0 +0 +0 +0 +1 +0 +0 +1 +1 +1 +1 +1 +1 +0 +0 +0 +1 +0 +0 +0 +1 +0 +0 +0 +0 +1 +0 +0 +1 +1 +1 +1 +1 +1 +0 +0 +0 +1 +0 +0 +� +� +� +� +� +� +� +c5 = +� +� +� +� +� +� +� +0 +0 +0 +1 +1 +0 +0 +0 +0 +0 +1 +0 +0 +1 +0 +0 +0 +1 +1 +1 +1 +1 +1 +1 +0 +0 +1 +1 +1 +1 +1 +0 +1 +1 +0 +1 +1 +1 +0 +0 +0 +0 +0 +1 +0 +0 +1 +1 +0 +1 +0 +1 +1 +1 +0 +0 +0 +1 +0 +0 +1 +0 +1 +0 +1 +0 +0 +1 +1 +0 +1 +0 +1 +1 +1 +0 +0 +0 +1 +0 +0 +1 +0 +1 +� +� +� +� +� +� +� +c6 = +� +� +� +� +� +� +� +0 +0 +0 +1 +0 +1 +1 +1 +0 +0 +1 +0 +1 +0 +1 +1 +1 +0 +0 +0 +1 +1 +1 +1 +0 +1 +0 +0 +0 +1 +1 +0 +1 +0 +1 +0 +0 +0 +1 +1 +1 +0 +0 +1 +0 +0 +0 +0 +1 +0 +0 +1 +1 +1 +1 +1 +1 +0 +1 +1 +0 +1 +1 +0 +1 +0 +0 +0 +0 +1 +0 +0 +1 +1 +1 +1 +1 +1 +0 +1 +1 +0 +1 +1 +� +� +� +� +� +� +� +c7 = +� +� +� +� +� +� +� +0 +0 +0 +1 +1 +0 +0 +0 +0 +0 +1 +0 +0 +1 +0 +0 +1 +0 +0 +0 +0 +1 +1 +1 +0 +0 +1 +1 +1 +1 +1 +0 +1 +1 +0 +1 +1 +0 +1 +1 +1 +1 +0 +1 +0 +0 +1 +1 +0 +1 +0 +1 +1 +1 +0 +0 +0 +1 +1 +1 +0 +1 +0 +0 +1 +0 +0 +1 +1 +0 +1 +0 +1 +1 +1 +0 +0 +0 +1 +1 +1 +0 +1 +0 +� +� +� +� +� +� +� +A. Power Radiation Pattern +According to (16), the power radiation pattern �N−1 +n=0 +��[vec(A(ϕ, θ))Tvec(Wn)] +��2 can be ob- +tained. We first consider the massive MIMO system equipped with a URA of size 4 × 33, +January 4, 2023 +DRAFT + +18 +0 +200 +2 +400 +40 +600 +20 +800 +0 +1000 +0 +-20 +-2 +-40 +Fig. 3. The summation of autocorrelations of constituent arrays in the GCAS in Example 4. +i.e., L1 = 4 and L2 = 33. We take the GCS G = {c0, c1, c2, c3} listed in Table II to +generate the precoding matrices {W0, W1, W2, W3} = {(−1)c0, (−1)c1, (−1)c2, (−1)c3} with +the omnidirectional property. The power radiation pattern of the GCAS-based scheme with array +size 4 × 33 is perfectly omnidirectional as illustrated in Fig 4(a). +For the purpose of comparison, we also show the power radiation patterns of the precoding +matrices based on Zadoff-Chu sequences and random-matrices whose elements are randomly +generated from “+1” and “−1”. The ZC-based precoder consists of four 4 × 33 precoding +matrices, which are obtained based on a ZC sequence of length 4 and a ZC sequence of length +33 [21]. Fig. 4(b) illustrates the power radiation pattern of the ZC-based precoder. We can +find that its power radiation pattern is not omnidirectional. The random-matrix-based precoder +consists of four 4 × 33 precoding matrices. The elements in the random-matrix-based precoding +matrices are generated by selecting the elements from {1, −1} with equal probability. Fig. 4(c) +describes the power radiation pattern of the random matrix-based precoder. We can observe that +the power radiation pattern is not omnidirectional. +Next, we consider the massive MIMO system equipped with a URA of size 4 × 21, i.e., +January 4, 2023 +DRAFT + +19 +(a) GCAS-based precoding. +(b) ZC-based precoding. +(c) Random-matrix-based precoding. +Fig. 4. Power radiation pattern with 4 × 33 URA and 4 × 4 STBC. +L1 = 4 and L2 = 21. We use the GCS G = {c0, c1, · · · , c7} listed in Table III for the precoding +matrix {W0, W1, · · · , W7} = {(−1)c0, (−1)c1, · · · , (−1)c7}. The power radiation pattern of the +GCAS-based scheme with array size 4×21 is described in Fig. 5(a). The perfect omnidirectional +property can be observed. We also see that the power radiation patterns of the ZC-based precoder +and the random-matrix precoder shown in Fig. 5(b) and Fig. 5(c) are not omnidirectional. The +ZC-based precoding matrices are obtained by a ZC sequence of length 4 and ZC sequence of +21 [21]. +B. Bit Error Rate Performance +In this subsection, we present the BER performance of our proposed 2D GCAS-based schemes. +We first consider the massive MIMO system equipped with a URA of size 4×33. We let N = 4 +January 4, 2023 +DRAFT + +X-axis-0.500.51Sy-ax1sX-axis550.50.51Sy-ax. +1S0.3X-axis00.50.5Sy-ax. +1S20 +(a) GCAS-based precoding. +(b) ZC-based precoding. +(c) Random-matrix-based precoding. +Fig. 5. Power radiation pattern with 4 × 21 URA and 8 × 8 STBC. +and then the 4 × 4 orthogonal real STBC be presented as +S = +� +� +� +� +� +� +� +s0 +−s1 +−s2 +−s3 +s1 +s0 +s3 +−s2 +s2 +−s3 +s0 +s1 +s3 +s2 +−s1 +s0 +� +� +� +� +� +� +� +, +(46) +where s0, s1, s2, s3 are binary phase shift keying (BPSK) modulated symbols. We employ the +maximum likelihood (ML) decoding here. For each realization, the elevation and the azimuth +angles are uniformly distributed at random between [0, π/2] and [0, 2π], respectively. For com- +parison, the ZC-based precoder and random-matrix-based precoder are the same as mentioned in +Section IV-A. The BER performances of three different schemes are depicted in Fig. 6. We can +find that the 2D GCAS-based scheme outperform the others. At BER of 10−4, there are 1.6 dB +and 3.6 dB gains over the ZC-based scheme and the random-matrix-based scheme, respectively. +January 4, 2023 +DRAFT + +X-axis-0.500.51Sy-ax1sX-axis-0.500.51Sy-ax1s0.8X-axis-0.500.510.2Sy-06.ax1s21 +-2 +0 +2 +4 +6 +8 +10 +12 +14 +SNR (dB) +10-8 +10-6 +10-4 +10-2 +100 +BER +GCAS-based precoding (N=4) +ZC-based precoding (N=4) +Random-matrix-based precoding (N=4) +Fig. 6. BER performance of the different schemes for a 4 × 33 URA. +Next, we consider the massive MIMO system equipped with a URA of size 4 × 21. We +consider 8 × 8 STBC and the 8 × 8 orthogonal real STBC is given by +S = +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +s0 +s1 +s2 +s3 +s4 +s5 +s6 +s7 +−s1 +s0 +s3 +−s2 +s5 +−s4 +−s7 +s6 +−s2 +−s3 +s0 +s1 +s6 +s7 +−s4 +−s5 +−s3 +s2 +−s1 +s0 +s7 +−s6 +s5 +−s4 +−s4 +−s5 +−s6 +−s7 +s0 +s1 +s2 +s3 +−s5 +s4 +−s7 +s6 +−s1 +s0 +−s3 +s2 +−s6 +s7 +s4 +−s5 +−s2 +s3 +s0 +−s1 +−s7 +−s6 +s5 +−s4 +−s3 +s2 +s1 +s0 +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +(47) +where s0, s1, · · · , s7 are BPSK modulated symbols. We also take the ZC-based precoding and +random-matrix-based precoding for comparison. The BER performance comparison for these +three different schemes is depicted in Fig. 7. At BER of 10−4, there are 0.2 dB and 1.8 dB +gains over the ZC-based scheme and the random-matrix-based scheme, respectively. As a result, +the 2D GCASs are good candidates as precoding matrices for omnidirectional transmission in +January 4, 2023 +DRAFT + +22 +-2 +0 +2 +4 +6 +8 +10 +12 +14 +SNR (dB) +10-8 +10-6 +10-4 +10-2 +100 +BER +GCAS-based precoding (N=8) +ZC-based precoding (N=8) +Random-matrix-based precoding (N=8) +Fig. 7. BER performance of the different schemes for a 4 × 21 URA. +massive MIMO systems. +V. CONCLUSION +In this paper, constructions of 2D GCASs with flexible array sizes have been proposed in +Theorems 1 and 2. Our constructions can be obtained directly from 2D GBFs without the aid +of special sequences. Besides, our proposed GCASs have flexible array sizes which can fit +more antenna configuration. Furthermore, Theorem 2 can include the results in [32] as a special +case. Simulation results showed that the omnidirectional transmission can be achieved when +the precoding matrices are based on the proposed GCASs. The BER performance due to their +omnidirectional power radiation patterns, the ZC-based scheme and random-matix-based have +inferior performances because their power radiation patterns both are not ideally omnidirectional. +Although Theorems 1 and 2 can provide direct constructions of 2D GCASs, the first dimension +has size L1 limited to 2n. Therefore, the future work includes the extension of constructions of +2D GCASs of which both dimensions have non-power-of-two sizes. +January 4, 2023 +DRAFT + +23 +REFERENCES +[1] M. J. E. Golay, “Complementary series,” IRE Trans. Inf. Theory, vol. IT-7, pp. 82–87, Apr. 1961. +[2] C.-C. Tseng and C. L. Liu, “Complementary sets of sequences,” IEEE Trans. Inf. Theory, vol. IT-18, no. 5, pp. 644–652, +Sep. 1972. +[3] N. Suehiro and M. Hatori, “N-shift cross-orthogonal sequences,” IEEE Trans. Inf. Theory, vol. 34, no. 1, pp. 143–146, +Jan. 1988. +[4] A. Pezeshki, A. R. Calderbank, W. Moran, and S. D. Howard, “Doppler resilient Golay complementary waveforms,” IEEE +Trans. Inf. Theory, vol. 54, no. 9, pp. 4254–4266, Sep. 2008. +[5] P. Spasojevic and C. N. Georghiades, “Complementary sequences for ISI channel estimation,” IEEE Trans. Inf. Theory, +vol. 47, no. 3, pp. 1145–1152, Mar. 2001. +[6] D. Su, Y. Jiang, X. Wang, and X. Gao, “Omnidirectional precoding for massive MIMO with uniform rectangular array—part +I: complementary codes-based schemes,” IEEE Trans. Signal Process., vol. 67, no. 18, pp. 4761–4771, Sep. 2019. +[7] Z. Liu, Y. Li, and Y. L. Guan, “New constructions of general QAM Golay complementary sequences,” IEEE Trans. Inf. +Theory, vol. 59, no. 11, pp. 7684–7692, Nov. 2013. +[8] R. van Nee, “OFDM codes for peak-to-average power reduction and error correction,” in Proc. IEEE Global Telecommun. +Conf., London, U.K., Nov. 1996, pp. 740–744. +[9] J. A. Davis and J. Jedwab, “Peak-to-mean power control in OFDM, Golay complementary sequences, and Reed-Muller +codes,” IEEE Trans. Inf. Theory, vol. 45, no. 7, pp. 2397–2417, Nov. 1999. +[10] K. G. Paterson, “Generalized Reed-Muller codes and power control in OFDM modulation,” IEEE Trans. Inf. Theory, +vol. 46, no. 1, pp. 104–120, Jan. 2000. +[11] K.-U. Schmidt, “Complementary sets, generalized Reed-Muller codes, and power control for OFDM,” IEEE Trans. Inf. +Theory, vol. 53, no. 2, pp. 808–814, Feb. 2007. +[12] C.-Y. Chen, C.-H. Wang, and C.-C. Chao, “Complementary sets and Reed-Muller codes for peak-to-average power ratio +reduction in OFDM,” in Proc. 16th Int. Symp. AAECC, LNCS 3857, Las Vegas, NV, Feb. 2006, pp. 317–327. +[13] C.-Y. Chen, “Complementary sets of non-power-of-two length for peak-to-average power ratio reduction in OFDM,” IEEE +Trans. Inf. Theory, vol. 62, no. 12, pp. 7538–7545, Dec. 2016. +[14] Z. Liu, Y. L. Guan, and H. H. Chen, “Fractional-delay-resilient receiver design for interference-free MC-CDMA +communications based on complete complementary codes,” IEEE Trans. Wireless Commun., vol. 14, no. 3, pp. 1226– +1236, Mar. 2015. +[15] H.-H. Chen, J.-F. Yeh, and N. Suehiro, “A multicarrier CDMA architecture based on orthogonal complete complementary +codes for new generations of wideband wireless communications,” IEEE Commun. Mag., vol. 39, pp. 126–134, Oct. 2001. +[16] N. Suehiro, “A signal design without co-channel interference for approximately synchronized CDMA systems,” IEEE J. +Sel. Areas Commun., vol. 12, pp. 837–841, Jun. 1994. +[17] S.-M. Tseng and M. R. Bell, “Asynchronous multicarrier DS-CDMA using mutually orthogonal complementary sets of +sequences,” IEEE Trans. Commun., vol. 48, no. 1, pp. 53–59, Jan. 2000. +[18] J. M. Groenewald and B. T. Maharaj, “MIMO channel synchronization using Golay complementary pairs,” in Proc. +AFRICON 2007, Windhoek, South Africa, Sep. 2007, pp. 1–5. +[19] S. Boyd, “Multitone signals with low crest factor,” IEEE Trans. Circuits Syst., vol. CAS-33, no. 10, pp. 1018–1022, Oct. +1986. +[20] A.-A. Lu, X. Gao, X. Meng, and X.-G. Xia, “Omnidirectional precoding for 3D massive MIMO with uniform planar +arrays,” IEEE Trans. Wireless Commun., vol. 19, no. 4, pp. 2628–2642, Apr. 2020. +January 4, 2023 +DRAFT + +24 +[21] F. Li, Y. Jiang, C. Du, and X. Wang, “Construction of Golay complementary matrices and its applications to MIMO +omnidirectional transmission,” IEEE Trans. Signal Process., vol. 69, pp. 2100–2113, Mar. 2021. +[22] X. Meng, X. Gao, and X.-G. Xia, “Omnidirectional precoding based transmission in massive MIMO systems,” IEEE Trans. +Commun., vol. 64, no. 1, pp. 174–186, Jan. 2016. +[23] Y. Jiang, F. Li, X. Wang, and J. Li, “Autocorrelation complementary matrices,” in Proc. 53rd Asilomar Conference on +Signals, Systems, and Computers, Pacific Grove, CA, USA, Nov. 2019, pp. 1596–1600. +[24] S. Matsufuji, R. Shigemitsu, Y. Tanada, and N. Kuroyanagi, “Construction of complementary arrays,” in Proc. Joint 1ST +Workshop on Mobile Future Symp. Trends Commun. (SympoTIC), Bratislave, Slovakia, Oct. 2004, pp. 78–81. +[25] Z. Wang and G. Gong, “Constructions of complementary sequence sets and complete complementary codes by 2-level +autocorrelation sequences and permutation polynomials,” May 2020. [Online]. Available: https://arxiv.org/abs/2005.05825 +[26] Z. Wang, D. Ma, G. Gong, and E. Xue, “New construction of complementary sequence (or array) sets and complete +complementary codes,” IEEE Trans. Inf. Theory, vol. 67, no. 7, pp. 4902–4928, Jul. 2021. +[27] C.-Y. Pai and C.-Y. Chen, “Constructions of two-dimensional Golay complementary array pairs based on generalized +Boolean functions,” in Proc. IEEE Int. Symp. Inf. Theory, Los Angeles, California, USA, Jun. 2020, pp. 2931–2935. +[28] C.-Y. Pai and C.-Y. Chen, “Two-dimensional Golay complementary array pairs/sets with bounded row and column sequence +PAPRs,” IEEE Trans. Commun., vol. 70, no. 6, pp. 3695–3707, Jun. 2022. +[29] Z. Liu, Y. L. Guan, and U. Parampalli, “New complete complementary codes for peak-to-mean power control in multi- +carrier CDMA,” IEEE Trans. Commun., vol. 62, pp. 1105–1113, Mar. 2014. +[30] C.-Y. Pai, Z. Liu, Y.-Q. Zhao, Z.-M. Hunag, and C.-Y. Chen, “Designing two-dimensional complete complementary codes +for omnidirectional transmission in massive MIMO systems,” in Proc. IEEE Int. Symp. Inf. Theory, Espoo, Finland, Jun. +2022, pp. 1699–1704. +[31] T. Liu, X. Men, Y. Li, and X. Chen, “Constructions of 2-D Golay complementary array sets for MIMO omnidirectional +transmission,” IEEE Commun. Lett., pp. 1459 – 1463, Jul. 2022. +[32] B. Shen, Y. Yang, and R. Ren, “Three constructions of Golay complementary array sets,” Adv. Math. Commun., Oct. 2022. +January 4, 2023 +DRAFT + diff --git a/3dAzT4oBgHgl3EQfR_t3/content/tmp_files/load_file.txt b/3dAzT4oBgHgl3EQfR_t3/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..1ce969983dc0fc9a8e315879a7d2e523b3b01d12 --- /dev/null +++ b/3dAzT4oBgHgl3EQfR_t3/content/tmp_files/load_file.txt @@ -0,0 +1,2171 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf,len=2170 +page_content='1 Two-Dimensional Golay Complementary Array Sets With Arbitrary Lengths for Omnidirectional MIMO Transmission You-Qi Zhao, Cheng-Yu Pai, Zhen-Ming Huang, Zilong Liu, Senior Member, IEEE, and Chao-Yu Chen, Member, IEEE Abstract This paper presents a coding approach for achieving omnidirectional transmission of certain common signals in massive multi-input multi-output (MIMO) networks such that the received power at any direction in a cell remains constant for any given distance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Specifically, two-dimensional (2D) Golay complementary array set (GCAS) can be used to design optimal massive MIMO precoding matrix so as to achieve omnidirectional transmission due to its complementary autocorrelation property.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' In this paper, novel constructions of new 2D GCASs with arbitrary array lengths are proposed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Our key idea is to carefully truncate the columns of certain larger arrays generated by 2D generalized Boolean functions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Finally, the power radiation patterns and numerical results are provided to verify the omnidirectional property of the GCAS-based precoding.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' The error performances of the proposed precoding scheme are presented to validate its superiority over the existing alternatives.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Index Terms This work was supported by the Ministry of Science and Technology, Taiwan, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=', under Grant MOST 109–2628–E–006– 008–MY3 and MOST 111–2218–E–305–002.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' You-Qi Zhao and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='-Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Pai are with the Department of Engineering Science, National Cheng Kung University, Tainan 701, Taiwan, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' (e-mail: n98081505@gs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='ncku.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='edu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='tw).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='-M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Huang is with the Institute of Computer and Communication Engineering, National Cheng Kung University, Tainan 701, Taiwan, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' (e-mail: n98101012@gs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='ncku.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='edu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='tw).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Zilong Liu is with the School of Computer Science and Electronic Engineering, University of Essex, United Kingdom (e-mail: zilong.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='liu@essex.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='ac.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='uk).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='-Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Chen is with the Department of Electrical Engineering and the Institute of Computer and Communication Engineering, National Cheng Kung University, Tainan 701, Taiwan, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' (e-mail: super@mail.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='ncku.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='edu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='tw).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' January 4, 2023 DRAFT arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='01225v1 [cs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='IT] 3 Jan 2023 2 Generalized Boolean function (GBF), Golay complementary array pair (GCAP), Golay comple- mentary array set (GCAS), omnidirectional precoding (OP), uniform rectangular array (URA).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' INTRODUCTION Complementary pairs/sets of sequences have attracted a sustained research interest owing to their zero aperiodic correlation sums properties.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' To be specific, a Golay complementary pair (GCP) refers to a pair of equal-length sequences whose summation of aperiodic autocorrelations is zero except at the zero time-shift [1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Such a concept was extended to Golay complementary set (GCS) with constituent sequences of more than 2 by Tseng and Liu in [2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Furthermore, a maximum collection of GCSs is called a set of complete complementary code (CCC) [3] if any two different GCSs have zero aperiodic cross-correlation sums for all time-shifts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' In the literature, GCSs and CCCs have been widely used for radar sensing [4], channel estimation [5], precoding for massive multi-input multi-output (MIMO) [6], peak-to-average power ratio (PAPR) reduction in orthogonal frequency division multiplexing (OFDM) [7]–[13], interference-free multicarrier code division multiple access [14]–[17], and many other applications [18], [19].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Recently, there is a surge of research attention to study two-dimensional (2D) Golay com- plementary array sets (GCASs) [18]-[23], each having zero aperiodic autocorrelation sums property for two directions of shifts (compared to conventional GCSs and CCCs with time- shifts only).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' An important application of the 2D GCASs is for omnidirectional transmission in MIMO communication systems with a uniform rectangular array (URA) configuration [20], [21].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' In massive MIMO systems, some common messages (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=', reference signals, synchronization signals, control signals, etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=') need to be power-uniformly broadcasted to all the angles within the whole cell.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' In this paper, we consider space-time block code (STBC) for the harvesting of the diversity gain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' At the base station (BS), the STBC encoded symbols are assigned to several streams and then mapped onto the antenna arrays in URA by certain 2D GCASs assisted precoding matrices to achieve uniform power radiation at any angle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' On the other hand, since a large number of antennas are considered in massive MIMO systems, a huge pilot overhead may be needed to acquire the channel state information (CSI).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' As pointed out in [22], this can be alleviated by omnidirectional precoding (OP) based transmission.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' For uniform linear arrays (ULAs), Zadoff-Chu (ZC) sequences were adopted to satisfy the requirements of the omnidirectional property.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' However, [22] only considered the omnidirectional January 4, 2023 DRAFT 3 transmission in certain directions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Later in [6], GCSs and CCCs based OP matrices were proposed to meet the requirement of omnidirectional transmission across all directions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' In [20], [21], [23], [24], 2D GCASs were employed for precoding matrices in URAs by applying interleaving and Kronecker-product to existing 1D sequences or 2D arrays.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' As a result, the array sizes of 2D GCASs are only feasible for certain lengths.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' A construction of 2D GCASs of array size pn × pm was proposed in [25] by using permutation ploynomials (PPs) functions and 2-level autocorrelation sequences, where p is a prime number, m, n are two positive integers, and p, m, n > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Furthermore, a unifying construction framework for 2D GCASs was developed in [26] by a multivariate polynomial matrix from certain seed para-unitary (PU) matrices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' In [27], [28], Pai and Chen proposed direct constructions of 2D Golay complementary array pairs (GCAPs) and GCASs with array size 2n × 2m from 2D generliazed Boolean functions (GBFs) [29] where n, m are integers and n, m ≥ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' 2D GCAP can be regarded as a case of 2D GCAS when the set size is equal to 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Moreover, Pai et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' [30] proposed a direct construction of 2D CCCs with array size 2n×2m, which have ideal autocorrelations and cross-correlations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Later, Liu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' [31] proposed a construction of GCASs with array size pn ×pm by using 2D multivariable functions, where p is a prime number, n, m are integers, and n, m ≥ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Based on [27], [32] developed a direct construction of GCASs with set size 4 and array size 2n × (2m−1 + 2v) by using 2D GBFs, where n, m, v are positive number with n, m ≥ 2, and 0 ≤ v ≤ m − 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' The aforementioned research efforts are generally driven by the need of highly flexible array sizes of 2D GCASs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Motivated by this, we aim for generating new GCASs with arbitrary array lengths.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' The key idea of our proposed constructions is to carefully truncate some columns of the certain larger arrays generated by 2D GBFs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Thus, our proposed GCASs can be applied to URAs with various array sizes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' In addition, the proposed GCASs can be directly generated from 2D GBFs without the requirements of any specific sequences or tedious sequence operations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' In Table I, we compare the existing parameters of 2D GCASs with our proposed ones.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' The remainder of this paper is defined as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Section II discusses notations, definitions, system models, and the omnidirectional transmission in MIMO systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Section III describes our proposed constructions of 2D GCASs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Section IV shows the power radiation pattern and bit error rate (BER) performance based on our proposed 2D GCASs precoding.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Finally, Section V presents the conclusion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' January 4, 2023 DRAFT 4 TABLE I A COMPARISON OF CONSTRUCTIONS FOR 2D GCASS Construction Parameters Approaches [26, Th.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' 5] (N, N n, N m), N, n, m > 0 Seed PU matrices [26, Th.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' 7] (2k, 2kn, 2km), n, m, k > 0 [25, Th.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' 4] (p, pn, pm), prime p, n, m > 0 PPs and 2-level autocorrelation sequences [25, Th.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' 6] (pk, pkn, pkm), prime p, k, n, m > 0 [31, Th.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' 1] (pk1 1 pk2 2 , pn 1 , pm 2 ), primes p1, p2 2D multivariable functions [31, Th.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' 2] (pk, pn, pm), prime p, n + m ≥ k > 0 [27], [28], [30] (2k, 2n, 2m), n, m ≥ k > 0, and k > 0 2D GBFs [32] (4, 2n, 2m−1 + 2v), n, m ≥ 2, and k > 0 Th.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' 1 (2k+1, 2n, 2m−1 + �k−1 α=1 dα2m−k+α−1 + d02v), k < m, 0 ≤ v ≤ m − k, dα ∈ {0, 1} Th.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' 2 (2k+1, 2n, 2m−1 + �k−1 α=1 dα2π1(m−k+α)−1 + d02v), k < m, 0 ≤ v ≤ m − k, dα ∈ {0, 1} II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' PRELIMINARIES AND DEFINITIONS A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Notations Throughout this paper, we present the notations in the following: (a)i refers to the i-th element of the vector a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' (A)i,j denotes the (i, j)-th element of the array A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' (·)H refers to the conjugate transpose.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' diag(A) refers to the column vector composed of the main diagonal of A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' (·)∗ refers to the complex conjugation of an element.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' (·)T refers to the transpose.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' vec(·) express stacking one column of the matrix into one another column.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' 1 is a vector whose elements are all 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Let ξ = e2π√−1/q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' In this paper, q is an even number.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Let X and Y be two arrays of size L1 × L2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Then X and Y can be stated as X = (Xg,i), Y = (Yg,i), (1) where g = 0, 1, · · · , L1 − 1 and i = 0, 1, · · · , L2 − 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' January 4, 2023 DRAFT 5 Definition 1: Given two arrays X and Y of size L1 × L2, the 2D aperiodic cross-correlation function (AACF) is defined by ρ (X, Y;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' u1, u2) = � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � L1−1−u1 � g=0 L2−1−u2 � i=0 Yg+u1,i+u2X∗ g,i, 0 ≤ u1 < L1, 0 ≤ u2 < L2;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' L1−1−u1 � g=0 L2−1−u2 � i=0 Yg+u1,iX∗ g,i−u2, 0 < u1 < L1, −L2 < u2 < 0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' L1−1−u1 � g=0 L2−1−u2 � i=0 Yg,iX∗ g−u1,i−u2, −L1 < u1 < 0, −L2 < u2 < 0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' L1−1+u1 � g=0 L2−1−u2 � i=0 Yg,i+u2X∗ g−u1,i, −L1 < u1 < 0, 0 < u2 < L2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' (2) When X = Y , then it is called 2D aperiodic autocorrelation function (AACF) and denoted by ρ(X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' u1, u2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' If taking L1 = 1, two 2D arrays X and Y are degraded as a 1-D sequence X = Xi for i = 0, 1, · · · , L2 − 1 and Y = Yi for i = 0, 1, · · · , L2 − 1, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Then the 1-D AACF of 1-D sequence X is related by ρ(X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' u) = � � � � � � � L2−1−u � i=0 Xi+uX∗ i , 0 ≤ u ≤ L2 − 1;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' L2−1+u � i=0 XiX∗ i−u, −L2 + 1 ≤ u < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' (3) In this paper, q-PSK modulation is employed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Thus, x and y denote q-ary arrays and (1) is expressed as X = (Xg,i) = (ξxg,i) = ξx;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Y = (Yg,i) = (ξyg,i) = ξy, (4) where x = (xg,i), y = (yg,i), and xg,i, yg,i ∈ Zq = {0, 1, · · · , q−1} for 0 ≤ g < L1, 0 ≤ i < L2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Consider a set of N L-length sequences can be represented as C = {X0, X1, · · · , XN−1} where Xn = (Xn,0, Xn,1, · · · , Xn,L−1) for n = 0, 1, · · · , N − 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' January 4, 2023 DRAFT 6 Definition 2: [19] If a set C consisting of N sequences of length L satisfies N−1 � k=0 ρ(Xk;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' u) = � � � � � NL, u = 0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' 0, u ̸= 0, (5) then the set C is called a Golay complementary set of size N, denoted by (N, L)-GCS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' The GCP can be regarded as a special case of the GCS by setting N = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Definition 3: For a GCP (X0, X1), if another GCP (Y0, Y1) meets the following condition: ρ(X0, Y0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' u) + ρ(X1, Y1;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' u) = 0, for all u, (6) then the two GCPs are called the Golay complementary mate of each other.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Definition 4: A pair of arrays X and Y of array size L1 × L2 is called a 2D Golay complementary array pair if ρ(X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' u1, u2) + ρ(Y ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' u1, u2) = � � � � � 2L1L2, u1 = u2 = 0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' 0, u1 ̸= 0 or u2 ̸= 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' (7) Definition 5: Let the array set G = {X0, X1, · · · , XN−1} where each array in set G is of size L1 × L2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' If the array set G satisfies N−1 � k=0 ρ(Xk;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' u1, u2) = � � � � � NL1L2, u1 = u2 = 0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' 0, u1 ̸= 0 or u2 ̸= 0, (8) the set G is called the Golay complementary array set of set size N denoted by (N, L1, L2)- GCAS where L2 is defined as the length of the GCAS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' If N = 2, the GCAS G is degraded as a GCAP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Generalized Boolean Functions A 2D generalized Boolean function (GBF) f in n + m binary variables y1, y2, · · · , yn, x1, x2, · · · , xm, is a function mapping: Zn 2 ×Zm 2 → Zq, where xi, yg ∈ {0, 1} for i = 1, 2, · · · , m and g = 1, 2, · · · , n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' A monomial of degree r is given by any product of r distinct variables among y1, y2, · · · , yn, x1, x2, · · · , xm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' For instance, x1x3y1y2 is a monomial of degree 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Next, the variables z1, z2, · · · , zn+m are defined as zl = � � � � � yl if 1 ≤ l ≤ n;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' xl−n if n < l ≤ m + n, (9) January 4, 2023 DRAFT 7 which are useful for our proposed constructions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' For a 2D GBF with n + m variables, the 2D Zq-valued array f = � � � � � � � f0,0 f0,1 · · f0,2m−1 f1,0 f1,1 · · f1,2m−1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' f2n−1,0 f2n−1,1 · · f2n−1,2m−1 � � � � � � � (10) of size 2n×2m is given by letting fg,i = f((g1, g2, · · · , gn), (i1, i2, · · · , im)), where (g1, g2, · · · , gn) and (i1, i2, · · · , im) are binary vector representations of integers g = �n h=1 gh2h−1 and i = �n j=1 ij2j−1, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Example 1: Taking q = 4, n = 2, and m = 3 for example, the 2D GBF is given as f = 3z5z4 + z2z3 + 2z2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Then the array f of size 4 × 8 corresponding to f can be obtained, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=', f = � � � � � � � 0 0 0 0 0 0 3 3 0 0 0 2 1 1 3 3 2 3 2 3 2 3 1 2 2 3 2 3 2 3 1 2 � � � � � � � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' (11) The GBF f can be rewritten as f = 3x3x2 + y2x1 + 2y2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' In this paper, we consider the array size ̸= 2n × 2m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Hence, we define the truncated array f (L) corresponding to the 2D GBF f by ignoring the last 2m − L columns of the corresponding array f.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Example 2: Following the same notations given in Example 1, the truncated array f (6) is given by f (6) = � � � � � � � 0 0 0 0 0 0 0 0 0 2 1 1 2 3 2 3 2 3 2 3 2 3 2 3 � � � � � � � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' (12) For simplicity, we use f to stand for f (L) when L is known.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' System Model Considering downlink transmission from a BS to UEs where each has one single antenna, we suppose that the number of antennas at the BS is M = L1 × L2, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=', the URA consists of L1 rows and L2 columns.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' 1 illustrates the diagram of data downlink transmission.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' For an January 4, 2023 DRAFT 8 Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Diagram of data transmission through STBC encoding and omnidirectional precoding.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' L1 × L2 URA, the steering matrix A(ϕ, θ) at the direction (ϕ, θ) with the (g, i)-th entry can be expressed as (A(ϕ, θ))g,i =e−j 2π λ gdy sin ϕ sin θ−j 2π λ idx sin ϕ cos θ, for g = 0, 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' , L1 − 1, i = 0, 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' , L2 − 1, θ ∈ [0, 2π], ϕ ∈ [0, π/2], (13) where dx and dy denote the vertical antenna and horizontal antenna inter-element spacings of the URA, respectively, and λ denotes the carrier wavelength.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' To enhance the spatial diversity and communication reliability, the STBC signal transmission scheme is used.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' The N ×M STBC is given by S ≜ � � � � � � � s0(0) s0(1) · · s0(M − 1) s1(0) s1(1) · · s1(M − 1) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' sN−1(0) sN−1(1) · · sN−1(M − 1) � � � � � � � ∈ CN×M (14) January 4, 2023 DRAFT So(t) Xo(t) 7 Data Omni- Space-time UE1 Si(t) directional xi(t) block coding y(t) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' precoding V SN-1(t) XL;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='L2 1(t) y d d (t) xo(t) x Omnidirectional precoding UE19 where CN×M refers to the N-by-M complex space and sn(t) denotes the (n, t)-th element of the STBC at time instant t for t = 0, 1, · · · , M − 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' We define the precoding matrix Wn of size L1 × L2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' The encoded symbols is given by x(t) = (x0(t), x1(t), · · · , xL1L2−1(t))T = vec �N−1 � n=0 Wn · sn(t) � , for t = 0, 1, · · · , M − 1, (15) which are transmitted by the L1L2 antennas of the URA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' In the light-of-sight (LOS) channel without multipaths, the received signal at the direction (ϕ, θ) can be written as y(t) = N−1 � n=0 � vec(A(ϕ, θ))Tvec(Wn) � sn(t) + η(t), t = 0, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=', M − 1, (16) where η(t) is the additive Gaussian white noise (AWGN) at time instant t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Omnidirectional Precoding Matrices Based on 2D Arrays In this subsection, we list two necessary requirements for the design of OP matrices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Then, we will connect these two requirements with the conditions of 2D arrays.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Requirement 1 (R1): Omnidirectional transmission.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' We consider the MIMO system with URA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Following (16), the received power E at the angle (ϕ, θ) is represented as E = N−1 � n=0 ��[vec(A(ϕ, θ))Tvec(Wn)] ��2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' (17) Therefore, to satisfy the omnidirectional transmission in the whole cell, (17) must be constant for all ϕ and θ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Requirement 2 (R2): Equal average power on each antenna.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' To enhance the efficiency of the power amplifier, the average transmission power on all L1×L2 antennas is required to be equal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' We define W = (vec(W0), vec(W1), · · · , vec(WN−1)) , (18) where the array size of W is L1L2 × N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Hence, (15) can be rewritten as X = (x(0), x(1), · · · , x(M − 1)) = W S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' (19) January 4, 2023 DRAFT 10 Let s(t) be the t-th column of S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Throughout this paper, we assume E � s(t)s(t)H� =IN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' The transmitted signal on the (l1, l2)-th antenna is (W s)l2L1+l1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' The average power on the (l1, l2)-th antenna can be expressed as E � |(W s)l2L1+l1|2� = � W E � s(t)s(t)H� W H� l2L1+l1,l2L1+l1 = (W W H)l2L1+l1,l2L1+l1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' (20) Therefore, the condition to guarantee equal power on each antenna is equivalent to diag(W W H) = N1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' (21) Next, we will derive two sufficient conditions on the precoding matrices to fulfill requirements R1 and R2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Lemma 1: [21] For an L1 × L2 URA, if the precoding matrices W0, W1, · · · , WN−1 of size L1 × L2 form an (N, L1, L2)-GCAS, then the omnidirectional transmission is achieved.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Lemma 2: For an L1×L2 URA, if the precoding matrices W0, W1, · · · , WN−1 of size L1×L2 are unimodular, then the average power on each antenna is equal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Proof: In order to meet the requirement for equal average power on each antenna, the precoding matrix W must satisfy (21).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' We let wi = vec(Wi), for i = 0, 1, · · · , N − 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Then, diag � W W H� = �N−1 � i=0 |(wi)0|2 , N−1 � i=0 |(wi)1|2 , · · · , N−1 � i=0 |(wi)L1L2−1|2 �T = N1 (22) since we have |(wi)n|2 = 1, for i = 0, 1, · · · , N − 1 and n = 0, 1, · · · , L1L2 − 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' (23) According to (21), the requirement (R2) is fulfilled.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' In the sequel, the design of OP matrices W0, W1, · · · , WN−1 are based on Lemma 1 and Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' That is, our goal is to construct unimodular GCASs with flexible sizes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' GCASS WITH FLEXIBLE ARRAY SIZE In this section, two constructions of 2D GCASs with arbitrary array lengths based on 2D GBFs will be proposed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' By recalling the function mapping in (9), we present our first theorem in the following.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' January 4, 2023 DRAFT 11 Theorem 1: For any integers q, m, n ≥ 2, and k < m, v is an integer satisfies 0 ≤ v ≤ m−k and let π be a permutation of {1, 2, · · · m + n − k} satisfying {zπ(1), zπ(2), · · · , zπ(v+n)} = {z1, z2, · · · , zv+n}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' The 2D generalized Boolean function can be written as f = q 2 �m+n−k−1 � l=1 zπ(l)zπ(l+1) � + m+n � s=1 pszs + p0 (24) where ps ∈ Zq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' The array set G = � f + q 2 k � α=1 λαzm+n−k+α + q 2λk+1zπ(1) : λα ∈ {0, 1} � (25) is a q-ary (2k+1, 2n, 2m−1 + �k−1 α=1 dα2m−k+α−1 + d02v)-GCAS where dα ∈ {0, 1}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Proof: Without loss of generality, we consider L1 = 2n and L2 = 2m−1+�k−1 α=1 2m−k+α−1+ 2v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' We need to show that � c∈G L1−1−u1 � g=0 L2−1−u2 � i=0 � ξcg+u1,i+u2−cg,i� = 0 (26) for 0 ≤ u1 < 2n, 0 ≤ u2 < 2m−1 + �k−1 α=1 2m−k+α−1 + 2v and (u1, u2) ̸= (0, 0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Then we let h = g + u1 and j = i + u2 for any integers g and i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' We also let (g1, g2, · · · , gn),(i1, i2, · · · , im), (h1, h2, · · · , hn), and (j1, j2, · · · , jm) be the binary representations of g, i, h, and j, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' For the ease of presentation, we denote al = � � � � � gl for 1 ≤ l ≤ n;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' il−n for n < l ≤ n + m;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' bl = � � � � � hl for 1 ≤ l ≤ n;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' jl−n for n < l ≤ n + m;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' (27) In what follows, we consider four cases to show that the above formula holds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Case 1: If aπ(1) ̸= bπ(1), we can find that c′ = c + (q/2)zπ(1) for any arrayc ∈ G satisfying ch,j − cg,i − c′ h,j+c′ g,i = q 2(aπ(1) − bπ(1)) ≡ q 2 (mod q).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' (28) Therefore, we have ξch,j−cg,i + ξc′ h,j−c′ g,i = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' (29) Case 2: If am+n−k+α ̸= bm+n−k+α, we can find that c′ = c + (q/2)zm+n−k+α for any array c ∈ G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Similar to Case 1, we have ξch,j−cg,i + ξc′ h,j−c′ g,i = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' (30) January 4, 2023 DRAFT 12 Case 3: If aπ(1) = bπ(1) and am+n−k+α = bm+n−k+α for α = 1, 2, · · · , k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Suppose that α′ is the largest integer satisfying am+n−k+α′ = bm+n−k+α′ = 0 for α′ ≤ k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Then we assume β is the smallest integer which satisfies aπ(β) ̸= bπ(β).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Let a′ and b′ be integers distinct from a and b, respectively, only in one position π(β − 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' In other words, a′ π(β−1) = 1 − aπ(β−1) and b′ π(β−1) = 1 − bπ(β−1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' If 1 ≤ π(β − 1) ≤ n, by using the above definition, we have cg′,i − cg,i = q 2 � aπ(β−2)g′ π(β−1) − aπ(β−2)gπ(β−1) + g′ π(β−1)aπ(β) −gπ(β−1)aπ(β) � + pπ(β−1)g′ π2(β−1) − pπ(β−1)gπ(β−1) ≡ q 2(aπ(β−2) + aπ(β)) + pπ(β−1)(1 − 2gπ(β−1)) (mod q).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' (31) where a′ π(β−1) = g′ π(β−1) and aπ(β−1) = gπ(β−1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Since aπ(β−2) = bπ(β−2) and aπ(β−1) = bπ(β−1), we have ch,j − cg,i − ch′,j + cg′,i ≡ q 2(aπ(β−2) − bπ(β−2) + aπ(β) − bπ(β)) + pπ(β−1)(2hπ(β−1) − 2gπ(β−1)) ≡ q 2(aπ(β) − bπ(β)) ≡ q 2 (mod q) (32) implying ξch,j−cg,i/ξch′,j−cg′,i = −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' We can also obtain ξch,j−cg,i + ξch′,j−cg′,i = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' (33) If n < π(β − 1) ≤ n + m, note that a′ π(β−1) = i′ π(β−1)−n and aπ(β−1) = iπ(β − 1) − n according to (27).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Following the similar argument as given above, we can get ξch,j−cg,i + ξch,j′−cg,i′ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Case 4: If aπ(1) = bπ(1) and am+n−k+α = bm+n−k+α = 1 for α = 1, 2, · · · , k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' We assume β is the smallest integer such that aπ(β) ̸= bπ(β).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Since as = bs = 0 for s = v+n+1, v+n+2, · · · , m+ n−k, we can obtain π(β) ≤ v+n implying π(β −1) ≤ v+n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' If 1 ≤ π(β−1) ≤ n, by following the similar argument as given above, we have ξch,j−cg,i +ξch′,j−cg′,i = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' If n < π(β −1) ≤ v+n, we have ξch,j−cg,i + ξch,j′−cg,i′ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' From Cases 1 to 4, the theorem can be proved.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Remark 1: The parameter 2m−1+�k−1 α=1 dα2m−k+α−1+d02v of the proposed GCASs in Theorem 1 can be any arbitrary length since m, k, v are flexible and dα ∈ {0, 1}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Example 3: Taking q = 2, m = 6, n = 2, k = 1, and v = 0, we let π = (1, 2, 3, 4, 5, 6, 7).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' The generalized Boolean function is f = z1z2 + z2z3 + z3z4 + z4z5 + z5z6 + z6z7 = x1x2 + x2x3 + x3x4 + x4x5 + y1y2 + y2x1 by setting pk = 0 for k = 0, 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' , m + n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' The array set January 4,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' 2023 DRAFT 13 TABLE II THE CONSTRUCTED (4,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' 4,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' 33)-GCAS IN EXAMPLE 3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='c0 = ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='c1 = ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='c2 = ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='c3 = ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='200 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='400 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='40 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='600 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='800 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1000 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='40 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' The summation of autocorrelations of constituent arrays in the GCAS in Example 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' G = {f, f + x8, f + y1, f + x8 + y1} is a GCAS of size 4 and the array size is 4 × 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' We let G = {c0, c1, c2, c3} and list the constituent arrays in Table II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' 2 shows the AACF sum of set G is zero at shift u1 ̸= 0 or u2 ̸= 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Thus, we can find that array set G is a (4, 4, 33)-GCAS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' January 4, 2023 DRAFT 14 Next, we introduce a lemma which illustrates a construction of (4, 2n, 2m−1 +2v)-GCAS from 2D GBFs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Lemma 3: [32, Th.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' 1] For nonnegative integers m, n, and v with 0 ≤ v < m − 1, let π1 be a permutation of {1, 2, · · · , m − 1} and π2 be a permutation of {1, 2, · · · , n}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' The 2D GBF is given by f =q 2 �m−2 � k=1 xπ1(k)xπ1(k+1) + n−1 � k=1 yπ2(k)yπ2(k+1) + xπ1(m−1)xm + xmyπ2(1) � + m � l=1 plxl + n � s=1 κsys + p0 (34) where pl, κs ∈ Zq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Then the array set G = � f, f + q 2xπ1(1), f + q 2yπ2(n), f + q 2xπ1(1) + q 2yπ2(n) � is a (4, 2n, 2m−1 + 2v)-GCAS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Since the set size of the GCAS from Lemma 3 is limited to 4, we propose a general construction of 2D GCASs with more flexible array sizes and set sizes which can include Lemma 3 as a special case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Theorem 2: For any integers q, m, n ≥ 2, and k < m, v is an integer satisfies 0 ≤ v ≤ m−k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Assume that π1 is a permutation of {1, 2, · · · m} and π2 is a permutation of {1, 2, · · · n}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' The 2D generalized Boolean function can be written as f =q 2 �m−k−1 � l=1 xπ1(l)xπ1(l+1) + n−1 � s=1 yπ2(s)yπ2(s+1) + xπ1(m)yπ2(n) � + m−k � l=1 µlxπ1(l)xπ1(m) + m � l=1 plxk + n � s=1 κsys + p0 (35) where µl, pl, κs, ∈ Zq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' The array set G = � f + q 2 k−1 � α=1 λαxπ1(m−k+α) + q 2λkyπ2(1) + q 2λk+1xπ1(1) : λα ∈ {0, 1} � (36) is a q-ary (2k+1, 2n, 2m−1 + �k−1 α=1 dα2π1(m−k+α)−1 + d02v)-GCAS where dα ∈ {0, 1} if the following three conditions hold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' (C1) {π1(1), π1(2), · · · , π1(v)} = {1, 2, · · · , v} if v > 0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' (C2) π1(m − k + α) < π1(m − k + α + 1) for 1 ≤ α ≤ k − 1 where π1(m) = m;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' (C3) For 1 ≤ α ≤ k − 1 and 2 ≤ β ≤ m − k, if π1(β) < π1(m − k + α), then π1(β − 1) < π1(m − k + α).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' January 4, 2023 DRAFT 15 Proof: Similarly, we consider L1 = 2n and L2 = 2m−1 + �k−1 α=1 2π1(m−k+α)−1 + 2v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Then we would like to prove that � C ρ(C;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' u1, u2) = � c∈G L1−1−u1 � g=0 L2−1−u2 � i=0 � ξcg+u1,i+u2−cg,i� = 0 (37) for 0 ≤ u1 < 2n, 0 ≤ u2 < 2m−1 + �k−1 α=1 2π1(m−k+α)−1 + 2v and (u1, u2) ̸= (0, 0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' From (4) we can find that c = q 2 �m−k−1 � l=1 xπ1(l)xπ1(l+1) + n−1 � s=1 yπ2(s)yπ2(s+1) + xπ1(m)yπ2(n) � + m−k � l=1 µlxπ1(l)xπ1(m) + m � l=1 plxl + n � s=1 κsys + p0 · 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' (38) Then we let h = g + u1 and j = i + u2 for any integers g and i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Next, we discuss seven cases to complete the proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Case 1: Assuming u1 > 0, u2 ≥ 0, and gπ2(1) ̸= hπ2(1), we can find an array c′ = c + (q/2)yπ2(1) ∈ G for any array c ∈ G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Therefore, we can obtain ch,j − cg,i − c′ h,j+c′ g,i = q 2(gπ2(1) − hπ2(1)) ≡ q 2 (mod q) (39) Since gπ2(1) ̸= hπ2(1), we have ξch,j−cg,i/ξc′ h,j−c′ g,i = ξ q 2 = −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' (40) Thus, ξch,j−cg,i + ξc′ h,j−c′ g,i = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' (41) Case 2: If u1 > 0, u2 ≥ 0, and gπ2(1) = hπ2(1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Let β be the smallest integer such that gπ2(β) ̸= hπ2(β).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' We define g′ and h′ are two integers which are distinct from g and h only in one position π2(β − 1), respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Then, similar to Case 2 of Theorem 1, we have ξch,j−cg,i + ξch′,j−cg′,i = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' (42) Case 3: We suppose im ̸= jm, u1 = 0 and u2 > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' We let g′ be an integer distinct from i only in one position, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=', g′ π2(n) = 1 − gπ2(n).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Similar to Case 3 of Theorem 1, we have ξcg,j−cg,i + ξcg′,j−cg′,i = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Case 4: If u1 = 0, u2 > 0, and iπ1(1) ̸= jπ1(1) or iπ1(m−k+α) ̸= jπ1(m−k+α), we can find an array c′ = c + (q/2)xπ1(1) ∈ G or c′ = c + (q/2)xπ1(m−k+α) for any array c ∈ G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Similar to Case 1, we can obtain ξcg,j−cg,i + ξc′ g,j−c′ g,i = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' January 4, 2023 DRAFT 16 Case 5: Suppose u1 = 0, u2 > 0, iπ1(1) = jπ1(1), and iπ1(m−k+α) = jπ1(m−k+α) for all α = 1, 2, · · · , k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Suppose that α′ is the largest non-negative integer satisfying iπ1(m−k+α′) = jπ1(m−k+α′) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Then we assume β is the smallest integer which satisfies iπ1(β) ̸= jπ1(β).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Here, we have is = js = 0 for s = π1(m − k + α′) + 1, π1(m − k + α′) + 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' , m − 1, and s ̸= π1(m − k + α) for α = α′ + 1, α′ + 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' , k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Hence, it implies π1(β) < π1(m − k + α′) and π1(β − 1) < π1(m − k + α′) according to the condition (C-3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Let i′ and j′ be integers that differ from i and j, respectively, in the position π1(β − 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Similar to Case 2, we have ξcg,j−cg,i + ξcg,j′−cg,i′ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' (43) Case 6: Suppose u1 = 0, u2 > 0, iπ1(1) = jπ1(1), and iπ1(m−k+α) = jπ1(m−k+α) = 1 for all α = 1, 2, · · · , k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Then we assume β is the smallest integer which satisfies iπ1(β) ̸= jπ1(β).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Since is = js = 0 for s = v + 1, v + 2, · · · , m − k and s ̸= π1(m − k + α) for α = 1, 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' , k − 1, we can obtain π1(β) ≤ v implying π1(β − 1) ≤ v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Similar to Case 2, we have ξcg,j−cg,i + ξcg,j′−cg,i′ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' (44) From Cases 1 to 6, the theorem can be proved.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Remark 2: Taking σ2(l) = π2(n − l + 1) for l = 1, 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' , n and π1(m − k + α) = m − k + α for α = 1, 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' , k in Theorem 2, (34) can be represented as f =q 2 �m−k−1 � k=1 xπ1(k)xπ1(k+1) + n−1 � k=1 yσ2(k)yσ2(k+1) + xmyσ2(1) � + m−k � l=1 µlxπ1(l)xm + m � l=1 plxl + n � s=1 κsys + p0 (45) where pl, κs ∈ Zq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' We can find that the result of Lemma 3 is a special case of Theorem 2 by simply setting k = 1, µm−1 = q 2, and µl = 0 for l = 1, · · · , m − 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Example 4: Taking q = 2, m = 5, n = 2, k = 2, and v = 0, we let π1 = (1, 2, 4, 3, 5) and π2 = (1, 2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' The generalized Boolean function is f = x1x2 + x2x4 + y1y2 + x5y1 by setting pl, κs = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' The array set G is a GCAS of size 8 when the truncated size L1 = 4 L2 = 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' We let G = {c0, c1, · · · , c7} and list the constituent arrays in Table III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Also, their AACF sum is shown as Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' SIMULATION RESULTS In this section, we present the numerical results including the power radiation pattern and BER performance by using our proposed 2D GCASs for massive MIMO systems with URA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' January 4,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' 2023 DRAFT 17 TABLE III THE CONSTRUCTED (8,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' 4,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' 21)-GCAS IN EXAMPLE 4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='c0 = ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='c1 = ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='c2 = ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='c3 = ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='c4 = ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='c5 = ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='c6 = ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='c7 = ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Power Radiation Pattern According to (16), the power radiation pattern �N−1 n=0 ��[vec(A(ϕ, θ))Tvec(Wn)] ��2 can be ob- tained.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' We first consider the massive MIMO system equipped with a URA of size 4 × 33, January 4, 2023 DRAFT 18 0 200 2 400 40 600 20 800 0 1000 0 20 2 40 Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' The summation of autocorrelations of constituent arrays in the GCAS in Example 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=', L1 = 4 and L2 = 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' We take the GCS G = {c0, c1, c2, c3} listed in Table II to generate the precoding matrices {W0, W1, W2, W3} = {(−1)c0, (−1)c1, (−1)c2, (−1)c3} with the omnidirectional property.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' The power radiation pattern of the GCAS-based scheme with array size 4 × 33 is perfectly omnidirectional as illustrated in Fig 4(a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' For the purpose of comparison, we also show the power radiation patterns of the precoding matrices based on Zadoff-Chu sequences and random-matrices whose elements are randomly generated from “+1” and “−1”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' The ZC-based precoder consists of four 4 × 33 precoding matrices, which are obtained based on a ZC sequence of length 4 and a ZC sequence of length 33 [21].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' 4(b) illustrates the power radiation pattern of the ZC-based precoder.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' We can find that its power radiation pattern is not omnidirectional.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' The random-matrix-based precoder consists of four 4 × 33 precoding matrices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' The elements in the random-matrix-based precoding matrices are generated by selecting the elements from {1, −1} with equal probability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' 4(c) describes the power radiation pattern of the random matrix-based precoder.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' We can observe that the power radiation pattern is not omnidirectional.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Next, we consider the massive MIMO system equipped with a URA of size 4 × 21, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=', January 4, 2023 DRAFT 19 (a) GCAS-based precoding.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' (b) ZC-based precoding.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' (c) Random-matrix-based precoding.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Power radiation pattern with 4 × 33 URA and 4 × 4 STBC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' L1 = 4 and L2 = 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' We use the GCS G = {c0, c1, · · · , c7} listed in Table III for the precoding matrix {W0, W1, · · · , W7} = {(−1)c0, (−1)c1, · · · , (−1)c7}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' The power radiation pattern of the GCAS-based scheme with array size 4×21 is described in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' 5(a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' The perfect omnidirectional property can be observed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' We also see that the power radiation patterns of the ZC-based precoder and the random-matrix precoder shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' 5(b) and Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' 5(c) are not omnidirectional.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' The ZC-based precoding matrices are obtained by a ZC sequence of length 4 and ZC sequence of 21 [21].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Bit Error Rate Performance In this subsection, we present the BER performance of our proposed 2D GCAS-based schemes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' We first consider the massive MIMO system equipped with a URA of size 4×33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' We let N = 4 January 4, 2023 DRAFT X-axis-0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='500.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='51Sy-ax1sX-axis550.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='51Sy-ax.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' 1S0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='3X-axis00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='5Sy-ax.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' 1S20 (a) GCAS-based precoding.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' (b) ZC-based precoding.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' (c) Random-matrix-based precoding.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Power radiation pattern with 4 × 21 URA and 8 × 8 STBC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' and then the 4 × 4 orthogonal real STBC be presented as S = � � � � � � � s0 −s1 −s2 −s3 s1 s0 s3 −s2 s2 −s3 s0 s1 s3 s2 −s1 s0 � � � � � � � , (46) where s0, s1, s2, s3 are binary phase shift keying (BPSK) modulated symbols.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' We employ the maximum likelihood (ML) decoding here.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' For each realization, the elevation and the azimuth angles are uniformly distributed at random between [0, π/2] and [0, 2π], respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' For com- parison, the ZC-based precoder and random-matrix-based precoder are the same as mentioned in Section IV-A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' The BER performances of three different schemes are depicted in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' We can find that the 2D GCAS-based scheme outperform the others.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' At BER of 10−4, there are 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='6 dB and 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='6 dB gains over the ZC-based scheme and the random-matrix-based scheme, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' January 4, 2023 DRAFT X-axis-0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='500.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='51Sy-ax1sX-axis-0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='500.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='51Sy-ax1s0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='8X-axis-0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='500.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='510.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='2Sy-06.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='ax1s21 2 0 2 4 6 8 10 12 14 SNR (dB) 10-8 10-6 10-4 10-2 100 BER GCAS-based precoding (N=4) ZC-based precoding (N=4) Random-matrix-based precoding (N=4) Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' BER performance of the different schemes for a 4 × 33 URA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Next, we consider the massive MIMO system equipped with a URA of size 4 × 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' We consider 8 × 8 STBC and the 8 × 8 orthogonal real STBC is given by S = � � � � � � � � � � � � � � � � � � � s0 s1 s2 s3 s4 s5 s6 s7 −s1 s0 s3 −s2 s5 −s4 −s7 s6 −s2 −s3 s0 s1 s6 s7 −s4 −s5 −s3 s2 −s1 s0 s7 −s6 s5 −s4 −s4 −s5 −s6 −s7 s0 s1 s2 s3 −s5 s4 −s7 s6 −s1 s0 −s3 s2 −s6 s7 s4 −s5 −s2 s3 s0 −s1 −s7 −s6 s5 −s4 −s3 s2 s1 s0 � � � � � � � � � � � � � � � � � � � (47) where s0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' s1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' · · · ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' s7 are BPSK modulated symbols.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' We also take the ZC-based precoding and random-matrix-based precoding for comparison.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' The BER performance comparison for these three different schemes is depicted in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' At BER of 10−4, there are 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='2 dB and 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='8 dB gains over the ZC-based scheme and the random-matrix-based scheme, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' As a result, the 2D GCASs are good candidates as precoding matrices for omnidirectional transmission in January 4, 2023 DRAFT 22 2 0 2 4 6 8 10 12 14 SNR (dB) 10-8 10-6 10-4 10-2 100 BER GCAS-based precoding (N=8) ZC-based precoding (N=8) Random-matrix-based precoding (N=8) Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' BER performance of the different schemes for a 4 × 21 URA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' massive MIMO systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' CONCLUSION In this paper, constructions of 2D GCASs with flexible array sizes have been proposed in Theorems 1 and 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Our constructions can be obtained directly from 2D GBFs without the aid of special sequences.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Besides, our proposed GCASs have flexible array sizes which can fit more antenna configuration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Furthermore, Theorem 2 can include the results in [32] as a special case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Simulation results showed that the omnidirectional transmission can be achieved when the precoding matrices are based on the proposed GCASs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' The BER performance due to their omnidirectional power radiation patterns, the ZC-based scheme and random-matix-based have inferior performances because their power radiation patterns both are not ideally omnidirectional.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Although Theorems 1 and 2 can provide direct constructions of 2D GCASs, the first dimension has size L1 limited to 2n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Therefore, the future work includes the extension of constructions of 2D GCASs of which both dimensions have non-power-of-two sizes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' January 4, 2023 DRAFT 23 REFERENCES [1] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Golay, “Complementary series,” IRE Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Inf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Theory, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' IT-7, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' 82–87, Apr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' 1961.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' [2] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='-C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Tseng and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Liu, “Complementary sets of sequences,” IEEE Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Inf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Theory, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' IT-18, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' 5, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' 644–652, Sep.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' 1972.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' [3] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Suehiro and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Hatori, “N-shift cross-orthogonal sequences,” IEEE Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Inf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Theory, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' 34, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' 1, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' 143–146, Jan.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' 1988.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' [4] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Pezeshki, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Calderbank, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Moran, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Howard, “Doppler resilient Golay complementary waveforms,” IEEE Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Inf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Theory, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' 54, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' 9, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' 4254–4266, Sep.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' 2008.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' [5] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Spasojevic and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Georghiades, “Complementary sequences for ISI channel estimation,” IEEE Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Inf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Theory, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' 47, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' 3, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' 1145–1152, Mar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' 2001.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' [6] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Su, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Jiang, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Wang, and X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Gao, “Omnidirectional precoding for massive MIMO with uniform rectangular array—part I: complementary codes-based schemes,” IEEE Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Signal Process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' 67, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' 18, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' 4761–4771, Sep.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' [7] Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Liu, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Li, and Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Guan, “New constructions of general QAM Golay complementary sequences,” IEEE Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Inf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Theory, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' 59, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' 11, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' 7684–7692, Nov.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' [8] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' van Nee, “OFDM codes for peak-to-average power reduction and error correction,” in Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' IEEE Global Telecommun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Conf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=', London, U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=', Nov.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' 1996, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' 740–744.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' [9] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Davis and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Jedwab, “Peak-to-mean power control in OFDM, Golay complementary sequences, and Reed-Muller codes,” IEEE Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Inf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Theory, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' 45, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' 7, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' 2397–2417, Nov.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' 1999.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' [10] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Paterson, “Generalized Reed-Muller codes and power control in OFDM modulation,” IEEE Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Inf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Theory, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' 46, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' 1, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' 104–120, Jan.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' 2000.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' [11] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='-U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Schmidt, “Complementary sets, generalized Reed-Muller codes, and power control for OFDM,” IEEE Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Inf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Theory, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' 53, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' 2, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' 808–814, Feb.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' 2007.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' [12] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='-Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Chen, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='-H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Wang, and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='-C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Chao, “Complementary sets and Reed-Muller codes for peak-to-average power ratio reduction in OFDM,” in Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' 16th Int.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Symp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' AAECC, LNCS 3857, Las Vegas, NV, Feb.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' 2006, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' 317–327.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' [13] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='-Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Chen, “Complementary sets of non-power-of-two length for peak-to-average power ratio reduction in OFDM,” IEEE Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Inf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Theory, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' 62, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' 12, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' 7538–7545, Dec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' [14] Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Liu, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Guan, and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Chen, “Fractional-delay-resilient receiver design for interference-free MC-CDMA communications based on complete complementary codes,” IEEE Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Wireless Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' 14, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' 3, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' 1226– 1236, Mar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' [15] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='-H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Chen, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='-F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Yeh, and N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Suehiro, “A multicarrier CDMA architecture based on orthogonal complete complementary codes for new generations of wideband wireless communications,” IEEE Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Mag.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' 39, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' 126–134, Oct.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' 2001.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' [16] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Suehiro, “A signal design without co-channel interference for approximately synchronized CDMA systems,” IEEE J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Sel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Areas Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' 12, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' 837–841, Jun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' 1994.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' [17] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='-M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Tseng and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Bell, “Asynchronous multicarrier DS-CDMA using mutually orthogonal complementary sets of sequences,” IEEE Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' 48, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' 1, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' 53–59, Jan.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' 2000.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' [18] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Groenewald and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Maharaj, “MIMO channel synchronization using Golay complementary pairs,” in Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' AFRICON 2007, Windhoek, South Africa, Sep.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' 2007, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' 1–5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' [19] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Boyd, “Multitone signals with low crest factor,” IEEE Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Circuits Syst.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' CAS-33, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' 10, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' 1018–1022, Oct.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' 1986.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' [20] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='-A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Lu, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Gao, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Meng, and X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='-G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Xia, “Omnidirectional precoding for 3D massive MIMO with uniform planar arrays,” IEEE Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Wireless Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' 19, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' 4, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' 2628–2642, Apr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' January 4, 2023 DRAFT 24 [21] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Li, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Jiang, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Du, and X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Wang, “Construction of Golay complementary matrices and its applications to MIMO omnidirectional transmission,” IEEE Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Signal Process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' 69, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' 2100–2113, Mar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' [22] X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Meng, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Gao, and X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='-G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Xia, “Omnidirectional precoding based transmission in massive MIMO systems,” IEEE Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' 64, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' 1, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' 174–186, Jan.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' [23] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Jiang, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Li, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Wang, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Li, “Autocorrelation complementary matrices,” in Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' 53rd Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA, USA, Nov.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' 2019, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' 1596–1600.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' [24] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Matsufuji, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Shigemitsu, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Tanada, and N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Kuroyanagi, “Construction of complementary arrays,” in Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Joint 1ST Workshop on Mobile Future Symp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Trends Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' (SympoTIC), Bratislave, Slovakia, Oct.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' 2004, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' 78–81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' [25] Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Wang and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Gong, “Constructions of complementary sequence sets and complete complementary codes by 2-level autocorrelation sequences and permutation polynomials,” May 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' [Online].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Available: https://arxiv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='org/abs/2005.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='05825 [26] Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Wang, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Ma, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Gong, and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Xue, “New construction of complementary sequence (or array) sets and complete complementary codes,” IEEE Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Inf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Theory, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' 67, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' 7, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' 4902–4928, Jul.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' [27] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='-Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Pai and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='-Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Chen, “Constructions of two-dimensional Golay complementary array pairs based on generalized Boolean functions,” in Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' IEEE Int.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Symp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Inf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Theory, Los Angeles, California, USA, Jun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' 2020, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' 2931–2935.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' [28] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='-Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Pai and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='-Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Chen, “Two-dimensional Golay complementary array pairs/sets with bounded row and column sequence PAPRs,” IEEE Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' 70, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' 6, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' 3695–3707, Jun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' [29] Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Liu, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Guan, and U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Parampalli, “New complete complementary codes for peak-to-mean power control in multi- carrier CDMA,” IEEE Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' 62, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' 1105–1113, Mar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' [30] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='-Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Pai, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Liu, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='-Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Zhao, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='-M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Hunag, and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content='-Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Chen, “Designing two-dimensional complete complementary codes for omnidirectional transmission in massive MIMO systems,” in Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' IEEE Int.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Symp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Inf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Theory, Espoo, Finland, Jun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' 2022, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' 1699–1704.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' [31] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Liu, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Men, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Li, and X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Chen, “Constructions of 2-D Golay complementary array sets for MIMO omnidirectional transmission,” IEEE Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=', pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' 1459 – 1463, Jul.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' [32] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Shen, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Yang, and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Ren, “Three constructions of Golay complementary array sets,” Adv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=', Oct.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} +page_content=' January 4, 2023 DRAFT' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3dAzT4oBgHgl3EQfR_t3/content/2301.01225v1.pdf'} diff --git a/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf b/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..c10b65e1349c7c8df37a5bbb174cd95decef792c --- /dev/null +++ b/4dE4T4oBgHgl3EQfBAsA/content/2301.04847v1.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:f1816fde42b9b8e13d72fc7524241e73342542e9c9fac503e1b55e3664f4e734 +size 3187519 diff --git a/4dE4T4oBgHgl3EQfBAsA/vector_store/index.faiss b/4dE4T4oBgHgl3EQfBAsA/vector_store/index.faiss new file mode 100644 index 0000000000000000000000000000000000000000..65690794b8291f2bd57e18c710af0d7048adc366 --- /dev/null +++ b/4dE4T4oBgHgl3EQfBAsA/vector_store/index.faiss @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:a5ada987d74c2b64fd024838f7106e46dc14c05a6118e8fc40f72adb5814ffb9 +size 1507373 diff --git a/4dE4T4oBgHgl3EQfBAsA/vector_store/index.pkl b/4dE4T4oBgHgl3EQfBAsA/vector_store/index.pkl new file mode 100644 index 0000000000000000000000000000000000000000..7d993cd4b0bf20ba6bea57e76153adaae9520209 --- /dev/null +++ b/4dE4T4oBgHgl3EQfBAsA/vector_store/index.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:181a1a843998c439b30444446338a27c2c5f58150ac94b31c078dec3a5fdbe9a +size 64074 diff --git a/5dAzT4oBgHgl3EQf9_4T/content/2301.01926v1.pdf b/5dAzT4oBgHgl3EQf9_4T/content/2301.01926v1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..070091a88e22837571d3b7117eb06f2edd3d3f04 --- /dev/null +++ b/5dAzT4oBgHgl3EQf9_4T/content/2301.01926v1.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:b6934c690326cace8a20c0d34f3cbabf1b521dd089233f0d9142e0c632d581f6 +size 1148333 diff --git a/5dAzT4oBgHgl3EQf9_4T/vector_store/index.faiss b/5dAzT4oBgHgl3EQf9_4T/vector_store/index.faiss new file mode 100644 index 0000000000000000000000000000000000000000..0ad8c54a92a5fbb848c5da6dced343f4471088ce --- /dev/null +++ b/5dAzT4oBgHgl3EQf9_4T/vector_store/index.faiss @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:afd3b9234656631439478ba13c2bc5c123f5642056dba6f24de37c91dd97d1a2 +size 4587565 diff --git a/5dE1T4oBgHgl3EQfBAJm/vector_store/index.pkl b/5dE1T4oBgHgl3EQfBAJm/vector_store/index.pkl new file mode 100644 index 0000000000000000000000000000000000000000..7803a7baee9331c429fc23cff01a3fec5350323b --- /dev/null +++ b/5dE1T4oBgHgl3EQfBAJm/vector_store/index.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:d238a8c0c5f0261c15ba5bb91a77b8b4a3e383ccd9baf0701214bbd1278aa89e +size 144586 diff --git a/5dE2T4oBgHgl3EQfOgbi/vector_store/index.faiss b/5dE2T4oBgHgl3EQfOgbi/vector_store/index.faiss new file mode 100644 index 0000000000000000000000000000000000000000..bce26f007c17b19818d3486105b17cc8280e0feb --- /dev/null +++ b/5dE2T4oBgHgl3EQfOgbi/vector_store/index.faiss @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:d1d5badd170e0563b9d846903c829812126852732c16ccd8ebcd074c542153b0 +size 11796525 diff --git a/5tAzT4oBgHgl3EQf9_5e/vector_store/index.faiss b/5tAzT4oBgHgl3EQf9_5e/vector_store/index.faiss new file mode 100644 index 0000000000000000000000000000000000000000..bce86cb7cddce6f59725db84521410793fce8cea --- /dev/null +++ b/5tAzT4oBgHgl3EQf9_5e/vector_store/index.faiss @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:83dbc1813869bbf6ec09c8772343f13d49ee94a80cbd61fd4bd3d3708a1a9a23 +size 6488109 diff --git a/79E4T4oBgHgl3EQfdAwp/content/tmp_files/2301.05087v1.pdf.txt b/79E4T4oBgHgl3EQfdAwp/content/tmp_files/2301.05087v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..9e7ce6ae82524039a37fb2247c7296caf338569c --- /dev/null +++ b/79E4T4oBgHgl3EQfdAwp/content/tmp_files/2301.05087v1.pdf.txt @@ -0,0 +1,2672 @@ +arXiv:2301.05087v1 [math.DG] 12 Jan 2023 +SCALAR CURVATURE RIGIDITY OF CONVEX +POLYTOPES +SIMON BRENDLE +Abstract. We prove a scalar curvature rigidity theorem for convex +polytopes. The proof uses the Fredholm theory for Dirac operators on +manifolds with boundary. +A variant of a theorem of Fefferman and +Phong plays a central role in our analysis. +1. Introduction +Let Ω be a compact polytope in Rn with non-empty interior. We may +write Ω = � +α∈A{uα ≤ 0}, where A is a finite set and the uα are linear +functions in Rn. For each α ∈ A, we denote by Nα ∈ Sn−1 the outward- +pointing unit normal vector to the halfspace {uα ≤ 0} with respect to the +Euclidean metric. +Let g be a Riemannian metric which is defined on an open set containing +Ω. For each α ∈ A, we denote by να the outward-pointing unit normal +vector to the halfspace {uα ≤ 0} with respect to the metric g. We will make +the following assumption: +Matching Angle Hypothesis. If x is point in ∂Ω and α1, α2 ∈ A satisfy +uα1(x) = uα2(x) = 0, then ⟨να1, να2⟩ = ⟨Nα1, Nα2⟩ at the point x. Here, the +inner product ⟨να1, να2⟩ is computed with respect to the metric g, and the +inner product ⟨Nα1, Nα2⟩ is the standard inner product in Rn. +Theorem 1.1. Suppose that n ≥ 3 is an odd integer, and Ω is a compact +polytope in Rn with non-empty interior. Let g be a Riemannian metric which +is defined on an open set containing Ω and has nonnegative scalar curvature +at each point in Ω. For each α ∈ A, we assume that the mean curvature of +the hypersurface {uα = 0} with respect to g is nonnegative at each point in +Ω ∩ {uα = 0}. Moreover, we assume that the Matching Angle Hypothesis is +satisfied. Then the Ricci tensor of g vanishes at each point in Ω. +Theorem 1.1 also holds in the even-dimensional case. This can be seen +by considering the Cartesian product Ω × [0, 1] ⊂ Rn+1. +Scalar curvature comparison theorems for polytopes were first studied in +seminal work of Gromov [6],[7],[8]. Li [9] has used minimal surface techniques +to prove a scalar curvature comparison theorem for certain polytopes in +The author was support by the National Science Foundation under grant DMS-2103573 +and by the Simons Foundation. The author acknowledges the hospitality of T¨ubingen +University, where part of this work was carried out. +1 + +2 +SIMON BRENDLE +dimension 3. Wang, Xie, and Yu [10] have proposed a different approach to +this problem which is based on the study of Dirac operators on manifolds +with corners. +In this paper, we describe another approach to this problem. As in [10], we +employ a spinor approach. In contrast to [10], we work with boundary value +problems for Dirac operators on smooth domains, which are well understood +thanks to the work of B¨ar and Ballmann [1],[2]. +In the following, we outline the main steps involved in the proof of The- +orem 1.1. We approximate a given convex polytope Ω by a one-parameter +family of smooth convex domains Ωλ. On each domain Ωλ, we solve the +Dirac equation for an m-tuple of spinors s = (s1, . . . , sm) with a suitable +local boundary condition. To prove the existence of a solution satisfying +that particular boundary condition, we use the Fredholm theory developed +by B¨ar and Ballmann [1],[2] together with the homotopy invariance of the +Fredholm index. Having constructed an m-tuple of harmonic spinors on Ωλ +satisfying this boundary condition, we apply a Weitzenb¨ock formula, and +integrate over Ωλ. The resulting integral formula contains a term involving +the scalar curvature, as well as a boundary term. Unfortunately, it is not +clear if the boundary term has a favorable sign. We are able to control the +boundary integral by adapting a theorem due to Fefferman and Phong [4]. +2. A boundary value problem for the Dirac operator on a +smooth domain +Let m = 2[ n +2 ] denote the dimension of the space of spinors on Rn. Let +{E1, . . . , En} denote the standard basis of Rn. Throughout this section, we +fix an orthonormal basis {¯s1, . . . , ¯sm} of the space of spinors on flat Rn. +We define ωaαβ = ⟨Ea · ¯sα, ¯sβ⟩ for a = 1, . . . , n and α, β = 1, . . . , m. The +matrices ω1, . . . , ωn ∈ End(Cm) are skew-Hermitian, so that ωaαβ = −ωaβα. +Moreover, ωaωb + ωbωa = −2δab id. In other words, +m +� +β=1 +(ωaαβ ωbβγ + ωbαβ ωaβγ) = −2δab δαγ. +We begin by stating a basic algebraic fact which will be needed later. +Lemma 2.1. Assume that n is odd. Then there is no non-zero element of +End(Cm) which anti-commutes with ωa ∈ End(Cm) for each a = 1, . . . , n. +Proof. We recall the definition of the spin representation in odd dimen- +sions. Let {E1, . . . , En} denote the standard basis of Rn. For k = 1, . . . , [n +2 ], +we define wk = E2k−1 − iE2k ∈ Cn. The spinor space is defined as the ex- +terior algebra Λ∗W, where W = span{wk : k = 1, . . . , [n +2 ]} ⊂ Cn. For each +k ∈ {1, . . . , [n +2 ]}, we define a linear map Pk ∈ End(Λ∗W) by +Pk(wj1 ∧ . . . ∧ wjr) = wk ∧ wj1 ∧ . . . ∧ wjr. + +SCALAR CURVATURE RIGIDITY OF CONVEX POLYTOPES +3 +Moreover, for each k ∈ {1, . . . , [n +2 ]}, we define a linear map Qk ∈ End(Λ∗W) +by +Qk(wj1 ∧ . . . ∧ wjr) = 0, +Qk(wk ∧ wj1 ∧ . . . ∧ wjr) = wj1 ∧ . . . ∧ wjr +for k /∈ {j1, . . . , jr}. Then PkPl + PlPk = QkQl + QlQk = 0 and PkQl + +QlPk = δkl id for k, l ∈ {1, . . . , [n +2 ]}. Finally, we define a linear map S ∈ +End(Λ∗W) so that +S(wj1 ∧ . . . ∧ wjr) = +� +wj1 ∧ . . . ∧ wjr +if r is even +−wj1 ∧ . . . ∧ wjr +if r is odd. +Clearly, PkS + SPk = 0, QkS + SQk = 0, and S2 = id. +Consequently, +there is a natural algebra homomorphism from the Clifford algebra ClC(n) +to End(Λ∗W) which maps wk to i +√ +2 Pk, ¯wk to i +√ +2 Qk, and En to iS. It is +well known (see [5], Lemma 20.9) that +span{Pk1 · · · PkrQl1 · · · Qls : r + s is even} += End(ΛevenW) ⊕ End(ΛoddW) +and +span{Pk1 · · · PkrQl1 · · · Qls : r + s is odd} += Hom(ΛevenW, ΛoddW) ⊕ Hom(ΛoddW, ΛevenW). +We claim that there is no non-zero element of End(Λ∗W) which anti-commutes +with Pk, Qk, S for each k ∈ {1, . . . , [n +2 ]}. +Suppose that L ∈ End(Λ∗W) +is such an element. +Since L anti-commutes with S, it follows that L ∈ +Hom(ΛevenW, ΛoddW)⊕Hom(ΛoddW, ΛevenW). Since L anti-commutes with +Pk, Qk for each k ∈ {1, . . . , [n +2 ]}, it follows that L anti-commutes with every +element of Hom(ΛevenW, ΛoddW)⊕Hom(ΛoddW, ΛevenW). This implies that +L = 0. This completes the proof of Lemma 2.1. +Assume that Ω is a domain in Rn with smooth boundary ∂Ω = Σ. Let g +be a Riemannian metric on Ω. We denote by ν the outward-pointing unit +normal vector field with respect to the metric g. Let ∇ denote the spin +connection. The Dirac operator is defined by +Ds = +n +� +i=1 +ei · ∇eis, +where {e1, . . . , en} is a local orthonormal frame on Ω. The boundary Dirac +operator DΣ is given by +DΣs = +n−1 +� +i=1 +ν · ei · ∇eis + 1 +2 H s +at each point on Σ, where {e1, . . . , en−1} is a local orthonormal frame on Σ. +In the remainder of this section, we consider the Dirac operator act- +ing on m-tuples of spinors with a suitable local boundary condition of + +4 +SIMON BRENDLE +Lopatinsky-Shapiro type. To formulate the boundary condition, we assume +that N : Σ → Sn−1 is a given smooth map. +Definition 2.2. Consider an m-tuple of spinors s = (s1, . . . , sm). At each +point on Σ, we define +(χs)α = − +n +� +a=1 +m +� +β=1 +⟨N, Ea⟩ ωaαβ ν · sβ +and +(Bs)α = +n−1 +� +i=1 +n +� +a=1 +m +� +β=1 +⟨dN(ei), Ea⟩ ωaαβ ei · sβ, +where {e1, . . . , en−1} is a local orthonormal frame on Σ. +Lemma 2.3. The map χ is self-adjoint. Moreover, χ2 is the identity. +Proof. Suppose that s = (s1, . . . , sm) and t = (t1, . . . , tm) are two m- +tuples of spinors. We compute +(χ2s)α = +n +� +a,b=1 +m +� +β,γ=1 +⟨N, Ea⟩ ⟨N, Eb⟩ ωaαβ ωbβγ ν · ν · sγ += − +n +� +a,b=1 +m +� +β,γ=1 +⟨N, Ea⟩ ⟨N, Eb⟩ ωaαβ ωbβγ sγ += −1 +2 +n +� +a,b=1 +m +� +β,γ=1 +⟨N, Ea⟩ ⟨N, Eb⟩ (ωaαβ ωbβγ + ωbαβ ωaβγ) sγ += +n +� +a,b=1 +m +� +γ=1 +⟨N, Ea⟩ ⟨N, Eb⟩ δab δαγ sγ += sα. +Moreover, +m +� +α=1 +⟨(χs)α, tα⟩ = − +n +� +a=1 +m +� +α,β=1 +⟨N, Ea⟩ ωaαβ ⟨ν · sβ, tα⟩ += − +n +� +a=1 +m +� +α,β=1 +⟨N, Ea⟩ ωaβα ⟨sβ, ν · tα⟩ += +m +� +β=1 +⟨sβ, (χt)β⟩. +This completes the proof of Lemma 2.3. + +SCALAR CURVATURE RIGIDITY OF CONVEX POLYTOPES +5 +Lemma 2.4. Assume that x ∈ Σ and ξ ∈ TxΣ. Then the map (s1, . . . , sm) �→ +(ν · ξ · s1, . . . , ν · ξ · sm) maps the eigenspace of χ with eigenvalue 1 to the +eigenspace of χ with eigenvalue −1, and vice versa. In particular, the two +eigenspaces have the same dimension. +Proof. For each vector ξ ∈ TxΣ, the map +(s1, . . . , sm) �→ (ν · ξ · s1, . . . , ν · ξ · sm) +anti-commutes with χ. From this, the assertion follows. +Lemma 2.5. The map B is self-adjoint. Moreover, χ and B commute. +Proof. Let {e1, . . . , en−1} be a local orthonormal frame on Σ. Then +m +� +α=1 +⟨(Bs)α, tα⟩ = +n−1 +� +i=1 +n +� +a=1 +m +� +α,β=1 +⟨dN(ei), Ea⟩ ωaαβ ⟨ei · sβ, tα⟩ += +n−1 +� +i=1 +n +� +a=1 +m +� +α,β=1 +⟨dN(ei), Ea⟩ ωaβα ⟨sβ, ei · tα⟩ += +m +� +β=1 +⟨sβ, (Bt)β⟩. +This shows that B is self-adjoint. Moreover, +(χBs)α − (Bχs)α += − +n−1 +� +i=1 +n +� +a,b=1 +n +� +β,γ=1 +⟨N, Ea⟩ ⟨dN(ei), Eb⟩ ωaαβ ωbβγ ν · ei · sγ ++ +n−1 +� +i=1 +n +� +a,b=1 +n +� +β,γ=1 +⟨dN(ei), Ea⟩ ⟨N, Eb⟩ ωaαβ ωbβγ ei · ν · sγ += − +n−1 +� +i=1 +n +� +a,b=1 +n +� +β,γ=1 +⟨N, Ea⟩ ⟨dN(ei), Eb⟩ (ωaαβ ωbβγ + ωbαβ ωaβγ) ν · ei · sγ += 2 +n−1 +� +i=1 +n +� +a,b=1 +n +� +γ=1 +⟨N, Ea⟩ ⟨dN(ei), Eb⟩ δab δαγ ν · ei · sγ += 2 +n−1 +� +i=1 +⟨N, dN(ei)⟩ ν · ei · sα += 0. +Thus, χ and B commute. This completes the proof of Lemma 2.5. +At this point, we recall a definition from linear algebra. + +6 +SIMON BRENDLE +Definition 2.6. Let V and W be finite-dimensional vector spaces of the +same dime, each of them equipped with an inner product. The trace norm +of a linear map L : V → W is defined by ∥L∥tr = supQ tr(QL), where the +supremum is taken over all linear isometries Q : W → V . Equivalently, +∥L∥tr can be characterized as the sum of the singular values of L. +It is easy to see from the definition that the trace norm satisfies the tri- +angle inequality. +Lemma 2.7. Suppose that s = (s1, . . . , sm) is an m-tuple of spinors. Then +���� +m +� +α=1 +⟨(Bs)α, sα⟩ +���� ≤ ∥dN∥tr +� m +� +α=1 +|sα|2 +� +at each point x ∈ Σ. Here, ∥dN∥tr denotes the trace norm of the differential +dN : TxΣ → TN(x)Sn−1. The tangent space TxΣ is equipped with the restric- +tion of the inner product g, and the tangent space TN(x)Sn−1 is equipped +with the restriction of the standard inner product on Rn. +Proof. Fix a point x ∈ Σ. We can find an orthonormal basis {e1, . . . , en−1} +of TxΣ so that dN(ei) = λi ˆEi, where { ˆE1, . . . , ˆEn−1} is an orthonormal ba- +sis of TN(x)Sn−1 and λ1, . . . , λn−1 ≥ 0 denote the singular values of dN. +Then +m +� +α=1 +���� +n +� +a=1 +m +� +β=1 +⟨ ˆEi, Ea⟩ ωaαβ ei · sβ +���� +2 += +n +� +a,b=1 +m +� +α,β,γ=1 +⟨ ˆEi, Ea⟩ ⟨ ˆEi, Eb⟩ ωaαβ ωbαγ ⟨ei · sβ, ei · sγ⟩ += − +n +� +a,b=1 +m +� +α,β,γ=1 +⟨ ˆEi, Ea⟩ ⟨ ˆEi, Eb⟩ ωaαβ ωbγα ⟨sβ, sγ⟩ += −1 +2 +n +� +a,b=1 +m +� +α,β,γ=1 +⟨ ˆEi, Ea⟩ ⟨ ˆEi, Eb⟩ (ωaγα ωbαβ + ωbγα ωaαβ) ⟨sβ, sγ⟩ += +n +� +a,b=1 +m +� +β,γ=1 +⟨ ˆEi, Ea⟩ ⟨ ˆEi, Eb⟩ δab δγβ ⟨sβ, sγ⟩ += +m +� +α=1 +|sα|2 + +SCALAR CURVATURE RIGIDITY OF CONVEX POLYTOPES +7 +for each i = 1, . . . , n − 1. Using the Cauchy-Schwarz inequality, we obtain +���� +n +� +a=1 +m +� +α,β=1 +⟨ ˆEi, Ea⟩ ωaαβ ⟨ei · sβ, sα⟩ +���� +≤ +� m +� +α=1 +���� +n +� +a=1 +m +� +β=1 +⟨ ˆEi, Ea⟩ ωaαβ ei · sβ +���� +2� 1 +2 � m +� +α=1 +|sα|2 +� 1 +2 += +m +� +α=1 +|sα|2 +for each i = 1, . . . , n − 1. Summation over i = 1, . . . , n − 1 gives +���� +m +� +α=1 +⟨(Bs)α, sα⟩ +���� = +���� +n−1 +� +i=1 +n +� +a=1 +m +� +α,β=1 +⟨dN(ei), Ea⟩ ωaαβ ⟨ei · sβ, sα⟩ +���� += +���� +n−1 +� +i=1 +λi +� +n +� +a=1 +m +� +α,β=1 +⟨ ˆEi, Ea⟩ ωaαβ ⟨ei · sβ, sα⟩ +����� +≤ +� n−1 +� +i=1 +λi +� � m +� +α=1 +|sα|2 +� +, +as claimed. +Proposition 2.8. Suppose that s = (s1, . . . , sm) and t = (t1, . . . , tm) are +m-tuples of spinors. Then +0 = +� +Σ +m +� +α=1 +⟨DΣsα, (χt)α⟩ dσg + +� +Σ +m +� +α=1 +⟨(χs)α, DΣtα⟩ dσg ++ +� +Σ +m +� +α=1 +⟨(Bs)α, tα⟩ dσg. +Equivalently, +0 = +� +Σ +m +� +α=1 +⟨(As)α, (χt)α⟩ dσg + +� +Σ +m +� +α=1 +⟨(χs)α, (At)α⟩ dσg, +where A is defined by A = DΣ + 1 +2χB. +Proof. Let {e1, . . . , en−1} be a local orthonormal frame on Σ. We define +a tangential vector field Z on Σ by +⟨Z, ei⟩ = +n +� +a=1 +m +� +α,β=1 +⟨N, Ea⟩ ωaαβ ⟨ei · sβ, tα⟩ + +8 +SIMON BRENDLE +for i = 1, . . . , n − 1. Then +divΣZ = +n−1 +� +i=1 +n +� +a=1 +m +� +α,β=1 +⟨N, Ea⟩ ωaαβ ⟨ei · ∇eisβ, tα⟩ ++ +n−1 +� +i=1 +n +� +a=1 +m +� +α,β=1 +⟨N, Ea⟩ ωaαβ ⟨ei · sβ, ∇eitα⟩ +− +n +� +a=1 +m +� +α,β=1 +H ⟨N, Ea⟩ ωaαβ ⟨ν · sβ, tα⟩ ++ +n−1 +� +i=1 +n +� +a=1 +m +� +α,β=1 +⟨dN(ei), Ea⟩ ωaαβ ⟨ei · sβ, tα⟩ += − +n−1 +� +i=1 +m +� +β=1 +⟨ei · ∇eisβ, ν · (χt)β⟩ ++ +n−1 +� +i=1 +m +� +α=1 +⟨ei · ν · (χs)α, ∇eitα⟩ ++ +m +� +α=1 +H ⟨(χs)α, tα⟩ + +m +� +α=1 +⟨(Bs)α, tα⟩ += +m +� +β=1 +⟨DΣsβ, (χt)β⟩ + +m +� +α=1 +⟨(χs)α, DΣtα⟩ + +m +� +α=1 +⟨(Bs)α, tα⟩. +Integrating over Σ, we obtain +0 = +� +Σ +m +� +β=1 +⟨DΣsβ, (χt)β⟩ dσg + +� +Σ +m +� +α=1 +⟨(χs)α, DΣtα⟩ dσg ++ +� +Σ +m +� +α=1 +⟨(Bs)α, tα⟩ dσg. +This completes the proof of Proposition 2.8. +Remark 2.9. It is well known that the boundary Dirac operator DΣ is +formally self-adjoint. Moreover, it follows from Lemma 2.3 and Lemma 2.5 +that χB is self-adjoint. Consequently, the operator A = DΣ+ 1 +2χB is formally +self-adjoint. Finally, Proposition 2.8 implies that A and χ anti-commute. + +SCALAR CURVATURE RIGIDITY OF CONVEX POLYTOPES +9 +Proposition 2.10. Suppose that s = (s1, . . . , sm) is an m-tuple of spinors. +Then +− +� +Ω +m +� +α=1 +|Dsα|2 dvolg + +� +Ω +n +� +α=1 +|∇sα|2 dvolg + 1 +4 +� +Ω +m +� +α=1 +R |sα|2 dvolg +≤ 1 +2 +� +Σ +m +� +α=1 +⟨DΣsα, sα − (χs)α⟩ dσg + 1 +2 +� +Σ +m +� +α=1 +⟨sα − (χs)α, DΣsα⟩ dσg +− 1 +2 +� +Σ +(H − ∥dN∥tr) +� m +� +α=1 +|sα|2 +� +dσg. +Proof. By the Weitzenb¨ock formula, D2sα = −∆sα + 1 +4 R sα, where ∆ +denotes the connection Laplacian on the spinor bundle. Using the divergence +theorem, we obtain +− +� +Ω +m +� +α=1 +|Dsα|2 dvolg + +� +Ω +m +� +α=1 +|∇sα|2 dvolg + 1 +4 +� +Ω +m +� +α=1 +R |sα|2 dvolg += +� +Σ +m +� +α=1 +⟨ν · Dsα, sα⟩ dσg + +� +Σ +m +� +α=1 +⟨∇νsα, sα⟩ dσg += +� +Σ +⟨DΣsα, sα⟩ dσg − 1 +2 +� +Σ +m +� +α=1 +H |sα|2 dσg. +Applying Proposition 2.8 with s = t gives +0 = +� +Σ +m +� +α=1 +⟨DΣsα, (χs)α⟩ dσg + +� +Σ +m +� +α=1 +⟨(χs)α, DΣsα⟩ dσg ++ +� +Σ +m +� +α=1 +⟨(Bs)α, sα⟩ dσg. +This gives +− +� +Ω +m +� +α=1 +|Dsα|2 dvolg + +� +Ω +n +� +α=1 +|∇sα|2 dvolg + 1 +4 +� +Ω +m +� +α=1 +R |sα|2 dvolg += 1 +2 +� +Σ +m +� +α=1 +⟨DΣsα, sα⟩ dσg + 1 +2 +� +Σ +m +� +α=1 +⟨sα, DΣsα⟩ dσg − 1 +2 +� +Σ +m +� +α=1 +H |sα|2 dσg += 1 +2 +� +Σ +m +� +α=1 +⟨DΣsα, sα − (χs)α⟩ dσg + 1 +2 +� +Σ +m +� +α=1 +⟨sα − (χs)α, DΣsα⟩ dσg +− 1 +2 +� +Σ +m +� +α=1 +⟨(Bs)α, sα⟩ dσg − 1 +2 +� +Σ +m +� +α=1 +H |sα|2 dσg. +Hence, the assertion follows from Lemma 2.7. + +10 +SIMON BRENDLE +Corollary 2.11. Suppose that R ≥ 0 at each point in Ω and H ≥ ∥dN∥tr at +each point on Σ. Then every m-tuple of harmonic spinors s = (s1, . . . , sm) +with χs = s is parallel. +Replacing N by −N, we can draw the following conclusion: +Corollary 2.12. Suppose that R ≥ 0 at each point in Ω and H ≥ ∥dN∥tr at +each point on Σ. Then every m-tuple of harmonic spinors s = (s1, . . . , sm) +with χs = −s is parallel. +Proposition 2.13. Suppose that Ω is a convex domain in Rn with smooth +boundary ∂Ω = Σ. +Let g be a Riemannian metric on Ω. +Suppose that +N : Σ → Sn−1 is a smooth map. Then the boundary condition χs = s is a +D-elliptic boundary condition in the sense of B¨ar and Ballmann [2]. +Proof. +We apply Corollary 3.18 in [2] with E′ = ker(id − χ) and +E′′ = ker(id + χ). +Lemma 2.4 implies that, for each point x ∈ Σ and +each ξ ∈ TxΣ, the map (s1, . . . , sm) �→ (ν · ξ · s1, . . . , ν · ξ · sm) interchanges +ker(id − χ) and ker(id + χ). Therefore, the boundary condition χs = s is a +D-elliptic boundary condition in the sense of [2]. +Proposition 2.14. Assume that n ≥ 3 is an odd integer. Suppose that +Ω is a convex domain in Rn with smooth boundary ∂Ω = Σ. Let g be a +Riemannian metric on Ω. Suppose that N : Σ → Sn−1 is homotopic to +the Gauss map of Σ with respect to the Euclidean metric. Then the Dirac +operator with the boundary condition χs = s has Fredholm index at least 1. +Proof. Since the Fredholm index is homotopy invariant, it suffices to +prove the assertion in the special case when g is the Euclidean metric and +N is the Gauss map of Σ with respect to the Euclidean metric. +We first analyze the kernel of the Dirac operator with the boundary con- +dition χs = s. Recall that ¯s1, . . . , ¯sm is a basis of spinors on flat Rn, and +ωaαβ = ⟨Ea · ¯sα, ¯sβ⟩. Clearly, ¯s = (¯s1, . . . , ¯sm) is an m-tuple of harmonic +spinors on Ω which satisfies the boundary condition χ¯s = ¯s. Therefore, the +kernel has dimension at least 1. +We next examine the cokernel. +The cokernel can be identified with +the space of all m-tuples of harmonic spinors s = (s1, . . . , sm) such that +⟨ν · s, t⟩ = 0 for all points x ∈ Σ and all t ∈ ker(id − χ) (see [2], Example +3.20). We claim that this space has dimension 0. To see this, suppose that +s = (s1, . . . , sm) is an m-tuple of harmonic spinors such that ⟨ν · s, t⟩ = 0 +for all points x ∈ Σ and all t ∈ ker(id − χ). This implies s ∈ ker(id + χ) at +each point on Σ. Since H = ∥dN∥tr at each point on Σ, Corollary 2.12 im- +plies that s = (s1, . . . , sm) is parallel. In other words, s1, . . . , sm are constant +spinors. Let us write sα = �m +β=1 zαβ ¯sβ for some matrix z ∈ End(Cm). Since +χs = −s at each point on Σ, it follows that the matrix z ∈ End(Cm) anti- +commutes with the matrix �n +a=1⟨N(x), Ea⟩ ωa ∈ End(Cm) for each point +x ∈ Σ. It is easy to see that the Gauss map N : Σ → Sn−1 is surjective. + +SCALAR CURVATURE RIGIDITY OF CONVEX POLYTOPES +11 +Consequently, the matrix z ∈ End(Cm) anti-commutes with ωa ∈ End(Cm) +for each a = 1, . . . , n. Since n is odd, Lemma 2.1 implies that z = 0, hence +s = 0. This shows that the cokernel has dimension 0. This completes the +proof of Proposition 2.14. +3. Approximating a compact, convex polytope by smooth +domains +Let us consider a compact, convex polytope Ω ⊂ Rn with non-empty +interior. We write Ω = � +α∈A{uα ≤ 0}, where A is a finite set and the uα +are linear functions in Rn. After eliminating redundant inequalities, we may +assume that the following condition is satisfied. +Assumption 3.1. For each α ∈ A, the set Ω ∩ {uα > 0} is non-empty. +Let g be a Riemannian metric which is defined on an open set containing +Ω. For each α ∈ A, ∇uα will denote the gradient of uα with respect to the +metric g; |∇uα| will denote the norm of the gradient of uα with respect to +the metric g; and να = +∇uα +|∇uα| will denote the outward-pointing unit normal +vector to the halfspace {uα ≤ 0} with respect to the metric g. For each +α ∈ A, we denote by Nα ∈ Sn−1 the outward-pointing unit normal vector +to the halfspace {uα ≤ 0} with respect to the Euclidean metric. +For each λ > 0, the function � +α∈A eλuα is convex with respect to the +Euclidean metric. Clearly, � +α∈A eλuα > 1 on ∂Ω. Moreover, we can find +large number λ0 such that infΩ +� +α∈A eλuα < 1 for each λ > λ0. For each +λ > λ0, we define +Ωλ = +� � +α∈A +eλuα ≤ 1 +� +. +For each λ > λ0, Ωλ is a convex domain in Rn with smooth boundary +Σλ = ∂Ωλ. The sets Ωλ form an increasing family of sets in the sense that +Ωλ ⊂ Ωµ for λ0 < λ < µ. Moreover, +� +λ>λ0 +Ωλ = +� +α∈A +{uα < 0}. +Lemma 3.2. If λ is sufficiently large, then infΣλ +�� � +α∈A eλuα duα +�� ≥ C−1 +for some large constant C which is independent of λ. +Proof. We argue by contradiction. Suppose that the assertion is false. +Then there exists a sequence of positive real numbers λl → ∞ and a se- +quence of points xl ∈ Σλl such that +�� � +α∈A eλuα duα +�� ≤ l−1 at the point +xl. After passing to a subsequence, we may assume that the sequence xl +converges to a point x0 ∈ Ω. +Moreover, we may assume that, for each +α ∈ A, the sequence eλluα(xl) converges to a nonnegative real number zα. +Since � +α∈A eλluα(xl) = 1 for each l, we know that � +α∈A zα > 0. +Let +A0 := {α ∈ A : zα > 0}. Clearly, A0 is non-empty, and uα(x0) = 0 for all + +12 +SIMON BRENDLE +α ∈ A0. Moreover, � +α∈A0 zα duα = 0 at the point x0. On the other hand, +since Ω is a convex set with non-empty interior, we can find a tangent vector +ξ ∈ Tx0Ω such that duα(ξ) > 0 for all α ∈ A0. This is a contradiction. This +completes the proof of Lemma 3.2. +Lemma 3.3. If λ is sufficiently large, then infΣλ +�� � +α∈A eλuα |∇uα| Nα +�� ≥ +C−1 for some large constant C which is independent of λ. +Proof. We argue by contradiction. Suppose that the assertion is false. +Then there exists a sequence of positive real numbers λl → ∞ and a se- +quence of points xl ∈ Σλl such that +�� � +α∈A eλuα |∇uα| Nα +�� ≤ l−1 at the +point xl. After passing to a subsequence, we may assume that the sequence +xl converges to a point x0 ∈ Ω. Moreover, we may assume that, for each +α ∈ A, the sequence eλluα(xl) |∇uα(xl)| converges to a nonnegative real num- +ber zα. Since � +α∈A eλluα(xl) = 1 for each l, we know that � +α∈A zα > 0. +Let A0 := {α ∈ A : zα > 0}. Clearly, A0 is non-empty, and uα(x0) = 0 +for all α ∈ A0. Moreover, � +α∈A0 zαNα = 0 at the point x0. On the other +hand, since Ω is a convex set with non-empty interior, we can find a vector +ξ ∈ Rn such that ⟨Nα, ξ⟩ > 0 for all α ∈ A0. This is a contradiction. This +completes the proof of Lemma 3.3. +The outward-pointing unit normal vector to the domain Ωλ with respect +to the metric g is given by +ν = +� +α∈A eλuα ∇uα +�� � +α∈A eλuα ∇uα +�� = +� +α∈A eλuα |∇uα| να +�� � +α∈A eλuα |∇uα| να +��. +We define a map N : Σλ → Sn−1 by +N = +� +α∈A eλuα |∇uα| Nα +�� � +α∈A eλuα |∇uα| Nα +��. +Lemma 3.4. The map N : Σλ → Sn−1 is homotopic to the Gauss map of +Σλ with respect to the Euclidean metric. +Proof. In the special case when g is the Euclidean metric, the map N +coincides with the Gauss map of Σλ, and the assertion is trivially true. To +prove the assertion in general, we deform the metric g to the Euclidean met- +ric. +Proposition 3.5. Let x ∈ Σλ. Let π : TxΩ → TxΩ denotes the orthogonal +projection to the orthogonal complement of ν and P : Rn → Rn denotes +the orthogonal projection to the orthogonal complement of N. Then H − + +SCALAR CURVATURE RIGIDITY OF CONVEX POLYTOPES +13 +∥dN∥tr ≥ Vλ, where the function Vλ : Σλ → R is defined by +Vλ = λ +� +α∈A eλuα |∇uα|2 |π(να)|2 +�� � +α∈A eλuα |∇uα| να +�� +− λ +� +α∈A eλuα |∇uα|2 |π(να)| |P(Nα)| +�� � +α∈A eλuα |∇uα| Nα +�� ++ +� +α∈A eλuα (∆uα − (D2uα)(ν, ν)) +�� � +α∈A eλuα |∇uα| να +�� +− +� +α∈A eλuα |∇(|∇uα|)| |P(Nα)| +�� � +α∈A eλuα |∇uα| Nα +�� +. +Proof. Let {e1, . . . , en−1} denote a local orthonormal frame on Σλ. The +mean curvature of Σλ is given by +H = λ +�n−1 +i=1 +� +α∈A eλuα ⟨∇uα, ei⟩2 +�� � +α∈A eλuα ∇uα +�� ++ +�n−1 +i=1 +� +α∈A eλuα (D2uα)(ei, ei) +�� � +α∈A eλuα ∇uα +�� += λ +� +α∈A eλuα |π(∇uα)|2 +�� � +α∈A eλuα ∇uα +�� ++ +� +α∈A eλuα (∆uα − (D2uα)(ν, ν)) +�� � +α∈A eλuα ∇uα +�� += λ +� +α∈A eλuα |∇uα|2 |π(να)|2 +�� � +α∈A eλuα |∇uα| να +�� ++ +� +α∈A eλuα (∆uα − (D2uα)(ν, ν)) +�� � +α∈A eλuα |∇uα| να +�� +. +If ξ is a tangent vector to Σλ, then +dN(ξ) += λ +� +α∈A eλuα |∇uα| ⟨∇uα, ξ⟩ P(Nα) +�� � +α∈A eλuα |∇uα| Nα +�� ++ +� +α∈A eλuα ⟨∇(|∇uα|), ξ⟩ P(Nα) +�� � +α∈A eλuα |∇uα| Nα +�� += λ +� +α∈A eλuα |∇uα|2 ⟨π(να), ξ⟩ P(Nα) +�� � +α∈A eλuα |∇uα| Nα +�� ++ +� +α∈A eλuα ⟨∇(|∇uα|), ξ⟩ P(Nα) +�� � +α∈A eλuα |∇uα| Nα +�� +. +The trace norm of a linear transformation of the form ξ �→ ⟨X, ξ⟩ Y is given +by |X| |Y |. Since the trace norm satisfies the triangle inequality, it follows +that +∥dN∥tr +≤ λ +� +α∈A eλuα |∇uα|2 |π(να)| |P(Nα)| +�� � +α∈A eλuα |∇uα| Nα +�� ++ +� +α∈A eλuα |∇(|∇uα|)| |P(Nα)| +�� � +α∈A eλuα |∇uα| Nα +�� +. +Putting these facts together, the assertion follows. +In the following, we denote by Vλ,− = max{−Vλ, 0} the negative part of +Vλ. +Proposition 3.6. Suppose that the Matching Angle Hypothesis is satisfied. +Then supΣλ Vλ,− ≤ o(λ) as λ → ∞. +Proof. We argue by contradiction. Suppose that the assertion is false. +Then there exists a sequence of positive real numbers λl → ∞ and a se- +quence of points xl ∈ Σλl such that lim supl→∞ λ−1 +l +Vλl(xl) < 0. +After +passing to a subsequence, we may assume that the sequence xl converges +to a point x0 ∈ Ω. +Moreover, we may assume that, for each α ∈ A, +the sequence eλluα(xl) |∇uα(xl)| converges to a nonnegative real number zα. + +14 +SIMON BRENDLE +Since � +α∈A eλluα(xl) = 1 for each l, we know that � +α∈A zα > 0. +Let +A0 := {α ∈ A : zα > 0}. Clearly, A0 is non-empty, and uα(x0) = 0 for +all α ∈ A0. The Matching Angle Hypothesis implies that, at the point x0, +⟨να1, να2⟩ = ⟨Nα1, Nα2⟩ for all α1, α2 ∈ A0. Let π : Tx0Ω → Tx0Ω denote +the orthogonal projection to the orthogonal complement of � +α∈A0 zανα, +and let P : Rn → Rn denote the orthogonal projection to the orthogonal +complement of � +α∈A0 zαNα. For each β ∈ A0, we have +|π(νβ)|2 = 1 − +� � +α∈A0 zανα, νβ +�2 +�� � +α∈A0 zανα +��2 += 1 − +� � +α∈A0 zαNα, Nβ +�2 +�� � +α∈A0 zαNα +��2 += |P(Nβ)|2 +at the point x0. Therefore, for each β ∈ A0, we obtain +|π(νβ)| +�� � +α∈A0 zανα +�� = +|P(Nβ)| +�� � +α∈A0 zαNα +�� +at the point x0. Using Proposition 3.5, we conclude that λ−1 +l +Vλl(xl) → 0 as +l → ∞. This is a contradiction. +In the remainder of this section, we will estimate the Ls-norm Vλ,− on Σλ∩ +Br(p), where s ∈ [1, 3 +2) is a fixed exponent and Br(p) denotes a Euclidean +ball of radius r. We begin by recalling a basic fact about the area of convex +hypersurfaces in Rn. +Lemma 3.7. Let Br(p) denote a Euclidean ball of radius r. Then the in- +tersection Σλ ∩ Br(p) has area at most Crn−1. +Proof. This follows from the fact that the hypersurface Σλ = ∂Ωλ is +outward-minimizing with respect to the Euclidean metric. +Definition 3.8. Consider three pairwise distinct elements α1, α2, α3 ∈ A. +We denote by G(α1,α2,α3) +λ +the set of all points x ∈ Σλ with the property that +uα1(x) ≥ uα2(x) ≥ uα3(x) and uα3(x) ≥ uα(x) for α ∈ A \ {α1, α2, α3}. +Lemma 3.9. Assume that the mean curvature of the hypersurface {uα = 0} +with respect to g is nonnegative at each point in Ω ∩ {uα = 0}. Let us fix an +exponent s ∈ [1, 3 +2), and let Br(p) denote a Euclidean ball of radius r ≤ 1. +If λr is sufficiently large, then +� +rs+1−n +� +G(α1,α2,α3) +λ +∩{uα2≤−λ− 7 +8 r +1 +8 }∩Br(p) +V s +λ,− +� 1 +s +≤ Cλr e−(λr) +1 +8 +for all pairwise distinct elements α1, α2, α3 ∈ A. +Proof. Let us consider an arbitrary point x ∈ G(α1,α2,α3) +λ +with uα2(x) ≤ +−λ− 7 +8 r +1 +8 . +By definition of G(α1,α2,α3) +λ +, it follows that uα(x) ≤ −λ− 7 +8r +1 +8 +for all α ∈ A \ {α1}. +Using the identity � +α∈A eλuα(x) = 1, we obtain +uα1(x) ≥ −Cλ−1 e−(λr) +1 +8 . Moreover, |ν − να1| ≤ C e−(λr) +1 +8 and |N − Nα1| ≤ + +SCALAR CURVATURE RIGIDITY OF CONVEX POLYTOPES +15 +C e−(λr) +1 +8 at the point x. From this, we deduce that |π(να1)| ≤ C e−(λr) +1 +8 +and |P(Nα1)| ≤ C e−(λr) +1 +8 at the point x. Therefore, +Vλ ≥ ∆uα1 − (D2uα1)(να1, να1) +|∇uα1| +− Cλ e−(λr) +1 +8 +at the point x. Since uα1(x) ≥ −Cλ−1 e−(λr) +1 +8 and uα(x) ≤ −λ− 7 +8r +1 +8 for +all α ∈ A \ {α1}, we can find a point y ∈ Ω such that uα1(y) = 0 and +d(x, y) ≤ Cλ−1 e−(λr) +1 +8 . By assumption, the mean curvature of the hyper- +surface {uα1 = 0} at the point y is nonnegative. This implies +∆uα1 − (D2uα1)(να1, να1) +|∇uα1| +≥ 0 +at the point y. Consequently, +∆uα1 − (D2uα1)(να1, να1) +|∇uα1| +≥ −C d(x, y) +at the point x. Thus, we conclude that +Vλ(x) ≥ −Cλ e−(λr) +1 +8 +for each point x ∈ G(α1,α2,α3) +λ +∩ {uα2 ≤ −λ− 7 +8r +1 +8}. +On the other hand, +Σλ ∩ Br(p) has area at most Crn−1. Consequently, +� +rs+1−n +� +G(α1,α2,α3) +λ +∩{uα2≤−λ− 7 +8 r +1 +8 }∩Br(p) +V s +λ,− +� 1 +s +≤ Cλr e−(λr) +1 +8 . +This completes the proof of Lemma 3.9. +Lemma 3.10. Assume that the Matching Angle Hypothesis holds. Let us +fix an exponent s ∈ [1, 3 +2), and let Br(p) denote a Euclidean ball of radius +r ≤ 1. If λr is sufficiently large, then +� +rs+1−n +� +G(α1,α2,α3) +λ +∩{uα2≥−λ− 7 +8 r +1 +8 }∩{uα3≤−λ− 3 +4 r +1 +4 }∩Br(p) +V s +λ,− +� 1 +s +≤ C (λr) +1 +8 − 7 +8s +for all pairwise distinct elements α1, α2, α3 ∈ A. +Proof. We distinguish two cases: +Case 1: Suppose that Ω ∩ {uα1 = 0} ∩ {uα2 = 0} = ∅. By continuity, we +can find a real number δ such that Ω ∩ {uα1 ≥ −δ} ∩ {uα2 ≥ −δ} = ∅. If λr +is sufficiently large, then λ− 7 +8r +1 +8 ≤ δ. This implies +G(α1,α2,α3) +λ +∩ {uα2 ≥ −λ− 7 +8 r +1 +8 } +⊂ Σλ ∩ {uα1 ≥ −δ} ∩ {uα2 ≥ −δ} = ∅. +Hence, the assertion is trivially true in this case. + +16 +SIMON BRENDLE +Case 2: Suppose that Ω ∩ {uα1 = 0} ∩ {uα2 = 0} ̸= ∅. It follows from +Assumption 3.1 that the hypersurfaces {uα1 = 0} and {uα2 = 0} intersect +transversally. +Let us consider an arbitrary point x ∈ G(α1,α2,α3) +λ +with uα2(x) ≥ −λ− 7 +8r +1 +8 +and uα3(x) ≤ −λ− 3 +4r +1 +4. Clearly, uα1(x) ≥ −λ− 7 +8r +1 +8 by definition of G(α1,α2,α3) +λ +. +Moreover, uα(x) ≤ −λ− 3 +4r +1 +4 for all α ∈ A \ {α1, α2}. Consequently, we can +find a point y ∈ Ω such that uα1(y) = uα2(y) = 0 and d(x, y) ≤ Cλ− 7 +8r +1 +8. +The Matching Angle Hypothesis implies ⟨να1, να2⟩ = ⟨Nα1, Nα2⟩ at the point +y. Consequently, |⟨να1, να2⟩ − ⟨Nα1, Nα2⟩| ≤ C d(x, y) at the point x. From +this, we deduce that +|π(να1)| +�� � +α∈A eλuα |∇uα| να +�� − +|P(Nα1)| +�� � +α∈A eλuα |∇uα| Nα +�� ≥ −C d(x, y) − C e−(λr) +1 +4 +and +|π(να2)| +�� � +α∈A eλuα |∇uα| να +�� − +|P(Nα2)| +�� � +α∈A eλuα |∇uα| Nα +�� ≥ −C d(x, y) − C e−(λr) +1 +4 +at the point x. Thus, we conclude that +Vλ(x) ≥ −Cλ +1 +8 r− 7 +8 +for each point x ∈ G(α1,α2,α3) +λ +∩ {uα2 ≥ −λ− 7 +8 r +1 +8 } ∩ {uα3 ≤ −λ− 3 +4r +1 +4}. By +transversality, the set {0 ≥ uα1 ≥ −λ− 7 +8r +1 +8} ∩ {0 ≥ uα2 ≥ −λ− 7 +8 r +1 +8} ∩ Br(p) +can be covered by C (λr) +7(n−2) +8 +Euclidean balls of radius λ− 7 +8 r +1 +8 . +More- +over, the intersection of Σλ with each ball of radius λ− 7 +8r +1 +8 has area at +most C (λr)− 7(n−1) +8 +rn−1. This shows that Σλ ∩ {uα1 ≥ −λ− 7 +8 r +1 +8 } ∩ {uα2 ≥ +−λ− 7 +8 r +1 +8 } ∩ Br(p) has area at most C (λr)− 7 +8 rn−1. Since +G(α1,α2,α3) +λ +∩ {uα2 ≥ −λ− 7 +8r +1 +8} ∩ Br(p) +⊂ Σλ ∩ {uα1 ≥ −λ− 7 +8 r +1 +8 } ∩ {uα2 ≥ −λ− 7 +8r +1 +8} ∩ Br(p), +it follows that +� +rs+1−n +� +G(α1,α2,α3) +λ +∩{uα2≥−λ− 7 +8 r +1 +8 }∩{uα3≤−λ− 3 +4 r +1 +4 }∩Br(p) +V s +λ,− +� 1 +s +≤ C (λr) +1 +8 − 7 +8s . +This completes the proof of Lemma 3.10. +Lemma 3.11. Let us fix an exponent s ∈ [1, 3 +2), and let Br(p) denote a +Euclidean ball of radius r ≤ 1. If λr is sufficiently large, then +� +rs+1−n +� +G(α1,α2,α3) +λ +∩{uα3≥−λ− 3 +4 r +1 +4 }∩Br(p) +V s +λ,− +� 1 +s +≤ C (λr)1− 3 +2s +for all pairwise distinct elements α1, α2, α3 ∈ A. + +SCALAR CURVATURE RIGIDITY OF CONVEX POLYTOPES +17 +Proof. We distinguish two cases: +Case 1: Suppose that Ω ∩ {uα1 = 0} ∩ {uα2 = 0} ∩ {uα3 = 0} = ∅. By +continuity, we can find a real number δ such that Ω ∩ {uα1 ≥ −δ} ∩ {uα2 ≥ +−δ} ∩ {uα3 ≥ −δ} = ∅. If λr is sufficiently large, then λ− 3 +4r +1 +4 ≤ δ. This +implies +G(α1,α2,α3) +λ +∩ {uα3 ≥ −λ− 3 +4 r +1 +4 } +⊂ Σλ ∩ {uα1 ≥ −δ} ∩ {uα2 ≥ −δ} ∩ {uα3 ≥ −δ} = ∅. +Hence, the assertion is trivially true in this case. +Case 2: Suppose that Ω ∩ {uα1 = 0} ∩ {uα2 = 0} ∩ {uα3 = 0} ̸= ∅. It +follows from Assumption 3.1 that the hypersurfaces {uα1 = 0}, {uα2 = 0}, +and {uα3 = 0} intersect transversally. +Let us consider an arbitrary point x ∈ G(α1,α2,α3) +λ +with uα3(x) ≥ −λ− 3 +4r +1 +4. +Clearly, +Vλ(x) ≥ −Cλ +for all points x ∈ G(α1,α2,α3) +λ +∩ {uα3 ≤ −λ− 3 +4 r +1 +4 }. By transversality, the set +{0 ≥ uα1 ≥ −λ− 3 +4r +1 +4}∩{0 ≥ uα2 ≥ −λ− 3 +4 r +1 +4}∩{0 ≥ uα3 ≥ −λ− 3 +4 r +1 +4 }∩Br(p) +can be covered by C (λr) +3(n−3) +4 +Euclidean balls of radius λ− 3 +4 r +1 +4 . +More- +over, the intersection of Σλ with each ball of radius λ− 3 +4r +1 +4 has area at +most C (λr)− 3(n−1) +4 +rn−1. This shows that Σλ ∩ {uα1 ≥ −λ− 3 +4 r +1 +4 } ∩ {uα2 ≥ +−λ− 3 +4 r +1 +4 }∩{uα3 ≥ −λ− 3 +4 r +1 +4 }∩Br(p) has area at most C (λr)− 3 +2 rn−1. Since +G(α1,α2,α3) +λ +∩ {uα3 ≥ −λ− 3 +4 r +1 +4 } ∩ Br(p) +⊂ Σλ ∩ {uα1 ≥ −λ− 3 +4 r +1 +4 } ∩ {uα2 ≥ −λ− 3 +4 r +1 +4 } ∩ {uα3 ≥ −λ− 3 +4r +1 +4} ∩ Br(p), +it follows that +� +rs+1−n +� +G(α1,α2,α3) +λ +∩{uα3≥−λ− 3 +4 r +1 +4 }∩Br(p) +V s +λ,− +� 1 +s +≤ C (λr)1− 3 +2s . +This completes the proof of Lemma 3.11. +Proposition 3.12. Assume that the mean curvature of the hypersurface +{uα = 0} with respect to g is nonnegative at each point in Ω ∩ {uα = 0} +and that the Matching Angle Hypothesis is satisfied. Let us fix an exponent +s ∈ [1, 3 +2), and let Br(p) denote a Euclidean ball of radius r ≤ 1. If λr is +sufficiently large, then +� +rs+1−n +� +Σλ∩Br(p) +V s +λ,− +� 1 +s +≤ C (λr)−1 + C (λr) +1 +8 − 7 +8s + C (λr)1− 3 +2s . + +18 +SIMON BRENDLE +Proof. Combining Lemma 3.9, Lemma 3.10, and Lemma 3.11, we con- +clude that +� +rs+1−n +� +G(α1,α2,α3) +λ +∩Br(p) +V s +λ,− +� 1 +s +≤ C (λr)−1 + C (λr) +1 +8− 7 +8s + C (λr)1− 3 +2s +for all pairwise distinct elements α1, α2, α3 ∈ A. On the other hand, Σλ = +� +α1,α2,α3 G(α1,α2,α3) +λ +, where the union is taken over all pairwise distinct el- +ements α1, α2, α3 ∈ A. +Hence, the assertion follows by summation over +α1, α2, α3. This completes the proof of Proposition 3.12. +Corollary 3.13. Assume that the mean curvature of the hypersurface {uα = +0} with respect to g is nonnegative at each point in Ω ∩ {uα = 0} and that +the Matching Angle Hypothesis is satisfied. Let us fix an exponent s ∈ [1, 3 +2). +Then +sup +p∈Rn sup +r≤1 +� +rs+1−n +� +Σλ∩Br(p) +V s +λ,− +� 1 +s +→ 0 +as λ → ∞. +Proof. Let us consider an arbitrary sequence λl → ∞. By Proposition +3.6, we can find a sequence of positive real numbers δl → 0 such that +sup +p∈Rn +sup +r≤(δlλl)−1 +� +rs+1−n +� +Σλl∩Br(p) +V s +λl,− +� 1 +s +→ 0 +as l → ∞. On the other hand, Proposition 3.12 implies that +sup +p∈Rn +sup +(δlλl)−1≤r≤1 +� +rs+1−n +� +Σλl∩Br(p) +V s +λl,− +� 1 +s +→ 0 +as l → ∞. Putting these facts together, the assertion follows. +4. Proof of the Theorem 1.1 +Throughout this section, we assume that n ≥ 3 is an odd integer, and Ω is +a compact polytope in Rn with non-empty interior. Let g be a Riemannian +metric which is defined on an open set containing Ω and has nonnegative +scalar curvature at each point in Ω. We assume that the mean curvature of +the hypersurface {uα = 0} with respect to g is nonnegative at each point in +Ω ∩ {uα = 0} and that the Matching Angle Hypothesis is satisfied. +Let U denote a Euclidean ball such that the closure of U is contained in +the interior of Ω. Consider a sequence λl → ∞. Note that U ⊂ Ωλl if l is +sufficiently large. By Proposition 2.14 we can find an m-tuple of harmonic +spinors s(l) = (s(l) +1 , . . . , s(l) +m ) such that s(l) is defined on Ωλl; s(l) does not +vanish identically; Ds(l) = 0 in Ωλl; and χs(l) = s(l) on Σλl. +Standard + +SCALAR CURVATURE RIGIDITY OF CONVEX POLYTOPES +19 +unique continuation arguments imply that +� +U +�m +α=1 |s(l) +α |2 dvolg > 0 if l is +sufficiently large. By scaling, we can arrange that +� +U +m +� +α=1 +|s(l) +α |2 dvolg = 1 +for each l. Using Proposition 2.10, we obtain +� +Ωλl +m +� +l=1 +|∇s(l) +α |2 dvolg + 1 +4 +� +Ωλl +m +� +α=1 +R |s(l) +α |2 dvolg +≤ −1 +2 +� +Σλl +(H − ∥dN∥tr) +� m +� +α=1 +|s(l) +α |2 +� +dσg. +Proposition 3.5 implies that H − ∥dN∥tr ≥ Vλl at each point on Σλl. Con- +sequently, +� +Ωλl +m +� +l=1 +|∇s(l) +α |2 dvolg + 1 +4 +� +Ωλl +m +� +α=1 +R |s(l) +α |2 dvolg +≤ 1 +2 +� +Σλl +Vλl,− +� m +� +α=1 +|s(l) +α |2 +� +dσg. +Note that the hypersurface Σλl = ∂Ωλl can be written as a radial graph +with bounded slope. From this, it is easy to see that Ωλl is bi-Lipschitz +equivalent to the Euclidean unit ball, with constants that are independent +of λl. Using Theorem A.7 and Proposition 3.13, we obtain +� +Σλl +Vλl,− F 2 dσg ≤ εl +� +Ωλl +|∇F|2 dvolg + εl +� � +Σλl +F dσg +�2 +for every smooth function F on Ωλl, where εl → 0 as l → ∞. Moreover, the +Sobolev trace theorem implies +� � +Σλl +F dσg +�2 +≤ C +� +Ωl +|∇F|2 dvolg + C +� +U +F 2 dvolg +for every smooth function F on Ωλl, where C is a uniform constant inde- +pendent of l. Putting these facts together, we conclude that +� +Σλl +Vλl,− F 2 dσg ≤ Cεl +� +Ωλl +|∇F|2 dvolg + Cεl +� +U +F 2 dvolg + +20 +SIMON BRENDLE +for every smooth function F on Ωλl. In the next step, we apply this inequal- +ity with F = +� +δ2 + �m +α=1 |s(l) +α |2� 1 +2 , and send δ → 0. This gives +� +Ωλl +m +� +l=1 +|∇s(l) +α |2 dvolg + 1 +4 +� +Ωλl +m +� +α=1 +R |s(l) +α |2 dvolg +≤ 1 +2 +� +Σλl +Vλl,− +� m +� +α=1 +|s(l) +α |2 +� +dσg +≤ Cεl +� +Ωλl +m +� +α=1 +|∇s(l) +α |2 dvolg + Cεl +� +U +m +� +α=1 +|s(l) +α |2 dvolg +for each l. Since the scalar curvature is nonnegative, it follows that +� +Ωλl +m +� +α=1 +|∇s(l) +α |2 dvolg ≤ Cεl +� +U +m +� +α=1 +|s(l) +α |2 dvolg +if l is sufficiently large. Passing to the limit as l → ∞, we obtain a non- +vanishing m-tuple of parallel spinors defined on the interior of Ω. Conse- +quently, the Ricci tensor of g vanishes at each point in Ω. This completes +the proof of Theorem 1.1. +Appendix A. A variant of a theorem of Fefferman and Phong +In this section, we describe a variant of an estimate due to Fefferman and +Phong [4], which plays a central role in our argument. We denote by Q the +collection of all (n − 1)-dimensional cubes of the form +[2mj1, 2m(j1 + 1)] × . . . × [2mjn−1, 2m(jn−1 + 1)] × {0}, +where m ∈ Z and j1, . . . , jn−1 ∈ Z. For each Q ∈ Q, we denote by |Q| the +(n − 1)-dimensional volume of Q. +Theorem A.1. Fix an exponent s ∈ (1, n − 1). Let V be a nonnegative +continuous function on the hyperplane Rn−1 × {0} ⊂ Rn with the property +that +diam(Q)s+1−n +� +Q +V s ≤ 1 +for each (n − 1)-dimensional cube Q ∈ Q. +Suppose that F is a smooth +function on the half-space Rn ++ = {x ∈ Rn : xn ≥ 0}, and let f denote the +restriction of F to the boundary ∂Rn ++ = Rn−1 × {0}. Then +� +Q +V f 2 ≤ C +� +Q×[0,diam(Q)] +|∇F|2 + C diam(Q)−1 |Q|−1 +� � +Q +|f| +�2 +. +for each (n − 1)-dimensional cube Q ∈ Q. + +SCALAR CURVATURE RIGIDITY OF CONVEX POLYTOPES +21 +The proof of Theorem A.1 involves a straightforward adaptation of the +arguments of Fefferman and Phong [4]. Let us fix an exponent t such that +s > t > 1. We define a nonnegative function W : Rn−1 × {0} → R by +W(x) = +sup +Q∈Q,x∈Q +� +|Q|−1 +� +Q +V s +� 1 +s +for each point x ∈ Rn−1 × {0}. In other words, W s is the maximal function +associated with the function V s. Clearly, V ≤ W. +We assume that F is a smooth function on the half-space Rn ++ = {x ∈ +Rn : xn ≥ 0}, and let f denote the restriction of F to the boundary ∂Rn ++ = +Rn−1 × {0}. +For each (n − 1)-dimensional cube Q ∈ Q, we denote by +fQ = |Q|−1 � +Q f the mean value of f over the cube Q. +Lemma A.2. For each (n − 1)-dimensional cube Q0 ∈ Q, we have +� +|Q0|−1 +� +Q0 +W t +� 1 +t +≤ C +sup +Q∈Q,Q0⊂Q +� +|Q|−1 +� +Q +V s +� 1 +s +. +Proof. For abbreviation, let +Λ = +sup +Q∈Q,Q0⊂Q +� +|Q|−1 +� +Q +V s +� 1 +s +. +We define a nonnegative function W0 : Q0 → R by +W0(x) = +sup +Q∈Q,x∈Q⊂Q0 +� +|Q|−1 +� +Q +V s +� 1 +s +for each point x ∈ Q0. Clearly, +W(x) = max{Λ, W0(x)} +for each point x ∈ Q0. The Hardy-Littlewood maximal inequality implies +|Q0|−1 |{x ∈ Q0 : W0(x)s > α}| ≤ Cα−1 |Q0|−1 +� +Q0 +V s ≤ Cα−1 Λs +for all α > 0. +We multiply both sides by α +t +s−1 and integrate over α ∈ +[Λs, ∞). This gives +|Q0|−1 +� +Q0 +W t +0 ≤ C Λt, +hence +|Q0|−1 +� +Q0 +W t ≤ C Λt. +This completes the proof of Lemma A.2. + +22 +SIMON BRENDLE +Lemma A.3. Given a real number ε > 0, we can find a real number δ > 0 +with the following property. If Q0 is an (n − 1)-dimensional cube in Q and +A ⊂ Q0 is a Borel set with |A| ≤ δ |Q0|, then +� +A +W ≤ ε +� +Q0 +W. +Proof. Using Lemma A.2, we obtain +� +|Q0|−1 +� +Q0 +W t +� 1 +t +≤ C +sup +Q∈Q,Q0⊂Q +� +|Q|−1 +� +Q +V s +� 1 +s +. +Moreover, +sup +Q∈Q,Q0⊂Q +� +|Q|−1 +� +Q +V s +� 1 +s +≤ inf +Q0 W ≤ |Q0|−1 +� +Q0 +W. +Therefore, +� +|Q0|−1 +� +Q0 +W t +� 1 +t +≤ C |Q0|−1 +� +Q0 +W. +Hence, if A ⊂ Q0 is a Borel set with |A| ≤ δ Q0, then +� +A +W ≤ |A| +t−1 +t +� � +Q0 +W t +� 1 +t +≤ δ +t−1 +t |Q0| +t−1 +t +� � +Q0 +W t +� 1 +t +≤ Cδ +t−1 +t +� +Q0 +W. +This completes the proof of Lemma A.3. +Lemma A.4. For each (n − 1)-dimensional cube Q0 ∈ Q, we have +|Q0|−1 +� +Q0 +W ≤ C diam(Q0)−1. +Proof. Using Lemma A.2, we obtain +� +|Q0|−1 +� +Q0 +W t +� 1 +t +≤ C +sup +Q∈Q,Q0⊂Q +� +|Q|−1 +� +Q +V s +� 1 +s +. +Moreover, our assumption implies that +� +|Q|−1 +� +Q +V s +� 1 +s +≤ C diam(Q)−1 +for each (n − 1)-dimensional cube Q ∈ Q. Putting these facts together, the +assertion follows. +Lemma A.5. For each (n − 1)-dimensional cube Q0 ∈ Q, we have +� +Q0 +V |f − fQ0|2 ≤ C +� +Q0 +Wg2, + +SCALAR CURVATURE RIGIDITY OF CONVEX POLYTOPES +23 +where the function g : Q0 → R is defined by +g(x) = +sup +Q∈Q,x∈Q⊂Q0 +|Q|−1 +� +Q +|f − fQ| +for x ∈ Q0. +Proof. Fix an (n − 1)-dimensional cube Q0 ∈ Q. We define a function +h : Q0 → R by +h(x) = +sup +Q∈Q,x∈Q⊂Q0 +|Q|−1 +� +Q +|f − fQ0| +for x ∈ Q0. Note that V ≤ W and |f −fQ0| ≤ h at each point in Q0. Hence, +it suffices to prove that +� +Q0 +Wh2 ≤ C +� +Q0 +Wg2. +To prove this inequality, let α0 = |Q0|−1 � +Q0 |f − fQ0|. For each α > α0, +we denote by Qα the set of all (n − 1)-dimensional cubes Q ∈ Q with the +following properties: +• Q ⊂ Q0. +• |Q|−1 � +Q |f − fQ0| > α. +• If ˜Q is an (n − 1)-dimensional cube in Q with Q ⊊ ˜Q and ˜Q ⊂ Q0, +then | ˜Q|−1 � +˜Q |f − fQ0| ≤ α. +It is easy to see that +|Q|−1 +� +Q +|f − fQ0| ≤ 2n−1α +for all Q ∈ Qα. In particular, |fQ − fQ0| ≤ 2n−1α for all Q ∈ Qα. Moreover, +� +Q∈Qα +Q = {x ∈ Q0 : h(x) > α}. +Finally, no point can be contained in the interior of more than one cube in +Qα. +Let K > 1 and δ ∈ (0, 1) be two real numbers that will be chosen later. +For each (n−1)-dimensional cube Q ∈ Qα satisfying |Q|−1 � +Q |f −fQ| ≤ δα, + +24 +SIMON BRENDLE +we have +(Kα − |fQ − fQ0|) +� +˜Q∈QKα, ˜Q⊂Q +| ˜Q| +≤ +� +˜Q∈QKα, ˜Q⊂Q +� � +˜Q +|f − fQ0| − +� +˜Q +|fQ − fQ0| +� +≤ +� +˜Q∈QKα, ˜Q⊂Q +� +˜Q +|f − fQ| +≤ +� +Q +|f − fQ| +≤ δα |Q|. +Recall that |fQ − fQ0| ≤ 2n−1α for all Q ∈ Qα. Hence, if we choose K > 2n, +then we obtain +� +˜Q∈QKα, ˜Q⊂Q +| ˜Q| ≤ 21−n δ |Q| +for each (n − 1)-dimensional cube Q ∈ Qα satisfying |Q|−1 � +Q |f − fQ| ≤ δα. +We next apply Lemma A.3 with ε = 1 +2 K−2. Hence, we can choose δ ∈ +(0, 1) sufficiently small (depending on K) so that +� +˜Q∈QKα, ˜Q⊂Q +� +˜Q +W ≤ 1 +2 K−2 +� +Q +W +for each (n − 1)-dimensional cube Q ∈ Qα satisfying |Q|−1 � +Q |f − fQ| ≤ δα. +For each (n−1)-dimensional cube Q ∈ Qα, the set Q∩{h > Kα} is contained +in the union � +˜Q∈QKα, ˜Q⊂Q ˜Q. This implies +� +Q∩{h>Kα} +W ≤ 1 +2 K−2 +� +Q +W +for each (n − 1)-dimensional cube Q ∈ Qα satisfying |Q|−1 � +Q |f − fQ| ≤ δα. +On the other hand, if Q is an (n − 1)-dimensional cube in Qα satisfying +|Q|−1 � +Q |f − fQ| > δα, then g > δα at each point in Q. Therefore, +� +Q∩{h>Kα} +W ≤ +� +Q∩{g>δα} +W +for each (n − 1)-dimensional cube Q ∈ Qα satisfying |Q|−1 � +Q |f − fQ| > δα. +Putting these facts together, we conclude that +� +Q∩{h>Kα} +W ≤ 1 +2 K−2 +� +Q +W + +� +Q∩{g>δα} +W + +SCALAR CURVATURE RIGIDITY OF CONVEX POLYTOPES +25 +for each (n−1)-dimensional cube Q ∈ Qα. Summation over all cubes Q ∈ Qα +gives +� +{h>Kα} +W ≤ 1 +2 K−2 +� +{h>α} +W + +� +{g>δα} +W. +This inequality holds for each α > α0. Moreover, since g ≥ α0 at each point +in Q0, the inequality is trivially true for α ≤ α0. Finally, we multiply the +inequality by α +2 and integrate over α ∈ (0, ∞). This gives +K−2 +� +Q0 +Wh2 ≤ 1 +2 K−2 +� +Q0 +Wh2 + δ−2 +� +Q0 +Wg2. +This completes the proof of Lemma A.5. +Lemma A.6. For each (n − 1)-dimensional cube Q0 ∈ Q, we have +� +Q0 +Wg2 ≤ C +� +Q0×[0,diam(Q)] +|∇F|2, +where the function g : Q0 → R is defined by +g(x) = +sup +Q∈Q,x∈Q⊂Q0 +|Q|−1 +� +Q +|f − fQ| +for x ∈ Q0. +Proof. Fix an (n−1)-dimensional cube Q0 ∈ Q, and let α0 = |Q0|−1 � +Q0 |f− +fQ0|. For each α > α0, we denote by Qα the set of all (n − 1)-dimensional +cubes Q ∈ Q with the following properties: +• Q ⊂ Q0. +• |Q|−1 � +Q |f − fQ| > α. +• If ˜Q is an (n − 1)-dimensional cube in Q with Q ⊊ ˜Q and ˜Q ⊂ Q0, +then | ˜Q|−1 � +˜Q |f − f ˜Q| ≤ α. +It is easy to see that +|Q|−1 +� +Q +|f − fQ| ≤ 2nα +for all Q ∈ Qα. Moreover, +� +Q∈Qα +Q = {x ∈ Q0 : g(x) > α}. +Finally, no point can be contained in the interior of more than one cube in +Qα. + +26 +SIMON BRENDLE +Let K > 1 be a real number that will be chosen later. For each (n − 1)- +dimensional cube Q ∈ Qα, we have +Kα +� +˜Q∈QKα, ˜Q⊂Q +| ˜Q| ≤ +� +˜Q∈QKα, ˜Q⊂Q +� +˜Q +|f − f ˜Q| +≤ 2 +� +˜Q∈QKα, ˜Q⊂Q +� +˜Q +|f − fQ| +≤ 2 +� +Q +|f − fQ| +≤ 2n+1α |Q|. +Hence, if we choose K > 2n+2, then +� +˜Q∈QKα, ˜Q⊂Q +| ˜Q| ≤ 1 +2 |Q| +for each cube Q ∈ Qα. For each (n − 1)-dimensional cube Q ∈ Qα, the set +Q ∩ {g > Kα} is contained in the union � +˜Q∈QKα, ˜Q⊂Q ˜Q. This implies +|Q ∩ {g > Kα}| ≤ +� +˜Q∈QKα, ˜Q⊂Q +| ˜Q| ≤ 1 +2 |Q|, +hence +|Q ∩ {g ≤ Kα}| ≥ 1 +2 |Q| +for each (n−1)-dimensional cube Q ∈ Qα. We define a nonnegative function +ϕ : Rn−1 × {0} → R by +ϕ(x1, . . . , xn−1, 0) = +� � diam(Q0) +0 +|∇F(x1, . . . , xn−1, xn)|2 dxn +� 1 +2 +. +Moreover, we define a nonnegative function ψ : Q0 → R by +ψ(x) = +sup +Q∈Q,x∈Q⊂Q0 +|Q|−1 +� +Q +ϕ +for each point x ∈ Q0. In other words, ψ is the maximal function associated +with ϕ. Using the Sobolev trace theorem, we obtain +α ≤ |Q|−1 +� +Q +|f − fQ| +≤ 2 |Q|−1 inf +a∈R +� +Q +|f − a| +≤ C |Q|−1 inf +a∈R +� � +Q×[0,diam(Q)] +|∇(F − a)| ++ diam(Q)−1 +� +Q×[0,diam(Q)] +|F − a| +� + +SCALAR CURVATURE RIGIDITY OF CONVEX POLYTOPES +27 +for each (n − 1)-dimensional cube Q ∈ Qα. Using the Poincar´e inequality, +we conclude that +α ≤ C |Q|−1 +� +Q×[0,diam(Q)] +|∇F| +≤ C diam(Q) +1 +2 |Q|−1 +� +Q +ϕ +≤ C diam(Q) +1 +2 inf +Q ψ +for each (n − 1)-dimensional cube Q ∈ Qα. This implies +α2 diam(Q)−1 |Q| ≤ C +� +Q∩{g≤Kα} +ψ2 +for each (n − 1)-dimensional cube Q ∈ Qα. Combining this estimate with +Lemma A.4, we obtain +α2 +� +Q +W ≤ C +� +Q∩{g≤Kα} +ψ2 +for each (n−1)-dimensional cube Q ∈ Qα. Summation over all cubes Q ∈ Qα +gives +α2 +� +{g>α} +W ≤ +� +{α α0. We now multiply both sides by α−1 +and integrate over α ∈ (2α0, ∞). This gives +� +{g>4α0} +Wg2 ≤ C +� +Q0 +ψ2. +In the next step, we bound the contribution from the set {g ≤ 4α0}. Using +the Sobolev trace theorem, we obtain +α0 = |Q0|−1 +� +Q0 +|f − fQ0| +≤ 2 |Q0|−1 inf +a∈R +� +Q0 +|f − a| +≤ C |Q0|−1 inf +a∈R +� � +Q0×[0,diam(Q0)] +|∇(F − a)| ++ diam(Q0)−1 +� +Q0×[0,diam(Q)] +|F − a| +� +. + +28 +SIMON BRENDLE +Using the Poincar´e inequality, we conclude that +α0 ≤ C |Q0|−1 +� +Q0×[0,diam(Q0)] +|∇F| +≤ C diam(Q0) +1 +2 |Q0|−1 +� +Q0 +ϕ +≤ C diam(Q0) +1 +2 inf +Q0 ψ. +This implies +α2 +0 diam(Q0)−1 |Q0| ≤ C +� +Q0 +ψ2. +Combining this estimate with Lemma A.4, we obtain +α2 +0 +� +Q0 +W ≤ C +� +Q0 +ψ2, +hence +� +{g≤4α0} +Wg2 ≤ C +� +Q0 +ψ2. +Putting these facts together, we conclude that +� +Q0 +Wg2 ≤ C +� +Q0 +ψ2. +On the other hand, the Hardy-Littlewood maximal inequality implies +� +Q0 +ψ2 ≤ C +� +Q0 +ϕ2 = C +� +Q0×[0,diam(Q0)] +|∇F|2. +This completes the proof of Lemma A.6. +After these preparations, we now complete the proof of Theorem A.1. +Combining Lemma A.5 and Lemma A.6, we conclude that +� +Q0 +V |f − fQ0|2 ≤ C +� +Q0×[0,diam(Q0)] +|∇F|2 +for each (n − 1)-dimensional cube Q0 ∈ Q. This implies +� +Q0 +V f 2 ≤ C +� +Q0×[0,diam(Q0)] +|∇F|2 + C |Q0|−2 +� � +Q0 +V +� � � +Q0 +|f| +�2 +for each (n − 1)-dimensional cube Q0 ∈ Q. Using the estimate +|Q0|−1 +� +Q0 +V ≤ +� +|Q0|−1 +� +Q0 +V s +� 1 +s +≤ C diam(Q0)−1, +we conclude that +� +Q0 +V f 2 ≤ C +� +Q0×[0,diam(Q0)] +|∇F|2 + C diam(Q0)−1 |Q0|−1 +� � +Q0 +|f| +�2 + +SCALAR CURVATURE RIGIDITY OF CONVEX POLYTOPES +29 +for each (n − 1)-dimensional cube Q0 ∈ Q. +Corollary A.7. Fix an exponent s ∈ (1, n − 1). Let V be a nonnegative +continuous function on the unit sphere Sn−1 ⊂ Rn with the property that +rs+1−n +� +Sn−1∩Br(p) +V s ≤ 1 +for all points p ∈ Rn and all r ≤ 1. Suppose that F is a smooth function on +the unit ball Bn = {x ∈ Rn : |x| ≤ 1}, and let f denote the restriction of F +to the boundary ∂Bn = Sn−1. Then +� +Sn−1 V f 2 ≤ C +� +Bn |∇F|2 + C +� � +Sn−1 |f| +�2 +. +References +[1] C. B¨ar and W. Ballmann, Boundary value problems for elliptic differential opera- +tors of first order, Surveys in Differential Geometry vol. 17, pp. 1–78, Intern. Press, +Somerville, 2012 +[2] C. B¨ar and W. Ballmann, Guide to boundary value problems for Dirac-type operators, +arXiv:1307.3021 +[3] C. B¨ar, B. Hanke, and T. Schick, Remarks on the paper ”On Gromov’s dihedral +extremality and rigidity conjectures” by Jinmin Wang, Zhizhang Xie, and Guoliang +Yu, arXiv:2202.05180 +[4] C. Fefferman and D. Phong, Lower bounds for Schr¨odinger equations, Conference on +Partial Differential Equations (Saint Jean de Monts, 1982), Conf. No. 7, pp. 1–7, Soc. +Math. France, Paris, 1982 +[5] W. Fulton and J. Harris, Representation Theory, Springer-Verlag, 1991 +[6] M. Gromov, Dirac and Plateau billiards in domains with corners, Central European +Journal of Mathematics 12, 1109–1156 (2014) +[7] M. Gromov, Four Lectures on Scalar Curvature, arXiv:1908.10612 +[8] M. Gromov, Convex Polytopes, dihedral angles, mean curvature, and scalar curvature, +arXiv:2207.13346 +[9] C. Li, A polyhedron comparison theorem for 3-manifolds with positive scalar curvature, +Invent. Math. 219, 1–37 (2020) +[10] J. Wang, Z. Xie, and G. Yu, On Gromov’s dihedral extremality and rigidity conjec- +tures, arXiv:2112.01510 +Columbia University, 2990 Broadway, New York NY 10027, USA + diff --git a/79E4T4oBgHgl3EQfdAwp/content/tmp_files/load_file.txt b/79E4T4oBgHgl3EQfdAwp/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..f42548f64429b717ae4ffd896115fad83609e537 --- /dev/null +++ b/79E4T4oBgHgl3EQfdAwp/content/tmp_files/load_file.txt @@ -0,0 +1,839 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf,len=838 +page_content='arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content='05087v1 [math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content='DG] 12 Jan 2023 SCALAR CURVATURE RIGIDITY OF CONVEX POLYTOPES SIMON BRENDLE Abstract.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' We prove a scalar curvature rigidity theorem for convex polytopes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' The proof uses the Fredholm theory for Dirac operators on manifolds with boundary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' A variant of a theorem of Fefferman and Phong plays a central role in our analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Introduction Let Ω be a compact polytope in Rn with non-empty interior.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' We may write Ω = � α∈A{uα ≤ 0}, where A is a finite set and the uα are linear functions in Rn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' For each α ∈ A, we denote by Nα ∈ Sn−1 the outward- pointing unit normal vector to the halfspace {uα ≤ 0} with respect to the Euclidean metric.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Let g be a Riemannian metric which is defined on an open set containing Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' For each α ∈ A, we denote by να the outward-pointing unit normal vector to the halfspace {uα ≤ 0} with respect to the metric g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' We will make the following assumption: Matching Angle Hypothesis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' If x is point in ∂Ω and α1, α2 ∈ A satisfy uα1(x) = uα2(x) = 0, then ⟨να1, να2⟩ = ⟨Nα1, Nα2⟩ at the point x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Here, the inner product ⟨να1, να2⟩ is computed with respect to the metric g, and the inner product ⟨Nα1, Nα2⟩ is the standard inner product in Rn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Suppose that n ≥ 3 is an odd integer, and Ω is a compact polytope in Rn with non-empty interior.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Let g be a Riemannian metric which is defined on an open set containing Ω and has nonnegative scalar curvature at each point in Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' For each α ∈ A, we assume that the mean curvature of the hypersurface {uα = 0} with respect to g is nonnegative at each point in Ω ∩ {uα = 0}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Moreover, we assume that the Matching Angle Hypothesis is satisfied.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Then the Ricci tensor of g vanishes at each point in Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content='1 also holds in the even-dimensional case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' This can be seen by considering the Cartesian product Ω × [0, 1] ⊂ Rn+1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Scalar curvature comparison theorems for polytopes were first studied in seminal work of Gromov [6],[7],[8].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Li [9] has used minimal surface techniques to prove a scalar curvature comparison theorem for certain polytopes in The author was support by the National Science Foundation under grant DMS-2103573 and by the Simons Foundation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' The author acknowledges the hospitality of T¨ubingen University, where part of this work was carried out.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' 1 2 SIMON BRENDLE dimension 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Wang, Xie, and Yu [10] have proposed a different approach to this problem which is based on the study of Dirac operators on manifolds with corners.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' In this paper, we describe another approach to this problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' As in [10], we employ a spinor approach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' In contrast to [10], we work with boundary value problems for Dirac operators on smooth domains, which are well understood thanks to the work of B¨ar and Ballmann [1],[2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' In the following, we outline the main steps involved in the proof of The- orem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' We approximate a given convex polytope Ω by a one-parameter family of smooth convex domains Ωλ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' On each domain Ωλ, we solve the Dirac equation for an m-tuple of spinors s = (s1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' , sm) with a suitable local boundary condition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' To prove the existence of a solution satisfying that particular boundary condition, we use the Fredholm theory developed by B¨ar and Ballmann [1],[2] together with the homotopy invariance of the Fredholm index.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Having constructed an m-tuple of harmonic spinors on Ωλ satisfying this boundary condition, we apply a Weitzenb¨ock formula, and integrate over Ωλ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' The resulting integral formula contains a term involving the scalar curvature, as well as a boundary term.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Unfortunately, it is not clear if the boundary term has a favorable sign.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' We are able to control the boundary integral by adapting a theorem due to Fefferman and Phong [4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' A boundary value problem for the Dirac operator on a smooth domain Let m = 2[ n 2 ] denote the dimension of the space of spinors on Rn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Let {E1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' , En} denote the standard basis of Rn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Throughout this section, we fix an orthonormal basis {¯s1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' , ¯sm} of the space of spinors on flat Rn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' We define ωaαβ = ⟨Ea · ¯sα, ¯sβ⟩ for a = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' , n and α, β = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' , m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' The matrices ω1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' , ωn ∈ End(Cm) are skew-Hermitian, so that ωaαβ = −ωaβα.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Moreover, ωaωb + ωbωa = −2δab id.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' In other words, m � β=1 (ωaαβ ωbβγ + ωbαβ ωaβγ) = −2δab δαγ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' We begin by stating a basic algebraic fact which will be needed later.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Assume that n is odd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Then there is no non-zero element of End(Cm) which anti-commutes with ωa ∈ End(Cm) for each a = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' , n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' We recall the definition of the spin representation in odd dimen- sions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Let {E1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' , En} denote the standard basis of Rn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' For k = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' , [n 2 ], we define wk = E2k−1 − iE2k ∈ Cn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' The spinor space is defined as the ex- terior algebra Λ∗W, where W = span{wk : k = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' , [n 2 ]} ⊂ Cn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' For each k ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' , [n 2 ]}, we define a linear map Pk ∈ End(Λ∗W) by Pk(wj1 ∧ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' ∧ wjr) = wk ∧ wj1 ∧ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' ∧ wjr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' SCALAR CURVATURE RIGIDITY OF CONVEX POLYTOPES 3 Moreover, for each k ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' , [n 2 ]}, we define a linear map Qk ∈ End(Λ∗W) by Qk(wj1 ∧ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' ∧ wjr) = 0, Qk(wk ∧ wj1 ∧ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' ∧ wjr) = wj1 ∧ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' ∧ wjr for k /∈ {j1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' , jr}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Then PkPl + PlPk = QkQl + QlQk = 0 and PkQl + QlPk = δkl id for k, l ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' , [n 2 ]}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Finally, we define a linear map S ∈ End(Λ∗W) so that S(wj1 ∧ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' ∧ wjr) = � wj1 ∧ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' ∧ wjr if r is even −wj1 ∧ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' ∧ wjr if r is odd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Clearly, PkS + SPk = 0, QkS + SQk = 0, and S2 = id.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Consequently, there is a natural algebra homomorphism from the Clifford algebra ClC(n) to End(Λ∗W) which maps wk to i √ 2 Pk, ¯wk to i √ 2 Qk, and En to iS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' It is well known (see [5], Lemma 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content='9) that span{Pk1 · · · PkrQl1 · · · Qls : r + s is even} = End(ΛevenW) ⊕ End(ΛoddW) and span{Pk1 · · · PkrQl1 · · · Qls : r + s is odd} = Hom(ΛevenW, ΛoddW) ⊕ Hom(ΛoddW, ΛevenW).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' We claim that there is no non-zero element of End(Λ∗W) which anti-commutes with Pk, Qk, S for each k ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' , [n 2 ]}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Suppose that L ∈ End(Λ∗W) is such an element.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Since L anti-commutes with S, it follows that L ∈ Hom(ΛevenW, ΛoddW)⊕Hom(ΛoddW, ΛevenW).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Since L anti-commutes with Pk, Qk for each k ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' , [n 2 ]}, it follows that L anti-commutes with every element of Hom(ΛevenW, ΛoddW)⊕Hom(ΛoddW, ΛevenW).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' This implies that L = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' This completes the proof of Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Assume that Ω is a domain in Rn with smooth boundary ∂Ω = Σ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Let g be a Riemannian metric on Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' We denote by ν the outward-pointing unit normal vector field with respect to the metric g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Let ∇ denote the spin connection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' The Dirac operator is defined by Ds = n � i=1 ei · ∇eis, where {e1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' , en} is a local orthonormal frame on Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' The boundary Dirac operator DΣ is given by DΣs = n−1 � i=1 ν · ei · ∇eis + 1 2 H s at each point on Σ, where {e1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' , en−1} is a local orthonormal frame on Σ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' In the remainder of this section, we consider the Dirac operator act- ing on m-tuples of spinors with a suitable local boundary condition of 4 SIMON BRENDLE Lopatinsky-Shapiro type.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' To formulate the boundary condition, we assume that N : Σ → Sn−1 is a given smooth map.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Consider an m-tuple of spinors s = (s1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' , sm).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' At each point on Σ, we define (χs)α = − n � a=1 m � β=1 ⟨N, Ea⟩ ωaαβ ν · sβ and (Bs)α = n−1 � i=1 n � a=1 m � β=1 ⟨dN(ei), Ea⟩ ωaαβ ei · sβ, where {e1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' , en−1} is a local orthonormal frame on Σ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' The map χ is self-adjoint.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Moreover, χ2 is the identity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Suppose that s = (s1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' , sm) and t = (t1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' , tm) are two m- tuples of spinors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' We compute (χ2s)α = n � a,b=1 m � β,γ=1 ⟨N, Ea⟩ ⟨N, Eb⟩ ωaαβ ωbβγ ν · ν · sγ = − n � a,b=1 m � β,γ=1 ⟨N, Ea⟩ ⟨N, Eb⟩ ωaαβ ωbβγ sγ = −1 2 n � a,b=1 m � β,γ=1 ⟨N, Ea⟩ ⟨N, Eb⟩ (ωaαβ ωbβγ + ωbαβ ωaβγ) sγ = n � a,b=1 m � γ=1 ⟨N, Ea⟩ ⟨N, Eb⟩ δab δαγ sγ = sα.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Moreover, m � α=1 ⟨(χs)α, tα⟩ = − n � a=1 m � α,β=1 ⟨N, Ea⟩ ωaαβ ⟨ν · sβ, tα⟩ = − n � a=1 m � α,β=1 ⟨N, Ea⟩ ωaβα ⟨sβ, ν · tα⟩ = m � β=1 ⟨sβ, (χt)β⟩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' This completes the proof of Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' SCALAR CURVATURE RIGIDITY OF CONVEX POLYTOPES 5 Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Assume that x ∈ Σ and ξ ∈ TxΣ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Then the map (s1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' , sm) �→ (ν · ξ · s1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' , ν · ξ · sm) maps the eigenspace of χ with eigenvalue 1 to the eigenspace of χ with eigenvalue −1, and vice versa.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' In particular, the two eigenspaces have the same dimension.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' For each vector ξ ∈ TxΣ, the map (s1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' , sm) �→ (ν · ξ · s1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' , ν · ξ · sm) anti-commutes with χ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' From this, the assertion follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' The map B is self-adjoint.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Moreover, χ and B commute.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Let {e1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' , en−1} be a local orthonormal frame on Σ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Then m � α=1 ⟨(Bs)α, tα⟩ = n−1 � i=1 n � a=1 m � α,β=1 ⟨dN(ei), Ea⟩ ωaαβ ⟨ei · sβ, tα⟩ = n−1 � i=1 n � a=1 m � α,β=1 ⟨dN(ei), Ea⟩ ωaβα ⟨sβ, ei · tα⟩ = m � β=1 ⟨sβ, (Bt)β⟩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' This shows that B is self-adjoint.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Moreover, (χBs)α − (Bχs)α = − n−1 � i=1 n � a,b=1 n � β,γ=1 ⟨N, Ea⟩ ⟨dN(ei), Eb⟩ ωaαβ ωbβγ ν · ei · sγ + n−1 � i=1 n � a,b=1 n � β,γ=1 ⟨dN(ei), Ea⟩ ⟨N, Eb⟩ ωaαβ ωbβγ ei · ν · sγ = − n−1 � i=1 n � a,b=1 n � β,γ=1 ⟨N, Ea⟩ ⟨dN(ei), Eb⟩ (ωaαβ ωbβγ + ωbαβ ωaβγ) ν · ei · sγ = 2 n−1 � i=1 n � a,b=1 n � γ=1 ⟨N, Ea⟩ ⟨dN(ei), Eb⟩ δab δαγ ν · ei · sγ = 2 n−1 � i=1 ⟨N, dN(ei)⟩ ν · ei · sα = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Thus, χ and B commute.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' This completes the proof of Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' At this point, we recall a definition from linear algebra.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' 6 SIMON BRENDLE Definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Let V and W be finite-dimensional vector spaces of the same dime, each of them equipped with an inner product.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' The trace norm of a linear map L : V → W is defined by ∥L∥tr = supQ tr(QL), where the supremum is taken over all linear isometries Q : W → V .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Equivalently, ∥L∥tr can be characterized as the sum of the singular values of L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' It is easy to see from the definition that the trace norm satisfies the tri- angle inequality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Suppose that s = (s1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' , sm) is an m-tuple of spinors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Then ���� m � α=1 ⟨(Bs)α, sα⟩ ���� ≤ ∥dN∥tr � m � α=1 |sα|2 � at each point x ∈ Σ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Here, ∥dN∥tr denotes the trace norm of the differential dN : TxΣ → TN(x)Sn−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' The tangent space TxΣ is equipped with the restric- tion of the inner product g, and the tangent space TN(x)Sn−1 is equipped with the restriction of the standard inner product on Rn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Fix a point x ∈ Σ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' We can find an orthonormal basis {e1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' , en−1} of TxΣ so that dN(ei) = λi ˆEi, where { ˆE1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' , ˆEn−1} is an orthonormal ba- sis of TN(x)Sn−1 and λ1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' , λn−1 ≥ 0 denote the singular values of dN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Then m � α=1 ���� n � a=1 m � β=1 ⟨ ˆEi, Ea⟩ ωaαβ ei · sβ ���� 2 = n � a,b=1 m � α,β,γ=1 ⟨ ˆEi, Ea⟩ ⟨ ˆEi, Eb⟩ ωaαβ ωbαγ ⟨ei · sβ, ei · sγ⟩ = − n � a,b=1 m � α,β,γ=1 ⟨ ˆEi, Ea⟩ ⟨ ˆEi, Eb⟩ ωaαβ ωbγα ⟨sβ, sγ⟩ = −1 2 n � a,b=1 m � α,β,γ=1 ⟨ ˆEi, Ea⟩ ⟨ ˆEi, Eb⟩ (ωaγα ωbαβ + ωbγα ωaαβ) ⟨sβ, sγ⟩ = n � a,b=1 m � β,γ=1 ⟨ ˆEi, Ea⟩ ⟨ ˆEi, Eb⟩ δab δγβ ⟨sβ, sγ⟩ = m � α=1 |sα|2 SCALAR CURVATURE RIGIDITY OF CONVEX POLYTOPES 7 for each i = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' , n − 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Using the Cauchy-Schwarz inequality, we obtain ���� n � a=1 m � α,β=1 ⟨ ˆEi, Ea⟩ ωaαβ ⟨ei · sβ, sα⟩ ���� ≤ � m � α=1 ���� n � a=1 m � β=1 ⟨ ˆEi, Ea⟩ ωaαβ ei · sβ ���� 2� 1 2 � m � α=1 |sα|2 � 1 2 = m � α=1 |sα|2 for each i = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' , n − 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Summation over i = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' , n − 1 gives ���� m � α=1 ⟨(Bs)α, sα⟩ ���� = ���� n−1 � i=1 n � a=1 m � α,β=1 ⟨dN(ei), Ea⟩ ωaαβ ⟨ei · sβ, sα⟩ ���� = ���� n−1 � i=1 λi � n � a=1 m � α,β=1 ⟨ ˆEi, Ea⟩ ωaαβ ⟨ei · sβ, sα⟩ ����� ≤ � n−1 � i=1 λi � � m � α=1 |sα|2 � , as claimed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content='8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Suppose that s = (s1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' , sm) and t = (t1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' , tm) are m-tuples of spinors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Then 0 = � Σ m � α=1 ⟨DΣsα, (χt)α⟩ dσg + � Σ m � α=1 ⟨(χs)α, DΣtα⟩ dσg + � Σ m � α=1 ⟨(Bs)α, tα⟩ dσg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Equivalently, 0 = � Σ m � α=1 ⟨(As)α, (χt)α⟩ dσg + � Σ m � α=1 ⟨(χs)α, (At)α⟩ dσg, where A is defined by A = DΣ + 1 2χB.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Let {e1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' , en−1} be a local orthonormal frame on Σ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' We define a tangential vector field Z on Σ by ⟨Z, ei⟩ = n � a=1 m � α,β=1 ⟨N, Ea⟩ ωaαβ ⟨ei · sβ, tα⟩ 8 SIMON BRENDLE for i = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' , n − 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Then divΣZ = n−1 � i=1 n � a=1 m � α,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content='β=1 ⟨N,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Ea⟩ ωaαβ ⟨ei · ∇eisβ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' tα⟩ + n−1 � i=1 n � a=1 m � α,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content='β=1 ⟨N,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Ea⟩ ωaαβ ⟨ei · sβ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' ∇eitα⟩ − n � a=1 m � α,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content='β=1 H ⟨N,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Ea⟩ ωaαβ ⟨ν · sβ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' tα⟩ + n−1 � i=1 n � a=1 m � α,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content='β=1 ⟨dN(ei),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Ea⟩ ωaαβ ⟨ei · sβ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' tα⟩ = − n−1 � i=1 m � β=1 ⟨ei · ∇eisβ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' ν · (χt)β⟩ + n−1 � i=1 m � α=1 ⟨ei · ν · (χs)α,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' ∇eitα⟩ + m � α=1 H ⟨(χs)α,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' tα⟩ + m � α=1 ⟨(Bs)α,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' tα⟩ = m � β=1 ⟨DΣsβ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' (χt)β⟩ + m � α=1 ⟨(χs)α,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' DΣtα⟩ + m � α=1 ⟨(Bs)α,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' tα⟩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Integrating over Σ, we obtain 0 = � Σ m � β=1 ⟨DΣsβ, (χt)β⟩ dσg + � Σ m � α=1 ⟨(χs)α, DΣtα⟩ dσg + � Σ m � α=1 ⟨(Bs)α, tα⟩ dσg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' This completes the proof of Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content='8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Remark 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content='9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' It is well known that the boundary Dirac operator DΣ is formally self-adjoint.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Moreover, it follows from Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content='3 and Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content='5 that χB is self-adjoint.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Consequently, the operator A = DΣ+ 1 2χB is formally self-adjoint.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Finally, Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content='8 implies that A and χ anti-commute.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' SCALAR CURVATURE RIGIDITY OF CONVEX POLYTOPES 9 Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content='10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Suppose that s = (s1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' , sm) is an m-tuple of spinors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Then − � Ω m � α=1 |Dsα|2 dvolg + � Ω n � α=1 |∇sα|2 dvolg + 1 4 � Ω m � α=1 R |sα|2 dvolg ≤ 1 2 � Σ m � α=1 ⟨DΣsα, sα − (χs)α⟩ dσg + 1 2 � Σ m � α=1 ⟨sα − (χs)α, DΣsα⟩ dσg − 1 2 � Σ (H − ∥dN∥tr) � m � α=1 |sα|2 � dσg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' By the Weitzenb¨ock formula, D2sα = −∆sα + 1 4 R sα, where ∆ denotes the connection Laplacian on the spinor bundle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Using the divergence theorem, we obtain − � Ω m � α=1 |Dsα|2 dvolg + � Ω m � α=1 |∇sα|2 dvolg + 1 4 � Ω m � α=1 R |sα|2 dvolg = � Σ m � α=1 ⟨ν · Dsα, sα⟩ dσg + � Σ m � α=1 ⟨∇νsα, sα⟩ dσg = � Σ ⟨DΣsα, sα⟩ dσg − 1 2 � Σ m � α=1 H |sα|2 dσg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Applying Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content='8 with s = t gives 0 = � Σ m � α=1 ⟨DΣsα, (χs)α⟩ dσg + � Σ m � α=1 ⟨(χs)α, DΣsα⟩ dσg + � Σ m � α=1 ⟨(Bs)α, sα⟩ dσg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' This gives − � Ω m � α=1 |Dsα|2 dvolg + � Ω n � α=1 |∇sα|2 dvolg + 1 4 � Ω m � α=1 R |sα|2 dvolg = 1 2 � Σ m � α=1 ⟨DΣsα, sα⟩ dσg + 1 2 � Σ m � α=1 ⟨sα, DΣsα⟩ dσg − 1 2 � Σ m � α=1 H |sα|2 dσg = 1 2 � Σ m � α=1 ⟨DΣsα, sα − (χs)α⟩ dσg + 1 2 � Σ m � α=1 ⟨sα − (χs)α, DΣsα⟩ dσg − 1 2 � Σ m � α=1 ⟨(Bs)α, sα⟩ dσg − 1 2 � Σ m � α=1 H |sα|2 dσg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Hence, the assertion follows from Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' 10 SIMON BRENDLE Corollary 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content='11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Suppose that R ≥ 0 at each point in Ω and H ≥ ∥dN∥tr at each point on Σ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Then every m-tuple of harmonic spinors s = (s1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' , sm) with χs = s is parallel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Replacing N by −N, we can draw the following conclusion: Corollary 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content='12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Suppose that R ≥ 0 at each point in Ω and H ≥ ∥dN∥tr at each point on Σ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Then every m-tuple of harmonic spinors s = (s1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' , sm) with χs = −s is parallel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content='13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Suppose that Ω is a convex domain in Rn with smooth boundary ∂Ω = Σ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Let g be a Riemannian metric on Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Suppose that N : Σ → Sn−1 is a smooth map.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Then the boundary condition χs = s is a D-elliptic boundary condition in the sense of B¨ar and Ballmann [2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' We apply Corollary 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content='18 in [2] with E′ = ker(id − χ) and E′′ = ker(id + χ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content='4 implies that, for each point x ∈ Σ and each ξ ∈ TxΣ, the map (s1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' , sm) �→ (ν · ξ · s1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' , ν · ξ · sm) interchanges ker(id − χ) and ker(id + χ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Therefore, the boundary condition χs = s is a D-elliptic boundary condition in the sense of [2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content='14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Assume that n ≥ 3 is an odd integer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Suppose that Ω is a convex domain in Rn with smooth boundary ∂Ω = Σ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Let g be a Riemannian metric on Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Suppose that N : Σ → Sn−1 is homotopic to the Gauss map of Σ with respect to the Euclidean metric.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Then the Dirac operator with the boundary condition χs = s has Fredholm index at least 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Since the Fredholm index is homotopy invariant, it suffices to prove the assertion in the special case when g is the Euclidean metric and N is the Gauss map of Σ with respect to the Euclidean metric.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' We first analyze the kernel of the Dirac operator with the boundary con- dition χs = s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Recall that ¯s1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' , ¯sm is a basis of spinors on flat Rn, and ωaαβ = ⟨Ea · ¯sα, ¯sβ⟩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Clearly, ¯s = (¯s1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' , ¯sm) is an m-tuple of harmonic spinors on Ω which satisfies the boundary condition χ¯s = ¯s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Therefore, the kernel has dimension at least 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' We next examine the cokernel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' The cokernel can be identified with the space of all m-tuples of harmonic spinors s = (s1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' , sm) such that ⟨ν · s, t⟩ = 0 for all points x ∈ Σ and all t ∈ ker(id − χ) (see [2], Example 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content='20).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' We claim that this space has dimension 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' To see this, suppose that s = (s1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' , sm) is an m-tuple of harmonic spinors such that ⟨ν · s, t⟩ = 0 for all points x ∈ Σ and all t ∈ ker(id − χ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' This implies s ∈ ker(id + χ) at each point on Σ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Since H = ∥dN∥tr at each point on Σ, Corollary 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content='12 im- plies that s = (s1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' , sm) is parallel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' In other words, s1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' , sm are constant spinors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Let us write sα = �m β=1 zαβ ¯sβ for some matrix z ∈ End(Cm).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Since χs = −s at each point on Σ, it follows that the matrix z ∈ End(Cm) anti- commutes with the matrix �n a=1⟨N(x), Ea⟩ ωa ∈ End(Cm) for each point x ∈ Σ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' It is easy to see that the Gauss map N : Σ → Sn−1 is surjective.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' SCALAR CURVATURE RIGIDITY OF CONVEX POLYTOPES 11 Consequently, the matrix z ∈ End(Cm) anti-commutes with ωa ∈ End(Cm) for each a = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' , n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Since n is odd, Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content='1 implies that z = 0, hence s = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' This shows that the cokernel has dimension 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' This completes the proof of Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content='14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Approximating a compact, convex polytope by smooth domains Let us consider a compact, convex polytope Ω ⊂ Rn with non-empty interior.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' We write Ω = � α∈A{uα ≤ 0}, where A is a finite set and the uα are linear functions in Rn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' After eliminating redundant inequalities, we may assume that the following condition is satisfied.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Assumption 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' For each α ∈ A, the set Ω ∩ {uα > 0} is non-empty.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Let g be a Riemannian metric which is defined on an open set containing Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' For each α ∈ A, ∇uα will denote the gradient of uα with respect to the metric g;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' |∇uα| will denote the norm of the gradient of uα with respect to the metric g;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' and να = ∇uα |∇uα| will denote the outward-pointing unit normal vector to the halfspace {uα ≤ 0} with respect to the metric g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' For each α ∈ A, we denote by Nα ∈ Sn−1 the outward-pointing unit normal vector to the halfspace {uα ≤ 0} with respect to the Euclidean metric.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' For each λ > 0, the function � α∈A eλuα is convex with respect to the Euclidean metric.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Clearly, � α∈A eλuα > 1 on ∂Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Moreover, we can find large number λ0 such that infΩ � α∈A eλuα < 1 for each λ > λ0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' For each λ > λ0, we define Ωλ = � � α∈A eλuα ≤ 1 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' For each λ > λ0, Ωλ is a convex domain in Rn with smooth boundary Σλ = ∂Ωλ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' The sets Ωλ form an increasing family of sets in the sense that Ωλ ⊂ Ωµ for λ0 < λ < µ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Moreover, � λ>λ0 Ωλ = � α∈A {uα < 0}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' If λ is sufficiently large, then infΣλ �� � α∈A eλuα duα �� ≥ C−1 for some large constant C which is independent of λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' We argue by contradiction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Suppose that the assertion is false.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Then there exists a sequence of positive real numbers λl → ∞ and a se- quence of points xl ∈ Σλl such that �� � α∈A eλuα duα �� ≤ l−1 at the point xl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' After passing to a subsequence, we may assume that the sequence xl converges to a point x0 ∈ Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Moreover, we may assume that, for each α ∈ A, the sequence eλluα(xl) converges to a nonnegative real number zα.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Since � α∈A eλluα(xl) = 1 for each l, we know that � α∈A zα > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Let A0 := {α ∈ A : zα > 0}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Clearly, A0 is non-empty, and uα(x0) = 0 for all 12 SIMON BRENDLE α ∈ A0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Moreover, � α∈A0 zα duα = 0 at the point x0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' On the other hand, since Ω is a convex set with non-empty interior, we can find a tangent vector ξ ∈ Tx0Ω such that duα(ξ) > 0 for all α ∈ A0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' This is a contradiction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' This completes the proof of Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' If λ is sufficiently large, then infΣλ �� � α∈A eλuα |∇uα| Nα �� ≥ C−1 for some large constant C which is independent of λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' We argue by contradiction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Suppose that the assertion is false.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Then there exists a sequence of positive real numbers λl → ∞ and a se- quence of points xl ∈ Σλl such that �� � α∈A eλuα |∇uα| Nα �� ≤ l−1 at the point xl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' After passing to a subsequence, we may assume that the sequence xl converges to a point x0 ∈ Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Moreover, we may assume that, for each α ∈ A, the sequence eλluα(xl) |∇uα(xl)| converges to a nonnegative real num- ber zα.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Since � α∈A eλluα(xl) = 1 for each l, we know that � α∈A zα > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Let A0 := {α ∈ A : zα > 0}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Clearly, A0 is non-empty, and uα(x0) = 0 for all α ∈ A0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Moreover, � α∈A0 zαNα = 0 at the point x0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' On the other hand, since Ω is a convex set with non-empty interior, we can find a vector ξ ∈ Rn such that ⟨Nα, ξ⟩ > 0 for all α ∈ A0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' This is a contradiction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' This completes the proof of Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' The outward-pointing unit normal vector to the domain Ωλ with respect to the metric g is given by ν = � α∈A eλuα ∇uα �� � α∈A eλuα ∇uα �� = � α∈A eλuα |∇uα| να �� � α∈A eλuα |∇uα| να ��.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' We define a map N : Σλ → Sn−1 by N = � α∈A eλuα |∇uα| Nα �� � α∈A eλuα |∇uα| Nα ��.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' The map N : Σλ → Sn−1 is homotopic to the Gauss map of Σλ with respect to the Euclidean metric.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' In the special case when g is the Euclidean metric, the map N coincides with the Gauss map of Σλ, and the assertion is trivially true.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' To prove the assertion in general, we deform the metric g to the Euclidean met- ric.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Let x ∈ Σλ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Let π : TxΩ → TxΩ denotes the orthogonal projection to the orthogonal complement of ν and P : Rn → Rn denotes the orthogonal projection to the orthogonal complement of N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Then H − SCALAR CURVATURE RIGIDITY OF CONVEX POLYTOPES 13 ∥dN∥tr ≥ Vλ, where the function Vλ : Σλ → R is defined by Vλ = λ � α∈A eλuα |∇uα|2 |π(να)|2 �� � α∈A eλuα |∇uα| να �� − λ � α∈A eλuα |∇uα|2 |π(να)| |P(Nα)| �� � α∈A eλuα |∇uα| Nα �� + � α∈A eλuα (∆uα − (D2uα)(ν, ν)) �� � α∈A eλuα |∇uα| να �� − � α∈A eλuα |∇(|∇uα|)| |P(Nα)| �� � α∈A eλuα |∇uα| Nα �� .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Let {e1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' , en−1} denote a local orthonormal frame on Σλ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' The mean curvature of Σλ is given by H = λ �n−1 i=1 � α∈A eλuα ⟨∇uα, ei⟩2 �� � α∈A eλuα ∇uα �� + �n−1 i=1 � α∈A eλuα (D2uα)(ei, ei) �� � α∈A eλuα ∇uα �� = λ � α∈A eλuα |π(∇uα)|2 �� � α∈A eλuα ∇uα �� + � α∈A eλuα (∆uα − (D2uα)(ν, ν)) �� � α∈A eλuα ∇uα �� = λ � α∈A eλuα |∇uα|2 |π(να)|2 �� � α∈A eλuα |∇uα| να �� + � α∈A eλuα (∆uα − (D2uα)(ν, ν)) �� � α∈A eλuα |∇uα| να �� .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' If ξ is a tangent vector to Σλ, then dN(ξ) = λ � α∈A eλuα |∇uα| ⟨∇uα, ξ⟩ P(Nα) �� � α∈A eλuα |∇uα| Nα �� + � α∈A eλuα ⟨∇(|∇uα|), ξ⟩ P(Nα) �� � α∈A eλuα |∇uα| Nα �� = λ � α∈A eλuα |∇uα|2 ⟨π(να), ξ⟩ P(Nα) �� � α∈A eλuα |∇uα| Nα �� + � α∈A eλuα ⟨∇(|∇uα|), ξ⟩ P(Nα) �� � α∈A eλuα |∇uα| Nα �� .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' The trace norm of a linear transformation of the form ξ �→ ⟨X, ξ⟩ Y is given by |X| |Y |.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Since the trace norm satisfies the triangle inequality, it follows that ∥dN∥tr ≤ λ � α∈A eλuα |∇uα|2 |π(να)| |P(Nα)| �� � α∈A eλuα |∇uα| Nα �� + � α∈A eλuα |∇(|∇uα|)| |P(Nα)| �� � α∈A eλuα |∇uα| Nα �� .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Putting these facts together, the assertion follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' In the following, we denote by Vλ,− = max{−Vλ, 0} the negative part of Vλ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Suppose that the Matching Angle Hypothesis is satisfied.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Then supΣλ Vλ,− ≤ o(λ) as λ → ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' We argue by contradiction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Suppose that the assertion is false.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Then there exists a sequence of positive real numbers λl → ∞ and a se- quence of points xl ∈ Σλl such that lim supl→∞ λ−1 l Vλl(xl) < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' After passing to a subsequence, we may assume that the sequence xl converges to a point x0 ∈ Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Moreover, we may assume that, for each α ∈ A, the sequence eλluα(xl) |∇uα(xl)| converges to a nonnegative real number zα.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' 14 SIMON BRENDLE Since � α∈A eλluα(xl) = 1 for each l, we know that � α∈A zα > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Let A0 := {α ∈ A : zα > 0}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Clearly, A0 is non-empty, and uα(x0) = 0 for all α ∈ A0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' The Matching Angle Hypothesis implies that, at the point x0, ⟨να1, να2⟩ = ⟨Nα1, Nα2⟩ for all α1, α2 ∈ A0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Let π : Tx0Ω → Tx0Ω denote the orthogonal projection to the orthogonal complement of � α∈A0 zανα, and let P : Rn → Rn denote the orthogonal projection to the orthogonal complement of � α∈A0 zαNα.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' For each β ∈ A0, we have |π(νβ)|2 = 1 − � � α∈A0 zανα, νβ �2 �� � α∈A0 zανα ��2 = 1 − � � α∈A0 zαNα, Nβ �2 �� � α∈A0 zαNα ��2 = |P(Nβ)|2 at the point x0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Therefore, for each β ∈ A0, we obtain |π(νβ)| �� � α∈A0 zανα �� = |P(Nβ)| �� � α∈A0 zαNα �� at the point x0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Using Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content='5, we conclude that λ−1 l Vλl(xl) → 0 as l → ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' This is a contradiction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' In the remainder of this section, we will estimate the Ls-norm Vλ,− on Σλ∩ Br(p), where s ∈ [1, 3 2) is a fixed exponent and Br(p) denotes a Euclidean ball of radius r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' We begin by recalling a basic fact about the area of convex hypersurfaces in Rn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Let Br(p) denote a Euclidean ball of radius r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Then the in- tersection Σλ ∩ Br(p) has area at most Crn−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' This follows from the fact that the hypersurface Σλ = ∂Ωλ is outward-minimizing with respect to the Euclidean metric.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Definition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content='8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Consider three pairwise distinct elements α1, α2, α3 ∈ A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' We denote by G(α1,α2,α3) λ the set of all points x ∈ Σλ with the property that uα1(x) ≥ uα2(x) ≥ uα3(x) and uα3(x) ≥ uα(x) for α ∈ A \\ {α1, α2, α3}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content='9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Assume that the mean curvature of the hypersurface {uα = 0} with respect to g is nonnegative at each point in Ω ∩ {uα = 0}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Let us fix an exponent s ∈ [1, 3 2), and let Br(p) denote a Euclidean ball of radius r ≤ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' If λr is sufficiently large, then � rs+1−n � G(α1,α2,α3) λ ∩{uα2≤−λ− 7 8 r 1 8 }∩Br(p) V s λ,− � 1 s ≤ Cλr e−(λr) 1 8 for all pairwise distinct elements α1, α2, α3 ∈ A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Let us consider an arbitrary point x ∈ G(α1,α2,α3) λ with uα2(x) ≤ −λ− 7 8 r 1 8 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' By definition of G(α1,α2,α3) λ , it follows that uα(x) ≤ −λ− 7 8r 1 8 for all α ∈ A \\ {α1}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Using the identity � α∈A eλuα(x) = 1, we obtain uα1(x) ≥ −Cλ−1 e−(λr) 1 8 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Moreover, |ν − να1| ≤ C e−(λr) 1 8 and |N − Nα1| ≤ SCALAR CURVATURE RIGIDITY OF CONVEX POLYTOPES 15 C e−(λr) 1 8 at the point x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' From this, we deduce that |π(να1)| ≤ C e−(λr) 1 8 and |P(Nα1)| ≤ C e−(λr) 1 8 at the point x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Therefore, Vλ ≥ ∆uα1 − (D2uα1)(να1, να1) |∇uα1| − Cλ e−(λr) 1 8 at the point x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Since uα1(x) ≥ −Cλ−1 e−(λr) 1 8 and uα(x) ≤ −λ− 7 8r 1 8 for all α ∈ A \\ {α1}, we can find a point y ∈ Ω such that uα1(y) = 0 and d(x, y) ≤ Cλ−1 e−(λr) 1 8 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' By assumption, the mean curvature of the hyper- surface {uα1 = 0} at the point y is nonnegative.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' This implies ∆uα1 − (D2uα1)(να1, να1) |∇uα1| ≥ 0 at the point y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Consequently, ∆uα1 − (D2uα1)(να1, να1) |∇uα1| ≥ −C d(x, y) at the point x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Thus, we conclude that Vλ(x) ≥ −Cλ e−(λr) 1 8 for each point x ∈ G(α1,α2,α3) λ ∩ {uα2 ≤ −λ− 7 8r 1 8}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' On the other hand, Σλ ∩ Br(p) has area at most Crn−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Consequently, � rs+1−n � G(α1,α2,α3) λ ∩{uα2≤−λ− 7 8 r 1 8 }∩Br(p) V s λ,− � 1 s ≤ Cλr e−(λr) 1 8 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' This completes the proof of Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content='9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content='10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Assume that the Matching Angle Hypothesis holds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Let us fix an exponent s ∈ [1, 3 2), and let Br(p) denote a Euclidean ball of radius r ≤ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' If λr is sufficiently large, then � rs+1−n � G(α1,α2,α3) λ ∩{uα2≥−λ− 7 8 r 1 8 }∩{uα3≤−λ− 3 4 r 1 4 }∩Br(p) V s λ,− � 1 s ≤ C (λr) 1 8 − 7 8s for all pairwise distinct elements α1, α2, α3 ∈ A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' We distinguish two cases: Case 1: Suppose that Ω ∩ {uα1 = 0} ∩ {uα2 = 0} = ∅.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' By continuity, we can find a real number δ such that Ω ∩ {uα1 ≥ −δ} ∩ {uα2 ≥ −δ} = ∅.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' If λr is sufficiently large, then λ− 7 8r 1 8 ≤ δ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' This implies G(α1,α2,α3) λ ∩ {uα2 ≥ −λ− 7 8 r 1 8 } ⊂ Σλ ∩ {uα1 ≥ −δ} ∩ {uα2 ≥ −δ} = ∅.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Hence, the assertion is trivially true in this case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' 16 SIMON BRENDLE Case 2: Suppose that Ω ∩ {uα1 = 0} ∩ {uα2 = 0} ̸= ∅.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' It follows from Assumption 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content='1 that the hypersurfaces {uα1 = 0} and {uα2 = 0} intersect transversally.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Let us consider an arbitrary point x ∈ G(α1,α2,α3) λ with uα2(x) ≥ −λ− 7 8r 1 8 and uα3(x) ≤ −λ− 3 4r 1 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Clearly, uα1(x) ≥ −λ− 7 8r 1 8 by definition of G(α1,α2,α3) λ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Moreover, uα(x) ≤ −λ− 3 4r 1 4 for all α ∈ A \\ {α1, α2}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Consequently, we can find a point y ∈ Ω such that uα1(y) = uα2(y) = 0 and d(x, y) ≤ Cλ− 7 8r 1 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' The Matching Angle Hypothesis implies ⟨να1, να2⟩ = ⟨Nα1, Nα2⟩ at the point y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Consequently, |⟨να1, να2⟩ − ⟨Nα1, Nα2⟩| ≤ C d(x, y) at the point x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' From this, we deduce that |π(να1)| �� � α∈A eλuα |∇uα| να �� − |P(Nα1)| �� � α∈A eλuα |∇uα| Nα �� ≥ −C d(x, y) − C e−(λr) 1 4 and |π(να2)| �� � α∈A eλuα |∇uα| να �� − |P(Nα2)| �� � α∈A eλuα |∇uα| Nα �� ≥ −C d(x, y) − C e−(λr) 1 4 at the point x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Thus, we conclude that Vλ(x) ≥ −Cλ 1 8 r− 7 8 for each point x ∈ G(α1,α2,α3) λ ∩ {uα2 ≥ −λ− 7 8 r 1 8 } ∩ {uα3 ≤ −λ− 3 4r 1 4}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' By transversality, the set {0 ≥ uα1 ≥ −λ− 7 8r 1 8} ∩ {0 ≥ uα2 ≥ −λ− 7 8 r 1 8} ∩ Br(p) can be covered by C (λr) 7(n−2) 8 Euclidean balls of radius λ− 7 8 r 1 8 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' More- over, the intersection of Σλ with each ball of radius λ− 7 8r 1 8 has area at most C (λr)− 7(n−1) 8 rn−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' This shows that Σλ ∩ {uα1 ≥ −λ− 7 8 r 1 8 } ∩ {uα2 ≥ −λ− 7 8 r 1 8 } ∩ Br(p) has area at most C (λr)− 7 8 rn−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Since G(α1,α2,α3) λ ∩ {uα2 ≥ −λ− 7 8r 1 8} ∩ Br(p) ⊂ Σλ ∩ {uα1 ≥ −λ− 7 8 r 1 8 } ∩ {uα2 ≥ −λ− 7 8r 1 8} ∩ Br(p), it follows that � rs+1−n � G(α1,α2,α3) λ ∩{uα2≥−λ− 7 8 r 1 8 }∩{uα3≤−λ− 3 4 r 1 4 }∩Br(p) V s λ,− � 1 s ≤ C (λr) 1 8 − 7 8s .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' This completes the proof of Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content='10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content='11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Let us fix an exponent s ∈ [1, 3 2), and let Br(p) denote a Euclidean ball of radius r ≤ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' If λr is sufficiently large, then � rs+1−n � G(α1,α2,α3) λ ∩{uα3≥−λ− 3 4 r 1 4 }∩Br(p) V s λ,− � 1 s ≤ C (λr)1− 3 2s for all pairwise distinct elements α1, α2, α3 ∈ A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' SCALAR CURVATURE RIGIDITY OF CONVEX POLYTOPES 17 Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' We distinguish two cases: Case 1: Suppose that Ω ∩ {uα1 = 0} ∩ {uα2 = 0} ∩ {uα3 = 0} = ∅.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' By continuity, we can find a real number δ such that Ω ∩ {uα1 ≥ −δ} ∩ {uα2 ≥ −δ} ∩ {uα3 ≥ −δ} = ∅.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' If λr is sufficiently large, then λ− 3 4r 1 4 ≤ δ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' This implies G(α1,α2,α3) λ ∩ {uα3 ≥ −λ− 3 4 r 1 4 } ⊂ Σλ ∩ {uα1 ≥ −δ} ∩ {uα2 ≥ −δ} ∩ {uα3 ≥ −δ} = ∅.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Hence, the assertion is trivially true in this case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Case 2: Suppose that Ω ∩ {uα1 = 0} ∩ {uα2 = 0} ∩ {uα3 = 0} ̸= ∅.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' It follows from Assumption 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content='1 that the hypersurfaces {uα1 = 0}, {uα2 = 0}, and {uα3 = 0} intersect transversally.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Let us consider an arbitrary point x ∈ G(α1,α2,α3) λ with uα3(x) ≥ −λ− 3 4r 1 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Clearly, Vλ(x) ≥ −Cλ for all points x ∈ G(α1,α2,α3) λ ∩ {uα3 ≤ −λ− 3 4 r 1 4 }.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' By transversality, the set {0 ≥ uα1 ≥ −λ− 3 4r 1 4}∩{0 ≥ uα2 ≥ −λ− 3 4 r 1 4}∩{0 ≥ uα3 ≥ −λ− 3 4 r 1 4 }∩Br(p) can be covered by C (λr) 3(n−3) 4 Euclidean balls of radius λ− 3 4 r 1 4 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' More- over, the intersection of Σλ with each ball of radius λ− 3 4r 1 4 has area at most C (λr)− 3(n−1) 4 rn−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' This shows that Σλ ∩ {uα1 ≥ −λ− 3 4 r 1 4 } ∩ {uα2 ≥ −λ− 3 4 r 1 4 }∩{uα3 ≥ −λ− 3 4 r 1 4 }∩Br(p) has area at most C (λr)− 3 2 rn−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Since G(α1,α2,α3) λ ∩ {uα3 ≥ −λ− 3 4 r 1 4 } ∩ Br(p) ⊂ Σλ ∩ {uα1 ≥ −λ− 3 4 r 1 4 } ∩ {uα2 ≥ −λ− 3 4 r 1 4 } ∩ {uα3 ≥ −λ− 3 4r 1 4} ∩ Br(p), it follows that � rs+1−n � G(α1,α2,α3) λ ∩{uα3≥−λ− 3 4 r 1 4 }∩Br(p) V s λ,− � 1 s ≤ C (λr)1− 3 2s .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' This completes the proof of Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content='11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content='12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Assume that the mean curvature of the hypersurface {uα = 0} with respect to g is nonnegative at each point in Ω ∩ {uα = 0} and that the Matching Angle Hypothesis is satisfied.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Let us fix an exponent s ∈ [1, 3 2), and let Br(p) denote a Euclidean ball of radius r ≤ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' If λr is sufficiently large, then � rs+1−n � Σλ∩Br(p) V s λ,− � 1 s ≤ C (λr)−1 + C (λr) 1 8 − 7 8s + C (λr)1− 3 2s .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' 18 SIMON BRENDLE Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Combining Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content='9, Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content='10, and Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content='11, we con- clude that � rs+1−n � G(α1,α2,α3) λ ∩Br(p) V s λ,− � 1 s ≤ C (λr)−1 + C (λr) 1 8− 7 8s + C (λr)1− 3 2s for all pairwise distinct elements α1, α2, α3 ∈ A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' On the other hand, Σλ = � α1,α2,α3 G(α1,α2,α3) λ , where the union is taken over all pairwise distinct el- ements α1, α2, α3 ∈ A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Hence, the assertion follows by summation over α1, α2, α3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' This completes the proof of Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content='12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Corollary 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content='13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Assume that the mean curvature of the hypersurface {uα = 0} with respect to g is nonnegative at each point in Ω ∩ {uα = 0} and that the Matching Angle Hypothesis is satisfied.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Let us fix an exponent s ∈ [1, 3 2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Then sup p∈Rn sup r≤1 � rs+1−n � Σλ∩Br(p) V s λ,− � 1 s → 0 as λ → ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Let us consider an arbitrary sequence λl → ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' By Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content='6, we can find a sequence of positive real numbers δl → 0 such that sup p∈Rn sup r≤(δlλl)−1 � rs+1−n � Σλl∩Br(p) V s λl,− � 1 s → 0 as l → ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' On the other hand, Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content='12 implies that sup p∈Rn sup (δlλl)−1≤r≤1 � rs+1−n � Σλl∩Br(p) V s λl,− � 1 s → 0 as l → ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Putting these facts together, the assertion follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Proof of the Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content='1 Throughout this section, we assume that n ≥ 3 is an odd integer, and Ω is a compact polytope in Rn with non-empty interior.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Let g be a Riemannian metric which is defined on an open set containing Ω and has nonnegative scalar curvature at each point in Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' We assume that the mean curvature of the hypersurface {uα = 0} with respect to g is nonnegative at each point in Ω ∩ {uα = 0} and that the Matching Angle Hypothesis is satisfied.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Let U denote a Euclidean ball such that the closure of U is contained in the interior of Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Consider a sequence λl → ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Note that U ⊂ Ωλl if l is sufficiently large.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' By Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content='14 we can find an m-tuple of harmonic spinors s(l) = (s(l) 1 , .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' , s(l) m ) such that s(l) is defined on Ωλl;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' s(l) does not vanish identically;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Ds(l) = 0 in Ωλl;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' and χs(l) = s(l) on Σλl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Standard SCALAR CURVATURE RIGIDITY OF CONVEX POLYTOPES 19 unique continuation arguments imply that � U �m α=1 |s(l) α |2 dvolg > 0 if l is sufficiently large.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' By scaling, we can arrange that � U m � α=1 |s(l) α |2 dvolg = 1 for each l.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Using Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content='10, we obtain � Ωλl m � l=1 |∇s(l) α |2 dvolg + 1 4 � Ωλl m � α=1 R |s(l) α |2 dvolg ≤ −1 2 � Σλl (H − ∥dN∥tr) � m � α=1 |s(l) α |2 � dσg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content='5 implies that H − ∥dN∥tr ≥ Vλl at each point on Σλl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Con- sequently, � Ωλl m � l=1 |∇s(l) α |2 dvolg + 1 4 � Ωλl m � α=1 R |s(l) α |2 dvolg ≤ 1 2 � Σλl Vλl,− � m � α=1 |s(l) α |2 � dσg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Note that the hypersurface Σλl = ∂Ωλl can be written as a radial graph with bounded slope.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' From this, it is easy to see that Ωλl is bi-Lipschitz equivalent to the Euclidean unit ball, with constants that are independent of λl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Using Theorem A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content='7 and Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content='13, we obtain � Σλl Vλl,− F 2 dσg ≤ εl � Ωλl |∇F|2 dvolg + εl � � Σλl F dσg �2 for every smooth function F on Ωλl, where εl → 0 as l → ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Moreover, the Sobolev trace theorem implies � � Σλl F dσg �2 ≤ C � Ωl |∇F|2 dvolg + C � U F 2 dvolg for every smooth function F on Ωλl, where C is a uniform constant inde- pendent of l.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Putting these facts together, we conclude that � Σλl Vλl,− F 2 dσg ≤ Cεl � Ωλl |∇F|2 dvolg + Cεl � U F 2 dvolg 20 SIMON BRENDLE for every smooth function F on Ωλl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' In the next step, we apply this inequal- ity with F = � δ2 + �m α=1 |s(l) α |2� 1 2 , and send δ → 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' This gives � Ωλl m � l=1 |∇s(l) α |2 dvolg + 1 4 � Ωλl m � α=1 R |s(l) α |2 dvolg ≤ 1 2 � Σλl Vλl,− � m � α=1 |s(l) α |2 � dσg ≤ Cεl � Ωλl m � α=1 |∇s(l) α |2 dvolg + Cεl � U m � α=1 |s(l) α |2 dvolg for each l.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Since the scalar curvature is nonnegative, it follows that � Ωλl m � α=1 |∇s(l) α |2 dvolg ≤ Cεl � U m � α=1 |s(l) α |2 dvolg if l is sufficiently large.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Passing to the limit as l → ∞, we obtain a non- vanishing m-tuple of parallel spinors defined on the interior of Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Conse- quently, the Ricci tensor of g vanishes at each point in Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' This completes the proof of Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Appendix A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' A variant of a theorem of Fefferman and Phong In this section, we describe a variant of an estimate due to Fefferman and Phong [4], which plays a central role in our argument.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' We denote by Q the collection of all (n − 1)-dimensional cubes of the form [2mj1, 2m(j1 + 1)] × .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' × [2mjn−1, 2m(jn−1 + 1)] × {0}, where m ∈ Z and j1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' , jn−1 ∈ Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' For each Q ∈ Q, we denote by |Q| the (n − 1)-dimensional volume of Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Theorem A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Fix an exponent s ∈ (1, n − 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Let V be a nonnegative continuous function on the hyperplane Rn−1 × {0} ⊂ Rn with the property that diam(Q)s+1−n � Q V s ≤ 1 for each (n − 1)-dimensional cube Q ∈ Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Suppose that F is a smooth function on the half-space Rn + = {x ∈ Rn : xn ≥ 0}, and let f denote the restriction of F to the boundary ∂Rn + = Rn−1 × {0}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Then � Q V f 2 ≤ C � Q×[0,diam(Q)] |∇F|2 + C diam(Q)−1 |Q|−1 � � Q |f| �2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' for each (n − 1)-dimensional cube Q ∈ Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' SCALAR CURVATURE RIGIDITY OF CONVEX POLYTOPES 21 The proof of Theorem A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content='1 involves a straightforward adaptation of the arguments of Fefferman and Phong [4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Let us fix an exponent t such that s > t > 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' We define a nonnegative function W : Rn−1 × {0} → R by W(x) = sup Q∈Q,x∈Q � |Q|−1 � Q V s � 1 s for each point x ∈ Rn−1 × {0}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' In other words, W s is the maximal function associated with the function V s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Clearly, V ≤ W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' We assume that F is a smooth function on the half-space Rn + = {x ∈ Rn : xn ≥ 0}, and let f denote the restriction of F to the boundary ∂Rn + = Rn−1 × {0}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' For each (n − 1)-dimensional cube Q ∈ Q, we denote by fQ = |Q|−1 � Q f the mean value of f over the cube Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Lemma A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' For each (n − 1)-dimensional cube Q0 ∈ Q, we have � |Q0|−1 � Q0 W t � 1 t ≤ C sup Q∈Q,Q0⊂Q � |Q|−1 � Q V s � 1 s .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' For abbreviation, let Λ = sup Q∈Q,Q0⊂Q � |Q|−1 � Q V s � 1 s .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' We define a nonnegative function W0 : Q0 → R by W0(x) = sup Q∈Q,x∈Q⊂Q0 � |Q|−1 � Q V s � 1 s for each point x ∈ Q0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Clearly, W(x) = max{Λ, W0(x)} for each point x ∈ Q0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' The Hardy-Littlewood maximal inequality implies |Q0|−1 |{x ∈ Q0 : W0(x)s > α}| ≤ Cα−1 |Q0|−1 � Q0 V s ≤ Cα−1 Λs for all α > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' We multiply both sides by α t s−1 and integrate over α ∈ [Λs, ∞).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' This gives |Q0|−1 � Q0 W t 0 ≤ C Λt, hence |Q0|−1 � Q0 W t ≤ C Λt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' This completes the proof of Lemma A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' 22 SIMON BRENDLE Lemma A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Given a real number ε > 0, we can find a real number δ > 0 with the following property.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' If Q0 is an (n − 1)-dimensional cube in Q and A ⊂ Q0 is a Borel set with |A| ≤ δ |Q0|, then � A W ≤ ε � Q0 W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Using Lemma A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content='2, we obtain � |Q0|−1 � Q0 W t � 1 t ≤ C sup Q∈Q,Q0⊂Q � |Q|−1 � Q V s � 1 s .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Moreover, sup Q∈Q,Q0⊂Q � |Q|−1 � Q V s � 1 s ≤ inf Q0 W ≤ |Q0|−1 � Q0 W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Therefore, � |Q0|−1 � Q0 W t � 1 t ≤ C |Q0|−1 � Q0 W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Hence, if A ⊂ Q0 is a Borel set with |A| ≤ δ Q0, then � A W ≤ |A| t−1 t � � Q0 W t � 1 t ≤ δ t−1 t |Q0| t−1 t � � Q0 W t � 1 t ≤ Cδ t−1 t � Q0 W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' This completes the proof of Lemma A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Lemma A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' For each (n − 1)-dimensional cube Q0 ∈ Q, we have |Q0|−1 � Q0 W ≤ C diam(Q0)−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Using Lemma A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content='2, we obtain � |Q0|−1 � Q0 W t � 1 t ≤ C sup Q∈Q,Q0⊂Q � |Q|−1 � Q V s � 1 s .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Moreover, our assumption implies that � |Q|−1 � Q V s � 1 s ≤ C diam(Q)−1 for each (n − 1)-dimensional cube Q ∈ Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Putting these facts together, the assertion follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Lemma A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' For each (n − 1)-dimensional cube Q0 ∈ Q, we have � Q0 V |f − fQ0|2 ≤ C � Q0 Wg2, SCALAR CURVATURE RIGIDITY OF CONVEX POLYTOPES 23 where the function g : Q0 → R is defined by g(x) = sup Q∈Q,x∈Q⊂Q0 |Q|−1 � Q |f − fQ| for x ∈ Q0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Fix an (n − 1)-dimensional cube Q0 ∈ Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' We define a function h : Q0 → R by h(x) = sup Q∈Q,x∈Q⊂Q0 |Q|−1 � Q |f − fQ0| for x ∈ Q0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Note that V ≤ W and |f −fQ0| ≤ h at each point in Q0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Hence, it suffices to prove that � Q0 Wh2 ≤ C � Q0 Wg2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' To prove this inequality, let α0 = |Q0|−1 � Q0 |f − fQ0|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' For each α > α0, we denote by Qα the set of all (n − 1)-dimensional cubes Q ∈ Q with the following properties: Q ⊂ Q0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' |Q|−1 � Q |f − fQ0| > α.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' If ˜Q is an (n − 1)-dimensional cube in Q with Q ⊊ ˜Q and ˜Q ⊂ Q0, then | ˜Q|−1 � ˜Q |f − fQ0| ≤ α.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' It is easy to see that |Q|−1 � Q |f − fQ0| ≤ 2n−1α for all Q ∈ Qα.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' In particular, |fQ − fQ0| ≤ 2n−1α for all Q ∈ Qα.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Moreover, � Q∈Qα Q = {x ∈ Q0 : h(x) > α}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Finally, no point can be contained in the interior of more than one cube in Qα.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Let K > 1 and δ ∈ (0, 1) be two real numbers that will be chosen later.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' For each (n−1)-dimensional cube Q ∈ Qα satisfying |Q|−1 � Q |f −fQ| ≤ δα, 24 SIMON BRENDLE we have (Kα − |fQ − fQ0|) � ˜Q∈QKα, ˜Q⊂Q | ˜Q| ≤ � ˜Q∈QKα, ˜Q⊂Q � � ˜Q |f − fQ0| − � ˜Q |fQ − fQ0| � ≤ � ˜Q∈QKα, ˜Q⊂Q � ˜Q |f − fQ| ≤ � Q |f − fQ| ≤ δα |Q|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Recall that |fQ − fQ0| ≤ 2n−1α for all Q ∈ Qα.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Hence, if we choose K > 2n, then we obtain � ˜Q∈QKα, ˜Q⊂Q | ˜Q| ≤ 21−n δ |Q| for each (n − 1)-dimensional cube Q ∈ Qα satisfying |Q|−1 � Q |f − fQ| ≤ δα.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' We next apply Lemma A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content='3 with ε = 1 2 K−2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Hence, we can choose δ ∈ (0, 1) sufficiently small (depending on K) so that � ˜Q∈QKα, ˜Q⊂Q � ˜Q W ≤ 1 2 K−2 � Q W for each (n − 1)-dimensional cube Q ∈ Qα satisfying |Q|−1 � Q |f − fQ| ≤ δα.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' For each (n−1)-dimensional cube Q ∈ Qα, the set Q∩{h > Kα} is contained in the union � ˜Q∈QKα, ˜Q⊂Q ˜Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' This implies � Q∩{h>Kα} W ≤ 1 2 K−2 � Q W for each (n − 1)-dimensional cube Q ∈ Qα satisfying |Q|−1 � Q |f − fQ| ≤ δα.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' On the other hand, if Q is an (n − 1)-dimensional cube in Qα satisfying |Q|−1 � Q |f − fQ| > δα, then g > δα at each point in Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Therefore, � Q∩{h>Kα} W ≤ � Q∩{g>δα} W for each (n − 1)-dimensional cube Q ∈ Qα satisfying |Q|−1 � Q |f − fQ| > δα.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Putting these facts together, we conclude that � Q∩{h>Kα} W ≤ 1 2 K−2 � Q W + � Q∩{g>δα} W SCALAR CURVATURE RIGIDITY OF CONVEX POLYTOPES 25 for each (n−1)-dimensional cube Q ∈ Qα.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Summation over all cubes Q ∈ Qα gives � {h>Kα} W ≤ 1 2 K−2 � {h>α} W + � {g>δα} W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' This inequality holds for each α > α0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Moreover, since g ≥ α0 at each point in Q0, the inequality is trivially true for α ≤ α0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Finally, we multiply the inequality by α 2 and integrate over α ∈ (0, ∞).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' This gives K−2 � Q0 Wh2 ≤ 1 2 K−2 � Q0 Wh2 + δ−2 � Q0 Wg2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' This completes the proof of Lemma A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Lemma A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' For each (n − 1)-dimensional cube Q0 ∈ Q, we have � Q0 Wg2 ≤ C � Q0×[0,diam(Q)] |∇F|2, where the function g : Q0 → R is defined by g(x) = sup Q∈Q,x∈Q⊂Q0 |Q|−1 � Q |f − fQ| for x ∈ Q0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Fix an (n−1)-dimensional cube Q0 ∈ Q, and let α0 = |Q0|−1 � Q0 |f− fQ0|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' For each α > α0, we denote by Qα the set of all (n − 1)-dimensional cubes Q ∈ Q with the following properties: Q ⊂ Q0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' |Q|−1 � Q |f − fQ| > α.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' If ˜Q is an (n − 1)-dimensional cube in Q with Q ⊊ ˜Q and ˜Q ⊂ Q0, then | ˜Q|−1 � ˜Q |f − f ˜Q| ≤ α.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' It is easy to see that |Q|−1 � Q |f − fQ| ≤ 2nα for all Q ∈ Qα.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Moreover, � Q∈Qα Q = {x ∈ Q0 : g(x) > α}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Finally, no point can be contained in the interior of more than one cube in Qα.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' 26 SIMON BRENDLE Let K > 1 be a real number that will be chosen later.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' For each (n − 1)- dimensional cube Q ∈ Qα, we have Kα � ˜Q∈QKα, ˜Q⊂Q | ˜Q| ≤ � ˜Q∈QKα, ˜Q⊂Q � ˜Q |f − f ˜Q| ≤ 2 � ˜Q∈QKα, ˜Q⊂Q � ˜Q |f − fQ| ≤ 2 � Q |f − fQ| ≤ 2n+1α |Q|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Hence, if we choose K > 2n+2, then � ˜Q∈QKα, ˜Q⊂Q | ˜Q| ≤ 1 2 |Q| for each cube Q ∈ Qα.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' For each (n − 1)-dimensional cube Q ∈ Qα, the set Q ∩ {g > Kα} is contained in the union � ˜Q∈QKα, ˜Q⊂Q ˜Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' This implies |Q ∩ {g > Kα}| ≤ � ˜Q∈QKα, ˜Q⊂Q | ˜Q| ≤ 1 2 |Q|, hence |Q ∩ {g ≤ Kα}| ≥ 1 2 |Q| for each (n−1)-dimensional cube Q ∈ Qα.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' We define a nonnegative function ϕ : Rn−1 × {0} → R by ϕ(x1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' , xn−1, 0) = � � diam(Q0) 0 |∇F(x1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' , xn−1, xn)|2 dxn � 1 2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Moreover, we define a nonnegative function ψ : Q0 → R by ψ(x) = sup Q∈Q,x∈Q⊂Q0 |Q|−1 � Q ϕ for each point x ∈ Q0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' In other words, ψ is the maximal function associated with ϕ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Using the Sobolev trace theorem, we obtain α ≤ |Q|−1 � Q |f − fQ| ≤ 2 |Q|−1 inf a∈R � Q |f − a| ≤ C |Q|−1 inf a∈R � � Q×[0,diam(Q)] |∇(F − a)| + diam(Q)−1 � Q×[0,diam(Q)] |F − a| � SCALAR CURVATURE RIGIDITY OF CONVEX POLYTOPES 27 for each (n − 1)-dimensional cube Q ∈ Qα.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Using the Poincar´e inequality, we conclude that α ≤ C |Q|−1 � Q×[0,diam(Q)] |∇F| ≤ C diam(Q) 1 2 |Q|−1 � Q ϕ ≤ C diam(Q) 1 2 inf Q ψ for each (n − 1)-dimensional cube Q ∈ Qα.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' This implies α2 diam(Q)−1 |Q| ≤ C � Q∩{g≤Kα} ψ2 for each (n − 1)-dimensional cube Q ∈ Qα.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Combining this estimate with Lemma A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content='4, we obtain α2 � Q W ≤ C � Q∩{g≤Kα} ψ2 for each (n−1)-dimensional cube Q ∈ Qα.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E4T4oBgHgl3EQfdAwp/content/2301.05087v1.pdf'} +page_content=' Summation over all cubes Q ∈ Qα gives α2 � {g>α} W ≤ � {α MVU to MVU Interface +Quantser Quantser +<> Wire Interface +1 bit +1 bit +1 bit +1 bit +> APB Bus CSR Config Interface +AXlMemInterface +L64 bit-ASPDAC ’23, January 16–19, 2023, Tokyo, Japan +AskariHemmat et al +Figure 2: Channel sizes in models from ONNX Model Zoo. +requires 𝑏 memory words of width 𝑛. Activation vector elements +are in blocks of 64 while weights matrix elements are in blocks of +4096 bits in order to load a 64×64 matrix tile. A transposer module +transforms input data from the host into the needed bit-transposed +format. Transposition is only needed on the first layer of a DNN +since MVUs write back to activation RAM in the bit-transposed +format. Weights are pre-processed by a toolchain on the host and +loaded into weights RAMs in the expected bit-transposed format. +Figure 3: Bit-transposed data format for arbitrary precision. +The layout of the tensors in the RAMs depends on the operation +to be performed. For GEMV, activations are organized as vectors +with blocks of 64 elements, while weight matrices are organized +as a set of 64×64 tiles. For 2D convolutions, layout of activations +is 𝑁𝐻𝑊𝐶, where the channel dimension 𝐶 is the innermost di- +mension, followed by width 𝑊 , height 𝐻, and batch size 𝑁. The 𝐶 +dimension is the innermost since several common DNNs such as +ResNet typically have hidden layer channel depths that are pow- +ers of 2, and hence align to the 64 input lanes of the VVPs. When +there are more than 64 channels, the first 64 channels are stored in +the first block, the second 64 channels are stored into the second +block and so on. As an example, an input tensor of [N=1, H=8, W=8, +C=256] with 2-bit precision, will have 4 channel blocks, each block +will have 64 rows of 2 by 64-bit elements. +Our weight tensor memory layout for 2D convolutions is de- +signed to support efficient execution by interleaving the input chan- +nel dimension 𝐶𝑖 and output channel dimension 𝐶𝑜. Each weight +memory word contains 64 subsets from the𝐶𝑜 dimension, with each +subset containing 64 elements from the𝐶𝑖 dimension. A contiguous +Figure 4: VVP unit with a shifter-accumulator. Bit 𝑗 from +64 elements of the activation tensor 𝑥 and bit 𝑘 from 64 ele- +ments of the weight tensor𝑤 are input in a bit-serial fashion. +Note that some input bits and layers of the 5-deep adder tree +are not shown. +block of 𝑏𝑤 words that stores a complete set of bits for the needed +weight precision is referred to as a channel block 𝐶𝑏. The layout +for 2D convolution weights is 𝐶𝑜,𝑠𝐹𝐻 𝐹𝑊 𝐶𝑏, where 𝐶𝑜,𝑠 = 𝐶𝑜/64 +are output channel sets, and the kernel size is (𝐹𝑊 , 𝐹𝐻 ). +3.1.3 +Job Configuration and Execution. MVUs are programmed to +perform jobs such as GEMV or Conv2D operation. A controller sets +configuration registers that orchestrate the sequence of calculations +and memory reads to complete an operation in the MVUs. Once the +job is finished, the MVU will generate an interrupt to the controller, +indicating that the job is finished and results are ready to be sent +back to the host or to trigger subsequent operations on the same +MVU or other MVUs. While a MVU is busy, it can be programmed +to prepare the next job to minimize idle time. +Each MVU contains address generation units (AGU) that drive +the memory access pattern across the activation and weight RAMs. +The access pattern is managed by a set of up to five nested loops +with parameters setting the number of iterations and the forward +or backward address jumps to make on each iteration. The address +jump scheme reduces the logic to a set of small accumulators to +control the loops and small adders to compute addresses. Innermost +loops are usually set to stride over the bit depth of the activations +and weights. Outer loops are used to iterate over the bit combina- +tions for the serial dot-product procedure and over the dimensions +of the tensors. For GEMV, two nested loops are required for both +activations and weights. Conv2D operations are programmed to +compute one row of the output activation map per job, requiring +four nested loops. +3.1.4 +Pipeline Modules. Each MVU has modules downstream from +the MVP to implement other DNN operations including a multi- +plier/adder unit, a pooling/ReLU unit, and a quantizer/serializer +unit. These modules operate at high-precision. Fixed-point mul- +tiplier/adder units (Scaler in Figure 1), compute DNN operations +such as batch normalization and quantization scaling as in LSQ [9]. +Scalers multiply the MVP output by a 16-bit operand sourced from +the scaler RAM. In an FPGA, the multiplier is 27 × 16, which aligns +with the port widths of on-chip fixed DSP units. An adder that +follows adds 32-bit fixed-point bias terms from bias RAM. Scaler + +600 +Not Multiple of 64 +Multiple of 64 +500 +400 +ayers +e- +300 +# +200 +100 +0 +128 256 512 1024 +1 +2 +4 +8 +16 +32 +64 +Input Channel Sizek elements +address +bit +01 +k +0 +n-1 +MSB +1 +n-2 +block 0 +n-1 +0 +LSB +MSB +block 1 +LSBw,[0] +x,[1] +32-bit shifter/accumulator +w,[1] +x,[2] +W,[2] +8-bit sum +x[3] +w,[3] +x,[62] +W,[62] +x,[63] +W.[63]BARVINN: Arbitrary Precision DNN Accelerator Controlled by a RISC-V CPU +ASPDAC ’23, January 16–19, 2023, Tokyo, Japan +and bias RAMs have independent AGUs. The module that follows +combines max pooling and ReLU (Pool/ReLU in Figure 1), imple- +mented as a comparator with an internal register. For ReLU, the +incoming value is checked against the register initially set to 0. The +combined MaxPool/ReLU is implemented by programming MVUs +to produce data in the sequence needed for a MaxPool window. +The pipeline ends at the quantization/serialization unit (QuantSer +in Figure 1). It takes 32-bit fixed-point data from each of the 64 data +paths and serializes them into 64 1-bit outputs. It is programmed to +set the output bit-depth and the MSB position from the input word. +Combined with scaler units, this is used to implement quantization +schemes such as LSQ [9]. Serialized outputs of each datapath are +grouped into a single 64-bit word that is sent either to the activation +RAM of the same MVU, or to a different MVU via an interconnect. +3.1.5 +Interconnect. MVUs can send data to each other via an inter- +connect implemented as an 8-way crossbar switch with broadcast +capability. A source MVU is programmed to send its output results +in a serialized fashion to a given address in the activation memory +of a destination MVU(s). At a destination MVU, a fixed-priority +arbitration scheme to the write port of the target MVU activation +RAM is used. The interconnect is given highest priority, followed +by the controller, then lastly the MVU itself. When multiple MVUs +attempt to write to the same destination MVU, a fixed priority +scheme determines which MVU can write to its memory. +3.1.6 +DNN Mapping. Each MVU can be assigned to different lay- +ers of a DNN, such as convolutions and fully-connected layers. +Alternatively, a single layer can be split between multiple MVUs +with each MVUs processing a subset of the input activations and/or +weights. Partial results are forwarded from one MVU to another +via the interconnect to process subsequent layers of the network, +thus creating an overall processing pipeline through the array. By +sending partial results from one MVU to another, subsequent MVUs +can begin processing as soon as sufficient data has been received +from previous layers. For instance, a MVU processing a 3× 3 convo- +lution requires only 3 rows of activations from the previous layer to +produce one output row of the layer it is processing. This avoids the +need to wait until all outputs from a layer are generated, which re- +duces latency and idle time. Furthermore, the ability to immediately +process partial layer outputs by subsequent MVUs keeps on-chip +storage requirements low, since only the partial set of activations +required to produce the next layer partial output needs to be stored. +Depending on the performance goal, BARVINN can execute a +DNN in either Pipelined mode or Distributed mode. In Pipelined +mode (Figure 5.a), the MVU array can process up to 8 convolutions +and fully-connected layers all at once. Each MVU can be configured +to use different precisions. In cases where a DNN model contains +more than 8 layers, the MVU array can be programmed to process +the entire model by dividing it into subsets of up to 8 layers each. +Each MVU can be loaded with weights from layers in each subset, +either all from the start of processing if there is sufficient weight +memory available in each MVU or on-the-fly from external memory +if not. Output activations from the last MVU in the chain can also +be stored temporarily in off-chip memory and fetched later in the +case where the first MVU is still processing data from the current +lap. In the Distributed mode, to minimize latency, the objective is +to process single batch inputs as fast as possible. As can be seen +in Figure 5.b, in this mode, the computation of a single layer is +broken into 8 independent computation regions. All MVUs will be +programmed to share the same set of weights. To make sure an MVU +computation is independent of those performed on other MVUs, the +user might need to copy the input regions that are shared between +computation units. The programmability of BARVINN allows the +user to mix and match these execution modes for different layers +and models to achieve highest performance. +a. Pipelined mode +b. Distributed mode +Figure 5: Execution flow of a DNN on the MVU array in +Pipelined (a) and Distributed (b) modes. In Pipelined mode +each MVU processes one layer at a time. In distributed mode, +the computation of a single layer is distributed among mul- +tiple MVUs. +3.2 +Pito: RISC-V-based Controller +To make use of MVUs for neural networks, a control unit is required. +The controller is a barrel RISC-V processor designed to control +the 8 MVUs using separate but communicating hardware threads +(harts) that each manage their respective MVUs. DNN layers are ex- +ecuted either in distributed or in a pipelined fashion, depending on +whether the DNN is compiled to maximize throughput or minimize +latency. This design allows MVUs to complete tensor operations +independently of each other. The drawback is that it requires 8 +microprocessors to execute the 8 programs. We instead amortized +the fixed costs of the processor by adopting barrel processing. With +a 8-way threaded processor, we may assign one thread to control +each of the MVUs. Because every thread comes up for execution +only every 8 clock cycles, the five pipeline stages (fetch, decode, +execute, data read & writes and commit) can be completely hidden. +Branch prediction units are unnecessary. Since tensor operations +can require hundreds of cycles to execute on a MVU, the barrel +processor can fully turn over dozens of times in the interim, allow- +ing each thread to issue the next command to its MVU in a few +instructions. +We adopted a Harvard architecture and divided the instruction +and data RAM, 8KB each, and shared between all harts. This gives a + +MemoryInterface +UART +MvU Array +MVU6 +MU5 +D$ +IS +8KB +8KB +1 +CSR8 pe_irq +pestart +CSR2 pe irq +Crossbar +CSR1 pe_irq +ant +Pito RISC-V +pe_start ld +pe_command httus +APB +pe_quant +pe_status +Input +Convo +Conv4 +Conv1 +Conv5 +Conv2 +Conv6 +Input +Weight +Conv7 +Output +Conv3 +[1x63x32x32] +[64x64x3x3] +[1x63x32x32]ASPDAC ’23, January 16–19, 2023, Tokyo, Japan +AskariHemmat et al +1K word space to store data and instructions to control each MVU. +The processor executes instructions following compilation order +and without any further scheduling. A hart scheduler provides +access to the required resources for the hart at each stage. In the +fetch stage, each hart loads instructions from the instruction RAM. +The program counter (PC) and register file for each hart is different +and the hart scheduler indicates which register should be accessed +at a given time. The Decode stage decodes instruction and loads +source registers or an immediate operand. Our RISC-V controller is +compatible with RV32I RISC-V ISA with minimal support for privi- +lege specification to make Control and Status Registers (CSRs) and +Interrupts available to interface with the MVU array. In addition +to the base CSRs, we have added 74 MVU-specific CSRs to allow +software to control the processing element array. These CSRs con- +trol different settings within an MVU such as weight and activation +precision, AGU’s jump settings, input, weight and output memory +address and pipeline module selection as described in 3.1.4. +3.3 +Code Generator +BARVINN performs GEMM/GEMV, Convolutions, Maxpooling and +activation (ReLU). However, it is up to the user to sequence the +operations within a DNN with software. To facilitate this, we de- +veloped a code generator that takes a DNN described in ONNX +[3] and configuration settings (weight/input/output precision), and +generates RISC-V code for each operation. The code generator ex- +ports weights to the bit-transposed format described in section 3.1.2. +Since each MVU works on 64-bit words, the code generator tiles +each weight tensor in blocks of 64×64. When this cannot be done +(either tensor input channel or output channel is not a multiple of +64), we pad the corresponding tile. Currently, our code generator +does not apply graph optimization techniques. Also, for now, our +code generator supports Pipelined mode execution. In the follow- +ing section, we used our code generator to map PyTorch models to +micro kernel codes which can then be directly used by BARVINN. +4 +PERFORMANCE ANALYSIS AND RESULTS +4.1 +Experimental Setup +To illustrate the performance of BARVINN, we chose the ResNet9 +image classifier model for the CIFAR10 dataset. We trained and +quantized a ResNet9 model on CIFAR10 using LSQ [9] and used the +residual distillation [14] technique to remove shortcut connections +(Plain CNN models). In many image classification DNN models such +as ResNet [10], the input to the first layer typically consists of less +than 64 channels. Furthermore, due to sensitivity of the first and +last layer to information loss, most state-of-the-art compression +and quantization methods do not apply optimization on input and +output layers [9], hence keeping these layers untouched and in full +precision. We have adopted the same technique to compute first +and last layers on the host or on the RISC-V controller. +Table 2 shows the performance of ResNet9 on CIFAR10 in the +PyTorch framework. Once we were satisfied with the performance +of our quantized model, we exported the trained model to ONNX +and then used our code generator. Table 3 illustrates the per layer +computation cost of running ResNet9 on BARVINN with 2-bit ac- +tivations and weights. All convolutions use a padding of 1. As +discussed before, we skipped running the first and last layer on +Table 2: ResNet9 with different bit precision on CIFAR10 +ResNet9 Model +Precision +Accuracy +Size (Bytes) +Original +Fp32 +90.8% +19605141 +Plain-CNN +Fp32 +91.1% +18912487 +Quantized Plain-CNN +Int2 +89.2% +1181360 +Table 3: ResNet9 layers for CIFAR10 dataset and computa- +tion cost. All layers are quantized to 2-bit for activation and +weights, except for the first and last layers. +Layer +Input +Kernel +Output +Cycles +conv0 +[3, 32, 32] +[64, 3, 3, 3] +[64, 32, 32] +N/A +conv1 +[64, 32, 32] +[64, 64, 3, 3] +[64, 32, 32] +34560 +conv2 +[64, 32, 32] +[64, 64, 3, 3] +[64, 32, 32] +34560 +conv3 +[64, 32, 32] +[128, 64, 3, 3] +[128, 16, 16] +17280 +conv4 +[128, 16, 16] +[128, 128, 3, 3] +[128, 8, 8] +32256 +conv5 +[128, 8, 8] +[256, 128, 3, 3] +[128, 8, 8] +16128 +conv6 +[128, 8, 8] +[256, 256, 3, 3] +[256, 4, 4] +27648 +conv7 +[256, 4, 4] +[512, 256, 3, 3] +[256, 4, 4] +13824 +conv8 +[256, 4, 4] +[512, 512, 3, 3] +[512, 4, 4] +18432 +fc +[512, 4, 4] +[10, 512] +[10] +N/A +Total: +194688 +BARVINN and we kept them in their original format. The overall +computation takes 194,688 cycles to complete. +Our design was written in Verilog and synthesized using Xilinx +Vivado 2021.1 for the Xilinx Alveo U250 accelerator card. Synthesis +results for the RISC-V controller, the processing array, and the accel- +erator are presented in Table 4. Power consumption was estimated +using the software tools in Vivado. +4.2 +Discussion +We compared BARVINN with FINN [22], which is a templated Vi- +vado HLS C++ library of common DNN layers. Like BARVINN, +FINN can generate hardware for arbitrary precision, but is not +software programmable. Hence, once the FINN hardware is gen- +erated, the user cannot change the computation data stream. We +attempted to compare the performance of BARVINN with FINN +using the ResNet9 model we used earlier. However, at the time of +writing, FINN supports simple linear topologies and we were not +able to get performance metrics for our model. Instead, we used the +available CIFAR10-CNV model from the FINN repository that was +tuned for the FINN dataflow for our comparison. Table 5 shows the +performance of BARVINN and FINN. For this experiment, we used +different precisions for weights and activation. For both tools, we +used the performance estimation numbers for frames per second +(FPS). For FINN, we used the default folding configurations publicly +available in FINN-example repository [1]. As illustrated in Table +5, we provide 7-15 times better throughput albeit with higher LUT +usage. On the other hand, for higher bit precisions, FINN provides +a better FPS/LUT, suggesting a scalable solution for bigger models. +We also compared the performance on a ResNet-50 model. Table +6 shows our estimated FPS for BARVINN executing in Pipelined +mode along with reported performance for FINN [1] synthesized for +the Xilinx U250 and for FILM-QNN [20] synthesized for the Xilinx +ZCU102 FPGA. While FINN has the highest FPS, BARVINN shows + +BARVINN: Arbitrary Precision DNN Accelerator Controlled by a RISC-V CPU +ASPDAC ’23, January 16–19, 2023, Tokyo, Japan +Table 4: Post-synthesis resource utilization of BARVINN. +Resource +Pito RISC-V +MVU Array +Overall +LUT +10454 +190625 +201079 +BRAM +15 +1312 +1327 +DSP +0 +512 +512 +Dynamic Power +0.410 W +21.066 W +21.504 W +Frequency +250 MHz +250 MHz +250 MHz +Table 5: Estimated performance of running CNV model on +CIFAR10 on Alveo U250 when different bit precision is used. +Bits +(W/A) +kLUT +BRAM +DSP +FPS +FPS/ +kLUT +Ours +1/1 +201.1 (15.0%) +1327 +512 +61035 +303.5 +1/2 +201.1 (15.0%) +1327 +512 +30517 +151.7 +2/2 +201.1 (15.0%) +1327 +512 +15258 +75.8 +FINN +1/1 +28.2 (2.1%) +150 +0 +7716 +273.6 +1/2 +19.8(1.47%) +103 +0 +2170 +109.6 +2/2 +24.3(1.81%) +202 +0 +2170 +89.3 +Table 6: Performance for ResNet-50 model on ImageNet. +Bits (W/A) +Clock Freq. +FPS +FPS/Watt +Ours +1/2 +250 MHz +2296 +106.8 +FINN-R [1][6] +1/2 +178 MHz +2873 +41.0 +FILM-QNN [20] +4(8)/5 +150 MHz +109 +8.4 +the best performance per Watt. According to the FINN-example +repository [1], a fine-tuned ResNet50 model, requires more than +87% of Alveo U250 accelerator’s resources. This shows the limits +of FINN dealing with bigger models. BARVINN requires the same +LUT usage regardless of the model size and bit-width. +5 +CONCLUSION +In this paper, we presented an FPGA-based DNN accelerator that +supports arbitrary bit precision computations. We tested the perfor- +mance of BARVINN over different DNN kernels and models with +different bit precision. For model deployment, we developed a code +generator tool that takes in a model in ONNX format and generates +RISC-V assembly code for the controller. Compared to other low +precision accelerators, we provide a programmable solution which +makes BARVINN more flexible. With the programmable MVUs, the +user can run different models regardless of their size. BARVINN +allows trading off throughput and latency by running DNN lay- +ers either in distributed or in pipeline modes. Unlike other low +precision accelerators, our proposed solution offers implementing +various trade-offs through software and the end user can control +them for each individual layer without FPGA reconfiguration at +run time. Compared to programmable accelerators, BARVINN was +shown to provide a better throughput per Watt performance. +ACKNOWLEDGMENTS +The authors acknowledge support for this project from the IBM +AI Horizons Network, CMC Microsystems, Fonds de Recherche du +Quebec–Nature et Technologies (FRQNT), MITACS and from the +NSERC COHESA Strategic Research Network. +REFERENCES +[1] 2021. FINN Dataflow Accelerator Examples. (2021). https://github.com/Xilinx/ +finn-examples +[2] 2021. ONNX Model Zoo. (2021). https://github.com/onnx/models +[3] 2021. Open Neural Network Exchange. (2021). https://onnx.ai/ +[4] MohammadHossein AskariHemmat, Olexa Bilaniuk, Sean Wagner, Yvon Savaria, +and Jean-Pierre David. 2021. RISC-V Barrel Processor for Deep Neural Network +Acceleration. In 2021 IEEE International Symposium on Circuits and Systems +(ISCAS). 1–5. https://doi.org/10.1109/ISCAS51556.2021.9401617 +[5] Olexa Bilaniuk, Sean Wagner, Yvon Savaria, and Jean-Pierre David. 2019. Bit- +Slicing FPGA Accelerator for Quantized Neural Networks. In 2019 IEEE Interna- +tional Symposium on Circuits and Systems (ISCAS). 1–5. +[6] Michaela Blott, Thomas B. Preußer, Nicholas J. Fraser, Giulio Gambardella, Ken- +neth O’brien, Yaman Umuroglu, Miriam Leeser, and Kees Vissers. 2018. FINN-R: +An End-to-End Deep-Learning Framework for Fast Exploration of Quantized +Neural Networks. ACM Trans. Reconfigurable Technol. Syst. 11, 3, Article 16 (dec +2018), 23 pages. https://doi.org/10.1145/3242897 +[7] Adrian Bulat and Georgios Tzimiropoulos. 2021. Bit-Mixer: Mixed-Precision +Networks With Runtime Bit-Width Selection. In Proceedings of the IEEE/CVF +International Conference on Computer Vision (ICCV). 5188–5197. +[8] Meghan Cowan, Thierry Moreau, Tianqi Chen, James Bornholt, and Luis Ceze. +2020. Automatic Generation of High-Performance Quantized Machine Learning +Kernels. Association for Computing Machinery, New York, NY, USA, 305–316. +https://doi.org/10.1145/3368826.3377912 +[9] Steven K. Esser, Jeffrey L. McKinstry, Deepika Bablani, Rathinakumar Ap- +puswamy, and Dharmendra S. Modha. 2020. Learned Step Size Quantization. In +International Conference on Learning Representations. +[10] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep Residual +Learning for Image Recognition. In Proceedings of the IEEE Conference on Computer +Vision and Pattern Recognition (CVPR). +[11] Mark Horowitz. 2014. Computing’s Energy Problem (and what we can do about +it). Interational Solid State Circuits Conference (2014). +[12] Itay Hubara et al. 2018. Quantized Neural Networks: Training Neural Networks +with Low Precision Weights and Activations. JMLR 18, 187 (2018), 1–30. +[13] B. Ham J. Lee, D. Kim. 2021. Network Quantization with Element-wise Gradient +Scaling. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern +Recognition. +[14] Guilin Li et al. 2020. Residual Distillation: Towards Portable Deep Neural Net- +works without Shortcuts. In Advances in Neural Information Processing Systems, +Vol. 33. 8935–8946. +[15] Nicolas Limare. 2014. Floating-Point Math Speed vs Precision. (2014). +http: +//nicolas.limare.net/pro/notes/2014/12/16_math_speed/ +[16] Paulius Micikevicius et al. 2017. +Mixed precision training. +arXiv preprint +arXiv:1710.03740 (2017). +[17] Sungju Ryu, Hyungjun Kim, Wooseok Yi, and Jae-Joon Kim. 2019. Bitblade: Area +and energy-efficient precision-scalable neural network accelerator with bitwise +summation. In Proceedings of the 56th Annual Design Automation Conference 2019. +1–6. +[18] Sayeh Sharify, Alberto Delmas Lascorz, Kevin Siu, Patrick Judd, and Andreas +Moshovos. 2018. Loom: Exploiting Weight and Activation Precisions to Accelerate +Convolutional Neural Networks. In 2018 55th ACM/ESDA/IEEE Design Automation +Conference (DAC). 1–6. https://doi.org/10.1109/DAC.2018.8465915 +[19] Hardik Sharma et al. 2018. Bit fusion: Bit-level dynamically composable archi- +tecture for accelerating deep neural network. In 2018 ACM/IEEE 45th Annual +International Symposium on Computer Architecture (ISCA). IEEE, 764–775. +[20] Mengshu Sun et al. 2022. FILM-QNN: Efficient FPGA Acceleration of Deep Neural +Networks with Intra-Layer, Mixed-Precision Quantization. In Proceedings of the +2022 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays. +134–145. +[21] Stefan Uhlich et al. 2020. +Mixed Precision DNNs: All you need is a good +parametrization. In 8th International Conference on Learning Representations, +ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. +[22] Yaman Umuroglu et al. 2017. FINN: A framework for fast, scalable binarized +neural network inference. In Proceedings of the 2017 ACM/SIGDA International +Symposium on Field-Programmable Gate Arrays. ACM, 65–74. +[23] Kuan Wang, Zhijian Liu, Yujun Lin, Ji Lin, and Song Han. 2019. HAQ: Hardware- +Aware Automated Quantization With Mixed Precision. In 2019 IEEE/CVF Con- +ference on Computer Vision and Pattern Recognition (CVPR). 8604–8612. https: +//doi.org/10.1109/CVPR.2019.00881 +[24] Haichao Yu, Haoxiang Li, Humphrey Shi, Thomas S. Huang, and Gang Hua. +2021. Any-Precision Deep Neural Networks. In Thirty-Fifth AAAI Conference on +Artificial Intelligence. AAAI Press, 10763–10771. https://ojs.aaai.org/index.php/ +AAAI/article/view/17286 +[25] Xiaofan Zhang et al. 2018. DNNBuilder: an Automated Tool for Building High- +Performance DNN Hardware Accelerators for FPGAs. In (ICCAD). + diff --git a/7NAyT4oBgHgl3EQfcvfE/content/tmp_files/load_file.txt b/7NAyT4oBgHgl3EQfcvfE/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..2af66f04c9d06bd17ecadb0952cd68968307efe7 --- /dev/null +++ b/7NAyT4oBgHgl3EQfcvfE/content/tmp_files/load_file.txt @@ -0,0 +1,690 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf,len=689 +page_content='BARVINN: Arbitrary Precision DNN Accelerator Controlled by a RISC-V CPU Mohammadhossein Askarihemmat1, Sean Wagner2, Olexa Bilaniuk3, Yassine Hariri4, Yvon Savaria1, Jean-Pierre David1 1Ecole Polytechnique Montreal, Canada, 2 IBM, Toronto, Canada, 3 Mila, Montreal, Canada, 4 CMC Microsystems, Kingston, Canada {mohammad.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='hossein.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='askari-hemmat, yvon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='savaria, jpdavid}@polymtl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='ca, wagnerse@ca.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='ibm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='com, olexa.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='bilaniuk@mila.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='quebec, hariri@cmc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='ca ABSTRACT We present a DNN accelerator that allows inference at arbitrary precision with dedicated processing elements that are configurable at the bit level.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' Our DNN accelerator has 8 Processing Elements controlled by a RISC-V controller with a combined 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='2 TMACs of computational power when implemented with the recent Alveo U250 FPGA platform.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' We develop a code generator tool that ingests CNN models in ONNX format and generates an executable com- mand stream for the RISC-V controller.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' We demonstrate the scalable throughput of our accelerator by running different DNN kernels and models when different quantization levels are selected.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' Com- pared to other low precision accelerators, our accelerator provides run time programmability without hardware reconfiguration and can accelerate DNNs with multiple quantization levels, regardless of the target FPGA size.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' BARVINN is an open source project and it is available at https://github.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='com/hossein1387/BARVINN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' KEYWORDS neural networks, hardware acceleration, FPGA, low-precision ACM Reference Format: Mohammadhossein Askarihemmat1, Sean Wagner2, Olexa Bilaniuk3,, Yas- sine Hariri4, Yvon Savaria1, Jean-Pierre David1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' 2023.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' BARVINN: Arbi- trary Precision DNN Accelerator Controlled by a RISC-V CPU.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' In 28th Asia and South Pacific Design Automation Conference (ASPDAC ’23), Janu- ary 16–19, 2023, Tokyo, Japan.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' ACM, New York, NY, USA, 7 pages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' https: //doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='1145/3566097.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='3567872 1 INTRODUCTION Deep neural networks (DNNs) traditionally rely on floating point computations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' These operations are slow and costly in terms of power consumption and required silicon area compared to fixed- point/integer operations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' One way to accelerate computation in a DNN is to use less precision for computation via quantization [12].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' This also reduces memory consumption as well as energy consumption.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' For instance, in a 45 nm process, 8-bit integer multi- plication and addition take 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='2 pJ and 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='03 pJ, respectively, while the Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' Copyrights for components of this work owned by others than ACM must be honored.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' Abstracting with credit is permitted.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' Request permissions from permissions@acm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='org.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' ASPDAC ’23, January 16–19, 2023, Tokyo, Japan © 2023 Association for Computing Machinery.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' ACM ISBN 978-1-4503-9783-4/23/01.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='$15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='00 https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='1145/3566097.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='3567872 Table 1: Effects of Quantization on Accuracy and Model Size.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' Task Dataset Model Precision A/W Acc/ MAP Size (MB) Classification CIFAR 100 ResNet18 LSQ(2/2) 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='81 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='889 LSQ(4/4) 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='92 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='559 LSQ(8/8) 78.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='45 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='87 FP32 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='82 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='8 Object Detection VOC- 2007 SSD300- ResNet18 LSQ(2/2) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='61 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='34 LSQ(4/4) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='60 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='81 LSQ(8/8) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='68 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='77 FP32 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='59 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='49 same operations with 32-bit floating-point values requires 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='7 pJ for multiplication and 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='9 pJ for addition [11].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' On an Intel Core i7 4770 running at 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='4GHz, multiplication is more than 3 times faster for fixed-point compared to floating-point [15].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' With recent quanti- zation techniques, these benefits are available with little to no loss in model performance and accuracy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' In [9, 13], their quantization schemes showed accuracy losses of 1-3% at 2-bit precision on most classification and object detection models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' Table 1 illustrates the result of applying Learned Scale Quantization (LSQ) [9] with differ- ent bit precisions on different models and tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' Quantized models offer accuracy similar to full precision models, while having smaller size.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' Mixed-precision quantization [7, 16, 21, 23, 24] further provides finer control to reach an optimal solution by learning different precisions for each layer of a network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' In [23], the authors illustrate that using their mixed-precision framework, they reduced model latency and energy consumption by a factor of almost 2× with little drop in accuracy compared with an 8-bit quantized model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' Fully benefiting from low-precision in a DNN requires hardware that natively supports low-precision computations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' Commodity hardware can perform arbitrary precision arithmetic by transform- ing data-layout and computing with bit-wise instructions [8].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' How- ever, this approach is extremely costly for general processors, be- cause of the overhead for shifting, masking and packing bits to the correct format.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' At the time of writing this paper, there are no commercially available general processors (CPU or GPU) that can efficiently process data in arbitrary precision.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' In this paper, we propose an arbitrary low-precision DNN hard- ware accelerator called BARVINN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' Our accelerator is software pro- grammable and can be integrated in the RISC-V standard devel- opment flow.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' It is designed as a highly optimized computational pipeline for DNNs that introduces low hardware overhead and of- fers low-power operation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' The contributions of our paper are as follows: arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='00290v1 [cs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='AR] 31 Dec 2022 ASPDAC ’23, January 16–19, 2023, Tokyo, Japan AskariHemmat et al Implementation of a DNN hardware accelerator with arbi- trary fixed-point low-precision for matrix-vector multiply operations at high-throughput and low power.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' Implementation of a custom embedded RISC-V CPU to con- trol an array of DNN accelerators by software.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' Data structures for efficiently storing and processing weights and activations for high-throughput serial computation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' Development of a software code generator for transforming DNNs into RISC-V code that executes on our accelerator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' In section 2, we review relevant DNN accelerators from the liter- ature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' Section 3 presents the architecture of BARVINN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' In section 4, a detailed performance analysis of BARVINN is provided and compared with other DNN accelerators.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' 2 RELATED WORKS Several DNN hardware accelerators supporting quantization and low-precision have been presented in recent years for both FPGA and ASIC targets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' Here, we discuss the accelerator architectures most relevant to our work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' Recent FPGA-based accelerators include FINN [6, 22], DNNBuilder [25], and FILM-QNN [20].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' In FINN and DNNBuilder, a software toolchain is used to map a trained DNN to generated logic modules that are integrated together.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' An overall processing pipeline is gen- erated and then synthesized for the target device.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' The advantage of this approach is that the logic efficiently implements a specific DNN with minimal overhead on a device that can be reconfigured to different DNNs at different times.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' However, this approach re- quires that all DNN layers be implemented in the logic all at once, which limits the size of the DNN to the amount of logic resources available on a given FPGA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' While FINN supports low-precision down to binary and DNNBuilder down to 4-bit, neither supports arbitrary and mixed-precision at different DNN layers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' In contrast, FILM-QNN does support DNN models of arbitrary sizes and quan- tized DNNs with mixed precisions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' However, it is limited to only 4- or 8-bit weights and 5-bit activations due to a bit-packing scheme used with the DSP blocks in the FPGA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' Several ASIC accelerator designs support arbitrary precision.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' Bit Fusion [19] uses a large array of 2-bit processing elements that can be fused together to perform up to 8-bit operations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' Loom [18], and BitBlade [17] employ bit serial computation schemes for added flexibility.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' While bit-serial computation of any single math computation (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' multiplication) inherently requires additional clock cycles and latency over bit-parallel circuits, these designs exploit the large number of computations in a DNN that can be done in parallel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' This is done by implementing a large number of bit-serial computational units operating simultaneously, which compensates high latency with high throughput.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' For example, the Loom engine consists of 128 × 16 = 2048 Serial Inner-Product units (SIPs), each of which performs 16 1 × 1-bit products per cycle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' 3 ARCHITECTURE BARVINN is designed to provide high-throughput and software programmability, while supporting DNNs of arbitrary size and type.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' The high-level architecture of BARVINN is illustrated in Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' It consists of the following main components: 1) an array of Matrix Vector Units (MVU) [5], and 2) a RISC-V CPU called Pito [4] as a controller for the MVU array.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' The MVUs accelerate common DNN computations such as GEMV, GEMM, and convolutions along with other operations such as batch normalization, ReLU activation, and quantization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' Pito coordinates the computations in the MVU array while also handling data transfers to and from the host system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' As it is not possible to foresee all possible neural networks that may crop up in the literature in the future, high-level sequencing of tensor operations for BARVINN is done in software.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' To control the array of processing elements, unlike the aforementioned accelera- tors, BARVINN uses the standard RISC-V RV32I ISA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' This allows us to leverage the pre-existing software ecosystem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' Furthermore, by using a CPU that supports a well known ISA, BARVINN is more flexible and it can be adapted to support new DNN architectures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='1 Matrix Vector Units The base configuration of BARVINN is implemented with an array of 8 MVUs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' Figure 1 shows each MVU is a 64-element vector pipeline with several modules: a) a Matrix Vector Product unit (MVP), b) RAMs for activations/weights/scalers/biases, c) a scaler unit, d) a pooling/activation unit, and e) a quantizer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' MVUs compute 64 output vector elements per clock cycle using a 64 element input data vector from the activation RAM and a 64×64 element matrix from the weight RAM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' Activation and weight RAMs store data in low- precision.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' MVP units operate in low-precision, while subsequent units in the pipeline operate in high-precision fixed-point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' To justify our design choice of operating on 64 element vectors, we analysed over 50 models available at the ONNX Model Zoo [2] to check the input channel size of convolution layers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' Figure 2 illustrates a distribution of input channel size of all layers among those models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' We found that 79% of these models use convolution with input channel sizes that are multiples of 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='1 Matrix-Vector Product Units.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' Matrix operations are carried out by the MVP units.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' They compute on fixed-point arbitrary pre- cision operands from 1- to 16-bit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' Each MVP has 64 vector-vector product (VVP) pipelines.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' Each VVP has 64 input lanes with 1-bit multipliers, followed by an addition tree with 8-bit output, as shown in Figure 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' On every cycle, 64 bits from the activation RAM are broadcasted to each of the 64 VVPs, while a 64×64 matrix tile from the weight RAM is read with each row of the tile sent to sepa- rate VVPs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' The VVPs compute a 64-element dot product on 1-bit operands in each pipeline.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' With 64 VVPs per MVP, the overall output is a 64-element vector.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' MVPs compute arbitrary bit precision dot-products using the bit- serial scheme of [5].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' Weights and activations can be unsigned or 2’s- complement signed fixed-point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' Bit-depth is set independently for both, thus allowing for mixed precision.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' The bit-serial dot-product, shown in Algorithm 1, is a multi-cycle sequence starting with the most significant bits (MSB) from 64 elements of the activation and weight tensors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' Bits are multiplied in each lane and results are added together across lanes in an addition tree producing an 8-bit dot product.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' This is added to an accumulator/shifter (see Figure 4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' The MSB×MSB result represents the highest order-of-magnitude partial sum of the overall dot product.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' The MVP then computes the next lower order-of-magnitude partial sum by drawing the needed bit combinations of the operands.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' When a change in the order-of- magnitude is made, the accumulator is shifted left by 1-bit to align BARVINN: Arbitrary Precision DNN Accelerator Controlled by a RISC-V CPU ASPDAC ’23, January 16–19, 2023, Tokyo, Japan Figure 1: BARVINN hardware architecture with MVU array and Pito RISC-V controller.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' Right side is MVU detail.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' to the order-of-magnitude prior to adding the addition tree output.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' MVPs are fully pipelined, allowing them to work on different bit combinations at different stages without stalling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' The operation completes when the dot products of the least significant bits (LSB) of the operands are computed and accumulated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' For 𝑏𝑤-bit weights and 𝑏𝑎-bit activations, the overall operation takes 𝑏𝑤𝑏𝑎 cycles to compute one tile of the output vector.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' The precision of the operands is configured separately for each MVU, thus each MVU can process different layers with different bit precisions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' Algorithm 1 Bit-serial dot-product 1: 𝑏𝑎,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' 𝑏𝑤: activation and weight bit precisions 2: 𝑥,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='𝑤: activation and weight vectors of size 𝑛 3: 𝑗,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='𝑘: bit position for activations and weights 4: 𝑎𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑜𝑟 ← 0 5: for 𝑖 ← 𝑏𝑤 + 𝑏𝑎 to 1 do 6: for all (𝑗,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='𝑘) where 𝑗 + 𝑘 == 𝑖 do 7: for 𝑙 ← 0 to 𝑛 − 1 do 8: 𝑜𝑛𝑒𝑏𝑖𝑡𝑝𝑟𝑜𝑑 = 𝑥𝑗 [𝑙] × 𝑤𝑘 [𝑙] 9: 𝑎𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑜𝑟 ← 𝑎𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑜𝑟 + 𝑜𝑛𝑒𝑏𝑖𝑡𝑝𝑟𝑜𝑑 10: end for 11: end for 11: shift 𝑎𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑜𝑟 left 1-bit 12: end for 13: 𝑜𝑢𝑡𝑝𝑢𝑡 ← 𝑎𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑜𝑟 Our bit-serial dot product scheme differs from other architec- tures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' The computation scheme in BitFusion is based on computing the individual products of the overall dot-product, that are then summed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' This requires a large number of shift-registers to align and sum partial products.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' BARVINN and BitBlade instead inter- change the ordering of the computation such that partial products of the same magnitude from all individual products are computed first and then summed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' This reduces the number shifters needed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' BARVINN additionally serializes the computation of partial prod- ucts of different magnitude, requiring only a single fixed shifter and a single adder tree, whereas BitBlade requires 16 variable shifters and 17 adder trees.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' BARVINN maintains throughput despite this serialized scheme by parallelizing across a wider number of input operands and producing a larger number of output products per clock cycle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' BitFusion and BitBlade are further limited to operand sizes 2, 4, and 8-bit, whereas MVUs in BARVINN and SIPs in Loom support operands of any bit-depth down to 1-bit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' However, Loom’s data loading scheme restricts the efficiency for general matrix mul- tiply operations when the weight bit depth is below 16, whereas BARVINNs is able to maintain full throughput down to 1-bit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='2 Memories and Data Layout.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' Activation and weight RAMs store data in a bit-transposed format shown in Figure 3 to exploit bit-serial computation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' When precision is greater than 1 bit, tensor elements are organized in blocks where bits of the same order-of- magnitude are stored in the same memory word starting with the MSBs in the lowest address.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' A block of 𝑛 elements with precision 𝑏 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='PITO RISC-V Core ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='Matrix Vector Unit (MVU) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='Fetch ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='Decode ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='Execute ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='Mem ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='Commit ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='Write Interconnect ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='t ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='write Controller ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='Read Controller Read Interco ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='onnect ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='Word ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='Word ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='Word ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='Word ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='imm : ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='Instruction ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='CSR WRITE ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='ALU ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='PRF1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='Memory ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='D$ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='8KB ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='Decoder ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='上 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='CSR1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='Scaler ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='PC+ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='Activation Ram ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='Data ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='Ram ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='select ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='Memory ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='Weight ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='8KB ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='Controller) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='Interface ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='Ram ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='pank3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='Bias ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='APB][ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='IRQ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='7 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='Ram ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='APB Bus ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='Memory I ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='64 bits ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='64x64 bits ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='MVU1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='MVU8 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='MVP ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='Weight ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='Input ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='Bias ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='Scaler ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='Weight ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='Bias ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='Scaler ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='Input ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content="32'bit 32'bit 32'bit " metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content="32'bit " metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='Ram ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='Ram ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='Ram ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='Ram ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='Ram ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='Ram ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='Ram ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='Ram ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='16bit ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='↑ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='↑ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='Scaler o ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='Scaler 1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='Scaler 2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='Scaler 63 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='32 bit ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content="32'bit 32'bit 32'bit " metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content="32'bit " metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='Crossbar ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='Pol/ReLUPool/ReLu|Pool/ReLu ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='Pool/ReLu ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='Legend ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content="32'bit 32'bit 32'bit " metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content="32'bit " metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='[ Quantser ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='PooIReLu ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='> MVU to MVU Interface ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='Quantser ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='Quantser ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='<> Wire Interface ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='1 bit ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='1 bit ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='1 bit ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='1 bit ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='> APB Bus CSR Config Interface ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='AXlMemInterface ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='L64 bit-ASPDAC ’23,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' January 16–19,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' 2023,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' Tokyo,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' Japan AskariHemmat et al Figure 2: Channel sizes in models from ONNX Model Zoo.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' requires 𝑏 memory words of width 𝑛.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' Activation vector elements are in blocks of 64 while weights matrix elements are in blocks of 4096 bits in order to load a 64×64 matrix tile.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' A transposer module transforms input data from the host into the needed bit-transposed format.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' Transposition is only needed on the first layer of a DNN since MVUs write back to activation RAM in the bit-transposed format.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' Weights are pre-processed by a toolchain on the host and loaded into weights RAMs in the expected bit-transposed format.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' Figure 3: Bit-transposed data format for arbitrary precision.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' The layout of the tensors in the RAMs depends on the operation to be performed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' For GEMV, activations are organized as vectors with blocks of 64 elements, while weight matrices are organized as a set of 64×64 tiles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' For 2D convolutions, layout of activations is 𝑁𝐻𝑊𝐶, where the channel dimension 𝐶 is the innermost di- mension, followed by width 𝑊 , height 𝐻, and batch size 𝑁.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' The 𝐶 dimension is the innermost since several common DNNs such as ResNet typically have hidden layer channel depths that are pow- ers of 2, and hence align to the 64 input lanes of the VVPs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' When there are more than 64 channels, the first 64 channels are stored in the first block, the second 64 channels are stored into the second block and so on.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' As an example, an input tensor of [N=1, H=8, W=8, C=256] with 2-bit precision, will have 4 channel blocks, each block will have 64 rows of 2 by 64-bit elements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' Our weight tensor memory layout for 2D convolutions is de- signed to support efficient execution by interleaving the input chan- nel dimension 𝐶𝑖 and output channel dimension 𝐶𝑜.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' Each weight memory word contains 64 subsets from the𝐶𝑜 dimension, with each subset containing 64 elements from the𝐶𝑖 dimension.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' A contiguous Figure 4: VVP unit with a shifter-accumulator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' Bit 𝑗 from 64 elements of the activation tensor 𝑥 and bit 𝑘 from 64 ele- ments of the weight tensor𝑤 are input in a bit-serial fashion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' Note that some input bits and layers of the 5-deep adder tree are not shown.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' block of 𝑏𝑤 words that stores a complete set of bits for the needed weight precision is referred to as a channel block 𝐶𝑏.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' The layout for 2D convolution weights is 𝐶𝑜,𝑠𝐹𝐻 𝐹𝑊 𝐶𝑏, where 𝐶𝑜,𝑠 = 𝐶𝑜/64 are output channel sets, and the kernel size is (𝐹𝑊 , 𝐹𝐻 ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='3 Job Configuration and Execution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' MVUs are programmed to perform jobs such as GEMV or Conv2D operation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' A controller sets configuration registers that orchestrate the sequence of calculations and memory reads to complete an operation in the MVUs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' Once the job is finished, the MVU will generate an interrupt to the controller, indicating that the job is finished and results are ready to be sent back to the host or to trigger subsequent operations on the same MVU or other MVUs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' While a MVU is busy, it can be programmed to prepare the next job to minimize idle time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' Each MVU contains address generation units (AGU) that drive the memory access pattern across the activation and weight RAMs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' The access pattern is managed by a set of up to five nested loops with parameters setting the number of iterations and the forward or backward address jumps to make on each iteration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' The address jump scheme reduces the logic to a set of small accumulators to control the loops and small adders to compute addresses.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' Innermost loops are usually set to stride over the bit depth of the activations and weights.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' Outer loops are used to iterate over the bit combina- tions for the serial dot-product procedure and over the dimensions of the tensors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' For GEMV, two nested loops are required for both activations and weights.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' Conv2D operations are programmed to compute one row of the output activation map per job, requiring four nested loops.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='4 Pipeline Modules.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' Each MVU has modules downstream from the MVP to implement other DNN operations including a multi- plier/adder unit, a pooling/ReLU unit, and a quantizer/serializer unit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' These modules operate at high-precision.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' Fixed-point mul- tiplier/adder units (Scaler in Figure 1), compute DNN operations such as batch normalization and quantization scaling as in LSQ [9].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' Scalers multiply the MVP output by a 16-bit operand sourced from the scaler RAM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' In an FPGA, the multiplier is 27 × 16, which aligns with the port widths of on-chip fixed DSP units.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' An adder that follows adds 32-bit fixed-point bias terms from bias RAM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' Scaler 600 Not Multiple of 64 Multiple of 64 500 400 ayers e- 300 # 200 100 0 128 256 512 1024 1 2 4 8 16 32 64 Input Channel Sizek elements address bit 01 k 0 n-1 MSB 1 n-2 block 0 n-1 0 LSB MSB block 1 LSBw,[0] x,[1] 32-bit shifter/accumulator w,[1] x,[2] W,[2] 8-bit sum x[3] w,[3] x,[62] W,[62] x,[63] W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='[63]BARVINN: Arbitrary Precision DNN Accelerator Controlled by a RISC-V CPU ASPDAC ’23, January 16–19, 2023, Tokyo, Japan and bias RAMs have independent AGUs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' The module that follows combines max pooling and ReLU (Pool/ReLU in Figure 1), imple- mented as a comparator with an internal register.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' For ReLU, the incoming value is checked against the register initially set to 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' The combined MaxPool/ReLU is implemented by programming MVUs to produce data in the sequence needed for a MaxPool window.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' The pipeline ends at the quantization/serialization unit (QuantSer in Figure 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' It takes 32-bit fixed-point data from each of the 64 data paths and serializes them into 64 1-bit outputs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' It is programmed to set the output bit-depth and the MSB position from the input word.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' Combined with scaler units, this is used to implement quantization schemes such as LSQ [9].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' Serialized outputs of each datapath are grouped into a single 64-bit word that is sent either to the activation RAM of the same MVU, or to a different MVU via an interconnect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='5 Interconnect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' MVUs can send data to each other via an inter- connect implemented as an 8-way crossbar switch with broadcast capability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' A source MVU is programmed to send its output results in a serialized fashion to a given address in the activation memory of a destination MVU(s).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' At a destination MVU, a fixed-priority arbitration scheme to the write port of the target MVU activation RAM is used.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' The interconnect is given highest priority, followed by the controller, then lastly the MVU itself.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' When multiple MVUs attempt to write to the same destination MVU, a fixed priority scheme determines which MVU can write to its memory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='6 DNN Mapping.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' Each MVU can be assigned to different lay- ers of a DNN, such as convolutions and fully-connected layers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' Alternatively, a single layer can be split between multiple MVUs with each MVUs processing a subset of the input activations and/or weights.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' Partial results are forwarded from one MVU to another via the interconnect to process subsequent layers of the network, thus creating an overall processing pipeline through the array.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' By sending partial results from one MVU to another, subsequent MVUs can begin processing as soon as sufficient data has been received from previous layers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' For instance, a MVU processing a 3× 3 convo- lution requires only 3 rows of activations from the previous layer to produce one output row of the layer it is processing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' This avoids the need to wait until all outputs from a layer are generated, which re- duces latency and idle time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' Furthermore, the ability to immediately process partial layer outputs by subsequent MVUs keeps on-chip storage requirements low, since only the partial set of activations required to produce the next layer partial output needs to be stored.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' Depending on the performance goal, BARVINN can execute a DNN in either Pipelined mode or Distributed mode.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' In Pipelined mode (Figure 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='a), the MVU array can process up to 8 convolutions and fully-connected layers all at once.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' Each MVU can be configured to use different precisions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' In cases where a DNN model contains more than 8 layers, the MVU array can be programmed to process the entire model by dividing it into subsets of up to 8 layers each.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' Each MVU can be loaded with weights from layers in each subset, either all from the start of processing if there is sufficient weight memory available in each MVU or on-the-fly from external memory if not.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' Output activations from the last MVU in the chain can also be stored temporarily in off-chip memory and fetched later in the case where the first MVU is still processing data from the current lap.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' In the Distributed mode, to minimize latency, the objective is to process single batch inputs as fast as possible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' As can be seen in Figure 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='b, in this mode, the computation of a single layer is broken into 8 independent computation regions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' All MVUs will be programmed to share the same set of weights.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' To make sure an MVU computation is independent of those performed on other MVUs, the user might need to copy the input regions that are shared between computation units.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' The programmability of BARVINN allows the user to mix and match these execution modes for different layers and models to achieve highest performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' Pipelined mode b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' Distributed mode Figure 5: Execution flow of a DNN on the MVU array in Pipelined (a) and Distributed (b) modes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' In Pipelined mode each MVU processes one layer at a time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' In distributed mode, the computation of a single layer is distributed among mul- tiple MVUs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='2 Pito: RISC-V-based Controller To make use of MVUs for neural networks, a control unit is required.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' The controller is a barrel RISC-V processor designed to control the 8 MVUs using separate but communicating hardware threads (harts) that each manage their respective MVUs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' DNN layers are ex- ecuted either in distributed or in a pipelined fashion, depending on whether the DNN is compiled to maximize throughput or minimize latency.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' This design allows MVUs to complete tensor operations independently of each other.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' The drawback is that it requires 8 microprocessors to execute the 8 programs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' We instead amortized the fixed costs of the processor by adopting barrel processing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' With a 8-way threaded processor, we may assign one thread to control each of the MVUs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' Because every thread comes up for execution only every 8 clock cycles, the five pipeline stages (fetch, decode, execute, data read & writes and commit) can be completely hidden.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' Branch prediction units are unnecessary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' Since tensor operations can require hundreds of cycles to execute on a MVU, the barrel processor can fully turn over dozens of times in the interim, allow- ing each thread to issue the next command to its MVU in a few instructions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' We adopted a Harvard architecture and divided the instruction and data RAM, 8KB each, and shared between all harts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' This gives a MemoryInterface UART MvU Array MVU6 MU5 D$ IS 8KB 8KB 1 CSR8 pe_irq pestart CSR2 pe irq Crossbar CSR1 pe_irq ant Pito RISC-V pe_start ld pe_command httus APB pe_quant pe_status Input Convo Conv4 Conv1 Conv5 Conv2 Conv6 Input Weight Conv7 Output Conv3 [1x63x32x32] [64x64x3x3] [1x63x32x32]ASPDAC ’23, January 16–19, 2023, Tokyo, Japan AskariHemmat et al 1K word space to store data and instructions to control each MVU.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' The processor executes instructions following compilation order and without any further scheduling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' A hart scheduler provides access to the required resources for the hart at each stage.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' In the fetch stage, each hart loads instructions from the instruction RAM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' The program counter (PC) and register file for each hart is different and the hart scheduler indicates which register should be accessed at a given time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' The Decode stage decodes instruction and loads source registers or an immediate operand.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' Our RISC-V controller is compatible with RV32I RISC-V ISA with minimal support for privi- lege specification to make Control and Status Registers (CSRs) and Interrupts available to interface with the MVU array.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' In addition to the base CSRs, we have added 74 MVU-specific CSRs to allow software to control the processing element array.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' These CSRs con- trol different settings within an MVU such as weight and activation precision, AGU’s jump settings, input, weight and output memory address and pipeline module selection as described in 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='3 Code Generator BARVINN performs GEMM/GEMV, Convolutions, Maxpooling and activation (ReLU).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' However, it is up to the user to sequence the operations within a DNN with software.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' To facilitate this, we de- veloped a code generator that takes a DNN described in ONNX [3] and configuration settings (weight/input/output precision), and generates RISC-V code for each operation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' The code generator ex- ports weights to the bit-transposed format described in section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' Since each MVU works on 64-bit words, the code generator tiles each weight tensor in blocks of 64×64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' When this cannot be done (either tensor input channel or output channel is not a multiple of 64), we pad the corresponding tile.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' Currently, our code generator does not apply graph optimization techniques.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' Also, for now, our code generator supports Pipelined mode execution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' In the follow- ing section, we used our code generator to map PyTorch models to micro kernel codes which can then be directly used by BARVINN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' 4 PERFORMANCE ANALYSIS AND RESULTS 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='1 Experimental Setup To illustrate the performance of BARVINN, we chose the ResNet9 image classifier model for the CIFAR10 dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' We trained and quantized a ResNet9 model on CIFAR10 using LSQ [9] and used the residual distillation [14] technique to remove shortcut connections (Plain CNN models).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' In many image classification DNN models such as ResNet [10], the input to the first layer typically consists of less than 64 channels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' Furthermore, due to sensitivity of the first and last layer to information loss, most state-of-the-art compression and quantization methods do not apply optimization on input and output layers [9], hence keeping these layers untouched and in full precision.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' We have adopted the same technique to compute first and last layers on the host or on the RISC-V controller.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' Table 2 shows the performance of ResNet9 on CIFAR10 in the PyTorch framework.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' Once we were satisfied with the performance of our quantized model, we exported the trained model to ONNX and then used our code generator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' Table 3 illustrates the per layer computation cost of running ResNet9 on BARVINN with 2-bit ac- tivations and weights.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' All convolutions use a padding of 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' As discussed before, we skipped running the first and last layer on Table 2: ResNet9 with different bit precision on CIFAR10 ResNet9 Model Precision Accuracy Size (Bytes) Original Fp32 90.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='8% 19605141 Plain-CNN Fp32 91.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='1% 18912487 Quantized Plain-CNN Int2 89.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='2% 1181360 Table 3: ResNet9 layers for CIFAR10 dataset and computa- tion cost.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' All layers are quantized to 2-bit for activation and weights, except for the first and last layers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' Layer Input Kernel Output Cycles conv0 [3,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' 32,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' 32] [64,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' 3,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' 3,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' 3] [64,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' 32,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' 32] N/A conv1 [64,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' 32,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' 32] [64,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' 64,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' 3,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' 3] [64,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' 32,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' 32] 34560 conv2 [64,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' 32,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' 32] [64,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' 64,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' 3,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' 3] [64,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' 32,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' 32] 34560 conv3 [64,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' 32,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' 32] [128,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' 64,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' 3,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' 3] [128,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' 16,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' 16] 17280 conv4 [128,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' 16,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' 16] [128,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' 128,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' 3,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' 3] [128,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' 8,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' 8] 32256 conv5 [128,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' 8,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' 8] [256,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' 128,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' 3,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' 3] [128,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' 8,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' 8] 16128 conv6 [128,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' 8,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' 8] [256,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' 256,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' 3,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' 3] [256,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' 4,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' 4] 27648 conv7 [256,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' 4,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' 4] [512,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' 256,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' 3,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' 3] [256,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' 4,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' 4] 13824 conv8 [256,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' 4,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' 4] [512,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' 512,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' 3,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' 3] [512,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' 4,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' 4] 18432 fc [512,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' 4,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' 4] [10,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' 512] [10] N/A Total: 194688 BARVINN and we kept them in their original format.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' The overall computation takes 194,688 cycles to complete.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' Our design was written in Verilog and synthesized using Xilinx Vivado 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='1 for the Xilinx Alveo U250 accelerator card.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' Synthesis results for the RISC-V controller, the processing array, and the accel- erator are presented in Table 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' Power consumption was estimated using the software tools in Vivado.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='2 Discussion We compared BARVINN with FINN [22], which is a templated Vi- vado HLS C++ library of common DNN layers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' Like BARVINN, FINN can generate hardware for arbitrary precision, but is not software programmable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' Hence, once the FINN hardware is gen- erated, the user cannot change the computation data stream.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' We attempted to compare the performance of BARVINN with FINN using the ResNet9 model we used earlier.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' However, at the time of writing, FINN supports simple linear topologies and we were not able to get performance metrics for our model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' Instead, we used the available CIFAR10-CNV model from the FINN repository that was tuned for the FINN dataflow for our comparison.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' Table 5 shows the performance of BARVINN and FINN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' For this experiment, we used different precisions for weights and activation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' For both tools, we used the performance estimation numbers for frames per second (FPS).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' For FINN, we used the default folding configurations publicly available in FINN-example repository [1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' As illustrated in Table 5, we provide 7-15 times better throughput albeit with higher LUT usage.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' On the other hand, for higher bit precisions, FINN provides a better FPS/LUT, suggesting a scalable solution for bigger models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' We also compared the performance on a ResNet-50 model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' Table 6 shows our estimated FPS for BARVINN executing in Pipelined mode along with reported performance for FINN [1] synthesized for the Xilinx U250 and for FILM-QNN [20] synthesized for the Xilinx ZCU102 FPGA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' While FINN has the highest FPS, BARVINN shows BARVINN: Arbitrary Precision DNN Accelerator Controlled by a RISC-V CPU ASPDAC ’23, January 16–19, 2023, Tokyo, Japan Table 4: Post-synthesis resource utilization of BARVINN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' Resource Pito RISC-V MVU Array Overall LUT 10454 190625 201079 BRAM 15 1312 1327 DSP 0 512 512 Dynamic Power 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='410 W 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='066 W 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='504 W Frequency 250 MHz 250 MHz 250 MHz Table 5: Estimated performance of running CNV model on CIFAR10 on Alveo U250 when different bit precision is used.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' Bits (W/A) kLUT BRAM DSP FPS FPS/ kLUT Ours 1/1 201.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='1 (15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='0%) 1327 512 61035 303.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='5 1/2 201.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='1 (15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='0%) 1327 512 30517 151.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='7 2/2 201.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='1 (15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='0%) 1327 512 15258 75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='8 FINN 1/1 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='2 (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='1%) 150 0 7716 273.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='6 1/2 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='8(1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='47%) 103 0 2170 109.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='6 2/2 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='3(1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='81%) 202 0 2170 89.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='3 Table 6: Performance for ResNet-50 model on ImageNet.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' Bits (W/A) Clock Freq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' FPS FPS/Watt Ours 1/2 250 MHz 2296 106.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='8 FINN-R [1][6] 1/2 178 MHz 2873 41.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='0 FILM-QNN [20] 4(8)/5 150 MHz 109 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='4 the best performance per Watt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' According to the FINN-example repository [1], a fine-tuned ResNet50 model, requires more than 87% of Alveo U250 accelerator’s resources.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' This shows the limits of FINN dealing with bigger models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' BARVINN requires the same LUT usage regardless of the model size and bit-width.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' 5 CONCLUSION In this paper, we presented an FPGA-based DNN accelerator that supports arbitrary bit precision computations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' We tested the perfor- mance of BARVINN over different DNN kernels and models with different bit precision.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' For model deployment, we developed a code generator tool that takes in a model in ONNX format and generates RISC-V assembly code for the controller.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' Compared to other low precision accelerators, we provide a programmable solution which makes BARVINN more flexible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' With the programmable MVUs, the user can run different models regardless of their size.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' BARVINN allows trading off throughput and latency by running DNN lay- ers either in distributed or in pipeline modes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' Unlike other low precision accelerators, our proposed solution offers implementing various trade-offs through software and the end user can control them for each individual layer without FPGA reconfiguration at run time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' Compared to programmable accelerators, BARVINN was shown to provide a better throughput per Watt performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' ACKNOWLEDGMENTS The authors acknowledge support for this project from the IBM AI Horizons Network, CMC Microsystems, Fonds de Recherche du Quebec–Nature et Technologies (FRQNT), MITACS and from the NSERC COHESA Strategic Research Network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' REFERENCES [1] 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' FINN Dataflow Accelerator Examples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' https://github.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='com/Xilinx/ finn-examples [2] 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' ONNX Model Zoo.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' https://github.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='com/onnx/models [3] 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' Open Neural Network Exchange.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' https://onnx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='ai/ [4] MohammadHossein AskariHemmat, Olexa Bilaniuk, Sean Wagner, Yvon Savaria, and Jean-Pierre David.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' RISC-V Barrel Processor for Deep Neural Network Acceleration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' In 2021 IEEE International Symposium on Circuits and Systems (ISCAS).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' 1–5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='1109/ISCAS51556.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='9401617 [5] Olexa Bilaniuk, Sean Wagner, Yvon Savaria, and Jean-Pierre David.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' Bit- Slicing FPGA Accelerator for Quantized Neural Networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' In 2019 IEEE Interna- tional Symposium on Circuits and Systems (ISCAS).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' 1–5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' [6] Michaela Blott, Thomas B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' Preußer, Nicholas J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' Fraser, Giulio Gambardella, Ken- neth O’brien, Yaman Umuroglu, Miriam Leeser, and Kees Vissers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' FINN-R: An End-to-End Deep-Learning Framework for Fast Exploration of Quantized Neural Networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' ACM Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' Reconfigurable Technol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' Syst.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' 11, 3, Article 16 (dec 2018), 23 pages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='1145/3242897 [7] Adrian Bulat and Georgios Tzimiropoulos.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' Bit-Mixer: Mixed-Precision Networks With Runtime Bit-Width Selection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' 5188–5197.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' [8] Meghan Cowan, Thierry Moreau, Tianqi Chen, James Bornholt, and Luis Ceze.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' Automatic Generation of High-Performance Quantized Machine Learning Kernels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' Association for Computing Machinery, New York, NY, USA, 305–316.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='1145/3368826.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='3377912 [9] Steven K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' Esser, Jeffrey L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' McKinstry, Deepika Bablani, Rathinakumar Ap- puswamy, and Dharmendra S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' Modha.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' Learned Step Size Quantization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' In International Conference on Learning Representations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' [10] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' Deep Residual Learning for Image Recognition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' [11] Mark Horowitz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' Computing’s Energy Problem (and what we can do about it).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' Interational Solid State Circuits Conference (2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' [12] Itay Hubara et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' Quantized Neural Networks: Training Neural Networks with Low Precision Weights and Activations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' JMLR 18, 187 (2018), 1–30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' [13] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' Ham J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' Lee, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' Kim.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' Network Quantization with Element-wise Gradient Scaling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' [14] Guilin Li et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' Residual Distillation: Towards Portable Deep Neural Net- works without Shortcuts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' In Advances in Neural Information Processing Systems, Vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' 8935–8946.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' [15] Nicolas Limare.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' Floating-Point Math Speed vs Precision.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' (2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' http: //nicolas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='limare.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='net/pro/notes/2014/12/16_math_speed/ [16] Paulius Micikevicius et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' Mixed precision training.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' arXiv preprint arXiv:1710.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='03740 (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' [17] Sungju Ryu, Hyungjun Kim, Wooseok Yi, and Jae-Joon Kim.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' Bitblade: Area and energy-efficient precision-scalable neural network accelerator with bitwise summation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' In Proceedings of the 56th Annual Design Automation Conference 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' 1–6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' [18] Sayeh Sharify, Alberto Delmas Lascorz, Kevin Siu, Patrick Judd, and Andreas Moshovos.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' Loom: Exploiting Weight and Activation Precisions to Accelerate Convolutional Neural Networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' In 2018 55th ACM/ESDA/IEEE Design Automation Conference (DAC).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' 1–6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='1109/DAC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='8465915 [19] Hardik Sharma et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' Bit fusion: Bit-level dynamically composable archi- tecture for accelerating deep neural network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' In 2018 ACM/IEEE 45th Annual International Symposium on Computer Architecture (ISCA).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' IEEE, 764–775.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' [20] Mengshu Sun et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' FILM-QNN: Efficient FPGA Acceleration of Deep Neural Networks with Intra-Layer, Mixed-Precision Quantization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' In Proceedings of the 2022 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' 134–145.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' [21] Stefan Uhlich et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' Mixed Precision DNNs: All you need is a good parametrization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' In 8th International Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' [22] Yaman Umuroglu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' FINN: A framework for fast, scalable binarized neural network inference.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' In Proceedings of the 2017 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' ACM, 65–74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' [23] Kuan Wang, Zhijian Liu, Yujun Lin, Ji Lin, and Song Han.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' HAQ: Hardware- Aware Automated Quantization With Mixed Precision.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' In 2019 IEEE/CVF Con- ference on Computer Vision and Pattern Recognition (CVPR).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' 8604–8612.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' https: //doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='1109/CVPR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='00881 [24] Haichao Yu, Haoxiang Li, Humphrey Shi, Thomas S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' Huang, and Gang Hua.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' Any-Precision Deep Neural Networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' In Thirty-Fifth AAAI Conference on Artificial Intelligence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' AAAI Press, 10763–10771.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' https://ojs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='aaai.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='org/index.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content='php/ AAAI/article/view/17286 [25] Xiaofan Zhang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' DNNBuilder: an Automated Tool for Building High- Performance DNN Hardware Accelerators for FPGAs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} +page_content=' In (ICCAD).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NAyT4oBgHgl3EQfcvfE/content/2301.00290v1.pdf'} diff --git a/7NE1T4oBgHgl3EQf7QUc/content/tmp_files/2301.03531v1.pdf.txt b/7NE1T4oBgHgl3EQf7QUc/content/tmp_files/2301.03531v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..a7b1f75cfdd74f1b934534fb80257ae762522b91 --- /dev/null +++ b/7NE1T4oBgHgl3EQf7QUc/content/tmp_files/2301.03531v1.pdf.txt @@ -0,0 +1,1181 @@ + + +1 +Abstract— Objectives: Identifying suicidality including suicidal +ideation, attempts, and risk factors in electronic health record data +in clinical notes is difficult. A major difficulty is the lack of training +samples given the small number of true positive instances among +the increasingly large number of patients being screened. This +paper describes a novel methodology that identifies suicidality in +clinical notes by addressing this data sparsity issue through zero- +shot learning. Materials and Methods: U.S. Veterans Affairs +clinical notes served as data. The training dataset label was +determined using diagnostic codes of suicide attempt and self- +harm. A base string associated with the target label of suicidality +was used to provide auxiliary information by narrowing the +positive training cases to those containing the base string. A deep +neural network was trained by mapping the training documents’ +contents to a semantic space. For comparison, we trained another +deep neural network using the identical training dataset labels and +bag-of-words features. Results: The zero shot learning model +outperformed the baseline model in terms of AUC, sensitivity, +specificity, and positive predictive value at multiple probability +thresholds. In applying a 0.90 probability threshold, the +methodology identified notes not associated with a relevant ICD- +10-CM code that documented suicidality, with 94% accuracy. +Conclusion: This new method can effectively identify suicidality +without requiring manual annotation. + +Keywords— Suicide, Clinical Notes, NLP, Zero-Shot Learning +I. INTRODUCTION +uicide is a significant problem in the United States, +increasing 35.2% from 1999 to 2018, and from 10.5 to 14.2 +suicides per every 100,000 individuals in that same time period +[1] In 2020, 45,979 people died from suicide, and +approximately 1.2 million attempted suicide in the United +States [2] Its estimated cost is over $70 billion annually in lost +productivity and medical care [3]; this calculation does not +include residual costs from the estimated 4-17 people closely +tied to the suicide decedent who are left bereaved [4]. Suicide, +however, is a complicated problem that includes a dynamic web +of individual-level risk factors (e.g., depression, substance use +behaviors, personality traits), interpersonal risk factors (e.g., +violence, victimization), and community-level factors (e.g., +unemployment, stigmatization of mental illness) [5, 6]. + +1Biomedical Informatics Center; The George Washington University; +Washington DC, USA; +2VA Medical Center, Washington, DC, USA; +3Department of Emergency Medicine, Yale School of Medicine, New Haven, +CT, USA; 4PRIME Center, VA Connecticut Healthcare System, West Haven, +CT, USA; 5Research, VA Connecticut Healthcare System, West Haven, CT, +Veterans are especially affected by suicide, with an age- and +sex-adjusted rate that is 1.5 times higher than nonveterans [7]. +The Department of Veterans Affairs (VA) operates the single +largest integrated health care system in the U.S., and has +devoted resources to suicide prevention, including the Suicide +Prevention Applications Network (SPAN), embedding suicide +prevention coordinators and special reporting measures in +facilities [8], increased mental health staffing, partnerships with +community care organizations, and enhanced surveillance and +monitoring through its electronic health record (EHR) system +[9, 10]. Additionally, the VA has continual efforts to develop +predictive analytics to identify patients at the highest risk of +suicide [8, 11] The data elements for these predictive analytic +algorithms rely on structured data (e.g., International +Classification of Disease [ICD] diagnosis codes, prescription +data, socio-demographic data, care utilization metrics) [12] +which often provide an incomplete record [13, 14]. Less is +known about how unstructured data, such as contained in +clinical notes, can contribute to suicidality (i.e., suicidal +ideation or attempt) identification and prevention. Given that a +suicide attempt is one of the greatest risk factors for subsequent +suicide death, a more thorough means of detecting such events +is warranted [15]. +A. Background and Significance +Natural language processing (NLP) combined with machine +learning may add value to suicide documentation research. +Supervised machine learning methods use “supervised”, or pre- +classified data. However, naïve attempts at note retrieval using +keyword search alone quickly demonstrate the difficulty of this +problem, as words such as “suicide” occur in standard +questionnaires which are included in many notes, with few +actually documenting suicidality. For instance, in a prior +experiment we carried out, we randomly collected 1,000 VA +notes containing the term “suicidal” or “suicide” from 1,000 +individual patients and performed manual chart review for +affirmed suicidality. Only 1.57% of these notes documented +actual suicidality. Patient reluctance to disclose suicidal +ideation provides a further complicating factor [16, 17]. As a +result, a patient’s negative response to a suicide ideation inquiry +may not reflect their real feelings or intentions. Additionally, +USA; 6VA Connecticut Healthcare System, West Haven, CT, USA; 7Suzanne +Dworak-Peck School of Social Work, University of Southern California, Los +Angeles, CA, USA; 8Department of Internal Medicine, Yale School of +Medicine, West Haven, CT; + +Leveraging Contextual Relatedness to Identify Suicide +Documentation in Clinical Notes through Zero Shot +Learning +T. Elizabeth Workman, Ph.D.1,2, Joseph L. Goulet, Ph.D.3,6, Cynthia A. Brandt, M.D.3,6, Allison R. +Warren, Ph.D.4, Jacob Eleazer, Ph.D.4, Melissa Skanderson, M.S.W.5, Luke Lindemann, Ph.D.6, John +R. Blosnich, Ph.D.7, John O’Leary, M.Ed.6,8, Qing Zeng-Treitler, Ph.D.1,2 +S + + + +2 +relying on structured data alone will result in incomplete +identification of patients who have or are experiencing +suicidality, because relevant coding is prone to underuse [8]. +However, not all clinical notes associated with relevant +structured data document suicidality. For example, a note +documenting a secondary service such as group therapy, or a +note documenting fluid intake may not directly document +suicidality. +Prior attempts to apply NLP and machine learning are often +limited to mental health-oriented notes and may suffer if using +imbalanced data. Levis et al.[18] applied sentiment analysis and +various machine learning algorithms to classify suicide, using +VA psychotherapy notes, yielding area under the curve (AUC) +ratings comparable to chance. Fernandes et al.[19] obtained +excellent NLP performance in their study of clinical notes from +the Clinical Record Initiative Search (CRIS), but performance +was computed after removing neutral (non-suicide) results from +their machine learning output. Carson et al. enriched notes +associated with suicide attempt that were then used to train a +random forest model achieving 83% sensitivity, but only 22% +specificity [20]. Cook et al. [21] applied a bag-of-words +approach with machine learning to identify suicide ideation and +psychiatric symptoms using notes for patients identified as +having performed self-harm, achieving 61% PPV (positive +predictive value), 59% sensitivity, and 60% specificity, with +results varying depending on the task. Zhang et al. sought to +identify psychological stressors using a pre-annotated dataset of +psychiatric evaluation records from the CEGS N-GRID 2016 +challenge [22] as a gold standard, for a conditional random +fields machine learning model, [23] yielding final F scores of +73.91% and 89.01%, respectively, on exact and inexact stressor +matching, and 97.73% and 100% respectively, for exact and +inexact suicide recognition on instances of the positive +keywords with the stressors; however, their evaluation methods +for this are not detailed. +Zhong et al. applied structured data and NLP to identify +suicidal behavior in pregnant women, achieving PPV of 76% +and 30%, for women identified through relevant diagnostic +codes and through NLP for women not receiving a relevant +diagnostic code, respectively [24]. Obeid et al.[25] trained a +convolutional neural network that achieved an AUC of 0.882 +and an F1 score of 0.769 in predicting relevant suicide ICD +codes in subsequent years. Using notes from psychiatric +encounters, Cusick et al. [26] developed a rule-based NLP tool +to identify positive instances of suicide-oriented keywords that +leveraged NegEx. [27] They also developed different weakly- +supervised machine learning models. A convolutional neural +network receiving Word2Vec [28] word embeddings as input +achieved precision, recall, F1 score, and AUC values of 0.81, +0.83, 0.82, and 0.946. In a subsequent evaluation the +convolutional neural network correctly classified 87% of the 23 +notes (of 5000 clinical notes) receiving a positive classification, +from notes for patients diagnosed with depression or prescribed +an antidepressant. In a related task Tsui et al. [29] used prior +structured and unstructured data (clinical notes from history, +physical examination, progress notes and discharge summaries) +of inpatient and emergency room patients with a coded suicide +attempt, to identify first-time suicide attempts in a case-control +study. An ensemble of extreme gradient boosting (EXGB) +yielded best performance, with an AUC ranging from 91.9% to +93.2%, according to time window between prior data and +suicide attempt diagnosis. Recently, Rozova et al. obtained +promising results (87% AUC) using a gradient boosting model, +although the study was limited to emergency room triage notes +[30]. +Seeking suicidality in all types of clinical notes, among all +types of patients, or when hampered by imbalanced data, is +indeed a complex task. Some of the methods in the papers cited +above tend to suffer from low precision, specificity, and +possibly also low sensitivity (recall). Identifying probability +thresholds addresses these problems, providing flexibility for a +given task. For example, a high probability threshold (e.g., the +top ten percent) can serve as a means for identifying +documentation indicating suicidality and its risk with high +precision. When the prevalence is very low, which is often the +case of true positive suicidality documentation, the optimal +threshold needs to balance metrics such as the true positive rate +(sensitivity, also known as recall), specificity, and the positive +predictive value (precision). A strategic implementation of a +technique like Zero-Shot Learning may also provide accurate +identification of suicidality in clinical notes. +B. Zero-Shot Learning +Zero-Shot Learning (ZSL) enables predictions on unseen +data using a model trained on data that has labels that are +different than those of the unseen data [31, 32]. It largely +operates by mapping select properties of the data (i.e., the +“feature space”) to a semantic representation (i.e., the “semantic +space”) that enables prediction of unseen classes [33]. In other +words, auxiliary information must be provided on the labels of +the unseen classes to make it possible for a trained model to +recognize them in the testing data. + ZSL has been applied in several computer vision tasks [34, +35], as well as NLP tasks [36]. Accordingly, a feature space +can consist of data derived from images [37] or text [36]. The +semantic representation can be based on several different +approaches, including data attributes, semantic word vectors as +those provided by skip-gram or continuous-bag-of-word +architectures [33] or BERT output [38], or knowledge graphs +[33]. Examples in NLP applications include semantic utterance +classification [39] multilingual translation [40] and emotion +detection [41]. However, other than Sivarajkumar and Wang’s +work [38] there is little ZSL research in unstructured clinical +text data. +Naturally, different semantic representations affect the +accuracy of ZSL [42]. In this study, we leveraged word +embedding and usage context. +C. Objectives +We investigated a ZSL methodology applied to a binary +suicidality classification task. The training dataset was +constructed using diagnostic codes (ICD-10-CM codes) related +to suicide. Our target label is the broader concept of suicidality. +To enable ZSL, a base string representing suicidality was + + + +3 +selected. We then built the semantic space by identifying key +features associated with suicidality in the training dataset. A +DNN model was developed using the training data and tested +on two different sets of unseen data with the unseen label of +suicidality. Specifically, we sought to answer: + Will ZSL effectively identify suicidality documentation +from among all types of clinical notes, using review by +clinicians as the reference standard? + Will ZSL effectively identify suicidality or suicide risk +documentation from among clinical notes not associated with +a relevant ICD-10-CM code, by probability threshold, in terms +of precision, using the same reference standard? +We are unaware of previous descriptions of this methodology +and to our knowledge it has not been used prior to this study. +II. METHODS +A. Training Data +A training dataset was created using two corpora. The first +corpus consisted of 50,000 randomly selected VA clinical notes +from outpatient encounters recorded between 2016 and 2019 +which contained the base string “suicid” (e.g. “suicide”, +“suicidal” ) and were associated with at least one ICD-CM-10 +code identified by the National Health Statistics Report from +the Centers for Disease Control and Prevention (CDC) +indicating suicide attempt or intentional self-harm.[43] This +corpus is referred to as stringAndDx (9170 unique patients). +The second corpus consisted of 50,000 randomly selected VA +clinical notes from outpatient encounters recorded between +2016 and 2019 that were associated with other ICD-CM-10 +codes that were irrelevant to suicidality or self-harm. These +notes were extracted from patients matching the stringAndDx +patients in age (at the time of document retrieval), race, and +ethnicity. This second corpus is referred to as noDx (8638 +unique patients). Each corpus was preprocessed by +transforming all letters to lower case, removing basic +formatting markup and punctuation, separating character +strings into tokens (words), separating relevant concatenated +tokens (e.g., “suicidalhomicidal” to “suicidal” ”homicidal”), +and removing all tokens that did not entirely consist of letters. +B. Semantic Space Feature Extraction and Mapping +The task to build the semantic space was carried out in three +steps: First, we identified a list of features that are potentially +relevant for the positive training label. Second, we created word +embeddings using a skip-gram architecture. Third, we +identified context words of the selected features using the word +embeddings. In a fourth step, a contextual weight is assigned +to each feature for each document in mapping the semantic +space to the feature space. +In the first step, inverse document frequency (TF-IDF) +analysis was used to identify the n most important terms in each +corpus. For this investigation, n = 1000. TF-IDF evaluates +term frequency using the count of documents containing a given +term. In each document, the relative frequency of each term is +weighted by the log of the number of documents in the corpus +divided by the number of documents containing the term, as +shown in (1) +𝑡𝑖,𝑗 = 𝑡𝑓𝑖,𝑗 ∗ 𝑙𝑜𝑔( 𝑛 +𝑑𝑓𝑖 +) + +where ti,j is term i in document j, tfi,j is the relative frequency of +term i in document j, n is the total number of documents, and +dfi is the number of documents containing term i. Because TF- +IDF is a document-based measurement, we used the mean TF- +IDF value for each term in its respective corpus. The words +with the top TF-IDF scores that are unique to the stringAndDx +corpus were treated as features. Figure 1 illustrates this process. +Each circle represents terms from one of the corpora. Sets a and +b are the words with the top n TFIDF scores for stringAndDx +and noDx, respectively. Set c is the overlap between a and b. +The feature set F contains words that are in set a, but not in the +overlap set c or in set b (f  a and f  c and f  b). + + +Figure 1. Feature identification. Words that are deemed as features are in set a, +excluding words in c and b. + +In the second step, we created a Word2Vec model using the +stringAndDx corpus. In this study, the model was a shallow +neural network with the hidden layer containing 300 nodes, +applying the skip-gram architecture, with an analytic window +size of 5, trained through 10 iterations. +In the third step, we identified the top m context words for +each feature word using the word embeddings from the +Word2Vec model. The m words most similar to each feature +word, according to cosine similarity values, served as its +context words. In this investigation, m = 50. +In the fourth step, we map the feature space, i.e. a document’s +preprocessed content, to the semantic space. A weight v is +assigned to each feature word for each document, based on its +occurrence with its context words in a window in the +document’s text. This weight is the summed total of the cosine +similarity between the feature and a co-occurring context word +multiplied by the mean TF-IDF value of the feature word. The +formula is shown in (2) + +𝑣 = +∑ +𝑐𝑜𝑠𝑆𝑖𝑚(𝑥, 𝑦) ∗ 𝑡𝑓𝑖𝑑𝑓(𝑥) +𝑥∈𝐹,𝑦∈𝐷 + + +where x is a feature in F, the set of features in the semantic +space, and y is a context word of set D, the context words for x +in the semantic space, which occurs in a five-word window +around x in the document’s text. This process is illustrated in +Figure 2, where “pattern” (highlighted in light gray) is a feature +word, and “internalizing” and “fitful” (highlighted in dark gray) +are among its set of context words and appear in a five-word +window. +(2) +(1) + +stringAndDx +noDx +a +c +6 + +4 + + +Figure 2. Example of deriving a feature weight using (2) + +If a feature word is not in the text, its value is zero for the +given document. +C. Model Development +20,000 documents were randomly selected from each corpus +(stringAndDx and noDx). We trained a DNN model (here +referred to as the ZSL DNN) consisting of five fully-connected +hidden layers of alternating sizes of 30 or 70 nodes, with each +layer implementing a dropout rate of 0.5. We implemented the +Adam optimizer [44], with a learning rate of 0.0012, beta 1 +value of 0.92, beta 2 value of 0.9992, and an epsilon value of +1e-08, with binary cross entropy as the loss function, and the +sigmoid function in the output layer, since it was a binary +classification task. The architecture and hyperparameters were +chosen on empirical grounds, after experimentation. Each +document from the stringAndDx corpus was classified as “1” (a +generic positive instance), and each document from the noDx +corpus was classified as “0” (a generic negative instance). +These labels do not indicate whether or not the given document +directly pertains, or not pertains, to suicidality or its risks, but +an association with a structured data element, and for those +labeled “1”, also containing a base string. Balancing the +positive and negative approximated training datasets in this +manner (i.e., providing balanced training examples) addressed +the problematic issue of otherwise training a model with few +positive and many negative instances. We implemented a 60% +training, 20% validation, and 20% testing split in developing +the ZSL DNN. Figure 3 illustrates the method. + + +Figure 3. Method. The corpora stringAndDx (2016-19), noDx (2016-19), +testSet1 (2020), and testSet2 (2020) are unique and extracted from all clinical +notes based on associated ICD-10-CM codes, and in the case of +stringAndDx, where a base string is also present; corpora content is +preprocessed. The stringAndDx and noDx corpora are used in the TF-IDF +analysis to identify feature words that are unique to stringAndDx (step 1). +stringAndDx is applied to a skip-gram model to produce word embeddings +(step 2). Feature words and their significant context words (determined +through the word embeddings) form the semantic space (step 3). The +contents of stringAndDx and noDx are mapped to the semantic space, using +a function to determine feature word weights (step 4). The mapped contents +of stringAndDx and noDx documents are used to train the ZSL DNN, using +generic labels 1 and 0, respectively. The mapped contents of unseen +testSet1 and testSet2 notes were classified by the trained ZSL DNN, for the +classes (a) containing suicidality documentation, or (b) not containing +suicidality documentation. Human annotation independently classified +random documents from testSet1 and testSet2 for the same classes (a) +containing suicidality documentation, or (b) not containing suicidality +documentation; human annotation also assessed documents from testSet2 +containing the base string that received a probability of 0.90 or greater, for +these classes and suicidality risk factors. + +D. Evaluation +The authors randomly retrieved 5,000 different clinical notes +recorded in 2020 that were associated with at least one of the +relevant IDC-10-CM codes. This corpus is subsequently +labeled as testSet1. The authors also randomly retrieved 5,000 +different clinical notes recorded in 2020 that were associated +with other IDC-10-CM codes irrelevant to suicidality or self- +harm. This corpus is subsequently labeled testSet2. +The contents of each of the notes in testSet1 and testSet2 were +mapped to the semantic space, i.e., deriving a weight for each +feature word as described earlier in the fourth step. Then, the +trained ZSL DNN was used to classify the notes in testSet1 and +testSet2 as (a) containing suicidality documentation, or (b) not +containing suicidality documentation. +In joint sessions, two clinical psychologists familiar with VA +clinical note documentation together identified suicidality (i.e., +current or past suicide ideation or attempt) in 200 notes +randomly selected from testSet1 and testSet2 (100 from each +test set), after being instructed to look for documentation for +these specific events. They addressed differences of opinion +through discussion and mutual consensus during the joint +sessions. In a second evaluation, to explore how the +application’s output may serve to identify patients who had +experienced or were at risk for suicidality, but never formally +diagnosed as such, the clinicians examined the testSet2 notes +containing the base string “suicid" that received a probability +value of 0.90 or greater from the trained ZSL DNN, for +documentation of suicidality and/or its risk factors, according +to NIH guidelines.[45] This threshold was chosen in order to +explore how high-probability documents (i.e. the top 10% in +terms of probability) would be representative in identifying +documented suicidality or its risk factors with high precision, +thus addressing our second question. +1) Baseline Comparison +For comparative purposes, the 163 most frequent bigrams +unique to the stringAndDx corpus were identified and used in a +bag-of-words baseline model. We trained a DNN (here referred +to as the Baseline DNN) using these 163 bigrams as features for +the 20,000 stringAndDx documents and the 20,000 noDx +documents. This baseline DNN was also used to classify the +Document Text: “The patient has a pattern of internalizing +criticism from his family. This pattern sometimes results in fitful +outbursts.” + +TF-IDF value of feature word “pattern”: 0.0062 +Cosine similarity of “pattern” and “internalizing”: 0.4673 +Cosine similarity of “pattern” and “fitful”: 0.3824 +Feature weight for “pattern”: +(0.0062 * 0.4673) + (0.0062 * 0.3824) = 0.0053 + +All Clinical +Notes +ICDcodes +ICDcodes +Base String +Human +testSetl +testSet2 +stringAndDx +noDx +Annotation +(suicidality) +TFIDF +Analysis +Word +Embeddings +Semantic +Map content +Space +Mapcontent +Testing +DNN +Training +Output is a classification of (a) containing suicidality +documentation or (b) not containing suicidality documentation + +5 +notes in testSet1 and testSet2, for (a) containing suicidality +documentation, or (b) not containing suicidality documentation, +using the 163 most frequent bigrams as features. +III. RESULTS +The first step of the new method (described in Methods) +identified 163 feature words associated with suicidality +diagnosis. The top thirty feature words are listed in Table I. No +form of the base string “suicid” was found among the 163 final +feature words. Both “suicide” and “suicidal” were prominent +terms in both the noDx and stringAndDx corpora, along with +terms like “psychiatrist” and “psychosocial”; this is likely due +to the proliferation of objects like questionnaires, and mental +health care documentation in notes that are unrelated to +suicidality. +TABLE I +TOP 30 FEATURE WORDS +flag +overdose +coordinator +took +spc +observation +called +warning +pills +prf +unknown +interrupted +gun +placement +lcsw +lethal +outcome +reportedly +notified +sdv +occurred +police +protocol +od +supports +seeking +category +preparatory +cut +determined + +A. ZSL DNN and Baseline DNN Performance +The classifications by the clinicians and the probabilities +assigned by the ZSL DNN and the Baseline DNN were first +assessed by AUC score. The results are in Table II and Figure +4. + +TABLE II +AUC PERFORMANCE +ZSL DNN +Baseline DNN +0.946 +0.47 + + +Figure 4. ZSL DNN AUC results (left), Baseline DNN AUC results (right) + +In terms of AUC, the ZSL DNN trained through mapping the +semantic space to the feature space outperformed the Baseline +DNN trained with the bigram bag-of-words features. +The sensitivity, specificity, and PPV results at 0.15, 0.5, and +0.85 probability thresholds for each DNN are in Tables III-V. +Probability refers to the probability the DNN assigned to each +note for positive suicidality documentation. We applied the +median probability (0.1499, rounded) assigned by the ZSL +DNN to the testSet2 documents (the test set containing random +notes associated with irrelevant ICD-10-CM codes) in forming +minimum and maximum thresholds; 0.5 is a standard midpoint +probability threshold. The combined scores in these tables were +computed with all true positives, true negatives, false positives, +and false negatives for both test sets, for the indicated metrics. +Values of NaN (not a number) occurred where there were no +true positives or false positives. + +TABLE III +EVALUATION RESULTS AT 0.15 PROBABILITY THRESHOLD +ZSL DNN +Sensitivity/Recall +Specificity +Precision/PPV +testSet1 +97% +100% +91% +testSet2 +100% +64% +05% +Combined +97% +59% +67% +Baseline DNN + + + +testSet1 +99% +0% +90% +testSet2 +50% +09% +01% +Combined +98% +08% +48% + +TABLE IV +EVALUATION RESULTS AT 0.5 PROBABILITY THRESHOLD +ZSL DNN +Sensitivity/Recall +Specificity +Precision/PPV +testSet1 +92% +40% +93% +testSet2 +50% +97% +25% +Combined +91% +92% +90% +Baseline DNN + + + +testSet1 +92% +0% +89% +testSet2 +50% +10% +1% +Combined +91% +9% +46% + +TABLE V +EVALUATION RESULTS AT 0.85 PROBABILITY THRESHOLD +ZSL DNN +Sensitivity/Recall +Specificity +Precision/PPV +testSet1 +77% +70% +96% +testSet2 +50% +100% +100% +Combined +76% +97% +96% +Baseline DNN + + + +testSet1 +0% +100% +NaN/div by 0 +testSet2 +0% +100% +NaN/div by 0 +Combined +0% +100% +NaN/div by 0 + +The ZSL DNN outperformed the Baseline DNN in most +metrics at all probability thresholds. +B. Second Evaluation +To explore how this new methodology can identify clinical +notes documenting suicidality that are not associated with a +relevant ICD-10-CM code with high precision, the clinicians +also reviewed the 16 notes from testSet2 containing the base +string “suicid’ that received a probability at or above 0.90 from +the trained ZSL DNN. The clinicians noted suicide ideation or +attempt, and the presence of the following suicide risk factors, +based on National Institute of Mental Health guidelines [45]: + Depression and other mental health disorders + Substance abuse disorder + Family history of a mental health or substance abuse +disorder + Family history of suicide + Family violence, including physical or sexual abuse + Having guns or other firearms in the home + Being in prison or jail + Being exposed to others’ suicidal behavior +Of these 16 clinical notes (associated with 16 different +patients), 7 documented current or past suicide ideation or +attempt. Eight of the remaining notes included one or more +risk factors for suicide (nearly all included multiple risk +factors). In all, 15 of the 16 notes contained documentation of +current or past suicide ideation or attempt, and/or suicide risk + + + +1.0 +model results +0.0 +0.2 +0.4 +0.8 +1.Dno distinction +model results +0.8- +2 0.4 +0.2 +0.0 +0.0 +Q2 +0.4 +False Positive Rate +0.8 +10 + +6 +factors, for patients who had never received a suicidality ICD- +10-CM code diagnosis during the study period, achieving a +PPV of 93.8%. +IV. DISCUSSION +Regarding the study’s original questions, our ZSL approach +effectively identified suicidality in all types of clinical notes, +surpassing the performance of the bag-of-words baseline in +conjunction with deep learning. It also effectively identified +suicidality or suicide risk documentation from among clinical +notes not associated with a relevant ICD-10-CM code with high +precision, on probability threshold. +A. Semantic Space +In this work, the semantic space development is framed as +feature extraction where mapping is enhanced by attaching +weights to features found in the data, an approach also used in +computer vision ZSL [46]. The semantic space captures natural +data properties by identifying salient terms and relevant +contextual +terms +in +collective +clinical +suicidality +documentation (i.e., a corpus of notes associated with relevant +ICD codes). Table 1 lists 30 prominent feature words associated +with collective suicidality documentation after removing terms +associated with other kinds of documents. There is an intuitive +sense to these words; “flag” is found in the phrase “high risk for +suicide flag”; “overdose” and “cut” refer to suicide methods; +“pills” and “gun” refer to suicide instruments. Identifying terms +contextually similar to these provides patterns in relevant +documentation. Again, this has an intuitive logic. The most +contextually similar terms to “flag” include “reactivate” and +“deactivate” (for a high suicide risk flag) and “high” (the level +of risk). The most contextually similar terms to “pills” include +“handful”, “fistfuls”, and “bunch”, implying large quantities, +along with “overdosing” and “took”, the associated actions. +The feature word “spc” indicates VA’s suicide prevention +coordinators, which is a structural change that VA implemented +for suicide prevention [10]. Concordantly, “police” and “lcsw” +(i.e., licensed clinical social worker) refer to other professions +highly associated with individuals at risk for suicide. For +example, police may be activated for a rescue, and a licensed +clinical social worker may be involved in treatment planning or +referral connections for suicidal individuals. The feature words +“prf” and “sdv” refer to “patient record flag” and “self-directed +violence”, respectively. The semantic space provided an +efficient representation for effective mapping to the feature +space. +B. Data Retrieval and Model Training +Using associated structured data elements like ICD-10-CM +codes, and a base string provides a means to locate equally sized +corpora for training that could be generically labeled “0” or “1”. +These labels were primarily based on a structured data +association, since their individual unstructured content was +mostly unknown. This approach solves the issue of imbalanced +training data. The predominant clinical note types (Appendix) +also illustrate this. Most of the frequent note types associated +with one of the relevant CDC ICD-10-CM codes and containing +the base string are relevant to suicidality. Addendum is a +common note type [47] associated with many domains [48]. +The most frequent note types not associated with a relevant +code resemble frequencies of all note types in the VA [47]. +C. Identifying Suicidality Documentation +To our knowledge, this method has not been applied in other +studies. Unlike VA surveillance methods using structured data, +it also leverages information found in EHR notes. Also, unlike +other NLP methods [18, 20, 21, 23, 24, 26, 29, 30] it can be +applied to all patients and note types. In other studies, a bag- +of-words approach has been applied to suicidality identification +and other machine learning tasks [21, 49, 50]. However, the +results of this current study suggest that the complexity of +suicidality documentation demands a more targeted approach. +This method could complement existing measures like +SPAN, alerting suicide prevention coordinators of additional +patients at risk. The results of the two clinical psychologists’ +evaluations demonstrate the method’s efficiency in identifying +suicidality documentation for documents where there is no +relevant ICD-10-CM code. The performance on both test sets +demonstrates the methodology’s effectiveness in classifying +notes that are mixed in terms of ICD-10-CM coding. +Tables III - V suggest that the probability threshold can be +adjusted to suit a specific task like finding suicidality and its +risk factors with high precision among notes not associated with +a relevant ICD-10-CM code. This is especially true considering +the small prevalence of suicidality documentation in clinical +notes. The second evaluation (which yielded 93.8% PPV) +demonstrates this. By applying a high probability threshold of +0.90 to all 5000 testSet2 documents and focusing on clinical +notes containing the base string, of the 16 documents (for 16 +different patients), 94% contained suicidality and/or suicidality +risk factor documentation, based on clinician review. These +results exceed those of Cusick et al.’s [26] similar task, where +87% of notes were correctly classified, among notes for patients +diagnosed with depression or prescribed an antidepressant. In +this current study’s second evaluation, none of the 16 patients +identified had ever received a suicide ICD-10-CM code during +the study’s time period. It is impossible to know if the patients +in the 8 notes simply containing documented risk factors were +suicidal or not based solely on electronic health records. +Suicidal patients sometimes deny suicide ideation or attempt +[16, 51]. For example, in one note from the chart review +associated with a relevant ICD-10-CM code, the patient +reportedly denied suicide ideation, even after checking into the +hospital hours earlier for a self-reported suicide attempt. +D. Future Work + This work is part of a larger study of patients at risk for +suicide.[52] The next step is to combine these findings with +prior work. We also plan an analysis of patients from first +suicide ideation or attempt documented in the VA system, to +understand their evolution of care. +E. Limitations +VHA data largely cover a population of older men. However, +the amount of women and younger patients is increasing, thus + + + +7 +also increasing the generalizability of these findings. The +corpora retrieval method we used to train the ZSL DNN is +dependent on clinicians’ use of the relevant ICD-10-CM codes +in documenting care, which may be prone to underuse [8]. +However, the results of this study indicate the method’s utility. +Due to environmental computational limitations, we randomly +selected 20,000 notes from the stringAndDx corpus, and 20,000 +notes from the noDx corpus for training the ZSL DNN. +V. CONCLUSION +We developed a new methodology to identify suicidality in +clinical notes using zero-shot learning (ZSL). A trained ZSL +deep neural network (DNN) outperformed a DNN trained using +a baseline bag-of-words method in AUC scores and other +metrics assessed at various probability thresholds on unseen +data, according to expert review. This novel methodology +identifies suicidality and its risk factors with high precision, +when applying a 0.90 probability threshold, in VA clinical notes +not associated with a relevant ICD-10-CM code. This +methodology +could +complement +existing +suicidality +identification measures. These findings hold promise for future +research. +APPENDIX + +Most Frequent Note Types in Training Data by Corpus +stringAndDx +noDx +Note Type +Count +Note Type +Count +Addendum +2844 +Addendum +5683 +Suicide Behavior +and Report +843 +Primary Care Secure +Messaging +291 +Suicide Prevention +Telephone Note +811 +Nursing Note +228 +Suicide Behavior +and Overdose +Report +613 +Administrative Note +207 +Suicide Prevention +Note +452 +State Prescription +Drug Monitoring +Program +110 +Suicide Prevention +Safety Plan +448 +Care Flow Sheet +88 +Mental Health +Nursing +Assessment Note +374 +Telephone Contact +75 +Veterans Crisis +Line Note +222 +Mental Health +Diagnostic Study +Note +71 +Social Work Note +213 +Non VA Care +Consult Result Note +69 +Suicide Prevention +Contact +212 +Operation Report +64 + +ACKNOWLEDGMENT +The views expressed are those of the authors and do not +necessarily reflect those of the Department of Veterans Affairs, +the United States Government, or the academic affiliate +institutions. This work was funded by Veterans Affairs Health +Services Research and Development Services grant IIR 18-035 +Understanding Suicide Risks among LGBT Veterans in VA +Care, and NIH National Center for Advancing Translational +Sciences grant UL1TR001876. +REFERENCES + +[1] +H. Hedegaard, S. C. Curtin, and M. Warner. Suicide mortality in the +United States, 1999–2019, 2021. +[2] +American Foundation for Prevention. "Suicide Statistics." American +Foundation for Suicide Prevention. https://afsp.org/suicide-statistics +[3] +G. Gonzales and C. Henning-Smith, "Disparities in health and disability +among older adults in same-sex cohabiting relationships," J Aging Health, +vol. 27, no. 3, pp. 432-53, Apr 2015, doi: 10.1177/0898264314551332. +[4] +A. L. Berman, "Estimating the population of survivors of suicide: seeking +an evidence base," Suicide Life Threat Behav, vol. 41, no. 1, pp. 110-6, +Feb 2011, doi: 10.1111/j.1943-278X.2010.00009.x. +[5] +S. Stack, "Suicide: a 15-year review of the sociological literature. Part I: +cultural and economic factors," Suicide Life Threat Behav, vol. 30, no. 2, +pp. +145-62, +Summer +2000. +[Online]. +Available: +https://www.ncbi.nlm.nih.gov/pubmed/10888055. +[6] +K. Hawton, I. C. C. Casanas, C. Haw, and K. Saunders, "Risk factors for +suicide in individuals with depression: a systematic review," J Affect +Disord, +vol. +147, +no. +1-3, +pp. +17-28, +May +2013, +doi: +10.1016/j.jad.2013.01.004. +[7] +"2019 National Veteran Suicide Prevention Annual Report," U.S. +Department of Veterans Affairs, Office of Mental Health and Suicide +Prevention, +September +2019 +2019. +[Online]. +Available: +https://www.mentalhealth.va.gov/docs/data- +sheets/2019/2019_National_Veteran_Suicide_Prevention_Annual_Repo +rt_508.pdf +[8] +C. Hoffmire, B. Stephens, S. Morley, C. Thompson, J. Kemp, and R. M. +Bossarte, "VA Suicide Prevention Applications Network: A National +Health Care System-Based Suicide Event Tracking System," Public +Health Rep, vol. 131, no. 6, pp. 816-821, Nov 2016, doi: +10.1177/0033354916670133. +[9] +I. Katz, "Lessons learned from mental health enhancement and suicide +prevention activities in the Veterans Health Administration," Am J Public +Health, +vol. +102 +Suppl +1, +pp. +S14-6, +Mar +2012, +doi: +10.2105/AJPH.2011.300582. +[10] D. Carroll, L. K. Kearney, and M. A. Miller, "Addressing Suicide in the +Veteran Population: Engaging a Public Health Approach," Front +Psychiatry, vol. 11, p. 569069, 2020, doi: 10.3389/fpsyt.2020.569069. +[11] J. F. McCarthy et al., "Predictive Modeling and Concentration of the Risk +of Suicide: Implications for Preventive Interventions in the US +Department of Veterans Affairs," Am J Public Health, vol. 105, no. 9, pp. +1935-42, Sep 2015, doi: 10.2105/AJPH.2015.302737. + + + +8 +[12] R. C. Kessler et al., "Developing a practical suicide risk prediction model +for targeting high-risk patients in the Veterans health Administration," Int +J Methods Psychiatr Res, vol. 26, no. 3, Sep 2017, doi: 10.1002/mpr.1575. +[13] J. Moss, M. Andison, and H. Sobko, "An analysis of narrative nursing +documentation in an otherwise structured intensive care clinical +information system," AMIA Annu Symp Proc, pp. 543-7, Oct 11 2007. +[Online]. Available: https://www.ncbi.nlm.nih.gov/pubmed/18693895. +[14] H. J. Kong, "Managing Unstructured Big Data in Healthcare System," +Healthc Inform Res, vol. 25, no. 1, pp. 1-2, Jan 2019, doi: +10.4258/hir.2019.25.1.1. +[15] J. M. Bostwick, C. Pabbati, J. R. Geske, and A. J. McKean, "Suicide +Attempt as a Risk Factor for Completed Suicide: Even More Lethal Than +We Knew," Am J Psychiatry, vol. 173, no. 11, pp. 1094-1100, Nov 1 +2016, doi: 10.1176/appi.ajp.2016.15070854. +[16] B. Harmer, S. Lee, H. Duong Tv, and A. Saadabadi, "Suicidal Ideation," +in StatPearls. Treasure Island (FL), 2021. +[17] S. A. Louzon, R. Bossarte, J. F. McCarthy, and I. R. Katz, "Does Suicidal +Ideation as Measured by the PHQ-9 Predict Suicide Among VA +Patients?," Psychiatr Serv, vol. 67, no. 5, pp. 517-22, May 1 2016, doi: +10.1176/appi.ps.201500149. +[18] M. Levis, C. Leonard Westgate, J. Gui, B. V. Watts, and B. Shiner, +"Natural language processing of clinical mental health notes may add +predictive value to existing suicide risk models," Psychol Med, pp. 1-10, +Feb 17 2020, doi: 10.1017/S0033291720000173. +[19] A. C. Fernandes, R. Dutta, S. Velupillai, J. Sanyal, R. Stewart, and D. +Chandran, "Identifying Suicide Ideation and Suicidal Attempts in a +Psychiatric Clinical Research Database using Natural Language +Processing," Sci Rep, vol. 8, no. 1, p. 7426, May 9 2018, doi: +10.1038/s41598-018-25773-2. +[20] N. J. Carson et al., "Identification of suicidal behavior among +psychiatrically +hospitalized +adolescents +using +natural +language +processing and machine learning of electronic health records," PloS one, +vol. 14, no. 2, p. e0211116, 2019. +[21] B. L. Cook, A. M. Progovac, P. Chen, B. Mullin, S. Hou, and E. Baca- +Garcia, "Novel Use of Natural Language Processing (NLP) to Predict +Suicidal Ideation and Psychiatric Symptoms in a Text-Based Mental +Health Intervention in Madrid," Comput Math Methods Med, vol. 2016, +p. 8708434, 2016, doi: 10.1155/2016/8708434. +[22] O. Uzuner, A. Stubbs, and M. Filannino, "A natural language processing +challenge for clinical records: Research Domains Criteria (RDoC) for +psychiatry," J Biomed Inform, vol. 75S, pp. S1-S3, Nov 2017, doi: +10.1016/j.jbi.2017.10.005. +[23] Y. Zhang et al., "Psychiatric stressor recognition from clinical notes to +reveal association with suicide," Health Informatics J, vol. 25, no. 4, pp. +1846-1862, Dec 2019, doi: 10.1177/1460458218796598. +[24] Q.-Y. Zhong et al., "Screening pregnant women for suicidal behavior in +electronic medical records: diagnostic codes vs. clinical notes processed +by natural language processing," BMC medical informatics and decision +making, vol. 18, no. 1, pp. 1-11, 2018. +[25] J. S. Obeid et al., "Identifying and Predicting intentional self-harm in +electronic health record clinical notes: Deep learning approach," JMIR +medical informatics, vol. 8, no. 7, p. e17784, 2020. +[26] M. Cusick et al., "Using weak supervision and deep learning to classify +clinical notes for identification of current suicidal ideation," J Psychiatr +Res, +vol. +136, +pp. +95-102, +Apr +2021, +doi: +10.1016/j.jpsychires.2021.01.052. +[27] W. W. Chapman, W. Bridewell, P. Hanbury, G. F. Cooper, and B. G. +Buchanan, "A simple algorithm for identifying negated findings and +diseases in discharge summaries," J Biomed Inform, vol. 34, no. 5, pp. +301-10, Oct 2001, doi: 10.1006/jbin.2001.1029. +[28] T. Mikolov, K. Chen, G. Corrado, and J. Dean, "Efficient estimation of +word representations in vector space," arXiv preprint arXiv:1301.3781, +2013. +[29] F. R. Tsui et al., "Natural language processing and machine learning of +electronic health records for prediction of first-time suicide attempts," +JAMIA Open, +vol. 4, no. 1, p. ooab011, Jan 2021, doi: +10.1093/jamiaopen/ooab011. +[30] V. Rozova, K. Witt, J. Robinson, Y. Li, and K. Verspoor, "Detection of +self-harm and suicidal ideation in emergency department triage notes," J +Am Med Inform Assoc, vol. 29, no. 3, pp. 472-480, Jan 29 2022, doi: +10.1093/jamia/ocab261. +[31] H. Larochelle, D. Erhan, and Y. Bengio, "Zero-data learning of new +tasks," in AAAI, 2008, vol. 1, no. 2, p. 3. +[32] C. H. Lampert, H. Nickisch, and S. Harmeling, "Learning to detect +unseen object classes by between-class attribute transfer," in 2009 IEEE +conference on computer vision and pattern recognition, 2009: IEEE, pp. +951-958. +[33] X. Sun, J. Gu, and H. Sun, "Research progress of zero-shot learning," +Applied Intelligence, vol. 51, no. 6, pp. 3600-3614, 2021. +[34] B. Romera-Paredes and P. Torr, "An embarrassingly simple approach to +zero-shot learning," in International conference on machine learning, +2015: PMLR, pp. 2152-2161. +[35] R. L. Hu, C. Xiong, and R. Socher, "Zero-shot image classification guided +by natural language descriptions of classes: A meta-learning approach," +NeurIPS, 2018. +[36] G. Dinu, A. Lazaridou, and M. Baroni, "Improving zero-shot learning by +mitigating the hubness problem," arXiv preprint arXiv:1412.6568, 2014. +[37] F. Pourpanah et al., "A review of generalized zero-shot learning +methods," IEEE transactions on pattern analysis and machine +intelligence, 2022. +[38] S. Sivarajkumar and Y. Wang, "HealthPrompt: A Zero-shot Learning +Paradigm for Clinical Natural Language Processing," arXiv preprint +arXiv:2203.05061, 2022. +[39] Y. N. Dauphin, G. Tur, D. Hakkani-Tur, and L. Heck, "Zero-shot learning +for semantic utterance classification," arXiv preprint arXiv:1401.0509, +2013. +[40] M. Johnson et al., "Google’s multilingual neural machine translation +system: Enabling zero-shot translation," Transactions of the Association +for Computational Linguistics, vol. 5, pp. 339-351, 2017. +[41] S. G. Tesfagergish, J. Kapočiūtė-Dzikienė, and R. Damaševičius, "Zero- +Shot Emotion Detection for Semi-Supervised Sentiment Analysis Using +Sentence Transformers and Ensemble Learning," Applied Sciences, vol. +12, no. 17, p. 8662, 2022. +[42] T. Hascoet, Y. Ariki, and T. Takiguchi, "Semantic embeddings of generic +objects for zero-shot learning," EURASIP Journal on Image and Video +Processing, vol. 2019, no. 1, pp. 1-14, 2019. +[43] H. Hedegaard, M. Schoenbaum, C. Claassen, A. Crosby, K. Holland, and +S. Proescholdbell, "Issues in Developing a Surveillance Case Definition +for Nonfatal Suicide Attempt and Intentional Self-harm Using +International Classification of Diseases, Tenth Revision, Clinical +Modification (ICD-10-CM) Coded Data," Natl Health Stat Report, no. +108, +pp. +1-19, +Feb +2018. +[Online]. +Available: +https://www.ncbi.nlm.nih.gov/pubmed/29616901. +[44] D. P. Kingma and J. Ba, "Adam: A method for stochastic optimization," +arXiv preprint arXiv:1412.6980, 2014. +[45] National Institute of Mental Health/NIH. "Suicide In America: Frequently +Asked +Questions: +Who +is +at +Risk +for +Suicide?" +https://www.nimh.nih.gov/health/publications/suicide-faq/#pub2 +[46] C. A. Caceres et al., "Feature Selection Methods for Zero-Shot Learning +of Neural Activity," Front Neuroinform, vol. 11, p. 41, 2017, doi: +10.3389/fninf.2017.00041. +[47] Y. Shao, G. Divita, T. E. Workman, D. Redd, J. H. Garvin, and Q. Zeng- +Treitler, "Clinical Sublanguage Trend and Usage Analysis from a Large +Clinical Corpus," in 2020 IEEE International Conference on Big Data +(Big Data), 2020: IEEE, pp. 3837-3845. +[48] T. E. Workman, G. Divita, and Q. Zeng-Treitler, "Discovering +Sublanguages in a Large Clinical Corpus through Unsupervised Machine +Learning and Information Gain," in 2019 IEEE International Conference +on Big Data (Big Data), 2019: IEEE, pp. 4889-4898. +[49] M. A. Clapp, E. Kim, K. E. James, R. H. Perlis, A. J. Kaimal, and T. H. +McCoy, Jr., "Natural language processing of admission notes to predict +severe maternal morbidity during the delivery encounter," Am J Obstet +Gynecol, Apr 14 2022, doi: 10.1016/j.ajog.2022.04.008. +[50] R. L. Figueroa and C. A. Flores, "Extracting Information from Electronic +Medical Records to Identify the Obesity Status of a Patient Based on +Comorbidities and Bodyweight Measures," J Med Syst, vol. 40, no. 8, p. +191, Aug 2016, doi: 10.1007/s10916-016-0548-8. +[51] S. Merelle, E. Foppen, R. Gilissen, J. Mokkenstorm, R. Cluitmans, and +W. Van Ballegooijen, "Characteristics Associated with Non-Disclosure +of Suicidal Ideation in Adults," Int J Environ Res Public Health, vol. 15, +no. 5, May 9 2018, doi: 10.3390/ijerph15050943. +[52] T. E. Workman et al., "A Prototype Application to Identify LGBT +Patients in Clinical Notes," in 2020 IEEE International Conference on Big +Data (Big Data), 2020: IEEE, pp. 4270-4275. + + diff --git a/7NE1T4oBgHgl3EQf7QUc/content/tmp_files/load_file.txt b/7NE1T4oBgHgl3EQf7QUc/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..5a45db457ecb5493d1611c7d5fd4b57ab200b8f6 --- /dev/null +++ b/7NE1T4oBgHgl3EQf7QUc/content/tmp_files/load_file.txt @@ -0,0 +1,910 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf,len=909 +page_content='1 \uf020Abstract— Objectives: Identifying suicidality including suicidal ideation, attempts, and risk factors in electronic health record data in clinical notes is difficult.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' A major difficulty is the lack of training samples given the small number of true positive instances among the increasingly large number of patients being screened.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' This paper describes a novel methodology that identifies suicidality in clinical notes by addressing this data sparsity issue through zero- shot learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Materials and Methods: U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Veterans Affairs clinical notes served as data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' The training dataset label was determined using diagnostic codes of suicide attempt and self- harm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' A base string associated with the target label of suicidality was used to provide auxiliary information by narrowing the positive training cases to those containing the base string.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' A deep neural network was trained by mapping the training documents’ contents to a semantic space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' For comparison, we trained another deep neural network using the identical training dataset labels and bag-of-words features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Results: The zero shot learning model outperformed the baseline model in terms of AUC, sensitivity, specificity, and positive predictive value at multiple probability thresholds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' In applying a 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='90 probability threshold, the methodology identified notes not associated with a relevant ICD- 10-CM code that documented suicidality, with 94% accuracy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Conclusion: This new method can effectively identify suicidality without requiring manual annotation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Keywords— Suicide, Clinical Notes, NLP, Zero-Shot Learning I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' INTRODUCTION uicide is a significant problem in the United States, increasing 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='2% from 1999 to 2018, and from 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='5 to 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='2 suicides per every 100,000 individuals in that same time period [1] In 2020, 45,979 people died from suicide, and approximately 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='2 million attempted suicide in the United States [2] Its estimated cost is over $70 billion annually in lost productivity and medical care [3];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' this calculation does not include residual costs from the estimated 4-17 people closely tied to the suicide decedent who are left bereaved [4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Suicide, however, is a complicated problem that includes a dynamic web of individual-level risk factors (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=', depression, substance use behaviors, personality traits), interpersonal risk factors (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=', violence, victimization), and community-level factors (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=', unemployment, stigmatization of mental illness) [5, 6].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' 1Biomedical Informatics Center;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' The George Washington University;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Washington DC, USA;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' 2VA Medical Center, Washington, DC, USA;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' 3Department of Emergency Medicine, Yale School of Medicine, New Haven, CT, USA;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' 4PRIME Center, VA Connecticut Healthcare System, West Haven, CT, USA;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' 5Research, VA Connecticut Healthcare System, West Haven, CT, Veterans are especially affected by suicide, with an age- and sex-adjusted rate that is 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='5 times higher than nonveterans [7].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' The Department of Veterans Affairs (VA) operates the single largest integrated health care system in the U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=', and has devoted resources to suicide prevention, including the Suicide Prevention Applications Network (SPAN), embedding suicide prevention coordinators and special reporting measures in facilities [8], increased mental health staffing, partnerships with community care organizations, and enhanced surveillance and monitoring through its electronic health record (EHR) system [9, 10].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Additionally, the VA has continual efforts to develop predictive analytics to identify patients at the highest risk of suicide [8, 11] The data elements for these predictive analytic algorithms rely on structured data (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=', International Classification of Disease [ICD] diagnosis codes, prescription data, socio-demographic data, care utilization metrics) [12] which often provide an incomplete record [13, 14].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Less is known about how unstructured data, such as contained in clinical notes, can contribute to suicidality (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=', suicidal ideation or attempt) identification and prevention.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Given that a suicide attempt is one of the greatest risk factors for subsequent suicide death, a more thorough means of detecting such events is warranted [15].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Background and Significance Natural language processing (NLP) combined with machine learning may add value to suicide documentation research.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Supervised machine learning methods use “supervised”, or pre- classified data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' However, naïve attempts at note retrieval using keyword search alone quickly demonstrate the difficulty of this problem, as words such as “suicide” occur in standard questionnaires which are included in many notes, with few actually documenting suicidality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' For instance, in a prior experiment we carried out, we randomly collected 1,000 VA notes containing the term “suicidal” or “suicide” from 1,000 individual patients and performed manual chart review for affirmed suicidality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Only 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='57% of these notes documented actual suicidality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Patient reluctance to disclose suicidal ideation provides a further complicating factor [16, 17].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' As a result, a patient’s negative response to a suicide ideation inquiry may not reflect their real feelings or intentions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Additionally, USA;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' 6VA Connecticut Healthcare System, West Haven, CT, USA;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' 7Suzanne Dworak-Peck School of Social Work, University of Southern California, Los Angeles, CA, USA;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' 8Department of Internal Medicine, Yale School of Medicine, West Haven, CT;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Leveraging Contextual Relatedness to Identify Suicide Documentation in Clinical Notes through Zero Shot Learning T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Elizabeth Workman, Ph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='1,2, Joseph L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Goulet, Ph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='3,6, Cynthia A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Brandt, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='3,6, Allison R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Warren, Ph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='4, Jacob Eleazer, Ph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='4, Melissa Skanderson, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='5, Luke Lindemann, Ph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='6, John R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Blosnich, Ph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='7, John O’Leary, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='Ed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='6,8, Qing Zeng-Treitler, Ph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='1,2 S 2 relying on structured data alone will result in incomplete identification of patients who have or are experiencing suicidality, because relevant coding is prone to underuse [8].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' However, not all clinical notes associated with relevant structured data document suicidality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' For example, a note documenting a secondary service such as group therapy, or a note documenting fluid intake may not directly document suicidality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Prior attempts to apply NLP and machine learning are often limited to mental health-oriented notes and may suffer if using imbalanced data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Levis et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' [18] applied sentiment analysis and various machine learning algorithms to classify suicide, using VA psychotherapy notes, yielding area under the curve (AUC) ratings comparable to chance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Fernandes et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' [19] obtained excellent NLP performance in their study of clinical notes from the Clinical Record Initiative Search (CRIS), but performance was computed after removing neutral (non-suicide) results from their machine learning output.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Carson et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' enriched notes associated with suicide attempt that were then used to train a random forest model achieving 83% sensitivity, but only 22% specificity [20].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Cook et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' [21] applied a bag-of-words approach with machine learning to identify suicide ideation and psychiatric symptoms using notes for patients identified as having performed self-harm, achieving 61% PPV (positive predictive value), 59% sensitivity, and 60% specificity, with results varying depending on the task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Zhang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' sought to identify psychological stressors using a pre-annotated dataset of psychiatric evaluation records from the CEGS N-GRID 2016 challenge [22] as a gold standard, for a conditional random fields machine learning model, [23] yielding final F scores of 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='91% and 89.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='01%, respectively, on exact and inexact stressor matching, and 97.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='73% and 100% respectively, for exact and inexact suicide recognition on instances of the positive keywords with the stressors;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' however, their evaluation methods for this are not detailed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Zhong et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' applied structured data and NLP to identify suicidal behavior in pregnant women, achieving PPV of 76% and 30%, for women identified through relevant diagnostic codes and through NLP for women not receiving a relevant diagnostic code, respectively [24].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Obeid et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' [25] trained a convolutional neural network that achieved an AUC of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='882 and an F1 score of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='769 in predicting relevant suicide ICD codes in subsequent years.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Using notes from psychiatric encounters, Cusick et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' [26] developed a rule-based NLP tool to identify positive instances of suicide-oriented keywords that leveraged NegEx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' [27] They also developed different weakly- supervised machine learning models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' A convolutional neural network receiving Word2Vec [28] word embeddings as input achieved precision, recall, F1 score, and AUC values of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='81, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='83, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='82, and 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='946.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' In a subsequent evaluation the convolutional neural network correctly classified 87% of the 23 notes (of 5000 clinical notes) receiving a positive classification, from notes for patients diagnosed with depression or prescribed an antidepressant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' In a related task Tsui et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' [29] used prior structured and unstructured data (clinical notes from history, physical examination, progress notes and discharge summaries) of inpatient and emergency room patients with a coded suicide attempt, to identify first-time suicide attempts in a case-control study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' An ensemble of extreme gradient boosting (EXGB) yielded best performance, with an AUC ranging from 91.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='9% to 93.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='2%, according to time window between prior data and suicide attempt diagnosis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Recently, Rozova et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' obtained promising results (87% AUC) using a gradient boosting model, although the study was limited to emergency room triage notes [30].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Seeking suicidality in all types of clinical notes, among all types of patients, or when hampered by imbalanced data, is indeed a complex task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Some of the methods in the papers cited above tend to suffer from low precision, specificity, and possibly also low sensitivity (recall).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Identifying probability thresholds addresses these problems, providing flexibility for a given task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' For example, a high probability threshold (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=', the top ten percent) can serve as a means for identifying documentation indicating suicidality and its risk with high precision.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' When the prevalence is very low, which is often the case of true positive suicidality documentation, the optimal threshold needs to balance metrics such as the true positive rate (sensitivity, also known as recall), specificity, and the positive predictive value (precision).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' A strategic implementation of a technique like Zero-Shot Learning may also provide accurate identification of suicidality in clinical notes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Zero-Shot Learning Zero-Shot Learning (ZSL) enables predictions on unseen data using a model trained on data that has labels that are different than those of the unseen data [31, 32].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' It largely operates by mapping select properties of the data (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=', the “feature space”) to a semantic representation (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=', the “semantic space”) that enables prediction of unseen classes [33].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' In other words, auxiliary information must be provided on the labels of the unseen classes to make it possible for a trained model to recognize them in the testing data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' ZSL has been applied in several computer vision tasks [34, 35], as well as NLP tasks [36].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Accordingly, a feature space can consist of data derived from images [37] or text [36].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' The semantic representation can be based on several different approaches, including data attributes, semantic word vectors as those provided by skip-gram or continuous-bag-of-word architectures [33] or BERT output [38], or knowledge graphs [33].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Examples in NLP applications include semantic utterance classification [39] multilingual translation [40] and emotion detection [41].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' However, other than Sivarajkumar and Wang’s work [38] there is little ZSL research in unstructured clinical text data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Naturally, different semantic representations affect the accuracy of ZSL [42].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' In this study, we leveraged word embedding and usage context.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Objectives We investigated a ZSL methodology applied to a binary suicidality classification task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' The training dataset was constructed using diagnostic codes (ICD-10-CM codes) related to suicide.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Our target label is the broader concept of suicidality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' To enable ZSL, a base string representing suicidality was 3 selected.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' We then built the semantic space by identifying key features associated with suicidality in the training dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' A DNN model was developed using the training data and tested on two different sets of unseen data with the unseen label of suicidality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Specifically, we sought to answer: Will ZSL effectively identify suicidality documentation from among all types of clinical notes, using review by clinicians as the reference standard?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Will ZSL effectively identify suicidality or suicide risk documentation from among clinical notes not associated with a relevant ICD-10-CM code, by probability threshold, in terms of precision, using the same reference standard?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' We are unaware of previous descriptions of this methodology and to our knowledge it has not been used prior to this study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' METHODS A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Training Data A training dataset was created using two corpora.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' The first corpus consisted of 50,000 randomly selected VA clinical notes from outpatient encounters recorded between 2016 and 2019 which contained the base string “suicid” (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' “suicide”, “suicidal” ) and were associated with at least one ICD-CM-10 code identified by the National Health Statistics Report from the Centers for Disease Control and Prevention (CDC) indicating suicide attempt or intentional self-harm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' [43] This corpus is referred to as stringAndDx (9170 unique patients).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' The second corpus consisted of 50,000 randomly selected VA clinical notes from outpatient encounters recorded between 2016 and 2019 that were associated with other ICD-CM-10 codes that were irrelevant to suicidality or self-harm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' These notes were extracted from patients matching the stringAndDx patients in age (at the time of document retrieval), race, and ethnicity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' This second corpus is referred to as noDx (8638 unique patients).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Each corpus was preprocessed by transforming all letters to lower case, removing basic formatting markup and punctuation, separating character strings into tokens (words), separating relevant concatenated tokens (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=', “suicidalhomicidal” to “suicidal” ”homicidal”), and removing all tokens that did not entirely consist of letters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Semantic Space Feature Extraction and Mapping The task to build the semantic space was carried out in three steps: First, we identified a list of features that are potentially relevant for the positive training label.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Second, we created word embeddings using a skip-gram architecture.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Third, we identified context words of the selected features using the word embeddings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' In a fourth step, a contextual weight is assigned to each feature for each document in mapping the semantic space to the feature space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' In the first step, inverse document frequency (TF-IDF) analysis was used to identify the n most important terms in each corpus.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' For this investigation, n = 1000.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' TF-IDF evaluates term frequency using the count of documents containing a given term.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' In each document, the relative frequency of each term is weighted by the log of the number of documents in the corpus divided by the number of documents containing the term, as shown in (1) 𝑡𝑖,𝑗 = 𝑡𝑓𝑖,𝑗 ∗ 𝑙𝑜𝑔( 𝑛 𝑑𝑓𝑖 ) where ti,j is term i in document j, tfi,j is the relative frequency of term i in document j, n is the total number of documents, and dfi is the number of documents containing term i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Because TF- IDF is a document-based measurement, we used the mean TF- IDF value for each term in its respective corpus.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' The words with the top TF-IDF scores that are unique to the stringAndDx corpus were treated as features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Figure 1 illustrates this process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Each circle represents terms from one of the corpora.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Sets a and b are the words with the top n TFIDF scores for stringAndDx and noDx, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Set c is the overlap between a and b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' The feature set F contains words that are in set a, but not in the overlap set c or in set b (f \uf0ce a and f \uf0cf c and f \uf0cf b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Feature identification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Words that are deemed as features are in set a, excluding words in c and b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' In the second step, we created a Word2Vec model using the stringAndDx corpus.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' In this study, the model was a shallow neural network with the hidden layer containing 300 nodes, applying the skip-gram architecture, with an analytic window size of 5, trained through 10 iterations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' In the third step, we identified the top m context words for each feature word using the word embeddings from the Word2Vec model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' The m words most similar to each feature word, according to cosine similarity values, served as its context words.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' In this investigation, m = 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' In the fourth step, we map the feature space, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' a document’s preprocessed content, to the semantic space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' A weight v is assigned to each feature word for each document, based on its occurrence with its context words in a window in the document’s text.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' This weight is the summed total of the cosine similarity between the feature and a co-occurring context word multiplied by the mean TF-IDF value of the feature word.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' The formula is shown in (2) 𝑣 = ∑ 𝑐𝑜𝑠𝑆𝑖𝑚(𝑥, 𝑦) ∗ 𝑡𝑓𝑖𝑑𝑓(𝑥) 𝑥∈𝐹,𝑦∈𝐷 where x is a feature in F, the set of features in the semantic space, and y is a context word of set D, the context words for x in the semantic space, which occurs in a five-word window around x in the document’s text.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' This process is illustrated in Figure 2, where “pattern” (highlighted in light gray) is a feature word, and “internalizing” and “fitful” (highlighted in dark gray) are among its set of context words and appear in a five-word window.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' (2) (1) stringAndDx noDx a c 6 4 Figure 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Example of deriving a feature weight using (2) If a feature word is not in the text, its value is zero for the given document.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Model Development 20,000 documents were randomly selected from each corpus (stringAndDx and noDx).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' We trained a DNN model (here referred to as the ZSL DNN) consisting of five fully-connected hidden layers of alternating sizes of 30 or 70 nodes, with each layer implementing a dropout rate of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' We implemented the Adam optimizer [44], with a learning rate of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='0012, beta 1 value of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='92, beta 2 value of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='9992, and an epsilon value of 1e-08, with binary cross entropy as the loss function, and the sigmoid function in the output layer, since it was a binary classification task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' The architecture and hyperparameters were chosen on empirical grounds, after experimentation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Each document from the stringAndDx corpus was classified as “1” (a generic positive instance), and each document from the noDx corpus was classified as “0” (a generic negative instance).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' These labels do not indicate whether or not the given document directly pertains, or not pertains, to suicidality or its risks, but an association with a structured data element, and for those labeled “1”, also containing a base string.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Balancing the positive and negative approximated training datasets in this manner (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=', providing balanced training examples) addressed the problematic issue of otherwise training a model with few positive and many negative instances.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' We implemented a 60% training, 20% validation, and 20% testing split in developing the ZSL DNN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Figure 3 illustrates the method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Figure 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' The corpora stringAndDx (2016-19), noDx (2016-19), testSet1 (2020), and testSet2 (2020) are unique and extracted from all clinical notes based on associated ICD-10-CM codes, and in the case of stringAndDx, where a base string is also present;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' corpora content is preprocessed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' The stringAndDx and noDx corpora are used in the TF-IDF analysis to identify feature words that are unique to stringAndDx (step 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' stringAndDx is applied to a skip-gram model to produce word embeddings (step 2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Feature words and their significant context words (determined through the word embeddings) form the semantic space (step 3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' The contents of stringAndDx and noDx are mapped to the semantic space, using a function to determine feature word weights (step 4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' The mapped contents of stringAndDx and noDx documents are used to train the ZSL DNN, using generic labels 1 and 0, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' The mapped contents of unseen testSet1 and testSet2 notes were classified by the trained ZSL DNN, for the classes (a) containing suicidality documentation, or (b) not containing suicidality documentation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Human annotation independently classified random documents from testSet1 and testSet2 for the same classes (a) containing suicidality documentation, or (b) not containing suicidality documentation;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' human annotation also assessed documents from testSet2 containing the base string that received a probability of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='90 or greater, for these classes and suicidality risk factors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Evaluation The authors randomly retrieved 5,000 different clinical notes recorded in 2020 that were associated with at least one of the relevant IDC-10-CM codes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' This corpus is subsequently labeled as testSet1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' The authors also randomly retrieved 5,000 different clinical notes recorded in 2020 that were associated with other IDC-10-CM codes irrelevant to suicidality or self- harm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' This corpus is subsequently labeled testSet2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' The contents of each of the notes in testSet1 and testSet2 were mapped to the semantic space, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=', deriving a weight for each feature word as described earlier in the fourth step.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Then, the trained ZSL DNN was used to classify the notes in testSet1 and testSet2 as (a) containing suicidality documentation, or (b) not containing suicidality documentation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' In joint sessions, two clinical psychologists familiar with VA clinical note documentation together identified suicidality (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=', current or past suicide ideation or attempt) in 200 notes randomly selected from testSet1 and testSet2 (100 from each test set), after being instructed to look for documentation for these specific events.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' They addressed differences of opinion through discussion and mutual consensus during the joint sessions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' In a second evaluation, to explore how the application’s output may serve to identify patients who had experienced or were at risk for suicidality, but never formally diagnosed as such, the clinicians examined the testSet2 notes containing the base string “suicid" that received a probability value of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='90 or greater from the trained ZSL DNN, for documentation of suicidality and/or its risk factors, according to NIH guidelines.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' [45] This threshold was chosen in order to explore how high-probability documents (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' the top 10% in terms of probability) would be representative in identifying documented suicidality or its risk factors with high precision, thus addressing our second question.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' 1) Baseline Comparison For comparative purposes, the 163 most frequent bigrams unique to the stringAndDx corpus were identified and used in a bag-of-words baseline model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' We trained a DNN (here referred to as the Baseline DNN) using these 163 bigrams as features for the 20,000 stringAndDx documents and the 20,000 noDx documents.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' This baseline DNN was also used to classify the Document Text: “The patient has a pattern of internalizing criticism from his family.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' This pattern sometimes results in fitful outbursts.” TF-IDF value of feature word “pattern”: 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='0062 Cosine similarity of “pattern” and “internalizing”: 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='4673 Cosine similarity of “pattern” and “fitful”: 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='3824 Feature weight for “pattern”: (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='0062 * 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='4673) + (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='0062 * 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='3824) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='0053 All Clinical Notes ICDcodes ICDcodes Base String Human testSetl testSet2 stringAndDx noDx Annotation (suicidality) TFIDF Analysis Word Embeddings Semantic Map content Space Mapcontent Testing DNN Training Output is a classification of (a) containing suicidality documentation or (b) not containing suicidality documentation 5 notes in testSet1 and testSet2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' for (a) containing suicidality documentation,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' or (b) not containing suicidality documentation,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' using the 163 most frequent bigrams as features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' RESULTS The first step of the new method (described in Methods) identified 163 feature words associated with suicidality diagnosis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' The top thirty feature words are listed in Table I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' No form of the base string “suicid” was found among the 163 final feature words.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Both “suicide” and “suicidal” were prominent terms in both the noDx and stringAndDx corpora, along with terms like “psychiatrist” and “psychosocial”;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' this is likely due to the proliferation of objects like questionnaires, and mental health care documentation in notes that are unrelated to suicidality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' TABLE I TOP 30 FEATURE WORDS flag overdose coordinator took spc observation called warning pills prf unknown interrupted gun placement lcsw lethal outcome reportedly notified sdv occurred police protocol od supports seeking category preparatory cut determined A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' ZSL DNN and Baseline DNN Performance The classifications by the clinicians and the probabilities assigned by the ZSL DNN and the Baseline DNN were first assessed by AUC score.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' The results are in Table II and Figure 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' TABLE II AUC PERFORMANCE ZSL DNN Baseline DNN 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='946 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='47 Figure 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' ZSL DNN AUC results (left), Baseline DNN AUC results (right) In terms of AUC, the ZSL DNN trained through mapping the semantic space to the feature space outperformed the Baseline DNN trained with the bigram bag-of-words features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' The sensitivity, specificity, and PPV results at 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='15, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='5, and 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='85 probability thresholds for each DNN are in Tables III-V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Probability refers to the probability the DNN assigned to each note for positive suicidality documentation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' We applied the median probability (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='1499, rounded) assigned by the ZSL DNN to the testSet2 documents (the test set containing random notes associated with irrelevant ICD-10-CM codes) in forming minimum and maximum thresholds;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='5 is a standard midpoint probability threshold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' The combined scores in these tables were computed with all true positives, true negatives, false positives, and false negatives for both test sets, for the indicated metrics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Values of NaN (not a number) occurred where there were no true positives or false positives.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' TABLE III EVALUATION RESULTS AT 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='15 PROBABILITY THRESHOLD ZSL DNN Sensitivity/Recall Specificity Precision/PPV testSet1 97% 100% 91% testSet2 100% 64% 05% Combined 97% 59% 67% Baseline DNN testSet1 99% 0% 90% testSet2 50% 09% 01% Combined 98% 08% 48% TABLE IV EVALUATION RESULTS AT 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='5 PROBABILITY THRESHOLD ZSL DNN Sensitivity/Recall Specificity Precision/PPV testSet1 92% 40% 93% testSet2 50% 97% 25% Combined 91% 92% 90% Baseline DNN testSet1 92% 0% 89% testSet2 50% 10% 1% Combined 91% 9% 46% TABLE V EVALUATION RESULTS AT 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='85 PROBABILITY THRESHOLD ZSL DNN Sensitivity/Recall Specificity Precision/PPV testSet1 77% 70% 96% testSet2 50% 100% 100% Combined 76% 97% 96% Baseline DNN testSet1 0% 100% NaN/div by 0 testSet2 0% 100% NaN/div by 0 Combined 0% 100% NaN/div by 0 The ZSL DNN outperformed the Baseline DNN in most metrics at all probability thresholds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Second Evaluation To explore how this new methodology can identify clinical notes documenting suicidality that are not associated with a relevant ICD-10-CM code with high precision, the clinicians also reviewed the 16 notes from testSet2 containing the base string “suicid’ that received a probability at or above 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='90 from the trained ZSL DNN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' The clinicians noted suicide ideation or attempt,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' and the presence of the following suicide risk factors,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' based on National Institute of Mental Health guidelines [45]: Depression and other mental health disorders Substance abuse disorder Family history of a mental health or substance abuse disorder Family history of suicide Family violence,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' including physical or sexual abuse Having guns or other firearms in the home Being in prison or jail Being exposed to others’ suicidal behavior Of these 16 clinical notes (associated with 16 different patients),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' 7 documented current or past suicide ideation or attempt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Eight of the remaining notes included one or more risk factors for suicide (nearly all included multiple risk factors).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' In all, 15 of the 16 notes contained documentation of current or past suicide ideation or attempt, and/or suicide risk 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='0 model results 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='Dno distinction model results 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='8- 2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='0 Q2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='4 False Positive Rate 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='8 10 6 factors, for patients who had never received a suicidality ICD- 10-CM code diagnosis during the study period, achieving a PPV of 93.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='8%.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' DISCUSSION Regarding the study’s original questions, our ZSL approach effectively identified suicidality in all types of clinical notes, surpassing the performance of the bag-of-words baseline in conjunction with deep learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' It also effectively identified suicidality or suicide risk documentation from among clinical notes not associated with a relevant ICD-10-CM code with high precision, on probability threshold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Semantic Space In this work, the semantic space development is framed as feature extraction where mapping is enhanced by attaching weights to features found in the data, an approach also used in computer vision ZSL [46].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' The semantic space captures natural data properties by identifying salient terms and relevant contextual terms in collective clinical suicidality documentation (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=', a corpus of notes associated with relevant ICD codes).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Table 1 lists 30 prominent feature words associated with collective suicidality documentation after removing terms associated with other kinds of documents.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' There is an intuitive sense to these words;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' “flag” is found in the phrase “high risk for suicide flag”;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' “overdose” and “cut” refer to suicide methods;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' “pills” and “gun” refer to suicide instruments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Identifying terms contextually similar to these provides patterns in relevant documentation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Again, this has an intuitive logic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' The most contextually similar terms to “flag” include “reactivate” and “deactivate” (for a high suicide risk flag) and “high” (the level of risk).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' The most contextually similar terms to “pills” include “handful”, “fistfuls”, and “bunch”, implying large quantities, along with “overdosing” and “took”, the associated actions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' The feature word “spc” indicates VA’s suicide prevention coordinators, which is a structural change that VA implemented for suicide prevention [10].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Concordantly, “police” and “lcsw” (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=', licensed clinical social worker) refer to other professions highly associated with individuals at risk for suicide.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' For example, police may be activated for a rescue, and a licensed clinical social worker may be involved in treatment planning or referral connections for suicidal individuals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' The feature words “prf” and “sdv” refer to “patient record flag” and “self-directed violence”, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' The semantic space provided an efficient representation for effective mapping to the feature space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Data Retrieval and Model Training Using associated structured data elements like ICD-10-CM codes, and a base string provides a means to locate equally sized corpora for training that could be generically labeled “0” or “1”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' These labels were primarily based on a structured data association, since their individual unstructured content was mostly unknown.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' This approach solves the issue of imbalanced training data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' The predominant clinical note types (Appendix) also illustrate this.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Most of the frequent note types associated with one of the relevant CDC ICD-10-CM codes and containing the base string are relevant to suicidality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Addendum is a common note type [47] associated with many domains [48].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' The most frequent note types not associated with a relevant code resemble frequencies of all note types in the VA [47].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Identifying Suicidality Documentation To our knowledge, this method has not been applied in other studies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Unlike VA surveillance methods using structured data, it also leverages information found in EHR notes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Also, unlike other NLP methods [18, 20, 21, 23, 24, 26, 29, 30] it can be applied to all patients and note types.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' In other studies, a bag- of-words approach has been applied to suicidality identification and other machine learning tasks [21, 49, 50].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' However, the results of this current study suggest that the complexity of suicidality documentation demands a more targeted approach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' This method could complement existing measures like SPAN, alerting suicide prevention coordinators of additional patients at risk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' The results of the two clinical psychologists’ evaluations demonstrate the method’s efficiency in identifying suicidality documentation for documents where there is no relevant ICD-10-CM code.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' The performance on both test sets demonstrates the methodology’s effectiveness in classifying notes that are mixed in terms of ICD-10-CM coding.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Tables III - V suggest that the probability threshold can be adjusted to suit a specific task like finding suicidality and its risk factors with high precision among notes not associated with a relevant ICD-10-CM code.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' This is especially true considering the small prevalence of suicidality documentation in clinical notes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' The second evaluation (which yielded 93.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='8% PPV) demonstrates this.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' By applying a high probability threshold of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='90 to all 5000 testSet2 documents and focusing on clinical notes containing the base string, of the 16 documents (for 16 different patients), 94% contained suicidality and/or suicidality risk factor documentation, based on clinician review.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' These results exceed those of Cusick et al.’s [26] similar task, where 87% of notes were correctly classified, among notes for patients diagnosed with depression or prescribed an antidepressant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' In this current study’s second evaluation, none of the 16 patients identified had ever received a suicide ICD-10-CM code during the study’s time period.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' It is impossible to know if the patients in the 8 notes simply containing documented risk factors were suicidal or not based solely on electronic health records.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Suicidal patients sometimes deny suicide ideation or attempt [16, 51].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' For example, in one note from the chart review associated with a relevant ICD-10-CM code, the patient reportedly denied suicide ideation, even after checking into the hospital hours earlier for a self-reported suicide attempt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Future Work This work is part of a larger study of patients at risk for suicide.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' [52] The next step is to combine these findings with prior work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' We also plan an analysis of patients from first suicide ideation or attempt documented in the VA system, to understand their evolution of care.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Limitations VHA data largely cover a population of older men.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' However, the amount of women and younger patients is increasing, thus 7 also increasing the generalizability of these findings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' The corpora retrieval method we used to train the ZSL DNN is dependent on clinicians’ use of the relevant ICD-10-CM codes in documenting care, which may be prone to underuse [8].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' However, the results of this study indicate the method’s utility.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Due to environmental computational limitations, we randomly selected 20,000 notes from the stringAndDx corpus, and 20,000 notes from the noDx corpus for training the ZSL DNN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' CONCLUSION We developed a new methodology to identify suicidality in clinical notes using zero-shot learning (ZSL).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' A trained ZSL deep neural network (DNN) outperformed a DNN trained using a baseline bag-of-words method in AUC scores and other metrics assessed at various probability thresholds on unseen data, according to expert review.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' This novel methodology identifies suicidality and its risk factors with high precision, when applying a 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='90 probability threshold, in VA clinical notes not associated with a relevant ICD-10-CM code.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' This methodology could complement existing suicidality identification measures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' These findings hold promise for future research.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='APPENDIX ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='Most Frequent Note Types in Training Data by Corpus ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='stringAndDx ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='noDx ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='Note Type ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='Count ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='Note Type ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='Count ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='Addendum ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='2844 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='Addendum ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='5683 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='Suicide Behavior ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='and Report ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='843 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='Primary Care Secure ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='Messaging ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='291 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='Suicide Prevention ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='Telephone Note ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='811 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='Nursing Note ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='228 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='Suicide Behavior ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='and Overdose ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='Report ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='613 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='Administrative Note ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='207 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='Suicide Prevention ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='Note ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='452 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='State Prescription ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='Drug Monitoring ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='Program ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='110 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='Suicide Prevention ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='Safety Plan ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='448 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='Care Flow Sheet ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='88 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='Mental Health ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='Nursing ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='Assessment Note ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='374 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='Telephone Contact ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='75 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='Veterans Crisis ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='Line Note ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='222 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='Mental Health ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='Diagnostic Study ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='Note ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='71 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='Social Work Note ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='213 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='Non VA Care ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='Consult Result Note ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='69 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='Suicide Prevention ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='Contact ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='212 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='Operation Report ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='64 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='ACKNOWLEDGMENT ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='The views expressed are those of the authors and do not ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='necessarily reflect those of the Department of Veterans Affairs,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' the United States Government,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' or the academic affiliate institutions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' This work was funded by Veterans Affairs Health Services Research and Development Services grant IIR 18-035 Understanding Suicide Risks among LGBT Veterans in VA Care, and NIH National Center for Advancing Translational Sciences grant UL1TR001876.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' REFERENCES [1] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Hedegaard, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Curtin, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Warner.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Suicide mortality in the United States, 1999–2019, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' [2] American Foundation for Prevention.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' "Suicide Statistics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='" American Foundation for Suicide Prevention.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' https://afsp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='org/suicide-statistics [3] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Gonzales and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Henning-Smith, "Disparities in health and disability among older adults in same-sex cohabiting relationships," J Aging Health, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' 27, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' 3, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' 432-53, Apr 2015, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='1177/0898264314551332.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' [4] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Berman, "Estimating the population of survivors of suicide: seeking an evidence base," Suicide Life Threat Behav, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' 41, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' 1, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' 110-6, Feb 2011, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='1111/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='1943-278X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='2010.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='00009.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' [5] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Stack, "Suicide: a 15-year review of the sociological literature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Part I: cultural and economic factors," Suicide Life Threat Behav, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' 30, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' 2, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' 145-62, Summer 2000.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' [Online].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Available: https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='ncbi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='nlm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='nih.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='gov/pubmed/10888055.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' [6] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Hawton, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Casanas, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Haw, and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Saunders, "Risk factors for suicide in individuals with depression: a systematic review," J Affect Disord, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' 147, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' 1-3, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' 17-28, May 2013, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='jad.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='01.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='004.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' [7] "2019 National Veteran Suicide Prevention Annual Report," U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Department of Veterans Affairs, Office of Mental Health and Suicide Prevention, September 2019 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' [Online].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Available: https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='mentalhealth.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='va.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='gov/docs/data- sheets/2019/2019_National_Veteran_Suicide_Prevention_Annual_Repo rt_508.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='pdf [8] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Hoffmire, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Stephens, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Morley, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Thompson, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Kemp, and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Bossarte, "VA Suicide Prevention Applications Network: A National Health Care System-Based Suicide Event Tracking System," Public Health Rep, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' 131, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' 6, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' 816-821, Nov 2016, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='1177/0033354916670133.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' [9] I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Katz, "Lessons learned from mental health enhancement and suicide prevention activities in the Veterans Health Administration," Am J Public Health, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' 102 Suppl 1, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' S14-6, Mar 2012, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='2105/AJPH.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='2011.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='300582.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' [10] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Carroll, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Kearney, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Miller, "Addressing Suicide in the Veteran Population: Engaging a Public Health Approach," Front Psychiatry, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' 11, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' 569069, 2020, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='3389/fpsyt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='569069.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' [11] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' McCarthy et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=', "Predictive Modeling and Concentration of the Risk of Suicide: Implications for Preventive Interventions in the US Department of Veterans Affairs," Am J Public Health, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' 105, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' 9, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' 1935-42, Sep 2015, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='2105/AJPH.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='302737.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' 8 [12] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Kessler et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=', "Developing a practical suicide risk prediction model for targeting high-risk patients in the Veterans health Administration," Int J Methods Psychiatr Res, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' 26, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' 3, Sep 2017, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='1002/mpr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='1575.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' [13] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Moss, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Andison, and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Sobko, "An analysis of narrative nursing documentation in an otherwise structured intensive care clinical information system," AMIA Annu Symp Proc, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' 543-7, Oct 11 2007.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' [Online].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Available: https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='ncbi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='nlm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='nih.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='gov/pubmed/18693895.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' [14] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Kong, "Managing Unstructured Big Data in Healthcare System," Healthc Inform Res, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' 25, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' 1, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' 1-2, Jan 2019, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='4258/hir.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' [15] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Bostwick, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Pabbati, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Geske, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' McKean, "Suicide Attempt as a Risk Factor for Completed Suicide: Even More Lethal Than We Knew," Am J Psychiatry, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' 173, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' 11, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' 1094-1100, Nov 1 2016, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='1176/appi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='ajp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='15070854.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' [16] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Harmer, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Lee, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Duong Tv, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Saadabadi, "Suicidal Ideation," in StatPearls.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Treasure Island (FL), 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' [17] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Louzon, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Bossarte, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' McCarthy, and I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Katz, "Does Suicidal Ideation as Measured by the PHQ-9 Predict Suicide Among VA Patients?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='," Psychiatr Serv, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' 67, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' 5, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' 517-22, May 1 2016, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='1176/appi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='ps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='201500149.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' [18] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Levis, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Leonard Westgate, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Gui, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Watts, and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Shiner, "Natural language processing of clinical mental health notes may add predictive value to existing suicide risk models," Psychol Med, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' 1-10, Feb 17 2020, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='1017/S0033291720000173.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' [19] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Fernandes, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Dutta, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Velupillai, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Sanyal, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Stewart, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Chandran, "Identifying Suicide Ideation and Suicidal Attempts in a Psychiatric Clinical Research Database using Natural Language Processing," Sci Rep, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' 8, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' 1, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' 7426, May 9 2018, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='1038/s41598-018-25773-2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' [20] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Carson et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=', "Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records," PloS one, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' 14, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' 2, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' e0211116, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' [21] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Cook, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Progovac, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Chen, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Mullin, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Hou, and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Baca- Garcia, "Novel Use of Natural Language Processing (NLP) to Predict Suicidal Ideation and Psychiatric Symptoms in a Text-Based Mental Health Intervention in Madrid," Comput Math Methods Med, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' 2016, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' 8708434, 2016, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='1155/2016/8708434.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' [22] O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Uzuner, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Stubbs, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Filannino, "A natural language processing challenge for clinical records: Research Domains Criteria (RDoC) for psychiatry," J Biomed Inform, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' 75S, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' S1-S3, Nov 2017, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='jbi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='005.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' [23] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Zhang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=', "Psychiatric stressor recognition from clinical notes to reveal association with suicide," Health Informatics J, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' 25, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' 4, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' 1846-1862, Dec 2019, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='1177/1460458218796598.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' [24] Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='-Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Zhong et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=', "Screening pregnant women for suicidal behavior in electronic medical records: diagnostic codes vs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' clinical notes processed by natural language processing," BMC medical informatics and decision making, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' 18, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' 1, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' 1-11, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' [25] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Obeid et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=', "Identifying and Predicting intentional self-harm in electronic health record clinical notes: Deep learning approach," JMIR medical informatics, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' 8, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' 7, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' e17784, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' [26] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Cusick et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=', "Using weak supervision and deep learning to classify clinical notes for identification of current suicidal ideation," J Psychiatr Res, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' 136, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' 95-102, Apr 2021, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='jpsychires.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='01.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='052.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' [27] W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Chapman, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Bridewell, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Hanbury, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Cooper, and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Buchanan, "A simple algorithm for identifying negated findings and diseases in discharge summaries," J Biomed Inform, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' 34, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' 5, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' 301-10, Oct 2001, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='1006/jbin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='2001.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='1029.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' [28] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Mikolov, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Chen, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Corrado, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Dean, "Efficient estimation of word representations in vector space," arXiv preprint arXiv:1301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='3781, 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' [29] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Tsui et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=', "Natural language processing and machine learning of electronic health records for prediction of first-time suicide attempts," JAMIA Open, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' 4, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' 1, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' ooab011, Jan 2021, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='1093/jamiaopen/ooab011.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' [30] V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Rozova, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Witt, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Robinson, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Li, and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Verspoor, "Detection of self-harm and suicidal ideation in emergency department triage notes," J Am Med Inform Assoc, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' 29, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' 3, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' 472-480, Jan 29 2022, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='1093/jamia/ocab261.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' [31] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Larochelle, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Erhan, and Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Bengio, "Zero-data learning of new tasks," in AAAI, 2008, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' 1, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' 2, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' [32] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Lampert, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Nickisch, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Harmeling, "Learning to detect unseen object classes by between-class attribute transfer," in 2009 IEEE conference on computer vision and pattern recognition, 2009: IEEE, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' 951-958.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' [33] X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Sun, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Gu, and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Sun, "Research progress of zero-shot learning," Applied Intelligence, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' 51, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' 6, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' 3600-3614, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' [34] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Romera-Paredes and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Torr, "An embarrassingly simple approach to zero-shot learning," in International conference on machine learning, 2015: PMLR, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' 2152-2161.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' [35] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Hu, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Xiong, and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Socher, "Zero-shot image classification guided by natural language descriptions of classes: A meta-learning approach," NeurIPS, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' [36] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Dinu, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Lazaridou, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Baroni, "Improving zero-shot learning by mitigating the hubness problem," arXiv preprint arXiv:1412.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='6568, 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' [37] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Pourpanah et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=', "A review of generalized zero-shot learning methods," IEEE transactions on pattern analysis and machine intelligence, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' [38] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Sivarajkumar and Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Wang, "HealthPrompt: A Zero-shot Learning Paradigm for Clinical Natural Language Processing," arXiv preprint arXiv:2203.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='05061, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' [39] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Dauphin, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Tur, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Hakkani-Tur, and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Heck, "Zero-shot learning for semantic utterance classification," arXiv preprint arXiv:1401.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='0509, 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' [40] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Johnson et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=', "Google’s multilingual neural machine translation system: Enabling zero-shot translation," Transactions of the Association for Computational Linguistics, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' 5, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' 339-351, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' [41] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Tesfagergish, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Kapočiūtė-Dzikienė, and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Damaševičius, "Zero- Shot Emotion Detection for Semi-Supervised Sentiment Analysis Using Sentence Transformers and Ensemble Learning," Applied Sciences, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' 12, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' 17, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' 8662, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' [42] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Hascoet, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Ariki, and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Takiguchi, "Semantic embeddings of generic objects for zero-shot learning," EURASIP Journal on Image and Video Processing, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' 2019, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' 1, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' 1-14, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' [43] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Hedegaard, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Schoenbaum, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Claassen, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Crosby, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Holland, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Proescholdbell, "Issues in Developing a Surveillance Case Definition for Nonfatal Suicide Attempt and Intentional Self-harm Using International Classification of Diseases, Tenth Revision, Clinical Modification (ICD-10-CM) Coded Data," Natl Health Stat Report, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' 108, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' 1-19, Feb 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' [Online].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Available: https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='ncbi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='nlm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='nih.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='gov/pubmed/29616901.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' [44] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Kingma and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Ba, "Adam: A method for stochastic optimization," arXiv preprint arXiv:1412.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='6980, 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' [45] National Institute of Mental Health/NIH.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' "Suicide In America: Frequently Asked Questions: Who is at Risk for Suicide?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='" https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='nimh.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='nih.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='gov/health/publications/suicide-faq/#pub2 [46] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Caceres et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=', "Feature Selection Methods for Zero-Shot Learning of Neural Activity," Front Neuroinform, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' 11, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' 41, 2017, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='3389/fninf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='00041.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' [47] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Shao, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Divita, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Workman, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Redd, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Garvin, and Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Zeng- Treitler, "Clinical Sublanguage Trend and Usage Analysis from a Large Clinical Corpus," in 2020 IEEE International Conference on Big Data (Big Data), 2020: IEEE, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' 3837-3845.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' [48] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Workman, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Divita, and Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Zeng-Treitler, "Discovering Sublanguages in a Large Clinical Corpus through Unsupervised Machine Learning and Information Gain," in 2019 IEEE International Conference on Big Data (Big Data), 2019: IEEE, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' 4889-4898.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' [49] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Clapp, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Kim, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' James, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Perlis, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Kaimal, and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' McCoy, Jr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=', "Natural language processing of admission notes to predict severe maternal morbidity during the delivery encounter," Am J Obstet Gynecol, Apr 14 2022, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='ajog.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='04.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='008.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' [50] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Figueroa and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Flores, "Extracting Information from Electronic Medical Records to Identify the Obesity Status of a Patient Based on Comorbidities and Bodyweight Measures," J Med Syst, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' 40, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' 8, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' 191, Aug 2016, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='1007/s10916-016-0548-8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' [51] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Merelle, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Foppen, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Gilissen, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Mokkenstorm, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Cluitmans, and W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Van Ballegooijen, "Characteristics Associated with Non-Disclosure of Suicidal Ideation in Adults," Int J Environ Res Public Health, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' 15, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' 5, May 9 2018, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content='3390/ijerph15050943.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' [52] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' Workman et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=', "A Prototype Application to Identify LGBT Patients in Clinical Notes," in 2020 IEEE International Conference on Big Data (Big Data), 2020: IEEE, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} +page_content=' 4270-4275.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/7NE1T4oBgHgl3EQf7QUc/content/2301.03531v1.pdf'} diff --git a/8NE1T4oBgHgl3EQfBwLj/content/2301.02857v1.pdf b/8NE1T4oBgHgl3EQfBwLj/content/2301.02857v1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..d90f9cff9ba70e4ed2f15b43eedf50c2c8094207 --- /dev/null +++ b/8NE1T4oBgHgl3EQfBwLj/content/2301.02857v1.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:5bdfec9315f9f01d5d71284efed2012a5403c3f041d9e7f0e173ccaf003bd04c +size 1148106 diff --git a/8NE1T4oBgHgl3EQfBwLj/vector_store/index.pkl b/8NE1T4oBgHgl3EQfBwLj/vector_store/index.pkl new file mode 100644 index 0000000000000000000000000000000000000000..31b931580828e24ce6fd2a67b4e8dd12fd8a852d --- /dev/null +++ b/8NE1T4oBgHgl3EQfBwLj/vector_store/index.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:927ecd9747e98327afa116eb36d3996dfdf3e6dc9d414d401d1220b83bddc46d +size 96640 diff --git a/8tAyT4oBgHgl3EQfQ_YL/content/tmp_files/2301.00055v1.pdf.txt b/8tAyT4oBgHgl3EQfQ_YL/content/tmp_files/2301.00055v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..e2a3d26a557d5082df9c204e5aa08235cb86dc14 --- /dev/null +++ b/8tAyT4oBgHgl3EQfQ_YL/content/tmp_files/2301.00055v1.pdf.txt @@ -0,0 +1,2822 @@ +A Bayesian latent position approach for community detection in +single- and multi-layer networks with continuous attributes +Zhumengmeng Jina, Juan Sosab and Brenda Betancourtc +a University of Florida +b Universidad Nacional de Colombia +c NORC at the University of Chicago +December 2022 +Abstract +The increasing prevalence of multiplex networks has spurred a critical need to take into account po- +tential dependencies across different layers, especially when the goal is community detection, which is a +fundamental learning task in network analysis. We propose a full Bayesian mixture model for community +detection in both single-layer and multi-layer networks. A key feature of our model is the joint modeling +of the nodal attributes that often come with the network data as a spatial process over the latent space. +In addition, our model for multi-layer networks allows layers to have different strengths of dependency +in the unique latent position structure and assumes that the probability of a relation between two actors +(in a layer) depends on the distances between their latent positions (multiplied by a layer-specific factor) +and the difference between their nodal attributes. Under our prior specifications, the actors’ positions +in the latent space arise from a finite mixture of Gaussian distributions, each corresponding to a cluster. +Simulated examples show that our model performs favorably compared to the existing ones. The model +is also applied to a real three-layer network of employees in a law firm. +1 +Introduction +Network data conveniently describes the relationships between actors in complex systems and is ubiquitous +in many statistical applications, including finance, social science, criminology, biology, epidemiology, and +computer science, among others. Understanding the relationships between actors can aid domain experts. +Key words and phrases. multiplex network, community detection, latent position model, mixture model, spatial process, visu- +alization +1 +arXiv:2301.00055v1 [stat.AP] 30 Dec 2022 + +For instance, in epidemiology, people in a certain area can be portrayed in a contact network that can be +studied to detect infectious disease outbreaks. In criminology, communications between terrorists form a +terrorist network, helping intelligence agencies to better counter terrorism. +Many models have been developed for the inference of networks over the past decades (e.g., Erdös and +Rényi, 1959, Frank and Strauss, 1986), among which the broad class of latent space models is one of the +most widely used (see, e.g., Sosa, 2021 for an exhaustive review). Suppose the network under study has +N actors, then under latent space models, there are N independent and identically distributed (i.i.d.) latent +variables z1, . . . , zN, one for each actor. Under a mild exchangeability assumption in Hoff [2007], results +in Aldous [1985] and Hoover [1982] show that edge variables yi,j depend on latent variables through a +symmetric function γ(zi, zj) that is meant to capture any pattern in the network beyond any known covariate +information. +Many well-known models fall into the category of latent space models, which can be distinguished between +two cases depending on whether latent variables are discrete or continuous [Matias and Robin, 2014]. For in- +stance, stochastic block models [Nowicki and Snijders, 2001, Wang and Wong, 1987] – hereafter SBM – are +special cases of latent space models with discrete latent variables zi ∈ {1, 2, . . . , K}. When latent variables +are assumed to be continuous, another approach using latent variables is the class of latent position models +(LPM) proposed by Hoff et al. [2002] which our model in the paper is built upon. In its basic formulation, +LPMs model the edge variables yi,j as conditionally independent given the distance between latent variables +γ(zi, zj) = −∥zi − zj∥, which naturally accounts for transitivity effects through the latent space (typically +a Euclidean K-dimensional space for a predetermined K) where zi lives. Later on, Handcock et al. [2007] +proposed an extension on Hoff et al.’s LPM, namely the latent position cluster model (LPCM), by imposing +a Gaussian mixture prior on the latent positions to perform clustering tasks. Krivitsky et al. [2009] further +extended Handcock et al.’s model by adding the random sender and receiver effects proposed by Hoff [2005]. +Other formulations of γ(·, ·) can be found in Schweinberger and Snijders [2003], Hoff [2005, 2009], Athreya +et al. [2017], Minhas et al. [2019], among others. +Besides edge information of a network, extra information like node and edge attributes and different types +of edges are often available, and should ideally be leveraged for inference. Typical ways to incorporate +attributes in a network model include: (1) modeling the network as a function of the attributes (see, e.g., +Hoff et al., 2002, Hoff, 2005); (2) modeling the attributes as a function of the network [Guha and Rodriguez, +2021]; (3) jointly modeling the network and attributes (Linkletter, 2007, Kim and Leskovec, 2012, Fosdick +and Hoff, 2015, Ciminelli et al., 2019). The first approach is arguably the most common approach to incor- +porate covariates into the model, but we consider an approach of joint modeling proposed by Ciminelli et al. +2 + +[2019], namely the social network spatial model (SNSM), where the authors modeled edges yi,j as condi- +tionally independent given ∥zi − zj∥ and the distance of the continuous node attributes ∥xi − xj∥, and node +attributes are further modeled as a spatial process over the latent space. Note that joint modeling does not +require the network or the attributes to be fully observed as the first two approaches, hence one could predict +missing network and attribute data (if there is any). In addition, it improves model fitting by capturing the +dependence structure between latent variables and the attributes (when such dependency exists), as we will +see in Section 3. +We propose a full hierarchical Bayesian model that builds on Ciminelli et al.’s SNSM. Instead of using a +Gaussian distribution as the prior for latent positions as in Ciminelli et al. [2019], we impose a Gaussian +mixture prior as in Handcock et al. [2007], so that our model could also capture the group structure in the +network. Detecting communities or clusters among actors in the network is an important task in network +analysis and has spurred the development of many models and algorithms, among which the SBM has +motivated an active line of research that deals with community detection (see, e.g., Lee and Wilkinson +[2019] for a review). However, SBM may not fit well when many actors fall between clusters [Hoff et al., +2002]. We will compare our model with an SBM that incorporates covariates as fixed effects (i.e., model +the edge variables as a function of latent classes and covariates [Leger, 2016]), and we call this model a +covariate-assisted stochastic block model (CSBM). We will show that our model presents improved model +fitting while producing similar clustering results as CSBM. +We also propose an extension of our model to multi-layer network settings. Multi-layer networks can gen- +erally be categorized into two cases: cross-sectional networks that have different types of connections (e.g., +social networks of friendship, coworker-ship, etc.) and time-varying networks where the same type of con- +nections are measured over time (e.g., a trade network that changes over time). We consider a type of +cross-sectional multi-layer network where each layer has a common set of actors. Substantial work has been +done on latent space models for cross-sectional multi-layer networks that take a Bayesian approach (see, e.g., +Gollini and Murphy, 2016, Salter-Townshend and McCormick, 2017, D’Angelo et al., 2019, Sosa and Betan- +court, 2022, Durante and Dunson, 2018, Wang et al., 2019, MacDonald et al., 2020). In extending our model +to the multiple networks setting, we adopt the approach in Sosa and Betancourt [2022] in a parsimonious +way, where latent positions are assumed to be the same for all layers, but the strength of borrowing such +latent structure information is allowed to be different across different layers. Note that, the original model +in Sosa and Betancourt [2022] assumed different latent positions for different layers and had an additional +hierarchy on the hyperparameters. The specification of our model is given in the next section. +The remainder of the paper is organized as follows. Section 2 contains general background on the spatial +3 + +process and introduces the proposed model (for single- and multi-layer network settings) which we call +the latent position joint mixture model (LPJMM) in the rest of the paper. In addition, prior specification, +identifiable problem, and inference will also be discussed in this section. Several simulation studies are +conducted in section 3, where LPJMM is compared with Handcock et al.’s LPCM, Ciminelli et al.’s SNSM +and CSBM in single-layer settings and the model is also evaluated in multi-layer settings. In section 4, we +apply LPJMM to a real-world multi-layer network data set. Finally, we conclude with some discussion in +section 5. +2 +Models +We first review the LPM introduced in Hoff et al. [2002], and then build upon it with a spatial process to allow +for joint modeling of the network and the nodal attributes, and with a finite Gaussian mixture distribution for +latent positions to allow for clustering. +Consider a binary single-layer network with N actors. Denote its adjacency matrix as Y = (yi,j) ∈ +{0, 1}N×N, where yi,j = 1 if actors i and j are connected, and yi,j = 0 if they are not connected. Suppose +the network data comes with a one-dimensional nodal attribute xi for each actor, and denote the covariate as +x = (xi) ∈ RN. The LPM assumes that each actor i has an observed latent position zi in a K-dimensional +Euclidean latent space, the so-called latent space, for some K ∈ N. Let z = (zi) ∈ RN×K, then LPM +models edge yi,j as conditionally independent given distances between nodal attributes as well as distances +between latent positions via logistic regression. But instead of the logistic link, we use the probit link in our +model. The analysis of probit regression models can often be facilitated by a Gibbs sampler constructed using +the data augmentation approach that introduces latent variables with truncated normal distributions [Albert +and Chib, 1993]. (See also Sosa and Betancourt (2022) for a discussion on the choice of link functions.) +Specifically, for i, j ∈ {1, . . . , N} and i ̸= j, +yi,j | z, x, a, b, θ ind +∼ Ber +� +Φ(a + b|xi − xj| − θ∥zi − zj∥) +� +, +(1) +where a, b ∈ R and θ ∈ R+, Ber(p) is a Bernoulli distribution that takes value 1 with some probability p, +∥ · ∥ is the Euclidean norm on RK and Φ(·) is the cumulative distribution function of the standard normal +distribution. Note that we impose a factor θ for the distance between latent positions, which is different from +Hoff et al. [2002] and Krivitsky et al. [2009]. Although θ is unidentifiable in single-layer networks, it plays +a non-trivial role in multi-layer network settings (introduced in Section 2.1). We defer a detailed discussion +of θ to Section 2.4. +4 + +To allow for joint modeling of the network and nodal attributes, we model the nodal attributes as a spatial +process over the latent space RK. Hence, nodal attributes are treated as random variables indexed by their +latent positions, and the distance between these random variables is found by the distance between their +corresponding positions. As in Ciminelli et al. [2019], we specify the spatial process as a Gaussian process +that is stationary with mean β and isotropic (see Banerjee et al., 2015 for definitions). In this case, the +process is completely defined by its covariance function Cov(d), where d is the distance between two random +variables in the Gaussian process. In particular, we specify Cov(d) with an exponential kernel, that is, +Cov(d) = +� +� +� +� +� +τ 2 + σ2, +if d = 0; +σ2 exp(−φd), +if d > 0, +where τ ≥ 0, σ > 0 and φ > 0. It is well-known that such a covariance structure is valid, i.e., the covariance +matrix for any finite collection of random variables in the process is positive definite [Banerjee et al., 2015]. +Let Mz = (mij) ∈ RN×N where mij = exp(−φ∥zi − zj∥) and denote IN as the N-dimensional identity +matrix, then the Gaussian process of the nodal attributes is constructed as follows, +x | z, β, σ, τ, φ ∼ NN(β111N, σ2M(z, φ) + τ 2IN), +(2) +where Nd is a d-dimensional multivariate normal distribution for some dimension d ∈ {2, 3, . . . }, and 111N is +an N-dimensional vector with all 1s. +As in Krivitsky et al. [2009], we impose a Gaussian mixture distribution on latent positions, which allows us +to cluster actors into different groups. Suppose there are H < ∞ predetermined number of components in +the Gaussian mixture distribution, then +zi | ωωω,µµµ,κκκ ind +∼ +H +� +h=1 +ωhNK(µh, κ2 +hIK) , +(3) +where ωωω = {ω1, . . . , ωH}, µµµ = {µ1, . . . , µH}, κκκ = {κ1, . . . , κH}. Note that µh is a K-dimensional mean +vector where h ∈ {1, . . . , H}, and ωh is the probability that an actor belongs to the h-th group such that +ωh ∈ (0, 1) and �H +h=1 ωh = 1. +In single-layer network settings, the model is given by Eqs. (1) to (3). Under our model, nodal attributes +of two actors whose latent positions are close are more likely to be similar according to the exponential +covariance structure. If b < 0 (b > 0), actors with similar attributes are more (less) likely to be connected. +When b = 0, nodal attributes do not affect the distribution of the network directly (but it still has an indirect +5 + +Figure 1: DAG representation of the LPJMM in multi-layer settings. +impact on the network through latent positions by Eq. (2)). +2.1 +An extension to multi-layer networks. +Our model can also be extended to multi-layer network settings in the following way. Suppose we have L +layers Y1, . . . , YL in the network, where all layers are defined over the same set of actors. We assume the +same latent positions z for all layers but allow the strength of borrowing such latent structure information to +be different by imposing layer-specific factors θℓ for ℓ ∈ {1, . . . , L}. Our model in multi-layer settings is +then presented as follows +yi,j,ℓ | z, x, aℓ, bℓ, θℓ +ind +∼ Ber +� +Φ(aℓ + bℓ|xi − xj| − θℓ∥zi − zj∥) +� +, +(4) +x | z, β, σ, τ, φ ∼ NN(β111N, σ2M(z, φ) + τ 2IN) , +(5) +zi | ωωω,µµµ,κκκ i.i.d. +∼ +H +� +h=1 +ωhNK(µh, κ2 +hIK) , +(6) +where yi,j,ℓ is the edge variable between actors i and j in layer ℓ ∈ {1, . . . , L}, aℓ, bℓ and θℓ are layer-specific +parameters. Note that Eqs. (5) and (6) are the same as Eqs. (2) and (3). Fig. 1 shows a directed acyclic graph +(DAG) representation of the model given by Eqs. (4) to (6). +6 + +2.2 +Prior specification +We take a Bayesian approach to estimate the model parameters. Without loss of generality, a Bayesian ver- +sion of the model given by Eqs. (4) to (6) is formed by placing prior distributions on the unknown parameters +aℓ, bℓ, θℓ, β, σ, τ, φ, ωωω, µµµh, κh, for ℓ = {1, . . . , L} and h = {1, . . . , H}. In the model we consider, these +parameters are assumed a priori independent. For parameters in the probit regression tier as specified by +Eq. (4), their priors are specified as follows: +aℓ +i.i.d. +∼ N(ma, ν2 +a) , +bℓ +i.i.d. +∼ N(mb, ν2 +b ) , +θℓ +i.i.d. +∼ Gamma(λ1, λ2) . +The priors for the parameters in the spatial process tier as given in Eq. (5) are given as follows: +β ∼ N(0, ν2 +β) , +σ2 ∼ InvG(η1, η2) , +τ 2 ∼ InvG(ξ1, ξ2) , +φ ∼ U(u1, u2) . +Finally, we put the following priors on the rest of the parameters: +ωωω ∼ Dir(α) , +µh +i.i.d. +∼ NK(mµ, ν2 +µIK) , +κ2 +h +i.i.d. +∼ InvG(γ1, γ2) . +Note that, ma, νa, mb, νb, λ1, λ2, νβ, η1, η2, ξ1, ξ2, u1, u2, α, mµ, νµ, γ1 and γ2 are user-specified +hyperparameters, and Gamma(·, ·), InvG(·, ·), U(·, ·), Dir(·) represents Gamma, Inverse-Gamma, uniform, +and Dirichlet distributions respectively. +2.3 +Posterior distribution and model estimation +As is standard in Bayesian estimation of mixture models (see, e.g., Diebolt and Robert [1994]), we define a +new variable gi that serves as the missing data of group membership of actor i whose distribution depends +on ωωω. In particular, gi = h if actor i belongs to the h-th group. The joint density of (zi, gi) given ωωω, µµµ and κκκ +is then given by +H +� +h=1 +� +ωh +1 +� +2πκ2 +h +exp +� +− +1 +2κ2 +h +∥zi − µh∥2��I{gi=h} +, +where the indicator function I{gi=h} = 1 if gi = h, and I{gi=h} = 0 otherwise. Let g = (gi)N +i=1 be the group +membership for all actors and L(·) be the law of a random variable. Then the posterior distribution of z, g +7 + +and the parameters upon which priors are specified in Section 2.2 is given by +Π(z, g, a1, . . . , aL, b1, . . . , bL, θ1, . . . , θL, β, τ 2, σ2, φ,ωωω,µµµ,κκκ | Y1, . . . , YL, x) +∝ +� L +� +ℓ=1 +L(Yℓ | z, x, aℓ, bℓ, θℓ) +� +L(x | z, σ, τ, φ)L(z, g | ωωω,µµµ,κκκ) +� L +� +ℓ=1 +L(aℓ)L(bℓ)L(θℓ) +� +× L(β)L(σ2)L(τ 2)L(φ)L(ωωω)L(µµµ)L(κκκ) . +Note that the dimension of the posterior distribution has dimension NK + N + 3L + 3H + 4 and the +corresponding posterior density is presented as follows, +π(z, g, a1, . . . , aL, b1, . . . , bL, θ1, . . . , θL, β, τ 2, σ2, φ,ωωω,µµµ,κκκ | Y1, . . . , YL, x) +∝ +N +� +i,j=1 +i̸=j +L +� +ℓ=1 +� +Φ(aℓ + bℓ|xi − xj| − θℓ∥zi − zj∥) +�yi,j,ℓ� +1 − Φ(aℓ + bℓ|xi − xj| − θℓ∥zi − zj∥) +�1−yi,j,ℓ +× |σ2M(z, φ) + τ 2IN|− 1 +2 exp +� +− 1 +2(x − β1)⊺� +σ2M(z, φ) + τ 2IN +�−1(x − β1) +� +× +N +� +i=1 +H +� +h=1 +� ωh +� +κ2 +h +exp +� +− +1 +2κ2 +h +∥zi − µh∥2��I{gi=h} +× exp +� 1 +2ν2a +L +� +ℓ=1 +(aℓ − ma)2 + +1 +2ν2 +b +L +� +ℓ=1 +(bℓ − mb)2� L +� +ℓ=1 +θλ1−1 +ℓ +exp(−λ2θℓ) +× exp +� β2 +2ν2 +β +� +(σ2)−η1−1(τ 2)−ξ1−1 exp +� +− η2 +σ2 − ξ2 +τ 2 +� +I{φ∈[u1,u2]} +× +H +� +h=1 +� +ωαh−1 +h +I{�H +h=1 ωh=1} exp +� +− +1 +2ν2µ +∥µh − mµ∥2� +(κ2 +h)−γ1−1 exp +� +− γ2 +κ2 +h +�� +. +2.4 +Inference and identifiability of parameters +Note that the posterior distribution is highly intractable, hence we must resort to Markov chain Monte Carlo +(MCMC) methods for inferences on model parameters. A Markov chain of the parameters is generated via +the program “Just Another Gibbs Sampler” (JAGS) which is implemented in R [R Core Team, 2021] using +the rjags package [Plummer, 2022]. +Several parameters are not identifiable in our model. Firstly, due to factors θℓ and φ, and the fact that latent +positions are incorporated in the posterior only through their distances, the posterior is, therefore, invariant +to θℓs and φ, and is invariant to scaling, reflection, rotation, and translation of the latent positions z. (Note +that, Hoff et al., 2002 and Krivitsky et al., 2009 did not have θℓs, hence their posterior is not invariant to the +8 + +scaling of latent positions.) Although θℓs are not identifiable and do not affect the model fitting, in multi- +layer settings, their ratios θℓ1/θℓ2 still provide valid information on layer’s relative strength of borrowing +information from the latent space. +Despite being unidentifiable, one can still make inferences on the latent positions and find a reasonable +estimate for z through a post-process which we now describe. Similar to the definition in [Hoff et al., 2002], +we define the equivalence class of z ∈ RN×K, denoted as [z], to be the set of positions that are equivalent +to z under scaling, reflection, rotation, and translation. Given a fixed reference position zref, a position +z∗ is found in [z] such that z∗ = arg minz′∈[z] tr(zref − z′)⊺(zref − z′), which is the so-called Procrustes +transformation. In simulation studies, zref is naturally chosen to be the true latent position, while in practical +applications, we could use the last iteration of the Markov chain of latent positions as the reference. The +Procrustes transformation is performed for each iteration of the Markov chain of the latent positions {zn}, +and an estimate for z is taken as the mean of the Procrustes transformations of {zn}. +As occurs in Bayesian mixture models, the label-switching problem for the group membership g is an- +other source of non-identifiability. That is, the posterior is invariant under permutations of clustering labels. +Many algorithms have been proposed to obtain a single clustering estimate based on the MCMC sample of +the group membership {gn}, including an optimization method (which we call “MaxPEAR” hereafter) in +Fritsch and Ickstadt [2009] that finds a clustering that maximizes posterior expected adjusted rand index, an +optimization method (“MinBinder”) in Lau and Green [2007] that minimizes Binder’s loss function, and a +greedy algorithm (“GreedyEPL”) in Rastelli and Friel [2018] that aims to minimize the variation of informa- +tion, among others. These approaches may generate different clustering estimates, and to get a better under- +standing of the model performance, all aforementioned algorithms (MaxPEAR, MinBinder and GreedyEPL) +are used to assess the model. Estimates based on these approaches are found using the packages GreedyEPL +[Rastelli, 2021] and mcclust [Fritsch, 2022]. +3 +Simulation +Two simulation studies are carried out in this section to evaluate our model. A single-layer network is +considered in the first simulation where we compare LPJMM with three other models designed only for +single-layer networks, namely LPCM in Handcock et al. [2007], SNSM in Ciminelli et al. [2019], and CSBM +in Leger [2016], where SNSM is also implemented using the rjags package, and LPCM and CSBM are +implemented using the latentnet [Krivitsky and Handcock, 2022] and sbm [Chiquet et al., 2022] packages +respectively. The model specifications for these models can be found in Appendix A. Models assessments +include how well a model could recover the group membership and the latent position configuration, and a +9 + + +1 +Figure 2: Left: A visualization of the network based on the true latent position and color indicates group +membership g. Right: Heatmap of the adjacency matrix (where actors are reordered according to g). +goodness-of-fit test using summaries of networks including density, transitivity, and assortative coefficient +with respect to the group membership g (see Kolaczyk and Csárdi, 2020 for definitions). We also evaluate +our model by how accurately it could estimate certain parameters in the model. The second simulation is +conducted in two-layer network settings, where the performance of our model could be further evaluated by +how well the ratio θ1/θ2 can be recovered that reflects differences in each layer’s dependency on the latent +position structure. +3.1 +Simulation 1: a single-layer network +Consider a single-layer network (i.e., L = 1) with N = 100 actors generated as follows. Firstly, generate +latent positions z from a mixture of H = 5 multivariate normal distributions, and then generate attributes x +jointly from a multivariate normal distribution with mean β1N = 0 and covariance matrix given by Cov(d) +in Section 2 where φ = 0.5, τ 2 = 0.3, σ2 = 1. Finally, the network data is generated according to Eq. (1) +with a = 5, b = −2, and θ = 2.72. See Fig. 2 for a visualization of the simulated network. The network is +fairly sparse with a density equal to 0.1531, and shows fairly strong transitivity and assortative mixing with +coefficients 0.5049 and 0.5512 respectively. +As for the prior specifications, we set ma = mb = 0, and ν2 +a = ν2 +b = 9 to allow a wide range of values for a +and b. Let θ ∼ Gamma(1, 1) so that θ has mean 1. An almost flat prior is imposed on β by setting νβ = 104. +The same uniform prior U(0, 1) as in Ciminelli et al. [2019] is specified for φ. We suggest the sum of the prior +means of τ 2 and σ2 to be on the same scale as the sample variance of x, and here we use σ2 ∼ InvG(2, 1) +and τ 2 ∼ InvG(2, 1). Let α = 1 so that the prior on ωωω is a flat Dirichlet distribution. Following the +heuristics in Sosa and Betancourt [2022], we specify µh +i.i.d. +∼ NK(0, 2/3IK) and κ2 +h +i.i.d. +∼ InvG(3, 2/3) so +that var(zij|gi) = 1. +10 + +our model name +LPCM +CSBM +MaxPEAR +0.737 (5) +0.707 (4) +– +MinBinder +0.712 (11) +0.748 (10) +– +GreedyEPL +0.664 (4) +0.688 (4) +– +Variational-EM +– +– +0.707 (6) +Table 1: Adjusted Rand indices corresponding to different estimation methods for group membership. Num- +bers in the parentheses represent numbers of estimated groups. +1 +2 +3 +4 +5 +6 +7 +8 +9 +10 +11 +12 +13 +14 +15 +16 +17 +18 +19 +20 +21 +22 +23 +24 +25 +26 +27 +28 +29 +30 +31 +32 +33 +34 +35 +36 +37 +38 +39 +40 +41 +42 +43 +44 +45 +46 +47 +48 +49 +50 +51 +52 +53 +54 +55 +56 +57 +58 +59 +60 +61 +62 +63 +64 +65 +66 +67 +68 +69 +70 +71 +72 +73 +74 +75 +76 +77 +78 +79 +80 +81 +82 +83 +84 +85 +86 +87 +88 +89 +90 +91 +92 +93 +94 +95 +96 +97 +98 +99 +100 +(a) Truth +1 +2 +3 +4 +5 +6 +7 +8 +9 +10 +11 +12 +13 +14 +15 +16 +17 +18 +19 +20 +21 +22 +23 +24 +25 +26 +27 +28 +29 +30 +31 +32 +33 +34 +35 +36 +37 +38 +39 +40 +41 +42 +43 +44 +45 +46 +47 +48 +49 +50 +51 +52 +53 +54 +55 +56 +57 +58 +59 +60 +61 +62 +63 +64 +65 +66 +67 +68 +69 +70 +71 +72 +73 +74 +75 +76 +77 +78 +79 +80 +81 +82 +83 +84 +85 +86 +87 +88 +89 +90 +91 +92 +93 +94 +95 +96 +97 +98 +99 +100 +(b) LPJMM +1 +2 +3 +4 +5 +6 +7 +8 +9 +10 +11 +12 +13 +14 +15 +16 +17 +18 +19 +20 +21 +22 +23 +24 +25 +26 +27 +28 +29 +30 +31 +32 +33 +34 +35 +36 +37 +38 +39 +40 +41 +42 +43 +44 +45 +46 +47 +48 +49 +50 +51 +52 +53 +54 +55 +56 +57 +58 +59 +60 +61 +62 +63 +64 +65 +66 +67 +68 +69 +70 +71 +72 +73 +74 +75 +76 +77 +78 +79 +80 +81 +82 +83 +84 +85 +86 +87 +88 +89 +90 +91 +92 +93 +94 +95 +96 +97 +98 +99 +100 +(c) LPCM +1 +2 +3 +4 +5 +6 +7 +8 +9 +10 +11 +12 +13 +14 +15 +16 +17 +18 +19 +20 +21 +22 +23 +24 +25 +26 +27 +28 +29 +30 +31 +32 +33 +34 +35 +36 +37 +38 +39 +40 +41 +42 +43 +44 +45 +46 +47 +48 +49 +50 +51 +52 +53 +54 +55 +56 +57 +58 +59 +60 +61 +62 +63 +64 +65 +66 +67 +68 +69 +70 +71 +72 +73 +74 +75 +76 +77 +78 +79 +80 +81 +82 +83 +84 +85 +86 +87 +88 +89 +90 +91 +92 +93 +94 +95 +96 +97 +98 +99 +100 +(d) CSBM +Figure 3: (A): Color indicates the true group membership g. (B)-(D): Color indicates the estimated group +memberships ˆg of LPJMM, LPCM and CSBM respectively. Positions of the points in all plots are true latent +positions z. +Note that the latent space dimension K and the number of clusters H in the model need to be prespecified +along with the priors. We take K to be the true dimensions of the latent space (i.e., K = 2) since this +facilitates model assessment by allowing visualizations of the estimated latent positions. One could also +use the Watanabe-Akaike Information Criterion (WAIC) to select a K with the smallest WAIC as in Sosa +and Betancourt [2022]. However, WAIC and other information criteria like Deviance Information Criterion +(DIC) are not helpful in choosing the number of clusters H. We noticed that the model assessment is +significantly worse when H is chosen to be smaller than the truth. However, model assessments are similar +among models whose H is at least as large as the truth. A comparison of the model assessment for different +specified H is given in Appendix B. From the comparison, we could also see that when H is specified to be +larger, the number of clusters in the estimated group membership ˆg also tends to be larger. Therefore, we +suggest choosing H to be the largest number of groups that one is willing to accept, and in this example, we +choose H to be 5. +We then fit LPJMM using MCMC sampling with 20 000 burn-in iterations and a further 10 000 iterations +which are kept for posterior analysis. The Markov chain mixes reasonably well and shows no signs of lack +of convergence (see Appendix C for the traceplot of the log-likelihood chain). +11 + +LPCM +LPJMM +(simulation 1) +LPJMM +(simulation 2) +Sum of Euclidean distances +23.08 +28.06 +12.20 +Table 2: Sum of distances between the estimated and true latent positions. +To evaluate a model’s ability to recover the group membership, we first find estimates of clustering using +the optimization algorithms (i.e., MaxPEAR, MinBinder and GreedyEPL) mentioned in Section 2.4. The +adjusted Rand index is then calculated for each clustering estimate. Note that SNSM does not define clusters, +therefore we only compare the adjusted Rand index between LPJMM, LPCM, and CSBM. Since the sbm +package takes a non-Bayesian approach that uses a Variational-EM algorithm to find a point estimator for +the group membership g, optimization methods like MaxPEAR are not necessary to analyze results from +CSBM. The results shown in Table 1 suggest that these three models have a similar ability in recovering +group membership, with rand indices of LPJMM using the MaxPEAR and MinBinder algorithms being +higher than the rand index (0.707) under the CSBM model. A visualization of the estimated clusters based +on the true latent positions is given in Fig. 3. Also, notice that the MinBinder algorithm tends to overestimate +the number of clusters in the network. +To further compare the ability to recover latent position configuration between LPJMM and LPCM, we find +an estimate of the latent positions as follows. Firstly, we perform the Procrustes transformation on zn for each +iteration n, and then take the estimate ˆz of z to be the average of zn. We then calculate the Euclidean distance +between the estimated latent position ˆzi (which is the i-th row in ˆz) and the true latent position zi (i.e., the +i-th row in z) for each actor i and use the sum of distances of all actors to quantify the similarity between +the estimated and the true latent position configurations. The results are shown in Table 2 which suggests +that these two models have similar recovery of the latent positions. Plots of the estimated latent positions of +LPJMM and LPCM can be found in Appendix D, which also suggest similar estimated configurations of z +as Table 2. +Following Sosa and Betancourt [2022], we assess if models have a good fit in the sense of good reproduction +of a variety of summary statistics, which are calculated based on a collection of simulated networks generated +as follows. For LPJMM and SNSM, a network is simulated for every 10-th iteration using the parameters in +that iteration. For LPCM and CSBM, 1000 networks are simulated using their respective packages. Then +for each model, we calculate the density, transitivity, and assortative coefficient (if applicable) with respect +to the true group membership for each simulated network. Boxplots of these summary statistics are given in +Fig. 4 and the averages of these summary statistics for each model are given in Table 3. Note that our model +12 + +density +transitivity +assortativity +0.14 +0.15 +0.16 +0.35 0.40 0.45 0.50 0.55 +0.45 +0.50 +0.55 +0.60 +LPJMM +LPCM +SNSM +CSBM +Figure 4: Boxplots of summary statistics for each model. Red dotted lines indicate the true values for +network characteristics respectively. +true value +LPJMM +LPCM +SNSM +CSBM +density +0.1531 +0.1539 +0.1530 +0.1504 +0.1499 +transitivity +0.5049 +0.5144 +0.5467 +0.4027 +0.3776 +assortativity +0.5512 +0.5468 +0.5475 +0.4811 +0.4954 +Table 3: Means of the summary statistics of the simulated networks for each model in simulation 1. +appropriately captures these structural features of the network data, while LPCM tends to overestimate tran- +sitivity in the network, and both SNSM and CSBM tend to underestimate both transitivity and assortativity +in the network. +3.2 +Simulation 2: a two-layer network +Continue using the parameter setup in simulation 1 and its generated network as the first layer (i.e., a1 = 5, +b1 = −2, θ1 = 2.72), we generate a second layer of the network with a2 = 3, b2 = 1, θ2 = 4. As in +simulation 1, we fit LPJMM with K = 2 and H = 5 and evaluate the model’s ability to recover the group +membership using the adjusted Rand indices based on four clustering summaries. The results are given in +Table 4, which shows similar clustering estimates as in simulation 1 where only one layer is considered. +However, the sum of Euclidean distances between the estimated and true latent positions of all actors (see +Table 2) in simulation 2 is 12.20, which is a significant improvement compared to 28.06 in simulation 1. +The plot of the estimated latent position configurations is given in Fig. 5 (B), which visualizes the model’s +recovery of latent positions and group membership. +We also carry out the goodness-of-fit test as in simulation 1 and the result is given in Table 5, which shows +that LPJMM captures these structural features accurately, and the result for layer 1 is similar to the result in +simulation 1. +13 + +MaxPEAR +MinBinder +GreedyEPL +adjusted Rand index +0.748 (6) +0.753 (12) +0.662 (4) +Table 4: Adjusted Rand indices corresponding to different estimation methods for group membership in +simulation 2. Numbers in the parentheses represent numbers of estimated groups. +1 +2 +3 +4 +5 +6 +7 +8 +9 +10 +11 +12 +13 +14 +15 +16 +17 +18 +19 +20 +21 +22 +23 +24 +25 +26 +27 +28 +29 +30 +31 +32 +33 +34 +35 +36 +37 +38 +39 +40 +41 +42 +43 +44 +45 +46 +47 +48 +49 +50 +51 +52 +53 +54 +55 +56 +57 +58 +59 +60 +61 +62 +63 +64 +65 +66 +67 +68 +69 +70 +71 +72 +73 +74 +75 +76 +77 +78 +79 +80 +81 +82 +83 +84 +85 +86 +87 +88 +89 +90 +91 +92 +93 +94 +95 +96 +97 +98 +99 +100 +(a) Truth +1 +2 +3 +4 +5 +6 +7 +8 +9 +10 +11 +12 +13 +14 +15 +16 +17 +18 +19 +20 +21 +22 +23 +24 +25 +26 +27 +28 +29 +30 +31 +32 +33 +34 +35 +36 +37 +38 +39 +40 +41 +42 +43 +44 +45 +46 +47 +48 +49 +50 +51 +52 +53 +54 +55 +56 +57 +58 +59 +60 +61 +62 +63 +64 +65 +66 +67 +68 +69 +70 +71 +72 +73 +74 +75 +76 +77 +78 +79 +80 +81 +82 +83 +84 +85 +86 +87 +88 +89 +90 +91 +92 +93 +94 +95 +96 +97 +98 +99 +100 +(b) Estimated z and g +Figure 5: (A): Points are plotted based on true latent position z and true group membership g. (B): Points +are plotted using the estimated latent positions in simulation 2, and color represents the estimated group +membership using the MaxPEAR method. +Recall that θ1 and θ2 are of no direct interest since they are not identifiable. However, we are still interested +in the ratio θ1/θ2 since it reflects the relative strength of borrowing information from the latent space of each +layer. Although aℓ and bℓ are of no direct interest, we pay attention to their signs, especially that of bℓ because +different signs of bℓ have different interpretations of the effect of attributes as discussed in Section 2. We also +assess the model’s ability to estimate parameters β, τ 2, and σ2 using posterior means and 95% credible inter- +vals. The results are given in Table 6. Overall, the performance of LPJMM in recovering the true values of +these model parameters is pretty well, except for τ 2 and σ2. Both LPJMM and SNSM tend to underestimate +σ2 and overestimate τ 2. That is, the covariance of the attributes tends to be underestimated, and although τ 2 +is slightly overestimated, the variance of the attributes (τ 2 + σ2) still tends to be underestimated. +4 +Real data analysis +In this section, we consider a three-layer network data set collected by [Lazega, 2001] from a corporate +law firm from 1988-1991 in New England. This network describes three types of relationships (namely, +networks of advice, friendship, and coworker contacts) between 71 lawyers in the law firm. Several actor +attributes are also collected: age, gender, seniority (years with the firm), office (located in Boston, Hartford, +or Providence), practice (litigation or corporate law), law school the lawyers attended (Harvard or Yale, +University of Connecticut, or other universities) and status (partner or associate). A principal component +14 + +true value +mean +density +layer 1 +0.1531 +0.1535 +layer 2 +0.1024 +0.1023 +transitivity +layer 1 +0.5049 +0.5088 +layer 2 +0.5477 +0.5546 +assortativity +layer 1 +0.5512 +0.5466 +layer 2 +0.6923 +0.6890 +Table 5: Means of the summary statistics in simulation 2. +true value +posterior mean +95% credible interval +θ1/θ2 +0.680 +0.653 +(0.579, 0.721) +a1 +5 +5.01 +(4.719, 5.262) +a2 +3 +3.25 +(2.976, 3.572) +b1 +-2 +-1.919 +(-2.053, -1.766) +b2 +1 +1.058 +(0.901, 1.252) +β +0 +-0.047 +(-1.027, 1.01 ) +τ 2 +0.3 +0.409 +(0.261, 0.592) +σ2 +1 +0.642 +(0.230, 1.684) +Table 6: Posterior means and 95% credible intervals. +analysis (PCA) is performed on age and seniority attributes, and the first principal component explains +89% of the variance which is of no surprise since age and seniority are highly correlated with a correlation +coefficient being 0.78. We chose the first principal component to be the attribute x and let H = 8 since it +is the largest number of clusters we expect in the network. Then the model is fitted to the network using the +same prior and Markov chain setup as in Section 3. +The study of the Lazega network in this paper is meant to find out how the three types of relations can be +explained by the findings deduced from the model fitting. We first visualize the estimated latent positions +z colored by different categorical attributes (gender, office, practice, law school, and status) in Fig. 6. As +we can see from these plots, the estimated positions z are well separated by the office (especially offices +in Boston and Hartford) and practice. Compare these plots with z colored by MaxPEAR and GreedyEPL +estimated clustering g in Fig. 7, we can see that both estimated g roughly clusters lawyers into three groups: +lawyers in Hartford office, litigation lawyers in Boston or Providence offices, and corporate lawyers in +Boston or Providence offices. +Plots of adjacency matrices of the three layers (where lawyers are grouped by the MaxPEAR estimate of g) +and their corresponding networks are given in Fig. 8, where we could see that the coworker network shows +15 + +1 +2 +3 +4 +5 +7 +8 +9 +10 +11 +12 +13 +14 +15 +18 +20 +21 +22 +23 +25 +26 +28 +29 +30 +32 +33 +34 +36 +37 +38 +40 +44 +45 +46 +47 +49 +50 +52 +53 +54 +59 +60 +62 +63 +65 +67 +68 +70 +male +female +gender +1 +2 +3 +4 +56 +7 +8 +9 +10 +11 +12 +13 +14 +15 +16 +17 +18 +19 +20 +21 +22 +23 +24 +25 +26 +27 +28 +29 +30 +31 +32 +33 +34 +35 +36 +37 +38 +39 +40 +41 +42 +43 +44 +45 +46 +47 +48 +49 +50 +51 +52 +53 +54 +55 +56 57 +58 +59 +60 +61 +62 +63 +64 +65 +66 +67 +68 +69 +70 +71 +Boston +Hartford +Providence +office +1 +2 +3 +4 +56 +7 +8 +9 +10 +11 +12 +13 +14 +15 +16 +17 +18 +19 +20 +21 +22 +23 +24 +25 +26 +27 +28 +29 +30 +31 +32 +33 +34 +35 +36 +37 +38 +39 +40 +41 +42 +43 +44 +45 +46 +47 +48 +49 +50 +51 +52 +53 +54 +55 +56 57 +58 +59 +60 +61 +62 +63 +64 +65 +66 +67 +68 +69 +70 +71 +litigation +corporate +practice +1 +2 +3 +4 +56 +7 +8 +9 +10 +11 +12 +13 +14 +15 +16 +17 +18 +19 +20 +21 +22 +23 +24 +25 +26 +27 +28 +29 +30 +31 +32 +33 +34 +35 +36 +37 +38 +39 +40 +41 +42 +43 +44 +45 +46 +47 +48 +49 +50 +51 +52 +53 +54 +55 +56 57 +58 +59 +60 +61 +62 +63 +64 +65 +66 +67 +68 +69 +70 +71 +Harvard/Yale +Ucon +other +law school +1 +2 +3 +4 +56 +7 +8 +9 +10 +11 +12 +13 +14 +15 +16 +17 +18 +19 +20 +21 +22 +23 +24 +25 +26 +27 +28 +29 +30 +31 +32 +33 +34 +35 +36 +37 +38 +39 +40 +41 +42 +43 +44 +45 +46 +47 +48 +49 +50 +51 +52 +53 +54 +55 +56 57 +58 +59 +60 +61 +62 +63 +64 +65 +66 +67 +68 +69 +70 +71 +partner +associate +status +Figure 6: Points in all plots are drawn based on the estimated latent positions z, and are colored based on +their categories in gender, office, practice, law school, and status. +the most estimated clustering pattern, while the advice network presents the least of such pattern, which +could also be seen from the relative ratios of θℓs in Table 7. This means that lawyers from the same office +and doing the same practice are more likely to become coworkers and friends, but who they seek advice +from does not depend much on office and practice. Furthermore, we can deduce from the posteriors of bℓ in +Table 7 that these lawyers tend to seek advice from people of similar age (or seniority) since the posterior +estimate of b1 is negative, while lawyers of different ages (or seniority) are more likely to become friends and +coworkers. This conclusion is in line with the assortativity coefficients with respect to the nodal attributes +(lawyer’s age) given in Table 8. +5 +Discussion +This paper presents a latent position model that extends LPCM of Handcock et al. [2007] and SNSM of +Ciminelli et al. [2019] to jointly model network data and the nodal attributes and perform model-based +clustering. By jointly modeling the network and the attributes, we are able to describe how the attributes +16 + +1 +2 +3 +4 +56 +7 +8 +9 +10 +11 +12 +13 +14 +15 +16 +17 +18 +19 +20 +21 +22 +23 +24 +25 +26 +27 +28 +29 +30 +31 +32 +33 +34 +35 +36 +37 +38 +39 +40 +41 +42 +43 +44 +45 +46 +47 +48 +49 +50 +51 +52 +53 +54 +55 +56 57 +58 +59 +60 +61 +62 +63 +64 +65 +66 +67 +68 +69 +70 +71 +(a) MaxPEAR +1 +2 +3 +4 +56 +7 +8 +9 +10 +11 +12 +13 +14 +15 +16 +17 +18 +19 +20 +21 +22 +23 +24 +25 +26 +27 +28 +29 +30 +31 +32 +33 +34 +35 +36 +37 +38 +39 +40 +41 +42 +43 +44 +45 +46 +47 +48 +49 +50 +51 +52 +53 +54 +55 +56 57 +58 +59 +60 +61 +62 +63 +64 +65 +66 +67 +68 +69 +70 +71 +(b) GreedyEPL +Figure 7: Points are plotted using the estimated latent positions and color indicates the estimated group +membership using MaxPEAR and GreedyEPL methods respectively. +posterior mean +95% credible interval +θ1/θ2 +0.3229 +(0.2352, 0.4152) +θ1/θ3 +0.2035 +(0.1479, 0.2606) +θ2/θ3 +0.6319 +(0.5536, 0.7198) +b1 +-0.0986 +(-0.1401, -0.0579) +b2 +0.0708 +(0.0263, 0.1137) +b3 +0.133 +(0.0854, 0.186) +Table 7: Posterior means and 95% credible intervals. +change over the network and explain how relations could be influenced by attributes. LPJMM also provides +an extension to multi-layer network settings on the assumption that all layers share the same latent position +structure but with different strengths of borrowing such latent structure information. We applied our method +to two simulated networks, one with a single layer and another with two layers, and found our model to +give satisfactory fits to these two data sets and is competitive in terms of goodness-of-fit and group detection +compared with SNSM, LPCM, and CSBM. The model is also applied to a three-layer real network data set +and we are able to draw reasonable conclusions from the modeling results. +We have suggested choosing the number of groups H to be the largest number of groups that one is willing to +accept in the network because we have found that varying the number of groups has almost no impact on the +model fit and prediction outcome as long as it is in a reasonable range. One could also fit the CSBM to the +network first, and choose H based on its estimated number of groups. One problem we have not addressed +in the paper is of choosing the dimension of the latent space. This can be done by using Bayesian model +selection like WAIC as in Sosa and Betancourt [2022]. +Our model could be extended in several ways. Firstly, other extensions of our model to multi-layer settings +could be considered. For example, Sosa and Betancourt [2022] assumed conditionally independent layer- +17 + +advice +friendship +coworker + + + +Figure 8: Upper: Heatmaps of the adjacency matrices (where lawyers are reordered according to the Max- +PEAR estimate of g). Lower: A visualization of the three layers based on the estimated z and color indicates +the MaxPEAR estimate of g. +advice +friendship +coworker +assortativity +0.2536 +-0.1107 +-0.1224 +Table 8: Assortativity coefficients with respect to lawyer’s age. +specific latent positions, whereas MacDonald et al. [2022] assumed that the latent position of an actor in all +layers is (d0 + d1)-dimensional, where the first d0 components of the latent position are the same across all +layers, and only the last d1 components are layer-specific. Secondly, instead of assigning a user-specified +number of groups H to the model, we could learn the number of groups by using a Bayesian nonpara- +metric approach with a Dirichlet Process prior to model community memberships (see, e.g., Amini et al., +2019). +LPJMM could also be extended to leverage multivariate covariates. So far, we have limited ourselves to mod- +eling univariate nodal attributes that are approximately Gaussian. For continuous nodal attributes with more +than one dimension, we have used the first principal component from the principal component analysis. To +take full advantage of high-dimensional nodal attributes, one could use multivariate spatial process modeling +to replace Eq. (2). Other extensions of more sophisticated spatial modeling include spatiotemporal modeling +of attributes for time-varying networks, which would help to describe changes in actors over time. +18 + +Appendix +A +Model Specifications for SNSM, LPCM and CSBM +Note that the original SNSM in Ciminelli et al. [2019] uses the logit link. In order to make a fair comparison, +we also use the probit link in SNSM as in LPJMM. The model specification for SNSM used in this paper is +given as follows: +yi,j | z, x, aℓ, bℓ, θℓ +ind +∼ Ber +� +Φ(a + b|xi − xj| − ∥zi − zj∥) +� +, +x | z, β, σ, τ, φ ∼ NN(β111N, σ2M(z, φ) + τ 2IN) , +and the priors are set to be the same as the priors in LPJMM (if possible). To be specific, +zi +i.i.d. +∼ N2(000, I2) , +β ∼ N(0, 104) , +σ2 ∼ InvG(2, 1) , +τ 2 ∼ InvG(2, 1) , +φ ∼ U(0, 1) , +and the priors on the parameters in the probit regression tier are given by: +a i.i.d. +∼ N(0, 9) , +b i.i.d. +∼ N(0, 9) . +SNSM in this paper is implemented using JAGS. +The model specification for LPCM (see Handcock et al., 2007) is given as the follows, +yi,j | z, x, β0, β1 +ind +∼ Ber +� +logit(β⊺ +0xi,j − β1∥zi − zj∥) +� +, +zi | ωωω,µµµ,κκκ i.i.d. +∼ +5 +� +h=1 +ωhN5(µh, κ2 +hIK) , +and we use the default priors given in the latentnet package for prior specifications. +We first introduce several notations before presenting CSBM in Leger [2016]. Suppose there are Q groups +in the network. Denote the N × Q group membership matrix as ZZZ = {Ziq}, and Ziq = 1 if actor i belongs +to group q, Ziq = 0 if otherwise. It is assumed that an actor can only belong to one group. The model +specification for CSBM is given as follows, +yi,j | Zi, Zj, x, β ind +∼ Ber +� +logit(mqi,qj + β⊺xi,j) +� +, +where Zi is the i-th row of ZZZ, qi is the group membership for actor i and the group effect mqi,qj ∈ R. +19 + +B +Comparing model performances for different number of groups +We conduct a comparison of LPJMM with different H ∈ {3, 4, . . . , 9} using the data set in simulation 1. +Table 9 presents the adjusted rand indices, and the results are similar for models that assume H to be equal to +or larger than the true number of groups (which is 5 in this example). However, the adjusted rand indices for +all three estimates are significantly smaller when the model assumes H to be smaller than 5. Also, notice that +the estimated number of groups increases with H. Visualizations of how adjusted rand indices and estimated +number of groups changes over H are given in Fig. 9. +H +MaxPEAR +MinBinder +GreedyEPL +3 +0.4067 (3) +0.4008 (5) +0.4321 (3) +4 +0.4882 (3) +0.4977 (6 ) +0.6521 (4) +5 +0.7374 (5) +0.7115 (11) +0.6635 (4) +6 +0.7237 (6) +0.7442 (20) +0.7134 (4) +7 +0.7449 (7) +0.6624 (25) +0.7313 (4) +8 +0.7422 (8) +0.6674 (25) +0.7293 (8) +9 +0.7056 (12) +0.7041 (25) +0.7043 (11) +Table 9: Adjusted Rand indices of different estimates under LPJMM with different H. Numbers in the +parentheses denote the numbers of estimated groups. +3 +4 +5 +6 +7 +8 +9 +H +Adjusted rand index +0.4 +0.6 +0.8 +3 +4 +5 +6 +7 +8 +9 +H +number of groups +5 +10 +15 +20 +25 +MaxPEAR +MinBinder +GreedyEPL +Figure 9: Left: Adjusted rand indices of the clustering estimates found by using the MaxPear, MinBinder, +and GreedyEPL methods. Right: Estimated number of groups using the three methods. +The goodness-of-fit test outlined in Section 3 is also carried out here to compare the means of several sum- +mary statistics, which are plotted in Fig. 10. As we can see from the plots, the model’s fit is not affected by +the choice of H even for H smaller than the actual number of clusters in the network. +20 + +3 +4 +5 +6 +7 +8 +9 +H +0.1536 +0.1540 +0.1544 +(a) density +3 +4 +5 +6 +7 +8 +9 +H +0.513 +0.514 +0.515 +(b) transitivity +3 +4 +5 +6 +7 +8 +9 +H +0.538 +0.546 +0.554 +(c) assortativity +Figure 10: The means of summary statistics for different H. +C +Traceplots of log-likelihood +The traceplots of the log-likelihood (after thinning the Markov chain every 10 iterations) in simulation stud- +ies and real applications in Sections 3 and 4 are given in Fig. 11. +0 +2000 +6000 +10000 +−1100 +−1080 +−1060 +−1040 +(a) simulation 1 +0 +2000 +6000 +10000 +−1920 +−1900 +−1880 +−1860 +(b) simulation 2 +0 +2000 +6000 +10000 +−5230 +−5214 +−5198 +−5182 +(c) Lazega network +Figure 11: Traceplots of the log-likelihood. +D +Visualizations of results from LPJMM and LPCM +Visualizations of the estimated latent positions and estimated group membership using the MaxPEAR, Min- +Binder, and GreedyEPL methods under LPJMM and LPCM are shown in Figs. 12 and 13 respectively. +21 + +1 +2 +3 +4 +5 +6 +7 +8 +9 +10 +11 +12 +13 +14 +15 +16 +17 +18 +19 +20 +21 +22 +23 +24 +25 +26 +27 +28 +29 +30 +31 +32 +33 +34 +35 +36 +37 +38 +39 +40 +41 +42 +43 +44 +45 +46 +47 +48 +49 +50 +51 +52 +53 +54 +55 +56 +57 +58 +59 +60 +61 +62 +63 +64 +65 +66 +67 +68 +69 +70 +71 +72 +73 +74 +75 +76 +77 +78 +79 +80 +81 +82 +83 +84 +85 +86 +87 +88 +89 +90 +91 +92 +93 +94 +95 +96 +97 +98 +99 +100 +(a) MaxPEAR +1 +2 +3 +4 +5 +6 +7 +8 +9 +10 +11 +12 +13 +14 +15 +16 +17 +18 +19 +20 +21 +22 +23 +24 +25 +26 +27 +28 +29 +30 +31 +32 +33 +34 +35 +36 +37 +38 +39 +40 +41 +42 +43 +44 +45 +46 +47 +48 +49 +50 +51 +52 +53 +54 +55 +56 +57 +58 +59 +60 +61 +62 +63 +64 +65 +66 +67 +68 +69 +70 +71 +72 +73 +74 +75 +76 +77 +78 +79 +80 +81 +82 +83 +84 +85 +86 +87 +88 +89 +90 +91 +92 +93 +94 +95 +96 +97 +98 +99 +100 +(b) MinBinder +1 +2 +3 +4 +5 +6 +7 +8 +9 +10 +11 +12 +13 +14 +15 +16 +17 +18 +19 +20 +21 +22 +23 +24 +25 +26 +27 +28 +29 +30 +31 +32 +33 +34 +35 +36 +37 +38 +39 +40 +41 +42 +43 +44 +45 +46 +47 +48 +49 +50 +51 +52 +53 +54 +55 +56 +57 +58 +59 +60 +61 +62 +63 +64 +65 +66 +67 +68 +69 +70 +71 +72 +73 +74 +75 +76 +77 +78 +79 +80 +81 +82 +83 +84 +85 +86 +87 +88 +89 +90 +91 +92 +93 +94 +95 +96 +97 +98 +99 +100 +(c) GreedyEPL +Figure 12: Points are plotted based on the estimated latent position z and three estimated group memberships +ˆg of LPJMM. +1 +2 +3 +4 +5 +6 +7 +8 +9 +10 +11 +12 +13 +14 +15 +16 +17 +18 +19 +20 +21 +22 +23 +24 +25 +26 +27 +28 +29 +30 +31 +32 +33 +34 +35 +36 +37 +38 +39 +40 +41 +42 +43 +44 +45 +46 +47 +48 +49 +50 +51 +52 +53 +54 +55 +56 +57 +58 +59 +60 +61 +62 +63 +64 +65 +66 +67 +68 +69 +70 +71 +72 +73 +74 +75 +76 +77 +78 +79 +80 +81 +82 +83 +84 +85 +86 +87 +88 +89 +90 +91 +92 +93 +94 +95 +96 +97 +98 +99 +100 +(a) MaxPEAR (LPCM) +1 +2 +3 +4 +5 +6 +7 +8 +9 +10 +11 +12 +13 +14 +15 +16 +17 +18 +19 +20 +21 +22 +23 +24 +25 +26 +27 +28 +29 +30 +31 +32 +33 +34 +35 +36 +37 +38 +39 +40 +41 +42 +43 +44 +45 +46 +47 +48 +49 +50 +51 +52 +53 +54 +55 +56 +57 +58 +59 +60 +61 +62 +63 +64 +65 +66 +67 +68 +69 +70 +71 +72 +73 +74 +75 +76 +77 +78 +79 +80 +81 +82 +83 +84 +85 +86 +87 +88 +89 +90 +91 +92 +93 +94 +95 +96 +97 +98 +99 +100 +(b) MinBinder (LPCM) +1 +2 +3 +4 +5 +6 +7 +8 +9 +10 +11 +12 +13 +14 +15 +16 +17 +18 +19 +20 +21 +22 +23 +24 +25 +26 +27 +28 +29 +30 +31 +32 +33 +34 +35 +36 +37 +38 +39 +40 +41 +42 +43 +44 +45 +46 +47 +48 +49 +50 +51 +52 +53 +54 +55 +56 +57 +58 +59 +60 +61 +62 +63 +64 +65 +66 +67 +68 +69 +70 +71 +72 +73 +74 +75 +76 +77 +78 +79 +80 +81 +82 +83 +84 +85 +86 +87 +88 +89 +90 +91 +92 +93 +94 +95 +96 +97 +98 +99 +100 +(c) GreedyEPL (LPCM) +Figure 13: Points are plotted based on estimated z and three estimated ˆg of LPCM. +References +J. H. Albert and S. Chib. +Bayesian analysis of binary and polychotomous response data. Journal of the +American Statistical Association, 88:669–679, 1993. +D. J. Aldous. Exchangeability and related topics. Springer, Berlin, Heidelberg, 1985. +A. A. Amini, M. S. Paez, and L. Lin. Hierarchical stochastic block model for community detection in +multiplex networks. arXiv:1904.05330, 2019. +A. Athreya, D. E. Fishkind, M. Tang, C. E. Priebe, Y. Park, J. T. Vogelstein, K. Levin, V. Lyzinski, Y. Qin, +and D. L. Sussman. Statistical inference on random dot product graphs: a survey. Journal of Machine +Learning Research, 18:1–92, 2017. +S. Banerjee, B. Carlin, and A. Gelf. Hierarchical Modeling and Analysis for Spatial Data. CRC Press, 2nd +edition, 2015. +22 + +J. Chiquet, S. Donnet, and P. Barbillon. sbm: Stochastic Blockmodels, 2022. URL https://CRAN. +R-project.org/package=sbm. R package version 0.4.4. +J. T. Ciminelli, T. Love, and T. T. Wu. Social network spatial model. Spatial Statistics, 29:129–144, 2019. +J. Diebolt and C. P. Robert. Estimation of finite mixture distributions through Bayesian sampling. Journal +of the Royal Statistical Society. Series B, 56:363–375, 1994. +D. Durante and D. Dunson. Bayesian inference and testing of group differences in brain networks. Bayesian +Analysis, 13:29–58, 2018. +S. D’Angelo, T. B. Murphy, and M. Alfò. Latent space modelling of multidimensional networks with appli- +cation to the exchange of votes in Eurovision song contest. The Annals of Applied Statistics, 13:900–930, +2019. +P. Erdös and A. Rényi. On random graphs. I. Publicationes Mathematicae (Debrecen), 6:290–297, 1959. +K. Fosdick and P. D. Hoff. Testing and modeling dependencies between a network and nodal attributes,. +Journal of the American Statistical Association, 110:1047–1056, 2015. +O. Frank and D. Strauss. Markov graphs. Journal of the American Statistical Association, 81:832–842, +1986. +A. Fritsch. +mcclust: +Process an MCMC Sample of Clusterings, 2022. +URL https://CRAN. +R-project.org/package=mcclust. R package version 1.0.1. +A. Fritsch and K. Ickstadt. Improved criteria for clustering based on the posterior similarity matrix. Bayesian +Analysis, 4:367–391, 2009. +I. Gollini and T. B. Murphy. Joint modeling of multiple network views. Journal of Computational and +Graphical Statistics, 25:246–265, 2016. +S. Guha and A. Rodriguez. Bayesian regression with undirected network predictors with an application to +brain connectome data. Journal of the American Statistical Association, 116(534):581–593, 2021. +M. S. Handcock, A. E. Raftery, and J. M. Tantrum. Model-based clustering for social networks. Journal of +the Royal Statistical Society: Series A, 170:301–354, 2007. +P. Hoff. Modeling homophily and stochastic equivalence in symmetric relational data. In Advances in Neural +Information Processing Systems, pages 657–664, 2007. +23 + +P. D. Hoff. Bilinear mixed-effects models for dyadic data. Journal of the American Statistical Association, +100:286–295, 2005. +P. D. Hoff. Multiplicative latent factor models for description and prediction of social networks. Computa- +tional and Mathematical Organization Theory, 15:261–272, 2009. +P. D. Hoff, A. E. Raftery, and M. S. Handcock. Latent space approaches to social network analysis. Journal +of the American Statistical Association, 97:1090–1098, 2002. +D. N. Hoover. Row-column exchangeability and a generalized model for probability. Exchangeability in +probability and statistics (Rome, 1981), pages 281–291, 1982. +M. Kim and J. Leskovec. Multiplicative attribute graph model of real-world networks. Internet Mathematics, +8:113–160, 2012. +E. D. Kolaczyk and G. Csárdi. Statistical Analysis of Network Data with R. Springer, 2nd edition, 2020. +P. N. Krivitsky and M. S. Handcock. latentnet: Latent Position and Cluster Models for Statistical Net- +works. The Statnet Project (https://statnet.org), 2022. URL https://CRAN.R-project. +org/package=latentnet. R package version 2.10.6. +P. N. Krivitsky, M. S. Handcock, A. E. Raftery, and P. D. Hoff. Representing degree distributions, clustering, +and homophily in social networks with latent cluster random effects models. Social Networks, 31:204– +213, 2009. +J. W. Lau and P. J. Green. Bayesian model based clustering procedures. Journal of Computational and +Graphical Statistics, 16:526–558, 2007. +E. Lazega. The Collegial Phenomenon: The Social Mechanisms of Cooperation Among Peers in a Corporate +Law Partnership. Oxford University Press, 2001. +C. Lee and D. J. Wilkinson. A review of stochastic block models and extensions for graph clustering. Applied +Network Science, 4:1–50, 2019. +J.-B. Leger. Blockmodels: A R-package for estimating in Latent Block Model and Stochastic Block Model, +with various probability functions, with or without covariates. arXiv:1602.07587, 2016. +Crystal D Linkletter. Spatial process models for social network analysis. PhD thesis, Citeseer, 2007. +P. W. MacDonald, E. Levina, and J. Zhu. Latent space models for multiplex networks with shared structure. +arXiv:2012.14409, 2020. +24 + +P. W. MacDonald, E. Levina, and J. Zhu. Latent space models for multiplex networks with shared structure. +Biometrika, 109:683–706, 2022. +C. Matias and S. Robin. Modeling heterogeneity in random graphs through latent space models: a selective +review. ESAIM: Proceedings and Surveys, 47:55–74, 2014. +S. Minhas, P. D. Hoff, and M. D. Ward. Inferential approaches for network analysis: AMEN for latent factor +models. Political Analysis, 27:208–222, 2019. +K. Nowicki and T. A. B. Snijders. Estimation and prediction for stochastic block structures. Journal of the +American Statistical Association, 96:1077–1087, 2001. +M. Plummer. +rjags: +Bayesian Graphical Models using MCMC, 2022. +URL https://CRAN. +R-project.org/package=rjags. R package version 4-13. +R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical +Computing, Vienna, Austria, 2021. URL https://www.R-project.org/. +R. Rastelli. GreedyEPL: Greedy Expected Posterior Loss, 2021. URL https://CRAN.R-project. +org/package=GreedyEPL. R package version 1.2. +R. Rastelli and N. Friel. Optimal Bayesian estimators for latent variable cluster models. Statistics and +Computing, 28:1169–1186, 2018. +M. Salter-Townshend and T. H. McCormick. Latent space models for multiview network data. The Annals +of Applied Statistics, 11:1217–1244, 2017. +M. Schweinberger and A. B. Snijders. Settings in social networks: a measurement model. Sociological +Methodology, 33:307–341, 2003. +J. Sosa. A review on latent space models for social networks. Revista Colombiana de Estadistica, 44: +171–200, 2021. +J. Sosa and B. Betancourt. A latent space model for multilayer network data. Computational Statistics & +Data Analysis, 169:107432, 2022. +L. Wang, Z. Zhang, and D. Dunson. Common and individual structure of brain networks. Annals of Applied +Statistics, 13:85–112, 2019. +Y. J. Wang and G. Y. Wong. Stochastic blockmodels for directed graphs. Journal of the American Statistical +Association, 82:8–19, 1987. +25 + diff --git a/8tAyT4oBgHgl3EQfQ_YL/content/tmp_files/load_file.txt b/8tAyT4oBgHgl3EQfQ_YL/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..8207b8216dbaa584a2fea4b81333a1e10f6a5109 --- /dev/null +++ b/8tAyT4oBgHgl3EQfQ_YL/content/tmp_files/load_file.txt @@ -0,0 +1,2653 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf,len=2652 +page_content='A Bayesian latent position approach for community detection in single- and multi-layer networks with continuous attributes Zhumengmeng Jina,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Juan Sosab and Brenda Betancourtc a University of Florida b Universidad Nacional de Colombia c NORC at the University of Chicago December 2022 Abstract The increasing prevalence of multiplex networks has spurred a critical need to take into account po- tential dependencies across different layers,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' especially when the goal is community detection,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' which is a fundamental learning task in network analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' We propose a full Bayesian mixture model for community detection in both single-layer and multi-layer networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' A key feature of our model is the joint modeling of the nodal attributes that often come with the network data as a spatial process over the latent space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' In addition, our model for multi-layer networks allows layers to have different strengths of dependency in the unique latent position structure and assumes that the probability of a relation between two actors (in a layer) depends on the distances between their latent positions (multiplied by a layer-specific factor) and the difference between their nodal attributes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Under our prior specifications, the actors’ positions in the latent space arise from a finite mixture of Gaussian distributions, each corresponding to a cluster.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Simulated examples show that our model performs favorably compared to the existing ones.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' The model is also applied to a real three-layer network of employees in a law firm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' 1 Introduction Network data conveniently describes the relationships between actors in complex systems and is ubiquitous in many statistical applications, including finance, social science, criminology, biology, epidemiology, and computer science, among others.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Understanding the relationships between actors can aid domain experts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Key words and phrases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' multiplex network, community detection, latent position model, mixture model, spatial process, visu- alization 1 arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='00055v1 [stat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='AP] 30 Dec 2022 For instance, in epidemiology, people in a certain area can be portrayed in a contact network that can be studied to detect infectious disease outbreaks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' In criminology, communications between terrorists form a terrorist network, helping intelligence agencies to better counter terrorism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Many models have been developed for the inference of networks over the past decades (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=', Erdös and Rényi, 1959, Frank and Strauss, 1986), among which the broad class of latent space models is one of the most widely used (see, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=', Sosa, 2021 for an exhaustive review).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Suppose the network under study has N actors, then under latent space models, there are N independent and identically distributed (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=') latent variables z1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' , zN, one for each actor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Under a mild exchangeability assumption in Hoff [2007], results in Aldous [1985] and Hoover [1982] show that edge variables yi,j depend on latent variables through a symmetric function γ(zi, zj) that is meant to capture any pattern in the network beyond any known covariate information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Many well-known models fall into the category of latent space models, which can be distinguished between two cases depending on whether latent variables are discrete or continuous [Matias and Robin, 2014].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' For in- stance, stochastic block models [Nowicki and Snijders, 2001, Wang and Wong, 1987] – hereafter SBM – are special cases of latent space models with discrete latent variables zi ∈ {1, 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' , K}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' When latent variables are assumed to be continuous, another approach using latent variables is the class of latent position models (LPM) proposed by Hoff et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' [2002] which our model in the paper is built upon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' In its basic formulation, LPMs model the edge variables yi,j as conditionally independent given the distance between latent variables γ(zi, zj) = −∥zi − zj∥, which naturally accounts for transitivity effects through the latent space (typically a Euclidean K-dimensional space for a predetermined K) where zi lives.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Later on, Handcock et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' [2007] proposed an extension on Hoff et al.’s LPM, namely the latent position cluster model (LPCM), by imposing a Gaussian mixture prior on the latent positions to perform clustering tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Krivitsky et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' [2009] further extended Handcock et al.’s model by adding the random sender and receiver effects proposed by Hoff [2005].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Other formulations of γ(·, ·) can be found in Schweinberger and Snijders [2003], Hoff [2005, 2009], Athreya et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' [2017], Minhas et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' [2019], among others.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Besides edge information of a network, extra information like node and edge attributes and different types of edges are often available, and should ideally be leveraged for inference.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Typical ways to incorporate attributes in a network model include: (1) modeling the network as a function of the attributes (see, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=', Hoff et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=', 2002, Hoff, 2005);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' (2) modeling the attributes as a function of the network [Guha and Rodriguez, 2021];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' (3) jointly modeling the network and attributes (Linkletter, 2007, Kim and Leskovec, 2012, Fosdick and Hoff, 2015, Ciminelli et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=', 2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' The first approach is arguably the most common approach to incor- porate covariates into the model, but we consider an approach of joint modeling proposed by Ciminelli et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' 2 [2019], namely the social network spatial model (SNSM), where the authors modeled edges yi,j as condi- tionally independent given ∥zi − zj∥ and the distance of the continuous node attributes ∥xi − xj∥, and node attributes are further modeled as a spatial process over the latent space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Note that joint modeling does not require the network or the attributes to be fully observed as the first two approaches, hence one could predict missing network and attribute data (if there is any).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' In addition, it improves model fitting by capturing the dependence structure between latent variables and the attributes (when such dependency exists), as we will see in Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' We propose a full hierarchical Bayesian model that builds on Ciminelli et al.’s SNSM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Instead of using a Gaussian distribution as the prior for latent positions as in Ciminelli et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' [2019], we impose a Gaussian mixture prior as in Handcock et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' [2007], so that our model could also capture the group structure in the network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Detecting communities or clusters among actors in the network is an important task in network analysis and has spurred the development of many models and algorithms, among which the SBM has motivated an active line of research that deals with community detection (see, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=', Lee and Wilkinson [2019] for a review).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' However, SBM may not fit well when many actors fall between clusters [Hoff et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=', 2002].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' We will compare our model with an SBM that incorporates covariates as fixed effects (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=', model the edge variables as a function of latent classes and covariates [Leger, 2016]), and we call this model a covariate-assisted stochastic block model (CSBM).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' We will show that our model presents improved model fitting while producing similar clustering results as CSBM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' We also propose an extension of our model to multi-layer network settings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Multi-layer networks can gen- erally be categorized into two cases: cross-sectional networks that have different types of connections (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=', social networks of friendship, coworker-ship, etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=') and time-varying networks where the same type of con- nections are measured over time (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=', a trade network that changes over time).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' We consider a type of cross-sectional multi-layer network where each layer has a common set of actors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Substantial work has been done on latent space models for cross-sectional multi-layer networks that take a Bayesian approach (see, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=', Gollini and Murphy, 2016, Salter-Townshend and McCormick, 2017, D’Angelo et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=', 2019, Sosa and Betan- court, 2022, Durante and Dunson, 2018, Wang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=', 2019, MacDonald et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=', 2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' In extending our model to the multiple networks setting, we adopt the approach in Sosa and Betancourt [2022] in a parsimonious way, where latent positions are assumed to be the same for all layers, but the strength of borrowing such latent structure information is allowed to be different across different layers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Note that, the original model in Sosa and Betancourt [2022] assumed different latent positions for different layers and had an additional hierarchy on the hyperparameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' The specification of our model is given in the next section.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' The remainder of the paper is organized as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Section 2 contains general background on the spatial 3 process and introduces the proposed model (for single- and multi-layer network settings) which we call the latent position joint mixture model (LPJMM) in the rest of the paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' In addition, prior specification, identifiable problem, and inference will also be discussed in this section.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Several simulation studies are conducted in section 3, where LPJMM is compared with Handcock et al.’s LPCM, Ciminelli et al.’s SNSM and CSBM in single-layer settings and the model is also evaluated in multi-layer settings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' In section 4, we apply LPJMM to a real-world multi-layer network data set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Finally, we conclude with some discussion in section 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' 2 Models We first review the LPM introduced in Hoff et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' [2002], and then build upon it with a spatial process to allow for joint modeling of the network and the nodal attributes, and with a finite Gaussian mixture distribution for latent positions to allow for clustering.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Consider a binary single-layer network with N actors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Denote its adjacency matrix as Y = (yi,j) ∈ {0, 1}N×N, where yi,j = 1 if actors i and j are connected, and yi,j = 0 if they are not connected.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Suppose the network data comes with a one-dimensional nodal attribute xi for each actor, and denote the covariate as x = (xi) ∈ RN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' The LPM assumes that each actor i has an observed latent position zi in a K-dimensional Euclidean latent space, the so-called latent space, for some K ∈ N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Let z = (zi) ∈ RN×K, then LPM models edge yi,j as conditionally independent given distances between nodal attributes as well as distances between latent positions via logistic regression.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' But instead of the logistic link, we use the probit link in our model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' The analysis of probit regression models can often be facilitated by a Gibbs sampler constructed using the data augmentation approach that introduces latent variables with truncated normal distributions [Albert and Chib, 1993].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' (See also Sosa and Betancourt (2022) for a discussion on the choice of link functions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=') Specifically, for i, j ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' , N} and i ̸= j, yi,j | z, x, a, b, θ ind ∼ Ber � Φ(a + b|xi − xj| − θ∥zi − zj∥) � , (1) where a, b ∈ R and θ ∈ R+, Ber(p) is a Bernoulli distribution that takes value 1 with some probability p, ∥ · ∥ is the Euclidean norm on RK and Φ(·) is the cumulative distribution function of the standard normal distribution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Note that we impose a factor θ for the distance between latent positions, which is different from Hoff et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' [2002] and Krivitsky et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' [2009].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Although θ is unidentifiable in single-layer networks, it plays a non-trivial role in multi-layer network settings (introduced in Section 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' We defer a detailed discussion of θ to Section 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' 4 To allow for joint modeling of the network and nodal attributes, we model the nodal attributes as a spatial process over the latent space RK.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Hence, nodal attributes are treated as random variables indexed by their latent positions, and the distance between these random variables is found by the distance between their corresponding positions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' As in Ciminelli et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' [2019], we specify the spatial process as a Gaussian process that is stationary with mean β and isotropic (see Banerjee et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=', 2015 for definitions).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' In this case, the process is completely defined by its covariance function Cov(d), where d is the distance between two random variables in the Gaussian process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' In particular, we specify Cov(d) with an exponential kernel, that is, Cov(d) = � � � � � τ 2 + σ2, if d = 0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' σ2 exp(−φd), if d > 0, where τ ≥ 0, σ > 0 and φ > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' It is well-known that such a covariance structure is valid, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=', the covariance matrix for any finite collection of random variables in the process is positive definite [Banerjee et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=', 2015].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Let Mz = (mij) ∈ RN×N where mij = exp(−φ∥zi − zj∥) and denote IN as the N-dimensional identity matrix, then the Gaussian process of the nodal attributes is constructed as follows, x | z, β, σ, τ, φ ∼ NN(β111N, σ2M(z, φ) + τ 2IN), (2) where Nd is a d-dimensional multivariate normal distribution for some dimension d ∈ {2, 3, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' }, and 111N is an N-dimensional vector with all 1s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' As in Krivitsky et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' [2009], we impose a Gaussian mixture distribution on latent positions, which allows us to cluster actors into different groups.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Suppose there are H < ∞ predetermined number of components in the Gaussian mixture distribution, then zi | ωωω,µµµ,κκκ ind ∼ H � h=1 ωhNK(µh, κ2 hIK) , (3) where ωωω = {ω1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' , ωH}, µµµ = {µ1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' , µH}, κκκ = {κ1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' , κH}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Note that µh is a K-dimensional mean vector where h ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' , H}, and ωh is the probability that an actor belongs to the h-th group such that ωh ∈ (0, 1) and �H h=1 ωh = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' In single-layer network settings, the model is given by Eqs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' (1) to (3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Under our model, nodal attributes of two actors whose latent positions are close are more likely to be similar according to the exponential covariance structure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' If b < 0 (b > 0), actors with similar attributes are more (less) likely to be connected.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' When b = 0, nodal attributes do not affect the distribution of the network directly (but it still has an indirect 5 Figure 1: DAG representation of the LPJMM in multi-layer settings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' impact on the network through latent positions by Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' (2)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='1 An extension to multi-layer networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Our model can also be extended to multi-layer network settings in the following way.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Suppose we have L layers Y1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' , YL in the network, where all layers are defined over the same set of actors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' We assume the same latent positions z for all layers but allow the strength of borrowing such latent structure information to be different by imposing layer-specific factors θℓ for ℓ ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' , L}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Our model in multi-layer settings is then presented as follows yi,j,ℓ | z, x, aℓ, bℓ, θℓ ind ∼ Ber � Φ(aℓ + bℓ|xi − xj| − θℓ∥zi − zj∥) � , (4) x | z, β, σ, τ, φ ∼ NN(β111N, σ2M(z, φ) + τ 2IN) , (5) zi | ωωω,µµµ,κκκ i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' ∼ H � h=1 ωhNK(µh, κ2 hIK) , (6) where yi,j,ℓ is the edge variable between actors i and j in layer ℓ ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' , L}, aℓ, bℓ and θℓ are layer-specific parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Note that Eqs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' (5) and (6) are the same as Eqs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' (2) and (3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' 1 shows a directed acyclic graph (DAG) representation of the model given by Eqs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' (4) to (6).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' 6 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='2 Prior specification We take a Bayesian approach to estimate the model parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Without loss of generality, a Bayesian ver- sion of the model given by Eqs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' (4) to (6) is formed by placing prior distributions on the unknown parameters aℓ, bℓ, θℓ, β, σ, τ, φ, ωωω, µµµh, κh, for ℓ = {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' , L} and h = {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' , H}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' In the model we consider, these parameters are assumed a priori independent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' For parameters in the probit regression tier as specified by Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' (4), their priors are specified as follows: aℓ i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' ∼ N(ma, ν2 a) , bℓ i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' ∼ N(mb, ν2 b ) , θℓ i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' ∼ Gamma(λ1, λ2) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' The priors for the parameters in the spatial process tier as given in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' (5) are given as follows: β ∼ N(0, ν2 β) , σ2 ∼ InvG(η1, η2) , τ 2 ∼ InvG(ξ1, ξ2) , φ ∼ U(u1, u2) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Finally, we put the following priors on the rest of the parameters: ωωω ∼ Dir(α) , µh i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' ∼ NK(mµ, ν2 µIK) , κ2 h i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' ∼ InvG(γ1, γ2) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Note that, ma, νa, mb, νb, λ1, λ2, νβ, η1, η2, ξ1, ξ2, u1, u2, α, mµ, νµ, γ1 and γ2 are user-specified hyperparameters, and Gamma(·, ·), InvG(·, ·), U(·, ·), Dir(·) represents Gamma, Inverse-Gamma, uniform, and Dirichlet distributions respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='3 Posterior distribution and model estimation As is standard in Bayesian estimation of mixture models (see, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=', Diebolt and Robert [1994]), we define a new variable gi that serves as the missing data of group membership of actor i whose distribution depends on ωωω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' In particular, gi = h if actor i belongs to the h-th group.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' The joint density of (zi, gi) given ωωω, µµµ and κκκ is then given by H � h=1 � ωh 1 � 2πκ2 h exp � − 1 2κ2 h ∥zi − µh∥2��I{gi=h} , where the indicator function I{gi=h} = 1 if gi = h, and I{gi=h} = 0 otherwise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Let g = (gi)N i=1 be the group membership for all actors and L(·) be the law of a random variable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Then the posterior distribution of z, g 7 and the parameters upon which priors are specified in Section 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='2 is given by Π(z, g, a1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' , aL, b1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' , bL, θ1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' , θL, β, τ 2, σ2, φ,ωωω,µµµ,κκκ | Y1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' , YL, x) ∝ � L � ℓ=1 L(Yℓ | z, x, aℓ, bℓ, θℓ) � L(x | z, σ, τ, φ)L(z, g | ωωω,µµµ,κκκ) � L � ℓ=1 L(aℓ)L(bℓ)L(θℓ) � × L(β)L(σ2)L(τ 2)L(φ)L(ωωω)L(µµµ)L(κκκ) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Note that the dimension of the posterior distribution has dimension NK + N + 3L + 3H + 4 and the corresponding posterior density is presented as follows, π(z, g, a1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' , aL, b1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' , bL, θ1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' , θL, β, τ 2, σ2, φ,ωωω,µµµ,κκκ | Y1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' YL,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' x) ∝ N � i,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='j=1 i̸=j L � ℓ=1 � Φ(aℓ + bℓ|xi − xj| − θℓ∥zi − zj∥) �yi,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='j,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='ℓ� 1 − Φ(aℓ + bℓ|xi − xj| − θℓ∥zi − zj∥) �1−yi,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='j,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='ℓ × |σ2M(z,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' φ) + τ 2IN|− 1 2 exp � − 1 2(x − β1)⊺� σ2M(z,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' φ) + τ 2IN �−1(x − β1) � × N � i=1 H � h=1 � ωh � κ2 h exp � − 1 2κ2 h ∥zi − µh∥2��I{gi=h} × exp � 1 2ν2a L � ℓ=1 (aℓ − ma)2 + 1 2ν2 b L � ℓ=1 (bℓ − mb)2� L � ℓ=1 θλ1−1 ℓ exp(−λ2θℓ) × exp � β2 2ν2 β � (σ2)−η1−1(τ 2)−ξ1−1 exp � − η2 σ2 − ξ2 τ 2 � I{φ∈[u1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='u2]} × H � h=1 � ωαh−1 h I{�H h=1 ωh=1} exp � − 1 2ν2µ ∥µh − mµ∥2� (κ2 h)−γ1−1 exp � − γ2 κ2 h �� .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='4 Inference and identifiability of parameters Note that the posterior distribution is highly intractable, hence we must resort to Markov chain Monte Carlo (MCMC) methods for inferences on model parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' A Markov chain of the parameters is generated via the program “Just Another Gibbs Sampler” (JAGS) which is implemented in R [R Core Team, 2021] using the rjags package [Plummer, 2022].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Several parameters are not identifiable in our model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Firstly, due to factors θℓ and φ, and the fact that latent positions are incorporated in the posterior only through their distances, the posterior is, therefore, invariant to θℓs and φ, and is invariant to scaling, reflection, rotation, and translation of the latent positions z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' (Note that, Hoff et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=', 2002 and Krivitsky et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=', 2009 did not have θℓs, hence their posterior is not invariant to the 8 scaling of latent positions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=') Although θℓs are not identifiable and do not affect the model fitting, in multi- layer settings, their ratios θℓ1/θℓ2 still provide valid information on layer’s relative strength of borrowing information from the latent space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Despite being unidentifiable, one can still make inferences on the latent positions and find a reasonable estimate for z through a post-process which we now describe.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Similar to the definition in [Hoff et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=', 2002], we define the equivalence class of z ∈ RN×K, denoted as [z], to be the set of positions that are equivalent to z under scaling, reflection, rotation, and translation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Given a fixed reference position zref, a position z∗ is found in [z] such that z∗ = arg minz′∈[z] tr(zref − z′)⊺(zref − z′), which is the so-called Procrustes transformation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' In simulation studies, zref is naturally chosen to be the true latent position, while in practical applications, we could use the last iteration of the Markov chain of latent positions as the reference.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' The Procrustes transformation is performed for each iteration of the Markov chain of the latent positions {zn}, and an estimate for z is taken as the mean of the Procrustes transformations of {zn}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' As occurs in Bayesian mixture models, the label-switching problem for the group membership g is an- other source of non-identifiability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' That is, the posterior is invariant under permutations of clustering labels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Many algorithms have been proposed to obtain a single clustering estimate based on the MCMC sample of the group membership {gn},' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' including an optimization method (which we call “MaxPEAR” hereafter) in Fritsch and Ickstadt [2009] that finds a clustering that maximizes posterior expected adjusted rand index,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' an optimization method (“MinBinder”) in Lau and Green [2007] that minimizes Binder’s loss function,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' and a greedy algorithm (“GreedyEPL”) in Rastelli and Friel [2018] that aims to minimize the variation of informa- tion,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' among others.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' These approaches may generate different clustering estimates, and to get a better under- standing of the model performance, all aforementioned algorithms (MaxPEAR, MinBinder and GreedyEPL) are used to assess the model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Estimates based on these approaches are found using the packages GreedyEPL [Rastelli, 2021] and mcclust [Fritsch, 2022].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' 3 Simulation Two simulation studies are carried out in this section to evaluate our model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' A single-layer network is considered in the first simulation where we compare LPJMM with three other models designed only for single-layer networks, namely LPCM in Handcock et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' [2007], SNSM in Ciminelli et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' [2019], and CSBM in Leger [2016], where SNSM is also implemented using the rjags package, and LPCM and CSBM are implemented using the latentnet [Krivitsky and Handcock, 2022] and sbm [Chiquet et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=', 2022] packages respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' The model specifications for these models can be found in Appendix A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Models assessments include how well a model could recover the group membership and the latent position configuration, and a 9 1 Figure 2: Left: A visualization of the network based on the true latent position and color indicates group membership g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Right: Heatmap of the adjacency matrix (where actors are reordered according to g).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' goodness-of-fit test using summaries of networks including density, transitivity, and assortative coefficient with respect to the group membership g (see Kolaczyk and Csárdi, 2020 for definitions).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' We also evaluate our model by how accurately it could estimate certain parameters in the model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' The second simulation is conducted in two-layer network settings, where the performance of our model could be further evaluated by how well the ratio θ1/θ2 can be recovered that reflects differences in each layer’s dependency on the latent position structure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='1 Simulation 1: a single-layer network Consider a single-layer network (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=', L = 1) with N = 100 actors generated as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Firstly, generate latent positions z from a mixture of H = 5 multivariate normal distributions, and then generate attributes x jointly from a multivariate normal distribution with mean β1N = 0 and covariance matrix given by Cov(d) in Section 2 where φ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='5, τ 2 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='3, σ2 = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Finally, the network data is generated according to Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' (1) with a = 5, b = −2, and θ = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' See Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' 2 for a visualization of the simulated network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' The network is fairly sparse with a density equal to 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='1531, and shows fairly strong transitivity and assortative mixing with coefficients 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='5049 and 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='5512 respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' As for the prior specifications, we set ma = mb = 0, and ν2 a = ν2 b = 9 to allow a wide range of values for a and b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Let θ ∼ Gamma(1, 1) so that θ has mean 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' An almost flat prior is imposed on β by setting νβ = 104.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' The same uniform prior U(0, 1) as in Ciminelli et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' [2019] is specified for φ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' We suggest the sum of the prior means of τ 2 and σ2 to be on the same scale as the sample variance of x, and here we use σ2 ∼ InvG(2, 1) and τ 2 ∼ InvG(2, 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Let α = 1 so that the prior on ωωω is a flat Dirichlet distribution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Following the heuristics in Sosa and Betancourt [2022], we specify µh i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' ∼ NK(0, 2/3IK) and κ2 h i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' ∼ InvG(3, 2/3) so that var(zij|gi) = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' 10 our model name LPCM CSBM MaxPEAR 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='737 (5) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='707 (4) – MinBinder 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='712 (11) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='748 (10) – GreedyEPL 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='664 (4) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='688 (4) – Variational-EM – – 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='707 (6) Table 1: Adjusted Rand indices corresponding to different estimation methods for group membership.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Num- bers in the parentheses represent numbers of estimated groups.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='5 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='6 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='7 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='8 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='9 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='11 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='12 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='13 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='14 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='15 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='16 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='17 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='18 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='19 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='21 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='22 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='23 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='24 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='25 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='26 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='27 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='28 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='29 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='30 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='31 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='32 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='33 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='34 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='35 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='36 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='37 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='38 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='39 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='40 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='41 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='42 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='43 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='44 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='45 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='46 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='47 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='48 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='49 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='51 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='52 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='53 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='54 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='55 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='56 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='57 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='58 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='59 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='60 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='61 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='62 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='63 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='64 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='65 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='66 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='67 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='68 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='69 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='70 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='71 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='72 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='73 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='74 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='75 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='76 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='77 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='78 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='79 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='80 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='81 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='82 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='83 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='84 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='85 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='86 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='87 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='88 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='89 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='90 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='91 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='92 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='93 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='94 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='95 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='96 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='97 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='98 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='99 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='(a) Truth ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='5 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='6 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='7 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='8 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='9 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='11 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='12 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='13 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='14 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='15 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='16 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='17 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='18 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='19 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='21 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='22 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='23 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='24 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='25 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='26 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='27 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='28 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='29 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='30 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='31 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='32 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='33 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='34 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='35 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='36 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='37 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='38 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='39 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='40 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='41 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='42 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='43 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='44 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='45 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='46 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='47 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='48 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='49 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='51 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='52 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='53 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='54 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='55 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='56 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='57 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='58 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='59 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='60 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='61 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='62 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='63 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='64 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='65 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='66 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='67 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='68 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='69 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='70 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='71 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='72 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='73 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='74 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='75 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='76 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='77 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='78 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='79 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='80 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='81 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='82 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='83 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='84 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='85 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='86 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='87 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='88 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='89 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='90 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='91 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='92 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='93 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='94 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='95 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='96 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='97 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='98 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='99 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='(b) LPJMM ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='5 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='6 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='7 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='8 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='9 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='11 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='12 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='13 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='14 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='15 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='16 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='17 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='18 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='19 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='21 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='22 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='23 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='24 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='25 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='26 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='27 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='28 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='29 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='30 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='31 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='32 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='33 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='34 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='35 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='36 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='37 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='38 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='39 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='40 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='41 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='42 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='43 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='44 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='45 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='46 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='47 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='48 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='49 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='51 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='52 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='53 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='54 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='55 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='56 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='57 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='58 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='59 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='60 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='61 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='62 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='63 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='64 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='65 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='66 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='67 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='68 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='69 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='70 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='71 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='72 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='73 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='74 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='75 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='76 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='77 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='78 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='79 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='80 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='81 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='82 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='83 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='84 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='85 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='86 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='87 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='88 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='89 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='90 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='91 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='92 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='93 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='94 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='95 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='96 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='97 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='98 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='99 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='(c) LPCM ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='5 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='6 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='7 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='8 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='9 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='11 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='12 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='13 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='14 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='15 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='16 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='17 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='18 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='19 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='21 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='22 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='23 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='24 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='25 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='26 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='27 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='28 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='29 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='30 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='31 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='32 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='33 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='34 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='35 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='36 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='37 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='38 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='39 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='40 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='41 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='42 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='43 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='44 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='45 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='46 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='47 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='48 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='49 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='51 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='52 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='53 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='54 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='55 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='56 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='57 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='58 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='59 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='60 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='61 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='62 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='63 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='64 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='65 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='66 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='67 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='68 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='69 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='70 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='71 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='72 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='73 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='74 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='75 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='76 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='77 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='78 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='79 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='80 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='81 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='82 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='83 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='84 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='85 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='86 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='87 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='88 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='89 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='90 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='91 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='92 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='93 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='94 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='95 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='96 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='97 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='98 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='99 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='(d) CSBM ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='Figure 3: (A): Color indicates the true group membership g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' (B)-(D): Color indicates the estimated group memberships ˆg of LPJMM, LPCM and CSBM respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Positions of the points in all plots are true latent positions z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Note that the latent space dimension K and the number of clusters H in the model need to be prespecified along with the priors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' We take K to be the true dimensions of the latent space (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=', K = 2) since this facilitates model assessment by allowing visualizations of the estimated latent positions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' One could also use the Watanabe-Akaike Information Criterion (WAIC) to select a K with the smallest WAIC as in Sosa and Betancourt [2022].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' However, WAIC and other information criteria like Deviance Information Criterion (DIC) are not helpful in choosing the number of clusters H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' We noticed that the model assessment is significantly worse when H is chosen to be smaller than the truth.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' However, model assessments are similar among models whose H is at least as large as the truth.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' A comparison of the model assessment for different specified H is given in Appendix B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' From the comparison, we could also see that when H is specified to be larger, the number of clusters in the estimated group membership ˆg also tends to be larger.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Therefore, we suggest choosing H to be the largest number of groups that one is willing to accept, and in this example, we choose H to be 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' We then fit LPJMM using MCMC sampling with 20 000 burn-in iterations and a further 10 000 iterations which are kept for posterior analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' The Markov chain mixes reasonably well and shows no signs of lack of convergence (see Appendix C for the traceplot of the log-likelihood chain).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' 11 LPCM LPJMM (simulation 1) LPJMM (simulation 2) Sum of Euclidean distances 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='08 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='06 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='20 Table 2: Sum of distances between the estimated and true latent positions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' To evaluate a model’s ability to recover the group membership, we first find estimates of clustering using the optimization algorithms (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=', MaxPEAR, MinBinder and GreedyEPL) mentioned in Section 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' The adjusted Rand index is then calculated for each clustering estimate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Note that SNSM does not define clusters, therefore we only compare the adjusted Rand index between LPJMM, LPCM, and CSBM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Since the sbm package takes a non-Bayesian approach that uses a Variational-EM algorithm to find a point estimator for the group membership g, optimization methods like MaxPEAR are not necessary to analyze results from CSBM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' The results shown in Table 1 suggest that these three models have a similar ability in recovering group membership, with rand indices of LPJMM using the MaxPEAR and MinBinder algorithms being higher than the rand index (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='707) under the CSBM model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' A visualization of the estimated clusters based on the true latent positions is given in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Also, notice that the MinBinder algorithm tends to overestimate the number of clusters in the network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' To further compare the ability to recover latent position configuration between LPJMM and LPCM, we find an estimate of the latent positions as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Firstly, we perform the Procrustes transformation on zn for each iteration n, and then take the estimate ˆz of z to be the average of zn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' We then calculate the Euclidean distance between the estimated latent position ˆzi (which is the i-th row in ˆz) and the true latent position zi (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=', the i-th row in z) for each actor i and use the sum of distances of all actors to quantify the similarity between the estimated and the true latent position configurations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' The results are shown in Table 2 which suggests that these two models have similar recovery of the latent positions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Plots of the estimated latent positions of LPJMM and LPCM can be found in Appendix D, which also suggest similar estimated configurations of z as Table 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Following Sosa and Betancourt [2022], we assess if models have a good fit in the sense of good reproduction of a variety of summary statistics, which are calculated based on a collection of simulated networks generated as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' For LPJMM and SNSM, a network is simulated for every 10-th iteration using the parameters in that iteration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' For LPCM and CSBM, 1000 networks are simulated using their respective packages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Then for each model, we calculate the density, transitivity, and assortative coefficient (if applicable) with respect to the true group membership for each simulated network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Boxplots of these summary statistics are given in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' 4 and the averages of these summary statistics for each model are given in Table 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Note that our model 12 density transitivity assortativity 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='14 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='16 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='35 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='40 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='45 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='50 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='55 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='45 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='50 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='55 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='60 LPJMM LPCM SNSM CSBM Figure 4: Boxplots of summary statistics for each model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Red dotted lines indicate the true values for network characteristics respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' true value LPJMM LPCM SNSM CSBM density 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='1531 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='1539 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='1530 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='1504 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='1499 transitivity 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='5049 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='5144 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='5467 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='4027 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='3776 assortativity 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='5512 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='5468 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='5475 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='4811 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='4954 Table 3: Means of the summary statistics of the simulated networks for each model in simulation 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' appropriately captures these structural features of the network data, while LPCM tends to overestimate tran- sitivity in the network, and both SNSM and CSBM tend to underestimate both transitivity and assortativity in the network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='2 Simulation 2: a two-layer network Continue using the parameter setup in simulation 1 and its generated network as the first layer (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=', a1 = 5, b1 = −2, θ1 = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='72), we generate a second layer of the network with a2 = 3, b2 = 1, θ2 = 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' As in simulation 1, we fit LPJMM with K = 2 and H = 5 and evaluate the model’s ability to recover the group membership using the adjusted Rand indices based on four clustering summaries.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' The results are given in Table 4, which shows similar clustering estimates as in simulation 1 where only one layer is considered.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' However, the sum of Euclidean distances between the estimated and true latent positions of all actors (see Table 2) in simulation 2 is 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='20, which is a significant improvement compared to 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='06 in simulation 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' The plot of the estimated latent position configurations is given in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' 5 (B), which visualizes the model’s recovery of latent positions and group membership.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' We also carry out the goodness-of-fit test as in simulation 1 and the result is given in Table 5, which shows that LPJMM captures these structural features accurately, and the result for layer 1 is similar to the result in simulation 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' 13 MaxPEAR MinBinder GreedyEPL adjusted Rand index 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='748 (6) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='753 (12) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='662 (4) Table 4: Adjusted Rand indices corresponding to different estimation methods for group membership in simulation 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Numbers in the parentheses represent numbers of estimated groups.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='5 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='6 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='7 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='8 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='9 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='11 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='12 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='13 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='14 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='15 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='16 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='17 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='18 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='19 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='21 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='22 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='23 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='24 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='25 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='26 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='27 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='28 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='29 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='30 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='31 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='32 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='33 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='34 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='35 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='36 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='37 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='38 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='39 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='40 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='41 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='42 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='43 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='44 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='45 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='46 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='47 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='48 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='49 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='51 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='52 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='53 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='54 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='55 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='56 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='57 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='58 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='59 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='60 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='61 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='62 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='63 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='64 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='65 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='66 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='67 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='68 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='69 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='70 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='71 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='72 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='73 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='74 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='75 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='76 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='77 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='78 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='79 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='80 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='81 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='82 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='83 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='84 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='85 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='86 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='87 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='88 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='89 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='90 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='91 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='92 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='93 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='94 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='95 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='96 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='97 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='98 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='99 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='(a) Truth ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='5 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='6 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='7 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='8 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='9 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='11 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='12 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='13 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='14 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='15 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='16 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='17 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='18 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='19 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='21 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='22 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='23 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='24 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='25 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='26 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='27 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='28 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='29 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='30 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='31 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='32 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='33 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='34 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='35 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='36 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='37 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='38 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='39 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='40 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='41 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='42 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='43 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='44 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='45 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='46 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='47 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='48 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='49 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='51 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='52 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='53 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='54 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='55 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='56 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='57 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='58 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='59 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='60 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='61 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='62 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='63 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='64 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='65 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='66 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='67 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='68 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='69 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='70 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='71 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='72 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='73 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='74 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='75 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='76 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='77 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='78 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='79 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='80 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='81 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='82 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='83 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='84 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='85 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='86 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='87 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='88 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='89 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='90 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='91 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='92 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='93 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='94 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='95 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='96 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='97 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='98 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='99 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='(b) Estimated z and g ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='Figure 5: (A): Points are plotted based on true latent position z and true group membership g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' (B): Points are plotted using the estimated latent positions in simulation 2, and color represents the estimated group membership using the MaxPEAR method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Recall that θ1 and θ2 are of no direct interest since they are not identifiable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' However, we are still interested in the ratio θ1/θ2 since it reflects the relative strength of borrowing information from the latent space of each layer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Although aℓ and bℓ are of no direct interest, we pay attention to their signs, especially that of bℓ because different signs of bℓ have different interpretations of the effect of attributes as discussed in Section 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' We also assess the model’s ability to estimate parameters β, τ 2, and σ2 using posterior means and 95% credible inter- vals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' The results are given in Table 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Overall, the performance of LPJMM in recovering the true values of these model parameters is pretty well, except for τ 2 and σ2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Both LPJMM and SNSM tend to underestimate σ2 and overestimate τ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' That is, the covariance of the attributes tends to be underestimated, and although τ 2 is slightly overestimated, the variance of the attributes (τ 2 + σ2) still tends to be underestimated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' 4 Real data analysis In this section, we consider a three-layer network data set collected by [Lazega, 2001] from a corporate law firm from 1988-1991 in New England.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' This network describes three types of relationships (namely, networks of advice, friendship, and coworker contacts) between 71 lawyers in the law firm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Several actor attributes are also collected: age, gender, seniority (years with the firm), office (located in Boston, Hartford, or Providence), practice (litigation or corporate law), law school the lawyers attended (Harvard or Yale, University of Connecticut, or other universities) and status (partner or associate).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' A principal component 14 true value mean density layer 1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='1531 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='1535 layer 2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='1024 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='1023 transitivity layer 1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='5049 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='5088 layer 2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='5477 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='5546 assortativity layer 1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='5512 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='5466 layer 2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='6923 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='6890 Table 5: Means of the summary statistics in simulation 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' true value posterior mean 95% credible interval θ1/θ2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='680 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='653 (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='579, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='721) a1 5 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='01 (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='719, 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='262) a2 3 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='25 (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='976, 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='572) b1 2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='919 (-2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='053, -1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='766) b2 1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='058 (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='901, 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='252) β 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='047 (-1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='027, 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='01 ) τ 2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='409 (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='261, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='592) σ2 1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='642 (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='230, 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='684) Table 6: Posterior means and 95% credible intervals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' analysis (PCA) is performed on age and seniority attributes, and the first principal component explains 89% of the variance which is of no surprise since age and seniority are highly correlated with a correlation coefficient being 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='78.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' We chose the first principal component to be the attribute x and let H = 8 since it is the largest number of clusters we expect in the network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Then the model is fitted to the network using the same prior and Markov chain setup as in Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' The study of the Lazega network in this paper is meant to find out how the three types of relations can be explained by the findings deduced from the model fitting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' We first visualize the estimated latent positions z colored by different categorical attributes (gender, office, practice, law school, and status) in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' As we can see from these plots, the estimated positions z are well separated by the office (especially offices in Boston and Hartford) and practice.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Compare these plots with z colored by MaxPEAR and GreedyEPL estimated clustering g in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' 7, we can see that both estimated g roughly clusters lawyers into three groups: lawyers in Hartford office, litigation lawyers in Boston or Providence offices, and corporate lawyers in Boston or Providence offices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Plots of adjacency matrices of the three layers (where lawyers are grouped by the MaxPEAR estimate of g) and their corresponding networks are given in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' 8,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' where we could see that the coworker network shows ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='15 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='5 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='7 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='8 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='9 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='11 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='12 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='13 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='14 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='15 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='18 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='21 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='22 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='23 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='25 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='26 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='28 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='29 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='30 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='32 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='33 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='34 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='36 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='37 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='38 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='40 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='44 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='45 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='46 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='47 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='49 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='52 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='53 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='54 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='59 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='60 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='62 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='63 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='65 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='67 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='68 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='70 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='male ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='female ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='gender ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='56 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='7 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='8 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='9 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='11 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='12 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='13 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='14 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='15 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='16 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='17 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='18 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='19 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='21 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='22 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='23 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='24 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='25 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='26 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='27 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='28 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='29 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='30 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='31 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='32 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='33 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='34 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='35 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='36 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='37 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='38 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='39 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='40 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='41 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='42 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='43 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='44 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='45 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='46 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='47 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='48 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='49 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='51 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='52 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='53 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='54 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='55 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='56 57 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='58 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='59 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='60 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='61 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='62 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='63 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='64 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='65 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='66 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='67 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='68 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='69 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='70 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='71 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='Boston ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='Hartford ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='Providence ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='office ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='56 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='7 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='8 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='9 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='11 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='12 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='13 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='14 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='15 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='16 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='17 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='18 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='19 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='21 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='22 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='23 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='24 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='25 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='26 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='27 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='28 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='29 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='30 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='31 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='32 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='33 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='34 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='35 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='36 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='37 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='38 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='39 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='40 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='41 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='42 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='43 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='44 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='45 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='46 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='47 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='48 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='49 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='51 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='52 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='53 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='54 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='55 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='56 57 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='58 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='59 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='60 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='61 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='62 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='63 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='64 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='65 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='66 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='67 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='68 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='69 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='70 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='71 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='litigation ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='corporate ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='practice ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='56 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='7 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='8 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='9 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='11 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='12 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='13 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='14 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='15 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='16 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='17 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='18 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='19 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='21 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='22 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='23 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='24 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='25 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='26 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='27 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='28 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='29 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='30 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='31 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='32 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='33 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='34 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='35 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='36 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='37 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='38 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='39 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='40 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='41 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='42 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='43 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='44 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='45 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='46 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='47 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='48 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='49 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='51 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='52 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='53 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='54 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='55 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='56 57 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='58 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='59 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='60 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='61 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='62 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='63 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='64 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='65 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='66 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='67 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='68 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='69 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='70 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='71 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='Harvard/Yale ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='Ucon ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='other ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='law school ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='56 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='7 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='8 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='9 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='11 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='12 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='13 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='14 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='15 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='16 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='17 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='18 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='19 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='21 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='22 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='23 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='24 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='25 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='26 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='27 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='28 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='29 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='30 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='31 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='32 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='33 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='34 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='35 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='36 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='37 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='38 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='39 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='40 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='41 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='42 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='43 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='44 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='45 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='46 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='47 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='48 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='49 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='51 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='52 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='53 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='54 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='55 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='56 57 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='58 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='59 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='60 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='61 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='62 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='63 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='64 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='65 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='66 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='67 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='68 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='69 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='70 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='71 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='partner ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='associate ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='status ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='Figure 6: Points in all plots are drawn based on the estimated latent positions z,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' and are colored based on their categories in gender,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' office,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' practice,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' law school,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' and status.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' the most estimated clustering pattern, while the advice network presents the least of such pattern, which could also be seen from the relative ratios of θℓs in Table 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' This means that lawyers from the same office and doing the same practice are more likely to become coworkers and friends, but who they seek advice from does not depend much on office and practice.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Furthermore, we can deduce from the posteriors of bℓ in Table 7 that these lawyers tend to seek advice from people of similar age (or seniority) since the posterior estimate of b1 is negative, while lawyers of different ages (or seniority) are more likely to become friends and coworkers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' This conclusion is in line with the assortativity coefficients with respect to the nodal attributes (lawyer’s age) given in Table 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' 5 Discussion This paper presents a latent position model that extends LPCM of Handcock et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' [2007] and SNSM of Ciminelli et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' [2019] to jointly model network data and the nodal attributes and perform model-based clustering.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' By jointly modeling the network and the attributes,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' we are able to describe how the attributes ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='16 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='56 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='7 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='8 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='9 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='11 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='12 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='13 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='14 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='15 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='16 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='17 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='18 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='19 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='21 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='22 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='23 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='24 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='25 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='26 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='27 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='28 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='29 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='30 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='31 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='32 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='33 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='34 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='35 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='36 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='37 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='38 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='39 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='40 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='41 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='42 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='43 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='44 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='45 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='46 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='47 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='48 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='49 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='51 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='52 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='53 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='54 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='55 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='56 57 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='58 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='59 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='60 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='61 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='62 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='63 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='64 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='65 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='66 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='67 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='68 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='69 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='70 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='71 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='(a) MaxPEAR ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='56 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='7 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='8 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='9 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='11 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='12 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='13 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='14 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='15 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='16 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='17 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='18 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='19 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='21 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='22 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='23 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='24 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='25 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='26 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='27 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='28 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='29 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='30 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='31 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='32 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='33 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='34 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='35 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='36 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='37 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='38 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='39 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='40 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='41 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='42 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='43 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='44 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='45 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='46 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='47 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='48 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='49 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='51 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='52 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='53 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='54 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='55 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='56 57 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='58 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='59 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='60 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='61 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='62 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='63 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='64 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='65 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='66 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='67 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='68 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='69 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='70 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='71 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='(b) GreedyEPL ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='Figure 7: Points are plotted using the estimated latent positions and color indicates the estimated group ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='membership using MaxPEAR and GreedyEPL methods respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' posterior mean 95% credible interval θ1/θ2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='3229 (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='2352, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='4152) θ1/θ3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='2035 (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='1479, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='2606) θ2/θ3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='6319 (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='5536, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='7198) b1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='0986 (-0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='1401, -0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='0579) b2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='0708 (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='0263, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='1137) b3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='133 (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='0854, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='186) Table 7: Posterior means and 95% credible intervals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' change over the network and explain how relations could be influenced by attributes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' LPJMM also provides an extension to multi-layer network settings on the assumption that all layers share the same latent position structure but with different strengths of borrowing such latent structure information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' We applied our method to two simulated networks, one with a single layer and another with two layers, and found our model to give satisfactory fits to these two data sets and is competitive in terms of goodness-of-fit and group detection compared with SNSM, LPCM, and CSBM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' The model is also applied to a three-layer real network data set and we are able to draw reasonable conclusions from the modeling results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' We have suggested choosing the number of groups H to be the largest number of groups that one is willing to accept in the network because we have found that varying the number of groups has almost no impact on the model fit and prediction outcome as long as it is in a reasonable range.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' One could also fit the CSBM to the network first, and choose H based on its estimated number of groups.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' One problem we have not addressed in the paper is of choosing the dimension of the latent space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' This can be done by using Bayesian model selection like WAIC as in Sosa and Betancourt [2022].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Our model could be extended in several ways.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Firstly, other extensions of our model to multi-layer settings could be considered.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' For example, Sosa and Betancourt [2022] assumed conditionally independent layer- 17 advice friendship coworker Figure 8: Upper: Heatmaps of the adjacency matrices (where lawyers are reordered according to the Max- PEAR estimate of g).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Lower: A visualization of the three layers based on the estimated z and color indicates the MaxPEAR estimate of g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' advice friendship coworker assortativity 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='2536 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='1107 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='1224 Table 8: Assortativity coefficients with respect to lawyer’s age.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' specific latent positions, whereas MacDonald et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' [2022] assumed that the latent position of an actor in all layers is (d0 + d1)-dimensional, where the first d0 components of the latent position are the same across all layers, and only the last d1 components are layer-specific.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Secondly, instead of assigning a user-specified number of groups H to the model, we could learn the number of groups by using a Bayesian nonpara- metric approach with a Dirichlet Process prior to model community memberships (see, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=', Amini et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=', 2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' LPJMM could also be extended to leverage multivariate covariates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' So far, we have limited ourselves to mod- eling univariate nodal attributes that are approximately Gaussian.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' For continuous nodal attributes with more than one dimension, we have used the first principal component from the principal component analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' To take full advantage of high-dimensional nodal attributes, one could use multivariate spatial process modeling to replace Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' (2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Other extensions of more sophisticated spatial modeling include spatiotemporal modeling of attributes for time-varying networks, which would help to describe changes in actors over time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' 18 Appendix A Model Specifications for SNSM, LPCM and CSBM Note that the original SNSM in Ciminelli et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' [2019] uses the logit link.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' In order to make a fair comparison, we also use the probit link in SNSM as in LPJMM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' The model specification for SNSM used in this paper is given as follows: yi,j | z, x, aℓ, bℓ, θℓ ind ∼ Ber � Φ(a + b|xi − xj| − ∥zi − zj∥) � , x | z, β, σ, τ, φ ∼ NN(β111N, σ2M(z, φ) + τ 2IN) , and the priors are set to be the same as the priors in LPJMM (if possible).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' To be specific, zi i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' ∼ N2(000, I2) , β ∼ N(0, 104) , σ2 ∼ InvG(2, 1) , τ 2 ∼ InvG(2, 1) , φ ∼ U(0, 1) , and the priors on the parameters in the probit regression tier are given by: a i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' ∼ N(0, 9) , b i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' ∼ N(0, 9) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' SNSM in this paper is implemented using JAGS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' The model specification for LPCM (see Handcock et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=', 2007) is given as the follows, yi,j | z, x, β0, β1 ind ∼ Ber � logit(β⊺ 0xi,j − β1∥zi − zj∥) � , zi | ωωω,µµµ,κκκ i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' ∼ 5 � h=1 ωhN5(µh, κ2 hIK) , and we use the default priors given in the latentnet package for prior specifications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' We first introduce several notations before presenting CSBM in Leger [2016].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Suppose there are Q groups in the network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Denote the N × Q group membership matrix as ZZZ = {Ziq}, and Ziq = 1 if actor i belongs to group q, Ziq = 0 if otherwise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' It is assumed that an actor can only belong to one group.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' The model specification for CSBM is given as follows, yi,j | Zi, Zj, x, β ind ∼ Ber � logit(mqi,qj + β⊺xi,j) � , where Zi is the i-th row of ZZZ, qi is the group membership for actor i and the group effect mqi,qj ∈ R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' 19 B Comparing model performances for different number of groups We conduct a comparison of LPJMM with different H ∈ {3, 4, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' , 9} using the data set in simulation 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Table 9 presents the adjusted rand indices, and the results are similar for models that assume H to be equal to or larger than the true number of groups (which is 5 in this example).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' However, the adjusted rand indices for all three estimates are significantly smaller when the model assumes H to be smaller than 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Also, notice that the estimated number of groups increases with H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Visualizations of how adjusted rand indices and estimated number of groups changes over H are given in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' H MaxPEAR MinBinder GreedyEPL 3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='4067 (3) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='4008 (5) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='4321 (3) 4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='4882 (3) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='4977 (6 ) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='6521 (4) 5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='7374 (5) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='7115 (11) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='6635 (4) 6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='7237 (6) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='7442 (20) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='7134 (4) 7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='7449 (7) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='6624 (25) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='7313 (4) 8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='7422 (8) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='6674 (25) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='7293 (8) 9 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='7056 (12) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='7041 (25) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='7043 (11) Table 9: Adjusted Rand indices of different estimates under LPJMM with different H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Numbers in the parentheses denote the numbers of estimated groups.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' 3 4 5 6 7 8 9 H Adjusted rand index 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='8 3 4 5 6 7 8 9 H number of groups 5 10 15 20 25 MaxPEAR MinBinder GreedyEPL Figure 9: Left: Adjusted rand indices of the clustering estimates found by using the MaxPear, MinBinder, and GreedyEPL methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Right: Estimated number of groups using the three methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' The goodness-of-fit test outlined in Section 3 is also carried out here to compare the means of several sum- mary statistics, which are plotted in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' As we can see from the plots, the model’s fit is not affected by the choice of H even for H smaller than the actual number of clusters in the network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' 20 3 4 5 6 7 8 9 H 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='1536 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='1540 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='1544 (a) density 3 4 5 6 7 8 9 H 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='513 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='514 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='515 (b) transitivity 3 4 5 6 7 8 9 H 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='538 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='546 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='554 (c) assortativity Figure 10: The means of summary statistics for different H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' C Traceplots of log-likelihood The traceplots of the log-likelihood (after thinning the Markov chain every 10 iterations) in simulation stud- ies and real applications in Sections 3 and 4 are given in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' 0 2000 6000 10000 −1100 −1080 −1060 −1040 (a) simulation 1 0 2000 6000 10000 −1920 −1900 −1880 −1860 (b) simulation 2 0 2000 6000 10000 −5230 −5214 −5198 −5182 (c) Lazega network Figure 11: Traceplots of the log-likelihood.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' D Visualizations of results from LPJMM and LPCM Visualizations of the estimated latent positions and estimated group membership using the MaxPEAR, Min- Binder, and GreedyEPL methods under LPJMM and LPCM are shown in Figs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' 12 and 13 respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='21 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='5 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='6 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='7 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='8 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='9 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='11 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='12 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='13 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='14 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='15 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='16 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='17 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='18 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='19 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='21 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='22 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='23 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='24 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='25 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='26 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='27 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='28 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='29 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='30 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='31 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='32 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='33 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='34 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='35 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='36 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='37 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='38 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='39 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='40 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='41 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='42 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='43 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='44 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='45 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='46 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='47 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='48 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='49 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='51 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='52 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='53 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='54 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='55 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='56 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='57 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='58 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='59 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='60 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='61 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='62 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='63 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='64 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='65 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='66 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='67 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='68 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='69 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='70 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='71 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='72 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='73 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='74 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='75 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='76 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='77 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='78 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='79 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='80 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='81 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='82 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='83 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='84 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='85 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='86 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='87 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='88 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='89 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='90 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='91 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='92 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='93 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='94 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='95 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='96 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='97 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='98 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='99 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='(a) MaxPEAR ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='5 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='6 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='7 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='8 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='9 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='11 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='12 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='13 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='14 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='15 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='16 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='17 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='18 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='19 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='21 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='22 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='23 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='24 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='25 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='26 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='27 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='28 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='29 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='30 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='31 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='32 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='33 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='34 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='35 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='36 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='37 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='38 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='39 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='40 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='41 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='42 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='43 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='44 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='45 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='46 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='47 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='48 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='49 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='51 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='52 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='53 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='54 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='55 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='56 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='57 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='58 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='59 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='60 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='61 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='62 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='63 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='64 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='65 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='66 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='67 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='68 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='69 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='70 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='71 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='72 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='73 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='74 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='75 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='76 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='77 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='78 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='79 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='80 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='81 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='82 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='83 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='84 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='85 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='86 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='87 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='88 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='89 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='90 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='91 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='92 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='93 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='94 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='95 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='96 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='97 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='98 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='99 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='(b) MinBinder ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='5 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='6 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='7 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='8 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='9 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='11 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='12 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='13 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='14 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='15 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='16 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='17 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='18 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='19 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='21 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='22 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='23 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='24 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='25 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='26 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='27 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='28 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='29 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='30 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='31 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='32 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='33 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='34 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='35 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='36 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='37 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='38 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='39 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='40 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='41 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='42 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='43 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='44 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='45 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='46 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='47 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='48 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='49 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='51 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='52 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='53 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='54 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='55 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='56 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='57 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='58 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='59 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='60 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='61 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='62 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='63 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='64 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='65 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='66 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='67 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='68 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='69 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='70 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='71 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='72 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='73 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='74 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='75 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='76 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='77 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='78 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='79 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='80 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='81 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='82 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='83 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='84 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='85 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='86 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='87 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='88 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='89 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='90 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='91 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='92 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='93 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='94 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='95 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='96 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='97 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='98 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='99 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='(c) GreedyEPL ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='Figure 12: Points are plotted based on the estimated latent position z and three estimated group memberships ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='ˆg of LPJMM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='5 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='6 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='7 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='8 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='9 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='11 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='12 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='13 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='14 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='15 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='16 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='17 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='18 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='19 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='21 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='22 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='23 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='24 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='25 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='26 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='27 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='28 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='29 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='30 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='31 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='32 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='33 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='34 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='35 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='36 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='37 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='38 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='39 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='40 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='41 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='42 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='43 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='44 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='45 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='46 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='47 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='48 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='49 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='51 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='52 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='53 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='54 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='55 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='56 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='57 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='58 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='59 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='60 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='61 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='62 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='63 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='64 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='65 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='66 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='67 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='68 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='69 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='70 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='71 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='72 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='73 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='74 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='75 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='76 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='77 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='78 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='79 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='80 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='81 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='82 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='83 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='84 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='85 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='86 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='87 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='88 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='89 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='90 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='91 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='92 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='93 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='94 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='95 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='96 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='97 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='98 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='99 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='(a) MaxPEAR (LPCM) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='5 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='6 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='7 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='8 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='9 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='11 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='12 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='13 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='14 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='15 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='16 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='17 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='18 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='19 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='21 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='22 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='23 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='24 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='25 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='26 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='27 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='28 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='29 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='30 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='31 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='32 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='33 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='34 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='35 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='36 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='37 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='38 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='39 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='40 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='41 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='42 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='43 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='44 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='45 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='46 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='47 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='48 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='49 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='51 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='52 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='53 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='54 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='55 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='56 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='57 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='58 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='59 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='60 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='61 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='62 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='63 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='64 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='65 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='66 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='67 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='68 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='69 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='70 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='71 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='72 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='73 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='74 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='75 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='76 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='77 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='78 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='79 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='80 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='81 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='82 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='83 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='84 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='85 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='86 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='87 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='88 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='89 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='90 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='91 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='92 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='93 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='94 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='95 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='96 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='97 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='98 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='99 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='(b) MinBinder (LPCM) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='5 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='6 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='7 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='8 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='9 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='11 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='12 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='13 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='14 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='15 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='16 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='17 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='18 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='19 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='21 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='22 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='23 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='24 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='25 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='26 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='27 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='28 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='29 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='30 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='31 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='32 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='33 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='34 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='35 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='36 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='37 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='38 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='39 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='40 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='41 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='42 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='43 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='44 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='45 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='46 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='47 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='48 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='49 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='51 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='52 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='53 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='54 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='55 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='56 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='57 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='58 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='59 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='60 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='61 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='62 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='63 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='64 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='65 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='66 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='67 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='68 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='69 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='70 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='71 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='72 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='73 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='74 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='75 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='76 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='77 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='78 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='79 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='80 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='81 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='82 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='83 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='84 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='85 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='86 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='87 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='88 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='89 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='90 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='91 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='92 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='93 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='94 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='95 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='96 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='97 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='98 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='99 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='(c) GreedyEPL (LPCM) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='Figure 13: Points are plotted based on estimated z and three estimated ˆg of LPCM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' References J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Albert and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Chib.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Bayesian analysis of binary and polychotomous response data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Journal of the American Statistical Association, 88:669–679, 1993.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Aldous.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Exchangeability and related topics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Springer, Berlin, Heidelberg, 1985.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Amini, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Paez, and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Lin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Hierarchical stochastic block model for community detection in multiplex networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' arXiv:1904.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='05330, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Athreya, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Fishkind, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Tang, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Priebe, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Park, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Vogelstein, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Levin, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Lyzinski, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Qin, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Sussman.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Statistical inference on random dot product graphs: a survey.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Journal of Machine Learning Research, 18:1–92, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Banerjee, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Carlin, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Gelf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Hierarchical Modeling and Analysis for Spatial Data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' CRC Press, 2nd edition, 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' 22 J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Chiquet, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Donnet, and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Barbillon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' sbm: Stochastic Blockmodels, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' URL https://CRAN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' R-project.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='org/package=sbm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' R package version 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Ciminelli, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Love, and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Wu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Social network spatial model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Spatial Statistics, 29:129–144, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Diebolt and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Robert.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Estimation of finite mixture distributions through Bayesian sampling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Journal of the Royal Statistical Society.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Series B, 56:363–375, 1994.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Durante and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Dunson.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Bayesian inference and testing of group differences in brain networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Bayesian Analysis, 13:29–58, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' D’Angelo, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Murphy, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Alfò.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Latent space modelling of multidimensional networks with appli- cation to the exchange of votes in Eurovision song contest.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' The Annals of Applied Statistics, 13:900–930, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Erdös and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Rényi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' On random graphs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Publicationes Mathematicae (Debrecen), 6:290–297, 1959.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Fosdick and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Hoff.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Testing and modeling dependencies between a network and nodal attributes,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Journal of the American Statistical Association, 110:1047–1056, 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Frank and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Strauss.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Markov graphs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Journal of the American Statistical Association, 81:832–842, 1986.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Fritsch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' mcclust: Process an MCMC Sample of Clusterings, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' URL https://CRAN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' R-project.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='org/package=mcclust.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' R package version 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Fritsch and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Ickstadt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Improved criteria for clustering based on the posterior similarity matrix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Bayesian Analysis, 4:367–391, 2009.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Gollini and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Murphy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Joint modeling of multiple network views.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Journal of Computational and Graphical Statistics, 25:246–265, 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Guha and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Rodriguez.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Bayesian regression with undirected network predictors with an application to brain connectome data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Journal of the American Statistical Association, 116(534):581–593, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Handcock, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Raftery, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Tantrum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Model-based clustering for social networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Journal of the Royal Statistical Society: Series A, 170:301–354, 2007.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Hoff.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Modeling homophily and stochastic equivalence in symmetric relational data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' In Advances in Neural Information Processing Systems, pages 657–664, 2007.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' 23 P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Hoff.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Bilinear mixed-effects models for dyadic data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Journal of the American Statistical Association, 100:286–295, 2005.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Hoff.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Multiplicative latent factor models for description and prediction of social networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Computa- tional and Mathematical Organization Theory, 15:261–272, 2009.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Hoff, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Raftery, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Handcock.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Latent space approaches to social network analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Journal of the American Statistical Association, 97:1090–1098, 2002.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Hoover.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Row-column exchangeability and a generalized model for probability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Exchangeability in probability and statistics (Rome, 1981), pages 281–291, 1982.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Kim and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Leskovec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Multiplicative attribute graph model of real-world networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Internet Mathematics, 8:113–160, 2012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Kolaczyk and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Csárdi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Statistical Analysis of Network Data with R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Springer, 2nd edition, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Krivitsky and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Handcock.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' latentnet: Latent Position and Cluster Models for Statistical Net- works.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' The Statnet Project (https://statnet.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='org), 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' URL https://CRAN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='R-project.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' org/package=latentnet.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' R package version 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Krivitsky, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Handcock, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Raftery, and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Hoff.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Representing degree distributions, clustering, and homophily in social networks with latent cluster random effects models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Social Networks, 31:204– 213, 2009.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Lau and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Green.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Bayesian model based clustering procedures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Journal of Computational and Graphical Statistics, 16:526–558, 2007.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Lazega.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' The Collegial Phenomenon: The Social Mechanisms of Cooperation Among Peers in a Corporate Law Partnership.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Oxford University Press, 2001.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Lee and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Wilkinson.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' A review of stochastic block models and extensions for graph clustering.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Applied Network Science, 4:1–50, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='-B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Leger.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Blockmodels: A R-package for estimating in Latent Block Model and Stochastic Block Model, with various probability functions, with or without covariates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' arXiv:1602.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='07587, 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Crystal D Linkletter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Spatial process models for social network analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' PhD thesis, Citeseer, 2007.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' MacDonald, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Levina, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Zhu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Latent space models for multiplex networks with shared structure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' arXiv:2012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='14409, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' 24 P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' MacDonald, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Levina, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Zhu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Latent space models for multiplex networks with shared structure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Biometrika, 109:683–706, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Matias and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Robin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Modeling heterogeneity in random graphs through latent space models: a selective review.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' ESAIM: Proceedings and Surveys, 47:55–74, 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Minhas, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Hoff, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Ward.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Inferential approaches for network analysis: AMEN for latent factor models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Political Analysis, 27:208–222, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Nowicki and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Snijders.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Estimation and prediction for stochastic block structures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Journal of the American Statistical Association, 96:1077–1087, 2001.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Plummer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' rjags: Bayesian Graphical Models using MCMC, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' URL https://CRAN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' R-project.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='org/package=rjags.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' R package version 4-13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' R Core Team.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' R: A Language and Environment for Statistical Computing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' R Foundation for Statistical Computing, Vienna, Austria, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' URL https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='R-project.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='org/.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Rastelli.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' GreedyEPL: Greedy Expected Posterior Loss, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' URL https://CRAN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='R-project.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' org/package=GreedyEPL.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' R package version 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Rastelli and N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Friel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Optimal Bayesian estimators for latent variable cluster models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Statistics and Computing, 28:1169–1186, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Salter-Townshend and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' McCormick.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Latent space models for multiview network data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' The Annals of Applied Statistics, 11:1217–1244, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Schweinberger and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Snijders.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Settings in social networks: a measurement model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Sociological Methodology, 33:307–341, 2003.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Sosa.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' A review on latent space models for social networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Revista Colombiana de Estadistica, 44: 171–200, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Sosa and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Betancourt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' A latent space model for multilayer network data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Computational Statistics & Data Analysis, 169:107432, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Wang, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Zhang, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Dunson.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Common and individual structure of brain networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Annals of Applied Statistics, 13:85–112, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Wang and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Wong.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Stochastic blockmodels for directed graphs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' Journal of the American Statistical Association, 82:8–19, 1987.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} +page_content=' 25' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tAyT4oBgHgl3EQfQ_YL/content/2301.00055v1.pdf'} diff --git a/99FLT4oBgHgl3EQfui_z/content/tmp_files/2301.12156v1.pdf.txt b/99FLT4oBgHgl3EQfui_z/content/tmp_files/2301.12156v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..f71b278ded893583127459f2d1c55ff5dee83b15 --- /dev/null +++ b/99FLT4oBgHgl3EQfui_z/content/tmp_files/2301.12156v1.pdf.txt @@ -0,0 +1,1775 @@ +Perspective: How to overcome dynamical density functional theory +Daniel de las Heras,1 Toni Zimmermann,1 Florian Samm¨uller,1 Sophie Hermann,1 and Matthias Schmidt1 +1Theoretische Physik II, Physikalisches Institut, Universit¨at Bayreuth, D-95447 Bayreuth, Germany +(Dated: 28 January 2023) +We argue in favour of developing a comprehensive dynamical theory for rationalizing, predicting, +and machine learning nonequilibrium phenomena that occur in soft matter. To give guidance for +navigating the theoretical and practical challenges that lie ahead, we discuss and exemplify the +limitations of dynamical density functional theory. Instead of the implied adiabatic sequence of +equilibrium states that this approach provides as a makeshift for the true time evolution, we posit +that the pending theoretical tasks lie in developing a systematic understanding of the dynamical +functional relationships that govern the genuine nonequilibrium physics. While static density func- +tional theory gives a comprehensive account of the equilibrium properties of many-body systems, +we argue that power functional theory is the only present contender to shed similar insights into +nonequilibrium dynamics, including the recognition and implementation of exact sum rules that +result from the Noether theorem. As a demonstration of the power functional point of view, we +consider an idealized steady sedimentation flow of the three-dimensional Lennard-Jones fluid and +machine-learn the kinematic map from the mean motion to the internal force field. This proof of con- +cept demonstrates the significant potential of machine learning the inherent functional relationships +that govern nonequilibrium many-body physics. +I. +INTRODUCTION +The coupled dynamics of the microscopic degrees of +freedom in typical soft matter systems generates a wide +array of relevant and also often unsolved nonequilibrium +phenomena [1, 2]. +One central quantity for the char- +acterization of self-assembly and structure formation in +complex systems is the microscopically resolved one-body +density distribution ρ(r, t), where r indicates position +and t denotes time. The “density profile” ρ(r, t) acts as a +central order parameter both due to its intuitive physical +interpretation and clearcut mathematical definition [3]. +According to the dynamical density functional theory +(DDFT), as originally proposed by Evans in 1979 [4], +the time evolution of the microscopic density profile is +assumed to be determined by the following partial differ- +ential equation: +∂ρ(r, t) +∂t += γ−1∇ · ρ(r, t)∇ +� δF[ρ] +δρ(r, t) + Vext(r, t) +� +. +(1) +Here γ is a friction constant, F[ρ] is an intrinsic free +energy functional that depends functionally on the den- +sity profile, and the external potential Vext(r, t) repre- +sents interactions of the system with the environment. +The system is set into motion by a temporal variation +of Vext(r, t), such as e.g. step-like switching at an initial +time. +The time evolution according to Eq. (1) conserves the +particle number locally and hence it constitutes dynam- +ics of model B type [5]. +In standard applications one +starts with an equilibrium state of the system and then +the dynamics are monitored on the basis of numerical +time integration of Eq. (1). In order to provide reference +data and to allow for the generation of benchmark results +to assess the quality of the theory, resorting to many- +body computer simulations is common, with overdamped +Brownian dynamics (BD) being a popular choice (Ref. [6] +describes a modern and stable algorithm). Comparison +of DDFT data with experimental results are more scarce, +but notable exceptions include non-equilibrium sedimen- +tation of colloids [7], the self-diffusion of particles in com- +plex fluids [8], and the bulk dynamics of Brownian hard +disks [9]. +The DDFT time evolution reaches a stationary state +if the gradient on the right hand side of Eq. (1) vanishes, +i.e. provided that the expression inside of the parentheses +is constant: +δF[ρ] +δρ(r) + Vext(r) = µ. +(2) +Here we have dropped the dependence on time in the +notation, as the situation is now static. The constant µ +can be identified with the chemical potential, which in a +grand canonical statistical mechanical setting is the con- +jugate control parameter of the mean particle number. +Equation (2) is exact in equilibrium, as was shown by +Evans [4]. He proved the equilibrium intrinsic free en- +ergy functional F[ρ] to exist, to be unique, and to form +the starting point for a modern equilibrium theory of +spatially inhomogeneous liquids and crystals [10, 11]. +In practice one needs to rely on approximations +for F[ρ], given a microscopic fluid model under consid- +eration. +Once one has solved Eq. (2) for given values +of µ and temperature T (the dependence of F[ρ] on T +is suppressed in the notation), then in principle com- +plete knowledge of the thermal system is available. The +value of the density functional F[ρ] is the true intrinsic +free energy, and higher-order correlation functions are +determined via higher-order derivatives of the free en- +ergy functional or via test-particle procedures. In par- +ticular two-body correlations functions, such as the bulk +pair correlation function g(r) as well as its generalization +to inhomogeneous systems are accessible. These exhibit +defining characteristics of liquids and more general soft +arXiv:2301.12156v1 [cond-mat.soft] 28 Jan 2023 + +2 +matter systems and they are formally fully contained in +the static density functional theory framework. +Together with a number of available reliable approxi- +mate free energy functionals, density functional theory is +a powerful theoretical framework that has been used to +elucidate much intricate and complex behaviour in soft +matter. +Recent representative highlights include trac- +ing hydrophobicity to critical drying at substrates [12– +14], resolving three-dimensional structures of electrolyte +aqueous solutions near surfaces [15, 16], and addressing +the magnitude of the decay lengths in electrolytes [17]. +Rosenfeld’s celebrated hard sphere fundamental measure +free energy functional [18–21] is at the core of much of +this research activity. +In the following we wish to address whether or not +the DDFT has the prowess to play a similar role in +nonequilibrium, as is often at least implicitly assumed. +We demonstrate on the basis of an explicit and generic +example, i.e., that of uniaxial compressional flow of the +three-dimensional Lennard-Jones fluid, that the DDFT is +fundamentally flawed and that in reality, as represented +by many-body simulations, recognizing the flow field as +a further relevant degree of freedom is required to rep- +resent true nonequilibrium. These conclusions are based +on analytical power functional approximations, adaptive +BD simulation data, and explicit machine learning of the +power functional map from motion to the interparticle +one-body force field. +This Perspective is organized as follows. We first make +some key aspects of DDFT explicit in Sec. II and describe +several prominent shortcomings of this theory. We then +give an account of how to go towards the formally exact +one-body dynamics in Sec. III and provide in Sec. IV a +description of key aspects of the power functional frame- +work, which as we wish to argue overcomes the funda- +mental defects of DDFT. We describe the exemplary sta- +tionary compressional flow situation in Sec. V and lay +put the application of Noether’s theorem in this statis- +tical mechanical setting in Sec. VI. We present machine +learning results for the kinematic functional relationships +of the streaming Lennard-Jones fluid in Sec. VII. We give +conclusion and an outlook in Sec. VIII. +II. +LIMITS AND LIMITATIONS OF +ADIABATIC DYNAMICS +We go into some detail and describe why the DDFT +represents adiabatic dynamics in the sense of a temporal +sequence of spatially inhomogeneous equilibrium states. +The equilibrium intrinsic free energy functional splits into +ideal and excess (over ideal gas) contributions according +to F[ρ] = Fid[ρ] + Fexc[ρ]. Here the excess free energy +functional Fexc[ρ] accounts for the effects of the inter- +particle interactions on the equilibrium properties of the +system and it is in general unknown and requires approx- +imations to be made. The ideal gas free energy functional +however is exactly given by +Fid[ρ] = kBT +� +drρ(r) ln(ρ(r)Λ3) − 1], +(3) +where kB denotes the Boltzmann constant, Λ is the +thermal de Broglie wavelength, and we consider three- +dimensional systems. The functional derivative, as it is +relevant for Eq. (1), is δFid[ρ]/δρ(r) = kBT ln(ρ(r)Λ3). +When disregarding the excess contribution and in- +serting this result alone into the DDFT equation +of motion (1), its right hand side becomes γ−1∇ · +ρ(r, t)∇[kBT ln(ρ(r, t)Λ3) + Vext(r, t)]. This can be re- +written further such that for the case of the ideal gas, +where Fexc[ρ] = 0 and F[ρ] = Fid[ρ], the equation of +motion (1) attains the following form: +∂ρ(r, t) +∂t += D0∇2ρ(r, t) − ∇ · ρ(r, t)fext(r, t)/γ. +(4) +Here D0 = kBT/γ is the diffusion constant, ∇2 is the +Laplace operator and the external force field is given +(here) as fext(r, t) = −∇Vext(r, t). Equation (4) is the +exact drift-diffusion equation for overdamped motion of +a mutually noninteracting system, i.e., the ideal gas. +Besides Evans’ original proposal [4] based on the con- +tinuity equation and undoubtedly his physical intuition, +derivations of the DDFT (1) were founded much more +recently on Dean’s equation of motion for the density op- +erator [22], the Smoluchowski equation [23], a stationary +action principle for the density [24], the projection op- +erator formalism [25], a phase-space approach [26], the +mean-field approximation [27], a local equilibrium as- +sumption [28], and a non-equilibrium free energy [29]. +The question of the well-posedness of the DDFT was ad- +dressed [30] and several extensions beyond overdamped +Brownian dynamics were formulated, such as e.g. for dy- +namics including inertia [31–34] and for particles that ex- +perience hydrodynamic interactions [34, 35] or undergo +chemical reactions [36, 37]. +The DDFT was also used beyond the description of flu- +ids, such as e.g. for opinion dynamics [38] and epidemic +spreading [39]. +Recent reviews of DDFT are given in +Refs. [40, 41]. The theory is put into a wider perspective, +together with much background pedagogical material in +Ref. [42]. A modern and well-accessible account of the +general strategy of dynamical coarse-graining in statisti- +cal physics, of which the DDFT can be viewed as being a +representative, has recently been given by Schilling [43]. +The fact that both the static limit for the fully in- +teracting system (2) as well as the full dynamics of the +noninteracting system (4) are exact, taken together with +the heft of the DDFT literature, appears to give much +credibility to the equation of motion (1). However, de- +spite the range of theoretical techniques employed [22–29] +neither of these approaches has provided us with a con- +crete way of going beyond Eq. (1). Apart from several +case-by-case and rather ad hoc modifications, no system- +atic or even only practical identification of what is miss- +ing has been formulated. (We turn to power functional + +3 +theory in Sec. IV.) This is a problematic situation as +two defects of Eq. (1) are immediately obvious upon in- +spection: i) the description is local in time and there is +no natural mechanism for the inclusion of memory while +time-locality is not sufficient for general nonequilibrium +situations; ii) only flow that leads to direct changes in +the density profile is captured and hence effects of rota- +tional flow, such as shearing, as well as of nonequilibrium +effects in compression and expansion are lost (see below). +Here we argue that these defects are indicative of a +broader failure of Eq. (1) to describe nonequilibrium +physics. We show that the DDFT is only fit to describe +situations in which the dynamics follow an adiabatic path +through a sequence of equilibrium states. The description +of genuine nonequilibrium dynamics in a functional set- +ting on the one-body level rather requires recognition of +the local velocity field as a further relevant physical vari- +able besides the density profile, and this is provided by +power functional theory [42]. Before laying out key prin- +ciples of this approach in Sec. IV, we first describe the mi- +croscopically sharp coarse-graining on the one-body level +of correlation functions. +III. +TOWARDS EXACT ONE-BODY +DYNAMICS +Evans based his original derivation [4] of Eq. (1) on the +continuity equation, +∂ρ(r, t) +∂t += −∇ · J(r, t), +(5) +where J(r, t) is the microscopically resolved one-body +current distribution. Equation (5) is exact in a variety of +contexts, including overdamped Brownian dynamics, as +described either on the Fokker-Planck level by the Smolu- +chowski equation or by the corresponding overdamped +Langevin equation that governs the trajectories, as they +are realized in simulation work [6]. For BD the one-body +current distribution is given exactly by [42]: +γJ(r, t) = −kBT∇ρ(r, t) + Fint(r, t) + ρ(r, t)fext(r, t). +(6) +This identity expresses the force density balance of the +negative friction force density (left hand side) with the +force densities due to ideal thermal diffusion, interparti- +cle interactions, and external influence (three contribu- +tions on the right hand side). Here the interparticle force +density distribution is given by the statistical average +Fint(r, t) = − +� � +i +δ(r − ri)∇iu(rN) +���� +t, +(7) +where the angular brackets indicate an average at fixed +time t over the nonequilibrium many-body distribu- +tion, u(rN) is the interparticle interaction potential +that depends on all particle position coordinates rN ≡ +r1, . . . , rN and ∇i indicates the derivative with respect to +the position ri of particle i. The formulation of Eq. (7) is +based on the concept of static operators and a dynami- +cally evolving probability distribution. This is analogous +to the Schr¨odinger picture of quantum mechanics. The +Heisenberg picture is more closely related to simulation +work. Here the probability distribution is that of the ini- +tial microstates and the operators move forward in time, +i.e., the position ri(t) of particle i changes over the course +of time. Then the Dirac distribution in Eq. (7) becomes +δ(r − ri(t)), with the generic position variable r however +remaining static. The forces are those that act in the +given microstate rN(t) at time t, i.e., the interparticle +force on particle i at time t is −∇iu(rN(t)). +In practice, using BD simulations, carrying out the +average in Eq. (7) requires to build the mean over suf- +ficiently many separate realizations of the microscopic +evolution of the many-body system that differ in the ini- +tial state and in the realization of the thermal noise. As +Eq. (7) measures both the probability to find particle i at +position r (via the delta function) and the interparticle +force that acts via the negative gradient −∇iu(rN), we +refer to Fint(r, t) as a force density. The corresponding +force field fint(r, t) is obtained by simple normalization +with the density profile, i.e. fint(r, t) = Fint(r, t)/ρ(r, t). +Building this ratio scales out the probability effect and +the force field then carries physical units of force, i.e. +energy per length. +In equilibrium the definition (7) remains intact. Com- +plementing the statistical average, static density func- +tional theory allows to express the equilibrium force den- +sity as being functionally dependent on the density pro- +file via the functional derivative of the excess free energy +functional according to: +Fint(r) +�� +eq = −ρ(r)∇δFexc[ρ] +δρ(r) . +(8) +Crucially, and in contrast to Eq. (7), here the internal +force density is directly expressed as a density functional. +This dependence has superseded the original dependence +on the external potential, as is manifest in the probability +distribution for building the average (7) in equilibrium. +As a self-consistency check we insert the force density +functional (8) into the equilibrium limit of the force den- +sity balance (6). The current vanishes in the equilibrium +case, J(r, t) ≡ 0, and we obtain +−kBT∇ρ(r) + Fint(r)|eq + ρ(r)fext(r) = 0. +(9) +This result is independent of time and it consti- +tutes the gradient of the static Euler-Lagrange equa- +tion (2) when divided by the density profile. +(Insert +Eq. (8), identify the ideal gas contribution −kBT∇ρ(r) = +−ρ(r)δFid[ρ]/δρ(r), and divide by ρ(r).) +The classical +force density balance result (9) by Yvon, Born and Green +[3] has recently been derived from systematically address- +ing thermal Noether invariance [44, 45] against locally +resolved spatial deformations of the statistical ensemble +[46–48], as also valid quantum mechanically [48] and at + +4 +second order in the displacement field [49, 50]; we give a +brief account of this theory in Sec. VI below. +A naive transfer of Eq. (8) to nonequilibrium lets +one simply evaluate the equilibrium excess free energy +functional at the instantaneous nonequilibrium density +ρ(r, t). In order to separate this contribution from true +static equilibrium, we refer to this force density as being +adiabatic (subscript “ad”) and to be defined as +Fad(r, t) = −ρ(r, t)∇δFexc[ρ] +δρ(r, t) . +(10) +We recall that the right hand side offers a concrete com- +putational structure that is of practical usefulness in ac- +tual applications, as considerable knowledge about ap- +proximative forms of the excess free energy density func- +tional Fexc[ρ] is available. Using the adiabatic force den- +sity as a proxy for the true nonequilibrium intrinsic force +density distribution (7), i.e. setting Fint(r, t) = Fad(r, t) +in the force density balance (6) together with the conti- +nuity equation (5) leads to the DDFT equation of mo- +tion (1). The adiabatic force density approximation is +uncontrolled though and the theory inherently yields the +dynamics as an adiabatic sequence of equilibrium states. +Surely, more than 40 years after the conception of the +DDFT [4], we have to be able to do better! +IV. +POWER FUNCTIONAL TECHNIQUES +Power functional theory [42] offers a concrete math- +ematical structure to go forward. +We describe the es- +sential steps that enable one to go beyond the DDFT +and to hence address a significantly expanded realm of +nonequilibrium physics which Eq. (1) is oblivious of. +The interparticle force density profile (7) is identified +to consist of two contributions according to: +Fint(r, t) = Fad(r, t) + Fsup(r, t). +(11) +Here Fad(r, t) is the adiabatic force density profile, as +given formally via the explicit equilibrium free energy +derivative (10) and directly accessible in simulations via +the custom flow method [51, 52]. The custom flow al- +gorithm allows to systematically construct a hypotheti- +cal adiabatic (equilibrium) system that shares its density +profile with the nonequilibrium system at the given time. +Then sampling the internal force density in the adiabatic +system yields results for Fad(r, t). +The second, superadiabatic contribution in Eq. (11), +Fsup(r, t), contains all effects that are not expressible +as an instantaneous density functional. +This includes +forces that lead to viscous and to nonequilibrium struc- +ture forming phenomena, as we exemplify below in a con- +crete model compressional flow situation. Formally, the +superadiabatic force density is generated from the su- +peradiabatic excess free power functional P exc +t +[ρ, J] upon +functional differentiation with respect to the one-body +current via [42, 53]: +Fsup(r, t) = −ρ(r, t)δP exc +t +[ρ, J] +δJ(r, t) +. +(12) +The functional dependence of P exc +t +[ρ, J] on the density +and current is causal, i.e. on the values of these fields +at prior times to t; density and current need to satisfy +the continuity equation. Upon using Eqs. (11) the force +density balance (6) attains the following form: +γJ(r, t) = −kBT∇ρ(r, t) + Fad(r, t) ++ Fsup(r, t) + ρ(r, t)fext(r, t). +(13) +This +relationship +holds +beyond +gradient +forms +of +fext(r, t), i.e. for external force fields that contain non- +conservative contributions. +Crucially Fsup(r, t) will in +general also acquire nonconservative contributions, such +as e.g. damping effects that represent viscous behaviour. +Moreover, nonequilibrium structure-forming effects will +also arise in general. These affect directly the shape of +the density profile, whether this evolves in time or per- +sists in a nonequilibrium steady state. +If one wishes to eliminate the explicit occurrence of the +current from the dynamics, then inputting the force den- +sity balance (13) into the continuity equation (5) leads +to the following formally exact form of the equation of +motion for the density profile: +∂ρ(r, t) +∂t += D0∇2ρ(r, t) + ∇ · ρ(r, t) +γ +∇δFexc[ρ] +δρ(r, t) +− ∇ · ρ(r, t) +γ +[fsup(r, t) + fext(r, t)]. +(14) +Here it is apparent that the superadiabatic force field +fsup(r, t) = Fsup(r, t)/ρ(r, t) has a direct effect on the +system dynamics. The effect is similar to that of the ex- +ternal force field. Crucially though, both force fields are +independent of each other: the external force field rep- +resents a prescribed and inert influence on the system. +In contrast, the superadiabatic force field is an emer- +gent phenomenon that arises due to interparticle inter- +actions and, from the functional point of view, depends +non-locally in position and causally in time on the one- +body density and on the current profile. +Although setting fsup(r, t) = 0 yields the DDFT (1), +the superadiabatic force field fsup(r, t) was demonstrated +to exist [54–60] and in general to play a major role in +the dynamics on the one-body level and, based on test- +particle concepts [61–66] also for two-body correlation +functions [67–69] and for active matter [70–74]. Both the +flow properties as well as the spatial structure formation +in the system are affected. +To reveal additional physics, it is useful to split into +“structural” and “flow” contributions. This was estab- +lished e.g. for complex flow patterns that occur in driven +BD [55, 59], for active Brownian particles which form +a self-sustained interface at motility-induced phase co- +existence [70–74], as well as very recently for a sheared + +5 +FIG. 1. Illustration of unidirectional compressional flow of a liquid. The three-dimensional system is set into motion (red +arrows) by the action of an external force profile fext(x) (blue arrows) which acts along the x-axis. The system retains planar +geometry such that spatial inhomogeneities only occur as a function of x. The density profile ρ(x) (orange curve) and the +velocity profile v(x) (red curve) are both stationary in time but inhomogeneous in position. +The local one-body current +J(x) = ρ(x)v(x) = const and as a result the system is in a nonequilibrium steady state. The corresponding adiabatic system +is in equilibrium (it has no mean flow) and it has by construction an unchanged density profile ρ(x). In the adiabatic system +the spatial variation of ρ(x) is stabilized by the action of an external force field −∇Vad(x) (olive arrows), which acts solely in +the adiabatic system. +three-body colloidal gel former [60]. Before we demon- +strate these concepts for an example of steady nonequi- +librium below, we first describe two simple model power +functionals that respectively generate structure and vis- +cously dampen the motion and that, as we will see, give +a good account of the nonequilibrium flow considered be- +low. +We concentrate on the low-order terms that are rel- +evant for compressional/extensional flow, i.e., for situa- +tions where ∇ · v(r, t) ̸= 0. +We focus on cases where +there is no rotational motion (such as shearing) and hence +∇ × v(r, t) = 0. +The velocity gradient superadiabatic +power functional consists of a sum, +P exc +t +[ρ, v] = P flow +t +[ρ, v] + P str +t +[ρ, v]. +(15) +Here the flow and structural [55, 59] contributions are +approximated, respectively, by the following time-local +(Markovian) and space-semilocal (i.e. involving ∇) forms +P flow +t +[ρ, v] = η +2 +� +dr[ρ(r, t)∇ · v(r, t)]2, +(16) +P str +t +[ρ, v] = −χ +3 +� +dr[ρ(r, t)∇ · v(r, t)]3, +(17) +where the overall prefactors η and χ control the respec- +tive magnitude. +The flow functional (16) is quadratic +both in density and in the velocity field; the structural +functional (17) is of cubic order in each of these variables. +Explicit higher-order functionals exist [59] and they be- +come relevant when driving the system strongly. We will +return to the consequences of Eqs. (16) and (17) after +laying out in Sec. V the actual flow situation that we use +as a model to exemplify the implications for the physics. +Before doing so, we briefly describe several further key +aspects of the power functional framework. +Power functional theory provides a formal framework +for the inclusion of time- and space-nonlocal dynamics +[56, 68, 79]. While Eq. (12) applies to overdamped dy- +namics, the acceleration field becomes a further relevant +degree of freedom if inertia are relevant [78–81] whether +classically in molecular dynamics [78, 79] or in quantum +dynamics [80, 81]. +Here the memory functions act as +convolution kernels on specific kinematic fields and rota- +tional and compressional contributions to the dynamics +are genuinely built in. As laid out above, the framework +is based on an exact variational concept [42, 53], and the +resulting functional mapping was shown to be explicitly +accessible in many-body simulation via the custom flow +computer simulation method [51, 52]. +Even +simple +mathematical +model +forms +for +the +nonequilibrium contribution to the power functional, +such as Eqs. (16) and (17), already capture essential +physics (as we demonstrate below) and dynamical two- +body correlation functions are accessible via test particle +dynamics [8, 9, 61–69]. The power functional is thereby +not to be confused with the often vague concept of a + +v(C +p(α) +noneguilibrium +fext(α) +(α) PeA△ +equilibrium6 +“nonequilibrium free energy”. +The proper equilibrium +free energy functional does play a central role in power +functional theory though, via providing the description +of the adiabatic reference state [42], see the generation +of the force density distribution via functional differenti- +ation (10), as is relevant for the interparticle force split- +ting (11), and the full density equation of motion (14). +The relevance of superadiabatic contributions to the +dynamics, i.e. of those effects that lie beyond Eq. (1), has +been amply demonstrated in the literature [54–59, 67– +69]. Both adiabatic and superadiabatic effects arise from +integrating out the dynamical degrees of freedom of the +many-body problem. +Ensemble differences between canonical dynamics and +grand canonical equilibrium have been systematically ad- +dressed [75–77] and these do not account for the observed +differences between adiabatic and superadiabatic dynam- +ics. +The kinematic dependence on the motion of the +system arises formally [42], it can be explicitly traced +in many-body computer simulation work [59], and it +is amenable to machine learning, as we demonstrate in +Sec. VII. Before doing so, we first formulate the represen- +tative flow problem that we will use to apply the above +concepts. +V. +NONEQUILIBRIUM STEADY STATES +We restrict ourselves to flow situations with one-body +fields that are inhomogeneous in position but indepen- +dent of time, i.e. ρ(r) and v(r). Then trivially ∂ρ(r)/∂t = +0 and the continuity equation (5) constrains both fields +to satisfy ∇ · [ρ(r)v(r)] = 0. As a representative case +we illustrate in Fig. 1 a nonequilibrium steady state of a +three-dimensional liquid undergoing unidirectional com- +pressional flow. Flow along a single given direction occurs +e.g. under the influence of gravity, where sedimentation +of colloids leads to both compression in the lower parts of +the sample and expansion in the upper parts of the sam- +ple. Here we disregard transient phenomena and investi- +gate an idealized periodic system, where flowing steady +states can form. +In order to elucidate the physics in such setups, we fol- +low the splitting (15) of the superadiabatic power func- +tional into structural and flow contributions and hence +decompose the superadiabatic force field accordingly as +fsup(r) = fstr(r) + fflow(r), +(18) +where the right hand side consists of the nonequilib- +rium structural force field fstr(r) and the flow force +field fflow(r). +Both of these force contributions arise +from the microscopic interparticle interactions, as coarse- +grained in a microscopically sharp way to the one-body +level. +We lay out in the following the benefits of the +structure-flow splitting (18) and its definition via flow +reversal symmetry. +First, on the more practical level, Eq. (18) allows to +carry out a corresponding splitting of the force density +balance (13) [we divide by ρ(r) to obtain force fields]. +The result is a set of two coupled equations of motion, +with one of them depending explicitly on the velocity +profile and the second one depending explicitly on the +density profile: +γv(r) = fflow(r) + fext,f(r), +(19) +0 = fstr(r) − kBT∇ ln ρ(r) + fad(r) + fext,s(r). (20) +Building the sum of Eqs. (19) and (20) and multiplying +by the density profile restores the full force density bal- +ance (13). The external force field is split according to +fext(r) = fext,f(r) + fext,s(r), where the two terms couple +to the flow via fext,f(r) in Eq. (19) and to the structure +via fext,s(r) in Eq. (20). +On the superficial level the two equations (19) and +(20) appear to be independent of each other, as no sin- +gle field appears explicitly in both equations. However, +the two equations are indeed intimately coupled to each +other by the interparticle interactions, as represented by +both the adiabatic and the two superadiabatic (flow and +structural) force fields. These three intrinsic force con- +tributions provide the physical representation of the true +nonequilibrium steady state dynamics. +The flow-structure splitting (18) is uniquely deter- +mined by the symmetry properties of the forces upon +motion reversal of the system [59]. +Motion reversal is +a discrete symmetry operation, and hence different from +continuous invariances where Noether’s theorem applies +[44–50]. +One considers a “reversed” system, which is +also in steady state and possesses an unchanged den- +sity profile ρ(r). The flow, however, is directed against +the velocity orientation in the original “forward” system. +Hence the velocity profile in the reversed system is sim- +ply −v(r). As a result the current also acquires a mi- +nus sign, −ρ(r)v(r), which however does not affect the +(vanishing) divergence, ∇ · [−ρ(r)v(r)] = 0. Thus the re- +versed state indeed is stationary. The two superadiabatic +contributions are then defined to be unchanged [fstr(r)] +and inverted [−fflow(r)] in the reversed system. Conse- +quentially, the superadiabatic force field in the reversed +system is the difference fstr(r) − fflow(r). +Analyzing the symmetry properties of the adiabatic +force field is straightforward. +We recall that fad(r) is +a density functional via Eq. (10). The density profiles +in the forward and in the reversed systems are identical +though. Hence fad(r) is invariant under motion reversal. +Motion reversal is a useful device in order to i) rationalize +the nonequilibrium behaviour according to the split force +balance (19) and (20), and to ii) classify the dependence +of superadiabatic forces on the velocity field into even +powers, which constitute fstr(r), and odd powers, which +form fflow(r). +We can demonstrate this mechanism explicitly on the +basis of the above flow and structural power functionals +(16) and (17). Superadiabatic force fields are generated +via the functional derivative (12) with respect to the cur- +rent or, analogously, by functionally deriving by v(r, t) + +7 +and dividing the result by ρ(r, t). The resulting supera- +diabatic one-body force field consists of two components. +The viscous flow force and [55, 58] and the structural +force follow respectively as +fflow(r) = +η +ρ(r)∇[ρ(r)2∇ · v(r)], +(21) +fstr(r) = − χ +ρ(r)∇{ρ(r)3[∇ · v(r)]2}, +(22) +where Eq. (21) is odd (linear) and Eq. (22) is even +(quadratic) in the derivatives of the velocity field, as de- +sired. +One might wonder where all this genuine nonequilib- +rium physics leaves the DDFT! Some readers will find the +instantaneous dynamics, as generated from an adiabatic +free energy according to (1), to be more appealing and in- +tuitive than the thinking in terms of the above described +apparently intricate functional relationships. +Why not +live with Eq. (1), use it, and simply accept its defects? +In order to address this question and to demonstrate why +this path is severely restricted from the outset, we turn +in Sec. VII to an explicit demonstration of the functional +relationship that governs the nonequilibrium physics, i.e. +the kinematic functional map from the one-body mean +motion to the internal force field. Before doing so, we +demonstrate that Noether’s theorem of invariant varia- +tions has much to say about our present setup. +VI. +NOETHER FORCE SUM RULES +We discuss one of the arguably simplest cases of ex- +ploitation of the inherent symmetries of a thermal many- +body system, that of global translational invariance of its +statistical mechanics [44, 45]. We consider a “shifting” +transformation, where all particle coordinates change ac- +cording to the map ri → ri + ϵ, where ϵ = const. This +uniform shifting operation leaves all interparticle dis- +tance unchanged, ri−rj → (ri+ϵ)−(rj+ϵ) ≡ ri−rj. As +a consequence the interparticle potential is invariant un- +der the transformation, which we can express as the iden- +tity u(r1, . . . , rN) = u(r1 + ϵ, . . . , rN + ϵ). Here equality +holds irrespectively of the magnitude and the direction +of the shifting vector ϵ. +The Noether argument proceeds with a twist. +De- +spite the absence of dependence on ϵ, we can neverthe- +less differentiate both sides of the equation with respect +to ϵ and the result will be a valid identity. We obtain +0 = ∂u(ri + ϵ, . . . , rN + ϵ)/∂ϵ = � +i ∇iu(r1, . . . , rN), +where we have set ϵ = 0 after taking the derivative. We +multiply by −1 and insert 1 = +� +drδ(r−ri), which yields +− +� +dr +� +i +δ(r − ri)∇iu(rN) = 0. +(23) +The expression on the left hand side allows to identify +the locally resolved interparticle force operator ˆFint(r) = +− � +i δ(r − ri)∇iu(rN), such that Eq. (23) attains the +form +� +drˆFint(r) = 0. This identity holds for each mi- +crostate rN and hence it remains trivially valid upon av- +eraging over the many-body distribution function, irre- +spective of whether this is in- or out-of-equilibrium. We +can hence conclude the vanishing of the global interpar- +ticle force, expressed as the integral over the mean force +density Fint(r) = ⟨ˆFint(r)⟩ as +� +drFint(r, t) = 0. +(24) +Equation (24) holds at all times t and it can be viewed as +a consequence of Newton’s third law, see the discussion in +Ref. [44]. Using the adiabatic-superadiabatic force split- +ting (11) one can further conclude that the both global +contributions need to vanish individually, +� +drFad(r, t) = 0, +(25) +� +drFsup(r, t) = 0. +(26) +The proof can either be based on the fact that Eq. (25) +is merely Eq. (24) for the special case of an equilibrium +system, from which then Eq. (26) follows from the force +splitting (11). +Alternatively and starting from a very +fundamental point of view, the global translational in- +variance of the excess free energy functional Fexc[ρ] and +of the superadiabatic free power functional P exc +t +[ρ, v], +here considered instantaneously at time t, lead directly +to Eqs. (25) and (26), see Refs. [44, 45] for the detailed +account. +It is interesting to apply the Noether concept to the +flow-structure splitting Eq. (18) of the superadiabatic +force field. One can see straightforwardly, from the sym- +metry upon motion reversal, that both the global struc- +tural force and the global flow force need to vanish indi- +vidually: +� +drρ(r)fflow(r) = 0, +(27) +� +drρ(r)fstr(r) = 0. +(28) +We prove by contradiction and assume that it is not +the case, i.e. that each integral gives the same global +force, but with opposite sign, such that the sum vanishes +and Eq. (26) remains valid. +Per construction, fflow(r) +changes sign in the motion reversed system, but fstr(r) +does not. +Hence Eq. (26) can only be satisfied in the +motion-reversed system provided that both the flow and +structural contribution vanish separately. +We +can +explicitly +test +the +validity +of +the +sum +rules (27) and (28) for the above analytical force ap- +proximations (21) and (22). +The respective integrals +are η +� +dr∇[ρ(r)2∇ · v(r)] = 0 and χ +� +dr∇{ρ(r)3[∇ · +v(r)]2} = 0, which follows from the divergence theorem, +as boundary terms vanish. Hence the simple non-local +velocity gradient power functional approximations (16) + +8 +density +current +external force field +interparticle +force field +Mermin +Evans +map +(DFT) +kinematic fields +kinematic +map +adiabatic-superadiabatic +splitting +structure-flow splitting +superadiabatic +force field +adiabatic +force field +flow +force +structural +force +adaptive +BD +super- +adiabatic +map +(PFT) + 0.3 + 0.4 + 0.5 + 0.6 + 0.7 + 0 + 2 + 4 + 6 + 8 + 10 +��3 +x/� + 0 + 1 + 2 + 3 + 4 + 5 + 0 + 2 + 4 + 6 + 8 + 10 +J�2� +x/� +-1.5 +-1 +-0.5 + 0 + 0.5 + 1 + 1.5 + 0 + 2 + 4 + 6 + 8 + 10 +fint�/� +x/� +-1.5 +-1 +-0.5 + 0 + 0.5 + 1 + 1.5 + 0 + 2 + 4 + 6 + 8 + 10 +fad�/� +x/� + 0 + 4 + 8 + 12 + 16 + 0 + 2 + 4 + 6 + 8 + 10 +fext�/� +x/� +-0.6 +-0.4 +-0.2 + 0 + 0.2 + 0.4 + 0 + 2 + 4 + 6 + 8 + 10 +fsup�/� +x/� +-0.6 +-0.4 +-0.2 + 0 + 0.2 + 0.4 + 0 + 2 + 4 + 6 + 8 + 10 +f�ow�/� +x/� +-0.2 +-0.1 + 0 + 0.1 + 0 + 2 + 4 + 6 + 8 + 10 +fstr�/� +x/� +FIG. 2. Kinematic profiles and force fields for uniaxial compressional flow of the LJ fluid. Results are shown from machine +learning (lines) and from direct adaptive BD simulations (symbols). Functional relationships are represented by vertical arrows. +Shown are the density profile ρ(x), the one-body current J(x) and the external force field fext(x) (top row) as a function of the +scaled distance x/σ, where σ is the LJ length scale. The density and the current functionally determine both the interparticle +force field fint(x) via the kinematic map and the superadiabatic force field fsup(x) via the superadiabatic kinematic map (middle +row). The internal force field fint(x) splits into superadiabatic and adiabatic force contributions. The adiabatic force field fad(x) +is a density functional via the Mermin-Evans map of density functional theory. The structural and flow force fields are split +according to their symmetry upon motion reversal. The colour code represents different values of the current J0 = 0, 1, 2, 3, 4, 5 +(from violet to yellow, see the center panel in the top row); the two insets show the predictions from the analytical velocity +gradient functionals (21) and (22). The system with J0 = 0 is at rest in equilibrium and it doubles as the adiabatic state as its +density profile is identical to that of the flowing systems (first panel). +and (17) have passed the global Noether validation test. +This is nontrivial, as the proof rests on the specific struc- +ture of the integrands being gradients, which for more +general analytical forms will not be the case. This exem- +plifies the merits of Noether sum rules for assessing and +by extension also constructing theoretical nonequilibrium +force approximations. +The Noether concept carries much further. Reference +[44] presents memory sum rules for so-called time di- +rect correlation functions. These are defined via func- +tional derivatives of the superadiabatic power functional, +in generalization of the superadiabatic force density as +generated via the derivative (12) with respect to the cur- +rent distribution. We expect the corresponding identities +to be helpful in the study of temporal nonlocality. Fur- +ther work was addressed at the variance of global fluctu- +ations, which were shown to be constrained by Noether +invariance at the second order global level [49]. Noether’s +theorem also yields the locally resolved force balance re- +lationship in quantum mechanical many-body systems +[48]. +Very recently, striking two-body force-force and +force-gradient correlation functions for the precise and +novel characterization of disordered (liquid and gel) sys- +tems [50] were revealed. Exploiting Noether’s concept in +a stastical mechanical setting is robust against changes of +ensemble, Ref. [45] presents the transfer of the grand en- +semble formalism [44] to canonical systems. Considering +global rotational invariance leads to (classical) spin-orbit + +J&pJ&p9 +coupling of torque identities [44]. +We return to steady states and demonstrate that the +seemingly entirely formal functional relationships do in +fact apply to real systems. We present in the following +new computational methodology that we use to demon- +strate the functional point of view. We will also demon- +strate that the sum rules (26) and (27) are highly valuable +in providing checks for numerical results. +VII. +MACHINE LEARNING THE KINEMATIC +MAP +Machine learning proves itself to be an increasingly +useful tool in a variety of settings in soft matter, rang- +ing from soft matter characterization [82], engineering of +colloidal self-assembly [83], to the inverse design of soft +materials [84]. Pivotal studies were addressed at colloidal +structure detection [85], the identification of combinato- +rial rules in mechanical metamaterials [86], the learning +of many-body interaction potentials for spherical [87] and +for anisotropic particles [88], and the prediction of the +dynamics of supercooled liquids from their static proper- +ties [89]. +More specifically, in the context of classical density +functional theory, an early and pioneering study formu- +lated a neural-network approach to liquid crystal order- +ing in confinement [90]. +Free energy density function- +als were obtained for one-dimensional fluids from a con- +volutional neural network [91] and an analytical form +of an excess free energy functional was generated from +an equation learning network [92]. Cats et al. [93] re- +cently used machine learning to improve the standard +mean-field approximation of the excess Helmholtz free- +energy functional for a three-dimensional Lennard-Jones +(LJ) system at a supercritical temperature. These signif- +icant reserach efforts were devoted to tailoring analytical +forms of model free energy functionals, by training cer- +tain key components such as spatial convolution kernels, +and much insight into the inner workings of excess free +energy functionals was gained [91–93]. +However, here we proceed very differently and more- +over do so out-of-equilibrium. We use the LJ model and +the identical planar geometry as in Ref. [93], such that +the density profile ρ(x) depends only on a single posi- +tion coordinate x. We consider steady states and retain +planar symmetry by considering flow that is directed in +the x-direction, such that the current J(x) = J(x)ex, +where J(x) is the magnitude of the current and ex is the +unit vector in the x-direction. Both the density profile +ρ(x) and the velocity field v(x) = J(x)/ρ(x) are indepen- +dent of time. The continuity equation (5) then implies +0 = ∂ρ(x)/∂t = −∂[v(x)ρ(x)]/∂x, from which one ob- +tains by spatial integration ρ(x)v(x) = J0 = const. Here +the value of J0 determines the intensity of the flow; we +recall the illustration shown in Fig. 1. +We base the machine learning procedure on a convolu- +tional neural network, as was done e.g. in Ref. [91], and +following Refs. [91–93] we use many-body computer sim- +ulations to provide training, validation, and test data. +In contrast to these equilibrium studies though, in or- +der to address the nonequilibrium problem we need to +represent the physical time evolution on the many-body +trajectory level. We use the recently developed highly +performant adaptive BD algorithm [6] and apply it to +the three-dimensional LJ fluid. +As laid out above, in +order to address situations of planar symmetry we drive +the system only along the ex-direction. The specific form +of the driving force field fext(x)ex is however irrelevant, +as the training data only serves to extract the intrinsic +kinematic functional relationship. +In order to cover a sufficiently broad range of flow sit- +uations, we represent the external force field as a trun- +cated Fourier series fext(x) = �nmax +n=0 An cos(2πnx/L), +where L is the size of the cubic simulation box with pe- +riodic boundary conditions and An are random ampli- +tudes with zero mean and uniform distribution inside of +a given finite interval. We truncate at order nmax = 5 +such that the length scale L/(2πnmax) is comparable to +the LJ molecular size σ. Ten percent of our simulation +runs are carried out in equilibrium, i.e. for A0 = 0. We +use N = 500 LJ particles inside of a cubic simulation +box of size L = 10σ. The temporal duration of each run +is 1000τ, where τ = σ2/D0 is the Brownian time scale. +After initialization the system is randomized for 1τ at a +very high temperature. Then we wait for 100τ to allow +the system to reach a steady state and then collect data +during the remaining time. In total we use 1000 such sim- +ulation runs; these are subdivided for purposes of train- +ing (520), validation (280) and testing (200). +A more +detailed account will be given elsewhere. +Our aim is to machine-learn and hence to explicitly +demonstrate the kinematic map, ρ(r), v(r) → fint(r) in +steady state. We present the learning algorithm with in- +puts ρ(x), v(x) and targets fint(x). The data for these +three fields are from building steady state averages via +the adaptive BD over the corresponding one-body oper- +ators. We recall the microscopic definition of the inter- +particle one-body force density Fint(r) via Eq. (7) and +we refer the reader to Appendix A of Ref. [51] for a de- +scription of several methods to sample the current in +BD and hence obtain the overdamped velocity profile +v(r). Finally, we use the standard counting method for +the density profile ρ(r), although more efficient “force +sampling” methods [94–97] exist. At this stage we nei- +ther impose adiabatic-superadiabatic splitting (11), nor +structure-flow splitting (18), nor do we use any analyti- +cal model form of the functional relationship. We rather +work on the level of the bare one-body simulation data, +generated in the above described randomized uniaxial +flow situations of the desired planar symmetry. +We refer to the result of this procedure as the machine- +learned internal force field f ⋆ +int(x, [ρ, v]). This represents +a “surrogate model” in the sense of the terminology of the +machine learning community. By construction this data +structure depends functionally on the density profile and + +10 +on the velocity profile. Importantly the external force +field fext(x), as given by the above described randomized +Fourier series, has not been used in the training, which +was rather based solely on the intrinsic force field and +its kinematic dependence on the density profile and the +velocity field. +In order to test the validity of the functional relation- +ship and to address the question whether f ⋆ +int(x, [ρ, v]) +indeed represents the true fint(r, t, [ρ, v]) of power func- +tional theory restricted to the present planar and steady +situation, we consider a toy flow situation as an appli- +cation. +We choose the density profile to consist of a +single (co)sinusoidal deviation from the bulk, ρ(x) = +[0.5 + 0.2 cos(2πx/L)]σ−3. +In order for the system to +be in steady state, the velocity then necessarily needs to +satisfy v(x) = J0/ρ(x), where the strength of the current +J0 = const is a free parameter. +We proceed in two ways. +First, we check for self- +consistency. Therefore we solve the force density balance +relationship (6) for the external force field, which yields +the explicit result: +fext(x) = kBTρ′(x) + γv(x) − f ⋆ +int(x, [ρ, v]), +(29) +where ρ′(x) = ∂ρ(x)/∂x. As is explicit in Eq. (29), in- +putting the toy state ρ(x), v(x) on the right hand side +yields a concrete machine learning prediction for the ex- +ternal force field on the left hand side. We then input +this result for fext(x) as the driving force field in a single +adaptive BD simulation run and expect this procedure to +reproduce the density and velocity profile of the toy state. +The reproductive success will however materialize only +provided that i) the functional kinematic dependence ac- +tually exists and that ii) it is accurately represented by +the neural network. +The results, shown in Fig. 2, demonstrate the accom- +plishment of the reconstruction of the toy state. +This +establishes that the machine learned functional provides +a numerically very highly accurate representation of the +true internal force functional. We take this validation via +the machine learning to be a practical, data-science-level +verification of the existence of the power functional kine- +matic map. We recall the original formal construction +[42, 53] and its subsequent confirmation via custom flow +[51, 52]. +Turning to the physics of the compressional flow, we +use the adiabatic-superadiabatic decomposition (11) to- +gether with the flow-structure splitting (18) to analyze +both the machine-learned functional f ⋆ +int(x, [ρ, v]) as well +as the direct simulation results. As anticipated, both flow +and structural force fields have nontrivial spatial varia- +tion, see Fig. 2. The flow force primarily contains viscous +effects that stem from the dissipation that the compres- +sional and extensional regions of the flow pattern gener- +ate. The structural force field becomes more strongly in- +homogeneous and also larger in magnitude upon increas- +ing the amplitude of the flow. This trend is necessary +to provide a balance for the increasingly asymmetric and +growing external force field, which in turn is required to +keep the density profile unchanged upon increasing the +throughput through the prescribed density wave. +The +power functional predictions (21) and (22) capture these +effects reasonably well given the simplicity of the ana- +lytical expressions, see the insets in Fig. 2. We find our +numerical results to satisfy the Noether sum rules (26) +and (27) to very good accuracy. +It remains to point out the stark contrast with the +standard DDFT (1), which gives a trivial null result in +the present setup by construction: the density profile re- +mains unchanged upon increasing flow, and so does the +adiabatic force field. So the DDFT provides no mecha- +nism to account for the nonequilibrium physics. +VIII. +CONCLUSIONS +For the purpose of assessing the status of the DDFT +equation of motion (1) we have first described two exact +limits that this approximation reproduces: the dynamics +of the noninteracting diffusive ideal gas [see Eq. (4)] and +the spatially inhomogeneous static equilibrium limit [see +Eq. (2)]. On general grounds one expects the DDFT to +perform well when the situation under consideration is +close to one of these limits. In particular near the static +case this is nontrivial, as the system might be dense and +spatially highly structured, as evident by a strongly inho- +mogeneous density profile. Provided that the dynamics +are driven weakly enough via a time-dependent external +potential then the DDFT can be a highly useful device, +which enables one to describe the temporal evolution as +a chain of equilibrium states, labelled by time. +In general the contributions beyond the equilibrium +physics will however be relevant. +On the level of the +formally exact one-body equation of motion (14), the su- +peradiabatic force field fsup(r, t) will then contribute and +potentially very significantly so. Together with the adi- +abatic force field, which follows from the equilibrium ex- +cess free energy functional via −∇δFexc[ρ]/δρ(r, t), their +sum constitutes the full interparticle forces. These are +coarse-grained, in a microscopically sharp way, to the +one-body level of dynamical correlation functions. We +have argued i) that power functional theory is a con- +crete formal structure that allows to obtain fsup(r, t) +from a generating functional and ii) that simple approx- +imate forms already capture much relevant nonequilib- +rium physics and they do so in a transparent and sys- +tematic way. +We have described and exemplified for uniaxial steady +compressional flow of the three-dimensional Lennard- +Jones fluid the kinematic functional map that governs +the exact nonequilibrium dynamics on the one-body level +of dynamic correlation functions. As this description is +based on a single position coordinate and a single time +variable, it is of both conceptual and practical simplicity. +As described by power functional theory the superadia- +batic interparticle force field functionally depends on the +density and the velocity field, i.e. fsup(r, t, [ρ, v]), for over- + +11 +damped Brownian motion. The functional dependence is +causal, i.e. on the values of the density profile and velocity +field at previous times, in general up to an initial state. +The superadiabatic force field carries this kinematic de- +pendence, i.e. on the history of ρ(r, t) and v(r, t), but +crucially it is independent of the external force field that +drives the system. +We have explicitly demonstrated the functional map +ρ(r, t), v(r, t) → fint(r, t) by establishing this functional +relationship via machine learning the intrinsic force field. +Using the force balance then gives direct access to the +form of the required external force field via Eq. (29). The +machine-learned model of the functional map hence en- +ables “instant custom flow” at negligible computational +cost at the time of use. We recall that the custom flow +method [51, 52] is based on the kinematic functional map, +such that from knowing the kinematic one-body fields, +the external force field that is necessary to generate the +given time evolution follows straightforwardly from the +exact force balance (6). +An analytical approach to one-body functional maps +leads to the simple structure of velocity gradient forms +for the viscous and structural superadiabatic forces, as +exemplified in Eqs. (16) and (17) for compressional flow, +i.e. for velocity fields with nonvanishing divergence. As +we have shown, the resulting predictions for the flow +force (21) and for the structural force field (22) represent +a reasonable description of the simulation data and its +representation via the machine-learned functional. We +attribute the remaining differences to higher-order terms +[59] which we have not addressed here for simplicity. As +we have shown, our results from direct simulation, from +machine learning, and from the analytical approxima- +tions, satisfy exact global Noether sum rules. +We have restricted our discussion to a single and rela- +tively easily accessible type of nonequilibrium dynamics, +that of stationary uniaxial compressional flow that rep- +resents a model steady (batch) sedimentation situation. +The power functional approach allows to go much fur- +ther, including the treatment of viscoelasticity [56], as +arising from superadiabatic memory, deconfinement un- +der shear [57], the dynamic decay of the van Hove pair +correlation function as governed by drag, viscous and +structural forces [68, 69], and the complex forms of both +flow and structural forces that arise under spatially com- +plex forms of driving [59]. Time-dependent uniaxial flow +is relevant in a variety of situations, including colloidal +stratification [98, 99] and sedimentation [100]. +Although power functional theory operates on the one- +body level of dynamical correlation functions, two-body +correlation functions are accessible both formally via the +nonequilibrium Ornstein-Zernike route [42] and explic- +itly by the dynamical test particle limit. The latter is +the dynamic generalization of Percus’ static test parti- +cle limit [61], which identifies two-point correlation func- +tions, such as g(r) as also recently shown to be intimat- +edly related to thermal Noether invariance at second or- +der [50], with one-body density profiles in an external +potential. This is set equal to the interparticle pair po- +tential. +The dynamical test-particle limit goes further +in that it describes the test particle via its own dynami- +cal degrees of freedom, which are coupled to those of all +other particles in the system. The concept was originally +formulated as an approximation within DDFT [62, 63] +and formally exactly within power functional theory [66]. +Two-body superadiabatic effects were shown via simula- +tion work to be significant [67–69] and they arise natu- +rally in an exact formulation of the test particle dynamics +[66]. The test particle limit allowed for a rationalization +of the dynamical pair structure as e.g. experimentally +observed in two-dimensional colloids [9]. Recently an ap- +proach to DDFT based on the two-body level was formu- +lated [101]. +In event-driven BD simulations superadiabatic forces +were shown to consist of drag, viscous, and structural +contributions [68, 69]; see Ref. [42] for an extended dis- +cussion. The physics of active particles [70–74] is very +significantly governed by a vigorous interplay between su- +peradiabatic and adiabatic forces, both of which are very +strong, as the tendency of these systems to self-compress +leads naturally to very high local densities. +Furthermore, +relevant and interesting microscopic +models that go beyond the simple fluid paradigm of a +pair potential, such as the monatomic water model by +Molinero and Moore [102, 103] and the three-body gel +by Saw et al. [104, 105], are accessible. Despite the com- +plexity of both its defining Hamiltonian and the intricate +transient network structure, the inhomogeneous viscous +response of the three-body gel was recently demonstrated +[60] to be surprisingly well captured by a simple power +functional flow approximation. +We finally recall that +superadiabatic effects transcend overdamped dynamics, +and are relevant both in quantum dynamics [42, 80, 81] +and in classical molecular dynamics [42, 78, 79]. +While we have restricted ourselves to discussing the +point of view of functional relationships, it would be in- +teresting to explore in future work possible cross connec- +tions to other theoretical approaches, such as Onsager’s +variational principle for soft matter [106–109], stochastic +thermodynamics [110], large deviation theory [111, 112], +mode-coupling theory [113, 114], generalized hydrody- +namics [115], as well as to the physics of nonequilibrium +phase transitions [116] and of Brownian solitons [117]. +ACKNOWLEDGMENTS +This work is supported by the German Research Foun- +dation (DFG) via Project No. 436306241. + +12 +[1] S. R. Nagel, Experimental soft-matter science, Rev. +Mod. Phys. 89, 025002 (2017). +[2] R. Evans, D. Frenkel, and M. Dijkstra, From simple +liquids to colloids and soft matter, Phys. Today 72, 38 +(2019). +[3] J. P. Hansen and I. R. McDonald, Theory of Simple +Liquids, 4th ed. (Academic Press, London, 2013). +[4] R. Evans, The nature of the liquid-vapour interface and +other topics in the statistical mechanics of non-uniform, +classical fluids, Adv. Phys. 28, 143 (1979). +[5] P. C. Hohenberg and B. I. Halperin, Theory of dynamic +critical phenomena, Rev. Mod. Phys. 49, 435 (1977). +[6] F. Samm¨uller and M. Schmidt, Adaptive Brownian dy- +namics, J. Chem. Phys. 155, 134107 (2021). +[7] C. P. Royall, J. Dzubiella, M. Schmidt, and A. van +Blaaderen, Non-equilibrium sedimentation of colloids on +the particle scale, Phys. Rev. Lett. 98, 188304 (2007). +[8] M. Bier, R. van Roij, M. Dijkstra, and P. van der Schoot, +Self-diffusion of particles in complex fluids: temporary +cages and permanent barriers, Phys. Rev. Lett. 101, +215901 (2008). +[9] D. Stopper, A. L. Thorneywork, R. P. A. Dullens, and +R. Roth, Bulk dynamics of Brownian hard disks: Dy- +namical density functional theory versus experiments on +two-dimensional colloidal hard spheres, J. Chem. Phys. +148, 104501 (2018). +[10] R. Evans, Density functionals in the theory nonuniform +fluids, in Fundamentals of Inhomogeneous Fluids, edited +by D. Henderson (Dekker, New York, 1992). +[11] For an overview of new developments in classical den- +sity functional theory, see: +R. Evans, M. Oettel, R. +Roth, and G. Kahl, New developments in classical den- +sity functional theory, J. Phys.: Condens. Matter 28, +240401 (2016). +[12] R. Evans, M. C. Stewart, and N. B. Wilding, A unified +description of hydrophilic and superhydrophobic sur- +faces in terms of the wetting and drying transitions of +liquids, Proc. Nat. Acad. Sci. 116, 23901 (2019). +[13] M. K. Coe, R. Evans, and N. B. Wilding, Density deple- +tion and enhanced fluctuations in water near hydropho- +bic solutes: identifying the underlying physics, Phys. +Rev. Lett. 128, 045501 (2022). +[14] M. K. Coe, R. Evans, and N. B. Wilding, Understanding +the physics of hydrophobic solvation, arXiv:2212.04967 +[15] D. Martin-Jimenez, E. Chac´on, P. Tarazona, and R. +Garcia, Atomically resolved three-dimensional struc- +tures of electrolyte aqueous solutions near a solid sur- +face, Nat. Commun. 7, 12164 (2016). +[16] J. Hern´andez-Mu˜noz, E. Chac´on, and P. Tarazona, Den- +sity functional analysis of atomic force microscopy in a +dense fluid, J. Chem. Phys. 151, 034701 (2019). +[17] P. Cats, R. Evans, A. H¨artel, and R. van Roij, Primi- +tive model electrolytes in the near and far field: Decay +lengths from DFT and simulations, J. Chem. Phys. 154, +124504 (2021). +[18] Y. Rosenfeld, Free-energy model for the inhomogeneous +hard-sphere fluid mixture and density-functional theory +of freezing, Phys. Rev. Lett. 63, 980 (1989).. +[19] R. Roth, Fundamental measure theory for hard-sphere +mixtures: +a review, J. Phys.: +Condens. Matter 22, +063102 (2010). +[20] R. Roth, R. Evans, A. Lang, and G. Kahl, Fundamen- +tal measure theory for hard-sphere mixtures revisited: +the White Bear version, J. Phys.: Condens. Matter 14, +12063 (2002). +[21] H. Hansen-Goos and R. Roth, Density functional the- +ory for hard-sphere mixtures: the White Bear version +mark II, J.Phys.: Condens. Matter 18, 8413 (2006). +[22] U. M. B. Marconi and P. Tarazona, Dynamic density +functional theory of fluids, J. Chem. Phys. 110, 8032 +(1999). +[23] A. J. Archer and R. Evans, Dynamical density func- +tional theory and its application to spinodal decompo- +sition, J. Chem. Phys. 121, 4246 (2004). +[24] G. K.-L. Chan and R. Finken, Time-dependent density +functional theory of classical fluids, Phys. Rev. Lett. 94, +183001 (2005). +[25] P. Espa˜nol and H. L¨owen, Derivation of dynamical +density functional theory using the projection operator +technique, J. Chem. Phys. 131, 244101 (2009). +[26] U. M. B. Marconi and S. Melchionna, Phase-space ap- +proach to dynamical density functional theory, J. Chem. +Phys. 126, 184109 (2007). +[27] J. Dzubiella and C. N. Likos, Mean-field dynamical den- +sity functional theory, J. Phys.: Condens. Matter 15, +L147 (2003). +[28] J. F. Lutsko and M. Oettel, Reconsidering power func- +tional theory, J. Chem. Phys. 155, 094901 (2021). +[29] G. Szamel, An alternative, dynamic density functional- +like theory for time-dependent density fluctuations in +glass-forming fluids, J. Chem. Phys. 156, 191102 (2022). +[30] B. D. Goddard, R. D. Mills-Williams, M. Ottobre, +and G. Pavliotis, Well-posedness and equilibrium be- +haviour of overdamped dynamic density functional the- +ory, arXiv:2002.11663 +[31] A. J. Archer, Dynamical density functional theory for +dense atomic liquids, J. Phys.: Condens. Matter 18, +5617 (2006). +[32] A. J. Archer, Dynamical density functional theory for +molecular and colloidal fluids: A microscopic approach +to fluid mechanics, J. Chem. Phys. 130, 014509 (2009). +[33] R. Stierle and J. Gross, Hydrodynamic density func- +tional theory for mixtures from a variational principle +and its application to droplet coalescence, J. Chem. +Phys. 155, 134101 (2021). +[34] B. D. Goddard, A. Nold, N. Savva, G. A. Pavliotis, +and S. Kalliadasis, General dynamical density func- +tional theory for classical fluids, Phys. Rev. Lett. 109, +120603 (2012). +[35] M. Rex and H. L¨owen, Dynamical density functional +theory for colloidal dispersions including hydrodynamic +interactions, Eur. Phys. J. E 28, 139 (2009). +[36] J. Dzubiella, and A. Moncho-Jord´a, Controlling the mi- +crostructure and phase behavior of confined soft colloids +by active interaction switching, Phys. Rev. Lett. 125, +078001 (2020). +[37] M. Bley, J. Dzubiella, and A. Moncho-Jord´a, Active bi- +nary switching of soft colloids: stability and structural +properties, Soft Matter 17, 7682 (2021). +[38] B. D. Goddard, B. Gooding, G. A. Pavliotis, and H. +Short, Noisy bounded confidence models for opinion dy- +namics: the effect of boundary conditions on phase tran- + +13 +sitions, IMA J. Appl. Math. 87, 80 (2022). +[39] M. te Vrugt, J. Bickmann, and R. Wittkowski, Effects +of social distancing and isolation on epidemic spreading +modeled via dynamical density functional theory, Nat. +Commun. 11, 5576 (2020). +[40] M. te Vrugt, H. L¨owen, and R. Wittkowski, Classical +dynamical density functional theory: from fundamen- +tals to applications, Adv. Phys. 69, 121 (2020). +[41] M. te Vrugt and R. Wittkowski, Perspective: New direc- +tions in dynamical density functional theory, J. Phys.: +Condens. Matter 35, 041501 (2023). +[42] M. Schmidt, Power functional theory for many-body dy- +namics, Rev. Mod. Phys. 94, 015007 (2022). +[43] T. Schilling, Coarse-grained modelling out of equilib- +rium, Phys. Rep. 972, 1 (2022). +[44] S. Hermann and M. Schmidt, Noether’s theorem in sta- +tistical mechanics, Commun. Phys. 4, 176 (2021). +[45] S. Hermann and M. Schmidt, Why Noether’s theorem +applies to statistical mechanics, J. Phys.: +Condens. +Matter 34, 213001 (2022) (Topical Review). +[46] S. M. Tschopp, F. Samm¨uller, S. Hermann, M. Schmidt, +and J. M. Brader, Force density functional theory +in- and out-of-equilibrium, Phys. Rev. E 106, 014115 +(2022). +[47] F. Samm¨uller, S. Hermann, and M. Schmidt, Should +classical density functional theory be based on forces? +A comparative study, arxiv:2212.01780 (2022). +[48] S. Hermann and M. Schmidt, Force balance in thermal +quantum many-body systems from Noether’s theorem, +J. Phys. A: Math. Theor. 55, 464003 (2022). (Claritons +and the Asymptotics of ideas: the Physics of Michael +Berry). +[49] S. Hermann and M. Schmidt, Variance of fluctuations +from Noether invariance, Commun. Phys. 5, 276 (2022). +[50] F. Samm¨uller, S. Hermann, D. de las Heras, and M. +Schmidt, What is liquid, from Noether’s perspective? +(to be published). +[51] D. de las Heras, J. Renner, and M. Schmidt, Custom +flow in overdamped Brownian dynamics, Phys. Rev. E +99, 023306 (2019). +[52] J. Renner, M. Schmidt, and D. de las Heras, Custom +flow in molecular dynamics, Phys. Rev. Res. 3, 013281 +(2021). +[53] M. Schmidt and J. M. Brader, Power functional theory +for Brownian dynamics, J. Chem. Phys. 138, 214101 +(2013). +[54] A. Fortini, +D. de las Heras, +J. M. Brader, +and +M. Schmidt, Superadiabatic forces in Brownian many- +body dynamics, Phys. Rev. Lett. 113, 167801 (2014). +[55] N. C. X. Stuhlm¨uller, T. Eckert, D. de las Heras, and +M. Schmidt, Structural nonequilibrium forces in driven +colloidal systems, Phys. Rev. Lett. 121, 098002 (2018). +[56] L. L. Treffenst¨adt and M. Schmidt, Memory-induced +motion reversal in Brownian liquids, Soft Matter 16, +1518 (2020). +[57] N. Jahreis and M. Schmidt, Shear-induced deconfine- +ment of hard disks, Col. Pol. Sci. 298, 895 (2020). +[58] D. de las Heras and M. Schmidt, Velocity gradient +power functional for Brownian dynamics, Phys. Rev. +Lett. 120, 028001 (2018). +[59] D. de las Heras and M. Schmidt, Flow and structure +in nonequilibrium Brownian many-body systems, Phys. +Rev. Lett. 125, 018001 (2020). +[60] F. Samm¨uller, D. de las Heras, and M. Schmidt, Inho- +mogeneous steady shear dynamics of a three-body col- +loidal gel former, J. Chem. Phys. (to appear in the Spe- +cial Topic on Colloidal Gels); arXiv:2210.07679. +[61] J. K. Percus, Approximation methods in classical sta- +tistical mechanics, Phys. Rev. Lett. 8, 462 (1962). +[62] A. J. Archer, P. Hopkins, and M. Schmidt, Dynamics in +inhomogeneous liquids and glasses via the test particle +limit, Phys. Rev. E 75, 040501(R) (2007). +[63] P. Hopkins, A. Fortini, A. J. Archer, and M. Schmidt, +The van Hove distribution function for Brownian hard +spheres: Dynamical test particle theory and computer +simulations for bulk dynamics, J. Chem. Phys. 133, +224505 (2010). +[64] D. Stopper, R. Roth and H. Hansen-Goos, Communi- +cation: Dynamical density functional theory for dense +suspensions of colloidal hard spheres, J. Chem. Phys. +143, 181105 (2015). +[65] D. Stopper, K. Marolt, R. Roth, and H. Hansen-Goos, +Modeling diffusion in colloidal suspensions by dynam- +ical density functional theory using fundamental mea- +sure theory of hard spheres, Phys. Rev. E 92, 022151 +(2015). +[66] J. M Brader and M. Schmidt, Power functional theory +for the dynamic test particle limit, J. Phys.: Condens. +Matter 27, 194106 (2015). +[67] T. Schindler and M. Schmidt, Dynamic pair correlations +and superadiabatic forces in a dense Brownian liquid, J. +Chem. Phys. 145, 064506 (2016). +[68] L. L. Treffenst¨adt and M. Schmidt, Universality in +driven and equilibrium hard sphere liquid dynamics, +Phys. Rev. Lett. 126, 058002 (2021). +[69] L. L. Treffenst¨adt, T. Schindler, M. Schmidt, Dynamic +decay and superadiabatic forces in the van Hove dy- +namics of bulk hard sphere fluids, SciPost Phys. 12, +133 (2022). +[70] S. Hermann, D. de las Heras, and M. Schmidt, Non- +negative interfacial tension in phase-separated active +Brownian particles, +Phys. Rev. Lett. 123, +268002 +(2019). +[71] S. Hermann, P. Krinninger, D. de las Heras, and M. +Schmidt, Phase coexistence of active Brownian parti- +cles, Phys. Rev. E 100, 052604 (2019). +[72] P. Krinninger, M. Schmidt, and J. M. Brader, Nonequi- +librium phase behaviour from minimization of free +power dissipation, Phys. Rev. Lett. 117, 208003 (2016). +[73] P. Krinninger and M. Schmidt, Power functional theory +for active Brownian particles: general formulation and +power sum rules, J. Chem. Phys. 150, 074112 (2019). +[74] S. Hermann, D. de las Heras, and M. Schmidt, Phase +separation of active Brownian particles in two dimen- +sions: Anything for a quiet life, Mol. Phys. e1902585 +(2021). +[75] D. de las Heras, M. Schmidt, Full canonical information +from grand potential density functional theory, Phys. +Rev. Lett. 113, 238304 (2014). +[76] D. de las Heras, J. M. Brader, A. Fortini, M. Schmidt, +Particle conservation in dynamical density functional +theory, J. Phys.: Condens. Matter 28, 244024 (2016). +[77] T. Schindler, R. Wittmann, and J. M. Brader, Particle- +conserving dynamics on the single-particle level, Phys. +Rev. E 99, 012605 (2019). +[78] M. Schmidt, Power functional theory for Newtonian +many-body dynamics, J. Chem. Phys. 148, 044502 + +14 +(2018). +[79] J. Renner, M. Schmidt, and D. de las Heras, Shear and +bulk acceleration viscosities in simple fluids, Phys. Rev. +Lett. 128, 094502 (2022). +[80] M. Schmidt, Quantum power functional theory for +many-body dynamics, J. Chem. Phys. 143, 174108 +(2015). +[81] M. Br¨utting, T. Trepl, D. de las Heras, and M. Schmidt, +Superadiabatic forces via the acceleration gradient in +quantum many-body dynamics, Molecules 24, 3660 +(2019). +[82] P. S. Clegg, Characterising soft matter using machine +learning, Soft Matter, 17, 3991 (2021). +[83] M. Dijkstra and E. Luijten, From predictive modelling +to machine learning and reverse engineering of colloidal +self-assembly, Nature Materials 20, 762 (2021) +[84] G. M. Coli, E. Boattini, L. Filion, M. Dijkstra, Inverse +design of soft materials via a deep learning-based evo- +lutionary strategy, Sci. Adv. 8, eabj6731 (2022) +[85] E. Boattini, M. Dijkstra, and L. Filion, Unsupervised +learning for local structure detection in colloidal sys- +tems, J. Chem. Phys. 151, 154901 (2019). +[86] R. van Mastrigt, M. Dijkstra, M. van Hecke, and +C. Coulais, Machine learning of implicit combinato- +rial rules in mechanical metamaterials, Phys. Rev. Lett. +129, 198003 (2022). +[87] G. Campos-Villalobos, E. Boattini, L. Filion, and M. +Dijkstra, Machine learning many-body potentials for +colloidal systems, J. Chem. Phys. 155, 174902 (2021). +[88] G. Campos-Villalobos, G. Giunta, S. Mar´ın-Aguilar, +M. Dijkstra, +Machine-learning effective many-body +potentials for anisotropic particles using orientation- +dependent symmetry functions, J. Chem. Phys. 157, +024902 (2022). +[89] S. Ciarella, M. Chiappini, E. Boattini, M. Dijkstra, +and L. M. C. Janssen, Dynamics of supercooled liquids +from static averaged quantities using machine learning, +arXiv:2212.09338 +[90] T. Santos-Silva, P. I. C. Teixeira, C. Anquetil-Deck, and +D. J. Cleaver, Neural-network approach to modeling liq- +uid crystals in complex confinement, Phys. Rev. E 89, +053316 (2014). +[91] S.-C. Lin and M. Oettel, A classical density functional +from machine learning and a convolutional neural net- +work, SciPost Phys. 6, 025 (2019). +[92] S.-C. Lin, G. Martius, and M. Oettel, Analytical clas- +sical density functionals from an equation learning net- +work, J. Chem. Phys. 152, 021102 (2020). +[93] P. Cats, S. Kuipers, S. de Wind, R. van Damme, G. M. +Coli, M. Dijkstra, and R. van Roij, Machine-learning +free-energy functionals using density profiles from sim- +ulations, APL Mater. 9, 031109 (2021). +[94] B. Rotenberg, Use the force! Reduced variance estima- +tors for densities, radial distribution functions, and lo- +cal mobilities in molecular simulations, J. Chem. Phys. +153, 150902 (2020). +[95] D. Borgis, D., R. Assaraf, B. Rotenberg, and R. Vuilleu- +mier, Computation of pair distribution functions and +three-dimensional densities with a reduced variance +principle, Mol. Phys. 111, 3486 (2013). +[96] D. de las Heras and M. Schmidt, Better than counting: +Density profiles from force sampling, Phys. Rev. Lett. +120, 218001 (2018). +[97] J. Renner, M. Schmidt, and D. de las Heras, Bet- +ter than counting: Orientational distribution functions +from torque sampling, arXiv:2212.11576 +[98] B. He, I. Martin-Fabiani, R. Roth, G. I. T´oth, and A. +J. Archer, Dynamical density functional theory for the +drying and stratification of binary colloidal dispersions, +Langmuir 37, 1399 (2021). +[99] M. Kundu and M. P. Howard, Dynamic density func- +tional theory for drying colloidal suspensions: Compar- +ison of hard-sphere free-energy functionals, J. Chem. +Phys. 157, 184904 (2022). +[100] J. Sui, M. Doiab and Y. Ding, Dynamics of the float- +ing nematic phase formation in platelet suspension with +thickness polydispersity by sedimentation, Soft Matter +14, 8956 (2018). +[101] S. M. Tschopp and J. M. Brader, First-principles su- +peradiabatic theory for the dynamics of inhomogeneous +fluids, J. Chem. Phys. 157, 234108 (2022). +[102] V. Molinero and E. B. Moore, Water modeled as an in- +termediate element between carbon and silicon, J. Phys. +Chem. B 113, 4008–4016 (2009). +[103] M. K. Coe, R. Evans, and N. B. Wilding, The coexis- +tence curve and surface tension of a monatomic water +model, J. Chem. Phys. 156, 154505 (2022). +[104] S. Saw, N. L. Ellegaard, W. Kob, and S. Sastry, Struc- +tural relaxation of a gel modeled by three body interac- +tions, Phys. Rev. Lett. 103, 248305 (2009). +[105] S. Saw, N. L. Ellegaard, W. Kob, and S. Sastry, Com- +puter simulation study of the phase behavior and struc- +tural relaxation in a gel-former modeled by three-body +interactions, J. Chem. Phys. 134, 164506 (2011). +[106] M. Doi, Onsager’s variational principle in soft matter, +J. Phys.: Condens. Matter 23, 284118 (2011). +[107] M. Doi, Onsager principle as a tool for approximation, +Chinese Phys. B 24, 020505 (2015). +[108] H. Wang, T. Qian, and X. Xu, Onsager’s variational +principle in active soft matter, Soft Matter 17, 3634 +(2021). +[109] X. Wang, J. Dobnikar, and D. Frenkel, Numerical test +of the Onsager relations in a driven system, Phys. Rev. +Lett. 129, 238002 (2022). +[110] U. Seifert, Stochastic thermodynamics, fluctuation the- +orems and molecular machines, Rep. Prog. Phys. 75, +126001 (2012). +[111] R. L. Jack and P. Sollich, Large Deviations and Ensem- +bles of Trajectories in Stochastic Models, Prog. Theo. +Phys. Suppl. 184, 304 (2010). +[112] R. L. Jack and P. Sollich, Effective interactions and large +deviations in stochastic processes, Europ. Phys. J. Spec. +Top. 224, 2351 (2015). +[113] L. M. C. Janssen, Mode-coupling theory of the glass +transition: a primer, Front. Phys. 6, 97 (2018). +[114] L. M. C. Janssen and D. R. Reichman, Microscopic dy- +namics of supercooled liquids from first principles, Phys. +Re. Lett. 115, 205701 (2015). +[115] G. Mazzuca, T. Grava, T. Kriecherbauer, K. T.-R. +McLaughlin, C. B. Mendl, H. Spohn, Equilibrium space- +time correlations of the toda lattice on the hydrody- +namic scale, arXiv:2301.02431. +[116] D. Lips, A. Ryabov, and P. Maass, Brownian asym- +metric simple exclusion process, Phys. Rev. Lett. 121, +160601 (2018). +[117] A. P. Antonov, A. Ryabov, and P. Maass, Solitons in +overdamped Brownian dynamics, Phys. Rev. Lett. 129, + +15 +080601 (2022). + diff --git a/99FLT4oBgHgl3EQfui_z/content/tmp_files/load_file.txt b/99FLT4oBgHgl3EQfui_z/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..9865f834912f0bbff33cfb5dc9c188405277bcfe --- /dev/null +++ b/99FLT4oBgHgl3EQfui_z/content/tmp_files/load_file.txt @@ -0,0 +1,1343 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf,len=1342 +page_content='Perspective: How to overcome dynamical density functional theory Daniel de las Heras,1 Toni Zimmermann,1 Florian Samm¨uller,1 Sophie Hermann,1 and Matthias Schmidt1 1Theoretische Physik II, Physikalisches Institut, Universit¨at Bayreuth, D-95447 Bayreuth, Germany (Dated: 28 January 2023) We argue in favour of developing a comprehensive dynamical theory for rationalizing, predicting, and machine learning nonequilibrium phenomena that occur in soft matter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' To give guidance for navigating the theoretical and practical challenges that lie ahead, we discuss and exemplify the limitations of dynamical density functional theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Instead of the implied adiabatic sequence of equilibrium states that this approach provides as a makeshift for the true time evolution, we posit that the pending theoretical tasks lie in developing a systematic understanding of the dynamical functional relationships that govern the genuine nonequilibrium physics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' While static density func- tional theory gives a comprehensive account of the equilibrium properties of many-body systems, we argue that power functional theory is the only present contender to shed similar insights into nonequilibrium dynamics, including the recognition and implementation of exact sum rules that result from the Noether theorem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' As a demonstration of the power functional point of view, we consider an idealized steady sedimentation flow of the three-dimensional Lennard-Jones fluid and machine-learn the kinematic map from the mean motion to the internal force field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' This proof of con- cept demonstrates the significant potential of machine learning the inherent functional relationships that govern nonequilibrium many-body physics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' INTRODUCTION The coupled dynamics of the microscopic degrees of freedom in typical soft matter systems generates a wide array of relevant and also often unsolved nonequilibrium phenomena [1, 2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' One central quantity for the char- acterization of self-assembly and structure formation in complex systems is the microscopically resolved one-body density distribution ρ(r, t), where r indicates position and t denotes time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' The “density profile” ρ(r, t) acts as a central order parameter both due to its intuitive physical interpretation and clearcut mathematical definition [3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' According to the dynamical density functional theory (DDFT), as originally proposed by Evans in 1979 [4], the time evolution of the microscopic density profile is assumed to be determined by the following partial differ- ential equation: ∂ρ(r, t) ∂t = γ−1∇ · ρ(r, t)∇ � δF[ρ] δρ(r, t) + Vext(r, t) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' (1) Here γ is a friction constant, F[ρ] is an intrinsic free energy functional that depends functionally on the den- sity profile, and the external potential Vext(r, t) repre- sents interactions of the system with the environment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' The system is set into motion by a temporal variation of Vext(r, t), such as e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' step-like switching at an initial time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' The time evolution according to Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' (1) conserves the particle number locally and hence it constitutes dynam- ics of model B type [5].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' In standard applications one starts with an equilibrium state of the system and then the dynamics are monitored on the basis of numerical time integration of Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' (1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' In order to provide reference data and to allow for the generation of benchmark results to assess the quality of the theory, resorting to many- body computer simulations is common, with overdamped Brownian dynamics (BD) being a popular choice (Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' [6] describes a modern and stable algorithm).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Comparison of DDFT data with experimental results are more scarce, but notable exceptions include non-equilibrium sedimen- tation of colloids [7], the self-diffusion of particles in com- plex fluids [8], and the bulk dynamics of Brownian hard disks [9].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' The DDFT time evolution reaches a stationary state if the gradient on the right hand side of Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' (1) vanishes, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' provided that the expression inside of the parentheses is constant: δF[ρ] δρ(r) + Vext(r) = µ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' (2) Here we have dropped the dependence on time in the notation, as the situation is now static.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' The constant µ can be identified with the chemical potential, which in a grand canonical statistical mechanical setting is the con- jugate control parameter of the mean particle number.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Equation (2) is exact in equilibrium, as was shown by Evans [4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' He proved the equilibrium intrinsic free en- ergy functional F[ρ] to exist, to be unique, and to form the starting point for a modern equilibrium theory of spatially inhomogeneous liquids and crystals [10, 11].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' In practice one needs to rely on approximations for F[ρ], given a microscopic fluid model under consid- eration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Once one has solved Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' (2) for given values of µ and temperature T (the dependence of F[ρ] on T is suppressed in the notation), then in principle com- plete knowledge of the thermal system is available.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' The value of the density functional F[ρ] is the true intrinsic free energy, and higher-order correlation functions are determined via higher-order derivatives of the free en- ergy functional or via test-particle procedures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' In par- ticular two-body correlations functions, such as the bulk pair correlation function g(r) as well as its generalization to inhomogeneous systems are accessible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' These exhibit defining characteristics of liquids and more general soft arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content='12156v1 [cond-mat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content='soft] 28 Jan 2023 2 matter systems and they are formally fully contained in the static density functional theory framework.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Together with a number of available reliable approxi- mate free energy functionals, density functional theory is a powerful theoretical framework that has been used to elucidate much intricate and complex behaviour in soft matter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Recent representative highlights include trac- ing hydrophobicity to critical drying at substrates [12– 14], resolving three-dimensional structures of electrolyte aqueous solutions near surfaces [15, 16], and addressing the magnitude of the decay lengths in electrolytes [17].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Rosenfeld’s celebrated hard sphere fundamental measure free energy functional [18–21] is at the core of much of this research activity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' In the following we wish to address whether or not the DDFT has the prowess to play a similar role in nonequilibrium, as is often at least implicitly assumed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' We demonstrate on the basis of an explicit and generic example, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=', that of uniaxial compressional flow of the three-dimensional Lennard-Jones fluid, that the DDFT is fundamentally flawed and that in reality, as represented by many-body simulations, recognizing the flow field as a further relevant degree of freedom is required to rep- resent true nonequilibrium.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' These conclusions are based on analytical power functional approximations, adaptive BD simulation data, and explicit machine learning of the power functional map from motion to the interparticle one-body force field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' This Perspective is organized as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' We first make some key aspects of DDFT explicit in Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' II and describe several prominent shortcomings of this theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' We then give an account of how to go towards the formally exact one-body dynamics in Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' III and provide in Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' IV a description of key aspects of the power functional frame- work, which as we wish to argue overcomes the funda- mental defects of DDFT.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' We describe the exemplary sta- tionary compressional flow situation in Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' V and lay put the application of Noether’s theorem in this statis- tical mechanical setting in Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' VI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' We present machine learning results for the kinematic functional relationships of the streaming Lennard-Jones fluid in Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' VII.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' We give conclusion and an outlook in Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' VIII.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' LIMITS AND LIMITATIONS OF ADIABATIC DYNAMICS We go into some detail and describe why the DDFT represents adiabatic dynamics in the sense of a temporal sequence of spatially inhomogeneous equilibrium states.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' The equilibrium intrinsic free energy functional splits into ideal and excess (over ideal gas) contributions according to F[ρ] = Fid[ρ] + Fexc[ρ].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Here the excess free energy functional Fexc[ρ] accounts for the effects of the inter- particle interactions on the equilibrium properties of the system and it is in general unknown and requires approx- imations to be made.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' The ideal gas free energy functional however is exactly given by Fid[ρ] = kBT � drρ(r) ln(ρ(r)Λ3) − 1], (3) where kB denotes the Boltzmann constant, Λ is the thermal de Broglie wavelength, and we consider three- dimensional systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' The functional derivative, as it is relevant for Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' (1), is δFid[ρ]/δρ(r) = kBT ln(ρ(r)Λ3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' When disregarding the excess contribution and in- serting this result alone into the DDFT equation of motion (1), its right hand side becomes γ−1∇ · ρ(r, t)∇[kBT ln(ρ(r, t)Λ3) + Vext(r, t)].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' This can be re- written further such that for the case of the ideal gas, where Fexc[ρ] = 0 and F[ρ] = Fid[ρ], the equation of motion (1) attains the following form: ∂ρ(r, t) ∂t = D0∇2ρ(r, t) − ∇ · ρ(r, t)fext(r, t)/γ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' (4) Here D0 = kBT/γ is the diffusion constant, ∇2 is the Laplace operator and the external force field is given (here) as fext(r, t) = −∇Vext(r, t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Equation (4) is the exact drift-diffusion equation for overdamped motion of a mutually noninteracting system, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=', the ideal gas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Besides Evans’ original proposal [4] based on the con- tinuity equation and undoubtedly his physical intuition,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' derivations of the DDFT (1) were founded much more recently on Dean’s equation of motion for the density op- erator [22],' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' the Smoluchowski equation [23],' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' a stationary action principle for the density [24],' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' the projection op- erator formalism [25],' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' a phase-space approach [26],' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' the mean-field approximation [27],' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' a local equilibrium as- sumption [28],' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' and a non-equilibrium free energy [29].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' The question of the well-posedness of the DDFT was ad- dressed [30] and several extensions beyond overdamped Brownian dynamics were formulated, such as e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' for dy- namics including inertia [31–34] and for particles that ex- perience hydrodynamic interactions [34, 35] or undergo chemical reactions [36, 37].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' The DDFT was also used beyond the description of flu- ids, such as e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' for opinion dynamics [38] and epidemic spreading [39].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Recent reviews of DDFT are given in Refs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' [40, 41].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' The theory is put into a wider perspective, together with much background pedagogical material in Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' [42].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' A modern and well-accessible account of the general strategy of dynamical coarse-graining in statisti- cal physics, of which the DDFT can be viewed as being a representative, has recently been given by Schilling [43].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' The fact that both the static limit for the fully in- teracting system (2) as well as the full dynamics of the noninteracting system (4) are exact, taken together with the heft of the DDFT literature, appears to give much credibility to the equation of motion (1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' However, de- spite the range of theoretical techniques employed [22–29] neither of these approaches has provided us with a con- crete way of going beyond Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' (1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Apart from several case-by-case and rather ad hoc modifications, no system- atic or even only practical identification of what is miss- ing has been formulated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' (We turn to power functional 3 theory in Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=') This is a problematic situation as two defects of Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' (1) are immediately obvious upon in- spection: i) the description is local in time and there is no natural mechanism for the inclusion of memory while time-locality is not sufficient for general nonequilibrium situations;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' ii) only flow that leads to direct changes in the density profile is captured and hence effects of rota- tional flow, such as shearing, as well as of nonequilibrium effects in compression and expansion are lost (see below).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Here we argue that these defects are indicative of a broader failure of Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' (1) to describe nonequilibrium physics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' We show that the DDFT is only fit to describe situations in which the dynamics follow an adiabatic path through a sequence of equilibrium states.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' The description of genuine nonequilibrium dynamics in a functional set- ting on the one-body level rather requires recognition of the local velocity field as a further relevant physical vari- able besides the density profile, and this is provided by power functional theory [42].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Before laying out key prin- ciples of this approach in Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' IV, we first describe the mi- croscopically sharp coarse-graining on the one-body level of correlation functions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' TOWARDS EXACT ONE-BODY DYNAMICS Evans based his original derivation [4] of Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' (1) on the continuity equation, ∂ρ(r, t) ∂t = −∇ · J(r, t), (5) where J(r, t) is the microscopically resolved one-body current distribution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Equation (5) is exact in a variety of contexts, including overdamped Brownian dynamics, as described either on the Fokker-Planck level by the Smolu- chowski equation or by the corresponding overdamped Langevin equation that governs the trajectories, as they are realized in simulation work [6].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' For BD the one-body current distribution is given exactly by [42]: γJ(r, t) = −kBT∇ρ(r, t) + Fint(r, t) + ρ(r, t)fext(r, t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' (6) This identity expresses the force density balance of the negative friction force density (left hand side) with the force densities due to ideal thermal diffusion, interparti- cle interactions, and external influence (three contribu- tions on the right hand side).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Here the interparticle force density distribution is given by the statistical average Fint(r, t) = − � � i δ(r − ri)∇iu(rN) ���� t, (7) where the angular brackets indicate an average at fixed time t over the nonequilibrium many-body distribu- tion, u(rN) is the interparticle interaction potential that depends on all particle position coordinates rN ≡ r1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' , rN and ∇i indicates the derivative with respect to the position ri of particle i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' The formulation of Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' (7) is based on the concept of static operators and a dynami- cally evolving probability distribution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' This is analogous to the Schr¨odinger picture of quantum mechanics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' The Heisenberg picture is more closely related to simulation work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Here the probability distribution is that of the ini- tial microstates and the operators move forward in time, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=', the position ri(t) of particle i changes over the course of time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Then the Dirac distribution in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' (7) becomes δ(r − ri(t)), with the generic position variable r however remaining static.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' The forces are those that act in the given microstate rN(t) at time t, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=', the interparticle force on particle i at time t is −∇iu(rN(t)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' In practice, using BD simulations, carrying out the average in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' (7) requires to build the mean over suf- ficiently many separate realizations of the microscopic evolution of the many-body system that differ in the ini- tial state and in the realization of the thermal noise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' As Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' (7) measures both the probability to find particle i at position r (via the delta function) and the interparticle force that acts via the negative gradient −∇iu(rN), we refer to Fint(r, t) as a force density.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' The corresponding force field fint(r, t) is obtained by simple normalization with the density profile, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' fint(r, t) = Fint(r, t)/ρ(r, t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Building this ratio scales out the probability effect and the force field then carries physical units of force, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' energy per length.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' In equilibrium the definition (7) remains intact.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Com- plementing the statistical average, static density func- tional theory allows to express the equilibrium force den- sity as being functionally dependent on the density pro- file via the functional derivative of the excess free energy functional according to: Fint(r) �� eq = −ρ(r)∇δFexc[ρ] δρ(r) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' (8) Crucially, and in contrast to Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' (7), here the internal force density is directly expressed as a density functional.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' This dependence has superseded the original dependence on the external potential, as is manifest in the probability distribution for building the average (7) in equilibrium.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' As a self-consistency check we insert the force density functional (8) into the equilibrium limit of the force den- sity balance (6).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' The current vanishes in the equilibrium case, J(r, t) ≡ 0, and we obtain −kBT∇ρ(r) + Fint(r)|eq + ρ(r)fext(r) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' (9) This result is independent of time and it consti- tutes the gradient of the static Euler-Lagrange equa- tion (2) when divided by the density profile.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' (Insert Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' (8), identify the ideal gas contribution −kBT∇ρ(r) = −ρ(r)δFid[ρ]/δρ(r), and divide by ρ(r).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=') The classical force density balance result (9) by Yvon, Born and Green [3] has recently been derived from systematically address- ing thermal Noether invariance [44, 45] against locally resolved spatial deformations of the statistical ensemble [46–48], as also valid quantum mechanically [48] and at 4 second order in the displacement field [49, 50];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' we give a brief account of this theory in Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' VI below.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' A naive transfer of Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' (8) to nonequilibrium lets one simply evaluate the equilibrium excess free energy functional at the instantaneous nonequilibrium density ρ(r, t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' In order to separate this contribution from true static equilibrium, we refer to this force density as being adiabatic (subscript “ad”) and to be defined as Fad(r, t) = −ρ(r, t)∇δFexc[ρ] δρ(r, t) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' (10) We recall that the right hand side offers a concrete com- putational structure that is of practical usefulness in ac- tual applications, as considerable knowledge about ap- proximative forms of the excess free energy density func- tional Fexc[ρ] is available.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Using the adiabatic force den- sity as a proxy for the true nonequilibrium intrinsic force density distribution (7), i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' setting Fint(r, t) = Fad(r, t) in the force density balance (6) together with the conti- nuity equation (5) leads to the DDFT equation of mo- tion (1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' The adiabatic force density approximation is uncontrolled though and the theory inherently yields the dynamics as an adiabatic sequence of equilibrium states.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Surely, more than 40 years after the conception of the DDFT [4], we have to be able to do better!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' POWER FUNCTIONAL TECHNIQUES Power functional theory [42] offers a concrete math- ematical structure to go forward.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' We describe the es- sential steps that enable one to go beyond the DDFT and to hence address a significantly expanded realm of nonequilibrium physics which Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' (1) is oblivious of.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' The interparticle force density profile (7) is identified to consist of two contributions according to: Fint(r, t) = Fad(r, t) + Fsup(r, t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' (11) Here Fad(r, t) is the adiabatic force density profile, as given formally via the explicit equilibrium free energy derivative (10) and directly accessible in simulations via the custom flow method [51, 52].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' The custom flow al- gorithm allows to systematically construct a hypotheti- cal adiabatic (equilibrium) system that shares its density profile with the nonequilibrium system at the given time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Then sampling the internal force density in the adiabatic system yields results for Fad(r, t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' The second, superadiabatic contribution in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' (11), Fsup(r, t), contains all effects that are not expressible as an instantaneous density functional.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' This includes forces that lead to viscous and to nonequilibrium struc- ture forming phenomena, as we exemplify below in a con- crete model compressional flow situation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Formally, the superadiabatic force density is generated from the su- peradiabatic excess free power functional P exc t [ρ, J] upon functional differentiation with respect to the one-body current via [42, 53]: Fsup(r, t) = −ρ(r, t)δP exc t [ρ, J] δJ(r, t) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' (12) The functional dependence of P exc t [ρ, J] on the density and current is causal, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' on the values of these fields at prior times to t;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' density and current need to satisfy the continuity equation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Upon using Eqs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' (11) the force density balance (6) attains the following form: γJ(r, t) = −kBT∇ρ(r, t) + Fad(r, t) + Fsup(r, t) + ρ(r, t)fext(r, t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' (13) This relationship holds beyond gradient forms of fext(r, t), i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' for external force fields that contain non- conservative contributions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Crucially Fsup(r, t) will in general also acquire nonconservative contributions, such as e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' damping effects that represent viscous behaviour.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Moreover, nonequilibrium structure-forming effects will also arise in general.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' These affect directly the shape of the density profile, whether this evolves in time or per- sists in a nonequilibrium steady state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' If one wishes to eliminate the explicit occurrence of the current from the dynamics, then inputting the force den- sity balance (13) into the continuity equation (5) leads to the following formally exact form of the equation of motion for the density profile: ∂ρ(r, t) ∂t = D0∇2ρ(r, t) + ∇ · ρ(r, t) γ ∇δFexc[ρ] δρ(r, t) − ∇ · ρ(r, t) γ [fsup(r, t) + fext(r, t)].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' (14) Here it is apparent that the superadiabatic force field fsup(r, t) = Fsup(r, t)/ρ(r, t) has a direct effect on the system dynamics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' The effect is similar to that of the ex- ternal force field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Crucially though, both force fields are independent of each other: the external force field rep- resents a prescribed and inert influence on the system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' In contrast, the superadiabatic force field is an emer- gent phenomenon that arises due to interparticle inter- actions and, from the functional point of view, depends non-locally in position and causally in time on the one- body density and on the current profile.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Although setting fsup(r, t) = 0 yields the DDFT (1), the superadiabatic force field fsup(r, t) was demonstrated to exist [54–60] and in general to play a major role in the dynamics on the one-body level and, based on test- particle concepts [61–66] also for two-body correlation functions [67–69] and for active matter [70–74].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Both the flow properties as well as the spatial structure formation in the system are affected.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' To reveal additional physics, it is useful to split into “structural” and “flow” contributions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' This was estab- lished e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' for complex flow patterns that occur in driven BD [55, 59], for active Brownian particles which form a self-sustained interface at motility-induced phase co- existence [70–74], as well as very recently for a sheared 5 FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Illustration of unidirectional compressional flow of a liquid.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' The three-dimensional system is set into motion (red arrows) by the action of an external force profile fext(x) (blue arrows) which acts along the x-axis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' The system retains planar geometry such that spatial inhomogeneities only occur as a function of x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' The density profile ρ(x) (orange curve) and the velocity profile v(x) (red curve) are both stationary in time but inhomogeneous in position.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' The local one-body current J(x) = ρ(x)v(x) = const and as a result the system is in a nonequilibrium steady state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' The corresponding adiabatic system is in equilibrium (it has no mean flow) and it has by construction an unchanged density profile ρ(x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' In the adiabatic system the spatial variation of ρ(x) is stabilized by the action of an external force field −∇Vad(x) (olive arrows), which acts solely in the adiabatic system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' three-body colloidal gel former [60].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Before we demon- strate these concepts for an example of steady nonequi- librium below, we first describe two simple model power functionals that respectively generate structure and vis- cously dampen the motion and that, as we will see, give a good account of the nonequilibrium flow considered be- low.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' We concentrate on the low-order terms that are rel- evant for compressional/extensional flow, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=', for situa- tions where ∇ · v(r, t) ̸= 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' We focus on cases where there is no rotational motion (such as shearing) and hence ∇ × v(r, t) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' The velocity gradient superadiabatic power functional consists of a sum, P exc t [ρ, v] = P flow t [ρ, v] + P str t [ρ, v].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' (15) Here the flow and structural [55, 59] contributions are approximated, respectively, by the following time-local (Markovian) and space-semilocal (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' involving ∇) forms P flow t [ρ, v] = η 2 � dr[ρ(r, t)∇ · v(r, t)]2, (16) P str t [ρ, v] = −χ 3 � dr[ρ(r, t)∇ · v(r, t)]3, (17) where the overall prefactors η and χ control the respec- tive magnitude.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' The flow functional (16) is quadratic both in density and in the velocity field;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' the structural functional (17) is of cubic order in each of these variables.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Explicit higher-order functionals exist [59] and they be- come relevant when driving the system strongly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' We will return to the consequences of Eqs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' (16) and (17) after laying out in Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' V the actual flow situation that we use as a model to exemplify the implications for the physics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Before doing so, we briefly describe several further key aspects of the power functional framework.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Power functional theory provides a formal framework for the inclusion of time- and space-nonlocal dynamics [56, 68, 79].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' While Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' (12) applies to overdamped dy- namics, the acceleration field becomes a further relevant degree of freedom if inertia are relevant [78–81] whether classically in molecular dynamics [78, 79] or in quantum dynamics [80, 81].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Here the memory functions act as convolution kernels on specific kinematic fields and rota- tional and compressional contributions to the dynamics are genuinely built in.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' As laid out above, the framework is based on an exact variational concept [42, 53], and the resulting functional mapping was shown to be explicitly accessible in many-body simulation via the custom flow computer simulation method [51, 52].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Even simple mathematical model forms for the nonequilibrium contribution to the power functional, such as Eqs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' (16) and (17), already capture essential physics (as we demonstrate below) and dynamical two- body correlation functions are accessible via test particle dynamics [8, 9, 61–69].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' The power functional is thereby not to be confused with the often vague concept of a v(C p(α) noneguilibrium fext(α) (α) PeA△ equilibrium6 “nonequilibrium free energy”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' The proper equilibrium free energy functional does play a central role in power functional theory though, via providing the description of the adiabatic reference state [42], see the generation of the force density distribution via functional differenti- ation (10), as is relevant for the interparticle force split- ting (11), and the full density equation of motion (14).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' The relevance of superadiabatic contributions to the dynamics, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' of those effects that lie beyond Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' (1), has been amply demonstrated in the literature [54–59, 67– 69].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Both adiabatic and superadiabatic effects arise from integrating out the dynamical degrees of freedom of the many-body problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Ensemble differences between canonical dynamics and grand canonical equilibrium have been systematically ad- dressed [75–77] and these do not account for the observed differences between adiabatic and superadiabatic dynam- ics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' The kinematic dependence on the motion of the system arises formally [42], it can be explicitly traced in many-body computer simulation work [59], and it is amenable to machine learning, as we demonstrate in Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' VII.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Before doing so, we first formulate the represen- tative flow problem that we will use to apply the above concepts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' NONEQUILIBRIUM STEADY STATES We restrict ourselves to flow situations with one-body fields that are inhomogeneous in position but indepen- dent of time, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' ρ(r) and v(r).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Then trivially ∂ρ(r)/∂t = 0 and the continuity equation (5) constrains both fields to satisfy ∇ · [ρ(r)v(r)] = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' As a representative case we illustrate in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' 1 a nonequilibrium steady state of a three-dimensional liquid undergoing unidirectional com- pressional flow.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Flow along a single given direction occurs e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' under the influence of gravity, where sedimentation of colloids leads to both compression in the lower parts of the sample and expansion in the upper parts of the sam- ple.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Here we disregard transient phenomena and investi- gate an idealized periodic system, where flowing steady states can form.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' In order to elucidate the physics in such setups, we fol- low the splitting (15) of the superadiabatic power func- tional into structural and flow contributions and hence decompose the superadiabatic force field accordingly as fsup(r) = fstr(r) + fflow(r), (18) where the right hand side consists of the nonequilib- rium structural force field fstr(r) and the flow force field fflow(r).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Both of these force contributions arise from the microscopic interparticle interactions, as coarse- grained in a microscopically sharp way to the one-body level.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' We lay out in the following the benefits of the structure-flow splitting (18) and its definition via flow reversal symmetry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' First, on the more practical level, Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' (18) allows to carry out a corresponding splitting of the force density balance (13) [we divide by ρ(r) to obtain force fields].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' The result is a set of two coupled equations of motion, with one of them depending explicitly on the velocity profile and the second one depending explicitly on the density profile: γv(r) = fflow(r) + fext,f(r), (19) 0 = fstr(r) − kBT∇ ln ρ(r) + fad(r) + fext,s(r).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' (20) Building the sum of Eqs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' (19) and (20) and multiplying by the density profile restores the full force density bal- ance (13).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' The external force field is split according to fext(r) = fext,f(r) + fext,s(r), where the two terms couple to the flow via fext,f(r) in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' (19) and to the structure via fext,s(r) in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' (20).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' On the superficial level the two equations (19) and (20) appear to be independent of each other, as no sin- gle field appears explicitly in both equations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' However, the two equations are indeed intimately coupled to each other by the interparticle interactions, as represented by both the adiabatic and the two superadiabatic (flow and structural) force fields.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' These three intrinsic force con- tributions provide the physical representation of the true nonequilibrium steady state dynamics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' The flow-structure splitting (18) is uniquely deter- mined by the symmetry properties of the forces upon motion reversal of the system [59].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Motion reversal is a discrete symmetry operation, and hence different from continuous invariances where Noether’s theorem applies [44–50].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' One considers a “reversed” system, which is also in steady state and possesses an unchanged den- sity profile ρ(r).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' The flow, however, is directed against the velocity orientation in the original “forward” system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Hence the velocity profile in the reversed system is sim- ply −v(r).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' As a result the current also acquires a mi- nus sign, −ρ(r)v(r), which however does not affect the (vanishing) divergence, ∇ · [−ρ(r)v(r)] = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Thus the re- versed state indeed is stationary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' The two superadiabatic contributions are then defined to be unchanged [fstr(r)] and inverted [−fflow(r)] in the reversed system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Conse- quentially, the superadiabatic force field in the reversed system is the difference fstr(r) − fflow(r).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Analyzing the symmetry properties of the adiabatic force field is straightforward.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' We recall that fad(r) is a density functional via Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' (10).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' The density profiles in the forward and in the reversed systems are identical though.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Hence fad(r) is invariant under motion reversal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Motion reversal is a useful device in order to i) rationalize the nonequilibrium behaviour according to the split force balance (19) and (20), and to ii) classify the dependence of superadiabatic forces on the velocity field into even powers, which constitute fstr(r), and odd powers, which form fflow(r).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' We can demonstrate this mechanism explicitly on the basis of the above flow and structural power functionals (16) and (17).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Superadiabatic force fields are generated via the functional derivative (12) with respect to the cur- rent or, analogously, by functionally deriving by v(r, t) 7 and dividing the result by ρ(r, t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' The resulting supera- diabatic one-body force field consists of two components.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' The viscous flow force and [55, 58] and the structural force follow respectively as fflow(r) = η ρ(r)∇[ρ(r)2∇ · v(r)], (21) fstr(r) = − χ ρ(r)∇{ρ(r)3[∇ · v(r)]2}, (22) where Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' (21) is odd (linear) and Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' (22) is even (quadratic) in the derivatives of the velocity field, as de- sired.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' One might wonder where all this genuine nonequilib- rium physics leaves the DDFT!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Some readers will find the instantaneous dynamics, as generated from an adiabatic free energy according to (1), to be more appealing and in- tuitive than the thinking in terms of the above described apparently intricate functional relationships.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Why not live with Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' (1), use it, and simply accept its defects?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' In order to address this question and to demonstrate why this path is severely restricted from the outset, we turn in Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' VII to an explicit demonstration of the functional relationship that governs the nonequilibrium physics, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' the kinematic functional map from the one-body mean motion to the internal force field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Before doing so, we demonstrate that Noether’s theorem of invariant varia- tions has much to say about our present setup.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' VI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' NOETHER FORCE SUM RULES We discuss one of the arguably simplest cases of ex- ploitation of the inherent symmetries of a thermal many- body system, that of global translational invariance of its statistical mechanics [44, 45].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' We consider a “shifting” transformation, where all particle coordinates change ac- cording to the map ri → ri + ϵ, where ϵ = const.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' This uniform shifting operation leaves all interparticle dis- tance unchanged, ri−rj → (ri+ϵ)−(rj+ϵ) ≡ ri−rj.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' As a consequence the interparticle potential is invariant un- der the transformation, which we can express as the iden- tity u(r1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' , rN) = u(r1 + ϵ, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' , rN + ϵ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Here equality holds irrespectively of the magnitude and the direction of the shifting vector ϵ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' The Noether argument proceeds with a twist.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' De- spite the absence of dependence on ϵ, we can neverthe- less differentiate both sides of the equation with respect to ϵ and the result will be a valid identity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' We obtain 0 = ∂u(ri + ϵ, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' , rN + ϵ)/∂ϵ = � i ∇iu(r1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' , rN), where we have set ϵ = 0 after taking the derivative.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' We multiply by −1 and insert 1 = � drδ(r−ri), which yields − � dr � i δ(r − ri)∇iu(rN) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' (23) The expression on the left hand side allows to identify the locally resolved interparticle force operator ˆFint(r) = − � i δ(r − ri)∇iu(rN), such that Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' (23) attains the form � drˆFint(r) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' This identity holds for each mi- crostate rN and hence it remains trivially valid upon av- eraging over the many-body distribution function, irre- spective of whether this is in- or out-of-equilibrium.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' We can hence conclude the vanishing of the global interpar- ticle force, expressed as the integral over the mean force density Fint(r) = ⟨ˆFint(r)⟩ as � drFint(r, t) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' (24) Equation (24) holds at all times t and it can be viewed as a consequence of Newton’s third law, see the discussion in Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' [44].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Using the adiabatic-superadiabatic force split- ting (11) one can further conclude that the both global contributions need to vanish individually, � drFad(r, t) = 0, (25) � drFsup(r, t) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' (26) The proof can either be based on the fact that Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' (25) is merely Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' (24) for the special case of an equilibrium system, from which then Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' (26) follows from the force splitting (11).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Alternatively and starting from a very fundamental point of view, the global translational in- variance of the excess free energy functional Fexc[ρ] and of the superadiabatic free power functional P exc t [ρ, v], here considered instantaneously at time t, lead directly to Eqs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' (25) and (26), see Refs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' [44, 45] for the detailed account.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' It is interesting to apply the Noether concept to the flow-structure splitting Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' (18) of the superadiabatic force field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' One can see straightforwardly, from the sym- metry upon motion reversal, that both the global struc- tural force and the global flow force need to vanish indi- vidually: � drρ(r)fflow(r) = 0, (27) � drρ(r)fstr(r) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' (28) We prove by contradiction and assume that it is not the case, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' that each integral gives the same global force, but with opposite sign, such that the sum vanishes and Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' (26) remains valid.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Per construction, fflow(r) changes sign in the motion reversed system, but fstr(r) does not.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Hence Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' (26) can only be satisfied in the motion-reversed system provided that both the flow and structural contribution vanish separately.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' We can explicitly test the validity of the sum rules (27) and (28) for the above analytical force ap- proximations (21) and (22).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' The respective integrals are η � dr∇[ρ(r)2∇ · v(r)] = 0 and χ � dr∇{ρ(r)3[∇ · v(r)]2} = 0, which follows from the divergence theorem, as boundary terms vanish.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Hence the simple non-local velocity gradient power functional approximations (16) 8 density current external force field interparticle force field Mermin Evans map (DFT) kinematic fields kinematic map adiabatic-superadiabatic splitting structure-flow splitting superadiabatic force field adiabatic force field flow force structural force adaptive BD super- adiabatic map (PFT) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content='7 0 2 4 6 8 10 ��3 x/� 0 1 2 3 4 5 0 2 4 6 8 10 J�2� x/� 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content='5 1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content='5 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content='5 1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content='5 0 2 4 6 8 10 fint�/� x/� 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content='5 1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content='5 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content='5 1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content='5 0 2 4 6 8 10 fad�/� x/� 0 4 8 12 16 0 2 4 6 8 10 fext�/� x/� 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content='2 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content='4 0 2 4 6 8 10 fsup�/� x/� 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content='2 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content='4 0 2 4 6 8 10 f�ow�/� x/� 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content='1 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content='1 0 2 4 6 8 10 fstr�/� x/� FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Kinematic profiles and force fields for uniaxial compressional flow of the LJ fluid.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Results are shown from machine learning (lines) and from direct adaptive BD simulations (symbols).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Functional relationships are represented by vertical arrows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Shown are the density profile ρ(x), the one-body current J(x) and the external force field fext(x) (top row) as a function of the scaled distance x/σ, where σ is the LJ length scale.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' The density and the current functionally determine both the interparticle force field fint(x) via the kinematic map and the superadiabatic force field fsup(x) via the superadiabatic kinematic map (middle row).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' The internal force field fint(x) splits into superadiabatic and adiabatic force contributions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' The adiabatic force field fad(x) is a density functional via the Mermin-Evans map of density functional theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' The structural and flow force fields are split according to their symmetry upon motion reversal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' The colour code represents different values of the current J0 = 0, 1, 2, 3, 4, 5 (from violet to yellow, see the center panel in the top row);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' the two insets show the predictions from the analytical velocity gradient functionals (21) and (22).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' The system with J0 = 0 is at rest in equilibrium and it doubles as the adiabatic state as its density profile is identical to that of the flowing systems (first panel).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' and (17) have passed the global Noether validation test.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' This is nontrivial, as the proof rests on the specific struc- ture of the integrands being gradients, which for more general analytical forms will not be the case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' This exem- plifies the merits of Noether sum rules for assessing and by extension also constructing theoretical nonequilibrium force approximations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' The Noether concept carries much further.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Reference [44] presents memory sum rules for so-called time di- rect correlation functions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' These are defined via func- tional derivatives of the superadiabatic power functional, in generalization of the superadiabatic force density as generated via the derivative (12) with respect to the cur- rent distribution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' We expect the corresponding identities to be helpful in the study of temporal nonlocality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Fur- ther work was addressed at the variance of global fluctu- ations, which were shown to be constrained by Noether invariance at the second order global level [49].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Noether’s theorem also yields the locally resolved force balance re- lationship in quantum mechanical many-body systems [48].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Very recently, striking two-body force-force and force-gradient correlation functions for the precise and novel characterization of disordered (liquid and gel) sys- tems [50] were revealed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Exploiting Noether’s concept in a stastical mechanical setting is robust against changes of ensemble, Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' [45] presents the transfer of the grand en- semble formalism [44] to canonical systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Considering global rotational invariance leads to (classical) spin-orbit J&pJ&p9 coupling of torque identities [44].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' We return to steady states and demonstrate that the seemingly entirely formal functional relationships do in fact apply to real systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' We present in the following new computational methodology that we use to demon- strate the functional point of view.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' We will also demon- strate that the sum rules (26) and (27) are highly valuable in providing checks for numerical results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' VII.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' MACHINE LEARNING THE KINEMATIC MAP Machine learning proves itself to be an increasingly useful tool in a variety of settings in soft matter, rang- ing from soft matter characterization [82], engineering of colloidal self-assembly [83], to the inverse design of soft materials [84].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Pivotal studies were addressed at colloidal structure detection [85], the identification of combinato- rial rules in mechanical metamaterials [86], the learning of many-body interaction potentials for spherical [87] and for anisotropic particles [88], and the prediction of the dynamics of supercooled liquids from their static proper- ties [89].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' More specifically, in the context of classical density functional theory, an early and pioneering study formu- lated a neural-network approach to liquid crystal order- ing in confinement [90].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Free energy density function- als were obtained for one-dimensional fluids from a con- volutional neural network [91] and an analytical form of an excess free energy functional was generated from an equation learning network [92].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Cats et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' [93] re- cently used machine learning to improve the standard mean-field approximation of the excess Helmholtz free- energy functional for a three-dimensional Lennard-Jones (LJ) system at a supercritical temperature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' These signif- icant reserach efforts were devoted to tailoring analytical forms of model free energy functionals, by training cer- tain key components such as spatial convolution kernels, and much insight into the inner workings of excess free energy functionals was gained [91–93].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' However, here we proceed very differently and more- over do so out-of-equilibrium.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' We use the LJ model and the identical planar geometry as in Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' [93], such that the density profile ρ(x) depends only on a single posi- tion coordinate x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' We consider steady states and retain planar symmetry by considering flow that is directed in the x-direction, such that the current J(x) = J(x)ex, where J(x) is the magnitude of the current and ex is the unit vector in the x-direction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Both the density profile ρ(x) and the velocity field v(x) = J(x)/ρ(x) are indepen- dent of time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' The continuity equation (5) then implies 0 = ∂ρ(x)/∂t = −∂[v(x)ρ(x)]/∂x, from which one ob- tains by spatial integration ρ(x)v(x) = J0 = const.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Here the value of J0 determines the intensity of the flow;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' we recall the illustration shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' We base the machine learning procedure on a convolu- tional neural network, as was done e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' in Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' [91], and following Refs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' [91–93] we use many-body computer sim- ulations to provide training, validation, and test data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' In contrast to these equilibrium studies though, in or- der to address the nonequilibrium problem we need to represent the physical time evolution on the many-body trajectory level.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' We use the recently developed highly performant adaptive BD algorithm [6] and apply it to the three-dimensional LJ fluid.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' As laid out above, in order to address situations of planar symmetry we drive the system only along the ex-direction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' The specific form of the driving force field fext(x)ex is however irrelevant, as the training data only serves to extract the intrinsic kinematic functional relationship.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' In order to cover a sufficiently broad range of flow sit- uations, we represent the external force field as a trun- cated Fourier series fext(x) = �nmax n=0 An cos(2πnx/L), where L is the size of the cubic simulation box with pe- riodic boundary conditions and An are random ampli- tudes with zero mean and uniform distribution inside of a given finite interval.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' We truncate at order nmax = 5 such that the length scale L/(2πnmax) is comparable to the LJ molecular size σ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Ten percent of our simulation runs are carried out in equilibrium, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' for A0 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' We use N = 500 LJ particles inside of a cubic simulation box of size L = 10σ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' The temporal duration of each run is 1000τ, where τ = σ2/D0 is the Brownian time scale.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' After initialization the system is randomized for 1τ at a very high temperature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Then we wait for 100τ to allow the system to reach a steady state and then collect data during the remaining time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' In total we use 1000 such sim- ulation runs;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' these are subdivided for purposes of train- ing (520), validation (280) and testing (200).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' A more detailed account will be given elsewhere.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Our aim is to machine-learn and hence to explicitly demonstrate the kinematic map, ρ(r), v(r) → fint(r) in steady state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' We present the learning algorithm with in- puts ρ(x), v(x) and targets fint(x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' The data for these three fields are from building steady state averages via the adaptive BD over the corresponding one-body oper- ators.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' We recall the microscopic definition of the inter- particle one-body force density Fint(r) via Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' (7) and we refer the reader to Appendix A of Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' [51] for a de- scription of several methods to sample the current in BD and hence obtain the overdamped velocity profile v(r).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Finally, we use the standard counting method for the density profile ρ(r), although more efficient “force sampling” methods [94–97] exist.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' At this stage we nei- ther impose adiabatic-superadiabatic splitting (11), nor structure-flow splitting (18), nor do we use any analyti- cal model form of the functional relationship.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' We rather work on the level of the bare one-body simulation data, generated in the above described randomized uniaxial flow situations of the desired planar symmetry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' We refer to the result of this procedure as the machine- learned internal force field f ⋆ int(x, [ρ, v]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' This represents a “surrogate model” in the sense of the terminology of the machine learning community.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' By construction this data structure depends functionally on the density profile and 10 on the velocity profile.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Importantly the external force field fext(x), as given by the above described randomized Fourier series, has not been used in the training, which was rather based solely on the intrinsic force field and its kinematic dependence on the density profile and the velocity field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' In order to test the validity of the functional relation- ship and to address the question whether f ⋆ int(x, [ρ, v]) indeed represents the true fint(r, t, [ρ, v]) of power func- tional theory restricted to the present planar and steady situation, we consider a toy flow situation as an appli- cation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' We choose the density profile to consist of a single (co)sinusoidal deviation from the bulk, ρ(x) = [0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content='5 + 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content='2 cos(2πx/L)]σ−3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' In order for the system to be in steady state, the velocity then necessarily needs to satisfy v(x) = J0/ρ(x), where the strength of the current J0 = const is a free parameter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' We proceed in two ways.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' First, we check for self- consistency.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Therefore we solve the force density balance relationship (6) for the external force field, which yields the explicit result: fext(x) = kBTρ′(x) + γv(x) − f ⋆ int(x, [ρ, v]), (29) where ρ′(x) = ∂ρ(x)/∂x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' As is explicit in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' (29), in- putting the toy state ρ(x), v(x) on the right hand side yields a concrete machine learning prediction for the ex- ternal force field on the left hand side.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' We then input this result for fext(x) as the driving force field in a single adaptive BD simulation run and expect this procedure to reproduce the density and velocity profile of the toy state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' The reproductive success will however materialize only provided that i) the functional kinematic dependence ac- tually exists and that ii) it is accurately represented by the neural network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' The results, shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' 2, demonstrate the accom- plishment of the reconstruction of the toy state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' This establishes that the machine learned functional provides a numerically very highly accurate representation of the true internal force functional.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' We take this validation via the machine learning to be a practical, data-science-level verification of the existence of the power functional kine- matic map.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' We recall the original formal construction [42, 53] and its subsequent confirmation via custom flow [51, 52].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Turning to the physics of the compressional flow, we use the adiabatic-superadiabatic decomposition (11) to- gether with the flow-structure splitting (18) to analyze both the machine-learned functional f ⋆ int(x, [ρ, v]) as well as the direct simulation results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' As anticipated, both flow and structural force fields have nontrivial spatial varia- tion, see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' The flow force primarily contains viscous effects that stem from the dissipation that the compres- sional and extensional regions of the flow pattern gener- ate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' The structural force field becomes more strongly in- homogeneous and also larger in magnitude upon increas- ing the amplitude of the flow.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' This trend is necessary to provide a balance for the increasingly asymmetric and growing external force field, which in turn is required to keep the density profile unchanged upon increasing the throughput through the prescribed density wave.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' The power functional predictions (21) and (22) capture these effects reasonably well given the simplicity of the ana- lytical expressions, see the insets in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' We find our numerical results to satisfy the Noether sum rules (26) and (27) to very good accuracy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' It remains to point out the stark contrast with the standard DDFT (1), which gives a trivial null result in the present setup by construction: the density profile re- mains unchanged upon increasing flow, and so does the adiabatic force field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' So the DDFT provides no mecha- nism to account for the nonequilibrium physics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' VIII.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' CONCLUSIONS For the purpose of assessing the status of the DDFT equation of motion (1) we have first described two exact limits that this approximation reproduces: the dynamics of the noninteracting diffusive ideal gas [see Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' (4)] and the spatially inhomogeneous static equilibrium limit [see Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' (2)].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' On general grounds one expects the DDFT to perform well when the situation under consideration is close to one of these limits.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' In particular near the static case this is nontrivial, as the system might be dense and spatially highly structured, as evident by a strongly inho- mogeneous density profile.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Provided that the dynamics are driven weakly enough via a time-dependent external potential then the DDFT can be a highly useful device, which enables one to describe the temporal evolution as a chain of equilibrium states, labelled by time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' In general the contributions beyond the equilibrium physics will however be relevant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' On the level of the formally exact one-body equation of motion (14), the su- peradiabatic force field fsup(r, t) will then contribute and potentially very significantly so.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Together with the adi- abatic force field, which follows from the equilibrium ex- cess free energy functional via −∇δFexc[ρ]/δρ(r, t), their sum constitutes the full interparticle forces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' These are coarse-grained, in a microscopically sharp way, to the one-body level of dynamical correlation functions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' We have argued i) that power functional theory is a con- crete formal structure that allows to obtain fsup(r, t) from a generating functional and ii) that simple approx- imate forms already capture much relevant nonequilib- rium physics and they do so in a transparent and sys- tematic way.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' We have described and exemplified for uniaxial steady compressional flow of the three-dimensional Lennard- Jones fluid the kinematic functional map that governs the exact nonequilibrium dynamics on the one-body level of dynamic correlation functions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' As this description is based on a single position coordinate and a single time variable, it is of both conceptual and practical simplicity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' As described by power functional theory the superadia- batic interparticle force field functionally depends on the density and the velocity field, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' fsup(r, t, [ρ, v]), for over- 11 damped Brownian motion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' The functional dependence is causal, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' on the values of the density profile and velocity field at previous times, in general up to an initial state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' The superadiabatic force field carries this kinematic de- pendence, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' on the history of ρ(r, t) and v(r, t), but crucially it is independent of the external force field that drives the system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' We have explicitly demonstrated the functional map ρ(r, t), v(r, t) → fint(r, t) by establishing this functional relationship via machine learning the intrinsic force field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Using the force balance then gives direct access to the form of the required external force field via Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' (29).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' The machine-learned model of the functional map hence en- ables “instant custom flow” at negligible computational cost at the time of use.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' We recall that the custom flow method [51, 52] is based on the kinematic functional map, such that from knowing the kinematic one-body fields, the external force field that is necessary to generate the given time evolution follows straightforwardly from the exact force balance (6).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' An analytical approach to one-body functional maps leads to the simple structure of velocity gradient forms for the viscous and structural superadiabatic forces, as exemplified in Eqs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' (16) and (17) for compressional flow, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' for velocity fields with nonvanishing divergence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' As we have shown, the resulting predictions for the flow force (21) and for the structural force field (22) represent a reasonable description of the simulation data and its representation via the machine-learned functional.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' We attribute the remaining differences to higher-order terms [59] which we have not addressed here for simplicity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' As we have shown, our results from direct simulation, from machine learning, and from the analytical approxima- tions, satisfy exact global Noether sum rules.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' We have restricted our discussion to a single and rela- tively easily accessible type of nonequilibrium dynamics, that of stationary uniaxial compressional flow that rep- resents a model steady (batch) sedimentation situation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' The power functional approach allows to go much fur- ther, including the treatment of viscoelasticity [56], as arising from superadiabatic memory, deconfinement un- der shear [57], the dynamic decay of the van Hove pair correlation function as governed by drag, viscous and structural forces [68, 69], and the complex forms of both flow and structural forces that arise under spatially com- plex forms of driving [59].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Time-dependent uniaxial flow is relevant in a variety of situations, including colloidal stratification [98, 99] and sedimentation [100].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Although power functional theory operates on the one- body level of dynamical correlation functions, two-body correlation functions are accessible both formally via the nonequilibrium Ornstein-Zernike route [42] and explic- itly by the dynamical test particle limit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' The latter is the dynamic generalization of Percus’ static test parti- cle limit [61], which identifies two-point correlation func- tions, such as g(r) as also recently shown to be intimat- edly related to thermal Noether invariance at second or- der [50], with one-body density profiles in an external potential.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' This is set equal to the interparticle pair po- tential.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' The dynamical test-particle limit goes further in that it describes the test particle via its own dynami- cal degrees of freedom, which are coupled to those of all other particles in the system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' The concept was originally formulated as an approximation within DDFT [62, 63] and formally exactly within power functional theory [66].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Two-body superadiabatic effects were shown via simula- tion work to be significant [67–69] and they arise natu- rally in an exact formulation of the test particle dynamics [66].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' The test particle limit allowed for a rationalization of the dynamical pair structure as e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' experimentally observed in two-dimensional colloids [9].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Recently an ap- proach to DDFT based on the two-body level was formu- lated [101].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' In event-driven BD simulations superadiabatic forces were shown to consist of drag, viscous, and structural contributions [68, 69];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' see Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' [42] for an extended dis- cussion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' The physics of active particles [70–74] is very significantly governed by a vigorous interplay between su- peradiabatic and adiabatic forces, both of which are very strong, as the tendency of these systems to self-compress leads naturally to very high local densities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Furthermore, relevant and interesting microscopic models that go beyond the simple fluid paradigm of a pair potential, such as the monatomic water model by Molinero and Moore [102, 103] and the three-body gel by Saw et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' [104, 105], are accessible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Despite the com- plexity of both its defining Hamiltonian and the intricate transient network structure, the inhomogeneous viscous response of the three-body gel was recently demonstrated [60] to be surprisingly well captured by a simple power functional flow approximation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' We finally recall that superadiabatic effects transcend overdamped dynamics, and are relevant both in quantum dynamics [42, 80, 81] and in classical molecular dynamics [42, 78, 79].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' While we have restricted ourselves to discussing the point of view of functional relationships,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' it would be in- teresting to explore in future work possible cross connec- tions to other theoretical approaches,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' such as Onsager’s variational principle for soft matter [106–109],' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' stochastic thermodynamics [110],' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' large deviation theory [111,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' 112],' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' mode-coupling theory [113,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' 114],' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' generalized hydrody- namics [115],' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' as well as to the physics of nonequilibrium phase transitions [116] and of Brownian solitons [117].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' ACKNOWLEDGMENTS This work is supported by the German Research Foun- dation (DFG) via Project No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' 436306241.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' 12 [1] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Nagel, Experimental soft-matter science, Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Mod.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' 89, 025002 (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' [2] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Evans, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Frenkel, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Dijkstra, From simple liquids to colloids and soft matter, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Today 72, 38 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' [3] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Hansen and I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' McDonald, Theory of Simple Liquids, 4th ed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' (Academic Press, London, 2013).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' [4] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Evans, The nature of the liquid-vapour interface and other topics in the statistical mechanics of non-uniform, classical fluids, Adv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' 28, 143 (1979).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' [5] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Hohenberg and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Halperin, Theory of dynamic critical phenomena, Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Mod.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' 49, 435 (1977).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' [6] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Samm¨uller and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Schmidt, Adaptive Brownian dy- namics, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Chem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' 155, 134107 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' [7] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Royall, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Dzubiella, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Schmidt, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' van Blaaderen, Non-equilibrium sedimentation of colloids on the particle scale, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' 98, 188304 (2007).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' [8] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Bier, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' van Roij, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Dijkstra, and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' van der Schoot, Self-diffusion of particles in complex fluids: temporary cages and permanent barriers, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' 101, 215901 (2008).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' [9] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Stopper, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Thorneywork, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Dullens, and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Roth, Bulk dynamics of Brownian hard disks: Dy- namical density functional theory versus experiments on two-dimensional colloidal hard spheres, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Chem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' 148, 104501 (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' [10] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Evans, Density functionals in the theory nonuniform fluids, in Fundamentals of Inhomogeneous Fluids, edited by D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Henderson (Dekker, New York, 1992).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' [11] For an overview of new developments in classical den- sity functional theory, see: R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Evans, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Oettel, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Roth, and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Kahl, New developments in classical den- sity functional theory, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' : Condens.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Matter 28, 240401 (2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' [12] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Evans, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Stewart, and N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Wilding, A unified description of hydrophilic and superhydrophobic sur- faces in terms of the wetting and drying transitions of liquids, Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Nat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Acad.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' 116, 23901 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' [13] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Coe, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Evans, and N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Wilding, Density deple- tion and enhanced fluctuations in water near hydropho- bic solutes: identifying the underlying physics, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' 128, 045501 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' [14] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Coe, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Evans, and N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Wilding, Understanding the physics of hydrophobic solvation, arXiv:2212.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content='04967 [15] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Martin-Jimenez, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Chac´on, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Tarazona, and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Garcia, Atomically resolved three-dimensional struc- tures of electrolyte aqueous solutions near a solid sur- face, Nat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' 7, 12164 (2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' [16] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Hern´andez-Mu˜noz, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Chac´on, and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Tarazona, Den- sity functional analysis of atomic force microscopy in a dense fluid, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Chem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' 151, 034701 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' [17] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Cats, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Evans, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' H¨artel, and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' van Roij, Primi- tive model electrolytes in the near and far field: Decay lengths from DFT and simulations, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Chem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' 154, 124504 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' [18] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Rosenfeld, Free-energy model for the inhomogeneous hard-sphere fluid mixture and density-functional theory of freezing, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' 63, 980 (1989).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content='. [19] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Roth, Fundamental measure theory for hard-sphere mixtures: a review, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' : Condens.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Matter 22, 063102 (2010).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' [20] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Roth, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Evans, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Lang, and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Kahl, Fundamen- tal measure theory for hard-sphere mixtures revisited: the White Bear version, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' : Condens.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Matter 14, 12063 (2002).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' [21] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Hansen-Goos and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Roth, Density functional the- ory for hard-sphere mixtures: the White Bear version mark II, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content='Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' : Condens.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Matter 18, 8413 (2006).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' [22] U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Marconi and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Tarazona, Dynamic density functional theory of fluids, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Chem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' 110, 8032 (1999).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' [23] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Archer and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Evans, Dynamical density func- tional theory and its application to spinodal decompo- sition, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Chem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' 121, 4246 (2004).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' [24] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content='-L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Chan and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Finken, Time-dependent density functional theory of classical fluids, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' 94, 183001 (2005).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' [25] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Espa˜nol and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' L¨owen, Derivation of dynamical density functional theory using the projection operator technique, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Chem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' 131, 244101 (2009).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' [26] U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Marconi and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Melchionna, Phase-space ap- proach to dynamical density functional theory, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Chem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' 126, 184109 (2007).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' [27] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Dzubiella and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Likos, Mean-field dynamical den- sity functional theory, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' : Condens.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Matter 15, L147 (2003).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' [28] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Lutsko and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Oettel, Reconsidering power func- tional theory, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Chem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' 155, 094901 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' [29] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Szamel, An alternative, dynamic density functional- like theory for time-dependent density fluctuations in glass-forming fluids, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Chem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' 156, 191102 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' [30] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Goddard, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Mills-Williams, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Ottobre, and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Pavliotis, Well-posedness and equilibrium be- haviour of overdamped dynamic density functional the- ory, arXiv:2002.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content='11663 [31] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Archer, Dynamical density functional theory for dense atomic liquids, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' : Condens.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Matter 18, 5617 (2006).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' [32] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Archer, Dynamical density functional theory for molecular and colloidal fluids: A microscopic approach to fluid mechanics, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Chem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' 130, 014509 (2009).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' [33] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Stierle and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Gross, Hydrodynamic density func- tional theory for mixtures from a variational principle and its application to droplet coalescence, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Chem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' 155, 134101 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' [34] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Goddard, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Nold, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Savva, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Pavliotis, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Kalliadasis, General dynamical density func- tional theory for classical fluids, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' 109, 120603 (2012).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' [35] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Rex and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' L¨owen, Dynamical density functional theory for colloidal dispersions including hydrodynamic interactions, Eur.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' E 28, 139 (2009).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' [36] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Dzubiella, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Moncho-Jord´a, Controlling the mi- crostructure and phase behavior of confined soft colloids by active interaction switching, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' 125, 078001 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' [37] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Bley, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Dzubiella, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Moncho-Jord´a, Active bi- nary switching of soft colloids: stability and structural properties, Soft Matter 17, 7682 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' [38] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Goddard, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Gooding, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Pavliotis, and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Short, Noisy bounded confidence models for opinion dy- namics: the effect of boundary conditions on phase tran- 13 sitions, IMA J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' 87, 80 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' [39] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' te Vrugt, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Bickmann, and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Wittkowski, Effects of social distancing and isolation on epidemic spreading modeled via dynamical density functional theory, Nat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' 11, 5576 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' [40] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' te Vrugt, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' L¨owen, and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Wittkowski, Classical dynamical density functional theory: from fundamen- tals to applications, Adv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' 69, 121 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' [41] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' te Vrugt and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Wittkowski, Perspective: New direc- tions in dynamical density functional theory, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' : Condens.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Matter 35, 041501 (2023).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' [42] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Schmidt, Power functional theory for many-body dy- namics, Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Mod.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' 94, 015007 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' [43] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Schilling, Coarse-grained modelling out of equilib- rium, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Rep.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' 972, 1 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' [44] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Hermann and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Schmidt, Noether’s theorem in sta- tistical mechanics, Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' 4, 176 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' [45] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Hermann and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Schmidt, Why Noether’s theorem applies to statistical mechanics, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' : Condens.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Matter 34, 213001 (2022) (Topical Review).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' [46] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Tschopp, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Samm¨uller, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Hermann, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Schmidt, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Brader, Force density functional theory in- and out-of-equilibrium, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' E 106, 014115 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' [47] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Samm¨uller, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Hermann, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Schmidt, Should classical density functional theory be based on forces?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' A comparative study, arxiv:2212.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content='01780 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' [48] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Hermann and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Schmidt, Force balance in thermal quantum many-body systems from Noether’s theorem, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' A: Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Theor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' 55, 464003 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' (Claritons and the Asymptotics of ideas: the Physics of Michael Berry).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' [49] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Hermann and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Schmidt, Variance of fluctuations from Noether invariance, Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' 5, 276 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' [50] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Samm¨uller, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Hermann, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' de las Heras, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Schmidt, What is liquid, from Noether’s perspective?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' (to be published).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' [51] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' de las Heras, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Renner, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Schmidt, Custom flow in overdamped Brownian dynamics, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' E 99, 023306 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' [52] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Renner, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Schmidt, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' de las Heras, Custom flow in molecular dynamics, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Res.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' 3, 013281 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' [53] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Schmidt and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Brader, Power functional theory for Brownian dynamics, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Chem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' 138, 214101 (2013).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' [54] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Fortini, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' de las Heras, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Brader, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Schmidt, Superadiabatic forces in Brownian many- body dynamics, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' 113, 167801 (2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' [55] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Stuhlm¨uller, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Eckert, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' de las Heras, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Schmidt, Structural nonequilibrium forces in driven colloidal systems, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' 121, 098002 (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' [56] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Treffenst¨adt and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Schmidt, Memory-induced motion reversal in Brownian liquids, Soft Matter 16, 1518 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' [57] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Jahreis and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Schmidt, Shear-induced deconfine- ment of hard disks, Col.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Pol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' 298, 895 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' [58] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' de las Heras and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Schmidt, Velocity gradient power functional for Brownian dynamics, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' 120, 028001 (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' [59] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' de las Heras and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Schmidt, Flow and structure in nonequilibrium Brownian many-body systems, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' 125, 018001 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' [60] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Samm¨uller, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' de las Heras, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Schmidt, Inho- mogeneous steady shear dynamics of a three-body col- loidal gel former, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Chem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' (to appear in the Spe- cial Topic on Colloidal Gels);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' arXiv:2210.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content='07679.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' [61] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Percus, Approximation methods in classical sta- tistical mechanics, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' 8, 462 (1962).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' [62] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Archer, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Hopkins, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Schmidt, Dynamics in inhomogeneous liquids and glasses via the test particle limit, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' E 75, 040501(R) (2007).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' [63] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Hopkins, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Fortini, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Archer, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Schmidt, The van Hove distribution function for Brownian hard spheres: Dynamical test particle theory and computer simulations for bulk dynamics, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Chem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' 133, 224505 (2010).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' [64] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Stopper, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Roth and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Hansen-Goos, Communi- cation: Dynamical density functional theory for dense suspensions of colloidal hard spheres, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Chem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' 143, 181105 (2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' [65] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Stopper, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Marolt, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Roth, and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Hansen-Goos, Modeling diffusion in colloidal suspensions by dynam- ical density functional theory using fundamental mea- sure theory of hard spheres, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' E 92, 022151 (2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' [66] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' M Brader and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Schmidt, Power functional theory for the dynamic test particle limit, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' : Condens.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Matter 27, 194106 (2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' [67] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Schindler and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Schmidt, Dynamic pair correlations and superadiabatic forces in a dense Brownian liquid, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Chem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' 145, 064506 (2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' [68] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Treffenst¨adt and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Schmidt, Universality in driven and equilibrium hard sphere liquid dynamics, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' 126, 058002 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' [69] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Treffenst¨adt, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Schindler, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Schmidt, Dynamic decay and superadiabatic forces in the van Hove dy- namics of bulk hard sphere fluids, SciPost Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' 12, 133 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' [70] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Hermann, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' de las Heras, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Schmidt, Non- negative interfacial tension in phase-separated active Brownian particles, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' 123, 268002 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' [71] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Hermann, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Krinninger, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' de las Heras, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Schmidt, Phase coexistence of active Brownian parti- cles, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' E 100, 052604 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' [72] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Krinninger, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Schmidt, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Brader, Nonequi- librium phase behaviour from minimization of free power dissipation, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' 117, 208003 (2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' [73] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Krinninger and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Schmidt, Power functional theory for active Brownian particles: general formulation and power sum rules, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Chem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' 150, 074112 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' [74] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Hermann, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' de las Heras, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Schmidt, Phase separation of active Brownian particles in two dimen- sions: Anything for a quiet life, Mol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' e1902585 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' [75] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' de las Heras, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Schmidt, Full canonical information from grand potential density functional theory, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' 113, 238304 (2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' [76] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' de las Heras, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Brader, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Fortini, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Schmidt, Particle conservation in dynamical density functional theory, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' : Condens.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Matter 28, 244024 (2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' [77] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Schindler, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Wittmann, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Brader, Particle- conserving dynamics on the single-particle level, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' E 99, 012605 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' [78] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Schmidt, Power functional theory for Newtonian many-body dynamics, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Chem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' 148, 044502 14 (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' [79] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Renner, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Schmidt, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' de las Heras, Shear and bulk acceleration viscosities in simple fluids, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' 128, 094502 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' [80] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Schmidt, Quantum power functional theory for many-body dynamics, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Chem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' 143, 174108 (2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' [81] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Br¨utting, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Trepl, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' de las Heras, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Schmidt, Superadiabatic forces via the acceleration gradient in quantum many-body dynamics, Molecules 24, 3660 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' [82] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Clegg, Characterising soft matter using machine learning, Soft Matter, 17, 3991 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' [83] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Dijkstra and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Luijten, From predictive modelling to machine learning and reverse engineering of colloidal self-assembly, Nature Materials 20, 762 (2021) [84] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Coli, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Boattini, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Filion, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Dijkstra, Inverse design of soft materials via a deep learning-based evo- lutionary strategy, Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Adv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' 8, eabj6731 (2022) [85] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Boattini, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Dijkstra, and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Filion, Unsupervised learning for local structure detection in colloidal sys- tems, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Chem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' 151, 154901 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' [86] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' van Mastrigt, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Dijkstra, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' van Hecke, and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Coulais, Machine learning of implicit combinato- rial rules in mechanical metamaterials, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' 129, 198003 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' [87] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Campos-Villalobos, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Boattini, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Filion, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Dijkstra, Machine learning many-body potentials for colloidal systems, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Chem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' 155, 174902 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' [88] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Campos-Villalobos, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Giunta, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Mar´ın-Aguilar, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Dijkstra, Machine-learning effective many-body potentials for anisotropic particles using orientation- dependent symmetry functions, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Chem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' 157, 024902 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' [89] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Ciarella, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Chiappini, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Boattini, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Dijkstra, and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Janssen, Dynamics of supercooled liquids from static averaged quantities using machine learning, arXiv:2212.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content='09338 [90] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Santos-Silva, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Teixeira, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Anquetil-Deck, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Cleaver, Neural-network approach to modeling liq- uid crystals in complex confinement, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' E 89, 053316 (2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' [91] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content='-C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Lin and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Oettel, A classical density functional from machine learning and a convolutional neural net- work, SciPost Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' 6, 025 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' [92] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content='-C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Lin, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Martius, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Oettel, Analytical clas- sical density functionals from an equation learning net- work, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Chem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' 152, 021102 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' [93] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Cats, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Kuipers, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' de Wind, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' van Damme, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Coli, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Dijkstra, and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' van Roij, Machine-learning free-energy functionals using density profiles from sim- ulations, APL Mater.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' 9, 031109 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' [94] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Rotenberg, Use the force!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Reduced variance estima- tors for densities, radial distribution functions, and lo- cal mobilities in molecular simulations, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Chem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' 153, 150902 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' [95] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Borgis, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=', R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Assaraf, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Rotenberg, and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Vuilleu- mier, Computation of pair distribution functions and three-dimensional densities with a reduced variance principle, Mol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' 111, 3486 (2013).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' [96] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' de las Heras and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Schmidt, Better than counting: Density profiles from force sampling, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' 120, 218001 (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' [97] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Renner, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Schmidt, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' de las Heras, Bet- ter than counting: Orientational distribution functions from torque sampling, arXiv:2212.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content='11576 [98] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' He, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Martin-Fabiani, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Roth, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' T´oth, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Archer, Dynamical density functional theory for the drying and stratification of binary colloidal dispersions, Langmuir 37, 1399 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' [99] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Kundu and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Howard, Dynamic density func- tional theory for drying colloidal suspensions: Compar- ison of hard-sphere free-energy functionals, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Chem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' 157, 184904 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' [100] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Sui, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Doiab and Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Ding, Dynamics of the float- ing nematic phase formation in platelet suspension with thickness polydispersity by sedimentation, Soft Matter 14, 8956 (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' [101] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Tschopp and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Brader, First-principles su- peradiabatic theory for the dynamics of inhomogeneous fluids, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Chem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' 157, 234108 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' [102] V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Molinero and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Moore, Water modeled as an in- termediate element between carbon and silicon, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Chem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' B 113, 4008–4016 (2009).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' [103] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Coe, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Evans, and N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Wilding, The coexis- tence curve and surface tension of a monatomic water model, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Chem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' 156, 154505 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' [104] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Saw, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Ellegaard, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Kob, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Sastry, Struc- tural relaxation of a gel modeled by three body interac- tions, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' 103, 248305 (2009).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' [105] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Saw, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Ellegaard, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Kob, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Sastry, Com- puter simulation study of the phase behavior and struc- tural relaxation in a gel-former modeled by three-body interactions, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Chem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' 134, 164506 (2011).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' [106] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Doi, Onsager’s variational principle in soft matter, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' : Condens.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Matter 23, 284118 (2011).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' [107] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Doi, Onsager principle as a tool for approximation, Chinese Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' B 24, 020505 (2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' [108] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Wang, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Qian, and X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Xu, Onsager’s variational principle in active soft matter, Soft Matter 17, 3634 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' [109] X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Wang, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Dobnikar, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Frenkel, Numerical test of the Onsager relations in a driven system, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' 129, 238002 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' [110] U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Seifert, Stochastic thermodynamics, fluctuation the- orems and molecular machines, Rep.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Prog.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' 75, 126001 (2012).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' [111] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Jack and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Sollich, Large Deviations and Ensem- bles of Trajectories in Stochastic Models, Prog.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Theo.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Suppl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' 184, 304 (2010).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' [112] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Jack and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Sollich, Effective interactions and large deviations in stochastic processes, Europ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Spec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Top.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' 224, 2351 (2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' [113] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Janssen, Mode-coupling theory of the glass transition: a primer, Front.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' 6, 97 (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' [114] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Janssen and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Reichman, Microscopic dy- namics of supercooled liquids from first principles, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Re.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' 115, 205701 (2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' [115] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Mazzuca, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Grava, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Kriecherbauer, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content='-R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' McLaughlin, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Mendl, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Spohn, Equilibrium space- time correlations of the toda lattice on the hydrody- namic scale, arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content='02431.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' [116] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Lips, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Ryabov, and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Maass, Brownian asym- metric simple exclusion process, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' 121, 160601 (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' [117] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Antonov, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Ryabov, and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Maass, Solitons in overdamped Brownian dynamics, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} +page_content=' 129, 15 080601 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/99FLT4oBgHgl3EQfui_z/content/2301.12156v1.pdf'} diff --git a/9tFAT4oBgHgl3EQfpx3L/content/tmp_files/2301.08642v1.pdf.txt b/9tFAT4oBgHgl3EQfpx3L/content/tmp_files/2301.08642v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..692735858130dada471c0cf70571fdcb9493888c --- /dev/null +++ b/9tFAT4oBgHgl3EQfpx3L/content/tmp_files/2301.08642v1.pdf.txt @@ -0,0 +1,2672 @@ +Optimal multiple FSO transceiver configuration for using on High-altitude +platforms +Dieu Linh Truong ∗1 and The Ngoc Dang †2 +1School of Information and Communication Technology, Hanoi University of Science and Technology, +Vietnam +2Department of Wireless Communications, Posts and Telecommunication Institute of Technology, +Vietnam +January 23, 2023 +Abstract +Free-space optical (FSO) communication requires light of +sight (LoS) between the transmitter and the receiver. +For +long-distance communication, many research projects have +been conducted towards using a network composed of high- +altitude platforms (HAPs) flying at an elevation of 20 km to +carry intermediate FSO transceivers that forward data be- +tween ground stations. +The clear environment at high el- +evations prevents terrestrial obstacles from cutting the LoS +between the transceivers. +An FSO transceiver on a HAP +can communicate with ground stations within a small area +owing to its limited beam size. We suggest using multiple +FSO transceivers on a HAP to extend its ground coverage. +However, the use of too many FSO transceivers may quickly +exhaust the onboard energy of the HAP. As a result, HAP +must be lowered to recharge frequently. +In this study, we first propose a configuration of multiple +FSO transceivers to widen the ground coverage of a HAP. +We then propose a set of closed-form expressions to calculate +the extended coverage. Finally, to implement a HAP network +using multiple FSO transceivers, we seek the optimal config- +uration of multiple FSO transceivers that minimizes the to- +tal cost of the HAP network, including amortization, energy, +and maintenance costs. The simulation results show that the +proposed multiple FSO transceiver configuration clearly in- +creases the ground coverage of a HAP and significantly re- +duces the cost of the HAP network. +Keywords— Free Space Optics, High-altitude platform, Beam +size optimization, HAP based FSO network +1 +Introduction +Free-space optical (FSO) communication uses light propagation +in free space to transmit data. In recent years, this technology +has emerged as a promising choice for short-distance high-speed +communication between endpoints with a clear light of sight (LoS). +∗linhtd@soict.hust.edu.vn +†ngocdt@ptit.edu.vn +Commercial FSO transmitters available in the market at prices of +thousands of dollars can operate at 1.25 − 10 Gbps over 1 − 2 +kilometers, for example, the SONABeam series of fSona [1]. +To reach a long distance, a multi-hop FSO system can be used, +where data are transmitted through intermediate FSO transceivers +[2], [3]. To avoid obstacles that cut the LoS between terrestrial +FSO transceivers, researchers from academia and industry have +proposed placing intermediate FSO transceivers of the multi-hop +FSO system on high-altitude platforms (HAPs). +High-altitude +platforms are flying objects that operate at altitudes of 17–24 km +in the stratosphere. Several HAP models have been proposed and +piloted previously. Some projects continue until recently, such as +the Loon Project of Google [4], the UAV project of Facebook [5], +and the Stratobus project of Thales Alenia Space [6]. +A multi-hop FSO system using a HAP network is described +in [7] and illustrated in Figure 1. According to this model, FSO +transceivers on the ground (so-called ground FSO nodes) are re- +grouped into clusters to become the serving zones of HAPs. +A +HAP has an FSO transceiver looking down to exchange data +with the ground FSO nodes of the cluster under it. +This FSO +transceiver is called serving FSO transceiver. A HAP also carries +several FSO transceivers pointing towards other HAPs for inter- +HAP communication. These FSO transceivers are known as inter- +HAP FSO transceivers. +Although the ITU recommends a HAP footprint width of ap- +proximately 500 km in radius, experimental projects show much +smaller coverage areas [8]. +Nevertheless, a network of multiple +HAPs can cover a country entirely. For example, a constellation +of 16 HAPs with multiple radio frequency antennas was considered +to cover Japan [9]. +An end-to-end data-switching scheme for a multi-hop FSO sys- +tem using HAP was proposed in [7]. +Since the communication +between a HAP and the ground is point-to-multipoint, the serv- +ing FSO transceiver on the HAP controls multiple accesses from +ground FSO nodes under it using the WDM technique. +Each +ground node is assigned a separate wavelength for up and down +communication. An IP router on the HAP aggregates IP packets +heading toward a common cluster within a single flow. The flow +will be carried by one or more continuous lightpaths between the +source and destination HAPs. The number of lightpaths is deter- +mined according to the size of the flow and the transport capacity +of a wavelength. A WDM switch is installed on each HAP to route +1 +arXiv:2301.08642v1 [cs.NI] 20 Jan 2023 + +these lightpaths over the HAP network on a wavelength-switched +basis. In Figure 1, the blue path HAP1-HAP2-HAP4-HAP5 and +the red path HAP1-HAP2-HAP3 are two flows. +1 +2 +2 +1 +1 +1 +1 +2 +3 +3 +3 +3 +3 +WDM switch +IP router +IP router +WDM switch +1 +2 +2 +p-HAP-2 +1 +3 +3 +p-HAP-1 +toward HAP-2 of cluster-2 +toward HAP-1 of cluster-1 + HAP2 +Inter-HAP FSO transceiver +Ground FSO node +Serving FSO +3 +1 +2 +A cluster +A cluster +transceiver + HAP1 + HAP3 + HAP4 + HAP5 +Serving zone of HAP 1 +Serving zone of HAP 2 +inter-HAP link +inter-HAP link +Figure 1: Multi-hop FSO communication system using HAP. +In terrestrial FSO communications, the light beams are usually +set to be very narrow for low transmission energies. However, for +HAP and ground communication, the serving FSO transceiver of +the HAP must project a sufficiently wide laser beam for covering +distributed ground FSO nodes. +A single serving FSO transceiver has a relatively small foot- +print owing to the low capacity of the current laser source, and +the limited sensibility and aperture sizes of ground receivers. The +calculation in Section 2.1 shows that with a laser source of 1 Watt, +required received power at receivers of -41.1dBm, and receiver +aperture radius of 2 m, a single serving FSO transceiver at an +elevation of 20 km can cover a ground area of 6.691 km radius +only (see Table 3). +To extend the coverage of a HAP, we propose using multiple +serving FSO transceivers arranged in a bundle, as shown in Fig- +ure 2. Each serving FSO transceiver points in a slightly different +direction to cover a particular ground area that overlaps other ar- +eas to create a continuous coverage region. Given a ground region +to be served, using HAPs with multiple serving FSO transceivers +reduces the number of required HAPs compared to using HAPs +with a single serving FSO transceiver. However, the expenditure +for serving FSO transceivers increases. Therefore, the number of +serving FSO transceivers to be used on a HAP should be carefully +considered. +Regarding the communication between ground nodes and a +HAP, the multiple serving FSO transceiver model still uses the +WDM technique, where each ground node is assigned a unique +wavelength within its cluster to communicate with its HAP. The +number of ground nodes to be served by a HAP is restricted by +the number of wavelengths offered by the WDM technique. +In this study, we focus on identifying the optimal configuration +of multiple serving FSO transceivers to achieve a minimal-cost +HAP network for serving a set of ground FSO nodes. The optimal +configuration should define the number of serving FSO transceivers +to be set up on a HAP and the beam width for each transceiver. +The cost of the HAP network includes the investment, energy, and +maintenance costs. +Compared with the previous study in reference [7], the current +research differs in two aspects. +First, the current research pro- +Figure 2: A HAP with multiple serving FSO transceivers and +its footprint. +poses the use of multiple serving FSO transceivers on each HAP +instead of a single serving FSO transceiver, as in [7]. Second, the +current research identifies the optimal beam widths for serving +FSO transceivers, whereas in [7], the beam widths are predefined. +The current study also differs from that in [10], where beam size +was optimized for an inter-HAP link, which is a point-to-point link. +The remainder of this paper is organized as follows. First, we +analyze the single and multiple serving FSO transceivers configu- +rations in Section 2 to determine their ground coverage sizes and +constraints on transmitter beams. In Section 3, we state the prob- +lem of designing a minimal-cost HAP-based FSO network, which is +the target of the optimization of multiple serving FSO transceiver +configuration. Then, in Section 4, we define a HAP energy con- +sumption formula and show that solar energy is necessary for keep- +ing the HAP working in space for a long period. We also present +a constraint that a HAP must respect to relying uniquely on so- +lar energy. In Section 5, we present the algorithms for identifying +the optimal multiple serving FSO transceiver configuration and +its footprint radius. Section 6 presents the process designing the +minimal cost HAP-based FSO network using the optimal multi- +ple serving FSO transceiver configuration. Section 7 presents the +simulation results. Finally, Section 8 concludes the paper. +2 +Serving FSO transceiver configu- +rations +2.1 +Single serving FSO transceiver configu- +ration +In this section, the allowable beam width and ground coverage of +a single serving FSO transceiver are determined. The beam size +is restricted to ensure that the received power at a ground point +within the beam footprint is detectable by receivers. +2 + +Figure 3: Surface of the part of sphere blocked by solid angle +α is calculated as the sum of the surface of all ribbons around +the sphere when the solid angle varies from α to 0. +Assume that the transmitter source radiates within a solid angle +α and that the radiation density is uniform in all directions within +the solid angle at a distance r from the source. The radiation den- +sity at distance r is inversely proportional to the surface of the part +of the sphere radius r blocked by the solid angle α. To calculate +this surface, we divide the sphere into thin ribbons corresponding +to open angles of d(α/2). The width of a ribbon is rd(α/2), as +shown in Figure 3. The radius of the ribbon at zenith angle α/2 is +r sin(α/2). Thus, the ribbon surface is 2πr sin(α/2)rd(α/2). The +surface of the part of the sphere blocked by the solid angle α is the +sum of the surfaces of all ribbons when zenith angle varies from α +to 0, as follows: +� 0 +α +2πr sin (α +2 )rd(α +2 ) = 2πr2(1 − cos (α +2 )) +Let Ur be the radiation density at distance r and Ptx be the +transmitted power at the source. We deduce: +Ur = +Ptx +2πr2(1 − cos (α/2)) +(1) +Let P rx +j +be the received power at ground FSO node j. +The +received power is proportional to the radiation density and the +received aperture of the ground node. It is: +P rx +j += +e−σLjULjAR +(2) +where +• Lj is the distance between ground FSO node j and its serving +HAP Hi (see Figure 4), +• σ is the attenuation coefficient of the links between the HAP +and ground, +• ULj is radiation density at distance Lj from the source, +• AR is the aperture area of the receiver. Let Rrx be the receiver +aperture radius, then, AR = πR2 +rx. +In (2), the first term represents the attenuation of laser power +through the atmosphere, which is described by the exponential +Beer–Lambert Law [11]. +Figure 4: Received power on border nodes of a coverage area +is the smallest amongst all nodes in the area. +By substituting ULj from (1) into (2), we obtain the received +power at node j as follows: +P rx +j += e−σLj × Ptx × R2 +rx +2L2 +j +× +1 +1 − cos (α/2) +(3) +The power received at node j must not be less than the required +level of the receiver, denoted by ρrx. It is obvious that point j at +the border of the ground coverage area receives the least power +because it is the furthest from the source (see Figure 4). Hence, +all points in the coverage areas of HAP Hi receive sufficient power +if and only if the border points receive at least the required power; +that is, +P rx +j += e−σH/ cos ( α +2 ) PtxR2 +rx cos2 ( α +2 ) +2H2(1 − cos ( α +2 )) ≥ ρrx +(4) +where Lj is substituted by H/ cos( α +2 ) for border node j. +Solving inequation (4) yields the beam width of the single serv- +ing FSO transceiver configuration. Corresponding to beam width +α, the ground coverage radius of the configuration is: +Ri = H tan(α +2 ) +(5) +Lemma 1. Function P rx +j +decreases with α ∈ [0..π]. +Proof of Lemma 1 is given in Appendix A. +Figure 5 shows the received power at the border of the cover- +age area with different receiver aperture radius Rrx. This figure +confirms that P rx +j +decrease with an increase in α. +Let αmax be the value for α that makes P rx +j (αmax) = ρrx; then +according to Lemma 1, +P rx +j (α) ≥ P rx +j (αmax) = ρrx, ∀α ∈ [0..αmax] +thus all α ∈ [0..αmax] satisfy constraint (4). +Calculations using the parameters given in Table 1 show that +when Rrx = 2 m, αmax = 37° and the coverage radius is 6.691 km. +When Rrx = 4 m, αmax += 67° and the coverage radius is +13.237 km. +3 + +Ribbon surface= 2πr sin(α/2) r d(α/2) +Kd(a/2) +r.sin(a/2) +a/2 +SourceHAP H; +α +H +Received power Prx +R; +Nodej +coverage area of HAP H 0 + 2 + 4 + 6 + 8 + 10 + 0 + 20 + 40 + 60 + 80 + 100 + 120 + 140 + 160 + 180 +Received power at coverage border (10-8 W) +Beam size α(degree) +Rrx=0.125m +Rrx=1m +Rrx=2m +Rrx=4m +Required at receiver (Prx) +Figure 5: Received power at the coverage border of the single +serving FSO transceiver configuration with different receiver +apertures. +2.2 +Multiple serving FSO transceiver config- +uration +The ground coverage of a HAP can be widened by combining sev- +eral serving FSO transceivers. Different combinations are possible. +In this research, we study a straightforward configuration in which +a principal serving FSO transceiver is in the center projecting +light perpendicular to the ground, and several identical supplemen- +tary serving FSO transceivers are set evenly around the principal +one (Figure 6). Each supplementary transceiver projects slanted +beams to extend the coverage in one direction. This arrangement +is referred to as mFSO configuration. Usually, the transmitters in +a bundle are considered to project signals in parallel. However, +because of the large principal beam, the supplementary serving +FSO transceiver projection directions are far from being perpen- +dicular to the ground, and their footprints are ellipses instead of +circles. +To create a continuous coverage region, the footprint of the +principal serving FSO transceiver and those of the supplemen- +tary serving FSO transceivers should overlap. +Therefore, there +should be a sufficiently large number of supplementary serving +FSO transceivers to cover entirely the contour of the principal foot- +print. The extended coverage area is defined as the largest circle +covered by these footprints (Figure 6). The principal transceiver is +responsible for the region defined by its footprint. A supplemen- +tary serving FSO transceiver is responsible for the part limited +by its footprint, principal coverage circle, and extended coverage +circle. +Let α be always the beam width of the principal serving +FSO transceiver. +To ensure that ground nodes under principal +coverage receive sufficient power, α should still respect constraint +(4), as in the single serving FSO transceiver configuration. +Let the beam width of a supplementary serving FSO transceiver +be β. In the responsible area of the supplementary transceiver, the +points on the extended coverage circle are the farthest from the +supplementary transceiver; thus, they receive the least power. If +these points receive at least ρrx, all other points receive sufficient +power. +It is easy to note that the footprints of the neighboring supple- +Figure 6: footprint of multiple FSO transceiver (mFSO) con- +figuration. +mentary serving FSO transceivers join each other on the extended +coverage circle. Let J be such a joint point, the power J receives +from the supplementary FSO transceiver is defined similar to (3) +but with beam width β, which is +P rx +J += e−σ×LJ × Ptx × R2 +rx +4L2 +J +× +2 +1 − cos (β/2) +(6) +Thus, β is constrained by the condition P rx +J +≥ ρrx, which gives: +e−σ×LJ +PtxR2 +rx +2L2 +J(1 − cos (β/2)) ≥ ρrx +(7) +Let us denote the extended coverage radius by Rext then +LJ = +� +H2 + R2 +ext +(8) +Appendix B presents detailed calculations of LJ and Rext. The +calculations yielded the following results +Rext = H2 tan( ξ+α +2 ) − tan( α +2 )(1 − tan2( ξ+α +2 )) +1 − tan2( ξ+α +2 ) + 2 tan( ξ+α +2 ). tan( α +2 ) +(9) +where +tan(ξ + α +2 +) = tan(γ) + tan(θ) +1 − tan(γ). tan(θ). cos( π +m) +tan(γ) = tan(α +2 ). cos( π +m) +tan(θ) = +� +sin2( β +2 ) − sin2( α +2 ). sin2( π +m) +cos( β +2 ) +(10) +(11) +(12) +and m is the number of supplementary FSO transceivers set +around the principal one. +We can remark that Rext and thus LJ depend on α, β and m. +Hereafter, Rext is sometimes denoted by Rext(α, m, β) and LJ by +LJ(α, m, β) to express these dependencies. +4 + +Principle coverage circle +0 +K' +K +2T +m +Extended coverage circle3 +Problem of designing minimal cost +HAP network +There are several costs in a HAP network, such as investment, en- +ergy, and maintenance costs. Based on the expected life duration +and maintenance cycle of a HAP, these costs can be distributed +by day as 1) daily amortization cost representing investment cost, +2) average daily maintenance cost, and 3) daily energy cost. Con- +sequently, the problem of minimizing network cost becomes min- +imizing the daily network cost, which comprises these three com- +ponents. +Following variables are introduced for formulating mathemati- +cally the daily network cost: +• K: Number of HAPs in the network. The HAPs are indexed +by i ∈ 1..K. +• niF +i : Number of FSO transceivers used on HAPi for inter- +HAP communications. +• nsF +i : Number of serving FSO transceiver of HAPi. +Let ζday +H +and ζday +F +be constants that express the daily amortiza- +tion costs of a HAP and an FSO transceiver, respectively. These +costs are defined as the ratio of the prices of the HAP or FSO +transceiver to their expected lifetime duration. Then, the overall +daily amortization cost of the HAP network is: +Kζday +H ++ ( +K +� +i=1 +nsF +i ++ +K +� +i=1 +niF +i )ζday +F +(13) +To evaluate the daily maintenance and energy costs, we need to +consider the HAP design. HAPs are classified into two categories +based on the underlying physical principle that provides the lifting +force for the HAPs: aerodynamic (the HAP is heavier than air) +and aerostatic (the HAP is lighter than air). +While aerostatic +platforms use buoyancy to float in the air, aerodynamic platforms +use dynamic forces created by movement through the air [8]. In +general, both aerostatic and aerodynamic systems require a “flying +energy” to keep the HAP relatively stable for maintaining FSO +communication between HAPs and that between HAPs and FSO +ground nodes. An aerodynamic system requires a large propulsion +power to move. Aerostatic systems typically consume less energy +than aerodynamic systems do. To be able to operate for a long +duration in space, HAPs are mainly unmanned. +HAPs are equipped with different energy resources such as on- +site production (e.g., solar energy harvested by solar panels) or +rechargeable energy (e.g., batteries or fuel cells brought from the +ground). +Solar energy-based HAPs can operate continuously in +space until they are lowered for maintenance purpose. Recharge- +able energy-based HAPs are lowered once the reserved energy is +depleted. In brief, the continuous in-space working duration of a +HAP is limited by its available energy, which is relatively fixed by +the HAP design, its energy consumption level, which varies de- +pending on the payload weight and communication of the HAP, +and its maintenance cycle. +We define the maintenance cost of a HAP as the expense of low- +ering the HAP to perform technical maintenance, energy recharge +on the ground, and then reinstall it in space. +Let di be the number of days on which HAPi can operate con- +tinuously in space. Let ζmtn be constant expressing the cost of +one time lowering a HAP, maintaining it, recharging it, and then +reinstalling it in space. The daily maintenance cost of the HAP +network is +K +� +i=1 +ζmtn +di +(14) +Regarding the daily energy cost, we consider solar energy to be +free, whereas the solar panel cost is counted in the cost of the HAP. +The cost of rechargeable energy is part the maintenance cost. As a +result, the energy cost does not explicitly represent the total cost. +Nonetheless, the energy consumption level of a HAP affects its +in-space working duration di; therefore, we analyze this in Section +4. +Combining (13) and (14), we obtain the following overall daily +cost of the HAP network: +Cost = Kζday +H ++ ( +K +� +i=1 +nsF +i ++ +K +� +i=1 +niF +i )ζday +F ++ +K +� +i=1 +ζmtn +di +(15) +The problem of minimizing daily cost of the HAP network is +stated as follows. +• Given input parameters including +– NFSO: Set of ground FSO nodes and their coordinates. +The number of nodes in the set is denoted as |NFSO|, +– M: +Data traffic to be carried between ground FSO +nodes. This is the list of bandwidth demands between +the ground nodes. +• Outputs to seek are +– A HAP network with HAP locations and inter-HAP +links, +– Beam width to set to each serving FSO transceiver. +• Optimization objective is +– Minimizing the daily cost expressed in (15) of the HAP +network. +The following two remarks drive us to conduct further analyses +in subsequent sections. +First, if a HAP has self-sufficient solar +energy, its in-space working duration di is not limited by its energy +consumption but depends uniquely on the maintenance cycle of the +HAP, which is usually constant. In Section 4, we show the daily +energy consumption of a HAP and the constraint that a HAP +needs to respect to rely solely on solar energy. +Second, the cost of the HAP network increases with an increase +in the number of FSO transceivers and HAPs. +The number of +HAPs can be reduced by increasing ground coverage. To increase +ground coverage, more serving FSO transceivers can be used on +each HAP, but this introduces greater energy consumption and ex- +tra amortization cost. Section 5 focuses on identifying the optimal +configuration for serving FSO transceivers on a HAP to achieve a +minimal HAP network cost. +4 +Daily energy consumption of a +HAP with payload +Several parameters affect the power consumption of a HAP. The +descriptions and notations of these parameters are listed in section +Energy parameters of Table 1. Most parameters were set based on +industrial experimental projects such as the Loon project [4], Stra- +tobus project [6], and other studies listed in the reference column. +Section 7.1 presents the choice of parameter values in detail. +5 + +Param. +nota- +tions +Descriptions +Values +References +Cost related parameters +ζday +H +Daily amortization cost of a HAP. +100 +ζday +F +Daily amortization cost of an FSO transceiver on HAP. +10 +ζmtn +Cost of one-time maintenance of a HAP including lowing it down, +1000 +maintenance, charging and reinstall it in the stratosphere. +Dm +Maintenance cycle. +365 days +[6] +Energy parameters +Esolar +Minimum daily harvested solar energy by a HAP. +42 - 290 kWh +[12] +ρavion +Power consumed by the avionic part of a HAP to carry an unit of mass. +2 W/kg +ρHCM +F +Power for heating, cooling, and management for each FSO on HAP. +20 W +[4] +ρPAT +Power consumed by a PAT system. +15W +[13] +ρinter +F +Power consumed by inter-HAP FSO transceivers for laser source (0.1 W), +heating/cooling/management (20 W) and PAT (15 W). +35.1 W +[4] +Inter-HAP FSO link parameters +C2 +n +Atmosphere structure parameter. +5.0 × 10−18m−2/3 +- +Attenuation coefficient. +3.5 × 10−6m−1 +[4] +- +Coupling loss. +45 dBm +- +Transmitted power of an inter-HAP FSO transceiver. +0.1 W +[4] +- +Receiver aperture diameter of an inter-HAP FSO transceiver. +0.037 m +[4] +- +Beam width of an inter-HAP FSO transmitter. +280 µrad +[4] +HAP-ground link parameters and variables +σ +Attenuation coefficient. +3.5 × 10−6m−1 +ρFSO +tx +Transmitted power of the laser source of a serving FSO transceiver. +1 Watt +Rrx +Receiver aperture radius of a ground FSO transceiver. +0.05 m +SONABeam [1] +ρrx +Required received power at a ground FSO transceiver. +7.76.10−8 W +-41.1 dBm in [4] +Other parameters +H +Elevation of HAPs. +20 km +LHH +Maximum length of an inter-HAP link so that its BER is under δ. +88 km +δ +BER threshold for inter-HAP links and lightpaths between HAPs. +W +The number of wavelengths in WDM technique. +40; 80 +µH +Platform mass excluding FSO transceivers. +28.5 kg; 500 kg +[4] +µF +FSO transceiver mass. +6.3 kg +[4] +Table 1: Parameters. Greek characters are used for denoting constant parameters. +Let us consider the power consumption of a single HAP Hi +that has m serving FSO transceiver and niF +i +inter-HAP FSO +transceivers. The power consumption includes: +• P avion +Hi +: Power draw of avionic part for maintaining Hi with +payload in space. +• P down +Hi +: Power draw of all serving FSO transceivers on HAP +Hi. +This power includes the heating/cooling/management +power, laser transmitted power of all serving FSO transceivers +on the HAP, and the power consumed by the Pointing Acqui- +sition and Tracking (PAT) system of the HAP. +• P inter +Hi +: Power draw of all inter-HAP FSO transceivers on +HAP Hi for inter-HAP communication. The power includes +the heating/cooling/management, and PAT power for each +inter-HAP FSO transceiver. +Inter-HAP FSO transceivers +are oriented towards different remote HAPs; therefore, each +transceiver must have a PAT system. +The total daily energy consumption (by 24 hours) of Hi is +Econsum = (P avion +Hi ++ P down +Hi ++ P inter +Hi +) × 24 +(16) +To breakdown further P avion +Hi +, P down +Hi +, and P inter +Hi +, we introduce +following parameters: +• ρavion: Power consumed by the avionic part of the HAP to +carry a unit of mass. +• ρFSO +tx +: Transmitted power of each serving FSO transceiver. +Because the current power of laser source is limited to 1 W, +which is very small in comparison with the power consumed +by other factors on the HAP, we consider that ρFSO +tx += 1 W, +regardless of the beam width of the serving FSO transceiver. +• ρHCM +F +: Power draw for heating, cooling, and management. It +is also considered constant for each serving FSO transceiver +and is set to ρHCM +F += 20 W, according to reference [4]. +• ρPAT : Power draw for Pointing, Acquisition and Tracking +activity; it is another constant and is set to ρPAT = 15 W +[13]. A HAP system uses a single PAT for its set of serving +FSO transceivers. +• ρinter +F +: Power draw of a single inter-HAP FSO transceiver +including communication, heating, cooling, management, and +6 + +PAT. According to [4], 0.1 W laser power is sufficient for an +inter-HAP communication of 100 km distance. In this study, +we limited the inter-HAP link length to less than 100 km and +considered the laser power constantly 0.1 W regardless of the +distance. Therefore, ρinter +F += ρHCM +F ++ ρPAT + 0.1. +• µH: Mass of the HAP. +• µF: Mass of an FSO on the HAP. +Assuming that P avion +Hi +is linearly proportional to the weight of +the HAP by ρavion, +P avion +Hi += [µH + (nsF +i ++ niF +i )µF]ρavion +(17) +P down +Hi +is +the +sum +of +the +power +consumed +by +serving +FSO transceivers and PAT activity of the HAP; thus, +P down +Hi += nsF +i (ρFSO +tx ++ ρHCM +F +) + ρPAT +(18) +P inter +Hi +is the sum of the power consumed by inter-HAP FSO +transceivers; thus, +P inter +Hi += ρinter +F +.niF +i +(19) +Substituting (17), (18), and (19) into (16), we obtain the daily +power consumption of a HAP as +Econsum = {[µH + (nsF +i ++ niF +i )µF]ρavion ++ nsF +i (ρFSO +tx ++ ρHCM +F +) + ρPAT ++ ρinter +F +niF +i } × 24 +(20) +4.1 +Necessity of solar energy and utilization +constraint +Current HAPs mainly use energy from solar panels mounted on +HAP wings and/or energy from batteries or hydrogen fuel cells +(HFC) onboard. Solar energy can be harvested and charged into +batteries during the day for nighttime use. Harvested solar energy +varies with year time and location. According to the experiments +in [12], in York, UK, the harvested solar power is 42–80 kWh/day, +and in Enugu, Nigeria, it is 290–545 kWh/day, depending on the +size of the solar panel. +Figure +7 +depicts +the +total +daily +energy +consumption +of +a HAP, calculated from (20), versus the number of serving +FSO transceivers. +Parameters were ρavion = 2 W/kg, ρPAT = +15 W, HAP weights µH = 28.5 kg or 500 kg. The HAP carried +10 inter-HAP FSO transceivers. +The referenced daily solar en- +ergy levels were the minimum daily solar energy levels in York +and Enugu. From a certain number of serving FSO transceivers, +a HAP consumes more energy than the harvested solar energy +in York, and an HFC would be necessary. Owing to the limited +payload capacity of a HAP, its HFC capacity is also very limited. +According to [8], the current state-of-the-art fuel-cell density is +approximately 1600 Wh/kg. A lightweight HAP, such as a Google +balloon weights 28.5 kg, cannot carry heavy long-lasting fuel cells +on board. The larger HAP Stratobus can carry up to 450 kg, but +it weights already 7 tons leading to high energy consumption for +flying. Even if the Stratobus payload capacity is reserved for the +HFC, its energy would quickly run out within a few days. +Based on this observation, we believe that long-duration flights +should consider solar energy as the principal energy source. In this +case, the power consumption of a HAP with payload must not + 0 + 50000 + 100000 + 150000 + 200000 + 250000 + 300000 + 350000 + 0 + 20 + 40 + 60 + 80 + 100 +Total daily energy consumption (W-hr) +Number of serving FSO transceivers +µΗ=28.5 kg +µΗ=500 kg +Min solar energy at York +Min solar energy at Enugu +Figure 7: Energy consumption by a HAP with different num- +ber of serving FSO transceivers in comparison with the min- +imum harvested solar energy at York and Enugu. ρavion = +2/kg W and ρPAT = 15 W. +exceed the daily harvested solar energy. Let the daily harvested +solar energy be Esolar; then, +� +[µH + (nsF +i ++ niF +i )µF]ρavion + ρPAT ++ nsF +i (ρFSO +tx ++ ρHCM +F +) + ρinter +F +niF +i +� +≤ Esolar +24 +(21) +According to Figure 7, solar energy provision does not need to +be very large. A solar energy level between the minimum harvested +in York and Enugu allows a 500 kg HAP to carry at least 6 serving +FSO transceivers. A HAP can carry hundreds FSO transceivers +with more than 125 kWh solar energy. Therefore, it is realistic to +rely on the solar energy. Hereafter, we consider that HAPs solely +use solar energy. +Despite self-sufficient solar energy, HAPs still need to be lowered +periodically for maintenance, for example, after one year in the +case of Stratobus [6]. Let us denote the maintenance cycle as a +constant Dm. Then +di = Dm, +∀i ∈ 1..K +(22) +5 +Optimal mFSO configuration +Using multiple serving FSO transceivers increases the expense of +FSO transceivers, although it can reduce the expense of HAPs. +This section aims to determine the mFSO configuration that min- +imizes the HAP network cost defined in (15). We assume that all +HAPs use identical mFSO configurations, that is, identical prin- +cipal beam width α, supplementary beam width β and number of +supplementary serving FSO transceivers m. +Let us now consider the dependence of the HAP network cost on +mFSO configuration. As each HAP has m supplementary serving +FSO transceivers and uses only solar energy, the cost (15) becomes +Cost = Kζday +H ++ (Km + +K +� +i=1 +niF +i )ζday +F ++ Kζmtn +Dm +Cost is a function of K, m and niF +i . K depends on the coverage +radius Rext(α, m, β) of the mFSO configuration. niF +i , as the num- +ber of inter-HAP links of HAP i, depends on the traffic demand +7 + +set M. Hence, Cost depends on mFSO configuration and M. It +is difficult to determine the optimal mFSO configuration without +considering M. To relax the dependance on M, we estimate Cost +by a function that depends solely on mFSO configuration, that is, +tuple (α, m, β); then try to find an instance (α, m, β) minimizing +the estimated cost in expecting that the instance also drives the +real cost to a minimum. +5.1 +Cost estimation +Figure 8: A ground area is divided into grid of square cells; +each cell is circumscribed by a circle representing a serving +zone of a HAP. +First, we estimate the number of HAPs K. +Samples of the +estimation are datasets with uniformly distributed ground nodes. +Let S be the surface of the ground area containing those nodes, +and W the number of wavelengths in the WDM technique. We +divide the ground zone S into a grid of square cells of size ℓ × ℓ, +each one will be covered by a HAP (see Figure 8). To be served +by a HAP, a cell must satisfy the following two conditions: +1. A cell can contain at most W ground nodes because a HAP +can use at most W wavelengths to serve ground nodes. Owing +to the uniform distribution of ground nodes, we have +ℓ2 +S |NFSO| ≤ W +2. A cell must be contained inside by a circle radius equivalent +to the extended radius Rext of a HAP +ℓ ≤ +√ +2Rext +The maximum number of HAPs required to cover region S is the +number of cells. Let this number be ˆK, then, +ˆK = S +ℓ2 = ⌈max {|NFSO| +W +, +S +2R2 +ext +}⌉ +(23) +Hence, ˆK is an overestimation of the number of HAPs. +Next, we estimate the value of niF +i . +Let V be the maximum +number of inter-HAP links that a HAP may have. Then +niF +i +≤ V, ∀i. +Finally, Cost can be overestimated as: +� +Cost = ˆK +� +ζday +H ++ (m + V + 1)ζday +F ++ ζmtn +Dm +� +(24) +� +Cost is a function of Rext(α, m, β) and m while V is a parameter +of the estimator. The estimation is more precise when V is set close +to the actual number of inter-HAP links of a HAP, and coarser +otherwise. +5.2 +Algorithms finding optimal configura- +tion +Given α and m, a larger β results in a larger Rext, and thus a +smaller ˆK and � +Cost. Therefore, β should be set to the largest value +according to (7) for a given α and m. It is worth noting that the +value of β does not affect the solar energy consumption because the +laser power ρFSO +tx +is small and is considered constant. Determining +the optimal configuration becomes finding the optimal values of α +and m. +Algorithm 1 Find the optimal mFSO configuration +1: function Find-optimal-mFSO +2: +niF +i ← V +3: +cMin ← ∞ +▷ cost min +4: +αMax ← maximum α by (4) +5: +for α = αMax . . . 0 do +6: +mMax ← calculated by (25) +▷ max m +7: +mOpt ← 0 +▷ optimal m +8: +for m = 0 . . . mMax do +9: +β ← Beta-max(α, m) +▷ max β +10: +Calculate Rext(α, m, β) using (9),(10),(11) (12) +11: +Calculate � +Cost(α, m, β) using (24) +12: +if � +Cost < cmin then +13: +cmin ← � +Cost +14: +αOpt ← α +▷ optimal α +15: +mOpt ← m +▷ optimal m +16: +βOpt ← β +▷ optimal β +17: +end if +18: +end for +19: +end for +20: +return αOpt, mOpt, βOpt +21: end function +Algorithm 2 Find the maximum β given α, m +1: function Beta-max(α, m) +2: +for β = 0 . . . 180 do +3: +Calculate Rext(α, m, β) using (9),(10),(11) (12) +4: +Calculate LJ using (8) +5: +Calculate P rx +J +using (6) +6: +if P rx +J +¡ρrx then ▷ Looking for the first β violate +constraint (7) +7: +return β-1 +▷ the previous trial β was the +maximum +8: +end if +9: +end for +10: end function +Following an exhaustive search approach, we examine all possi- +ble values of α and m to seek for the pair that minimizes � +Cost +in (24). +The search range of α is from 0° to the maximum +8 + +Serving zone +of a HAPvalue set by constraint (4). The number of supplementary serving +FSO transceivers m is also limited. Indeed, since the number of +inter-HAP links of a HAP can go up to V as set in Section 5.1, and +nsF +i += m + 1, ∀i, then from the energy constraint (21), we deduce +the upper bound for m: +m ≤ +Esolar +24 +− (VµFρavion + Vρinter +F ++ µHρavion + ρPAT) +µFρavion + ρHCM +F ++ ρFSO +tx +− 1 (25) +Algorithm 1 implements the exhaustive search idea. First, two +nested loops scan all possible values of α satisfying constraint (4) +and all possible values of m satisfying (25) to find the pair that +minimizes � +Cost in (24). For each pair (α, m), the largest value +of β according to constraint (7) is selected using Algorithm 2. +The optimal mFSO configuration is reported by the algorithms as +(αOpt, mOpt, βOpt). +Algorithm 2 finds the maximum β that satisfies constraint (7) +for a given pair of (α, m) by testing the possible values of β in- +creasingly from 0 until the received power P rx +J +at the border of +the extended coverage area reaches the required received power +ρrx. The received power P rx +J +is calculated using the set of equa- +tions (6), (8), (9),(10),(11), and (12). +In the implementation of both algorithms, α and β step by 1° +after each iteration. Finer stepping allows obtaining more accu- +rate results. However, even with 1° stepping, the variation in the +optimal Rext is only a few hundred meters, which is negligible in +comparison to the absolute value of Rext which is in the range of +6-30 kilometers. +The complexity of Algorithm 1 is O(m) because α ≤ π. The +complexity of Algorithm 2 is constant because β ≤ π. +6 +Design HAP network topology +This section presents the HAP network design using the optimal +configuration identified above. Let denote Linter as the number +of inter-HAP links. Since �K +i=1 niF +i +is the total number of inter- +HAP FSO transceivers, it is equal to 2Linter. The network cost +becomes: +Cost = Kζday +H ++ (K(m + 1) + 2Linter)ζday +F ++ K ζmtn +Dm +and is equivalent to +Cost = K +� +ζday +H ++ (m + 1)ζday +F ++ ζmtn +Dm +� ++ 2Linterζday +F +(26) +The cost is proportional to the number of HAPs K and the +number of inter-HAP links Linter. +We consider that the daily +amortization cost of a HAP is much greater than that of an FSO +transceiver; thus, the coefficient of K is much greater than the +coefficient of Linter in Cost. Consequently, K should be prioritized +to minimize over Linter. Therefore, the topology design is broken +into following two steps: +i) ground nodes are clustered into equal radius circles that will +become serving zones of HAPs in such a way that the number +of clusters is the smallest for minimizing K; +ii) corresponding HAPs are located at the centers of clusters but +at an elevation of 20 km and are interconnected by the fewest +number of inter-HAP links, Linter. +A HAP network topology design algorithm was proposed in [7] +following these two steps. In this algorithm, the clustering radius +was not determined but was left as an input of the algorithm. In +the current study, we set the clustering radius as the extended +coverage radius Rext of the optimal mFSO configuration to drive +towards a HAP network with minimal Cost. The main steps of the +Figure 9: HAP network design flowchart. +HAP network design process are presented in Figure 9, where the +steps taken from [7] are shown in color. The process is explained +as follows: +• Initialize V, the maximum number of inter-HAP links of a +HAP, by a constant. +• Calculate the optimal mFSO configuration using Algorithm +1, and set the clustering radius as its Rext. +• Apply the clustering algorithm proposed in [7] to distribute +ground nodes into clusters of radius Rext while keeping the +number of ground nodes in each cluster under W. Each cluster +becomes a serving zone of a HAP. The HAP is located at the +center of the cluster but at an elevation of 20 km. +• Bandwidth demands between ground nodes belonging to dif- +ferent serving zones are bundled into lightpaths between +corresponding HAPs, creating the inter-HAP traffic matrix +MHAP . +• Apply HAP topology design algorithm proposed in [7] to build +the HAP topology. +The algorithm begins with an empty +topology. It finds a route for each lightpath demand of MHAP +9 + +Init V +Find optimal conf. +(α, m, β) and Rext +Clustering ground nodes +with Rext radius [7] +V=V+1 +Calculate inter-HAP +Design HAP topo [7] +M +HAF +No +is +routed entirely +Report HAP topofrom a full-mesh graph linking all HAPs within communica- +tion distance limit LHH. Each time a lightpath uses an inter- +HAP link that has not yet been included in the current HAP +topology, the link is incorporated into the topology. The link +in the topology is prioritized for use in building routes for the +next lightpath demands. +• Once all lightpath demands in MHAP are routed, the final +topology is achieved. Otherwise, routing may fail due to the +low connectivity between HAPs. In this case, V is increased +by one, and the process is repeated until all lightpath de- +mands in MHAP are routed. +7 +Simulation results +The algorithms for finding the optimal mFSO configuration were +implemented and integrated with the topology designed algorithm +described in Section 6. We performed simulations with practical +parameters and evaluated the efficiency of mFSO configuration +compared to the single serving FSO transceiver configuration. +7.1 +Parameter values +The simulation parameters are listed in Table 1. The values of +these parameters were chosen according to experiments reported +in the literature. This subsection explains the choices of the pa- +rameter values. +Cost-related parameters: +The cost-related parameters are set +such that the daily amortization cost of a HAP is significantly +greater than that of an FSO transceiver, and the one-time mainte- +nance cost is significantly higher than the daily amortization cost +of a HAP. The maintenance cycle of a HAP is set as Dm = 1 year +according to published information on Stratobus [6]. +Energy-related parameters: +• Esolar - daily harvested solar energy. +We considered daily +solar energy levels between the minimum daily solar energy +values in York and Enugu reported in [12], which were 42 +kWh and 290 kWh, respectively. +• ρavion - power consumed by the avionic part of a HAP to +carry a unit of mass. Although the power-to-mass ratio can +be estimated as 6 W/kg according to [12], the published power +rates of real systems are smaller. For aerodynamic systems +such as Zephir-S, Zephir-T [14], and Phasa-35 [15], ρavion +varies from 2.68 -3.04 W/kg. Indeed, Zephir-S weighs 80 kg +(75 kg platform and 5 kg payload) and consumes 243 W, +Zephir-T weighs 160 kg (140 kg platform and 20 kg payload) +and consumes 429 W, and Phasa-35 weighs 165 kg (150 kg +platform and 15 kg payload) and consumes 459 W. Aerostatic +systems consume even less power. The Stratobus weighs 7000 +kg and consumes 5 kW when it carries a 250 kg payload +and 8 kW when it carries 450 kg [6]. Thus, the power-to- +mass ratio of Stratobus is between 0.69 and 1.07 W/kg only. +Therefore, in this simulation ρavion was set to 2 W/kg. +• ρPAT - power consumed by a PAT system; it was set to 15 W +according to [13]. +• ρHCM +F +- power consumed for heating, cooling, and manage- +ment; it was set to 20 W according to [4]. +• ρinter +F +- power consumed by an inter-HAP FSO transceiver; +it was set to 35.1 W including laser power, ρHCM +F +and ρPAT. +Inter-HAP link parameters: These parameters were set to values +similar to those provided in the Loon project [4]. +HAP-ground FSO link parameters: The attenuation coefficient +of an FSO link between a HAP and a ground node is set identical +to that of inter-HAP links. The required received power ρrx at a +ground node was set according to [4]. The aperture radius Rrx of +a ground FSO receiver was set according to the commercial FSO +transceiver SONABeam [1]. +Other parameters: +• δ - BER threshold for inter-HAP links and lightpaths. We +set δ = 10−3 because errors with that BER can be corrected +using current Forward Error Correction (FEC) techniques. +• LHH - the maximum allowable distance between two HAPs +such that the BER of an inter-HAP link is less than δ = 10−3. +Using the inter-HAP FSO link parameters listed in Table 1, +the calculation yielded LHH = 88 km. +• µH - platform mass; it varies significantly from one design +to another. The Loon balloon weighs just 28.5 kg while the +Stratobus weighs 7000 kg. With ρavion = 2 W/kg, a HAP +weighing more than 7000 kg already consumes 326 kWh/day +to carry itself, which is more than the maximum harvested +solar energy, leading to no remaining energy to carry FSO +transceivers. Therefore, µH = 500 kg was used in the simula- +tions. +• µF - mass of an FSO transceiver on HAPs. It was set accord- +ing to the FSO transceiver used in the Loon project, which +weighs 6.3 kg [4]. This value is consistent with the weights +between 8 and 10 kg of commercial terrestrial SONABeam +FSO transceivers [1]. +• W - the number of wavelengths per FSO link. It was set to +40 or 80 according to the current WDM technique. +The test dataset contained 19 test cases, each with 400 – 2800 +ground nodes. +The ground FSO node locations were randomly +generated on a square surface of 100 × 100 km, which is the size +of a large metropolis. +The test cases had different numbers of +ground nodes, reflecting different ground node densities. The traf- +fic requirement M contained demands randomly generated between +ground FSO nodes such that the total incoming or outgoing traffic +of a ground FSO node did not exceed 1 Gbps, which is the capacity +of a single wavelength. +Initially, V was set to 10. +The optimal multiple serving +FSO transceiver configuration (α, m, β) was calculated using Algo- +rithms 1 and 2. The extended radius Rext of the optimal configura- +tions was calculated using (9) and was then used as the clustering +radius in the HAP topology design step. +With Esolar = 42 kWh and W = 40, V must be increased to 12 +to get all demands in MHAP routed successfully for all test cases. +With all other Esolar and W values, the topology design algorithm +successfully routed all demands in MHAP for all test cases right +with initial V = 10. +Figure 10 illustrates the HAP locations and their footprints +calculated using the proposed algorithms for a test case of 1005 +ground FSO nodes, Esolar = 75 kWh, and W = 80. +7.2 +mFSO configuration versus single serv- +ing FSO transceiver configuration +Table 3 lists the maximum beam width αmax according to (4) +and the maximum ground coverage radius of the single serving +FSO transceiver configuration when the receiver aperture radius +10 + +Esolar = 42 kWh +Esolar = 50 ∼ 290 kWh +W = 40, V = 12 +W = 80, V = 10 +W = 40, V = 10 +W = 80, V = 10 +|NFSO| +α +m +β +Rext +Cost +α +m +β +Rext +Cost +α +m +β +Rext +Cost +α +m +β +Rext +Cost +(1) +(2) +(3) +(4) +(5) +(6) +(7) +(8) +(9) +(10) +(11) +(12) +(13) +(14) +(15) +(16) +(17) +(18) +(19) +(20) +(21) +480 +37 +0 +- +6691 +15308 +37 +0 +- +6691 +13488 +37 +13 +16 +11929 +10010 +37 +13 +16 +11929 +9470 +588 +37 +0 +- +6691 +16639 +37 +0 +- +6691 +14519 +37 +13 +16 +11929 +9304 +37 +13 +16 +11929 +8964 +763 +37 +0 +- +6691 +18495 +37 +0 +- +6691 +15815 +37 +13 +16 +11929 +9990 +37 +13 +16 +11929 +9510 +854 +37 +0 +- +6691 +19141 +37 +0 +- +6691 +16341 +37 +13 +16 +11929 +10493 +37 +13 +16 +11929 +9933 +998 +37 +0 +- +6691 +19101 +37 +0 +- +6691 +16701 +37 +13 +16 +11929 +10855 +37 +13 +16 +11929 +10215 +1005 +37 +0 +- +6691 +19068 +37 +0 +- +6691 +16308 +37 +13 +16 +11929 +11138 +37 +13 +16 +11929 +10478 +1150 +37 +0 +- +6691 +19666 +37 +0 +- +6691 +16926 +37 +13 +16 +11929 +10915 +37 +13 +16 +11929 +10275 +1345 +37 +0 +- +6691 +20644 +37 +0 +- +6691 +17564 +37 +13 +16 +11929 +11741 +37 +13 +16 +11929 +10395 +1477 +37 +0 +- +6691 +20752 +37 +0 +- +6691 +17612 +37 +12 +16 +11539 +13115 +37 +13 +16 +11929 +10335 +1523 +37 +0 +- +6691 +21895 +37 +0 +- +6691 +18595 +37 +12 +16 +11539 +14053 +37 +13 +16 +11929 +10375 +1675 +37 +0 +- +6691 +21735 +37 +0 +- +6691 +18535 +37 +11 +16 +11042 +14128 +37 +13 +16 +11929 +10495 +1736 +37 +0 +- +6691 +22461 +37 +0 +- +6691 +19301 +37 +11 +16 +11042 +14874 +37 +13 +16 +11929 +10455 +1911 +37 +0 +- +6691 +22481 +37 +0 +- +6691 +19021 +37 +10 +16 +10395 +14869 +37 +13 +16 +11929 +10495 +2009 +37 +0 +- +6691 +22641 +37 +0 +- +6691 +19321 +37 +10 +16 +10395 +15575 +37 +13 +16 +11929 +10595 +2135 +37 +0 +- +6691 +22761 +37 +0 +- +6691 +19221 +37 +10 +16 +10395 +16493 +37 +13 +16 +11929 +10575 +2304 +37 +0 +- +6691 +22881 +37 +0 +- +6691 +19301 +37 +9 +16 +9524 +18192 +37 +13 +16 +11929 +10655 +2325 +37 +0 +- +6691 +22368 +37 +0 +- +6691 +18948 +37 +9 +16 +9524 +18555 +37 +13 +16 +11929 +10675 +2491 +37 +0 +- +6691 +22761 +37 +0 +- +6691 +19401 +37 +8 +16 +8946 +18660 +37 +13 +16 +11929 +10655 +2753 +37 +0 +- +6691 +23346 +37 +0 +- +6691 +19926 +37 +8 +16 +8946 +20284 +37 +13 +16 +11929 +11178 +Table 2: Optimal configurations and costs of all test cases with Rrx = 2 m. +Receiver aperture +Maximum beam +Maximum +radius Rrx (m) +width αmax +coverage radius (m) +2 +37 ° +6691 +4 +67 ° +13237 +Table 3: Maximum beam width and coverage radius of single +serving FSO transceiver configuration. +was varied. Table 4 lists the extended coverage radius of the max- +imum mFSO configuration for different solar energy levels and +receiver aperture radii. The maximum mFSO configuration was +obtained using the largest principal beam αmax, largest m accord- +ing to (25), and largest β according to (7), given αmax and m. +The coverage radius of the maximum mFSO configuration was ex- +tended approximately twice in comparison with that of single FSO +transceiver configuration, except for Esolar = 42kWh. When solar +energy level increased, the maximum m increased; thus, the ex- +tended coverage radius increased. However, when m was already +large, the extention increased slowly with m. +Additionally, the +maximum extended coverage was much larger when Rrx = 4 than +Rrx = 2m because a receiver can accept weaker signals with larger +apertures. +To compare the network costs incurred by the two configura- +tions, we examined the detailed results in Table 2. +The table +lists the optimal mFSO configurations and network costs. When +Esolar = 42kWh, the optimal number of supplementary serving +FSO transceivers is m = 0; thus, the configuration uses a single +serving FSO transceiver. Therefore, these cases were used as ref- +erences for single serving FSO transceiver configuration. +When +Esolar > 50kWh, all optimal configurations were truly mFSO, +and the results were identical for all solar energy levels. +The +numbers indicate that mFSO configuration offered significantly +Esolar +Max Rext (m) +(kWh) +Max m +Rrx = 2 (m) +Rrx = 4 (m) +42 +6 +6691 +13237 +50 +16 +12174 +25582 +75 +47 +13559 +28403 +100 +78 +13678 +28845 +125 +109 +13711 +28969 +150 +140 +13724 +29020 +175 +171 +13731 +29047 +200 +202 +13735 +29062 +225 +233 +13738 +29071 +250 +264 +13739 +29077 +275 +295 +13740 +29082 +290 +314 +13741 +29084 +Table 4: Maximum extended coverage radius of mFSO con- +figuration when V = 10. +lower costs (listed in columns 16th and 21th) than those of single +serving FSO transceiver configuration (listed in columns 6th and +11th) for the same test cases and number of wavelengths W. The +costs resulting from mFSO configuration were as low as 54–87% of +those resulting from single serving FSO transceiver configuration. +These numbers confirm that when there is sufficient solar energy, +mFSO configuration is definitively a better choice than single serv- +ing FSO configuration. +11 + + 0 + 20 + 40 + 60 + 80 + 100 + 120 + 0 + 20 + 40 + 60 + 80 + 100 +y-axis +x-axis +Figure 10: Footprints of HAPs with mFSO configuration ob- +tained from the topology design for a test case of 1005 ground +FSO nodes when Esolar = 75 kwh, W = 80. A circle repre- +sents an extended coverage area of a HAP. Small points in- +side the circle are ground nodes and the dot at the center of +the circle is the projected location of its serving HAP on the +ground. +7.3 +Factors impact optimal mFSO configu- +ration +Comparing the values of the optimal extended coverage radius in +Table 2 and the maximum extended coverage radius in Table 4, +we can see that the optimal extended coverage radius was gener- +ally not the maximum. This is reasonable because the maximum +configuration uses an excessive number of supplementary serving +FSO transceivers. +Low solar energy may render mFSO configuration impossible. +Indeed, Esolar = 42 kWh could afford maximally 6 supplemen- +tary serving FSO transceivers (see Table 4), which was too few to +entirely cover the contour of the principal coverage area. Thus, +single FSO transceiver configuration was the unique choice. +When the solar energy level exceeds 50 kWh, its exact value does +not affect the optimal configuration. The simulation showed that +the optimal configurations were identical for all solar energy levels +from 50 kWh/day and above. This is explained by the fact that +a greater solar energy level allows to accept configurations with +large coverage but may be more expensive because of using more +supplementary serving FSO transceivers. As a result, large con- +figurations were not selected as optimal configurations. In other +words, increasing solar energy does not necessarily improve the +HAP network cost. +Since the optimal multiple serving FSO transceiver configura- +tions were identical for all Esolar ≥ 50 kWh, all other numerical +results related to topology design and routing with these solar en- +ergy levels were identical and are presented as single results in +subsequent figures. +The coverage of the optimal configurations decreased when the +ground nodes became denser. Indeed, test cases with large num- +bers of ground nodes had greater ground node densities, and +columns 13th and 16th of Table 2 shows that the optimal m and +Rext decreased when the density increased. The reason is that, +with a greater ground node density, is a small ground region al- +ready contains W ground nodes, which is the maximum serving +capacity of a HAP. Therefore, a HAP could serve only a small +zone and required only a few supplementary FSO transceivers to +cover the zone. +7.4 +Numbers of HAPs and inter-HAP links +0 +20 +40 +60 +80 +100 +120 +140 +160 +0 +500 +1000 +1500 +2000 +2500 +3000 +Number of HAPs +Number of ground FSO nodes +ˆK for Esolar=42 kWh +K for Esolar=42 kWh +ˆK for Esolar ≥ 50 kWh kWh +K for Esolar ≥ 50 kWh +Lower bound +(a) W=40 +0 +20 +40 +60 +80 +100 +120 +140 +160 +0 +500 +1000 +1500 +2000 +2500 +3000 +Number of HAPs +Number of ground FSO nodes +ˆK for Esolar=42 kWh +K for Esolar=42 kWh +ˆK for Esolar ≥ 50 kWh kWh +K for Esolar ≥ 50 kWh +Lower bound +(b) W=80 +Figure 11: Number of HAPs and lower bound with (a) W = +40 and (b) W = 80 in different solar energy levels. +Since each HAP can serve at most W ground FSO nodes, a lower +bound for the number of HAPs is: +nLB +HAP = |NFSO| +W +(27) +Figure 11 shows the number of HAPs, the estimated number of +HAPs ˆK and lower bound nLB +HAP when (a) W = 40 and (b) W = 80. +With Esolar ≥ 50 kWh, the actual number of HAPs was almost +identical to ˆK in both subfigures. +Furthermore, when W = 40 +12 + + 0 + 100 + 200 + 300 + 400 + 500 + 600 + 0 + 500 + 1000 + 1500 + 2000 + 2500 + 3000 +Number of inter-HAP links +Number of ground FSO nodes +Esolar=42 kWh +Esolar ≥ 50 kWh +(a) W=40 + 0 + 100 + 200 + 300 + 400 + 500 + 600 + 0 + 500 + 1000 + 1500 + 2000 + 2500 + 3000 +Number of inter-HAP links +Number of ground FSO nodes +Esolar=42 kWh +Esolar ≥ 50 kWh +(b) W=80 +Figure 12: Number of inter-HAP links when (a) W = 40 and +(b) W = 80 for different solar energy levels. +and Esolar ≥ 50 kWh, the number of HAPs approached the lower +bound starting from test cases with 1000 ground nodes or above. +This implies that the number of HAPs was almost optimal. +Figure 12 presents the absolute numbers of inter-HAP links. +The number of inter-HAP links increased with the number of +ground nodes, because the network size and traffic demand in- +creased. The number of inter-HAP links clearly decreased when +the wavelength density increased from W = 40 to W = 80. In +other words, denser WDM technique helps reduce the number of +inter-HAP FSO transceivers and consequently the network cost. +mFSO configuration allows reducing significantly both the num- +bers of HAPs and inter-HAP links. Indeed, according to Figure +11, the number of HAPs was much smaller with Esolar ≥ 50 +kWh where mFSO configuration was used, in comparison with +Esolar = 42 kWh, where single serving FSO configuration was +used. A similar phenomenon is observed in Figure 12 for the num- +ber of inter-HAP links. +0 +5000 +10000 +15000 +20000 +25000 +30000 +35000 +40000 +0 +500 +1000 +1500 +2000 +2500 +3000 +Cost +Number of ground FSO nodes +� +Cost of Esolar = 42 kWh +Cost of Esolar = 42 kWh +� +Cost of Esolar ≥ 50 kWh +Cost of Esolar ≥ 50 kWh +(a) W=40 +0 +5000 +10000 +15000 +20000 +25000 +30000 +35000 +40000 +0 +500 +1000 +1500 +2000 +2500 +3000 +Cost +Number of ground FSO nodes +� +Cost of Esolar = 42 kWh +Cost of Esolar = 42 kWh +� +Cost of Esolar ≥ 50 kWh +Cost of Esolar ≥ 50 kWh +(b) W=80 +Figure 13: Real costs and overestimated costs with W = 40 +and W = 80. +7.5 +Quality of cost estimation +Figure 13 presents the estimated and actual costs for different +solar energy levels and wavelength densities. The estimated cost +was very close to the actual cost, mostly for Esolar ≥ 50kWh and +W = 40. +Parameter V, the threshold of the number of inter-HAP links +of a HAP, affects the quality of the cost estimation. To evaluate +the choice of V, we compared it with the number of inter-HAP +links that a HAP finally has. Figure 14 shows the average number +of inter-HAP links per HAP. When there were 40 wavelengths +per link, the average number of inter-HAP links per HAP varied +between 5.7 and 9.3 for Esolar ≥ 50 kWh and V = 10, and between +8.8 and 11.8 for Esolar = 42 kWh while V raised up to 12. Hence, +the value of V was close to the actual number of inter-HAP links +required by a HAP. However, when there were 80 wavelengths per +link, the average number of Inter-HAP links per HAP was reduced +to between 4.4 and 8.4, which is slightly far from the threshold +V = 10. A smaller V may help better estimate of the optimal cost +in these cases. +13 + + 0 + 5 + 10 + 15 + 20 + 0 + 500 + 1000 + 1500 + 2000 + 2500 + 3000 +Average number of inter-HAP links per HAP +Number of ground FSO nodes +Esolar=42 kWh +Esolar ≥ 50 kWh +(a) W=40 + 0 + 5 + 10 + 15 + 20 + 0 + 500 + 1000 + 1500 + 2000 + 2500 + 3000 +Average number of inter-HAP links per HAP +Number of ground FSO nodes +Esolar=42 kWh +Esolar ≥ 50 kWh +(b) W=80 +Figure 14: Number of inter-HAP links per HAP when (a) +W = 40 and (b) W = 80 for different solar energy levels. +8 +Conclusions +Using mFSO configuration widens a HAP footprint, however, its +application is constrained by the available solar energy of the HAP. +Moreover, mFSO configuration may imply an extra investment +cost due to additional serving FSO transceivers in comparison with +single FSO transceiver configuration. This study focused on de- +termining the optimal mFSO configuration. First, we proposed +a set of closed-form expressions for computing the coverage of +an mFSO configuration in terms of beam widths of the princi- +pal and supplementary transceivers and number of supplementary +FSO transceivers. Second, we proposed an algorithm to determine +the optimal mFSO configuration that minimizes the total HAP +network cost. Third, we designed a HAP network topology using +the optimal configuration to achieve a minimal final cost. +The simulation results showed that mFSO significantly ex- +tended the HAP footprint. With the testing dataset, the extended +footprint radii were generally two times larger than the single FSO +transceiver footprint radii, leading to a four-fold larger coverage +surface. The network cost with the optimal mFSO configuration +was as low as 54% of the network cost when using a single serving +FSO transceiver on a HAP. +Acknowledgements +This research was funded by the Vietnam National Foundation for +Science and Technology Development (NAFOSTED) under grant +number 102.02-2018.305. +References +[1] fSONA, +“SONABeam +2500-E+ +model +specifications.” +http://fsona.com. Accessed Jan. 2022. +[2] A. Acampora and S. Krishnamurthy, “A broadband wireless +access network based on mesh-connected free-space optical +links,” IEEE Personal Communications, vol. 6, no. 5, pp. 62– +65, 1999. +[3] J. Zhang, “Proposal of free space optical mesh network ar- +chitecture for broadband access,” in 2002 IEEE Interna- +tional Conference on Communications. Conference Proceed- +ings. ICC 2002 (Cat. No.02CH37333), vol. 4, pp. 2142–2145 +vol.4, 2002. +[4] B. Moision, B. Erkmen, E. Keyes, T. Belt, O. Bowen, +D. Brinkley, P. Csonka, M. Eglington, A. Kazmierski, N. hy- +ong Kim, J. Moody, T. Tu, and W. Vermeer, “Demonstration +of free-space optical communication for long-range data links +between balloons on Project Loon,” in Free-Space Laser Com- +munication and Atmospheric Propagation XXIX (H. Hem- +mati and D. M. Boroson, eds.), vol. 10096, pp. 259 – 272, +International Society for Optics and Photonics, SPIE, 2017. +[5] C. Chen, A. Grier, M. Malfa, E. Booen, H. Harding, C. Xia, +M. Hunwardsen, J. Demers, K. Kudinov, G. Mak, B. Smith, +A. Sahasrabudhe, F. Patawaran, T. Wang, A. Wang, C. Zhao, +D. Leang, J. Gin, M. Lewis, D. Nguyen, and K. Quirk, +“High-speed optical links for UAV applications,” in Free- +Space Laser Communication and Atmospheric Propagation +XXIX (H. Hemmati and D. M. Boroson, eds.), vol. 10096, +pp. 316 – 324, International Society for Optics and Photon- +ics, SPIE, 2017. +[6] Thales +group, +“What’s +up +with +stratobus.” +https://www.thalesgroup.com/en/worldwide/space/news/whats- +stratobus, 2017. Accessed Jan. 2022. +[7] D. L. Truong, X. V. Dang, and T. N. Dang, “Survivable free +space optical mesh network using high-altitude platforms,” +Optical Switching and Networking, vol. 47, p. 100716, 2023. +[8] G. Karabulut Kurt, +M. G. Khoshkholgh, +S. Alfattani, +A. Ibrahim, T. S. J. Darwish, M. S. Alam, H. Yanikomeroglu, +and A. Yongacoglu, “A Vision and Framework for the High +Altitude Platform Station (HAPS) Networks of the Future,” +IEEE Communications Surveys & Tutorials, vol. 23, no. 2, +pp. 729–779, 2021. +[9] R. Miura and M. Oodo, “Wireless Communications System +Using Stratospheric Platforms: R and D Program on Telecom +and Broadcasting System Using High Altitude Platform Sta- +tions,” Journal of the Communication Research Laboratory, +vol. 48, pp. 33–48, Dec. 2001. +14 + +[10] V. V. Mai and H. Kim, “Beam size optimization and adap- +tation for high-altitude airborne free-space optical commu- +nication systems,” IEEE Photonics Journal, vol. 11, no. 2, +pp. 1–13, 2019. +[11] A. A. Farid and S. Hranilovic, “Outage capacity optimization +for free-space optical links with pointing errors,” Journal of +Lightwave Technology, vol. 25, no. 7, pp. 1702–1710, 2007. +[12] S. C. Arum, D. Grace, P. D. Mitchell, M. D. Zakaria, and +N. Morozs, “Energy management of solar-powered aircraft- +based high altitude platform for wireless communications,” +Electronics, vol. 9, no. 1, 2020. +[13] F. Fidler, M. Knapek, J. Horwath, and W. R. Leeb, “Optical +Communications for High-Altitude Platforms,” IEEE Journal +of Selected Topics in Quantum Electronics, vol. 16, pp. 1058– +1070, Sep. 2010. +[14] Airbus, +“Zephir: +Persistance +and +flexibility.” +https://lf5422.com/wp- +content/uploads/2018/08/0296 18 2 zephyr datasheet e horizontal a4.pdf, +2018. Accessed Jan. 2022. +[15] BAE Systems, “Phasa-35.” http://prismaticltd.co.uk/products/phasa- +35/, 2018. Accessed Jan. 2022. +A +Proof of Lemma 1 +Proof. Let x = cos(α/2), a = σH, and b = +PtxR2 +rx +2H2 +then +P rx +j (x) = e−a/x +bx2 +(1 − x) +(28) +Calculate the derivative of P rx +j (x) we get +P +′rx +j +(x) = e−a/x +� +a +1 − x + 2x − x2 +(1 − x)2 +� +b +(29) +Thus, the derivative of P rx +j (α) is +P +′rx +j +(α) = P +′rx +j +(x).(− sin(α)) +(30) +Beam α is limited between [0..π] because it orients to the ground. +Thus, x ∈ [0..1]. +Consequently, 1 − x > 0 and 2x − x2 > 0. +In addition, a, b > 0, then P +′rx +j +(x) > 0 for all x ∈ [0..1]. +Be- +cause − sin(α) < 0, ∀α ∈ [0..π], thus, P +′rx +j +(α) < 0. Consequently, +P rx +j (α) decreases with α. +B +Calculation of extended coverage +radius of mFSO configuration +This section identifies formulas that calculate the extended cover- +age radius of an mFSO configuration characterized by the princi- +pal beam width α, supplementary beam width β and number of +supplementary beams m. +Conventionally, the coverage provided by a bundle of transmit- +ters is calculated as if the transmitters project perpendicular to the +ground. In mFSO configuration, the principal beam in the center +is large, and it pushes the supplementary serving FSO transceiver +projection directions far from perpendicular to the ground. These +supplementary beams form oblique cones that intersect with the +ground plane in ellipses. Considering of the elliptical form adds +more complexity to the calculation. +In Figure 15, H denotes the position of a HAP, and its projec- +tion on the ground plane is O, thus HO = H. The principal beam +forms a right circular cone whose axis is HO. The cone intersects +the ground plane by a circle of radius Rα, which defines the prin- +cipal footprint. The beam of a supplementary FSO transceiver is +an oblique cone intersecting the ground plane by an ellipse that +defines the corresponding supplementary footprint. The cone of +the supplementary beam intersects with the cone of the principal +beam by two lines: HK and HK′ where K and K′ are the two +intersection points of the principal and supplementary footprints. +Thus, OK = OK′ = Rα. +m supplementary FSO transceivers are arranged evenly around +the principal transceiver, each of which is responsible for extending +the coverage within an angle of 2π/m from the center O. +The +responsible angle of the supplementary FSO transceiver in Figure +15 is defined by rays −−→ +OK and −−→ +OK′. Thus, � +KOK′ = 2π/m. +Ray −−→ +OK intersects with the supplementary beam cone at J, +then OJ is the radius of the extended coverage region. Readers +refer to Figure 6 for a complete view of the extended coverage +circle and the positions of K, K′ and J on the ground. +Figure 15: Computation of the distance from supplementary +FSO transceivers and the border of extended coverage area +LJ in function of Beta. +Since the principal beam width is α, then � +OHK = α/2. +Let the base plane containing K and K′ of the supplementary +beam cone cuts the cone axis at T, the primary cone axis HO at P, +and HJ at J1. Then � +THK = β/2. In addition, the supplementary +cone intersects with this base plane by a circle containing K, K′ +with center T. Let Rβ be the radius of the circle, then TK = +TK′ = Rβ. +Let M be the midpoint of KK′ then H, O, T, M belong to the +same plane. +Let ξ = � +KHJ. The extended coverage radius is Rext = OJ = +15 + +H +β/2 +LY +a/2 +Supplementarycone base plane +K' +R +Pilm +a +Supplementary foot print +Principal +foot print +GroundHO tan(� +OHJ) = H tan( α +2 + ξ). Thus, +Rext = H. tan +� +2(ξ + α +2 +) − α +2 +� +Rext = H2 tan( ξ+α +2 ) − tan( α +2 )(1 − tan2( ξ+α +2 )) +1 − tan2( ξ+α +2 ) + 2 tan( ξ+α +2 ). tan( α +2 ) +(31) +B.1 +Calculation of tan( ξ+α +2 ) +Let N be the midpoint of KJ1. As K and J1 are at the intersection +of the supplementary cone and its base plane, HK = HJ1, HN ⊥ +KJ1, and HN is the angle bisector of � +KHJ1. Therefore, � +NHK = +ξ/2, thus � +NHP = ξ+α +2 . In addition, since KO is on the base plane +of the principal cone, HO ⊥ KO. +Thus, △PNH and △POK +are similar right triangles. Consequently, � +OKP = � +NHP = ξ+α +2 . +Furthermore, +tan(ξ + α +2 +) = OP +OK = OP +Rα +(32) +Let � +OHM = γ and � +THM = θ Then � +OHT = θ + γ. +Because MO is on the base plan of the principal cone, MO ⊥ +HO. In addition, as PT is on the base plane of the supplementary +cone whose axis is HT then HT ⊥ PT. Consequently, △PTH and +△POM are similar right triangles. We can deduce that � +PMO = +� +PHT = θ + γ. Therefore, +tan(θ + γ) = OP +OM = +OP +Rα. cos( π +m) +Combining with (32) we deduce : +tan(ξ + α +2 +) = tan(θ + γ). cos( π +m) +(33) +Thus +tan(ξ + α +2 +) = +tan(γ) + tan(θ) +1 − tan(γ). tan(θ). cos( π +m) +(34) +Since γ = � +OHM then, tan(γ) = MO +HO . +From right triangle △OMK we have MO = OK. cos( π +m). +From right triangle △HOK we have HO = OK/ tan( α +2 ). +Thus +tan(γ) = tan(α +2 ). cos( π +m) +(35) +It remains to calculate tan (θ). +B.2 +Calculation of tan (θ) +Look at the right triangle △HTM, we can see that: +tan(θ) = TM +TH +(36) +Since K and K′ are on a circle centered at T, and M is the +midpoint of KK′ then △TMK is a right triangle, then +TM = +� +TK2 − KM 2 = +� +R2 +β − R2α. sin2( π +m) +(37) +Easy to find that △THK is another right triangle then +TH = TK/ tan(β +2 ) = Rβ/ tan(β +2 ) +(38) +Replacing (37) and (38) in to (36) we get +tan(θ) += +� +R2 +β − R2α. sin2( π +m) +Rβ/ tan( β +2 ) += +tan(β +2 ) +� +1 − (Rα +Rβ )2. sin2( π +m) +(39) +From right triangle △HTK we obtain Rβ = HK sin( β +2 ). +From right triangle △HOK we obtain Rα = HK sin( α +2 ). +Replacing these values to (39), we obtain: +tan(θ) = +� +sin2( β +2 ) − sin2( α +2 ). sin2( π +m) +cos( β +2 ) +(40) +Substituting the values of tan(γ) in (35) and tan(θ) in (40) into +(34), we obtain tan( ξ+α +2 ). Subsequently, replacing the obtained +tan( ξ+α +2 ) to (31) we get Rext. +16 + diff --git a/9tFAT4oBgHgl3EQfpx3L/content/tmp_files/load_file.txt b/9tFAT4oBgHgl3EQfpx3L/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..3728c07b9b5cb62fdd27c8b90153a6e14ce80af7 --- /dev/null +++ b/9tFAT4oBgHgl3EQfpx3L/content/tmp_files/load_file.txt @@ -0,0 +1,1221 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf,len=1220 +page_content='Optimal multiple FSO transceiver configuration for using on High-altitude platforms Dieu Linh Truong ∗1 and The Ngoc Dang †2 1School of Information and Communication Technology, Hanoi University of Science and Technology, Vietnam 2Department of Wireless Communications, Posts and Telecommunication Institute of Technology, Vietnam January 23, 2023 Abstract Free-space optical (FSO) communication requires light of sight (LoS) between the transmitter and the receiver.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' For long-distance communication, many research projects have been conducted towards using a network composed of high- altitude platforms (HAPs) flying at an elevation of 20 km to carry intermediate FSO transceivers that forward data be- tween ground stations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' The clear environment at high el- evations prevents terrestrial obstacles from cutting the LoS between the transceivers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' An FSO transceiver on a HAP can communicate with ground stations within a small area owing to its limited beam size.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' We suggest using multiple FSO transceivers on a HAP to extend its ground coverage.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' However, the use of too many FSO transceivers may quickly exhaust the onboard energy of the HAP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' As a result, HAP must be lowered to recharge frequently.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' In this study, we first propose a configuration of multiple FSO transceivers to widen the ground coverage of a HAP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' We then propose a set of closed-form expressions to calculate the extended coverage.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Finally, to implement a HAP network using multiple FSO transceivers, we seek the optimal config- uration of multiple FSO transceivers that minimizes the to- tal cost of the HAP network, including amortization, energy, and maintenance costs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' The simulation results show that the proposed multiple FSO transceiver configuration clearly in- creases the ground coverage of a HAP and significantly re- duces the cost of the HAP network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Keywords— Free Space Optics, High-altitude platform, Beam size optimization, HAP based FSO network 1 Introduction Free-space optical (FSO) communication uses light propagation in free space to transmit data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' In recent years, this technology has emerged as a promising choice for short-distance high-speed communication between endpoints with a clear light of sight (LoS).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' ∗linhtd@soict.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='hust.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='edu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='vn †ngocdt@ptit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='edu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='vn Commercial FSO transmitters available in the market at prices of thousands of dollars can operate at 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='25 − 10 Gbps over 1 − 2 kilometers, for example, the SONABeam series of fSona [1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' To reach a long distance, a multi-hop FSO system can be used, where data are transmitted through intermediate FSO transceivers [2], [3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' To avoid obstacles that cut the LoS between terrestrial FSO transceivers, researchers from academia and industry have proposed placing intermediate FSO transceivers of the multi-hop FSO system on high-altitude platforms (HAPs).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' High-altitude platforms are flying objects that operate at altitudes of 17–24 km in the stratosphere.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Several HAP models have been proposed and piloted previously.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Some projects continue until recently, such as the Loon Project of Google [4], the UAV project of Facebook [5], and the Stratobus project of Thales Alenia Space [6].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' A multi-hop FSO system using a HAP network is described in [7] and illustrated in Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' According to this model, FSO transceivers on the ground (so-called ground FSO nodes) are re- grouped into clusters to become the serving zones of HAPs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' A HAP has an FSO transceiver looking down to exchange data with the ground FSO nodes of the cluster under it.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' This FSO transceiver is called serving FSO transceiver.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' A HAP also carries several FSO transceivers pointing towards other HAPs for inter- HAP communication.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' These FSO transceivers are known as inter- HAP FSO transceivers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Although the ITU recommends a HAP footprint width of ap- proximately 500 km in radius, experimental projects show much smaller coverage areas [8].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Nevertheless, a network of multiple HAPs can cover a country entirely.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' For example, a constellation of 16 HAPs with multiple radio frequency antennas was considered to cover Japan [9].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' An end-to-end data-switching scheme for a multi-hop FSO sys- tem using HAP was proposed in [7].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Since the communication between a HAP and the ground is point-to-multipoint, the serv- ing FSO transceiver on the HAP controls multiple accesses from ground FSO nodes under it using the WDM technique.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Each ground node is assigned a separate wavelength for up and down communication.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' An IP router on the HAP aggregates IP packets heading toward a common cluster within a single flow.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' The flow will be carried by one or more continuous lightpaths between the source and destination HAPs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' The number of lightpaths is deter- mined according to the size of the flow and the transport capacity of a wavelength.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' A WDM switch is installed on each HAP to route 1 arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='08642v1 [cs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='NI] 20 Jan 2023 these lightpaths over the HAP network on a wavelength-switched basis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' In Figure 1, the blue path HAP1-HAP2-HAP4-HAP5 and the red path HAP1-HAP2-HAP3 are two flows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' 1 2 2 1 1 1 1 2 3 3 3 3 3 WDM switch IP router IP router WDM switch 1 2 2 p-HAP-2 1 3 3 p-HAP-1 toward HAP-2 of cluster-2 toward HAP-1 of cluster-1 HAP2 Inter-HAP FSO transceiver Ground FSO node Serving FSO 3 1 2 A cluster A cluster transceiver HAP1 HAP3 HAP4 HAP5 Serving zone of HAP 1 Serving zone of HAP 2 inter-HAP link inter-HAP link Figure 1: Multi-hop FSO communication system using HAP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' In terrestrial FSO communications, the light beams are usually set to be very narrow for low transmission energies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' However, for HAP and ground communication, the serving FSO transceiver of the HAP must project a sufficiently wide laser beam for covering distributed ground FSO nodes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' A single serving FSO transceiver has a relatively small foot- print owing to the low capacity of the current laser source, and the limited sensibility and aperture sizes of ground receivers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' The calculation in Section 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='1 shows that with a laser source of 1 Watt, required received power at receivers of -41.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='1dBm, and receiver aperture radius of 2 m, a single serving FSO transceiver at an elevation of 20 km can cover a ground area of 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='691 km radius only (see Table 3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' To extend the coverage of a HAP, we propose using multiple serving FSO transceivers arranged in a bundle, as shown in Fig- ure 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Each serving FSO transceiver points in a slightly different direction to cover a particular ground area that overlaps other ar- eas to create a continuous coverage region.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Given a ground region to be served, using HAPs with multiple serving FSO transceivers reduces the number of required HAPs compared to using HAPs with a single serving FSO transceiver.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' However, the expenditure for serving FSO transceivers increases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Therefore, the number of serving FSO transceivers to be used on a HAP should be carefully considered.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Regarding the communication between ground nodes and a HAP, the multiple serving FSO transceiver model still uses the WDM technique, where each ground node is assigned a unique wavelength within its cluster to communicate with its HAP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' The number of ground nodes to be served by a HAP is restricted by the number of wavelengths offered by the WDM technique.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' In this study, we focus on identifying the optimal configuration of multiple serving FSO transceivers to achieve a minimal-cost HAP network for serving a set of ground FSO nodes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' The optimal configuration should define the number of serving FSO transceivers to be set up on a HAP and the beam width for each transceiver.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' The cost of the HAP network includes the investment, energy, and maintenance costs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Compared with the previous study in reference [7], the current research differs in two aspects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' First, the current research pro- Figure 2: A HAP with multiple serving FSO transceivers and its footprint.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' poses the use of multiple serving FSO transceivers on each HAP instead of a single serving FSO transceiver, as in [7].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Second, the current research identifies the optimal beam widths for serving FSO transceivers, whereas in [7], the beam widths are predefined.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' The current study also differs from that in [10], where beam size was optimized for an inter-HAP link, which is a point-to-point link.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' The remainder of this paper is organized as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' First, we analyze the single and multiple serving FSO transceivers configu- rations in Section 2 to determine their ground coverage sizes and constraints on transmitter beams.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' In Section 3, we state the prob- lem of designing a minimal-cost HAP-based FSO network, which is the target of the optimization of multiple serving FSO transceiver configuration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Then, in Section 4, we define a HAP energy con- sumption formula and show that solar energy is necessary for keep- ing the HAP working in space for a long period.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' We also present a constraint that a HAP must respect to relying uniquely on so- lar energy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' In Section 5, we present the algorithms for identifying the optimal multiple serving FSO transceiver configuration and its footprint radius.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Section 6 presents the process designing the minimal cost HAP-based FSO network using the optimal multi- ple serving FSO transceiver configuration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Section 7 presents the simulation results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Finally, Section 8 concludes the paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' 2 Serving FSO transceiver configu- rations 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='1 Single serving FSO transceiver configu- ration In this section, the allowable beam width and ground coverage of a single serving FSO transceiver are determined.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' The beam size is restricted to ensure that the received power at a ground point within the beam footprint is detectable by receivers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' 2 Figure 3: Surface of the part of sphere blocked by solid angle α is calculated as the sum of the surface of all ribbons around the sphere when the solid angle varies from α to 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Assume that the transmitter source radiates within a solid angle α and that the radiation density is uniform in all directions within the solid angle at a distance r from the source.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' The radiation den- sity at distance r is inversely proportional to the surface of the part of the sphere radius r blocked by the solid angle α.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' To calculate this surface, we divide the sphere into thin ribbons corresponding to open angles of d(α/2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' The width of a ribbon is rd(α/2), as shown in Figure 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' The radius of the ribbon at zenith angle α/2 is r sin(α/2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Thus, the ribbon surface is 2πr sin(α/2)rd(α/2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' The surface of the part of the sphere blocked by the solid angle α is the sum of the surfaces of all ribbons when zenith angle varies from α to 0, as follows: � 0 α 2πr sin (α 2 )rd(α 2 ) = 2πr2(1 − cos (α 2 )) Let Ur be the radiation density at distance r and Ptx be the transmitted power at the source.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' We deduce: Ur = Ptx 2πr2(1 − cos (α/2)) (1) Let P rx j be the received power at ground FSO node j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' The received power is proportional to the radiation density and the received aperture of the ground node.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' It is: P rx j = e−σLjULjAR (2) where Lj is the distance between ground FSO node j and its serving HAP Hi (see Figure 4), σ is the attenuation coefficient of the links between the HAP and ground, ULj is radiation density at distance Lj from the source, AR is the aperture area of the receiver.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Let Rrx be the receiver aperture radius, then, AR = πR2 rx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' In (2), the first term represents the attenuation of laser power through the atmosphere, which is described by the exponential Beer–Lambert Law [11].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Figure 4: Received power on border nodes of a coverage area is the smallest amongst all nodes in the area.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' By substituting ULj from (1) into (2), we obtain the received power at node j as follows: P rx j = e−σLj × Ptx × R2 rx 2L2 j × 1 1 − cos (α/2) (3) The power received at node j must not be less than the required level of the receiver, denoted by ρrx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' It is obvious that point j at the border of the ground coverage area receives the least power because it is the furthest from the source (see Figure 4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Hence, all points in the coverage areas of HAP Hi receive sufficient power if and only if the border points receive at least the required power;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' that is, P rx j = e−σH/ cos ( α 2 ) PtxR2 rx cos2 ( α 2 ) 2H2(1 − cos ( α 2 )) ≥ ρrx (4) where Lj is substituted by H/ cos( α 2 ) for border node j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Solving inequation (4) yields the beam width of the single serv- ing FSO transceiver configuration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Corresponding to beam width α, the ground coverage radius of the configuration is: Ri = H tan(α 2 ) (5) Lemma 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Function P rx j decreases with α ∈ [0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='.π].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Proof of Lemma 1 is given in Appendix A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Figure 5 shows the received power at the border of the cover- age area with different receiver aperture radius Rrx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' This figure confirms that P rx j decrease with an increase in α.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Let αmax be the value for α that makes P rx j (αmax) = ρrx;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' then according to Lemma 1, P rx j (α) ≥ P rx j (αmax) = ρrx, ∀α ∈ [0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='.αmax] thus all α ∈ [0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='.αmax] satisfy constraint (4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Calculations using the parameters given in Table 1 show that when Rrx = 2 m, αmax = 37° and the coverage radius is 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='691 km.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' When Rrx = 4 m, αmax = 67° and the coverage radius is 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='237 km.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' 3 Ribbon surface= 2πr sin(α/2) r d(α/2) Kd(a/2) r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='sin(a/2) a/2 SourceHAP H;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' α H Received power Prx R;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Nodej coverage area of HAP H 0 2 4 6 8 10 0 20 40 60 80 100 120 140 160 180 Received power at coverage border (10-8 W) Beam size α(degree) Rrx=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='125m Rrx=1m Rrx=2m Rrx=4m Required at receiver (Prx) Figure 5: Received power at the coverage border of the single serving FSO transceiver configuration with different receiver apertures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='2 Multiple serving FSO transceiver config- uration The ground coverage of a HAP can be widened by combining sev- eral serving FSO transceivers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Different combinations are possible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' In this research, we study a straightforward configuration in which a principal serving FSO transceiver is in the center projecting light perpendicular to the ground, and several identical supplemen- tary serving FSO transceivers are set evenly around the principal one (Figure 6).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Each supplementary transceiver projects slanted beams to extend the coverage in one direction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' This arrangement is referred to as mFSO configuration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Usually, the transmitters in a bundle are considered to project signals in parallel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' However, because of the large principal beam, the supplementary serving FSO transceiver projection directions are far from being perpen- dicular to the ground, and their footprints are ellipses instead of circles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' To create a continuous coverage region, the footprint of the principal serving FSO transceiver and those of the supplemen- tary serving FSO transceivers should overlap.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Therefore, there should be a sufficiently large number of supplementary serving FSO transceivers to cover entirely the contour of the principal foot- print.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' The extended coverage area is defined as the largest circle covered by these footprints (Figure 6).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' The principal transceiver is responsible for the region defined by its footprint.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' A supplemen- tary serving FSO transceiver is responsible for the part limited by its footprint, principal coverage circle, and extended coverage circle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Let α be always the beam width of the principal serving FSO transceiver.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' To ensure that ground nodes under principal coverage receive sufficient power, α should still respect constraint (4), as in the single serving FSO transceiver configuration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Let the beam width of a supplementary serving FSO transceiver be β.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' In the responsible area of the supplementary transceiver, the points on the extended coverage circle are the farthest from the supplementary transceiver;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' thus, they receive the least power.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' If these points receive at least ρrx, all other points receive sufficient power.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' It is easy to note that the footprints of the neighboring supple- Figure 6: footprint of multiple FSO transceiver (mFSO) con- figuration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' mentary serving FSO transceivers join each other on the extended coverage circle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Let J be such a joint point, the power J receives from the supplementary FSO transceiver is defined similar to (3) but with beam width β, which is P rx J = e−σ×LJ × Ptx × R2 rx 4L2 J × 2 1 − cos (β/2) (6) Thus, β is constrained by the condition P rx J ≥ ρrx, which gives: e−σ×LJ PtxR2 rx 2L2 J(1 − cos (β/2)) ≥ ρrx (7) Let us denote the extended coverage radius by Rext then LJ = � H2 + R2 ext (8) Appendix B presents detailed calculations of LJ and Rext.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' The calculations yielded the following results Rext = H2 tan( ξ+α 2 ) − tan( α 2 )(1 − tan2( ξ+α 2 )) 1 − tan2( ξ+α 2 ) + 2 tan( ξ+α 2 ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' tan( α 2 ) (9) where tan(ξ + α 2 ) = tan(γ) + tan(θ) 1 − tan(γ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' tan(θ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' cos( π m) tan(γ) = tan(α 2 ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' cos( π m) tan(θ) = � sin2( β 2 ) − sin2( α 2 ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' sin2( π m) cos( β 2 ) (10) (11) (12) and m is the number of supplementary FSO transceivers set around the principal one.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' We can remark that Rext and thus LJ depend on α, β and m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Hereafter, Rext is sometimes denoted by Rext(α, m, β) and LJ by LJ(α, m, β) to express these dependencies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=" 4 Principle coverage circle 0 K' K 2T m Extended coverage circle3 Problem of designing minimal cost HAP network There are several costs in a HAP network, such as investment, en- ergy, and maintenance costs." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Based on the expected life duration and maintenance cycle of a HAP, these costs can be distributed by day as 1) daily amortization cost representing investment cost, 2) average daily maintenance cost, and 3) daily energy cost.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Con- sequently, the problem of minimizing network cost becomes min- imizing the daily network cost, which comprises these three com- ponents.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Following variables are introduced for formulating mathemati- cally the daily network cost: K: Number of HAPs in the network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' The HAPs are indexed by i ∈ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='.K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' niF i : Number of FSO transceivers used on HAPi for inter- HAP communications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' nsF i : Number of serving FSO transceiver of HAPi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Let ζday H and ζday F be constants that express the daily amortiza- tion costs of a HAP and an FSO transceiver, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' These costs are defined as the ratio of the prices of the HAP or FSO transceiver to their expected lifetime duration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Then, the overall daily amortization cost of the HAP network is: Kζday H + ( K � i=1 nsF i + K � i=1 niF i )ζday F (13) To evaluate the daily maintenance and energy costs, we need to consider the HAP design.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' HAPs are classified into two categories based on the underlying physical principle that provides the lifting force for the HAPs: aerodynamic (the HAP is heavier than air) and aerostatic (the HAP is lighter than air).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' While aerostatic platforms use buoyancy to float in the air, aerodynamic platforms use dynamic forces created by movement through the air [8].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' In general, both aerostatic and aerodynamic systems require a “flying energy” to keep the HAP relatively stable for maintaining FSO communication between HAPs and that between HAPs and FSO ground nodes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' An aerodynamic system requires a large propulsion power to move.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Aerostatic systems typically consume less energy than aerodynamic systems do.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' To be able to operate for a long duration in space, HAPs are mainly unmanned.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' HAPs are equipped with different energy resources such as on- site production (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=', solar energy harvested by solar panels) or rechargeable energy (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=', batteries or fuel cells brought from the ground).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Solar energy-based HAPs can operate continuously in space until they are lowered for maintenance purpose.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Recharge- able energy-based HAPs are lowered once the reserved energy is depleted.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' In brief, the continuous in-space working duration of a HAP is limited by its available energy, which is relatively fixed by the HAP design, its energy consumption level, which varies de- pending on the payload weight and communication of the HAP, and its maintenance cycle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' We define the maintenance cost of a HAP as the expense of low- ering the HAP to perform technical maintenance, energy recharge on the ground, and then reinstall it in space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Let di be the number of days on which HAPi can operate con- tinuously in space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Let ζmtn be constant expressing the cost of one time lowering a HAP, maintaining it, recharging it, and then reinstalling it in space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' The daily maintenance cost of the HAP network is K � i=1 ζmtn di (14) Regarding the daily energy cost, we consider solar energy to be free, whereas the solar panel cost is counted in the cost of the HAP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' The cost of rechargeable energy is part the maintenance cost.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' As a result, the energy cost does not explicitly represent the total cost.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Nonetheless, the energy consumption level of a HAP affects its in-space working duration di;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' therefore, we analyze this in Section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Combining (13) and (14), we obtain the following overall daily cost of the HAP network: Cost = Kζday H + ( K � i=1 nsF i + K � i=1 niF i )ζday F + K � i=1 ζmtn di (15) The problem of minimizing daily cost of the HAP network is stated as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Given input parameters including – NFSO: Set of ground FSO nodes and their coordinates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' The number of nodes in the set is denoted as |NFSO|, – M: Data traffic to be carried between ground FSO nodes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' This is the list of bandwidth demands between the ground nodes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Outputs to seek are – A HAP network with HAP locations and inter-HAP links, – Beam width to set to each serving FSO transceiver.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Optimization objective is – Minimizing the daily cost expressed in (15) of the HAP network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' The following two remarks drive us to conduct further analyses in subsequent sections.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' First, if a HAP has self-sufficient solar energy, its in-space working duration di is not limited by its energy consumption but depends uniquely on the maintenance cycle of the HAP, which is usually constant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' In Section 4, we show the daily energy consumption of a HAP and the constraint that a HAP needs to respect to rely solely on solar energy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Second, the cost of the HAP network increases with an increase in the number of FSO transceivers and HAPs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' The number of HAPs can be reduced by increasing ground coverage.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' To increase ground coverage, more serving FSO transceivers can be used on each HAP, but this introduces greater energy consumption and ex- tra amortization cost.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Section 5 focuses on identifying the optimal configuration for serving FSO transceivers on a HAP to achieve a minimal HAP network cost.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' 4 Daily energy consumption of a HAP with payload Several parameters affect the power consumption of a HAP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' The descriptions and notations of these parameters are listed in section Energy parameters of Table 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Most parameters were set based on industrial experimental projects such as the Loon project [4], Stra- tobus project [6], and other studies listed in the reference column.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Section 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='1 presents the choice of parameter values in detail.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' 5 Param.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' nota- tions Descriptions Values References Cost related parameters ζday H Daily amortization cost of a HAP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' 100 ζday F Daily amortization cost of an FSO transceiver on HAP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' 10 ζmtn Cost of one-time maintenance of a HAP including lowing it down, 1000 maintenance, charging and reinstall it in the stratosphere.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Dm Maintenance cycle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' 365 days [6] Energy parameters Esolar Minimum daily harvested solar energy by a HAP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' 42 - 290 kWh [12] ρavion Power consumed by the avionic part of a HAP to carry an unit of mass.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' 2 W/kg ρHCM F Power for heating, cooling, and management for each FSO on HAP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' 20 W [4] ρPAT Power consumed by a PAT system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' 15W [13] ρinter F Power consumed by inter-HAP FSO transceivers for laser source (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='1 W), heating/cooling/management (20 W) and PAT (15 W).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='1 W [4] Inter-HAP FSO link parameters C2 n Atmosphere structure parameter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='0 × 10−18m−2/3 Attenuation coefficient.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='5 × 10−6m−1 [4] Coupling loss.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' 45 dBm Transmitted power of an inter-HAP FSO transceiver.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='1 W [4] Receiver aperture diameter of an inter-HAP FSO transceiver.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='037 m [4] Beam width of an inter-HAP FSO transmitter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' 280 µrad [4] HAP-ground link parameters and variables σ Attenuation coefficient.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='5 × 10−6m−1 ρFSO tx Transmitted power of the laser source of a serving FSO transceiver.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' 1 Watt Rrx Receiver aperture radius of a ground FSO transceiver.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='05 m SONABeam [1] ρrx Required received power at a ground FSO transceiver.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='10−8 W 41.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='1 dBm in [4] Other parameters H Elevation of HAPs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' 20 km LHH Maximum length of an inter-HAP link so that its BER is under δ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' 88 km δ BER threshold for inter-HAP links and lightpaths between HAPs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' W The number of wavelengths in WDM technique.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' 40;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' 80 µH Platform mass excluding FSO transceivers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='5 kg;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' 500 kg [4] µF FSO transceiver mass.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='3 kg [4] Table 1: Parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Greek characters are used for denoting constant parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Let us consider the power consumption of a single HAP Hi that has m serving FSO transceiver and niF i inter-HAP FSO transceivers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' The power consumption includes: P avion Hi : Power draw of avionic part for maintaining Hi with payload in space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' P down Hi : Power draw of all serving FSO transceivers on HAP Hi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' This power includes the heating/cooling/management power, laser transmitted power of all serving FSO transceivers on the HAP, and the power consumed by the Pointing Acqui- sition and Tracking (PAT) system of the HAP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' P inter Hi : Power draw of all inter-HAP FSO transceivers on HAP Hi for inter-HAP communication.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' The power includes the heating/cooling/management, and PAT power for each inter-HAP FSO transceiver.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Inter-HAP FSO transceivers are oriented towards different remote HAPs;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' therefore, each transceiver must have a PAT system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' The total daily energy consumption (by 24 hours) of Hi is Econsum = (P avion Hi + P down Hi + P inter Hi ) × 24 (16) To breakdown further P avion Hi , P down Hi , and P inter Hi , we introduce following parameters: ρavion: Power consumed by the avionic part of the HAP to carry a unit of mass.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' ρFSO tx : Transmitted power of each serving FSO transceiver.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Because the current power of laser source is limited to 1 W, which is very small in comparison with the power consumed by other factors on the HAP, we consider that ρFSO tx = 1 W, regardless of the beam width of the serving FSO transceiver.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' ρHCM F : Power draw for heating, cooling, and management.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' It is also considered constant for each serving FSO transceiver and is set to ρHCM F = 20 W, according to reference [4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' ρPAT : Power draw for Pointing, Acquisition and Tracking activity;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' it is another constant and is set to ρPAT = 15 W [13].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' A HAP system uses a single PAT for its set of serving FSO transceivers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' ρinter F : Power draw of a single inter-HAP FSO transceiver including communication, heating, cooling, management, and 6 PAT.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' According to [4], 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='1 W laser power is sufficient for an inter-HAP communication of 100 km distance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' In this study, we limited the inter-HAP link length to less than 100 km and considered the laser power constantly 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='1 W regardless of the distance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Therefore, ρinter F = ρHCM F + ρPAT + 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' µH: Mass of the HAP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' µF: Mass of an FSO on the HAP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Assuming that P avion Hi is linearly proportional to the weight of the HAP by ρavion, P avion Hi = [µH + (nsF i + niF i )µF]ρavion (17) P down Hi is the sum of the power consumed by serving FSO transceivers and PAT activity of the HAP;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' thus, P down Hi = nsF i (ρFSO tx + ρHCM F ) + ρPAT (18) P inter Hi is the sum of the power consumed by inter-HAP FSO transceivers;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' thus, P inter Hi = ρinter F .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='niF i (19) Substituting (17), (18), and (19) into (16), we obtain the daily power consumption of a HAP as Econsum = {[µH + (nsF i + niF i )µF]ρavion + nsF i (ρFSO tx + ρHCM F ) + ρPAT + ρinter F niF i } × 24 (20) 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='1 Necessity of solar energy and utilization constraint Current HAPs mainly use energy from solar panels mounted on HAP wings and/or energy from batteries or hydrogen fuel cells (HFC) onboard.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Solar energy can be harvested and charged into batteries during the day for nighttime use.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Harvested solar energy varies with year time and location.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' According to the experiments in [12], in York, UK, the harvested solar power is 42–80 kWh/day, and in Enugu, Nigeria, it is 290–545 kWh/day, depending on the size of the solar panel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Figure 7 depicts the total daily energy consumption of a HAP, calculated from (20), versus the number of serving FSO transceivers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Parameters were ρavion = 2 W/kg, ρPAT = 15 W, HAP weights µH = 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='5 kg or 500 kg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' The HAP carried 10 inter-HAP FSO transceivers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' The referenced daily solar en- ergy levels were the minimum daily solar energy levels in York and Enugu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' From a certain number of serving FSO transceivers, a HAP consumes more energy than the harvested solar energy in York, and an HFC would be necessary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Owing to the limited payload capacity of a HAP, its HFC capacity is also very limited.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' According to [8], the current state-of-the-art fuel-cell density is approximately 1600 Wh/kg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' A lightweight HAP, such as a Google balloon weights 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='5 kg, cannot carry heavy long-lasting fuel cells on board.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' The larger HAP Stratobus can carry up to 450 kg, but it weights already 7 tons leading to high energy consumption for flying.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Even if the Stratobus payload capacity is reserved for the HFC, its energy would quickly run out within a few days.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Based on this observation, we believe that long-duration flights should consider solar energy as the principal energy source.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' In this case, the power consumption of a HAP with payload must not 0 50000 100000 150000 200000 250000 300000 350000 0 20 40 60 80 100 Total daily energy consumption (W-hr) Number of serving FSO transceivers µΗ=28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='5 kg µΗ=500 kg Min solar energy at York Min solar energy at Enugu Figure 7: Energy consumption by a HAP with different num- ber of serving FSO transceivers in comparison with the min- imum harvested solar energy at York and Enugu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' ρavion = 2/kg W and ρPAT = 15 W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' exceed the daily harvested solar energy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Let the daily harvested solar energy be Esolar;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' then, � [µH + (nsF i + niF i )µF]ρavion + ρPAT + nsF i (ρFSO tx + ρHCM F ) + ρinter F niF i � ≤ Esolar 24 (21) According to Figure 7, solar energy provision does not need to be very large.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' A solar energy level between the minimum harvested in York and Enugu allows a 500 kg HAP to carry at least 6 serving FSO transceivers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' A HAP can carry hundreds FSO transceivers with more than 125 kWh solar energy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Therefore, it is realistic to rely on the solar energy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Hereafter, we consider that HAPs solely use solar energy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Despite self-sufficient solar energy, HAPs still need to be lowered periodically for maintenance, for example, after one year in the case of Stratobus [6].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Let us denote the maintenance cycle as a constant Dm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Then di = Dm, ∀i ∈ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='.K (22) 5 Optimal mFSO configuration Using multiple serving FSO transceivers increases the expense of FSO transceivers, although it can reduce the expense of HAPs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' This section aims to determine the mFSO configuration that min- imizes the HAP network cost defined in (15).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' We assume that all HAPs use identical mFSO configurations, that is, identical prin- cipal beam width α, supplementary beam width β and number of supplementary serving FSO transceivers m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Let us now consider the dependence of the HAP network cost on mFSO configuration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' As each HAP has m supplementary serving FSO transceivers and uses only solar energy, the cost (15) becomes Cost = Kζday H + (Km + K � i=1 niF i )ζday F + Kζmtn Dm Cost is a function of K, m and niF i .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' K depends on the coverage radius Rext(α, m, β) of the mFSO configuration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' niF i , as the num- ber of inter-HAP links of HAP i, depends on the traffic demand 7 set M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Hence, Cost depends on mFSO configuration and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' It is difficult to determine the optimal mFSO configuration without considering M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' To relax the dependance on M, we estimate Cost by a function that depends solely on mFSO configuration, that is, tuple (α, m, β);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' then try to find an instance (α, m, β) minimizing the estimated cost in expecting that the instance also drives the real cost to a minimum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='1 Cost estimation Figure 8: A ground area is divided into grid of square cells;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' each cell is circumscribed by a circle representing a serving zone of a HAP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' First, we estimate the number of HAPs K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Samples of the estimation are datasets with uniformly distributed ground nodes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Let S be the surface of the ground area containing those nodes, and W the number of wavelengths in the WDM technique.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' We divide the ground zone S into a grid of square cells of size ℓ × ℓ, each one will be covered by a HAP (see Figure 8).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' To be served by a HAP, a cell must satisfy the following two conditions: 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' A cell can contain at most W ground nodes because a HAP can use at most W wavelengths to serve ground nodes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Owing to the uniform distribution of ground nodes, we have ℓ2 S |NFSO| ≤ W 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' A cell must be contained inside by a circle radius equivalent to the extended radius Rext of a HAP ℓ ≤ √ 2Rext The maximum number of HAPs required to cover region S is the number of cells.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Let this number be ˆK, then, ˆK = S ℓ2 = ⌈max {|NFSO| W , S 2R2 ext }⌉ (23) Hence, ˆK is an overestimation of the number of HAPs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Next, we estimate the value of niF i .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Let V be the maximum number of inter-HAP links that a HAP may have.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Then niF i ≤ V, ∀i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Finally, Cost can be overestimated as: � Cost = ˆK � ζday H + (m + V + 1)ζday F + ζmtn Dm � (24) � Cost is a function of Rext(α, m, β) and m while V is a parameter of the estimator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' The estimation is more precise when V is set close to the actual number of inter-HAP links of a HAP, and coarser otherwise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='2 Algorithms finding optimal configura- tion Given α and m, a larger β results in a larger Rext, and thus a smaller ˆK and � Cost.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Therefore, β should be set to the largest value according to (7) for a given α and m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' It is worth noting that the value of β does not affect the solar energy consumption because the laser power ρFSO tx is small and is considered constant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Determining the optimal configuration becomes finding the optimal values of α and m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Algorithm 1 Find the optimal mFSO configuration 1: function Find-optimal-mFSO 2: niF i ← V 3: cMin ← ∞ ▷ cost min 4: αMax ← maximum α by (4) 5: for α = αMax .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' 0 do 6: mMax ← calculated by (25) ▷ max m 7: mOpt ← 0 ▷ optimal m 8: for m = 0 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' mMax do 9: β ← Beta-max(α, m) ▷ max β 10: Calculate Rext(α, m, β) using (9),(10),(11) (12) 11: Calculate � Cost(α, m, β) using (24) 12: if � Cost < cmin then 13: cmin ← � Cost 14: αOpt ← α ▷ optimal α 15: mOpt ← m ▷ optimal m 16: βOpt ← β ▷ optimal β 17: end if 18: end for 19: end for 20: return αOpt, mOpt, βOpt 21: end function Algorithm 2 Find the maximum β given α, m 1: function Beta-max(α, m) 2: for β = 0 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' 180 do 3: Calculate Rext(α, m, β) using (9),(10),(11) (12) 4: Calculate LJ using (8) 5: Calculate P rx J using (6) 6: if P rx J ¡ρrx then ▷ Looking for the first β violate constraint (7) 7: return β-1 ▷ the previous trial β was the maximum 8: end if 9: end for 10: end function Following an exhaustive search approach, we examine all possi- ble values of α and m to seek for the pair that minimizes � Cost in (24).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' The search range of α is from 0° to the maximum 8 Serving zone of a HAPvalue set by constraint (4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' The number of supplementary serving FSO transceivers m is also limited.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Indeed, since the number of inter-HAP links of a HAP can go up to V as set in Section 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='1, and nsF i = m + 1, ∀i, then from the energy constraint (21), we deduce the upper bound for m: m ≤ Esolar 24 − (VµFρavion + Vρinter F + µHρavion + ρPAT) µFρavion + ρHCM F + ρFSO tx − 1 (25) Algorithm 1 implements the exhaustive search idea.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' First, two nested loops scan all possible values of α satisfying constraint (4) and all possible values of m satisfying (25) to find the pair that minimizes � Cost in (24).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' For each pair (α, m), the largest value of β according to constraint (7) is selected using Algorithm 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' The optimal mFSO configuration is reported by the algorithms as (αOpt, mOpt, βOpt).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Algorithm 2 finds the maximum β that satisfies constraint (7) for a given pair of (α, m) by testing the possible values of β in- creasingly from 0 until the received power P rx J at the border of the extended coverage area reaches the required received power ρrx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' The received power P rx J is calculated using the set of equa- tions (6), (8), (9),(10),(11), and (12).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' In the implementation of both algorithms, α and β step by 1° after each iteration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Finer stepping allows obtaining more accu- rate results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' However, even with 1° stepping, the variation in the optimal Rext is only a few hundred meters, which is negligible in comparison to the absolute value of Rext which is in the range of 6-30 kilometers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' The complexity of Algorithm 1 is O(m) because α ≤ π.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' The complexity of Algorithm 2 is constant because β ≤ π.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' 6 Design HAP network topology This section presents the HAP network design using the optimal configuration identified above.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Let denote Linter as the number of inter-HAP links.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Since �K i=1 niF i is the total number of inter- HAP FSO transceivers, it is equal to 2Linter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' The network cost becomes: Cost = Kζday H + (K(m + 1) + 2Linter)ζday F + K ζmtn Dm and is equivalent to Cost = K � ζday H + (m + 1)ζday F + ζmtn Dm � + 2Linterζday F (26) The cost is proportional to the number of HAPs K and the number of inter-HAP links Linter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' We consider that the daily amortization cost of a HAP is much greater than that of an FSO transceiver;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' thus, the coefficient of K is much greater than the coefficient of Linter in Cost.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Consequently, K should be prioritized to minimize over Linter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Therefore, the topology design is broken into following two steps: i) ground nodes are clustered into equal radius circles that will become serving zones of HAPs in such a way that the number of clusters is the smallest for minimizing K;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' ii) corresponding HAPs are located at the centers of clusters but at an elevation of 20 km and are interconnected by the fewest number of inter-HAP links, Linter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' A HAP network topology design algorithm was proposed in [7] following these two steps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' In this algorithm, the clustering radius was not determined but was left as an input of the algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' In the current study, we set the clustering radius as the extended coverage radius Rext of the optimal mFSO configuration to drive towards a HAP network with minimal Cost.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' The main steps of the Figure 9: HAP network design flowchart.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' HAP network design process are presented in Figure 9, where the steps taken from [7] are shown in color.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' The process is explained as follows: Initialize V, the maximum number of inter-HAP links of a HAP, by a constant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Calculate the optimal mFSO configuration using Algorithm 1, and set the clustering radius as its Rext.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Apply the clustering algorithm proposed in [7] to distribute ground nodes into clusters of radius Rext while keeping the number of ground nodes in each cluster under W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Each cluster becomes a serving zone of a HAP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' The HAP is located at the center of the cluster but at an elevation of 20 km.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Bandwidth demands between ground nodes belonging to dif- ferent serving zones are bundled into lightpaths between corresponding HAPs, creating the inter-HAP traffic matrix MHAP .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Apply HAP topology design algorithm proposed in [7] to build the HAP topology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' The algorithm begins with an empty topology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' It finds a route for each lightpath demand of MHAP 9 Init V Find optimal conf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' (α, m, β) and Rext Clustering ground nodes with Rext radius [7] V=V+1 Calculate inter-HAP Design HAP topo [7] M HAF No is routed entirely Report HAP topofrom a full-mesh graph linking all HAPs within communica- tion distance limit LHH.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Each time a lightpath uses an inter- HAP link that has not yet been included in the current HAP topology, the link is incorporated into the topology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' The link in the topology is prioritized for use in building routes for the next lightpath demands.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Once all lightpath demands in MHAP are routed, the final topology is achieved.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Otherwise, routing may fail due to the low connectivity between HAPs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' In this case, V is increased by one, and the process is repeated until all lightpath de- mands in MHAP are routed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' 7 Simulation results The algorithms for finding the optimal mFSO configuration were implemented and integrated with the topology designed algorithm described in Section 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' We performed simulations with practical parameters and evaluated the efficiency of mFSO configuration compared to the single serving FSO transceiver configuration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='1 Parameter values The simulation parameters are listed in Table 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' The values of these parameters were chosen according to experiments reported in the literature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' This subsection explains the choices of the pa- rameter values.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Cost-related parameters: The cost-related parameters are set such that the daily amortization cost of a HAP is significantly greater than that of an FSO transceiver, and the one-time mainte- nance cost is significantly higher than the daily amortization cost of a HAP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' The maintenance cycle of a HAP is set as Dm = 1 year according to published information on Stratobus [6].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Energy-related parameters: Esolar - daily harvested solar energy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' We considered daily solar energy levels between the minimum daily solar energy values in York and Enugu reported in [12], which were 42 kWh and 290 kWh, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' ρavion - power consumed by the avionic part of a HAP to carry a unit of mass.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Although the power-to-mass ratio can be estimated as 6 W/kg according to [12], the published power rates of real systems are smaller.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' For aerodynamic systems such as Zephir-S, Zephir-T [14], and Phasa-35 [15], ρavion varies from 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='68 -3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='04 W/kg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Indeed, Zephir-S weighs 80 kg (75 kg platform and 5 kg payload) and consumes 243 W, Zephir-T weighs 160 kg (140 kg platform and 20 kg payload) and consumes 429 W, and Phasa-35 weighs 165 kg (150 kg platform and 15 kg payload) and consumes 459 W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Aerostatic systems consume even less power.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' The Stratobus weighs 7000 kg and consumes 5 kW when it carries a 250 kg payload and 8 kW when it carries 450 kg [6].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Thus, the power-to- mass ratio of Stratobus is between 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='69 and 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='07 W/kg only.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Therefore, in this simulation ρavion was set to 2 W/kg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' ρPAT - power consumed by a PAT system;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' it was set to 15 W according to [13].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' ρHCM F power consumed for heating, cooling, and manage- ment;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' it was set to 20 W according to [4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' ρinter F power consumed by an inter-HAP FSO transceiver;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' it was set to 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='1 W including laser power, ρHCM F and ρPAT.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Inter-HAP link parameters: These parameters were set to values similar to those provided in the Loon project [4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' HAP-ground FSO link parameters: The attenuation coefficient of an FSO link between a HAP and a ground node is set identical to that of inter-HAP links.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' The required received power ρrx at a ground node was set according to [4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' The aperture radius Rrx of a ground FSO receiver was set according to the commercial FSO transceiver SONABeam [1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Other parameters: δ - BER threshold for inter-HAP links and lightpaths.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' We set δ = 10−3 because errors with that BER can be corrected using current Forward Error Correction (FEC) techniques.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' LHH - the maximum allowable distance between two HAPs such that the BER of an inter-HAP link is less than δ = 10−3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Using the inter-HAP FSO link parameters listed in Table 1, the calculation yielded LHH = 88 km.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' µH - platform mass;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' it varies significantly from one design to another.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' The Loon balloon weighs just 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='5 kg while the Stratobus weighs 7000 kg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' With ρavion = 2 W/kg, a HAP weighing more than 7000 kg already consumes 326 kWh/day to carry itself, which is more than the maximum harvested solar energy, leading to no remaining energy to carry FSO transceivers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Therefore, µH = 500 kg was used in the simula- tions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' µF - mass of an FSO transceiver on HAPs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' It was set accord- ing to the FSO transceiver used in the Loon project, which weighs 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='3 kg [4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' This value is consistent with the weights between 8 and 10 kg of commercial terrestrial SONABeam FSO transceivers [1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' W - the number of wavelengths per FSO link.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' It was set to 40 or 80 according to the current WDM technique.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' The test dataset contained 19 test cases, each with 400 – 2800 ground nodes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' The ground FSO node locations were randomly generated on a square surface of 100 × 100 km, which is the size of a large metropolis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' The test cases had different numbers of ground nodes, reflecting different ground node densities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' The traf- fic requirement M contained demands randomly generated between ground FSO nodes such that the total incoming or outgoing traffic of a ground FSO node did not exceed 1 Gbps, which is the capacity of a single wavelength.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Initially, V was set to 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' The optimal multiple serving FSO transceiver configuration (α, m, β) was calculated using Algo- rithms 1 and 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' The extended radius Rext of the optimal configura- tions was calculated using (9) and was then used as the clustering radius in the HAP topology design step.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' With Esolar = 42 kWh and W = 40, V must be increased to 12 to get all demands in MHAP routed successfully for all test cases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' With all other Esolar and W values, the topology design algorithm successfully routed all demands in MHAP for all test cases right with initial V = 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Figure 10 illustrates the HAP locations and their footprints calculated using the proposed algorithms for a test case of 1005 ground FSO nodes, Esolar = 75 kWh, and W = 80.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='2 mFSO configuration versus single serv- ing FSO transceiver configuration Table 3 lists the maximum beam width αmax according to (4) and the maximum ground coverage radius of the single serving FSO transceiver configuration when the receiver aperture radius 10 Esolar = 42 kWh Esolar = 50 ∼ 290 kWh W = 40,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' V = 12 W = 80,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' V = 10 W = 40,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' V = 10 W = 80,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' V = 10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='|NFSO| ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='α ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='m ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='β ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='Rext ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='Cost ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='α ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='m ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='β ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='Rext ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='Cost ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='α ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='m ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='β ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='Rext ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='Cost ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='α ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='m ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='β ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='Rext ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='Cost ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='(1) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='(2) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='(3) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='(4) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='(5) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='(6) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='(7) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='(8) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='(9) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='(10) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='(11) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='(12) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='(13) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='(14) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='(15) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='(16) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='(17) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='(18) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='(19) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='(20) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='(21) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='480 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='37 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='0 6691 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='15308 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='37 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='0 6691 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='13488 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='37 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='13 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='16 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='11929 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='10010 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='37 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='13 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='16 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='11929 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='9470 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='588 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='37 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='0 6691 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='16639 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='37 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='0 6691 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='14519 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='37 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='13 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='16 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='11929 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='9304 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='37 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='13 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='16 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='11929 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='8964 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='763 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='37 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='0 6691 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='18495 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='37 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='0 6691 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='15815 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='37 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='13 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='16 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='11929 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='9990 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='37 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='13 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='16 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='11929 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='9510 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='854 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='37 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='0 6691 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='19141 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='37 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='0 6691 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='16341 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='37 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='13 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='16 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='11929 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='10493 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='37 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='13 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='16 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='11929 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='9933 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='998 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='37 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='0 6691 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='19101 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='37 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='0 6691 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='16701 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='37 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='13 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='16 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='11929 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='10855 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='37 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='13 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='16 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='11929 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='10215 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='1005 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='37 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='0 6691 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='19068 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='37 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='0 6691 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='16308 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='37 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='13 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='16 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='11929 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='11138 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='37 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='13 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='16 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='11929 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='10478 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='1150 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='37 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='0 6691 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='19666 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='37 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='0 6691 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='16926 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='37 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='13 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='16 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='11929 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='10915 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='37 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='13 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='16 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='11929 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='10275 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='1345 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='37 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='0 6691 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='20644 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='37 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='0 6691 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='17564 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='37 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='13 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='16 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='11929 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='11741 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='37 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='13 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='16 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='11929 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='10395 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='1477 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='37 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='0 6691 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='20752 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='37 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='0 6691 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='17612 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='37 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='12 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='16 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='11539 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='13115 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='37 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='13 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='16 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='11929 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='10335 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='1523 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='37 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='0 6691 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='21895 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='37 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='0 6691 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='18595 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='37 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='12 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='16 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='11539 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='14053 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='37 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='13 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='16 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='11929 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='10375 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='1675 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='37 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='0 6691 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='21735 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='37 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='0 6691 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='18535 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='37 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='11 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='16 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='11042 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='14128 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='37 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='13 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='16 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='11929 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='10495 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='1736 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='37 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='0 6691 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='22461 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='37 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='0 6691 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='19301 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='37 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='11 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='16 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='11042 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='14874 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='37 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='13 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='16 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='11929 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='10455 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='1911 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='37 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='0 6691 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='22481 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='37 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='0 6691 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='19021 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='37 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='16 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='10395 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='14869 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='37 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='13 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='16 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='11929 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='10495 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='2009 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='37 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='0 6691 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='22641 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='37 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='0 6691 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='19321 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='37 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='16 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='10395 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='15575 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='37 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='13 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='16 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='11929 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='10595 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='2135 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='37 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='0 6691 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='22761 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='37 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='0 6691 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='19221 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='37 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='16 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='10395 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='16493 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='37 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='13 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='16 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='11929 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='10575 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='2304 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='37 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='0 6691 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='22881 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='37 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='0 6691 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='19301 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='37 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='9 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='16 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='9524 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='18192 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='37 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='13 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='16 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='11929 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='10655 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='2325 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='37 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='0 6691 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='22368 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='37 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='0 6691 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='18948 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='37 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='9 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='16 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='9524 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='18555 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='37 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='13 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='16 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='11929 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='10675 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='2491 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='37 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='0 6691 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='22761 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='37 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='0 6691 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='19401 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='37 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='8 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='16 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='8946 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='18660 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='37 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='13 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='16 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='11929 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='10655 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='2753 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='37 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='0 6691 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='23346 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='37 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='0 6691 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='19926 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='37 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='8 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='16 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='8946 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='20284 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='37 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='13 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='16 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='11929 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='11178 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='Table 2: Optimal configurations and costs of all test cases with Rrx = 2 m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Receiver aperture Maximum beam Maximum radius Rrx (m) width αmax coverage radius (m) 2 37 ° 6691 4 67 ° 13237 Table 3: Maximum beam width and coverage radius of single serving FSO transceiver configuration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' was varied.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Table 4 lists the extended coverage radius of the max- imum mFSO configuration for different solar energy levels and receiver aperture radii.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' The maximum mFSO configuration was obtained using the largest principal beam αmax, largest m accord- ing to (25), and largest β according to (7), given αmax and m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' The coverage radius of the maximum mFSO configuration was ex- tended approximately twice in comparison with that of single FSO transceiver configuration, except for Esolar = 42kWh.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' When solar energy level increased, the maximum m increased;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' thus, the ex- tended coverage radius increased.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' However, when m was already large, the extention increased slowly with m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Additionally, the maximum extended coverage was much larger when Rrx = 4 than Rrx = 2m because a receiver can accept weaker signals with larger apertures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' To compare the network costs incurred by the two configura- tions, we examined the detailed results in Table 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' The table lists the optimal mFSO configurations and network costs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' When Esolar = 42kWh, the optimal number of supplementary serving FSO transceivers is m = 0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' thus, the configuration uses a single serving FSO transceiver.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Therefore, these cases were used as ref- erences for single serving FSO transceiver configuration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' When Esolar > 50kWh, all optimal configurations were truly mFSO, and the results were identical for all solar energy levels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' The numbers indicate that mFSO configuration offered significantly Esolar Max Rext (m) (kWh) Max m Rrx = 2 (m) Rrx = 4 (m) 42 6 6691 13237 50 16 12174 25582 75 47 13559 28403 100 78 13678 28845 125 109 13711 28969 150 140 13724 29020 175 171 13731 29047 200 202 13735 29062 225 233 13738 29071 250 264 13739 29077 275 295 13740 29082 290 314 13741 29084 Table 4: Maximum extended coverage radius of mFSO con- figuration when V = 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' lower costs (listed in columns 16th and 21th) than those of single serving FSO transceiver configuration (listed in columns 6th and 11th) for the same test cases and number of wavelengths W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' The costs resulting from mFSO configuration were as low as 54–87% of those resulting from single serving FSO transceiver configuration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' These numbers confirm that when there is sufficient solar energy, mFSO configuration is definitively a better choice than single serv- ing FSO configuration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' 11 0 20 40 60 80 100 120 0 20 40 60 80 100 y-axis x-axis Figure 10: Footprints of HAPs with mFSO configuration ob- tained from the topology design for a test case of 1005 ground FSO nodes when Esolar = 75 kwh, W = 80.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' A circle repre- sents an extended coverage area of a HAP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Small points in- side the circle are ground nodes and the dot at the center of the circle is the projected location of its serving HAP on the ground.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='3 Factors impact optimal mFSO configu- ration Comparing the values of the optimal extended coverage radius in Table 2 and the maximum extended coverage radius in Table 4, we can see that the optimal extended coverage radius was gener- ally not the maximum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' This is reasonable because the maximum configuration uses an excessive number of supplementary serving FSO transceivers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Low solar energy may render mFSO configuration impossible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Indeed, Esolar = 42 kWh could afford maximally 6 supplemen- tary serving FSO transceivers (see Table 4), which was too few to entirely cover the contour of the principal coverage area.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Thus, single FSO transceiver configuration was the unique choice.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' When the solar energy level exceeds 50 kWh, its exact value does not affect the optimal configuration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' The simulation showed that the optimal configurations were identical for all solar energy levels from 50 kWh/day and above.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' This is explained by the fact that a greater solar energy level allows to accept configurations with large coverage but may be more expensive because of using more supplementary serving FSO transceivers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' As a result, large con- figurations were not selected as optimal configurations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' In other words, increasing solar energy does not necessarily improve the HAP network cost.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Since the optimal multiple serving FSO transceiver configura- tions were identical for all Esolar ≥ 50 kWh, all other numerical results related to topology design and routing with these solar en- ergy levels were identical and are presented as single results in subsequent figures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' The coverage of the optimal configurations decreased when the ground nodes became denser.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Indeed, test cases with large num- bers of ground nodes had greater ground node densities, and columns 13th and 16th of Table 2 shows that the optimal m and Rext decreased when the density increased.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' The reason is that, with a greater ground node density, is a small ground region al- ready contains W ground nodes, which is the maximum serving capacity of a HAP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Therefore, a HAP could serve only a small zone and required only a few supplementary FSO transceivers to cover the zone.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='Numbers of HAPs and inter-HAP links ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='40 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='60 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='80 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='120 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='140 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='160 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='500 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='1000 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='1500 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='2000 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='2500 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='3000 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='Number of HAPs ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='Number of ground FSO nodes ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='ˆK for Esolar=42 kWh ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='K for Esolar=42 kWh ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='ˆK for Esolar ≥ 50 kWh kWh ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='K for Esolar ≥ 50 kWh ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='Lower bound ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='(a) W=40 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='40 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='60 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='80 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='120 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='140 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='160 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='500 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='1000 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='1500 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='2000 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='2500 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='3000 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='Number of HAPs ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='Number of ground FSO nodes ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='ˆK for Esolar=42 kWh ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='K for Esolar=42 kWh ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='ˆK for Esolar ≥ 50 kWh kWh ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='K for Esolar ≥ 50 kWh ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='Lower bound ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='(b) W=80 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='Figure 11: Number of HAPs and lower bound with (a) W = ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='40 and (b) W = 80 in different solar energy levels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Since each HAP can serve at most W ground FSO nodes, a lower bound for the number of HAPs is: nLB HAP = |NFSO| W (27) Figure 11 shows the number of HAPs, the estimated number of HAPs ˆK and lower bound nLB HAP when (a) W = 40 and (b) W = 80.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' With Esolar ≥ 50 kWh, the actual number of HAPs was almost identical to ˆK in both subfigures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Furthermore, when W = 40 12 0 100 200 300 400 500 600 0 500 1000 1500 2000 2500 3000 Number of inter-HAP links Number of ground FSO nodes Esolar=42 kWh Esolar ≥ 50 kWh (a) W=40 0 100 200 300 400 500 600 0 500 1000 1500 2000 2500 3000 Number of inter-HAP links Number of ground FSO nodes Esolar=42 kWh Esolar ≥ 50 kWh (b) W=80 Figure 12: Number of inter-HAP links when (a) W = 40 and (b) W = 80 for different solar energy levels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' and Esolar ≥ 50 kWh, the number of HAPs approached the lower bound starting from test cases with 1000 ground nodes or above.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' This implies that the number of HAPs was almost optimal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Figure 12 presents the absolute numbers of inter-HAP links.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' The number of inter-HAP links increased with the number of ground nodes, because the network size and traffic demand in- creased.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' The number of inter-HAP links clearly decreased when the wavelength density increased from W = 40 to W = 80.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' In other words, denser WDM technique helps reduce the number of inter-HAP FSO transceivers and consequently the network cost.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' mFSO configuration allows reducing significantly both the num- bers of HAPs and inter-HAP links.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Indeed, according to Figure 11, the number of HAPs was much smaller with Esolar ≥ 50 kWh where mFSO configuration was used, in comparison with Esolar = 42 kWh, where single serving FSO configuration was used.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' A similar phenomenon is observed in Figure 12 for the num- ber of inter-HAP links.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='5000 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='10000 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='15000 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='20000 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='25000 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='30000 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='35000 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='40000 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='500 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='1000 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='1500 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='2000 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='2500 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='3000 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='Cost ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='Number of ground FSO nodes ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='Cost of Esolar = 42 kWh ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='Cost of Esolar = 42 kWh ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='Cost of Esolar ≥ 50 kWh ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='Cost of Esolar ≥ 50 kWh ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='(a) W=40 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='5000 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='10000 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='15000 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='20000 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='25000 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='30000 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='35000 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='40000 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='500 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='1000 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='1500 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='2000 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='2500 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='3000 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='Cost ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='Number of ground FSO nodes ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='Cost of Esolar = 42 kWh ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='Cost of Esolar = 42 kWh ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='Cost of Esolar ≥ 50 kWh ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='Cost of Esolar ≥ 50 kWh ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='(b) W=80 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='Figure 13: Real costs and overestimated costs with W = 40 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='and W = 80.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='5 Quality of cost estimation Figure 13 presents the estimated and actual costs for different solar energy levels and wavelength densities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' The estimated cost was very close to the actual cost, mostly for Esolar ≥ 50kWh and W = 40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Parameter V, the threshold of the number of inter-HAP links of a HAP, affects the quality of the cost estimation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' To evaluate the choice of V, we compared it with the number of inter-HAP links that a HAP finally has.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Figure 14 shows the average number of inter-HAP links per HAP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' When there were 40 wavelengths per link, the average number of inter-HAP links per HAP varied between 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='7 and 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='3 for Esolar ≥ 50 kWh and V = 10, and between 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='8 and 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='8 for Esolar = 42 kWh while V raised up to 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Hence, the value of V was close to the actual number of inter-HAP links required by a HAP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' However, when there were 80 wavelengths per link, the average number of Inter-HAP links per HAP was reduced to between 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='4 and 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='4, which is slightly far from the threshold V = 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' A smaller V may help better estimate of the optimal cost in these cases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' 13 0 5 10 15 20 0 500 1000 1500 2000 2500 3000 Average number of inter-HAP links per HAP Number of ground FSO nodes Esolar=42 kWh Esolar ≥ 50 kWh (a) W=40 0 5 10 15 20 0 500 1000 1500 2000 2500 3000 Average number of inter-HAP links per HAP Number of ground FSO nodes Esolar=42 kWh Esolar ≥ 50 kWh (b) W=80 Figure 14: Number of inter-HAP links per HAP when (a) W = 40 and (b) W = 80 for different solar energy levels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' 8 Conclusions Using mFSO configuration widens a HAP footprint, however, its application is constrained by the available solar energy of the HAP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Moreover, mFSO configuration may imply an extra investment cost due to additional serving FSO transceivers in comparison with single FSO transceiver configuration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' This study focused on de- termining the optimal mFSO configuration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' First, we proposed a set of closed-form expressions for computing the coverage of an mFSO configuration in terms of beam widths of the princi- pal and supplementary transceivers and number of supplementary FSO transceivers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Second, we proposed an algorithm to determine the optimal mFSO configuration that minimizes the total HAP network cost.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Third, we designed a HAP network topology using the optimal configuration to achieve a minimal final cost.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' The simulation results showed that mFSO significantly ex- tended the HAP footprint.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' With the testing dataset, the extended footprint radii were generally two times larger than the single FSO transceiver footprint radii, leading to a four-fold larger coverage surface.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' The network cost with the optimal mFSO configuration was as low as 54% of the network cost when using a single serving FSO transceiver on a HAP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Acknowledgements This research was funded by the Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 102.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='02-2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='305.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' References [1] fSONA, “SONABeam 2500-E+ model specifications.” http://fsona.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='com.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Accessed Jan.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' [2] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Acampora and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Krishnamurthy, “A broadband wireless access network based on mesh-connected free-space optical links,” IEEE Personal Communications, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' 6, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' 5, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' 62– 65, 1999.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' [3] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Zhang, “Proposal of free space optical mesh network ar- chitecture for broadband access,” in 2002 IEEE Interna- tional Conference on Communications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Conference Proceed- ings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' ICC 2002 (Cat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='02CH37333), vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' 4, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' 2142–2145 vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='4, 2002.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' [4] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Moision, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Erkmen, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Keyes, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Belt, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Bowen, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Brinkley, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Csonka, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Eglington, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Kazmierski, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' hy- ong Kim, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Moody, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Tu, and W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Vermeer, “Demonstration of free-space optical communication for long-range data links between balloons on Project Loon,” in Free-Space Laser Com- munication and Atmospheric Propagation XXIX (H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Hem- mati and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Boroson, eds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' ), vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' 10096, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' 259 – 272, International Society for Optics and Photonics, SPIE, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' [5] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Chen, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Grier, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Malfa, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Booen, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Harding, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Xia, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Hunwardsen, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Demers, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Kudinov, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Mak, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Smith, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Sahasrabudhe, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Patawaran, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Wang, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Wang, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Zhao, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Leang, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Gin, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Lewis, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Nguyen, and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Quirk, “High-speed optical links for UAV applications,” in Free- Space Laser Communication and Atmospheric Propagation XXIX (H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Hemmati and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Boroson, eds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' ), vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' 10096, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' 316 – 324, International Society for Optics and Photon- ics, SPIE, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' [6] Thales group, “What’s up with stratobus.” https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='thalesgroup.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='com/en/worldwide/space/news/whats- stratobus, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Accessed Jan.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' [7] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Truong, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Dang, and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Dang, “Survivable free space optical mesh network using high-altitude platforms,” Optical Switching and Networking, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' 47, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' 100716, 2023.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' [8] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Karabulut Kurt, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Khoshkholgh, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Alfattani, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Ibrahim, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Darwish, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Alam, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Yanikomeroglu, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Yongacoglu, “A Vision and Framework for the High Altitude Platform Station (HAPS) Networks of the Future,” IEEE Communications Surveys & Tutorials, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' 23, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' 2, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' 729–779, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' [9] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Miura and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Oodo, “Wireless Communications System Using Stratospheric Platforms: R and D Program on Telecom and Broadcasting System Using High Altitude Platform Sta- tions,” Journal of the Communication Research Laboratory, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' 48, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' 33–48, Dec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' 2001.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' 14 [10] V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Mai and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Kim, “Beam size optimization and adap- tation for high-altitude airborne free-space optical commu- nication systems,” IEEE Photonics Journal, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' 11, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' 2, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' 1–13, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' [11] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Farid and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Hranilovic, “Outage capacity optimization for free-space optical links with pointing errors,” Journal of Lightwave Technology, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' 25, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' 7, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' 1702–1710, 2007.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' [12] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Arum, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Grace, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Mitchell, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Zakaria, and N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Morozs, “Energy management of solar-powered aircraft- based high altitude platform for wireless communications,” Electronics, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' 9, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' 1, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' [13] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Fidler, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Knapek, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Horwath, and W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Leeb, “Optical Communications for High-Altitude Platforms,” IEEE Journal of Selected Topics in Quantum Electronics, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' 16, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' 1058– 1070, Sep.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' 2010.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' [14] Airbus, “Zephir: Persistance and flexibility.” https://lf5422.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='com/wp- content/uploads/2018/08/0296 18 2 zephyr datasheet e horizontal a4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='pdf, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Accessed Jan.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' [15] BAE Systems, “Phasa-35.” http://prismaticltd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='co.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='uk/products/phasa- 35/, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Accessed Jan.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' A Proof of Lemma 1 Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Let x = cos(α/2), a = σH, and b = PtxR2 rx 2H2 then P rx j (x) = e−a/x bx2 (1 − x) (28) Calculate the derivative of P rx j (x) we get P ′rx j (x) = e−a/x � a 1 − x + 2x − x2 (1 − x)2 � b (29) Thus, the derivative of P rx j (α) is P ′rx j (α) = P ′rx j (x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' (− sin(α)) (30) Beam α is limited between [0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='.π] because it orients to the ground.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Thus, x ∈ [0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='.1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Consequently, 1 − x > 0 and 2x − x2 > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' In addition, a, b > 0, then P ′rx j (x) > 0 for all x ∈ [0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='.1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Be- cause − sin(α) < 0, ∀α ∈ [0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='.π], thus, P ′rx j (α) < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Consequently, P rx j (α) decreases with α.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' B Calculation of extended coverage radius of mFSO configuration This section identifies formulas that calculate the extended cover- age radius of an mFSO configuration characterized by the princi- pal beam width α, supplementary beam width β and number of supplementary beams m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Conventionally, the coverage provided by a bundle of transmit- ters is calculated as if the transmitters project perpendicular to the ground.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' In mFSO configuration, the principal beam in the center is large, and it pushes the supplementary serving FSO transceiver projection directions far from perpendicular to the ground.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' These supplementary beams form oblique cones that intersect with the ground plane in ellipses.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Considering of the elliptical form adds more complexity to the calculation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' In Figure 15, H denotes the position of a HAP, and its projec- tion on the ground plane is O, thus HO = H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' The principal beam forms a right circular cone whose axis is HO.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' The cone intersects the ground plane by a circle of radius Rα, which defines the prin- cipal footprint.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' The beam of a supplementary FSO transceiver is an oblique cone intersecting the ground plane by an ellipse that defines the corresponding supplementary footprint.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' The cone of the supplementary beam intersects with the cone of the principal beam by two lines: HK and HK′ where K and K′ are the two intersection points of the principal and supplementary footprints.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Thus, OK = OK′ = Rα.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' m supplementary FSO transceivers are arranged evenly around the principal transceiver, each of which is responsible for extending the coverage within an angle of 2π/m from the center O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' The responsible angle of the supplementary FSO transceiver in Figure 15 is defined by rays −−→ OK and −−→ OK′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Thus, � KOK′ = 2π/m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Ray −−→ OK intersects with the supplementary beam cone at J, then OJ is the radius of the extended coverage region.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Readers refer to Figure 6 for a complete view of the extended coverage circle and the positions of K, K′ and J on the ground.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Figure 15: Computation of the distance from supplementary FSO transceivers and the border of extended coverage area LJ in function of Beta.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Since the principal beam width is α, then � OHK = α/2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Let the base plane containing K and K′ of the supplementary beam cone cuts the cone axis at T, the primary cone axis HO at P, and HJ at J1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Then � THK = β/2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' In addition, the supplementary cone intersects with this base plane by a circle containing K, K′ with center T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Let Rβ be the radius of the circle, then TK = TK′ = Rβ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Let M be the midpoint of KK′ then H, O, T, M belong to the same plane.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Let ξ = � KHJ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=" The extended coverage radius is Rext = OJ = 15 H β/2 LY a/2 Supplementarycone base plane K' R Pilm a Supplementary foot print Principal foot print GroundHO tan(� OHJ) = H tan( α 2 + ξ)." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Thus, Rext = H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' tan � 2(ξ + α 2 ) − α 2 � Rext = H2 tan( ξ+α 2 ) − tan( α 2 )(1 − tan2( ξ+α 2 )) 1 − tan2( ξ+α 2 ) + 2 tan( ξ+α 2 ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' tan( α 2 ) (31) B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='1 Calculation of tan( ξ+α 2 ) Let N be the midpoint of KJ1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' As K and J1 are at the intersection of the supplementary cone and its base plane, HK = HJ1, HN ⊥ KJ1, and HN is the angle bisector of � KHJ1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Therefore, � NHK = ξ/2, thus � NHP = ξ+α 2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' In addition, since KO is on the base plane of the principal cone, HO ⊥ KO.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Thus, △PNH and △POK are similar right triangles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Consequently, � OKP = � NHP = ξ+α 2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Furthermore, tan(ξ + α 2 ) = OP OK = OP Rα (32) Let � OHM = γ and � THM = θ Then � OHT = θ + γ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Because MO is on the base plan of the principal cone, MO ⊥ HO.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' In addition, as PT is on the base plane of the supplementary cone whose axis is HT then HT ⊥ PT.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Consequently, △PTH and △POM are similar right triangles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' We can deduce that � PMO = � PHT = θ + γ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Therefore, tan(θ + γ) = OP OM = OP Rα.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' cos( π m) Combining with (32) we deduce : tan(ξ + α 2 ) = tan(θ + γ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' cos( π m) (33) Thus tan(ξ + α 2 ) = tan(γ) + tan(θ) 1 − tan(γ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' tan(θ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' cos( π m) (34) Since γ = � OHM then, tan(γ) = MO HO .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' From right triangle △OMK we have MO = OK.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' cos( π m).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' From right triangle △HOK we have HO = OK/ tan( α 2 ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Thus tan(γ) = tan(α 2 ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' cos( π m) (35) It remains to calculate tan (θ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content='2 Calculation of tan (θ) Look at the right triangle △HTM, we can see that: tan(θ) = TM TH (36) Since K and K′ are on a circle centered at T, and M is the midpoint of KK′ then △TMK is a right triangle, then TM = � TK2 − KM 2 = � R2 β − R2α.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' sin2( π m) (37) Easy to find that △THK is another right triangle then TH = TK/ tan(β 2 ) = Rβ/ tan(β 2 ) (38) Replacing (37) and (38) in to (36) we get tan(θ) = � R2 β − R2α.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' sin2( π m) Rβ/ tan( β 2 ) = tan(β 2 ) � 1 − (Rα Rβ )2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' sin2( π m) (39) From right triangle △HTK we obtain Rβ = HK sin( β 2 ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' From right triangle △HOK we obtain Rα = HK sin( α 2 ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Replacing these values to (39), we obtain: tan(θ) = � sin2( β 2 ) − sin2( α 2 ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' sin2( π m) cos( β 2 ) (40) Substituting the values of tan(γ) in (35) and tan(θ) in (40) into (34), we obtain tan( ξ+α 2 ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' Subsequently, replacing the obtained tan( ξ+α 2 ) to (31) we get Rext.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} +page_content=' 16' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9tFAT4oBgHgl3EQfpx3L/content/2301.08642v1.pdf'} diff --git a/BNE0T4oBgHgl3EQfPwB8/content/2301.02183v1.pdf b/BNE0T4oBgHgl3EQfPwB8/content/2301.02183v1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..bf04377c95bc8885642ed935cee0fccf1fc30a97 --- /dev/null +++ b/BNE0T4oBgHgl3EQfPwB8/content/2301.02183v1.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:f7ea372d91ddd2df6f709be1a83d339164bb0cf4b1927c67b6959ace08c64652 +size 1457905 diff --git a/BdE1T4oBgHgl3EQfpQWt/content/tmp_files/2301.03330v1.pdf.txt b/BdE1T4oBgHgl3EQfpQWt/content/tmp_files/2301.03330v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..c43ef1ae0a8190ef02a69a47c543649580f55d59 --- /dev/null +++ b/BdE1T4oBgHgl3EQfpQWt/content/tmp_files/2301.03330v1.pdf.txt @@ -0,0 +1,3626 @@ +Noname manuscript No. +(will be inserted by the editor) +HyRSM++: Hybrid Relation Guided Temporal Set Matching for +Few-shot Action Recognition +Xiang Wang · Shiwei Zhang · Zhiwu Qing · Zhengrong Zuo · Changxin Gao · +Rong Jin · Nong Sang +Received: date / Accepted: date +Abstract Few-shot action recognition is a challenging but +practical problem aiming to learn a model that can be eas- +ily adapted to identify new action categories with only a few +labeled samples. Recent attempts mainly focus on learning +deep representations for each video individually under the +episodic meta-learning regime and then performing tempo- +ral alignment to match query and support videos. However, +they still suffer from two drawbacks: (i) learning individ- +ual features without considering the entire task may result +in limited representation capability, and (ii) existing align- +ment strategies are sensitive to noises and misaligned in- +stances. To handle the two limitations, we propose a novel +Hybrid Relation guided temporal Set Matching (HyRSM++) +approach for few-shot action recognition. The core idea of +HyRSM++ is to integrate all videos within the task to learn +discriminative representations and involve a robust match- +ing technique. To be specific, HyRSM++ consists of two key +components, a hybrid relation module and a temporal set +matching metric. Given the basic representations from the +feature extractor, the hybrid relation module is introduced +to fully exploit associated relations within and cross videos +in an episodic task and thus can learn task-specific embed- +dings. Subsequently, in the temporal set matching metric, we +carry out the distance measure between query and support +Xiang Wang · Zhiwu Qing · Zhengrong Zuo · Changxin Gao (Corre- +sponding author) · Nong Sang +Key Laboratory of Ministry of Education for Image Processing and +Intelligent Control, School of Artificial Intelligence and Automation, +Huazhong University of Science and Technology +E-mail: {wxiang, qzw, zhrzuo, cgao, nsang}@hust.edu.cn +Shiwei Zhang +Alibaba Group +E-mail: zhangjin.zsw@alibaba-inc.com +Rong Jin +Twitter +E-mail: rongjinemail@gmail.com +videos from a set matching perspective and design a bidi- +rectional Mean Hausdorff Metric to improve the resilience +to misaligned instances. In addition, we explicitly exploit +the temporal coherence in videos to regularize the matching +process. In this way, HyRSM++ facilitates informative cor- +relation exchanged among videos and enables flexible pre- +dictions under the data-limited scenario. Furthermore, we +extend the proposed HyRSM++ to deal with the more chal- +lenging semi-supervised few-shot action recognition and un- +supervised few-shot action recognition tasks. Experimental +results on multiple benchmarks demonstrate that our method +consistently outperforms existing methods and achieves +state-of-the-art performance under various few-shot set- +tings. The source code is available at https://github. +com/alibaba-mmai-research/HyRSMPlusPlus. +Keywords Few-shot Action Recognition · Set Match- +ing · Semi-supervised Few-shot Action Recognition · +Unsupervised Few-shot Action Recognition +1 Introduction +Recently, the development of large-scale video bench- +marks [8, 23, 6, 13, 24] and deep networks [88, 51, 18, +89, 65, 52] have significantly boosted the progress of ac- +tion recognition. To achieve this success, we typically re- +quire large amounts of manually labeled data. However, ac- +quiring these labeled examples consumes a lot of manpower +and time, which actually limits further applications of this +task. In this case, researchers look to alternatives to achieve +action classification without extensive costly labeling. Few- +shot action recognition is a promising direction to reduce +manual annotations and thus has attracted much attention +recently [112, 105]. It aims at learning to classify unseen +action classes with extremely few annotated examples. +arXiv:2301.03330v1 [cs.CV] 9 Jan 2023 + +2 +Xiang Wang et al. +... +CNN +CNN +CNN +... +0.8 +0.1 +Query video +... +Support set +Hybrid relation module +Support: make coffee +Query: make coffee +Support: make coffee +Query: make coffee + + +Metric space +(support) +Metric space +(quey) +“pour water” +“pour coffee powder” +Temporal alignment +Temporal set matching +(b) +Time line +Matching line + + +(a) +Pull +Push +Pull +Push +Fig. 1 (a) Concept of the proposed hybrid relation module. We adaptively produce task-specific video embeddings by extracting relevant discrim- +inative patterns cross videos in an episodic task. (b) Example of make coffee, the current temporal alignment metrics tend to be strict, resulting in +an incorrect match on misaligned videos. In contrast, the proposed temporal set matching metric involving set matching technique and temporal +coherence regularization is more flexible in finding the best correspondences. +To solve the few-shot data-scarcity problem, popu- +lar attempts [112, 7, 68, 106] are mainly based on the +metric-based meta-learning technique [86], in which a com- +mon embedding space is first learnt via episodic training +and then an explicit or implicit alignment metric is em- +ployed to calculate the distances between the query (test) +videos and support (reference) videos for classification in +an episodic task. Typically, Ordered Temporal Alignment +Module (OTAM) [7] adopts a deep feature extractor to con- +vert an input video into a frame feature sequence indepen- +dently and explicitly explores the ordered temporal align- +ment path between support and query videos in this feature +space. Temporal-Relational CrossTransformer (TRX) [68] +learns a deep embedding space and tries to exhaustively con- +struct temporally-corresponding sub-sequences of actions to +compare. Some recent works [33, 94, 108, 62] propose to +design multi-level metrics for few-shot action recognition. +Although these methods have achieved remarkable per- +formance, there are still two limitations: individual feature +learning and inflexible matching strategy. First, discrimina- +tive interactive clues cross videos in an episode are ignored +when each video is considered independently during repre- +sentation learning. As a result, these methods actually as- +sume the learned representations are equally effective on +different episodic tasks and maintain a fixed set of video fea- +tures for all test-time tasks, i.e., task-agnostic, which hence +might overlook the most discriminative dimensions for the +current task. Existing work also shows that the task-agnostic +methods tend to suffer inferior generalization in other fields, +such as image recognition [47, 101], NLP [66, 57], and in- +formation retrieval [53]. Second, actions are usually com- +plicated and involve many subactions with different orders +and offsets, which may cause the failure of existing tempo- +ral alignment metrics. For example, as shown in Figure 1(b), +to make coffee, you can pour water before pour coffee pow- +der, or in a reverse order, hence it is hard for recent temporal +alignment strategies to find the right correspondences. Thus +a more flexible metric is required to cope with the misalign- +ment. +Inspired by the above observations, we thus solve the +few-shot action recognition problem by developing a novel +Hybrid Relation guided temporal Set Matching algorithm, +dubbed HyRSM++, which is architecturally composed of a +hybrid relation module and a temporal set matching metric. +In the hybrid relation module, we argue that the considerable +relevant relations within and cross videos are beneficial to +generate a set of customized features that are discriminative +for a given task. To this end, we first apply an intra-relation +function to strengthen structural patterns within a video via +modeling long-range temporal dependencies. Then an inter- +relation function operates on different videos to extract rich +semantic information to reinforce the features which are +more relevant to query predictions, as shown in Figure 1(a). +By this means, we can learn task-specific embeddings for +the few-shot task. On top of the hybrid relation module, +we design a novel temporal set matching metric consist- +ing of a bidirectional Mean Hausdorff Metric and a tem- +poral coherence regularization to calculate the distances be- +tween query and support videos, as shown in Figure 1(b). +The objective of the bidirectional Mean Hausdorff Metric +is to measure video distance from the set matching per- +spective. Concretely, we treat each video as a set of frames +and alleviate the strictly ordered constraints to acquire bet- +ter query-support correspondences. Furthermore, to exploit +long-range temporal order dependencies, we explicitly im- +pose temporal coherence regularization on the input videos +for more stable measurement without introducing extra net- +work parameters. In this way, by combining the hybrid re- +lation module and temporal set matching metric, the pro- +posed HyRSM++ can sufficiently integrate semantically re- +lational representations within the entire task and provide +flexible video matching in an end-to-end manner. We evalu- +ate the proposed HyRSM++ on six challenging benchmarks +and achieve remarkable improvements again current state- +of-the-art methods. +Although the intuition of HyRSM++ is straightforward, +it is elaborately designed for few-shot action recognition. +Can our HyRSM++ be applied to the more challenging + +HyRSM++: Hybrid Relation Guided Temporal Set Matching for Few-shot Action Recognition +3 +semi-supervised or unsupervised action recognition tasks +even if the settings are entirely different? To answer this +question, we extend HyRSM++ to the semi-supervised and +unsupervised objectives with minor task adaptation modi- +fications, and experimental results indicate that HyRSM++ +can be well adapted to different scenarios well and achieves +impressive performance. +In summary, we make the following four contributions: +(1) We propose a novel hybrid relation module to cap- +ture the intra- and inter-relations inside the episodic task, +yielding task-specific representations for different tasks. +(2) We reformulate the query-support video pair distance +metric as a set matching problem and develop a bidirectional +Mean Hausdorff Metric, which can be robust to complex ac- +tions. To utilize long-term temporal order cues, we further +design a new temporal coherence regularization on videos +without adding network parameters. +(3) We conduct extensive experiments on six challeng- +ing datasets to verify that the proposed HyRSM++ achieves +superior performance over the state-of-the-art methods. +(4) We show that the proposed HyRSM++ can be di- +rectly extended to the more challenging semi-supervised +few-shot action recognition and unsupervised few-shot ac- +tion recognition task with minor modifications. +In this paper, we have extended our preliminary CVPR- +2022 conference version [91] in the following aspects. i) +We integrate the temporal coherence regularization and set +matching strategy into a temporal set matching metric so +that the proposed metric can explicitly leverage temporal +order information in videos and match flexibly. Note that +temporal coherence regularization does not introduce ad- +ditional parameters and will not increase the burden of in- +ference. ii) We conduct more comprehensive ablation stud- +ies to verify the effectiveness and efficiency of the pro- +posed HyRSM++. iii) We clearly improve the few-shot +action recognition performance over the previous version. +Experimental results also manifest that HyRSM++ signifi- +cantly surpasses existing competitive methods and achieves +state-of-the-art performance. iv) We show that the proposed +HyRSM++ can be easily extended to the more challeng- +ing semi-supervised few-shot recognition and unsupervised +few-shot action recognition tasks. +2 Related Work +In the literature, there are some techniques related to this +paper, mainly including few-shot image classification, set +matching, temporal coherence, semi-supervised few-shot +learning, unsupervised few-shot learning, and few-shot ac- +tion recognition. In this section, we will briefly review them +separately. +Few-shot Image Classification. +Recently, the research +of few-shot learning [17, 55, 56] has proceeded roughly +along with the following directions: data augmentation, +optimization-based, and metric-based. Data augmentation is +an intuitive method to increase the number of training sam- +ples and improve the diversity of data. Mainstream strategies +include spatial deformation [70, 67] and semantic feature +augmentation [9, 100]. Optimization-based methods learn +a meta-learner model that can quickly adopt to a new task +given a few training examples. These algorithms include the +LSTM-based meta-learner [74], learning efficient model ini- +tialization [19], and learning stochastic gradient descent op- +timizer [50]. Metric-based methods attempt to address the +few-shot classification problem by ”learning to compare”. +This family of approaches aims to learn a feature space and +compare query and support images through Euclidean dis- +tance [76, 101, 99], cosine similarity [86, 98], or learnable +non-linear metric [80, 29, 47]. Our work is more closely re- +lated to the metric-based methods [47, 101] that share the +same spirit of learning task-specific features, whereas we fo- +cus on solving the more challenging few-shot action recog- +nition task with diverse spatio-temporal dependencies. In +addition, we will further point out the differences and con- +duct performance comparisons in the experimental section. +Set Matching. The objective of set matching is to accu- +rately measure the similarity of two sets, which have re- +ceived much attention over the years. Set matching tech- +niques can be used to efficiently process complex data struc- +tures [2, 72, 3] and has been applied in many computer vi- +sion fields, including face recognition [63, 93, 92], object +matching [73, 107], etc. Among them, Hausdorff distance +is an important alternative to handle set matching problems. +Hausdorff distance and its variants have been widely used +in the field of image matching and achieved remarkable re- +sults [34, 16, 35, 107, 82, 79]. Inspired by these great suc- +cesses, we introduce set matching into the few-shot action +recognition field for the first time. +Temporal Coherence. Videos naturally involve temporal +continuity, and there is much effort to effectively explore +how to leverage this property [11, 22, 27, 58]. Inverse Dif- +ference Moment (IDM) [11] is a commonly used measure of +local homogeneity, which assumes that in a sequence, two +elements are more similar if they are located next to each +other. The idea of IDM has been widely applied to texture +feature extraction [60], face recognition [59], and unsuper- +vised representation learning [22, 27] and achieved remark- +able performance. In this paper, we focus on constraining +the few-shot matching process by exploiting temporal co- +herence. +Semi-supervised Few-shot Learning. In practical appli- +cation scenarios, there are usually many unlabeled samples. +Semi-supervised few-shot learning considers learning new +concepts in the presence of extra unlabeled data. Ren et +al. [71] first introduce the challenging semi-supervised few- +shot learning paradigm and refine the prototypes by adopt- + +4 +Xiang Wang et al. +ing a soft k-means on unlabeled data. LST [49] proposes a +novel recursive-learning-based self-training strategy for ro- +bust convergence of the inner loop. TransMatch [103] de- +velops a new transfer learning framework by incorporat- +ing MixMatch [4] and existing few-shot learning methods. +PTN [31] employs the Poisson learning model to obtain in- +formative presentations between the labeled and unlabeled +data. PLCM [32] and iLPC [44] focus on cleaning predicted +pseudo-labels and generating accurate confidence estima- +tion. In the field of semi-supervised few-shot action recog- +nition, LIM [113] utilizes a label-independent memory to +preserve a feature bank and produces class prototypes for +query classification. +Unsupervised Few-shot Learning. The objective of un- +supervised few-shot learning is to utilize unlabeled samples +to construct meta-tasks for few-shot training. CACTUs [30] +and UFLST [36] construct many tasks by clustering em- +beddings and optimize the meta-learning process over the +constructed tasks. UMTRA [38] generates artificial tasks +by randomly sampling support examples from the training +set and produces corresponding queries by augmentation. +ULDA [69] and AAL [1] follow this paradigm to randomly +group augmented images for meta-learning and point out the +importance of data augmentation. More recently, MetaU- +VFS [64] presents the first unsupervised meta-learning al- +gorithm for few-shot action recognition and adopts a two- +stream 2D and 3D CNN model to explore spatial and tem- +poral features via contrastive learning. +Few-shot Action Recognition. +The difference between +few-shot action recognition and the previous few-shot learn- +ing approaches is that it deals with more complex higher +dimensional video data instead of two-dimensional images. +The existing methods mainly focus on metric-based learn- +ing. OSS-Metric Learning [40] adopts OSS-Metric of video +pairs to match videos. TARN [5] learns an attention-based +deep-distance measure from an attribute to a class center +for zero-shot and few-shot action recognition. CMN [112] +utilizes a multi-saliency embedding algorithm to encode +video representations. AMeFu-Net [20] uses depth infor- +mation to assist learning. Xian et al. [95] propose to learn +a generative adversarial network and produce video fea- +tures of novel classes for generalization. Coskun et al. [12] +leverage object-object interaction, hand grasp, optical flow, +and hand trajectory to learn an egocentric few-shot classi- +fier. OTAM [7] preserves the frame ordering in video data +and estimates distances with ordered temporal alignment. +ARN [105] introduces a self-supervised permutation invari- +ant strategy for spatio-temporal modeling. ITANet [106] +proposes a frame-wise implicit temporal alignment strategy +to achieve accurate and robust video matching. TRX [68] +matches actions by matching plentiful tuples of different +sub-sequences. More recently, STRM [84] makes use of lo- +cal and global enrichment mechanism for spatio-temporal +modeling based on TRX [68] and enforces class-separability +at different phase. Some works [33, 94, 108, 62] propose +to design multi-level metrics for few-shot action recogni- +tion. Note that most above methods focus on learning video +embedding independently. Unlike these previous methods, +our HyRSM++ improves the transferability of embedding +by learning intra- and inter-relational patterns that can bet- +ter generalize to unseen classes. +3 Method +In this section, we first formulate the definition of the +few-shot action recognition task. Then we present our Hy- +brid Relation guided temporal Set Matching (HyRSM++) +method. +3.1 Problem formulation +Few-shot action recognition aims to obtain a model that can +generalize well to new classes when limited labeled video +data is available. To make training more faithful to the test +environment, we adopt the episodic training manner [86] for +few-shot adaptation as in previous work [86, 7, 68, 106]. In +each episodic task, there are two sets, i.e., a support set S +and a query set Q. The support set S contains N × K sam- +ples from N different action classes, and each class contains +K support videos, termed the N-way K-shot problem. The +goal is to classify the query videos in Q into N classes with +these support videos. +3.2 HyRSM++ +Pipeline. The overall architecture of HyRSM++ is illus- +trated in Figure 2. For each input video sequence, we first +divide it into T segments and extract a snippet from each +segment, as in previous methods [88, 7]. This way, in an +episodic task, the support set can be denoted as S += +{s1, s2, ..., sN×K}, where si = {s1 +i , s2 +i , ..., sT +i }. For sim- +plicity and convenience, we discuss the process of the N- +way 1-shot problem, i.e., K = 1, and consider that the +query set Q contains a single video q. Then we apply +an embedding model to extract the feature representations +for each video sequence and obtain the support features +Fs = {fs1, fs2, ..., fsN } and the query feature fq, where +fsi = {f 1 +i , f 2 +i , ..., f T +i } and fq = {f 1 +q , f 2 +q , ..., f T +q }. After +that, we input Fs and fq to the hybrid relation module to +learn task-specific features, resulting in ˜Fs and ˜fq. Finally, +the enhanced representations ˜Fs and ˜fq are fed into the set +matching metric to generate matching scores. Based on the +output scores, we can train or test the total framework. + +HyRSM++: Hybrid Relation Guided Temporal Set Matching for Few-shot Action Recognition +5 +Support set +Query video +Backbone +Intra-relation +Intra-relation +Intra-relation +Intra-relation +A +Inter-relation modeling +Hybrid relation module +0.1 +0.2 +0.7 +A +Avg-pooling +E +Expend +Concatenate +Convolution +Temporal set matching metric +Backbone +Backbone +Backbone +A +A +A +E +E +E +E +Pull +Push +Fig. 2 Schematic illustration of the proposed Hybrid Relation guided temporal Set Matching (HyRSM++) approach on a 3-way 1-shot problem. +Given an episode of video data, a feature embedding network is first employed to extract their feature vectors. Then, A hybrid relation module is +followed to integrate rich information within each video and cross videos with intra-relation and inter-relation functions. Finally, the task-specific +features are fed forward into a temporal set matching metric for matching score prediction. Best viewed in color. +Hybrid relation module. Given the features Fs and fq +output by the embedding network, current approaches, e.g., +OTAM [7], directly apply a classifier C in this feature space. +They can be formulated as: +yi = C(fsi, fq) +(1) +where yi is the matching score between fsi and fq. During +training, yi = 1 if they belong to the same class, otherwise +yi = 0. In the testing phase, yi can be adopted to predict +the query label. From the perspective of probability theory, +it makes decisions based on the priors fsi and fq: +yi = P((fsi, fq)|fsi, fq) +(2) +which is a typical task-agnostic method. However, the task- +agnostic embedding is often vulnerable to overfit irrelevant +representations [29, 47] and may fail to transfer to unseen +classes not yet observed in the training stage. +Unlike the previous methods, we propose to learn task- +specific features for each target task. To achieve this goal, we +introduce a hybrid relation module to generate task-specific +features by capturing rich information from different videos +in an episode. Specifically, we elaborately design the hybrid +relation module H in the following form: +˜fi = H(fi, G); fi ∈ [Fs, fq], G = [Fs, fq] +(3) +That is, we improve the feature fi by aggregating seman- +tic information cross video representations, i.e., G, in an +episodic task, allowing the obtained task-specific feature ˜fi +to be more discriminative than the isolated feature. For ef- +ficiency, we further decompose hybrid relation module into +two parts: intra-relation function Ha and inter-relation func- +tion He. +The intra-relation function aims to strengthen structural +patterns within a video by capturing long-range temporal de- +pendencies. We express this process as: +f a +i = Ha(fi) +(4) +here f a +i +∈ RT ×C is the output of fi through the intra- +relation function and has the same shape as fi. Note that the +intra-relation function has many alternative implements, in- +cluding multi-head self-attention (MSA), Transformer [85], +Bi-LSTM [25], Bi-GRU [10], etc., which is incredibly flex- +ible and can be any one of them. +Based on the features generated by the intra-relation +function, an inter-relation function is deployed to semanti- +cally enhance the features cross different videos: +f e +i = He +i (f a +i , Ga) = +|Ga| +� +j +(κ(ψ(f a +i ), ψ(f a +j )) ∗ ψ(f a +j )) +(5) +where Ga = [F a +s , f a +q ], ψ(·) is a global average pooling layer, +and κ(f a +i , f a +j ) is a learnable function that calculates the se- +mantic correlation between f a +i and f a +j . The potential logic +is that if the correlation score between f a +i and f a +j is high, +i.e., κ(f a +i , f a +j ), it means they tend to have the same seman- +tic content, hence we can borrow more information from f a +j +to elevate the representation f a +i , and vice versa. In the same +way, if the score κ(f a +i , f a +i ) is less than 1, it indicates that +some irrelevant information in f a +i should be suppressed. +In this way, we can improve the feature discrimination +by taking full advantage of the limited samples in each +episodic task. The inter-relation function also has similar +implements with the intra-relation function but with a dif- +ferent target. After the inter-relation function, we employ +an Expend-Concatenate-Convolution operation to aggregate + +6 +Xiang Wang et al. +information, as shown in Figure 2, where the output feature +˜fi has the same shape as f e +i . In the form of prior, our method +can be formulated as: +yi = P(( ˜fsi, ˜fq)|H(fsi, G), H(fq, G)); G = [Fs, fq] +(6) +Intuitively, compared with Equation 2, it can be conducive +to making better decisions because more priors are provided. +In particular, the hybrid relation module is a plug-and-play +unit. In the experiment, we will fully explore different con- +figurations of the hybrid relation module and further inves- +tigate its insertablility. +Temporal set matching metric. Many prior few-shot +action recognition algorithms usually impose a strict tempo- +ral alignment strategy on generated video representations for +few-shot classification. However, they suffer from causing +some failed matches when encountering misaligned video +instances. Instead, we develop a flexible metric based on set +matching that explicitly discovers optimal frame matching +pairs for the ability to be insensitive to misalignment. Con- +cretely, the proposed temporal set matching metric contains +two parts, bidirectional Mean Hausdorff Metric (Bi-MHM) +and temporal coherence regularization, respectively. We will +describe them in detail below. +Given the relation-enhanced features ˜Fs and ˜fq, we +present a novel metric to enable efficient and flexible match- +ing. In this metric, we treat each video as a set of T frames +and reformulate distance measurement between videos as +a set matching problem, which is robust to complicated +instances, whether they are aligned or not. Specifically, +we achieve this goal by modifying the Hausdorff distance, +which is a typical set matching approach. The standard +Hausdorff distance D can be formulated as: +d( ˜fi, ˜fq) = max +˜ +f a +i ∈ ˜fi +( min +˜ +f bq ∈ ˜ +fq +��� ˜f a +i − ˜f bq +���) +d( ˜fq, ˜fi) = max +˜ +f b +q ∈ ˜ +fq +( min +˜ +f a +i ∈ ˜fi +��� ˜f bq − ˜f a +i +���) +D = max(d( ˜fi, ˜fq), d( ˜fq, ˜fi)) +(7) +where ˜fi ∈ RT ×C contains T frame features, and +��· +�� is a +distance measurement function, which is the cosine distance +in our method. +However, the previous methods [102, 21, 111, 16] +pointed out that Hausdorff distance can be easily affected +by noisy examples, resulting in inaccurate measurements. +Hence they employ a directed modified Hausdorff distance +that robust to noise as follows: +dm( ˜fi, ˜fq) = 1 +Ni +� +˜ +f a +i ∈ ˜fi +( min +˜ +f b +q ∈ ˜ +fq +��� ˜f a +i − ˜f bq +���) +(8) +where Ni is the length of ˜fi, and equal to T in this paper. +Hausdorff distance and its variants achieve great success in +image matching [82, 16, 34] and face recognition [21, 79]. +We thus propose to introduce the set matching strategy into +the few-shot action recognition field and further design a +novel bidirectional Mean Hausdorff Metric (Bi-MHM): +Db = 1 +Ni +� +˜ +f a +i ∈ ˜fi +( min +˜ +f bq ∈ ˜ +fq +��� ˜f a +i − ˜f bq +���)+ +1 +Nq +� +˜ +f bq ∈ ˜ +fq +( min +˜ +f a +i ∈ ˜fi +��� ˜f bq − ˜f a +i +���) +(9) +where Ni and Nq are the lengths of the support feature ˜fi +and the query feature ˜fq respectively. +The proposed Bi-MHM is a symmetric function, and the +two items are complementary to each other. From Equa- +tion 9, we can find that Db can automatically find the best +correspondencies between two videos, e.g., ˜fi and ˜fq. Note +that our Bi-MHM is a non-parametric classifier and does not +involve numerous non-parallel calculations, which helps to +improve computing efficiency and transfer ability compared +to the previous complex alignment classifiers [7, 68]. More- +over, the hybrid relation module and Bi-MHM can mutually +reinforce each other, consolidating the correlation between +two videos collectively. +The Bi-MHM approach described above assumes video +sequence representations belonging to the same action have +the same set structure in the feature space and does not +explicitly utilize temporal order information. However, it +would be much more general to take the inherent temporal +information in videos into account. For this reason, we take +advantage of the temporal coherence that naturally exists in +sequential video data and construct a temporal coherence +regularization to further constrain the matching process by +incorporating temporal order information. +IDM [11] is a commonly used means that can exploit +temporal coherence within videos, which can be formulated +as: +I( ˜fi) = +T +� +a=1 +T +� +b=1 +1 +(a − b)2 + 1 · +��� ˜f a +i − ˜f b +i +��� +(10) +where ˜fi is the input video feature, T is the temporal length +of the video, and the above loss encourages frames that are +close in time to be close in the feature space as well. In addi- +tion, there is another way to use temporal order information +in the literature [22, 59]: +I( ˜fi; ˜f a +i , ˜f b +i ) = +� +� +� +��� ˜f a +i − ˜f b +i +��� , +if |a − b| = 1 +max(0, m − +��� ˜f a +i − ˜f b +i +���) +if |a − b| > 1 +(11) +where m is the size of the margin. Equation 11 utilizes +the video coherence property by pulling two frame features +closer if they are adjacent, pushing farther apart by one mar- +gin m if they are not adjacent. Through observation, we can + +HyRSM++: Hybrid Relation Guided Temporal Set Matching for Few-shot Action Recognition +7 +see that in Equation 10, all frames are pulled close regardless +of time distance. In Equation 11, all frame features are sep- +arated by a margin m if they are not adjacent to the current +frame, i.e., all pairs are treated equally. The above two man- +ners do not fully exploit the smooth and continuous changes +of the video. To this end, we propose a novel form to mine +temporal coherence property: +I( ˜fi; ˜f a +i , ˜f b +i ) = +� +� +� +1 +(a−b)2+1 · +��� ˜f a +i − ˜f b +i +��� , +if |a − b| ≤ δ +max(0, mab − +��� ˜f a +i − ˜f b +i +���) +if |a − b| > δ +(12) +where δ is a window size and mab = 1 − e− (|a−b|−δ)2 +2σ2 +for smooth temporal coherence. Compared with the origi- +nal forms, our proposed temporal coherence regularization +can better reflect the continuous change of video and thus +lead to better performance. +In the training phase, we take the negative distance for +each class as logit. Then we utilize the same cross-entropy +loss as in [7, 68], the auxiliary semantic loss [46, 54] and the +temporal coherence regularization to jointly train the model. +The auxiliary semantic loss refers to the cross-entropy loss +on the real action classes, which is widely used to improve +training stability and generalization. During inference, we +select the support class closest to the query for classification. +3.3 Extended applications of HyRSM++ +3.3.1 Semi-supervised few-shot action recognition +The objective of semi-supervised few-shot action recogni- +tion [113] is to fully explore the auxiliary information from +unlabeled video data to boost the few-shot classification. +Compared with the standard supervised few-shot setting, in +addition to the support set S and query set Q, an extra un- +labeled set U is also included in a semi-supervised few-shot +task to alleviate data scarcity. We demonstrate that the pro- +posed HyRSM++ can build a bridge between labeled and +unlabeled examples, leading to higher classification perfor- +mance. +Given an unlabeled set U, a common practice in semi- +supervised learning literature [110, 104, 77] is to adopt the +Pseudo Labeling technique [45], which assumes that the de- +cision boundary usually lies in low-density areas and data +samples in a high-density area have the same label. Sim- +ilarly, traditional semi-supervised few-shot learning meth- +ods [71, 49] usually produce pseudo labels for unlabeled +data based on the known support set, and then the gener- +ated high-confidence pseudo-label data is augmented into +the support set. In this paper, we follow this paradigm and +utilize HyRSM++ to leverage unlabeled examples. Since +Algorithm 1 HyRSM++ for semi-supervised few-shot ac- +tion recognition +Require: A labeled support set S, an auxiliary unlabeled set U, and a +query set Q +Ensure: Optimized few-shot classifier HyRSM++ +1: Enter support set S and unlabeled set U into HyRSM++ and obtain +the category prediction of U based on Equation 9; +2: According to the prediction distribution, select the high-confidence +samples to generate pseudo-labels and update S with the selected +samples to get the augmented S +′; +3: Apply the augmented S +′ and query set Q for supervised few-shot +training as described in Section 3.2; +noisy videos usually have higher losses in training, it is pos- +sible to leverage the strong HyRSM++ to distinguish be- +tween clean and noisy videos from the prediction scores. +Based on this, we choose reliable pseudo-labeled samples +in the unlabeled set by predictions and augment the support +set with high-confidence pseudo-label data. Subsequently, +we take advantage of the augmented support set to classify +the query videos as in the supervised few-shot task. During +the training stage, many semi-supervised few-shot tasks are +sampled to optimize the whole model, as shown in Algo- +rithm 1. For inference, the evaluation process is also con- +ducted by sampling 10,000 episodic tasks. +3.3.2 Unsupervised few-shot action recognition +Unlike the previously described settings involving labelled +data, unsupervised few-shot action recognition aims to use +unlabeled data to construct few-shot tasks and learn adap- +tations to different tasks. We further extend HyRSM++ to +this unsupervised task and verify its capability of transfer- +ring prior knowledge to learn to deal with unseen tasks effi- +ciently. +To perform unsupervised few-shot learning, construct- +ing few-shot tasks is the first step. However, there are no +label annotations that can be directly applied for few-shot +learning in the challenging unsupervised setting. Following +prior unsupervised few-shot algorithms [38, 36], we gener- +ate few-shot tasks by first adopting existing unsupervised +learning approaches to learn initialized feature embeddings +of the input videos, and then leveraging deep clustering tech- +niques to construct pseudo-classes of the videos. According +to clustering results, we are able to produce few-shot tasks +by sampling N-way K-shot episodes. We then use the con- +structed few-shot tasks to train HyRSM++. During the test- +ing phase, we sample 10,000 episodes from the test set to +obtain the performance, and the label information is only +used for evaluation. + +8 +Xiang Wang et al. +Table 1 Comparison to recent few-shot action recognition methods on the meta-testing set of SSv2-Full, Kinetics, Epic-kitchens and HMDB51. +The experiments are conducted under the 5-way setting, and results are reported as the shot increases from 1 to 5. ”-” means the result is not +available in published works, and the underline indicates the second best result. +Method +Reference +Dataset +1-shot +2-shot +3-shot +4-shot +5-shot +CMN++ [112] +ECCV’18 +SSv2-Full +34.4 +- +- +- +43.8 +TRN++ [109] +ECCV’18 +38.6 +- +- +- +48.9 +OTAM [7] +CVPR’20 +42.8 +49.1 +51.5 +52.0 +52.3 +TTAN [48] +ArXiv’21 +46.3 +52.5 +57.3 +59.3 +60.4 +ITANet [7] +IJCAI’21 +49.2 +55.5 +59.1 +61.0 +62.3 +TRX (Ω={1}) [68] +CVPR’21 +38.8 +49.7 +54.4 +58.0 +60.6 +TRX (Ω={2, 3})[68] +CVPR’21 +42.0 +53.1 +57.6 +61.1 +64.6 +STRM [84] +CVPR’22 +43.1 +53.3 +59.1 +61.7 +68.1 +MTFAN [94] +CVPR’22 +45.7 +- +- +- +60.4 +Nguyen et al. [62] +ECCV’22 +43.8 +- +- +- +61.1 +Huang et al. [33] +ECCV’22 +49.3 +- +- +- +66.7 +HCL [108] +ECCV’22 +47.3 +54.5 +59.0 +62.4 +64.9 +HyRSM +CVPR’22 +54.3 (+5.0) +62.2 (+6.7) +65.1 (+6.0) +67.9 (+5.5) +69.0 (+0.9) +HyRSM++ +- +55.0 (+5.7) +63.5 (+8.0) +66.0 (+6.9) +68.8 (+6.4) +69.8 (+1.7) +MatchingNet [86] +NeurIPS’16 +Kinetics +53.3 +64.3 +69.2 +71.8 +74.6 +MAML [19] +ICML’17 +54.2 +65.5 +70.0 +72.1 +75.3 +Plain CMN [112] +ECCV’18 +57.3 +67.5 +72.5 +74.7 +76.0 +CMN-J [113] +TPAMI’20 +60.5 +70.0 +75.6 +77.3 +78.9 +TARN [5] +BMVC’19 +64.8 +- +- +- +78.5 +ARN [105] +ECCV’20 +63.7 +- +- +- +82.4 +OTAM [7] +CVPR’20 +73.0 +75.9 +78.7 +81.9 +85.8 +ITANet [106] +IJCAI’21 +73.6 +- +- +- +84.3 +TRX (Ω={1}) [68] +CVPR’21 +63.6 +75.4 +80.1 +82.4 +85.2 +TRX (Ω={2, 3}) [68] +CVPR’21 +63.6 +76.2 +81.8 +83.4 +85.9 +STRM [84] +CVPR’22 +62.9 +76.4 +81.1 +83.8 +86.7 +MTFAN [94] +CVPR’22 +74.6 +- +- +- +87.4 +Nguyen et al. [62] +ECCV’22 +74.3 +- +- +- +87.4 +Huang et al. [33] +ECCV’22 +73.3 +- +- +- +86.4 +HCL [108] +ECCV’22 +73.7 +79.1 +82.4 +84.0 +85.8 +HyRSM +CVPR’22 +73.7 (-0.9) +80.0 (+0.9) +83.5 (+1.1) +84.6 (+0.6) +86.1 (-1.3) +HyRSM++ +- +74.0 (-0.6) +80.8 (+1.7) +83.9 (+1.5) +85.3 (+1.3) +86.4 (-1.0) +OTAM [7] +CVPR’20 +Epic-kitchens +46.0 +50.3 +53.9 +54.9 +56.3 +TRX [68] +CVPR’21 +43.4 +50.6 +53.5 +56.8 +58.9 +STRM [84] +CVPR’22 +42.8 +50.4 +54.9 +58.0 +59.2 +HyRSM +CVPR’22 +47.4 (+1.4) +52.9 (+2.3) +56.4 (+1.5) +58.8 (+0.8) +59.8 (+0.6) +HyRSM++ +- +48.0 (+2.0) +54.9 (+4.3) +57.5 (+2.6) +59.6 (+1.6) +60.8 (+1.6) +ARN [105] +ECCV’20 +HMDB51 +45.5 +- +- +- +60.6 +OTAM [7] +CVPR’20 +54.5 +63.5 +65.7 +67.2 +68.0 +TTAN [48] +ArXiv’21 +57.1 +- +- +- +74.0 +TRX [68] +CVPR’21 +53.1 +62.5 +66.8 +70.2 +75.6 +STRM [84] +CVPR’22 +52.3 +62.5 +67.4 +70.9 +77.3 +MTFAN [94] +CVPR’22 +59.0 +- +- +- +74.6 +Nguyen et al. [62] +ECCV’22 +59.6 +- +- +- +76.9 +Huang et al. [33] +ECCV’22 +60.1 +- +- +- +77.0 +HCL [108] +ECCV’22 +59.1 +66.5 +71.2 +73.8 +76.3 +HyRSM +CVPR’22 +60.3 (+0.2) +68.2 (+1.7) +71.7 (+0.5) +75.3 (+1.5) +76.0 (-1.3) +HyRSM++ +- +61.5 (+1.4) +69.0 (+2.5) +72.7 (+1.5) +75.4 (+1.6) +76.4 (-0.9) +4 Experiments +In this section, the following key questions will be answered +in detail: (1) Is HyRSM++ competitive to other state-of- +the-art methods on challenging few-shot benchmarks? (2) +What components play an integral role in HyRSM++ so that +HyRSM++ can work well? (3) Can the proposed hybrid re- +lation module be viewed as a simple plug-and-play unit and +have the same effect for other methods? (4) Does the pro- +posed temporal set matching metric have an advantage over +other measure competitors? (5) Can HyRSM++ have stable +performance in a variety of different video scenarios? +4.1 Datasets and experimental setups +Datasets. We evaluate our HyRSM++ on six standard public +few-shot benchmarks. For the Kinetics [8], SSv2-Full [23], +and SSv2-Small [23] datasets, we adopt the existing splits +proposed by [7, 112, 106, 68], and each dataset consists + +HyRSM++: Hybrid Relation Guided Temporal Set Matching for Few-shot Action Recognition +9 +MSA +Transformer +Bi-LSTM +Bi-GRU +Inter-relation +MSA +Transformer +Bi-LSTM +Bi-GRU +Intra-relation +54.3 +53.0 +53.6 +53.3 +54.3 +53.8 +53.6 +54.1 +50.6 +50.4 +51.4 +50.9 +51.8 +50.6 +50.8 +51.8 +50.5 +51.0 +51.5 +52.0 +52.5 +53.0 +53.5 +54.0 +Fig. 3 Comparison between different components in hybrid relation +module on 5-way 1-shot few-shot action classification without tempo- +ral coherence regularization. Experiments are conducted on the SSv2- +Full dataset. +MSA +Transformer +Bi-LSTM +Bi-GRU +Inter-relation +MSA +Transformer +Bi-LSTM +Bi-GRU +Intra-relation +55.0 +55.0 +54.6 +54.4 +54.5 +54.6 +54.4 +54.5 +50.7 +50.6 +51.7 +51.9 +52.1 +51.7 +52.3 +52.0 +51.0 +51.5 +52.0 +52.5 +53.0 +53.5 +54.0 +54.5 +55.0 +Fig. 4 Comparison between different components in hybrid relation +module on 5-way 1-shot few-shot action classification with temporal +coherence regularization. Experiments are conducted on the SSv2-Full +dataset. +of 64 and 24 classes as the meta-training and meta-testing +set, respectively. For UCF101 [78] and HMDB51 [42], we +verify our proposed methods by leveraging existing splits +from [105, 68]. In addition to the above, we also utilize +the egocentric Epic-kitchens [14, 13] dataset to evaluate +HyRSM++. +Implementation details. Following previous works [112, 7, +68, 106], ResNet-50 [28] initialized with ImageNet [15] pre- +trained weights is utilized as the feature extractor in our ex- +periments. We sparsely and uniformly sample 8 (i.e., T = 8) +frames per video to construct input frame sequence, which is +in line with previous methods [7, 106]. In the training phase, +we also adopt basic data augmentation such as random crop- +ping and color jitter, and use Adam [39] optimizer to train +our model. During the inference stage, we conduct few-shot +action recognition evaluation on 10,000 randomly sampled +episodes from the meta-testing set and report the mean ac- +curacy. For many shot classification, e.g., 5-shot, we follow +ProtoNet [76] and calculate the mean features of support +videos in each class as the prototypes, and classify the query +videos according to their distances against the prototypes. +4.2 Comparison with state-of-the-art +In this section, we validate the effectiveness of the proposed +HyRSM++ by comparing it with state-of-the-art methods +under various settings. As indicated in Table 1 and Ta- +ble 2, the proposed HyRSM++ surpasses other advanced +approaches significantly and is able to achieve new state- +of-the-art performance. For instance, HyRSM++ improves +the state-of-the-art performance from 49.2% to 55.0% un- +der the 1-shot setting on SSv2-Full and consistently outper- +forms our original conference version [91]. Specially, ex- +tensively compared with current strict temporal alignment +techniques [7, 106] and complex fusion methods [48, 68], +HyRSM++ produces results that are superior to them un- +der most different shots, which implies that our approach +is considerably flexible and efficient. Note that the SSv2- +Full and SSv2-Small datasets tend to be motion-based and +generally focus on temporal reasoning. While Kinetics and +UCF101 are partly appearance-related datasets, and scene +understanding is usually essential. Besides, Epic-kitchens +and HMDB51 are relatively complicated and might involve +diverse object interactions. Extensively evaluated on these +benchmarks, HyRSM++ provides excellent performance. It +reveals that our HyRSM++ has strong robustness and gen- +eralization for different scenes. From Table 2, we observe +that HyRSM++ outperforms current state-of-the-art meth- +ods on UCF101 and SSv2-Small under the 1-shot and 3- +shot settings, which suggests that our HyRSM++ can learn +rich and effective representations with extremely limited +samples. It’s worth noting that under the 5-shot evaluation, +our HyRSM++ yields 95.9% and 58.0% 5-shot performance +on UCF101 and SSv2-Small, respectively, which is slightly +behind STRM and HCL. We attribute this to STRM and +HCL are ensemble methods that weight each sample with +attention or use multiple metrics for few-shot classification, +which makes them more suitable for multi-shots, while our +HyRSM++ is a simple and general method without involves +complex ensemble operations. Moreover, we also observe +that with the introduction of temporal coherence regulariza- +tion, HyRSM++ has a significant improvement compared to +HyRSM, which verifies the effectiveness of exploiting tem- +poral order information during the set matching process. +4.3 Ablation study +For ease of comparison, we use a baseline method Pro- +toNet [76] that applies global-average pooling to backbone +representations to obtain a prototype for each class. We will +explore the role and validity of our proposed modules in de- +tail below. +Design choices of relation modeling. +To systematically +investigate the effect of different relation modeling opera- + +10 +Xiang Wang et al. +Table 2 Results on 1-shot, 3-shot, and 5-shot few-shot classification on the UCF101 and SSv2-Small datasets. ”-” means the result is not available +in published works, and the underline indicates the second best result. +UCF101 +SSv2-Small +Method +Reference +1-shot +3-shot +5-shot +1-shot +3-shot +5-shot +MatchingNet [86] +NeurIPS’16 +- +- +- +31.3 +39.8 +45.5 +MAML [19] +ICML’17 +- +- +- +30.9 +38.6 +41.9 +Plain CMN [112] +ECCV’18 +- +- +- +33.4 +42.5 +46.5 +CMN-J [113] +TPAMI’20 +- +- +- +36.2 +44.6 +48.8 +ARN [105] +ECCV’20 +66.3 +- +83.1 +- +- +- +OTAM [7] +CVPR’20 +79.9 +87.0 +88.9 +36.4 +45.9 +48.0 +TTAN [48] +ArXiv’21 +80.9 +- +93.2 +- +- +- +ITANet [106] +IJCAI’21 +- +- +- +39.8 +49.4 +53.7 +TRX [68] +CVPR’21 +78.2 +92.4 +96.1 +36.0 +51.9 +59.1 +STRM [84] +CVPR’22 +80.5 +92.7 +96.9 +37.1 +49.2 +55.3 +MTFAN [94] +CVPR’22 +84.8 +- +95.1 +- +- +- +Nguyen et al. [62] +ECCV’22 +84.9 +- +95.9 +- +- +- +Huang et al. [33] +ECCV’22 +71.4 +- +91.0 +38.9 +- +61.6 +HCL [108] +ECCV’22 +82.5 +91.0 +93.9 +38.7 +49.1 +55.4 +HyRSM +CVPR’22 +83.9 (-1.0) +93.0 (+0.3) +94.7 (-2.2) +40.6 (+0.8) +52.3 (+0.4) +56.1 (-5.5) +HyRSM++ +- +85.8 (+0.9) +93.5 (+0.8) +95.9 (-1.0) +42.8 (+3.0) +52.4 (+0.5) +58.0 (-2.6) +Table 3 Ablation study under 5-way 1-shot and 5-way 5-shot settings +on the SSv2-Full dataset. “TCR” refers to temporal coherence regular- +ization. +Intra-relation +Inter-relation +Bi-MHM +TCR +1-shot +5-shot +35.2 +45.3 +� +41.2 +55.0 +� +43.7 +55.2 +� +44.6 +56.0 +� +� +45.3 +57.1 +� +� +48.1 +60.5 +� +� +48.3 +61.2 +� +� +� +49.2 +62.8 +� +� +51.4 +64.6 +� +� +� +52.4 +65.8 +� +� +� +54.3 +69.0 +� +� +� +� +55.0 +69.8 +Table 4 Generalization of hybrid relation module. We conduct exper- +iments on SSv2-Full. +Method +1-shot +5-shot +OTAM [7] +42.8 +52.3 +OTAM [7]+ Intra-relation +48.9 +60.4 +OTAM [7]+ Inter-relation +46.9 +57.8 +OTAM [7]+ Intra-relation + Inter-relation +51.7 +63.9 +tions in hybrid relation module, we vary the components to +construct some variants and report the results in Figure 3 +and Figure 4. The comparison experiments are conducted +on the SSv2-Full dataset under the 5-way 1-shot setting. We +can observe that different combinations have quite distinct +properties, e.g., multi-head self-attention (MSA) and Trans- +former are more effective to model intra-class relations than +Bi-LSTM and Bi-GRU. For example, utilizing multi-head +5-way +6-way +7-way +8-way +9-way +10-way +Accuracy (%) +Kinetics +OTAM +TRX +STRM +HyRSM +HyRSM++ +50 +66 +54 +58 +70 +62 +5-way +6-way +7-way +8-way +9-way +10-way +Accuracy (%) +SSv2-Full +OTAM +TRX +STRM +HyRSM +HyRSM++ +25 +30 +40 +35 +50 +45 +55 +74 +Fig. 5 N-way 1-shot performance trends of our HyRSM++ and other +state-of-the-art methods with different N on SSv2-Full. The compari- +son results prove the superiority of our HyRSM++. +Accuracy (%) +(a) Frames +42 +46 +50 +54 +2 +3 +4 +5 +6 +7 +8 +9 +10 +1 +2 +4 +8 +16 +32 +Accuracy (%) +1-shot +5-shot +45 +50 +60 +55 +70 +65 +(b) Head number +Fig. 6 (a) Performance on SSv2-Full using a different number of +frames under the 5-way 1-shot setting. (b) The effect of the number +of heads on SSv2-Full. +self-attention to learn intra-relation produces at least 2.5% +improvements than with Bi-LSTM. Nevertheless, compared +with other recent algorithms [68, 106], the performance of +each combination can still be improved, which strongly sug- +gests the necessity of structure design for learning task- +specific features. For simplicity, we choose the same struc- +ture to explore intra-relation and inter-relation, and the con- + +HyRSM++: Hybrid Relation Guided Temporal Set Matching for Few-shot Action Recognition +11 +20 +30 +40 +50 +60 +70 +SSv2-Full (Resnet-18) +OTAM +TRX +HyRSM +HyRSM++ +1-shot +2-shot +3-shot +4-shot +5-shot +20 +30 +40 +50 +60 +70 +SSv2-Full (Resnet-34) +OTAM +TRX +HyRSM +HyRSM++ +1-shot +2-shot +3-shot +4-shot +5-shot +Accuracy (%) +50 +55 +60 +65 +70 +75 +80 +85 +Kinetics (Resnet-18) +OTAM +TRX +HyRSM +HyRSM++ +1-shot +2-shot +3-shot +4-shot +5-shot +55 +60 +65 +70 +75 +80 +85 +Kinetics (Resnet-34) +OTAM +TRX +HyRSM +HyRSM++ +1-shot +2-shot +3-shot +4-shot +5-shot +Accuracy (%) +Accuracy (%) +Accuracy (%) +Fig. 7 Comparison of the backbone with different depths on the SSv2- +Full and Kinetics datasets. +Table 5 Comparative experiments on SSv2-Full using the Inception- +v3 [81] feature extractor. +Method +1-shot +2-shot +3-shot +4-shot +5-shot +OTAM [7] +42.4 +46.6 +48.7 +49.2 +52.1 +TRX [68] +37.7 +50.2 +55.5 +57.2 +60.1 +STRM [84] +42.9 +53.9 +58.9 +62.3 +63.4 +HyRSM++ +53.3 +62.7 +65.3 +67.8 +69.3 +Table 6 Performance comparison on SSv2-Full with self-supervised +initialization weights [97]. +Method +1-shot +2-shot +3-shot +4-shot +5-shot +OTAM [7] +41.2 +45.9 +48.8 +50.1 +51.0 +TRX [68] +37.5 +43.8 +49.9 +51.6 +52.1 +STRM [84] +38.0 +46.2 +49.9 +53.4 +54.4 +HyRSM++ +50.9 +59.1 +62.6 +65.5 +66.4 +Table 7 Performance comparison with different relation modeling +paradigms on SSv2-Full and Kinetics. +Setting +Method +Dataset +1-shot +5-shot +Support-only +HyRSM +SSv2-Full +52.1 +67.2 +Support-only +HyRSM++ +53.7 +68.8 +Support&Query +HyRSM +54.3 +69.0 +Support&Query +HyRSM++ +55.0 +69.8 +Support-only +HyRSM +Kinetics +73.4 +85.5 +Support-only +HyRSM++ +73.5 +85.7 +Support&Query +HyRSM +73.7 +86.1 +Support&Query +HyRSM++ +74.0 +86.4 +figuration of multi-head self-attention is adopted in the ex- +periments. +Analysis of the proposed components. Table 3 summa- +rizes the ablation study of each module in HyRSM++. To +evaluate the function of the proposed components, Pro- +toNet [76] is taken as our baseline. From the ablation results, +we can conclude that each component is highly effective. +In particular, compared to the baseline, intra-relation mod- +eling can respectively bring 6.0% and 9.7% performance +52.3 +51.2 +49.7 +49.1 +48.0 +47.2 +64.6 +61.3 +59.2 +56.3 +53.1 +50.4 +68.1 +62.3 +60.8 +58.5 +55.9 +52.0 +69.8 +66.2 +65.1 +64.5 +62.3 +60.0 +0% +10% +20% +30% +40% +50% +Accuracy (%) +5-way 5-shot +OTAM +TRX +STRM +HyRSM++ +45 +61 +49 +53 +65 +57 +42.8 +41.4 +40.3 +39.0 +37.1 +35.7 +42.0 +38.5 +35.8 +33.2 +31.3 +28.9 +43.1 +40.4 +37.8 +34.5 +32.1 +30.0 +55.0 +49.8 +48.1 +46.4 +43.2 +41.3 +0% +10% +20% +30% +40% +50% +Accuracy (%) +5-way 1-shot +OTAM +TRX +STRM +HyRSM++ +25 +30 +40 +35 +50 +45 +55 +69 +Noisy ratio +Noisy ratio +Fig. 8 Robustness comparison experiments in the presence of noisy +samples. X% represents the proportion of noisy labels included in the +dataset. +Table 8 Comparison with recent temporal alignment methods on the +SSv2-Full dataset under the 5-way 1-shot and 5-way 5-shot settings. +Diagonal means matching frame by frame. +Metric +Bi-direction +1-shot +5-shot +Diagonal +- +38.3 +48.7 +Plain DTW [61] +- +39.6 +49.0 +OTAM [7] +� +39.3 +47.7 +OTAM [7] +� +42.8 +52.3 +Bi-MHM +� +44.6 +56.0 +Temporal set matching metric +� +45.3 +57.1 +Table 9 Comparison of different set matching strategies on the SSv2- +Full dataset. +Metric +Bi-direction +1-shot +5-shot +Hausdorff distance +� +32.4 +38.2 +Hausdorff distance +� +34.5 +39.1 +Modified Hausdorff distance +� +44.2 +50.0 +Bi-MHM +� +44.6 +56.0 +Temporal set matching metric +� +45.3 +57.1 +Table 10 Generalization of temporal coherence regularization. We +conduct experiments on SSv2-Full. ”Hard margin” represents the +method described in Equation 11. +Method +1-shot +5-shot +OTAM [7] +42.8 +52.3 +OTAM [7] + IDM +43.7 +55.0 +OTAM [7] + Hard margin +43.2 +55.3 +OTAM [7] + Temporal coherence regularization +44.1 +55.8 +Bi-MHM +44.6 +56.0 +Bi-MHM + IDM +44.7 +56.3 +Bi-MHM + Hard margin +44.7 +56.5 +Bi-MHM + Temporal coherence regularization +45.3 +57.1 +gains on 1-shot and 5-shot, and inter-relation function boosts +the performance by 8.5% and 9.9% on 1-shot and 5-shot. +In addition, the proposed set matching metric improves 1- +shot and 5-shot classification by 9.4% and 10.7%, respec- +tively, which indicates the ability to find better correspond- +ing frames in the video pair. Adding temporal coherence +regularization to the set matching metric also achieves sta- + +12 +Xiang Wang et al. +ble performance improvements. Moreover, stacking the pro- +posed modules can further improve performance, indicating +the complementarity between components. When consider- +ing all the proposed modules together to form HyRSM++, +the performance of 1-shot and 5-shot is improved to 55.0% +and 69.8%, respectively, which strongly supports the impor- +tance of learning task-related features and flexible metrics. +Pluggability of hybrid relation module. In Table 4, we +experimentally show that the hybrid relation module gen- +eralizes well to other methods by inserting it into the re- +cent OTAM [7]. In this study, OTAM with our hybrid re- +lation module benefits from relational information and fi- +nally achieves 8.9% and 11.6% gains on 1-shot and 5-shot. +This fully evidences that mining the rich information among +videos to learn task-specific features is especially valuable. +N-way few-shot classification. +In the previous experi- +ments, all of our comparative evaluation experiments were +carried out under the 5-way setting. In order to further ex- +plore the influence of different N, in Figure 5, we com- +pare N-way (N ≥ 5) 1-shot results on SSv2-Full and Ki- +netics. Results show that as N increases, the difficulty be- +comes higher, and the performance decreases. Neverthe- +less, the performance of our HyRSM++ is still consistently +ahead of the recent state-of-the-art STRM [84], TRX [68] +and OTAM [7], which shows the feasibility of our method +to boost performance by introducing rich relations among +videos and the power of the set matching metric. +Varying the number of frames. To demonstrate the scal- +ability of HyRSM++, we also explore the impact of differ- +ent video frame numbers on performance. Of note, previous +comparisons are performed under 8 frames of input. Results +in Figure 6(a) show that as the number of frames increases, +the performance improves. HyRSM++ gradually tends to be +saturated when more than 7 frames. +Influence of head number. Previous analyses have shown +that multi-head self-attention can focus on different patterns +and is critical to capturing diverse features [41]. We investi- +gate the virtue of varying the number of heads in multi-head +self-attention on performance in Figure 6(b). Experimental +results indicate that the effect of multi-head is remarkable, +and the performance starts to saturate beyond a particular +point. +Varying depth of the backbone. The proposed HyRSM++ +is general and compatible with feature extractors of various +capacities. The previous methods all utilize ResNet-50 as +backbone by default for a fair comparison, and the impact +of backbone’s depth on performance is still under-explored. +As presented in Figure 7, we attempt to answer this question +by adopting ResNet-18 and ResNet-34 pre-trained on Ima- +geNet as alternative backbones. Results demonstrate that the +deeper network clearly benefits from greater learning capac- +ity and results in better performance. In addition, we notice +Acc = 100% +Acc = 100% +(+ hybrid relation module) +1 +2 +3 +4 +5 +1 +2 +3 +4 +5 +1 +2 +3 +4 +5 +1 +2 +3 +4 +5 +1 +2 +3 +4 +5 +1 +2 +3 +4 +5 +1 +2 +3 +4 +5 +1 +2 +3 +4 +5 +1 +2 +3 +4 +5 +1 +2 +3 +4 +5 +1 +2 +3 +4 +5 +1 +2 +3 +4 +5 +1 +2 +3 +4 +5 +1 +2 +3 +4 +5 +1 +2 +3 +4 +5 +1 +2 +3 +4 +5 +1 +2 +3 +4 +5 +1 +2 +3 +4 +5 +1 +2 +3 +4 +5 +1 +2 +3 +4 +5 +1 +2 +3 +4 +5 +1 +2 +3 +4 +5 +1 +2 +3 +4 +5 +1 +2 +3 +4 +5 +Acc = 40% +Acc = 60% +Acc = 60% +Acc = 80% +Acc = 60% +Acc = 100% +(+ hybrid relation module) +Acc = 100% +(+ hybrid relation module) +Acc = 100% +(+ hybrid relation module) +Acc = 100% +(+ hybrid relation module) +Acc = 100% +(+ hybrid relation module) +(a) Examples from SSv2-Full +(b) Examples from Kinetics +Fig. 9 Similarity visualization of how query videos (rows) match to +support videos (columns). The boxes of different colors correspond to: +correct match and incorrect match. +Support +Query +(a) SSv2-Full: ”pretending to open something without actually opening it” +(b) SSv2-Full: ”showing that something is empty” +Support +Query +Support +Query +(c) Kinetics: ”cutting watermelon” +Fig. 10 Visualization of matching results with the proposed set match- +ing metric on SSv2-Full and Kinetics. +that our proposed HyRSM++ consistently outperforms the +competitors (i.e., OTAM and TRX), which indicates that our +HyRSM++ is a generally effective framework. +Influence of different backbones. To verify that our ap- +proach is not limited to ResNet-like structures, we further +perform experiments on Inception-v3 and report the results +in Table 5. From the comparison, we note that HyRSM++ is +significantly superior to other competitive algorithms. Com- +pared with STRM [84], our proposed HyRSM++ leads to at +least 5.5% performance gain under various settings. +Impact of pretraining types. Supervised ImageNet initial- +ization [15] is widely employed in many vision tasks [7, +113, 90] and achieves impressive success. Recently, self- +supervised techniques have also received widespread at- +tention and revealed excellent application potential. In Ta- + +0.73 +0.063 +0.06 +0.082 +0.065 +0.16 +0.35 +0.21 +0.1 +0.18 +0.067 +0.069 +0.67 +0.08 +0.11 +0.27 +0.038 +0.076 +0.42 +0.2 +0.11 +0.27 +0.13 +0.09 +0.4 0.23 +0.25 +0.11 +0.19 +0.22 +0.18 +0.25 +0.24 +0.14 +0.19 +0.18 +0.18 +0.36 +0.091 +0.18 +0.23 +0.15 +0.11 +0.4 +0.1 +0.14 +0.32 +0.08 +0.11 +0.340.65 +0.029 +0.15 +0.088 +0.078 +0.092 +0.55 +0.04 +0.053 +0.27 +0.17 +0.076 +0.59 +0.094 +0.07 +0.11 +0.053 +0.042 +0.65 +0.14 +0.1 +0.039 +0.024 +0.087 +0.750.34 +0.16 +0.14 +0.23 +0.14 +0.17 +0.26 +0.19 +0.21 +0.18 +0.16 +0.2 +0.27 +0.13 +0.24 +0.2 +0.21 +0.16 +0.27 +0.16 +0.15 +0.23 +0.17 +0.18 +0.270.46 +0.064 +0.037 +0.38 +0.055 +0.035 +0.69 +0.021 +0.17 +0.082 +0.051 +0.042 +0.78 +0.06 +0.067 +0.09 +0.2 +0.18 +0.45 +0.087 +0.12 +0.18 +0.098 +0.13 +0.470.26 +0.13 +0.28 +0.21 +0.12 +0.13 +0.38 +0.23 +0.19 +0.069 +0.14 +0.16 +0.19 +0.2 +0.32 +0.25 +0.13 +0.2 +0.29 +0.12 +0.15 +0.09 +0.21 +0.19 +0.360.21 +0.25 +0.16 +0.25 +0.13 +0.24 +0.23 +0.16 +0.19 +0.18 +0.14 +0.16 +0.27 +0.12 +0.32 +0.22 +0.2 +0.1 +0.35 +0.13 +0.13 +0.19 +0.25 +0.15 +0.290.61 +0.074 +0.068 +0.14 +0.1 +0.076 +0.43 +0.084 +0.35 +0.063 +0.12 +0.061 +0.63 +0.077 +0.11 +0.21 +0.21 +0.06 +0.47 +0.053 +0.15 +0.055 +0.069 +0.054 +0.670.59 +0.043 +0.13 +0.13 +0.1 +0.11 +0.51 +0.14 +0.2 +0.036 +0.13 +0.27 +0.44 +0.091 +0.068 +0.27 +0.14 +0.17 +0.35 +0.066 +0.05 +0.057 +0.044 +0.038 +0.810.19 +0.24 +0.11 +0.2 +0.25 +0.27 +0.16 +0.21 +0.23 +0.13 +0.21 +0.22 +0.3 +0.14 +0.13 +0.15 +0.15 +0.11 +0.34 +0.26 +0.22 +0.16 +0.19 +0.18 +0.250.59 +0.18 +0.014 +0.095 +0.13 +0.21 +0.43 +0.025 +0.26 +0.076 +0.049 +0.042 +0.76 +0.071 +0.081 +0.31 +0.097 +0.019 +0.42 +0.16 +0.21 +0.063 +0.11 +0.13 +0.490.47 +0.1 +0.054 +0.21 +0.17 +0.19 +0.23 +0.08 +0.27 +0.24 +0.098 +0.15 +0.5 +0.096 +0.16 +0.23 +0.082 +0.076 +0.4 +0.21 +0.12 +0.4 +0.13 +0.11 +0.25HyRSM++: Hybrid Relation Guided Temporal Set Matching for Few-shot Action Recognition +13 +ble 6, we show the performance comparison with self- +supervised pretraining weights [97]. Results demonstrate +that our HyRSM++ is still powerful and not limited to the +specific initialization weights. +Other relation modeling forms. Previous few-shot image +classification methods of learning task-specific features have +also achieved promising results [101, 47]. However, many +of them use some complex and fixed operations to learn the +dependencies between images, while our method is straight- +forward and flexible. Moreover, most previous works only +use the information within the support set to learn task- +specific features, ignoring the correlation with query sam- +ples. In our hybrid relation module, we add the query video +to the pool of inter-relation modeling to extract relevant in- +formation suitable for query classification. As illustrated in +Table 7, we try to remove the query video from the pool +in HyRSM++, i.e., Support-only, but we can observe that +after removing the query video, the performance of 1-shot +and 5-shot on SSv2-Full reduces by 1.3% and 1.0%, respec- +tively. There are similar conclusions on the Kinetics dataset. +This evidences that the proposed hybrid relation module is +reasonable and can effectively extract task-related features, +thereby promoting query classification accuracy. +Robustness to noise labels. To demonstrate the robustness +of HyRSM++ to noise samples, we simulate the presence +of noise labels in the dataset in Figure 8. From the results, +we can observe that performance generally decreases as the +proportion of noise rises. However, our HyRSM++ still ex- +hibits higher performance than other methods, which illus- +trates the robustness of our method and its adaptability to +complex conditions. +4.4 Comparison with other matching approaches +Our proposed temporal set matching metric Bi-MHM aims +to accurately find the corresponding video frames between +video pairs by relaxing the strict temporal ordering con- +straints. The following comparative experiments in Table 8 +are carried out under identical experimental setups, i.e., re- +Table 11 Complexity analysis for 5-way 1-shot SSv2-Full evaluation. +The experiments are carried out on one Nvidia V100 GPU. +Method +Backbone +Param +FLOPs +Latency +Acc +HyRSM +ResNet-18 +13.8M +3.64G +36.5ms +46.6 +HyRSM++ +ResNet-18 +13.8M +3.64G +36.5ms +47.7 +HyRSM +ResNet-34 +23.9M +7.34G +67.5ms +50.0 +HyRSM++ +ResNet-34 +23.9M +7.34G +67.5ms +50.4 +OTAM [7] +ResNet-50 +23.5M +8.17G +116.6ms +42.8 +TRX [68] +ResNet-50 +47.1M +8.22G +94.6ms +42.0 +STRM [84] +ResNet-50 +73.3M +8.27G +113.3ms +43.1 +HyRSM +ResNet-50 +65.6M +8.36G +83.5ms +54.3 +HyRSM++ +ResNet-50 +65.6M +8.36G +83.5ms +55.0 +place the OTAM directly with our Bi-MHM while keep- +ing other settings unchanged. Results show that our Bi- +MHM performs well and outperforms other temporal align- +ment methods (e.g., OTAM). We further analyze different +set matching approaches in Table 9, and the results indi- +cate that Hausdorff distance is susceptible to noise interfer- +ence, resulting in the mismatch and relatively poor perfor- +mance. However, our Bi-MHM shows stability to noise and +obtains better performance. Furthermore, compared with the +single directional metric, our proposed bidirectional metric +is more comprehensive in reflecting the actual distances be- +tween videos and achieves better performance on few-shot +tasks. In addition, we observe that the proposed temporal +set matching metric achieves clear improvement over Bi- +MHM after incorporating temporal coherence. For instance, +the temporal set matching metric obtains 0.7%, 1.1% perfor- +mance gains on 5-way 1-shot, and 5-way 5-shot SSv2-Full +classification. It indicates the effectiveness of the proposed +temporal set matching metric. +4.5 Comparison of temporal coherence manners +Pioneering work [11, 22, 59] also indicates the important +role of temporal coherence and shows remarkable results in +face recognition [59] and unsupervised representation learn- +ing [22, 27]. However, they also have some limitations as +noted in Section 3.2, and thus the temporal coherence reg- +ularization is proposed for smooth video coherence. Ta- +ble 10 compares the proposed temporal coherence regular- +ization with existing temporal coherence schemes based on +OTAM and Bi-MHM. Results show that exploiting tempo- +ral coherence helps improve the classification accuracy of +the metrics, which confirms our motivation for consider- +ing temporal order information during the matching process. +In addition, our proposed temporal coherence regularization +achieves more significant improvements than other manners, +and we attribute this to the smooth property of temporal co- +herence regularization. +4.6 Visualization results +To qualitatively show the discriminative capability of the +learned task-specific features in our proposed method, we +visualize the similarities between query and support videos +with and without the hybrid relation module. As depicted in +Figure 9, by adding the hybrid relation module, the discrim- +ination of features is significantly improved, contributing to +predicting more accurately. Additionally, the matching re- +sults of the set matching metric are visualized in Figure 10, +and we can observe that our Bi-MHM is considerably flexi- +ble in dealing with alignment and misalignment. + +14 +Xiang Wang et al. +Support +Query +Support +Query +“tipping Sth over” from SSv2-Full +OTAM +HyRSM++ +“taking Sth out of Sth” from SSv2-Full +OTAM +HyRSM++ +Support +Query +“showing Sth next to Sth” from SSv2-Full +OTAM +HyRSM++ +Support +Query +“riding elephant” from Kinetics +OTAM +HyRSM++ +Support +Query +“playing trumpet” from Kinetics +OTAM +HyRSM++ +Support +Query +“filling eyebrows” from Kinetics +OTAM +HyRSM++ +Fig. 11 Visualization of activation maps with Grad-CAM [75]. Compared to OTAM [7], HyRSM++ focuses more precisely on classification- +related regions. +To further visually evaluate the proposed HyRSM++, we +compare the activation visualization results of HyRSM++ to +the competitive OTAM [7]. As shown in Figure 11, the fea- +tures of OTAM usually contain non-target objects or ignore +most discriminative parts since it lacks the mechanism of +learning task-specific embeddings for feature adaptation. In +contrast, our proposed HyRSM++ processes the query and +support videos with an adaptive relation modeling operation, +which allows it to focus on the different target objects. The +above qualitative experiments illustrate the rationality of our +model design and the necessity of learning task-related fea- +tures. +4.7 Limitations +In order to further understand HyRSM++, Table 11 il- +lustrates its differences with OTAM and TRX in terms +of parameters, computation, and runtime. In the inference + +HyRSM++: Hybrid Relation Guided Temporal Set Matching for Few-shot Action Recognition +15 +Table 12 Comparison to existing semi-supervised few-shot action recognition methods on the meta-testing set of Kinetics and SSv2-Small. The +experiments are conducted under the 5-way setting, and results are reported as the shot increases from 1 to 5. ”w/o unlabeled data” indicates +that there is no unlabeled set in a episode, i.e., the traditional few-shot action recognition setting, which can act as the lower bound of the semi- +supervised counterpart. +Dataset +Method +Backbone +1-shot +2-shot +3-shot +4-shot +5-shot +Kinetics +OTAM w/o unlabeled data [7] +Inception-v3 +68.6 +72.7 +74.1 +75.7 +76.9 +DeepCluster CACTUs-MAML [30] +Inception-v3 +65.1 +72.8 +76.5 +77.9 +79.5 +DeepCluster CACTUs-ProtoNets [30] +Inception-v3 +66.9 +73.2 +77.0 +78.1 +79.9 +LIM [113] +Inception-v3 +69.8 +75.9 +78.3 +80.4 +82.6 +HyRSM++ w/o unlabeled data +Inception-v3 +69.1 +76.0 +78.6 +81.6 +81.9 +HyRSM++ +Inception-v3 +73.7 +79.4 +80.9 +81.8 +83.1 +CMN w/o unlabeled data [112] +ResNet-50 +60.5 +70.0 +75.6 +77.3 +78.9 +OTAM w/o unlabeled data [7] +ResNet-50 +73.0 +75.9 +78.7 +81.9 +85.8 +LIM (ensemble) [113] +ResNet-50, Inception-v3, ResNet-18 +73.3 +78.3 +80.8 +82.4 +84.0 +HyRSM++ w/o unlabeled data +ResNet-50 +74.0 +80.8 +83.6 +85.3 +86.4 +HyRSM++ +ResNet-50 +79.1 +84.3 +85.4 +86.4 +86.8 +SSv2-Small +OTAM w/o unlabeled data [112] +Inception-v3 +36.7 +41.0 +43.6 +44.1 +46.9 +DeepCluster CACTUs-MAML [30] +Inception-v3 +37.9 +44.5 +45.9 +47.8 +49.9 +DeepCluster CACTUs-ProtoNets [30] +Inception-v3 +38.4 +44.8 +46.1 +48.0 +50.1 +LIM [113] +Inception-v3 +41.1 +46.9 +48.0 +51.5 +53.0 +HyRSM++ w/o unlabeled data +Inception-v3 +41.5 +46.1 +49.5 +52.9 +55.1 +HyRSM++ +Inception-v3 +43.6 +49.5 +51.8 +52.4 +54.5 +CMN w/o unlabeled data [112] +ResNet-50 +36.2 +42.1 +44.6 +47.0 +48.8 +OTAM w/o unlabeled data [112] +ResNet-50 +36.4 +42.9 +45.9 +46.8 +48.0 +LIM (ensemble) [113] +ResNet-50, Inception-v3, ResNet-18 +44.0 +49.8 +51.3 +53.9 +55.1 +HyRSM++ w/o unlabeled data +ResNet-50 +42.8 +47.1 +52.4 +54.7 +58.0 +HyRSM++ +ResNet-50 +45.4 +51.1 +55.2 +57.4 +58.8 +74.0 +77.7 +79.1 +79.7 +79.9 +80.8 +83.0 +84.3 +84.3 +84.6 +83.6 +84.8 +85.4 +85.5 +85.9 +85.3 +85.8 +86.4 +86.6 +86.8 +86.4 +86.5 +86.7 +86.8 +86.9 +0 +50 +100 +150 +200 +Accuracy (%) +Kinetics +1-shot +2-shot +3-shot +4-shot +5-shot +73 +75 +79 +77 +85 +81 +87 +83 +89 +Fig. 12 Performance comparison of different amounts of unlabeled +data for testing in an episode on Kinetics. +phase, HyRSM++ does not add additional computational +burden compared to HyRSM because the temporal coher- +ence regularization is not involved in the calculation. No- +tably, HyRSM++ introduces extra parameters (i.e., hybrid +relation module), resulting in increased GPU memory and +computational consumption. Nevertheless, without complex +non-parallel classifier heads, the whole inference speed of +HyRSM++ is faster than OTAM and TRX. We will further +investigate how to reduce complexity with no loss of perfor- +mance in the future. +42.8 +45.0 +45.4 +45.8 +46.2 +47.1 +50.1 +51.1 +51.2 +51.6 +52.4 +54.1 +55.2 +55.5 +55.8 +54.7 +56.8 +57.4 +57.8 +57.9 +58.0 +58.6 +58.8 +59.0 +59.6 +0 +50 +100 +150 +200 +Accuracy (%) +SSv2-Small +1-shot +2-shot +3-shot +4-shot +5-shot +60 +38 +40 +44 +42 +50 +46 +58 +48 +62 +54 +52 +56 +Fig. 13 Performance comparison of different amounts of unlabeled +data for testing in an episode on the SSv2-Small dataset. +5 Extension to Semi-supervised Few-shot Action +Recognition +In this section, we demonstrate that the proposed HyRSM++ +can be extended to address the more challenging semi- +supervised few-shot action recognition problem. Follow- +ing LIM [113], we utilize two common datasets (Kinet- +ics [8] and SSv2-Small [23]) to perform comparative exper- +iments. These two datasets are subsets of Kinetics-400 [8] +and Something-Something-v2 [23], respectively, and the un- +labeled examples in our experiments are collected from the +remaining videos of the same category as these subsets. To + +16 +Xiang Wang et al. +Table 13 Comparison to state-of-the-art unsupervised few-shot action +recognition approaches on UCF101, HMDB51, and Kinetics. ∗ indi- +cates that the algorithm adopt the same 2D ResNet-50 backbone as +HyRSM++. +Method +Supervision +UCF101 +HMDB51 Kinetics +MAML [19] +Supervised +- +- +54.2 +CMN [112] +Supervised +- +- +60.5 +TARN [5] +Supervised +- +- +66.6 +ProtoGAN [43] +Supervised +57.8 +34.7 +- +ARN [105] +Supervised +66.3 +45.2 +63.7 +3DRotNet [37] +Unsupervised +39.4 +32.4 +27.5 +VCOP [96] +Unsupervised +32.9 +27.8 +26.5 +IIC [83] +Unsupervised +56.8 +34.7 +37.7 +Pace [87] +Unsupervised +25.6 +26.2 +22.4 +MemDPC [83] +Unsupervised +49.3 +30.3 +42.0 +CoCLR [26] +Unsupervised +52.0 +31.3 +37.6 +MetaUVFS∗ [64] +Unsupervised +66.1 +40.0 +50.9 +HyRSM++ +Unsupervised +68.0 +41.0 +55.0 +64.0 +64.7 +66.3 +66.5 +68.0 +66.5 +66.4 +50 +75 +100 +125 +150 +175 +200 +Accuracy (%) +UCF101 +63 +36.1 +36.1 +36.9 +39.2 +41.0 +38.9 +39.7 +50 +75 +100 +125 +150 +175 +200 +Accuracy (%) +HMDB51 +51.2 +52.0 +52.0 +54.7 +55.0 +54.9 +54.3 +50 +75 +100 +125 +150 +175 +200 +Accuracy (%) +Kinetics +49 +65 +67 +69 +55 +37 +39 +41 +43 +51 +53 +57 +35 +Fig. 14 Ablation study of different cluster numbers under 5-way 1- +shot unsupervised few-shot settings. +conduct the semi-supervised few-shot evaluation, we fol- +low the mainstream distractor setting [30, 38, 113], where +the unlabeled set contains other interference classes in each +episodic task. This setting is more realistic and requires the +model to be robust to the existence of noisy samples from +other classes. In our experiments, we fixed the number of +unlabeled videos in an episodic task to 100. +Table 12 provides the comparison of our HyRSM++ +against state-of-the-art methods on the two standard semi- +supervised few-shot benchmarks. We find that HyRSM++ +substantially surpasses the previous approaches, such as +LIM [113]. Under the semi-supervised 5-way 1-shot sce- +nario, HyRSM++ produces performance gains of 3.8% and +2.5% on Kinetics and SSv2-Small than LIM with Inception- +v3 backbone, respectively. In particular, when using the +ResNet-50 backbone, our method is even superior to the +multi-modal fusion method (i.e., LIM), which indicates that +HyRSM++ enables more accurate pseudo-labels for unla- +beled data and then can expand the support set to boost the +classification accuracy of the query videos. In addition, com- +pared to our supervised counterpart (i.e., HyRSM++ w/o un- +labeled data), joining unlabeled data is beneficial to allevi- +ating the data scarcity problem and promotes few-shot clas- +sification accuracy. We can observe that when ResNet-50 +is adopted as the backbone, the performance of HyRSM++ +with unlabeled data is improved by 5.1% compared to that +without unlabeled data under the 5-way 1-shot Kinetics +evaluation. +To further investigate the effect of unlabeled videos in +an episode, we conduct comparative experiments with vary- +ing numbers of unlabeled videos in Figure 12 and Figure 13. +Experimental results show that as the number of unlabeled +samples increases, the performance also increases gradually, +indicating that the introduction of unlabeled data helps gen- +eralize to unseen categories. Furthermore, we notice that the +improvement in the 1-shot setting is more significant than +that in the 5-shot, which shows that under the condition of +low samples, unlabeled videos can improve the estimation +of the distribution of new categories more effectively. Mean- +while, as the amount of unlabeled data increases to a certain +level, the performance starts to saturate slowly. +6 Extension to Unsupervised Few-shot Action +Recognition +We also extend the proposed HyRSM++ to solve the +challenging unsupervised few-shot action recognition task +where labels for training videos are not available. Following +previous work [38, 36], we adopt the idea of the ”cluster- +ing first and then meta-learning” paradigm to construct few- +shot tasks and exploit unlabeled data for training. Our ex- +periments are based on unsupervised ResNet-50 initializa- +tion [97], which is self-supervised pre-trained on Kinetics- +400 [8] without accessing any label information. During the +clustering process, we utilize the K-means clustering strat- +egy for each dataset to obtain 150 clusters. +As presented in Table 13, we compare HyRSM++ with +current state-of-the-art methods on the UCF101, HMDB51 +and Kinetics datasets under the 5-way 1-shot setting. Note +that HyRSM++ and MetaUVFS [64] use the same ResNet- +50 structure as the feature extractor, and our HyRSM++ +shows better performance on each dataset. In particular, we +observe that our method achieves 68.0% performance on +the UCF101 dataset, a 1.9% improvement over MetaUVFS, +and even surpasses the fully supervised ARN. The supe- +rior performance of HyRSM++ reveals that our approach of +leveraging relations within and cross videos and the flexible +metric performs effectively in the low-shot regime. More- +over, this phenomenon also demonstrates the potential of our +method to learn a strongly robust few-shot model using only +unlabeled videos, even though HyRSM++ is not specifically + +HyRSM++: Hybrid Relation Guided Temporal Set Matching for Few-shot Action Recognition +17 +designed for the unsupervised few-shot action recognition +task. +In the experiments, one parameter involved in apply- +ing HyRSM++ to the unsupervised few-shot setting is the +number of clusters. In Figure 14, we display the perfor- +mance comparison under different number of clusters. Re- +sults show that when the number of clusters is 150, the per- +formance reaches the peak value, which means that if the +cluster number is too small, it may lead to under-clustering. +If the number is too large, it may cause over-clustering, dam- +aging the performance. +7 Conclusion +In this work, we have proposed a hybrid relation guided +temporal set matching (HyRSM++) approach for few-shot +action recognition. Firstly, we design a hybrid relation mod- +ule to model the rich semantic relevance within one video +and cross different videos in an episodic task to generate +task-specific features. Secondly, built upon the representa- +tive task-specific features, an efficient set matching metric is +proposed to be resilient to misalignment and match videos +accurately. During the matching process, a temporal coher- +ence regularization is further imposed to exploit temporal +order information. Furthermore, we extend HyRSM++ to +solve the more challenging semi-supervised few-shot ac- +tion recognition and unsupervised few-shot action recog- +nition problems. Experimental results demonstrate that our +HyRSM++ achieves the state-of-the-art performance on +multiple standard benchmarks. +Acknowledgements This work is supported by the National Natural +Science Foundation of China under grant 61871435, Fundamental Re- +search Funds for the Central Universities no.2019kfyXKJC024, 111 +Project on Computational Intelligence and Intelligent Control under +Grant B18024, and Alibaba Group through Alibaba Research Intern +Program. +References +1. Antoniou A, Storkey A (2019) Assume, augment and learn: Un- +supervised few-shot meta-learning via random labels and data +augmentation. arXiv preprint arXiv:190209884 4 +2. Bai Y, Ding H, Sun Y, Wang W (2018) Convolutional set match- +ing for graph similarity. arXiv preprint arXiv:181010866 3 +3. Bai Y, Ding H, Gu K, Sun Y, Wang W (2020) Learning-based +efficient graph similarity computation via multi-scale convolu- +tional set matching. In: AAAI, vol 34, pp 3219–3226 3 +4. Berthelot D, Carlini N, Goodfellow I, Papernot N, Oliver A, Raf- +fel CA (2019) Mixmatch: A holistic approach to semi-supervised +learning. In: NeurIPS, vol 32 4 +5. Bishay M, Zoumpourlis G, Patras I (2019) TARN: temporal at- +tentive relation network for few-shot and zero-shot action recog- +nition. In: BMVC, p 154 4, 8, 16 +6. Caba Heilbron F, Escorcia V, Ghanem B, Carlos Niebles J (2015) +Activitynet: A large-scale video benchmark for human activity +understanding. In: CVPR, pp 961–970 1 +7. Cao K, Ji J, Cao Z, Chang CY, Niebles JC (2020) Few-shot video +classification via temporal alignment. In: CVPR, pp 10618– +10627 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 +8. Carreira J, Zisserman A (2017) Quo vadis, action recognition? a +new model and the kinetics dataset. In: CVPR, pp 6299–6308 1, +8, 15, 16 +9. Chen Z, Fu Y, Zhang Y, Jiang YG, Xue X, Sigal L (2019) Multi- +level semantic feature augmentation for one-shot learning. TIP +28(9):4594–4605 3 +10. Cho K, Van Merri¨enboer B, Gulcehre C, Bahdanau D, Bougares +F, Schwenk H, Bengio Y (2014) Learning phrase representa- +tions using rnn encoder-decoder for statistical machine transla- +tion. arXiv preprint arXiv:14061078 5 +11. Conners RW, Harlow CA (1980) A theoretical comparison of tex- +ture algorithms. TPAMI (3):204–222 3, 6, 13 +12. Coskun H, Zia MZ, Tekin B, Bogo F, Navab N, Tombari F, Sawh- +ney H (2021) Domain-specific priors and meta learning for few- +shot first-person action recognition. TPAMI 4 +13. Damen D, Doughty H, Farinella G, Fidler S, Furnari A, Kaza- +kos E, Moltisanti D, Munro J, Perrett T, Price W, et al. (2020) +The epic-kitchens dataset: Collection, challenges and baselines. +TPAMI (01):1–1 1, 9 +14. Damen D, Doughty H, Farinella GM, Furnari A, Kazakos E, Ma +J, Moltisanti D, Munro J, Perrett T, Price W, et al. (2020) Rescal- +ing egocentric vision. arXiv preprint arXiv:200613256 9 +15. Deng J, Dong W, Socher R, Li LJ, Li K, Fei-Fei L (2009) Ima- +genet: A large-scale hierarchical image database. In: CVPR, pp +248–255 9, 12 +16. Dubuisson MP, Jain AK (1994) A modified hausdorff distance +for object matching. In: ICPR, IEEE, vol 1, pp 566–568 3, 6 +17. Fei-Fei L, Fergus R, Perona P (2006) One-shot learning of object +categories. TPAMI 28(4):594–611 3 +18. Feichtenhofer C, Fan H, Malik J, He K (2019) Slowfast networks +for video recognition. In: ICCV, pp 6202–6211 1 +19. Finn C, Abbeel P, Levine S (2017) Model-Agnostic Meta- +Mearning for Fast Adaptation of Deep Networks. In: ICML 3, 8, +10, 16 +20. Fu Y, Zhang L, Wang J, Fu Y, Jiang YG (2020) Depth guided +adaptive meta-fusion network for few-shot video recognition. In: +ACMMM, pp 1142–1151 4 +21. Gao Y (2003) Efficiently comparing face images using a modi- +fied hausdorff distance. IEE Proceedings-Vision, Image and Sig- +nal Processing 150(6):346–350 6 +22. Goroshin R, Bruna J, Tompson J, Eigen D, LeCun Y (2015) +Unsupervised learning of spatiotemporally coherent metrics. In: +ICCV, pp 4086–4093 3, 6, 13 +23. Goyal R, Ebrahimi Kahou S, Michalski V, Materzynska J, West- +phal S, Kim H, Haenel V, Fruend I, Yianilos P, Mueller-Freitag +M, et al. (2017) The” something something” video database +for learning and evaluating visual common sense. In: ICCV, pp +5842–5850 1, 8, 15 +24. Grauman K, Westbury A, Byrne E, Chavis Z, Furnari A, Girdhar +R, Hamburger J, Jiang H, Liu M, Liu X, et al. (2022) Ego4d: +Around the world in 3,000 hours of egocentric video. In: CVPR, +pp 18995–19012 1 +25. Graves A, Mohamed Ar, Hinton G (2013) Speech recognition +with deep recurrent neural networks. In: ICASSP, pp 6645–6649 +5 +26. Han T, Xie W, Zisserman A (2020) Self-supervised co-training +for video representation learning. In: NeurIPS, vol 33, pp 5679– +5690 16 +27. Haresh S, Kumar S, Coskun H, Syed SN, Konin A, Zia Z, Tran +QH (2021) Learning by aligning videos in time. In: CVPR, pp + +18 +Xiang Wang et al. +5548–5558 3, 13 +28. He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for +image recognition. In: CVPR, pp 770–778 9 +29. Hou R, Chang H, Ma B, Shan S, Chen X (2019) Cross attention +network for few-shot classification. In: NeurIPS, pp 4003–4014 +3, 5 +30. Hsu K, Levine S, Finn C (2018) Unsupervised learning via meta- +learning. In: ICLR 4, 15, 16 +31. Huang H, Zhang J, Zhang J, Wu Q, Xu C (2021) Ptn: A pois- +son transfer network for semi-supervised few-shot learning. In: +AAAI, vol 35, pp 1602–1609 4 +32. Huang K, Geng J, Jiang W, Deng X, Xu Z (2021) Pseudo- +loss confidence metric for semi-supervised few-shot learning. In: +ICCV, pp 8671–8680 4 +33. Huang Y, Yang L, Sato Y (2022) Compound prototype matching +for few-shot action recognition. In: ECCV, Springer, pp 351–368 +2, 4, 8, 10 +34. Huttenlocher DP, Klanderman GA, Rucklidge WJ (1993) Com- +paring images using the hausdorff distance. TPAMI 15(9):850– +863 3, 6 +35. Jesorsky O, Kirchberg KJ, Frischholz RW (2001) Robust face +detection using the hausdorff distance. In: AVBPA, Springer, pp +90–95 3 +36. Ji Z, Zou X, Huang T, Wu S (2019) Unsupervised few-shot learn- +ing via self-supervised training. arXiv preprint arXiv:191212178 +4, 7, 16 +37. Jing L, Yang X, Liu J, Tian Y (2018) Self-supervised spa- +tiotemporal feature learning via video rotation prediction. arXiv +preprint arXiv:181111387 16 +38. Khodadadeh S, Boloni L, Shah M (2019) Unsupervised meta- +learning for few-shot image classification. In: NeurIPS, vol 32 4, +7, 16 +39. Kingma DP, Ba J (2014) Adam: A method for stochastic opti- +mization. arXiv preprint arXiv:14126980 9 +40. Kliper-Gross O, Hassner T, Wolf L (2011) One shot similarity +metric learning for action recognition. In: SIMBAD, Springer, +pp 31–45 4 +41. Koizumi Y, Yatabe K, Delcroix M, Masuyama Y, Takeuchi D +(2020) Speech enhancement using self-adaptation and multi- +head self-attention. In: ICASSP, pp 181–185 12 +42. Kuehne H, Serre T, Jhuang H, Garrote E, Poggio T, Serre T +(2011) HMDB: A large video database for human motion recog- +nition. In: ICCV, DOI 10.1109/ICCV.2011.6126543 9 +43. Kumar Dwivedi S, Gupta V, Mitra R, Ahmed S, Jain A (2019) +Protogan: Towards few shot learning for action recognition. In: +ICCVW, pp 0–0 16 +44. Lazarou M, Stathaki T, Avrithis Y (2021) Iterative label clean- +ing for transductive and semi-supervised few-shot learning. In: +ICCV, pp 8751–8760 4 +45. Lee DH, et al. (2013) Pseudo-label: The simple and efficient +semi-supervised learning method for deep neural networks. In: +ICMLW, vol 3, p 896 7 +46. Li A, Luo T, Xiang T, Huang W, Wang L (2019) Few-shot learn- +ing with global class representations. In: ICCV, pp 9715–9724 +7 +47. Li H, Eigen D, Dodge S, Zeiler M, Wang X (2019) Finding task- +relevant features for few-shot learning by category traversal. In: +CVPR, pp 1–10 2, 3, 5, 13 +48. Li S, Liu H, Qian R, Li Y, See J, Fei M, Yu X, Lin W (2021) +Ttan: Two-stage temporal alignment network for few-shot action +recognition. arXiv preprint arXiv:210704782 8, 9, 10 +49. Li X, Sun Q, Liu Y, Zhou Q, Zheng S, Chua TS, Schiele B (2019) +Learning to self-train for semi-supervised few-shot classification. +In: NeurIPS, vol 32 4, 7 +50. Li Z, Zhou F, Chen F, Li H (2017) Meta-sgd: Learning to learn +quickly for few-shot learning. arXiv preprint arXiv:170709835 3 +51. Lin J, Gan C, Wang K, Han S (2020) Tsm: Temporal shift module +for efficient and scalable video understanding on edge devices. +TPAMI 1 +52. Liu L, Shao L, Li X, Lu K (2015) Learning spatio-temporal rep- +resentations for action recognition: A genetic programming ap- +proach. TCYB 46(1):158–170 1 +53. Liu X, Gao J, He X, Deng L, Duh K, Wang Yy (2015) Repre- +sentation learning using multi-task deep neural networks for se- +mantic classification and information retrieval. In: NAACL, pp +912–921 2 +54. Liu Y, Zhang X, Zhang S, He X (2020) Part-aware prototype +network for few-shot semantic segmentation. In: ECCV, pp 142– +158 7 +55. Lu J, Gong P, Ye J, Zhang C (2020) Learning from very few +samples: A survey. arXiv preprint arXiv:200902653 3 +56. Lu J, Jin S, Liang J, Zhang C (2020) Robust few-shot learning +for user-provided data. TNNLS 32(4):1433–1447 3 +57. Lu P, Bai T, Langlais P (2019) Sc-lstm: Learning task-specific +representations in multi-task learning for sequence labeling. In: +NAACL, pp 2396–2406 2 +58. Mitra A, Biswas S, Bhattacharyya C (2016) Bayesian modeling +of temporal coherence in videos for entity discovery and summa- +rization. TPAMI 39(3):430–443 3 +59. Mobahi H, Collobert R, Weston J (2009) Deep learning from +temporal coherence in video. In: ICML, pp 737–744 3, 6, 13 +60. Mohanaiah P, Sathyanarayana P, GuruKumar L (2013) Image +texture feature extraction using glcm approach. IJSRP 3(5):1–5 +3 +61. M¨uller M (2007) Dynamic time warping. Information Retrieval +for Music and Motion pp 69–84 11 +62. Nguyen KD, Tran QH, Nguyen K, Hua BS, Nguyen R (2022) In- +ductive and transductive few-shot video classification via appear- +ance and temporal alignments. In: ECCV, Springer, pp 471–487 +2, 4, 8, 10 +63. Nishiyama M, Yuasa M, Shibata T, Wakasugi T, Kawahara T, +Yamaguchi O (2007) Recognizing faces of moving people by hi- +erarchical image-set matching. In: CVPR, pp 1–8 3 +64. Patravali J, Mittal G, Yu Y, Li F, Chen M (2021) Unsupervised +few-shot action recognition via action-appearance aligned meta- +adaptation. In: ICCV, pp 8484–8494 4, 16 +65. Peng B, Lei J, Fu H, Zhang C, Chua TS, Li X (2018) Unsuper- +vised video action clustering via motion-scene interaction con- +straint. TCSVT 30(1):131–144 1 +66. Peng M, Zhang Q, Xing X, Gui T, Fu J, Huang X (2019) Learning +task-specific representation for novel words in sequence labeling. +In: IJCAI 2 +67. Perez L, Wang J (2017) The effectiveness of data augmenta- +tion in image classification using deep learning. arXiv preprint +arXiv:171204621 3 +68. Perrett T, Masullo A, Burghardt T, Mirmehdi M, Damen D +(2021) Temporal-relational crosstransformers for few-shot action +recognition. In: CVPR, pp 475–484 2, 4, 6, 7, 8, 9, 10, 11, 12, 13 +69. Qin T, Li W, Shi Y, Gao Y (2020) Diversity helps: Unsupervised +few-shot learning via distribution shift-based data augmentation. +arXiv preprint arXiv:200405805 4 +70. Ratner AJ, Ehrenberg HR, Hussain Z, Dunnmon J, R´e C (2017) +Learning to compose domain-specific transformations for data +augmentation. In: NeurIPS, NIH Public Access, vol 30, p 3239 3 +71. Ren M, Triantafillou E, Ravi S, Snell J, Swersky K, Tenenbaum +JB, Larochelle H, Zemel RS (2018) Meta-learning for semi- +supervised few-shot classification. In: ICLR 3, 7 +72. Rezaei M, Fr¨anti P (2016) Set matching measures for external +cluster validity. TKDE 28(8):2173–2186 3 +73. Saito Y, Nakamura T, Hachiya H, Fukumizu K (2020) Exchange- +able deep neural networks for set-to-set matching and learning. +In: ECCV, Springer, pp 626–646 3 + +HyRSM++: Hybrid Relation Guided Temporal Set Matching for Few-shot Action Recognition +19 +74. Santoro A, Bartunov S, Botvinick M, Wierstra D, Lillicrap T +(2016) Meta-learning with memory-augmented neural networks. +In: ICML, PMLR, pp 1842–1850 3 +75. Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, Batra +D (2017) Grad-cam: Visual explanations from deep networks via +gradient-based localization. In: ICCV, pp 618–626 14 +76. Snell J, Swersky K, Zemel R (2017) Prototypical networks for +few-shot learning. In: NeurIPS, vol 30, pp 4077–4087 3, 9, 11 +77. Sohn K, Berthelot D, Carlini N, Zhang Z, Zhang H, Raffel CA, +Cubuk ED, Kurakin A, Li CL (2020) Fixmatch: Simplifying +semi-supervised learning with consistency and confidence. In: +NeurIPS, vol 33, pp 596–608 7 +78. Soomro K, Zamir AR, Shah M (2012) Ucf101: A dataset of 101 +human actions classes from videos in the wild. arXiv preprint +arXiv:12120402 9 +79. Sudha N, et al. (2007) Robust hausdorff distance measure for +face recognition. Pattern Recognition 40(2):431–442 3, 6 +80. Sung F, Yang Y, Zhang L, Xiang T, Torr PH, Hospedales TM +(2018) Learning to compare: Relation network for few-shot +learning. In: CVPR, pp 1199–1208 3 +81. Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z (2016) +Rethinking the inception architecture for computer vision. In: +CVPR, pp 2818–2826 11 +82. Takacs B (1998) Comparing face images using the modified +hausdorff distance. Pattern recognition 31(12):1873–1881 3, 6 +83. Tao L, Wang X, Yamasaki T (2020) Self-supervised video rep- +resentation learning using inter-intra contrastive framework. In: +ACMMM, pp 2193–2201 16 +84. Thatipelli A, Narayan S, Khan S, Anwer RM, Khan FS, Ghanem +B (2022) Spatio-temporal relation modeling for few-shot action +recognition. In: CVPR 4, 8, 10, 11, 12, 13 +85. Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez +AN, Kaiser Ł, Polosukhin I (2017) Attention is all you need. In: +NeurIPS, pp 5998–6008 5 +86. Vinyals O, Blundell C, Lillicrap T, Kavukcuoglu K, Wierstra D +(2016) Matching Networks for One Shot Learning. In: NeurIPS, +arXiv:1606.04080v2 2, 3, 4, 8, 10 +87. Wang J, Jiao J, Liu YH (2020) Self-supervised video representa- +tion learning by pace prediction. In: ECCV, Springer, pp 504–521 +16 +88. Wang L, Xiong Y, Wang Z, Qiao Y, Lin D, Tang X, Van Gool +L (2018) Temporal segment networks for action recognition in +videos. TPAMI 41(11):2740–2755 1, 4 +89. Wang X, Zhang S, Qing Z, Shao Y, Gao C, Sang N (2021) Self- +supervised learning for semi-supervised temporal action pro- +posal. In: CVPR, pp 1905–1914 1 +90. Wang X, Zhang S, Qing Z, Shao Y, Zuo Z, Gao C, Sang N (2021) +Oadtr: Online action detection with transformers. ICCV 12 +91. Wang X, Zhang S, Qing Z, Tang M, Zuo Z, Gao C, Jin R, Sang N +(2022) Hybrid relation guided set matching for few-shot action +recognition. In: CVPR 3, 9 +92. Weng R, Lu J, Hu J, Yang G, Tan YP (2013) Robust feature set +matching for partial face recognition. In: ICCV, pp 601–608 3 +93. Weng R, Lu J, Tan YP (2016) Robust point set matching for par- +tial face recognition. TIP 25(3):1163–1176 3 +94. Wu J, Zhang T, Zhang Z, Wu F, Zhang Y (2022) Motion- +modulated temporal fragment alignment network for few-shot +action recognition. In: CVPR, pp 9151–9160 2, 4, 8, 10 +95. Xian Y, Korbar B, Douze M, Torresani L, Schiele B, Akata Z +(2021) Generalized few-shot video classification with video re- +trieval and feature generation. TPAMI 4 +96. Xu D, Xiao J, Zhao Z, Shao J, Xie D, Zhuang Y (2019) Self- +supervised spatiotemporal learning via video clip order predic- +tion. In: CVPR, pp 10334–10343 16 +97. Xu J, Wang X (2021) Rethinking self-supervised correspondence +learning: A video frame-level similarity perspective. In: ICCV, +pp 10075–10085 11, 13, 16 +98. Ye HJ, Hu H, Zhan DC, Sha F (2020) Few-shot learning via +embedding adaptation with set-to-set functions. In: CVPR, pp +8808–8817 3 +99. Ye HJ, Ming L, Zhan DC, Chao WL (2022) Few-shot learning +with a strong teacher. TPAMI 3 +100. Yoo S, Bahng H, Chung S, Lee J, Chang J, Choo J (2019) Col- +oring with limited data: Few-shot colorization via memory aug- +mented networks. In: CVPR, pp 11283–11292 3 +101. Yoon SW, Seo J, Moon J (2019) Tapnet: Neural network aug- +mented with task-adaptive projection for few-shot learning. In: +ICML, pp 7115–7123 2, 3, 13 +102. Yu CB, Qin HF, Cui YZ, Hu XQ (2009) Finger-vein image recog- +nition combining modified hausdorff distance with minutiae fea- +ture matching. Interdisciplinary Sciences: Computational Life +Sciences 1(4):280–289 6 +103. Yu Z, Chen L, Cheng Z, Luo J (2020) Transmatch: A transfer- +learning scheme for semi-supervised few-shot learning. In: +CVPR, pp 12856–12864 4 +104. Zhang H, Cisse M, Dauphin YN, Lopez-Paz D (2018) mixup: +Beyond empirical risk minimization. In: ICLR 7 +105. Zhang H, Zhang L, Qi X, Li H, Torr PH, Koniusz P (2020) Few- +shot action recognition with permutation-invariant attention. In: +ECCV, Springer, pp 525–542 1, 4, 8, 9, 10, 16 +106. Zhang S, Zhou J, He X (2021) Learning implicit temporal align- +ment for few-shot video classification. In: IJCAI 2, 4, 8, 9, 10 +107. Zhao C, Shi W, Deng Y (2005) A new hausdorff distance for +image matching. Pattern Recognition Letters 26(5):581–586 3 +108. Zheng S, Chen S, Jin Q (2022) Few-shot action recognition +with hierarchical matching and contrastive learning. In: ECCV, +Springer, pp 297–313 2, 4, 8, 10 +109. Zhou B, Andonian A, Oliva A, Torralba A (2018) Temporal rela- +tional reasoning in videos. In: ECCV, pp 803–818 8 +110. Zhou ZH, Li M (2005) Tri-training: Exploiting unlabeled data +using three classifiers. TKDE 17(11):1529–1541 7 +111. Zhou ZQ, Wang B (2009) A modified hausdorff distance using +edge gradient for robust object matching. In: IASP, IEEE, pp +250–254 6 +112. Zhu L, Yang Y (2018) Compound memory networks for few-shot +video classification. In: ECCV, pp 751–766 1, 2, 4, 8, 9, 10, 15, +16 +113. Zhu L, Yang Y (2020) Label independent memory for semi- +supervised few-shot video classification. TPAMI 44(1):273–285, +DOI 10.1109/TPAMI.2020.3007511 4, 7, 8, 10, 12, 15, 16 + diff --git a/BdE1T4oBgHgl3EQfpQWt/content/tmp_files/load_file.txt b/BdE1T4oBgHgl3EQfpQWt/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..009b0af8a7fc72a25d8dcbc1d5c5e3c381fc344e --- /dev/null +++ b/BdE1T4oBgHgl3EQfpQWt/content/tmp_files/load_file.txt @@ -0,0 +1,2095 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf,len=2094 +page_content='Noname manuscript No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' (will be inserted by the editor) HyRSM++: Hybrid Relation Guided Temporal Set Matching for Few-shot Action Recognition Xiang Wang · Shiwei Zhang · Zhiwu Qing · Zhengrong Zuo · Changxin Gao · Rong Jin · Nong Sang Received: date / Accepted: date Abstract Few-shot action recognition is a challenging but practical problem aiming to learn a model that can be eas- ily adapted to identify new action categories with only a few labeled samples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Recent attempts mainly focus on learning deep representations for each video individually under the episodic meta-learning regime and then performing tempo- ral alignment to match query and support videos.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' However, they still suffer from two drawbacks: (i) learning individ- ual features without considering the entire task may result in limited representation capability, and (ii) existing align- ment strategies are sensitive to noises and misaligned in- stances.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' To handle the two limitations, we propose a novel Hybrid Relation guided temporal Set Matching (HyRSM++) approach for few-shot action recognition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' The core idea of HyRSM++ is to integrate all videos within the task to learn discriminative representations and involve a robust match- ing technique.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' To be specific, HyRSM++ consists of two key components, a hybrid relation module and a temporal set matching metric.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Given the basic representations from the feature extractor, the hybrid relation module is introduced to fully exploit associated relations within and cross videos in an episodic task and thus can learn task-specific embed- dings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Subsequently, in the temporal set matching metric, we carry out the distance measure between query and support Xiang Wang · Zhiwu Qing · Zhengrong Zuo · Changxin Gao (Corre- sponding author) · Nong Sang Key Laboratory of Ministry of Education for Image Processing and Intelligent Control, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology E-mail: {wxiang, qzw, zhrzuo, cgao, nsang}@hust.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='edu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='cn Shiwei Zhang Alibaba Group E-mail: zhangjin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='zsw@alibaba-inc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='com Rong Jin Twitter E-mail: rongjinemail@gmail.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='com videos from a set matching perspective and design a bidi- rectional Mean Hausdorff Metric to improve the resilience to misaligned instances.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' In addition, we explicitly exploit the temporal coherence in videos to regularize the matching process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' In this way, HyRSM++ facilitates informative cor- relation exchanged among videos and enables flexible pre- dictions under the data-limited scenario.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Furthermore, we extend the proposed HyRSM++ to deal with the more chal- lenging semi-supervised few-shot action recognition and un- supervised few-shot action recognition tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Experimental results on multiple benchmarks demonstrate that our method consistently outperforms existing methods and achieves state-of-the-art performance under various few-shot set- tings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' The source code is available at https://github.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' com/alibaba-mmai-research/HyRSMPlusPlus.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Keywords Few-shot Action Recognition · Set Match- ing · Semi-supervised Few-shot Action Recognition · Unsupervised Few-shot Action Recognition 1 Introduction Recently, the development of large-scale video bench- marks [8, 23, 6, 13, 24] and deep networks [88, 51, 18, 89, 65, 52] have significantly boosted the progress of ac- tion recognition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' To achieve this success, we typically re- quire large amounts of manually labeled data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' However, ac- quiring these labeled examples consumes a lot of manpower and time, which actually limits further applications of this task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' In this case, researchers look to alternatives to achieve action classification without extensive costly labeling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Few- shot action recognition is a promising direction to reduce manual annotations and thus has attracted much attention recently [112, 105].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' It aims at learning to classify unseen action classes with extremely few annotated examples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='03330v1 [cs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='CV] 9 Jan 2023 2 Xiang Wang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' CNN CNN CNN .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='1 Query video .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Support set Hybrid relation module Support: make coffee Query: make coffee Support: make coffee Query: make coffee \uf04f \uf050 Metric space (support) Metric space (quey) “pour water” “pour coffee powder” Temporal alignment Temporal set matching (b) Time line Matching line \uf04f \uf050 (a) Pull Push Pull Push Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' 1 (a) Concept of the proposed hybrid relation module.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' We adaptively produce task-specific video embeddings by extracting relevant discrim- inative patterns cross videos in an episodic task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' (b) Example of make coffee, the current temporal alignment metrics tend to be strict, resulting in an incorrect match on misaligned videos.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' In contrast, the proposed temporal set matching metric involving set matching technique and temporal coherence regularization is more flexible in finding the best correspondences.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' To solve the few-shot data-scarcity problem, popu- lar attempts [112, 7, 68, 106] are mainly based on the metric-based meta-learning technique [86], in which a com- mon embedding space is first learnt via episodic training and then an explicit or implicit alignment metric is em- ployed to calculate the distances between the query (test) videos and support (reference) videos for classification in an episodic task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Typically, Ordered Temporal Alignment Module (OTAM) [7] adopts a deep feature extractor to con- vert an input video into a frame feature sequence indepen- dently and explicitly explores the ordered temporal align- ment path between support and query videos in this feature space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Temporal-Relational CrossTransformer (TRX) [68] learns a deep embedding space and tries to exhaustively con- struct temporally-corresponding sub-sequences of actions to compare.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Some recent works [33, 94, 108, 62] propose to design multi-level metrics for few-shot action recognition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Although these methods have achieved remarkable per- formance, there are still two limitations: individual feature learning and inflexible matching strategy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' First, discrimina- tive interactive clues cross videos in an episode are ignored when each video is considered independently during repre- sentation learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' As a result, these methods actually as- sume the learned representations are equally effective on different episodic tasks and maintain a fixed set of video fea- tures for all test-time tasks, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=', task-agnostic, which hence might overlook the most discriminative dimensions for the current task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Existing work also shows that the task-agnostic methods tend to suffer inferior generalization in other fields, such as image recognition [47, 101], NLP [66, 57], and in- formation retrieval [53].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Second, actions are usually com- plicated and involve many subactions with different orders and offsets, which may cause the failure of existing tempo- ral alignment metrics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' For example, as shown in Figure 1(b), to make coffee, you can pour water before pour coffee pow- der, or in a reverse order, hence it is hard for recent temporal alignment strategies to find the right correspondences.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Thus a more flexible metric is required to cope with the misalign- ment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Inspired by the above observations, we thus solve the few-shot action recognition problem by developing a novel Hybrid Relation guided temporal Set Matching algorithm, dubbed HyRSM++, which is architecturally composed of a hybrid relation module and a temporal set matching metric.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' In the hybrid relation module, we argue that the considerable relevant relations within and cross videos are beneficial to generate a set of customized features that are discriminative for a given task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' To this end, we first apply an intra-relation function to strengthen structural patterns within a video via modeling long-range temporal dependencies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Then an inter- relation function operates on different videos to extract rich semantic information to reinforce the features which are more relevant to query predictions, as shown in Figure 1(a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' By this means, we can learn task-specific embeddings for the few-shot task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' On top of the hybrid relation module, we design a novel temporal set matching metric consist- ing of a bidirectional Mean Hausdorff Metric and a tem- poral coherence regularization to calculate the distances be- tween query and support videos, as shown in Figure 1(b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' The objective of the bidirectional Mean Hausdorff Metric is to measure video distance from the set matching per- spective.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Concretely, we treat each video as a set of frames and alleviate the strictly ordered constraints to acquire bet- ter query-support correspondences.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Furthermore, to exploit long-range temporal order dependencies, we explicitly im- pose temporal coherence regularization on the input videos for more stable measurement without introducing extra net- work parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' In this way, by combining the hybrid re- lation module and temporal set matching metric, the pro- posed HyRSM++ can sufficiently integrate semantically re- lational representations within the entire task and provide flexible video matching in an end-to-end manner.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' We evalu- ate the proposed HyRSM++ on six challenging benchmarks and achieve remarkable improvements again current state- of-the-art methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Although the intuition of HyRSM++ is straightforward, it is elaborately designed for few-shot action recognition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Can our HyRSM++ be applied to the more challenging HyRSM++: Hybrid Relation Guided Temporal Set Matching for Few-shot Action Recognition 3 semi-supervised or unsupervised action recognition tasks even if the settings are entirely different?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' To answer this question, we extend HyRSM++ to the semi-supervised and unsupervised objectives with minor task adaptation modi- fications, and experimental results indicate that HyRSM++ can be well adapted to different scenarios well and achieves impressive performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' In summary, we make the following four contributions: (1) We propose a novel hybrid relation module to cap- ture the intra- and inter-relations inside the episodic task, yielding task-specific representations for different tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' (2) We reformulate the query-support video pair distance metric as a set matching problem and develop a bidirectional Mean Hausdorff Metric, which can be robust to complex ac- tions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' To utilize long-term temporal order cues, we further design a new temporal coherence regularization on videos without adding network parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' (3) We conduct extensive experiments on six challeng- ing datasets to verify that the proposed HyRSM++ achieves superior performance over the state-of-the-art methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' (4) We show that the proposed HyRSM++ can be di- rectly extended to the more challenging semi-supervised few-shot action recognition and unsupervised few-shot ac- tion recognition task with minor modifications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' In this paper, we have extended our preliminary CVPR- 2022 conference version [91] in the following aspects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' i) We integrate the temporal coherence regularization and set matching strategy into a temporal set matching metric so that the proposed metric can explicitly leverage temporal order information in videos and match flexibly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Note that temporal coherence regularization does not introduce ad- ditional parameters and will not increase the burden of in- ference.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' ii) We conduct more comprehensive ablation stud- ies to verify the effectiveness and efficiency of the pro- posed HyRSM++.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' iii) We clearly improve the few-shot action recognition performance over the previous version.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Experimental results also manifest that HyRSM++ signifi- cantly surpasses existing competitive methods and achieves state-of-the-art performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' iv) We show that the proposed HyRSM++ can be easily extended to the more challeng- ing semi-supervised few-shot recognition and unsupervised few-shot action recognition tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' 2 Related Work In the literature, there are some techniques related to this paper, mainly including few-shot image classification, set matching, temporal coherence, semi-supervised few-shot learning, unsupervised few-shot learning, and few-shot ac- tion recognition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' In this section, we will briefly review them separately.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Few-shot Image Classification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Recently, the research of few-shot learning [17, 55, 56] has proceeded roughly along with the following directions: data augmentation, optimization-based, and metric-based.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Data augmentation is an intuitive method to increase the number of training sam- ples and improve the diversity of data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Mainstream strategies include spatial deformation [70, 67] and semantic feature augmentation [9, 100].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Optimization-based methods learn a meta-learner model that can quickly adopt to a new task given a few training examples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' These algorithms include the LSTM-based meta-learner [74], learning efficient model ini- tialization [19], and learning stochastic gradient descent op- timizer [50].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Metric-based methods attempt to address the few-shot classification problem by ”learning to compare”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' This family of approaches aims to learn a feature space and compare query and support images through Euclidean dis- tance [76, 101, 99], cosine similarity [86, 98], or learnable non-linear metric [80, 29, 47].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Our work is more closely re- lated to the metric-based methods [47, 101] that share the same spirit of learning task-specific features, whereas we fo- cus on solving the more challenging few-shot action recog- nition task with diverse spatio-temporal dependencies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' In addition, we will further point out the differences and con- duct performance comparisons in the experimental section.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Set Matching.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' The objective of set matching is to accu- rately measure the similarity of two sets, which have re- ceived much attention over the years.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Set matching tech- niques can be used to efficiently process complex data struc- tures [2, 72, 3] and has been applied in many computer vi- sion fields, including face recognition [63, 93, 92], object matching [73, 107], etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Among them, Hausdorff distance is an important alternative to handle set matching problems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Hausdorff distance and its variants have been widely used in the field of image matching and achieved remarkable re- sults [34, 16, 35, 107, 82, 79].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Inspired by these great suc- cesses, we introduce set matching into the few-shot action recognition field for the first time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Temporal Coherence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Videos naturally involve temporal continuity, and there is much effort to effectively explore how to leverage this property [11, 22, 27, 58].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Inverse Dif- ference Moment (IDM) [11] is a commonly used measure of local homogeneity, which assumes that in a sequence, two elements are more similar if they are located next to each other.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' The idea of IDM has been widely applied to texture feature extraction [60], face recognition [59], and unsuper- vised representation learning [22, 27] and achieved remark- able performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' In this paper, we focus on constraining the few-shot matching process by exploiting temporal co- herence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Semi-supervised Few-shot Learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' In practical appli- cation scenarios, there are usually many unlabeled samples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Semi-supervised few-shot learning considers learning new concepts in the presence of extra unlabeled data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Ren et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' [71] first introduce the challenging semi-supervised few- shot learning paradigm and refine the prototypes by adopt- 4 Xiang Wang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' ing a soft k-means on unlabeled data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' LST [49] proposes a novel recursive-learning-based self-training strategy for ro- bust convergence of the inner loop.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' TransMatch [103] de- velops a new transfer learning framework by incorporat- ing MixMatch [4] and existing few-shot learning methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' PTN [31] employs the Poisson learning model to obtain in- formative presentations between the labeled and unlabeled data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' PLCM [32] and iLPC [44] focus on cleaning predicted pseudo-labels and generating accurate confidence estima- tion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' In the field of semi-supervised few-shot action recog- nition, LIM [113] utilizes a label-independent memory to preserve a feature bank and produces class prototypes for query classification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Unsupervised Few-shot Learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' The objective of un- supervised few-shot learning is to utilize unlabeled samples to construct meta-tasks for few-shot training.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' CACTUs [30] and UFLST [36] construct many tasks by clustering em- beddings and optimize the meta-learning process over the constructed tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' UMTRA [38] generates artificial tasks by randomly sampling support examples from the training set and produces corresponding queries by augmentation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' ULDA [69] and AAL [1] follow this paradigm to randomly group augmented images for meta-learning and point out the importance of data augmentation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' More recently, MetaU- VFS [64] presents the first unsupervised meta-learning al- gorithm for few-shot action recognition and adopts a two- stream 2D and 3D CNN model to explore spatial and tem- poral features via contrastive learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Few-shot Action Recognition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' The difference between few-shot action recognition and the previous few-shot learn- ing approaches is that it deals with more complex higher dimensional video data instead of two-dimensional images.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' The existing methods mainly focus on metric-based learn- ing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' OSS-Metric Learning [40] adopts OSS-Metric of video pairs to match videos.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' TARN [5] learns an attention-based deep-distance measure from an attribute to a class center for zero-shot and few-shot action recognition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' CMN [112] utilizes a multi-saliency embedding algorithm to encode video representations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' AMeFu-Net [20] uses depth infor- mation to assist learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Xian et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' [95] propose to learn a generative adversarial network and produce video fea- tures of novel classes for generalization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Coskun et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' [12] leverage object-object interaction, hand grasp, optical flow, and hand trajectory to learn an egocentric few-shot classi- fier.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' OTAM [7] preserves the frame ordering in video data and estimates distances with ordered temporal alignment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' ARN [105] introduces a self-supervised permutation invari- ant strategy for spatio-temporal modeling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' ITANet [106] proposes a frame-wise implicit temporal alignment strategy to achieve accurate and robust video matching.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' TRX [68] matches actions by matching plentiful tuples of different sub-sequences.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' More recently, STRM [84] makes use of lo- cal and global enrichment mechanism for spatio-temporal modeling based on TRX [68] and enforces class-separability at different phase.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Some works [33, 94, 108, 62] propose to design multi-level metrics for few-shot action recogni- tion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Note that most above methods focus on learning video embedding independently.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Unlike these previous methods, our HyRSM++ improves the transferability of embedding by learning intra- and inter-relational patterns that can bet- ter generalize to unseen classes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' 3 Method In this section, we first formulate the definition of the few-shot action recognition task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Then we present our Hy- brid Relation guided temporal Set Matching (HyRSM++) method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='1 Problem formulation Few-shot action recognition aims to obtain a model that can generalize well to new classes when limited labeled video data is available.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' To make training more faithful to the test environment, we adopt the episodic training manner [86] for few-shot adaptation as in previous work [86, 7, 68, 106].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' In each episodic task, there are two sets, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=', a support set S and a query set Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' The support set S contains N × K sam- ples from N different action classes, and each class contains K support videos, termed the N-way K-shot problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' The goal is to classify the query videos in Q into N classes with these support videos.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='2 HyRSM++ Pipeline.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' The overall architecture of HyRSM++ is illus- trated in Figure 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' For each input video sequence, we first divide it into T segments and extract a snippet from each segment, as in previous methods [88, 7].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' This way, in an episodic task, the support set can be denoted as S = {s1, s2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=', sN×K}, where si = {s1 i , s2 i , .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=', sT i }.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' For sim- plicity and convenience, we discuss the process of the N- way 1-shot problem, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=', K = 1, and consider that the query set Q contains a single video q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Then we apply an embedding model to extract the feature representations for each video sequence and obtain the support features Fs = {fs1, fs2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=', fsN } and the query feature fq, where fsi = {f 1 i , f 2 i , .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=', f T i } and fq = {f 1 q , f 2 q , .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=', f T q }.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' After that, we input Fs and fq to the hybrid relation module to learn task-specific features, resulting in ˜Fs and ˜fq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Finally, the enhanced representations ˜Fs and ˜fq are fed into the set matching metric to generate matching scores.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Based on the output scores, we can train or test the total framework.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' HyRSM++: Hybrid Relation Guided Temporal Set Matching for Few-shot Action Recognition 5 Support set Query video Backbone Intra-relation Intra-relation Intra-relation Intra-relation A Inter-relation modeling Hybrid relation module 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='7 A Avg-pooling E Expend Concatenate Convolution Temporal set matching metric Backbone Backbone Backbone A A A E E E E Pull Push Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' 2 Schematic illustration of the proposed Hybrid Relation guided temporal Set Matching (HyRSM++) approach on a 3-way 1-shot problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Given an episode of video data, a feature embedding network is first employed to extract their feature vectors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Then, A hybrid relation module is followed to integrate rich information within each video and cross videos with intra-relation and inter-relation functions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Finally, the task-specific features are fed forward into a temporal set matching metric for matching score prediction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Best viewed in color.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Hybrid relation module.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Given the features Fs and fq output by the embedding network, current approaches, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=', OTAM [7], directly apply a classifier C in this feature space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' They can be formulated as: yi = C(fsi, fq) (1) where yi is the matching score between fsi and fq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' During training, yi = 1 if they belong to the same class, otherwise yi = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' In the testing phase, yi can be adopted to predict the query label.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' From the perspective of probability theory, it makes decisions based on the priors fsi and fq: yi = P((fsi, fq)|fsi, fq) (2) which is a typical task-agnostic method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' However, the task- agnostic embedding is often vulnerable to overfit irrelevant representations [29, 47] and may fail to transfer to unseen classes not yet observed in the training stage.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Unlike the previous methods, we propose to learn task- specific features for each target task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' To achieve this goal, we introduce a hybrid relation module to generate task-specific features by capturing rich information from different videos in an episode.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Specifically, we elaborately design the hybrid relation module H in the following form: ˜fi = H(fi, G);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' fi ∈ [Fs, fq], G = [Fs, fq] (3) That is, we improve the feature fi by aggregating seman- tic information cross video representations, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=', G, in an episodic task, allowing the obtained task-specific feature ˜fi to be more discriminative than the isolated feature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' For ef- ficiency, we further decompose hybrid relation module into two parts: intra-relation function Ha and inter-relation func- tion He.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' The intra-relation function aims to strengthen structural patterns within a video by capturing long-range temporal de- pendencies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' We express this process as: f a i = Ha(fi) (4) here f a i ∈ RT ×C is the output of fi through the intra- relation function and has the same shape as fi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Note that the intra-relation function has many alternative implements, in- cluding multi-head self-attention (MSA), Transformer [85], Bi-LSTM [25], Bi-GRU [10], etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=', which is incredibly flex- ible and can be any one of them.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Based on the features generated by the intra-relation function, an inter-relation function is deployed to semanti- cally enhance the features cross different videos: f e i = He i (f a i , Ga) = |Ga| � j (κ(ψ(f a i ), ψ(f a j )) ∗ ψ(f a j )) (5) where Ga = [F a s , f a q ], ψ(·) is a global average pooling layer, and κ(f a i , f a j ) is a learnable function that calculates the se- mantic correlation between f a i and f a j .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' The potential logic is that if the correlation score between f a i and f a j is high, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=', κ(f a i , f a j ), it means they tend to have the same seman- tic content, hence we can borrow more information from f a j to elevate the representation f a i , and vice versa.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' In the same way, if the score κ(f a i , f a i ) is less than 1, it indicates that some irrelevant information in f a i should be suppressed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' In this way, we can improve the feature discrimination by taking full advantage of the limited samples in each episodic task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' The inter-relation function also has similar implements with the intra-relation function but with a dif- ferent target.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' After the inter-relation function, we employ an Expend-Concatenate-Convolution operation to aggregate 6 Xiang Wang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' information, as shown in Figure 2, where the output feature ˜fi has the same shape as f e i .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' In the form of prior, our method can be formulated as: yi = P(( ˜fsi, ˜fq)|H(fsi, G), H(fq, G));' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' G = [Fs, fq] (6) Intuitively, compared with Equation 2, it can be conducive to making better decisions because more priors are provided.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' In particular, the hybrid relation module is a plug-and-play unit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' In the experiment, we will fully explore different con- figurations of the hybrid relation module and further inves- tigate its insertablility.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Temporal set matching metric.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Many prior few-shot action recognition algorithms usually impose a strict tempo- ral alignment strategy on generated video representations for few-shot classification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' However, they suffer from causing some failed matches when encountering misaligned video instances.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Instead, we develop a flexible metric based on set matching that explicitly discovers optimal frame matching pairs for the ability to be insensitive to misalignment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Con- cretely, the proposed temporal set matching metric contains two parts, bidirectional Mean Hausdorff Metric (Bi-MHM) and temporal coherence regularization, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' We will describe them in detail below.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Given the relation-enhanced features ˜Fs and ˜fq, we present a novel metric to enable efficient and flexible match- ing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' In this metric, we treat each video as a set of T frames and reformulate distance measurement between videos as a set matching problem, which is robust to complicated instances, whether they are aligned or not.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Specifically, we achieve this goal by modifying the Hausdorff distance, which is a typical set matching approach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' The standard Hausdorff distance D can be formulated as: d( ˜fi, ˜fq) = max ˜ f a i ∈ ˜fi ( min ˜ f bq ∈ ˜ fq ��� ˜f a i − ˜f bq ���) d( ˜fq, ˜fi) = max ˜ f b q ∈ ˜ fq ( min ˜ f a i ∈ ˜fi ��� ˜f bq − ˜f a i ���) D = max(d( ˜fi, ˜fq), d( ˜fq, ˜fi)) (7) where ˜fi ∈ RT ×C contains T frame features, and ��· �� is a distance measurement function, which is the cosine distance in our method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' However, the previous methods [102, 21, 111, 16] pointed out that Hausdorff distance can be easily affected by noisy examples, resulting in inaccurate measurements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Hence they employ a directed modified Hausdorff distance that robust to noise as follows: dm( ˜fi, ˜fq) = 1 Ni � ˜ f a i ∈ ˜fi ( min ˜ f b q ∈ ˜ fq ��� ˜f a i − ˜f bq ���) (8) where Ni is the length of ˜fi, and equal to T in this paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Hausdorff distance and its variants achieve great success in image matching [82, 16, 34] and face recognition [21, 79].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' We thus propose to introduce the set matching strategy into the few-shot action recognition field and further design a novel bidirectional Mean Hausdorff Metric (Bi-MHM): Db = 1 Ni � ˜ f a i ∈ ˜fi ( min ˜ f bq ∈ ˜ fq ��� ˜f a i − ˜f bq ���)+ 1 Nq � ˜ f bq ∈ ˜ fq ( min ˜ f a i ∈ ˜fi ��� ˜f bq − ˜f a i ���) (9) where Ni and Nq are the lengths of the support feature ˜fi and the query feature ˜fq respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' The proposed Bi-MHM is a symmetric function, and the two items are complementary to each other.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' From Equa- tion 9, we can find that Db can automatically find the best correspondencies between two videos, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=', ˜fi and ˜fq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Note that our Bi-MHM is a non-parametric classifier and does not involve numerous non-parallel calculations, which helps to improve computing efficiency and transfer ability compared to the previous complex alignment classifiers [7, 68].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' More- over, the hybrid relation module and Bi-MHM can mutually reinforce each other, consolidating the correlation between two videos collectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' The Bi-MHM approach described above assumes video sequence representations belonging to the same action have the same set structure in the feature space and does not explicitly utilize temporal order information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' However, it would be much more general to take the inherent temporal information in videos into account.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' For this reason, we take advantage of the temporal coherence that naturally exists in sequential video data and construct a temporal coherence regularization to further constrain the matching process by incorporating temporal order information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' IDM [11] is a commonly used means that can exploit temporal coherence within videos, which can be formulated as: I( ˜fi) = T � a=1 T � b=1 1 (a − b)2 + 1 · ��� ˜f a i − ˜f b i ��� (10) where ˜fi is the input video feature, T is the temporal length of the video, and the above loss encourages frames that are close in time to be close in the feature space as well.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' In addi- tion, there is another way to use temporal order information in the literature [22, 59]: I( ˜fi;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' ˜f a i , ˜f b i ) = � � � ��� ˜f a i − ˜f b i ��� , if |a − b| = 1 max(0, m − ��� ˜f a i − ˜f b i ���) if |a − b| > 1 (11) where m is the size of the margin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Equation 11 utilizes the video coherence property by pulling two frame features closer if they are adjacent, pushing farther apart by one mar- gin m if they are not adjacent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Through observation, we can HyRSM++: Hybrid Relation Guided Temporal Set Matching for Few-shot Action Recognition 7 see that in Equation 10, all frames are pulled close regardless of time distance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' In Equation 11, all frame features are sep- arated by a margin m if they are not adjacent to the current frame, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=', all pairs are treated equally.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' The above two man- ners do not fully exploit the smooth and continuous changes of the video.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' To this end, we propose a novel form to mine temporal coherence property: I( ˜fi;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' ˜f a i , ˜f b i ) = � � � 1 (a−b)2+1 · ��� ˜f a i − ˜f b i ��� , if |a − b| ≤ δ max(0, mab − ��� ˜f a i − ˜f b i ���) if |a − b| > δ (12) where δ is a window size and mab = 1 − e− (|a−b|−δ)2 2σ2 for smooth temporal coherence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Compared with the origi- nal forms, our proposed temporal coherence regularization can better reflect the continuous change of video and thus lead to better performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' In the training phase, we take the negative distance for each class as logit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Then we utilize the same cross-entropy loss as in [7, 68], the auxiliary semantic loss [46, 54] and the temporal coherence regularization to jointly train the model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' The auxiliary semantic loss refers to the cross-entropy loss on the real action classes, which is widely used to improve training stability and generalization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' During inference, we select the support class closest to the query for classification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='3 Extended applications of HyRSM++ 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='1 Semi-supervised few-shot action recognition The objective of semi-supervised few-shot action recogni- tion [113] is to fully explore the auxiliary information from unlabeled video data to boost the few-shot classification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Compared with the standard supervised few-shot setting, in addition to the support set S and query set Q, an extra un- labeled set U is also included in a semi-supervised few-shot task to alleviate data scarcity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' We demonstrate that the pro- posed HyRSM++ can build a bridge between labeled and unlabeled examples, leading to higher classification perfor- mance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Given an unlabeled set U, a common practice in semi- supervised learning literature [110, 104, 77] is to adopt the Pseudo Labeling technique [45], which assumes that the de- cision boundary usually lies in low-density areas and data samples in a high-density area have the same label.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Sim- ilarly, traditional semi-supervised few-shot learning meth- ods [71, 49] usually produce pseudo labels for unlabeled data based on the known support set, and then the gener- ated high-confidence pseudo-label data is augmented into the support set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' In this paper, we follow this paradigm and utilize HyRSM++ to leverage unlabeled examples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Since Algorithm 1 HyRSM++ for semi-supervised few-shot ac- tion recognition Require: A labeled support set S, an auxiliary unlabeled set U, and a query set Q Ensure: Optimized few-shot classifier HyRSM++ 1: Enter support set S and unlabeled set U into HyRSM++ and obtain the category prediction of U based on Equation 9;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' 2: According to the prediction distribution, select the high-confidence samples to generate pseudo-labels and update S with the selected samples to get the augmented S ′;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' 3: Apply the augmented S ′ and query set Q for supervised few-shot training as described in Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='2;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' noisy videos usually have higher losses in training, it is pos- sible to leverage the strong HyRSM++ to distinguish be- tween clean and noisy videos from the prediction scores.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Based on this, we choose reliable pseudo-labeled samples in the unlabeled set by predictions and augment the support set with high-confidence pseudo-label data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Subsequently, we take advantage of the augmented support set to classify the query videos as in the supervised few-shot task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' During the training stage, many semi-supervised few-shot tasks are sampled to optimize the whole model, as shown in Algo- rithm 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' For inference, the evaluation process is also con- ducted by sampling 10,000 episodic tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='2 Unsupervised few-shot action recognition Unlike the previously described settings involving labelled data, unsupervised few-shot action recognition aims to use unlabeled data to construct few-shot tasks and learn adap- tations to different tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' We further extend HyRSM++ to this unsupervised task and verify its capability of transfer- ring prior knowledge to learn to deal with unseen tasks effi- ciently.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' To perform unsupervised few-shot learning, construct- ing few-shot tasks is the first step.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' However, there are no label annotations that can be directly applied for few-shot learning in the challenging unsupervised setting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Following prior unsupervised few-shot algorithms [38, 36], we gener- ate few-shot tasks by first adopting existing unsupervised learning approaches to learn initialized feature embeddings of the input videos, and then leveraging deep clustering tech- niques to construct pseudo-classes of the videos.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' According to clustering results, we are able to produce few-shot tasks by sampling N-way K-shot episodes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' We then use the con- structed few-shot tasks to train HyRSM++.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' During the test- ing phase, we sample 10,000 episodes from the test set to obtain the performance, and the label information is only used for evaluation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' 8 Xiang Wang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Table 1 Comparison to recent few-shot action recognition methods on the meta-testing set of SSv2-Full, Kinetics, Epic-kitchens and HMDB51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' The experiments are conducted under the 5-way setting, and results are reported as the shot increases from 1 to 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' ”-” means the result is not available in published works, and the underline indicates the second best result.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Method Reference Dataset 1-shot 2-shot 3-shot 4-shot 5-shot CMN++ [112] ECCV’18 SSv2-Full 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='4 43.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='8 TRN++ [109] ECCV’18 38.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='6 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='9 OTAM [7] CVPR’20 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='8 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='1 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='5 52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='0 52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='3 TTAN [48] ArXiv’21 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='3 52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='5 57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='3 59.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='3 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='4 ITANet [7] IJCAI’21 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='2 55.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='5 59.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='1 61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='0 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='3 TRX (Ω={1}) [68] CVPR’21 38.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='8 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='7 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='4 58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='0 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='6 TRX (Ω={2, 3})[68] CVPR’21 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='0 53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='1 57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='6 61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='1 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='6 STRM [84] CVPR’22 43.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='1 53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='3 59.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='1 61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='7 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='1 MTFAN [94] CVPR’22 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='7 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='4 Nguyen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' [62] ECCV’22 43.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='8 61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='1 Huang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' [33] ECCV’22 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='3 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='7 HCL [108] ECCV’22 47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='3 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='5 59.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='0 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='4 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='9 HyRSM CVPR’22 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='3 (+5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='0) 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='2 (+6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='7) 65.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='1 (+6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='0) 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='9 (+5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='5) 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='0 (+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='9) HyRSM++ 55.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='0 (+5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='7) 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='5 (+8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='0) 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='0 (+6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='9) 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='8 (+6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='4) 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='8 (+1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='7) MatchingNet [86] NeurIPS’16 Kinetics 53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='3 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='3 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='2 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='8 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='6 MAML [19] ICML’17 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='2 65.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='5 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='0 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='1 75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='3 Plain CMN [112] ECCV’18 57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='3 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='5 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='5 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='7 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='0 CMN-J [113] TPAMI’20 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='5 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='0 75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='6 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='3 78.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='9 TARN [5] BMVC’19 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='8 78.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='5 ARN [105] ECCV’20 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='7 82.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='4 OTAM [7] CVPR’20 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='0 75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='9 78.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='7 81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='9 85.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='8 ITANet [106] IJCAI’21 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='6 84.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='3 TRX (Ω={1}) [68] CVPR’21 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='6 75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='4 80.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='1 82.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='4 85.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='2 TRX (Ω={2, 3}) [68] CVPR’21 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='6 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='2 81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='8 83.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='4 85.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='9 STRM [84] CVPR’22 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='9 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='4 81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='1 83.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='8 86.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='7 MTFAN [94] CVPR’22 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='6 87.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='4 Nguyen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' [62] ECCV’22 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='3 87.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='4 Huang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' [33] ECCV’22 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='3 86.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='4 HCL [108] ECCV’22 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='7 79.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='1 82.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='4 84.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='0 85.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='8 HyRSM CVPR’22 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='7 (-0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='9) 80.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='0 (+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='9) 83.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='5 (+1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='1) 84.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='6 (+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='6) 86.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='1 (-1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='3) HyRSM++ 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='0 (-0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='6) 80.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='8 (+1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='7) 83.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='9 (+1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='5) 85.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='3 (+1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='3) 86.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='4 (-1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='0) OTAM [7] CVPR’20 Epic-kitchens 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='0 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='3 53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='9 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='9 56.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='3 TRX [68] CVPR’21 43.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='4 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='6 53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='5 56.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='8 58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='9 STRM [84] CVPR’22 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='8 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='4 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='9 58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='0 59.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='2 HyRSM CVPR’22 47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='4 (+1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='4) 52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='9 (+2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='3) 56.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='4 (+1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='5) 58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='8 (+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='8) 59.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='8 (+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='6) HyRSM++ 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='0 (+2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='0) 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='9 (+4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='3) 57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='5 (+2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='6) 59.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='6 (+1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='6) 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='8 (+1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='6) ARN [105] ECCV’20 HMDB51 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='5 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='6 OTAM [7] CVPR’20 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='5 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='5 65.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='7 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='2 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='0 TTAN [48] ArXiv’21 57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='1 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='0 TRX [68] CVPR’21 53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='1 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='5 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='8 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='2 75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='6 STRM [84] CVPR’22 52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='3 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='5 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='4 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='9 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='3 MTFAN [94] CVPR’22 59.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='0 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='6 Nguyen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' [62] ECCV’22 59.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='6 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='9 Huang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' [33] ECCV’22 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='1 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='0 HCL [108] ECCV’22 59.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='1 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='5 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='2 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='8 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='3 HyRSM CVPR’22 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='3 (+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='2) 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='2 (+1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='7) 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='7 (+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='5) 75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='3 (+1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='5) 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='0 (-1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='3) HyRSM++ 61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='5 (+1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='4) 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='0 (+2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='5) 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='7 (+1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='5) 75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='4 (+1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='6) 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='4 (-0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='9) 4 Experiments In this section, the following key questions will be answered in detail: (1) Is HyRSM++ competitive to other state-of- the-art methods on challenging few-shot benchmarks?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' (2) What components play an integral role in HyRSM++ so that HyRSM++ can work well?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' (3) Can the proposed hybrid re- lation module be viewed as a simple plug-and-play unit and have the same effect for other methods?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' (4) Does the pro- posed temporal set matching metric have an advantage over other measure competitors?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' (5) Can HyRSM++ have stable performance in a variety of different video scenarios?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='1 Datasets and experimental setups Datasets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' We evaluate our HyRSM++ on six standard public few-shot benchmarks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' For the Kinetics [8], SSv2-Full [23], and SSv2-Small [23] datasets, we adopt the existing splits proposed by [7, 112, 106, 68], and each dataset consists HyRSM++: Hybrid Relation Guided Temporal Set Matching for Few-shot Action Recognition 9 MSA Transformer Bi-LSTM Bi-GRU Inter-relation MSA Transformer Bi-LSTM Bi-GRU Intra-relation 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='3 53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='0 53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='6 53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='3 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='3 53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='8 53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='6 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='1 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='6 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='4 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='4 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='9 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='8 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='6 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='8 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='8 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='5 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='0 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='5 52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='0 52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='5 53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='0 53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='5 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='0 Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' 3 Comparison between different components in hybrid relation module on 5-way 1-shot few-shot action classification without tempo- ral coherence regularization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Experiments are conducted on the SSv2- Full dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' MSA Transformer Bi-LSTM Bi-GRU Inter-relation MSA Transformer Bi-LSTM Bi-GRU Intra-relation 55.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='0 55.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='0 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='6 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='4 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='5 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='6 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='4 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='5 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='7 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='6 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='7 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='9 52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='1 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='7 52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='3 52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='0 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='0 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='5 52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='0 52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='5 53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='0 53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='5 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='0 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='5 55.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='0 Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' 4 Comparison between different components in hybrid relation module on 5-way 1-shot few-shot action classification with temporal coherence regularization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Experiments are conducted on the SSv2-Full dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' of 64 and 24 classes as the meta-training and meta-testing set, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' For UCF101 [78] and HMDB51 [42], we verify our proposed methods by leveraging existing splits from [105, 68].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' In addition to the above, we also utilize the egocentric Epic-kitchens [14, 13] dataset to evaluate HyRSM++.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Implementation details.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Following previous works [112, 7, 68, 106], ResNet-50 [28] initialized with ImageNet [15] pre- trained weights is utilized as the feature extractor in our ex- periments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' We sparsely and uniformly sample 8 (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=', T = 8) frames per video to construct input frame sequence, which is in line with previous methods [7, 106].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' In the training phase, we also adopt basic data augmentation such as random crop- ping and color jitter, and use Adam [39] optimizer to train our model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' During the inference stage, we conduct few-shot action recognition evaluation on 10,000 randomly sampled episodes from the meta-testing set and report the mean ac- curacy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' For many shot classification, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=', 5-shot, we follow ProtoNet [76] and calculate the mean features of support videos in each class as the prototypes, and classify the query videos according to their distances against the prototypes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='2 Comparison with state-of-the-art In this section, we validate the effectiveness of the proposed HyRSM++ by comparing it with state-of-the-art methods under various settings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' As indicated in Table 1 and Ta- ble 2, the proposed HyRSM++ surpasses other advanced approaches significantly and is able to achieve new state- of-the-art performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' For instance, HyRSM++ improves the state-of-the-art performance from 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='2% to 55.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='0% un- der the 1-shot setting on SSv2-Full and consistently outper- forms our original conference version [91].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Specially, ex- tensively compared with current strict temporal alignment techniques [7, 106] and complex fusion methods [48, 68], HyRSM++ produces results that are superior to them un- der most different shots, which implies that our approach is considerably flexible and efficient.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Note that the SSv2- Full and SSv2-Small datasets tend to be motion-based and generally focus on temporal reasoning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' While Kinetics and UCF101 are partly appearance-related datasets, and scene understanding is usually essential.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Besides, Epic-kitchens and HMDB51 are relatively complicated and might involve diverse object interactions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Extensively evaluated on these benchmarks, HyRSM++ provides excellent performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' It reveals that our HyRSM++ has strong robustness and gen- eralization for different scenes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' From Table 2, we observe that HyRSM++ outperforms current state-of-the-art meth- ods on UCF101 and SSv2-Small under the 1-shot and 3- shot settings, which suggests that our HyRSM++ can learn rich and effective representations with extremely limited samples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' It’s worth noting that under the 5-shot evaluation, our HyRSM++ yields 95.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='9% and 58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='0% 5-shot performance on UCF101 and SSv2-Small, respectively, which is slightly behind STRM and HCL.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' We attribute this to STRM and HCL are ensemble methods that weight each sample with attention or use multiple metrics for few-shot classification, which makes them more suitable for multi-shots, while our HyRSM++ is a simple and general method without involves complex ensemble operations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Moreover, we also observe that with the introduction of temporal coherence regulariza- tion, HyRSM++ has a significant improvement compared to HyRSM, which verifies the effectiveness of exploiting tem- poral order information during the set matching process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='3 Ablation study For ease of comparison, we use a baseline method Pro- toNet [76] that applies global-average pooling to backbone representations to obtain a prototype for each class.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' We will explore the role and validity of our proposed modules in de- tail below.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Design choices of relation modeling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' To systematically investigate the effect of different relation modeling opera- 10 Xiang Wang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Table 2 Results on 1-shot, 3-shot, and 5-shot few-shot classification on the UCF101 and SSv2-Small datasets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' ”-” means the result is not available in published works, and the underline indicates the second best result.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' UCF101 SSv2-Small Method Reference 1-shot 3-shot 5-shot 1-shot 3-shot 5-shot MatchingNet [86] NeurIPS’16 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='3 39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='8 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='5 MAML [19] ICML’17 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='9 38.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='6 41.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='9 Plain CMN [112] ECCV’18 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='4 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='5 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='5 CMN-J [113] TPAMI’20 36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='2 44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='6 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='8 ARN [105] ECCV’20 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='3 83.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='1 OTAM [7] CVPR’20 79.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='9 87.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='0 88.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='9 36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='4 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='9 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='0 TTAN [48] ArXiv’21 80.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='9 93.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='2 ITANet [106] IJCAI’21 39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='8 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='4 53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='7 TRX [68] CVPR’21 78.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='2 92.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='4 96.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='1 36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='0 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='9 59.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='1 STRM [84] CVPR’22 80.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='5 92.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='7 96.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='9 37.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='1 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='2 55.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='3 MTFAN [94] CVPR’22 84.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='8 95.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='1 Nguyen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' [62] ECCV’22 84.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='9 95.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='9 Huang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' [33] ECCV’22 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='4 91.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='0 38.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='9 61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='6 HCL [108] ECCV’22 82.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='5 91.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='0 93.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='9 38.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='7 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='1 55.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='4 HyRSM CVPR’22 83.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='9 (-1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='0) 93.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='0 (+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='3) 94.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='7 (-2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='2) 40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='6 (+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='8) 52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='3 (+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='4) 56.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='1 (-5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='5) HyRSM++ 85.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='8 (+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='9) 93.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='5 (+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='8) 95.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='9 (-1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='0) 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='8 (+3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='0) 52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='4 (+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='5) 58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='0 (-2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='6) Table 3 Ablation study under 5-way 1-shot and 5-way 5-shot settings on the SSv2-Full dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' “TCR” refers to temporal coherence regular- ization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Intra-relation Inter-relation Bi-MHM TCR 1-shot 5-shot 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='2 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='3 � 41.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='2 55.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='0 � 43.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='7 55.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='2 � 44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='6 56.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='0 � � 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='3 57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='1 � � 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='1 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='5 � � 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='3 61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='2 � � � 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='2 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='8 � � 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='4 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='6 � � � 52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='4 65.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='8 � � � 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='3 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='0 � � � � 55.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='0 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='8 Table 4 Generalization of hybrid relation module.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' We conduct exper- iments on SSv2-Full.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Method 1-shot 5-shot OTAM [7] 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='8 52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='3 OTAM [7]+ Intra-relation 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='9 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='4 OTAM [7]+ Inter-relation 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='9 57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='8 OTAM [7]+ Intra-relation + Inter-relation 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='7 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='9 tions in hybrid relation module, we vary the components to construct some variants and report the results in Figure 3 and Figure 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' The comparison experiments are conducted on the SSv2-Full dataset under the 5-way 1-shot setting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' We can observe that different combinations have quite distinct properties, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=', multi-head self-attention (MSA) and Trans- former are more effective to model intra-class relations than Bi-LSTM and Bi-GRU.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' For example, utilizing multi-head 5-way 6-way 7-way 8-way 9-way 10-way Accuracy (%) Kinetics OTAM TRX STRM HyRSM HyRSM++ 50 66 54 58 70 62 5-way 6-way 7-way 8-way 9-way 10-way Accuracy (%) SSv2-Full OTAM TRX STRM HyRSM HyRSM++ 25 30 40 35 50 45 55 74 Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' 5 N-way 1-shot performance trends of our HyRSM++ and other state-of-the-art methods with different N on SSv2-Full.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' The compari- son results prove the superiority of our HyRSM++.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Accuracy (%) (a) Frames 42 46 50 54 2 3 4 5 6 7 8 9 10 1 2 4 8 16 32 Accuracy (%) 1-shot 5-shot 45 50 60 55 70 65 (b) Head number Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' 6 (a) Performance on SSv2-Full using a different number of frames under the 5-way 1-shot setting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' (b) The effect of the number of heads on SSv2-Full.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' self-attention to learn intra-relation produces at least 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='5% improvements than with Bi-LSTM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Nevertheless, compared with other recent algorithms [68, 106], the performance of each combination can still be improved, which strongly sug- gests the necessity of structure design for learning task- specific features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' For simplicity,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' we choose the same struc- ture to explore intra-relation and inter-relation,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' and the con- ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='HyRSM++: Hybrid Relation Guided Temporal Set Matching for Few-shot Action Recognition ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='11 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='30 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='40 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='60 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='70 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='SSv2-Full (Resnet-18) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='OTAM ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='TRX ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='HyRSM ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='HyRSM++ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='1-shot ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='2-shot ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='3-shot ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='4-shot ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='5-shot ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='30 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='40 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='60 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='70 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='SSv2-Full (Resnet-34) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='OTAM ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='TRX ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='HyRSM ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='HyRSM++ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='1-shot ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='2-shot ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='3-shot ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='4-shot ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='5-shot ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='Accuracy (%) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='55 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='60 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='65 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='70 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='75 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='80 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='85 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='Kinetics (Resnet-18) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='OTAM ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='TRX ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='HyRSM ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='HyRSM++ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='1-shot ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='2-shot ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='3-shot ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='4-shot ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='5-shot ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='55 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='60 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='65 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='70 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='75 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='80 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='85 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='Kinetics (Resnet-34) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='OTAM ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='TRX ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='HyRSM ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='HyRSM++ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='1-shot ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='2-shot ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='3-shot ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='4-shot ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='5-shot ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='Accuracy (%) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='Accuracy (%) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='Accuracy (%) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' 7 Comparison of the backbone with different depths on the SSv2- Full and Kinetics datasets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Table 5 Comparative experiments on SSv2-Full using the Inception- v3 [81] feature extractor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Method 1-shot 2-shot 3-shot 4-shot 5-shot OTAM [7] 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='4 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='6 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='7 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='2 52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='1 TRX [68] 37.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='7 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='2 55.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='5 57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='2 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='1 STRM [84] 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='9 53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='9 58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='9 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='3 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='4 HyRSM++ 53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='3 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='7 65.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='3 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='8 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='3 Table 6 Performance comparison on SSv2-Full with self-supervised initialization weights [97].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Method 1-shot 2-shot 3-shot 4-shot 5-shot OTAM [7] 41.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='2 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='9 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='8 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='1 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='0 TRX [68] 37.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='5 43.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='8 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='9 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='6 52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='1 STRM [84] 38.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='0 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='2 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='9 53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='4 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='4 HyRSM++ 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='9 59.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='1 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='6 65.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='5 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='4 Table 7 Performance comparison with different relation modeling paradigms on SSv2-Full and Kinetics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Setting Method Dataset 1-shot 5-shot Support-only HyRSM SSv2-Full 52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='1 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='2 Support-only HyRSM++ 53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='7 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='8 Support&Query HyRSM 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='3 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='0 Support&Query HyRSM++ 55.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='0 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='8 Support-only HyRSM Kinetics 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='4 85.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='5 Support-only HyRSM++ 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='5 85.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='7 Support&Query HyRSM 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='7 86.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='1 Support&Query HyRSM++ 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='0 86.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='4 figuration of multi-head self-attention is adopted in the ex- periments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Analysis of the proposed components.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Table 3 summa- rizes the ablation study of each module in HyRSM++.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' To evaluate the function of the proposed components, Pro- toNet [76] is taken as our baseline.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' From the ablation results, we can conclude that each component is highly effective.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' In particular, compared to the baseline, intra-relation mod- eling can respectively bring 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='0% and 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='7% performance 52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='3 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='2 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='7 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='1 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='0 47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='2 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='6 61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='3 59.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='2 56.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='3 53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='1 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='4 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='1 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='3 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='8 58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='5 55.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='9 52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='0 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='8 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='2 65.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='1 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='5 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='3 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='0 0% 10% 20% 30% 40% 50% Accuracy (%) 5-way 5-shot OTAM TRX STRM HyRSM++ 45 61 49 53 65 57 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='8 41.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='4 40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='3 39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='0 37.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='1 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='7 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='0 38.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='5 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='8 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='2 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='3 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='9 43.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='1 40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='4 37.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='8 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='5 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='1 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='0 55.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='0 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='8 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='1 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='4 43.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='2 41.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='3 0% 10% 20% 30% 40% 50% Accuracy (%) 5-way 1-shot OTAM TRX STRM HyRSM++ 25 30 40 35 50 45 55 69 Noisy ratio Noisy ratio Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' 8 Robustness comparison experiments in the presence of noisy samples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' X% represents the proportion of noisy labels included in the dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Table 8 Comparison with recent temporal alignment methods on the SSv2-Full dataset under the 5-way 1-shot and 5-way 5-shot settings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Diagonal means matching frame by frame.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Metric Bi-direction 1-shot 5-shot Diagonal 38.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='3 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='7 Plain DTW [61] 39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='6 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='0 OTAM [7] � 39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='3 47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='7 OTAM [7] � 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='8 52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='3 Bi-MHM � 44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='6 56.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='0 Temporal set matching metric � 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='3 57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='1 Table 9 Comparison of different set matching strategies on the SSv2- Full dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Metric Bi-direction 1-shot 5-shot Hausdorff distance � 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='4 38.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='2 Hausdorff distance � 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='5 39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='1 Modified Hausdorff distance � 44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='2 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='0 Bi-MHM � 44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='6 56.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='0 Temporal set matching metric � 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='3 57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='1 Table 10 Generalization of temporal coherence regularization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' We conduct experiments on SSv2-Full.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' ”Hard margin” represents the method described in Equation 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Method 1-shot 5-shot OTAM [7] 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='8 52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='3 OTAM [7] + IDM 43.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='7 55.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='0 OTAM [7] + Hard margin 43.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='2 55.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='3 OTAM [7] + Temporal coherence regularization 44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='1 55.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='8 Bi-MHM 44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='6 56.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='0 Bi-MHM + IDM 44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='7 56.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='3 Bi-MHM + Hard margin 44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='7 56.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='5 Bi-MHM + Temporal coherence regularization 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='3 57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='1 gains on 1-shot and 5-shot, and inter-relation function boosts the performance by 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='5% and 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='9% on 1-shot and 5-shot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' In addition, the proposed set matching metric improves 1- shot and 5-shot classification by 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='4% and 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='7%, respec- tively, which indicates the ability to find better correspond- ing frames in the video pair.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Adding temporal coherence regularization to the set matching metric also achieves sta- 12 Xiang Wang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' ble performance improvements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Moreover, stacking the pro- posed modules can further improve performance, indicating the complementarity between components.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' When consider- ing all the proposed modules together to form HyRSM++, the performance of 1-shot and 5-shot is improved to 55.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='0% and 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='8%, respectively, which strongly supports the impor- tance of learning task-related features and flexible metrics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Pluggability of hybrid relation module.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' In Table 4, we experimentally show that the hybrid relation module gen- eralizes well to other methods by inserting it into the re- cent OTAM [7].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' In this study, OTAM with our hybrid re- lation module benefits from relational information and fi- nally achieves 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='9% and 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='6% gains on 1-shot and 5-shot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' This fully evidences that mining the rich information among videos to learn task-specific features is especially valuable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' N-way few-shot classification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' In the previous experi- ments, all of our comparative evaluation experiments were carried out under the 5-way setting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' In order to further ex- plore the influence of different N, in Figure 5, we com- pare N-way (N ≥ 5) 1-shot results on SSv2-Full and Ki- netics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Results show that as N increases, the difficulty be- comes higher, and the performance decreases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Neverthe- less, the performance of our HyRSM++ is still consistently ahead of the recent state-of-the-art STRM [84], TRX [68] and OTAM [7], which shows the feasibility of our method to boost performance by introducing rich relations among videos and the power of the set matching metric.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Varying the number of frames.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' To demonstrate the scal- ability of HyRSM++, we also explore the impact of differ- ent video frame numbers on performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Of note, previous comparisons are performed under 8 frames of input.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Results in Figure 6(a) show that as the number of frames increases, the performance improves.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' HyRSM++ gradually tends to be saturated when more than 7 frames.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Influence of head number.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Previous analyses have shown that multi-head self-attention can focus on different patterns and is critical to capturing diverse features [41].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' We investi- gate the virtue of varying the number of heads in multi-head self-attention on performance in Figure 6(b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Experimental results indicate that the effect of multi-head is remarkable, and the performance starts to saturate beyond a particular point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Varying depth of the backbone.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' The proposed HyRSM++ is general and compatible with feature extractors of various capacities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' The previous methods all utilize ResNet-50 as backbone by default for a fair comparison, and the impact of backbone’s depth on performance is still under-explored.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' As presented in Figure 7, we attempt to answer this question by adopting ResNet-18 and ResNet-34 pre-trained on Ima- geNet as alternative backbones.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Results demonstrate that the deeper network clearly benefits from greater learning capac- ity and results in better performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' In addition,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' we notice ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='Acc = 100% ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='Acc = 100% ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='(+ hybrid relation module) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='5 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='5 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='5 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='5 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='5 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='5 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='5 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='5 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='5 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='5 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='5 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='5 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='5 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='5 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='5 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='5 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='5 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='5 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='5 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='5 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='5 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='5 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='5 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='5 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='Acc = 40% ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='Acc = 60% ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='Acc = 60% ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='Acc = 80% ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='Acc = 60% ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='Acc = 100% ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='(+ hybrid relation module) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='Acc = 100% ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='(+ hybrid relation module) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='Acc = 100% ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='(+ hybrid relation module) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='Acc = 100% ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='(+ hybrid relation module) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='Acc = 100% ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='(+ hybrid relation module) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='(a) Examples from SSv2-Full ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='(b) Examples from Kinetics ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' 9 Similarity visualization of how query videos (rows) match to support videos (columns).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' The boxes of different colors correspond to: correct match and incorrect match.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Support Query (a) SSv2-Full: ”pretending to open something without actually opening it” (b) SSv2-Full: ”showing that something is empty” Support Query Support Query (c) Kinetics: ”cutting watermelon” Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' 10 Visualization of matching results with the proposed set match- ing metric on SSv2-Full and Kinetics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' that our proposed HyRSM++ consistently outperforms the competitors (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=', OTAM and TRX), which indicates that our HyRSM++ is a generally effective framework.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Influence of different backbones.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' To verify that our ap- proach is not limited to ResNet-like structures, we further perform experiments on Inception-v3 and report the results in Table 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' From the comparison, we note that HyRSM++ is significantly superior to other competitive algorithms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Com- pared with STRM [84], our proposed HyRSM++ leads to at least 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='5% performance gain under various settings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Impact of pretraining types.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Supervised ImageNet initial- ization [15] is widely employed in many vision tasks [7, 113, 90] and achieves impressive success.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Recently, self- supervised techniques have also received widespread at- tention and revealed excellent application potential.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' In Ta- 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='73 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='063 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='06 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='082 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='065 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='16 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='35 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='21 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='18 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='067 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='069 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='67 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='08 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='11 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='27 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='038 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='076 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='42 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='11 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='27 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='13 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='09 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='23 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='25 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='11 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='19 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='22 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='18 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='25 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='24 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='14 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='19 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='18 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='18 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='36 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='091 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='18 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='23 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='11 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='14 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='32 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='08 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='11 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='340.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='65 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='029 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='088 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='078 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='092 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='55 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='04 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='053 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='27 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='17 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='076 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='59 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='094 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='07 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='11 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='053 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='042 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='65 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='14 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='039 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='024 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='087 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='750.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='34 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='16 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='14 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='23 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='14 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='17 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='26 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='19 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='21 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='18 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='16 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='27 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='13 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='24 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='21 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='16 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='27 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='16 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='23 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='17 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='18 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='270.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='46 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='064 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='037 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='38 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='055 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='035 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='69 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='021 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='17 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='082 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='051 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='042 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='78 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='06 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='067 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='09 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='18 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='45 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='087 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='12 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='18 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='098 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='13 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='470.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='26 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='13 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='28 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='21 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='12 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='13 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='38 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='23 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='19 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='069 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='14 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='16 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='19 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='32 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='25 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='13 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='29 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='12 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='09 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='21 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='19 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='360.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='21 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='25 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='16 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='25 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='13 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='24 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='23 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='16 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='19 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='18 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='14 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='16 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='27 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='12 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='32 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='22 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='35 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='13 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='13 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='19 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='25 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='290.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='61 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='074 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='068 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='14 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='076 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='43 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='084 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='35 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='063 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='12 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='061 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='63 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='077 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='11 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='21 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='21 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='06 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='47 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='053 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='055 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='069 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='054 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='670.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='59 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='043 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='13 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='13 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='11 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='51 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='14 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='036 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='13 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='27 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='44 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='091 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='068 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='27 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='14 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='17 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='35 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='066 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='057 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='044 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='038 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='810.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='19 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='24 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='11 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='25 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='27 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='16 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='21 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='23 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='13 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='21 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='22 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='14 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='13 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='11 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='34 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='26 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='22 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='16 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='19 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='18 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='250.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='59 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='18 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='014 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='095 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='13 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='21 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='43 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='025 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='26 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='076 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='049 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='042 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='76 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='071 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='081 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='31 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='097 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='019 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='42 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='16 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='21 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='063 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='11 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='13 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='490.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='47 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='054 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='21 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='17 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='19 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='23 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='08 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='27 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='24 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='098 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='096 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='16 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='23 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='082 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='076 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='21 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='12 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='13 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='11 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='25HyRSM++: Hybrid Relation Guided Temporal Set Matching for Few-shot Action Recognition 13 ble 6, we show the performance comparison with self- supervised pretraining weights [97].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Results demonstrate that our HyRSM++ is still powerful and not limited to the specific initialization weights.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Other relation modeling forms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Previous few-shot image classification methods of learning task-specific features have also achieved promising results [101, 47].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' However, many of them use some complex and fixed operations to learn the dependencies between images, while our method is straight- forward and flexible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Moreover, most previous works only use the information within the support set to learn task- specific features, ignoring the correlation with query sam- ples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' In our hybrid relation module, we add the query video to the pool of inter-relation modeling to extract relevant in- formation suitable for query classification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' As illustrated in Table 7, we try to remove the query video from the pool in HyRSM++, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=', Support-only, but we can observe that after removing the query video, the performance of 1-shot and 5-shot on SSv2-Full reduces by 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='3% and 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='0%, respec- tively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' There are similar conclusions on the Kinetics dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' This evidences that the proposed hybrid relation module is reasonable and can effectively extract task-related features, thereby promoting query classification accuracy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Robustness to noise labels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' To demonstrate the robustness of HyRSM++ to noise samples, we simulate the presence of noise labels in the dataset in Figure 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' From the results, we can observe that performance generally decreases as the proportion of noise rises.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' However, our HyRSM++ still ex- hibits higher performance than other methods, which illus- trates the robustness of our method and its adaptability to complex conditions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='4 Comparison with other matching approaches Our proposed temporal set matching metric Bi-MHM aims to accurately find the corresponding video frames between video pairs by relaxing the strict temporal ordering con- straints.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' The following comparative experiments in Table 8 are carried out under identical experimental setups, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=', re- Table 11 Complexity analysis for 5-way 1-shot SSv2-Full evaluation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' The experiments are carried out on one Nvidia V100 GPU.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Method Backbone Param FLOPs Latency Acc HyRSM ResNet-18 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='8M 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='64G 36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='5ms 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='6 HyRSM++ ResNet-18 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='8M 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='64G 36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='5ms 47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='7 HyRSM ResNet-34 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='9M 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='34G 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='5ms 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='0 HyRSM++ ResNet-34 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='9M 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='34G 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='5ms 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='4 OTAM [7] ResNet-50 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='5M 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='17G 116.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='6ms 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='8 TRX [68] ResNet-50 47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='1M 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='22G 94.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='6ms 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='0 STRM [84] ResNet-50 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='3M 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='27G 113.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='3ms 43.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='1 HyRSM ResNet-50 65.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='6M 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='36G 83.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='5ms 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='3 HyRSM++ ResNet-50 65.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='6M 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='36G 83.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='5ms 55.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='0 place the OTAM directly with our Bi-MHM while keep- ing other settings unchanged.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Results show that our Bi- MHM performs well and outperforms other temporal align- ment methods (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=', OTAM).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' We further analyze different set matching approaches in Table 9, and the results indi- cate that Hausdorff distance is susceptible to noise interfer- ence, resulting in the mismatch and relatively poor perfor- mance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' However, our Bi-MHM shows stability to noise and obtains better performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Furthermore, compared with the single directional metric, our proposed bidirectional metric is more comprehensive in reflecting the actual distances be- tween videos and achieves better performance on few-shot tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' In addition, we observe that the proposed temporal set matching metric achieves clear improvement over Bi- MHM after incorporating temporal coherence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' For instance, the temporal set matching metric obtains 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='7%, 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='1% perfor- mance gains on 5-way 1-shot, and 5-way 5-shot SSv2-Full classification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' It indicates the effectiveness of the proposed temporal set matching metric.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='5 Comparison of temporal coherence manners Pioneering work [11, 22, 59] also indicates the important role of temporal coherence and shows remarkable results in face recognition [59] and unsupervised representation learn- ing [22, 27].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' However, they also have some limitations as noted in Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='2, and thus the temporal coherence reg- ularization is proposed for smooth video coherence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Ta- ble 10 compares the proposed temporal coherence regular- ization with existing temporal coherence schemes based on OTAM and Bi-MHM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Results show that exploiting tempo- ral coherence helps improve the classification accuracy of the metrics, which confirms our motivation for consider- ing temporal order information during the matching process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' In addition, our proposed temporal coherence regularization achieves more significant improvements than other manners, and we attribute this to the smooth property of temporal co- herence regularization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='6 Visualization results To qualitatively show the discriminative capability of the learned task-specific features in our proposed method, we visualize the similarities between query and support videos with and without the hybrid relation module.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' As depicted in Figure 9, by adding the hybrid relation module, the discrim- ination of features is significantly improved, contributing to predicting more accurately.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Additionally, the matching re- sults of the set matching metric are visualized in Figure 10, and we can observe that our Bi-MHM is considerably flexi- ble in dealing with alignment and misalignment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' 14 Xiang Wang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Support Query Support Query “tipping Sth over” from SSv2-Full OTAM HyRSM++ “taking Sth out of Sth” from SSv2-Full OTAM HyRSM++ Support Query “showing Sth next to Sth” from SSv2-Full OTAM HyRSM++ Support Query “riding elephant” from Kinetics OTAM HyRSM++ Support Query “playing trumpet” from Kinetics OTAM HyRSM++ Support Query “filling eyebrows” from Kinetics OTAM HyRSM++ Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' 11 Visualization of activation maps with Grad-CAM [75].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Compared to OTAM [7], HyRSM++ focuses more precisely on classification- related regions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' To further visually evaluate the proposed HyRSM++, we compare the activation visualization results of HyRSM++ to the competitive OTAM [7].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' As shown in Figure 11, the fea- tures of OTAM usually contain non-target objects or ignore most discriminative parts since it lacks the mechanism of learning task-specific embeddings for feature adaptation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' In contrast, our proposed HyRSM++ processes the query and support videos with an adaptive relation modeling operation, which allows it to focus on the different target objects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' The above qualitative experiments illustrate the rationality of our model design and the necessity of learning task-related fea- tures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='7 Limitations In order to further understand HyRSM++, Table 11 il- lustrates its differences with OTAM and TRX in terms of parameters, computation, and runtime.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' In the inference HyRSM++: Hybrid Relation Guided Temporal Set Matching for Few-shot Action Recognition 15 Table 12 Comparison to existing semi-supervised few-shot action recognition methods on the meta-testing set of Kinetics and SSv2-Small.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' The experiments are conducted under the 5-way setting, and results are reported as the shot increases from 1 to 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' ”w/o unlabeled data” indicates that there is no unlabeled set in a episode, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=', the traditional few-shot action recognition setting, which can act as the lower bound of the semi- supervised counterpart.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Dataset Method Backbone 1-shot 2-shot 3-shot 4-shot 5-shot Kinetics OTAM w/o unlabeled data [7] Inception-v3 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='6 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='7 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='1 75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='7 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='9 DeepCluster CACTUs-MAML [30] Inception-v3 65.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='1 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='8 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='5 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='9 79.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='5 DeepCluster CACTUs-ProtoNets [30] Inception-v3 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='9 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='2 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='0 78.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='1 79.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='9 LIM [113] Inception-v3 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='8 75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='9 78.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='3 80.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='4 82.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='6 HyRSM++ w/o unlabeled data Inception-v3 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='1 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='0 78.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='6 81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='6 81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='9 HyRSM++ Inception-v3 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='7 79.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='4 80.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='9 81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='8 83.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='1 CMN w/o unlabeled data [112] ResNet-50 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='5 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='0 75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='6 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='3 78.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='9 OTAM w/o unlabeled data [7] ResNet-50 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='0 75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='9 78.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='7 81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='9 85.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='8 LIM (ensemble) [113] ResNet-50, Inception-v3, ResNet-18 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='3 78.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='3 80.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='8 82.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='4 84.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='0 HyRSM++ w/o unlabeled data ResNet-50 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='0 80.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='8 83.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='6 85.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='3 86.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='4 HyRSM++ ResNet-50 79.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='1 84.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='3 85.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='4 86.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='4 86.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='8 SSv2-Small OTAM w/o unlabeled data [112] Inception-v3 36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='7 41.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='0 43.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='6 44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='1 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='9 DeepCluster CACTUs-MAML [30] Inception-v3 37.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='9 44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='5 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='9 47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='8 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='9 DeepCluster CACTUs-ProtoNets [30] Inception-v3 38.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='4 44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='8 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='1 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='0 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='1 LIM [113] Inception-v3 41.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='1 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='9 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='0 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='5 53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='0 HyRSM++ w/o unlabeled data Inception-v3 41.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='5 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='1 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='5 52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='9 55.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='1 HyRSM++ Inception-v3 43.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='6 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='5 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='8 52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='4 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='5 CMN w/o unlabeled data [112] ResNet-50 36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='2 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='1 44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='6 47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='0 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='8 OTAM w/o unlabeled data [112] ResNet-50 36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='4 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='9 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='9 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='8 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='0 LIM (ensemble) [113] ResNet-50, Inception-v3, ResNet-18 44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='0 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='8 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='3 53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='9 55.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='1 HyRSM++ w/o unlabeled data ResNet-50 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='8 47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='1 52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='4 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='7 58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='0 HyRSM++ ResNet-50 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='4 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='1 55.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='2 57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='4 58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='8 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='0 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='7 79.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='1 79.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='7 79.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='9 80.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='8 83.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='0 84.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='3 84.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='3 84.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='6 83.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='6 84.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='8 85.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='4 85.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='5 85.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='9 85.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='3 85.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='8 86.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='4 86.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='6 86.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='8 86.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='4 86.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='5 86.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='7 86.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='8 86.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='9 0 50 100 150 200 Accuracy (%) Kinetics 1-shot 2-shot 3-shot 4-shot 5-shot 73 75 79 77 85 81 87 83 89 Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' 12 Performance comparison of different amounts of unlabeled data for testing in an episode on Kinetics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' phase, HyRSM++ does not add additional computational burden compared to HyRSM because the temporal coher- ence regularization is not involved in the calculation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' No- tably, HyRSM++ introduces extra parameters (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=', hybrid relation module), resulting in increased GPU memory and computational consumption.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Nevertheless, without complex non-parallel classifier heads, the whole inference speed of HyRSM++ is faster than OTAM and TRX.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' We will further investigate how to reduce complexity with no loss of perfor- mance in the future.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='8 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='0 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='4 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='8 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='2 47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='1 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='1 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='1 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='2 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='6 52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='4 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='1 55.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='2 55.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='5 55.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='8 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='7 56.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='8 57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='4 57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='8 57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='9 58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='0 58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='6 58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='8 59.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='0 59.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='6 0 50 100 150 200 Accuracy (%) SSv2-Small 1-shot 2-shot 3-shot 4-shot 5-shot 60 38 40 44 42 50 46 58 48 62 54 52 56 Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' 13 Performance comparison of different amounts of unlabeled data for testing in an episode on the SSv2-Small dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' 5 Extension to Semi-supervised Few-shot Action Recognition In this section, we demonstrate that the proposed HyRSM++ can be extended to address the more challenging semi- supervised few-shot action recognition problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Follow- ing LIM [113], we utilize two common datasets (Kinet- ics [8] and SSv2-Small [23]) to perform comparative exper- iments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' These two datasets are subsets of Kinetics-400 [8] and Something-Something-v2 [23], respectively, and the un- labeled examples in our experiments are collected from the remaining videos of the same category as these subsets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' To 16 Xiang Wang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Table 13 Comparison to state-of-the-art unsupervised few-shot action recognition approaches on UCF101, HMDB51, and Kinetics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' ∗ indi- cates that the algorithm adopt the same 2D ResNet-50 backbone as HyRSM++.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Method Supervision UCF101 HMDB51 Kinetics MAML [19] Supervised 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='2 CMN [112] Supervised 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='5 TARN [5] Supervised 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='6 ProtoGAN [43] Supervised 57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='8 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='7 ARN [105] Supervised 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='3 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='2 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='7 3DRotNet [37] Unsupervised 39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='4 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='4 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='5 VCOP [96] Unsupervised 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='9 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='8 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='5 IIC [83] Unsupervised 56.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='8 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='7 37.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='7 Pace [87] Unsupervised 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='6 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='2 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='4 MemDPC [83] Unsupervised 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='3 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='3 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='0 CoCLR [26] Unsupervised 52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='0 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='3 37.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='6 MetaUVFS∗ [64] Unsupervised 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='1 40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='0 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='9 HyRSM++ Unsupervised 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='0 41.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='0 55.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='0 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='0 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='7 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='3 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='5 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='0 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='5 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='4 50 75 100 125 150 175 200 Accuracy (%) UCF101 63 36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='1 36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='1 36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='9 39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='2 41.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='0 38.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='9 39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='7 50 75 100 125 150 175 200 Accuracy (%) HMDB51 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='2 52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='0 52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='0 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='7 55.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='0 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='9 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='3 50 75 100 125 150 175 200 Accuracy (%) Kinetics 49 65 67 69 55 37 39 41 43 51 53 57 35 Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' 14 Ablation study of different cluster numbers under 5-way 1- shot unsupervised few-shot settings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' conduct the semi-supervised few-shot evaluation, we fol- low the mainstream distractor setting [30, 38, 113], where the unlabeled set contains other interference classes in each episodic task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' This setting is more realistic and requires the model to be robust to the existence of noisy samples from other classes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' In our experiments, we fixed the number of unlabeled videos in an episodic task to 100.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Table 12 provides the comparison of our HyRSM++ against state-of-the-art methods on the two standard semi- supervised few-shot benchmarks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' We find that HyRSM++ substantially surpasses the previous approaches, such as LIM [113].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Under the semi-supervised 5-way 1-shot sce- nario, HyRSM++ produces performance gains of 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='8% and 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='5% on Kinetics and SSv2-Small than LIM with Inception- v3 backbone, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' In particular, when using the ResNet-50 backbone, our method is even superior to the multi-modal fusion method (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=', LIM), which indicates that HyRSM++ enables more accurate pseudo-labels for unla- beled data and then can expand the support set to boost the classification accuracy of the query videos.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' In addition, com- pared to our supervised counterpart (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=', HyRSM++ w/o un- labeled data), joining unlabeled data is beneficial to allevi- ating the data scarcity problem and promotes few-shot clas- sification accuracy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' We can observe that when ResNet-50 is adopted as the backbone, the performance of HyRSM++ with unlabeled data is improved by 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='1% compared to that without unlabeled data under the 5-way 1-shot Kinetics evaluation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' To further investigate the effect of unlabeled videos in an episode, we conduct comparative experiments with vary- ing numbers of unlabeled videos in Figure 12 and Figure 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Experimental results show that as the number of unlabeled samples increases, the performance also increases gradually, indicating that the introduction of unlabeled data helps gen- eralize to unseen categories.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Furthermore, we notice that the improvement in the 1-shot setting is more significant than that in the 5-shot, which shows that under the condition of low samples, unlabeled videos can improve the estimation of the distribution of new categories more effectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Mean- while, as the amount of unlabeled data increases to a certain level, the performance starts to saturate slowly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' 6 Extension to Unsupervised Few-shot Action Recognition We also extend the proposed HyRSM++ to solve the challenging unsupervised few-shot action recognition task where labels for training videos are not available.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Following previous work [38, 36], we adopt the idea of the ”cluster- ing first and then meta-learning” paradigm to construct few- shot tasks and exploit unlabeled data for training.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Our ex- periments are based on unsupervised ResNet-50 initializa- tion [97], which is self-supervised pre-trained on Kinetics- 400 [8] without accessing any label information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' During the clustering process, we utilize the K-means clustering strat- egy for each dataset to obtain 150 clusters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' As presented in Table 13, we compare HyRSM++ with current state-of-the-art methods on the UCF101, HMDB51 and Kinetics datasets under the 5-way 1-shot setting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Note that HyRSM++ and MetaUVFS [64] use the same ResNet- 50 structure as the feature extractor, and our HyRSM++ shows better performance on each dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' In particular, we observe that our method achieves 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='0% performance on the UCF101 dataset, a 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='9% improvement over MetaUVFS, and even surpasses the fully supervised ARN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' The supe- rior performance of HyRSM++ reveals that our approach of leveraging relations within and cross videos and the flexible metric performs effectively in the low-shot regime.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' More- over, this phenomenon also demonstrates the potential of our method to learn a strongly robust few-shot model using only unlabeled videos, even though HyRSM++ is not specifically HyRSM++: Hybrid Relation Guided Temporal Set Matching for Few-shot Action Recognition 17 designed for the unsupervised few-shot action recognition task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' In the experiments, one parameter involved in apply- ing HyRSM++ to the unsupervised few-shot setting is the number of clusters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' In Figure 14, we display the perfor- mance comparison under different number of clusters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Re- sults show that when the number of clusters is 150, the per- formance reaches the peak value, which means that if the cluster number is too small, it may lead to under-clustering.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' If the number is too large, it may cause over-clustering, dam- aging the performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' 7 Conclusion In this work, we have proposed a hybrid relation guided temporal set matching (HyRSM++) approach for few-shot action recognition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Firstly, we design a hybrid relation mod- ule to model the rich semantic relevance within one video and cross different videos in an episodic task to generate task-specific features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Secondly, built upon the representa- tive task-specific features, an efficient set matching metric is proposed to be resilient to misalignment and match videos accurately.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' During the matching process, a temporal coher- ence regularization is further imposed to exploit temporal order information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Furthermore, we extend HyRSM++ to solve the more challenging semi-supervised few-shot ac- tion recognition and unsupervised few-shot action recog- nition problems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Experimental results demonstrate that our HyRSM++ achieves the state-of-the-art performance on multiple standard benchmarks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Acknowledgements This work is supported by the National Natural Science Foundation of China under grant 61871435, Fundamental Re- search Funds for the Central Universities no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='2019kfyXKJC024, 111 Project on Computational Intelligence and Intelligent Control under Grant B18024, and Alibaba Group through Alibaba Research Intern Program.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' References 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Antoniou A, Storkey A (2019) Assume, augment and learn: Un- supervised few-shot meta-learning via random labels and data augmentation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' arXiv preprint arXiv:190209884 4 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Bai Y, Ding H, Sun Y, Wang W (2018) Convolutional set match- ing for graph similarity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' arXiv preprint arXiv:181010866 3 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Bai Y, Ding H, Gu K, Sun Y, Wang W (2020) Learning-based efficient graph similarity computation via multi-scale convolu- tional set matching.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' In: AAAI, vol 34, pp 3219–3226 3 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Berthelot D, Carlini N, Goodfellow I, Papernot N, Oliver A, Raf- fel CA (2019) Mixmatch: A holistic approach to semi-supervised learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' In: NeurIPS, vol 32 4 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Bishay M, Zoumpourlis G, Patras I (2019) TARN: temporal at- tentive relation network for few-shot and zero-shot action recog- nition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' In: BMVC, p 154 4, 8, 16 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Caba Heilbron F, Escorcia V, Ghanem B, Carlos Niebles J (2015) Activitynet: A large-scale video benchmark for human activity understanding.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' In: CVPR, pp 961–970 1 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Cao K, Ji J, Cao Z, Chang CY, Niebles JC (2020) Few-shot video classification via temporal alignment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' In: CVPR, pp 10618– 10627 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Carreira J, Zisserman A (2017) Quo vadis, action recognition?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' a new model and the kinetics dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' In: CVPR, pp 6299–6308 1, 8, 15, 16 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Chen Z, Fu Y, Zhang Y, Jiang YG, Xue X, Sigal L (2019) Multi- level semantic feature augmentation for one-shot learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' TIP 28(9):4594–4605 3 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Cho K, Van Merri¨enboer B, Gulcehre C, Bahdanau D, Bougares F, Schwenk H, Bengio Y (2014) Learning phrase representa- tions using rnn encoder-decoder for statistical machine transla- tion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' arXiv preprint arXiv:14061078 5 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Conners RW, Harlow CA (1980) A theoretical comparison of tex- ture algorithms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' TPAMI (3):204–222 3, 6, 13 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Coskun H, Zia MZ, Tekin B, Bogo F, Navab N, Tombari F, Sawh- ney H (2021) Domain-specific priors and meta learning for few- shot first-person action recognition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' TPAMI 4 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Damen D, Doughty H, Farinella G, Fidler S, Furnari A, Kaza- kos E, Moltisanti D, Munro J, Perrett T, Price W, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' (2020) The epic-kitchens dataset: Collection, challenges and baselines.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' TPAMI (01):1–1 1, 9 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Damen D, Doughty H, Farinella GM, Furnari A, Kazakos E, Ma J, Moltisanti D, Munro J, Perrett T, Price W, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' (2020) Rescal- ing egocentric vision.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' arXiv preprint arXiv:200613256 9 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Deng J, Dong W, Socher R, Li LJ, Li K, Fei-Fei L (2009) Ima- genet: A large-scale hierarchical image database.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' In: CVPR, pp 248–255 9, 12 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Dubuisson MP, Jain AK (1994) A modified hausdorff distance for object matching.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' In: ICPR, IEEE, vol 1, pp 566–568 3, 6 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Fei-Fei L, Fergus R, Perona P (2006) One-shot learning of object categories.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' TPAMI 28(4):594–611 3 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Feichtenhofer C, Fan H, Malik J, He K (2019) Slowfast networks for video recognition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' In: ICCV, pp 6202–6211 1 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Finn C, Abbeel P, Levine S (2017) Model-Agnostic Meta- Mearning for Fast Adaptation of Deep Networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' In: ICML 3, 8, 10, 16 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Fu Y, Zhang L, Wang J, Fu Y, Jiang YG (2020) Depth guided adaptive meta-fusion network for few-shot video recognition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' In: ACMMM, pp 1142–1151 4 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Gao Y (2003) Efficiently comparing face images using a modi- fied hausdorff distance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' IEE Proceedings-Vision, Image and Sig- nal Processing 150(6):346–350 6 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Goroshin R, Bruna J, Tompson J, Eigen D, LeCun Y (2015) Unsupervised learning of spatiotemporally coherent metrics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' In: ICCV, pp 4086–4093 3, 6, 13 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Goyal R, Ebrahimi Kahou S, Michalski V, Materzynska J, West- phal S, Kim H, Haenel V, Fruend I, Yianilos P, Mueller-Freitag M, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' (2017) The” something something” video database for learning and evaluating visual common sense.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' In: ICCV, pp 5842–5850 1, 8, 15 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Grauman K, Westbury A, Byrne E, Chavis Z, Furnari A, Girdhar R, Hamburger J, Jiang H, Liu M, Liu X, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' (2022) Ego4d: Around the world in 3,000 hours of egocentric video.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' In: CVPR, pp 18995–19012 1 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Graves A, Mohamed Ar, Hinton G (2013) Speech recognition with deep recurrent neural networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' In: ICASSP, pp 6645–6649 5 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Han T, Xie W, Zisserman A (2020) Self-supervised co-training for video representation learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' In: NeurIPS, vol 33, pp 5679– 5690 16 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Haresh S, Kumar S, Coskun H, Syed SN, Konin A, Zia Z, Tran QH (2021) Learning by aligning videos in time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' In: CVPR, pp 18 Xiang Wang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' 5548–5558 3, 13 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' In: CVPR, pp 770–778 9 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Hou R, Chang H, Ma B, Shan S, Chen X (2019) Cross attention network for few-shot classification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' In: NeurIPS, pp 4003–4014 3, 5 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Hsu K, Levine S, Finn C (2018) Unsupervised learning via meta- learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' In: ICLR 4, 15, 16 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Huang H, Zhang J, Zhang J, Wu Q, Xu C (2021) Ptn: A pois- son transfer network for semi-supervised few-shot learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' In: AAAI, vol 35, pp 1602–1609 4 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Huang K, Geng J, Jiang W, Deng X, Xu Z (2021) Pseudo- loss confidence metric for semi-supervised few-shot learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' In: ICCV, pp 8671–8680 4 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Huang Y, Yang L, Sato Y (2022) Compound prototype matching for few-shot action recognition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' In: ECCV, Springer, pp 351–368 2, 4, 8, 10 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Huttenlocher DP, Klanderman GA, Rucklidge WJ (1993) Com- paring images using the hausdorff distance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' TPAMI 15(9):850– 863 3, 6 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Jesorsky O, Kirchberg KJ, Frischholz RW (2001) Robust face detection using the hausdorff distance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' In: AVBPA, Springer, pp 90–95 3 36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Ji Z, Zou X, Huang T, Wu S (2019) Unsupervised few-shot learn- ing via self-supervised training.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' arXiv preprint arXiv:191212178 4, 7, 16 37.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Jing L, Yang X, Liu J, Tian Y (2018) Self-supervised spa- tiotemporal feature learning via video rotation prediction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' arXiv preprint arXiv:181111387 16 38.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Khodadadeh S, Boloni L, Shah M (2019) Unsupervised meta- learning for few-shot image classification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' In: NeurIPS, vol 32 4, 7, 16 39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Kingma DP, Ba J (2014) Adam: A method for stochastic opti- mization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' arXiv preprint arXiv:14126980 9 40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Kliper-Gross O, Hassner T, Wolf L (2011) One shot similarity metric learning for action recognition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' In: SIMBAD, Springer, pp 31–45 4 41.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Koizumi Y, Yatabe K, Delcroix M, Masuyama Y, Takeuchi D (2020) Speech enhancement using self-adaptation and multi- head self-attention.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' In: ICASSP, pp 181–185 12 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Kuehne H, Serre T, Jhuang H, Garrote E, Poggio T, Serre T (2011) HMDB: A large video database for human motion recog- nition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' In: ICCV, DOI 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='1109/ICCV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='2011.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='6126543 9 43.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Kumar Dwivedi S, Gupta V, Mitra R, Ahmed S, Jain A (2019) Protogan: Towards few shot learning for action recognition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' In: ICCVW, pp 0–0 16 44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Lazarou M, Stathaki T, Avrithis Y (2021) Iterative label clean- ing for transductive and semi-supervised few-shot learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' In: ICCV, pp 8751–8760 4 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Lee DH, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' (2013) Pseudo-label: The simple and efficient semi-supervised learning method for deep neural networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' In: ICMLW, vol 3, p 896 7 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Li A, Luo T, Xiang T, Huang W, Wang L (2019) Few-shot learn- ing with global class representations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' In: ICCV, pp 9715–9724 7 47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Li H, Eigen D, Dodge S, Zeiler M, Wang X (2019) Finding task- relevant features for few-shot learning by category traversal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' In: CVPR, pp 1–10 2, 3, 5, 13 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Li S, Liu H, Qian R, Li Y, See J, Fei M, Yu X, Lin W (2021) Ttan: Two-stage temporal alignment network for few-shot action recognition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' arXiv preprint arXiv:210704782 8, 9, 10 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Li X, Sun Q, Liu Y, Zhou Q, Zheng S, Chua TS, Schiele B (2019) Learning to self-train for semi-supervised few-shot classification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' In: NeurIPS, vol 32 4, 7 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Li Z, Zhou F, Chen F, Li H (2017) Meta-sgd: Learning to learn quickly for few-shot learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' arXiv preprint arXiv:170709835 3 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Lin J, Gan C, Wang K, Han S (2020) Tsm: Temporal shift module for efficient and scalable video understanding on edge devices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' TPAMI 1 52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Liu L, Shao L, Li X, Lu K (2015) Learning spatio-temporal rep- resentations for action recognition: A genetic programming ap- proach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' TCYB 46(1):158–170 1 53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Liu X, Gao J, He X, Deng L, Duh K, Wang Yy (2015) Repre- sentation learning using multi-task deep neural networks for se- mantic classification and information retrieval.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' In: NAACL, pp 912–921 2 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Liu Y, Zhang X, Zhang S, He X (2020) Part-aware prototype network for few-shot semantic segmentation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' In: ECCV, pp 142– 158 7 55.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Lu J, Gong P, Ye J, Zhang C (2020) Learning from very few samples: A survey.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' arXiv preprint arXiv:200902653 3 56.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Lu J, Jin S, Liang J, Zhang C (2020) Robust few-shot learning for user-provided data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' TNNLS 32(4):1433–1447 3 57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Lu P, Bai T, Langlais P (2019) Sc-lstm: Learning task-specific representations in multi-task learning for sequence labeling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' In: NAACL, pp 2396–2406 2 58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Mitra A, Biswas S, Bhattacharyya C (2016) Bayesian modeling of temporal coherence in videos for entity discovery and summa- rization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' TPAMI 39(3):430–443 3 59.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Mobahi H, Collobert R, Weston J (2009) Deep learning from temporal coherence in video.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' In: ICML, pp 737–744 3, 6, 13 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Mohanaiah P, Sathyanarayana P, GuruKumar L (2013) Image texture feature extraction using glcm approach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' IJSRP 3(5):1–5 3 61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' M¨uller M (2007) Dynamic time warping.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Information Retrieval for Music and Motion pp 69–84 11 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Nguyen KD, Tran QH, Nguyen K, Hua BS, Nguyen R (2022) In- ductive and transductive few-shot video classification via appear- ance and temporal alignments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' In: ECCV, Springer, pp 471–487 2, 4, 8, 10 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Nishiyama M, Yuasa M, Shibata T, Wakasugi T, Kawahara T, Yamaguchi O (2007) Recognizing faces of moving people by hi- erarchical image-set matching.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' In: CVPR, pp 1–8 3 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Patravali J, Mittal G, Yu Y, Li F, Chen M (2021) Unsupervised few-shot action recognition via action-appearance aligned meta- adaptation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' In: ICCV, pp 8484–8494 4, 16 65.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Peng B, Lei J, Fu H, Zhang C, Chua TS, Li X (2018) Unsuper- vised video action clustering via motion-scene interaction con- straint.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' TCSVT 30(1):131–144 1 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Peng M, Zhang Q, Xing X, Gui T, Fu J, Huang X (2019) Learning task-specific representation for novel words in sequence labeling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' In: IJCAI 2 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Perez L, Wang J (2017) The effectiveness of data augmenta- tion in image classification using deep learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' arXiv preprint arXiv:171204621 3 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Perrett T, Masullo A, Burghardt T, Mirmehdi M, Damen D (2021) Temporal-relational crosstransformers for few-shot action recognition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' In: CVPR, pp 475–484 2, 4, 6, 7, 8, 9, 10, 11, 12, 13 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Qin T, Li W, Shi Y, Gao Y (2020) Diversity helps: Unsupervised few-shot learning via distribution shift-based data augmentation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' arXiv preprint arXiv:200405805 4 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Ratner AJ, Ehrenberg HR, Hussain Z, Dunnmon J, R´e C (2017) Learning to compose domain-specific transformations for data augmentation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' In: NeurIPS, NIH Public Access, vol 30, p 3239 3 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Ren M, Triantafillou E, Ravi S, Snell J, Swersky K, Tenenbaum JB, Larochelle H, Zemel RS (2018) Meta-learning for semi- supervised few-shot classification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' In: ICLR 3, 7 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Rezaei M, Fr¨anti P (2016) Set matching measures for external cluster validity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' TKDE 28(8):2173–2186 3 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Saito Y, Nakamura T, Hachiya H, Fukumizu K (2020) Exchange- able deep neural networks for set-to-set matching and learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' In: ECCV, Springer, pp 626–646 3 HyRSM++: Hybrid Relation Guided Temporal Set Matching for Few-shot Action Recognition 19 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Santoro A, Bartunov S, Botvinick M, Wierstra D, Lillicrap T (2016) Meta-learning with memory-augmented neural networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' In: ICML, PMLR, pp 1842–1850 3 75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, Batra D (2017) Grad-cam: Visual explanations from deep networks via gradient-based localization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' In: ICCV, pp 618–626 14 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Snell J, Swersky K, Zemel R (2017) Prototypical networks for few-shot learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' In: NeurIPS, vol 30, pp 4077–4087 3, 9, 11 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Sohn K, Berthelot D, Carlini N, Zhang Z, Zhang H, Raffel CA, Cubuk ED, Kurakin A, Li CL (2020) Fixmatch: Simplifying semi-supervised learning with consistency and confidence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' In: NeurIPS, vol 33, pp 596–608 7 78.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Soomro K, Zamir AR, Shah M (2012) Ucf101: A dataset of 101 human actions classes from videos in the wild.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' arXiv preprint arXiv:12120402 9 79.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Sudha N, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' (2007) Robust hausdorff distance measure for face recognition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Pattern Recognition 40(2):431–442 3, 6 80.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Sung F, Yang Y, Zhang L, Xiang T, Torr PH, Hospedales TM (2018) Learning to compare: Relation network for few-shot learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' In: CVPR, pp 1199–1208 3 81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z (2016) Rethinking the inception architecture for computer vision.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' In: CVPR, pp 2818–2826 11 82.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Takacs B (1998) Comparing face images using the modified hausdorff distance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Pattern recognition 31(12):1873–1881 3, 6 83.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Tao L, Wang X, Yamasaki T (2020) Self-supervised video rep- resentation learning using inter-intra contrastive framework.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' In: ACMMM, pp 2193–2201 16 84.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Thatipelli A, Narayan S, Khan S, Anwer RM, Khan FS, Ghanem B (2022) Spatio-temporal relation modeling for few-shot action recognition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' In: CVPR 4, 8, 10, 11, 12, 13 85.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser Ł, Polosukhin I (2017) Attention is all you need.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' In: NeurIPS, pp 5998–6008 5 86.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Vinyals O, Blundell C, Lillicrap T, Kavukcuoglu K, Wierstra D (2016) Matching Networks for One Shot Learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' In: NeurIPS, arXiv:1606.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='04080v2 2, 3, 4, 8, 10 87.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Wang J, Jiao J, Liu YH (2020) Self-supervised video representa- tion learning by pace prediction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' In: ECCV, Springer, pp 504–521 16 88.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Wang L, Xiong Y, Wang Z, Qiao Y, Lin D, Tang X, Van Gool L (2018) Temporal segment networks for action recognition in videos.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' TPAMI 41(11):2740–2755 1, 4 89.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Wang X, Zhang S, Qing Z, Shao Y, Gao C, Sang N (2021) Self- supervised learning for semi-supervised temporal action pro- posal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' In: CVPR, pp 1905–1914 1 90.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Wang X, Zhang S, Qing Z, Shao Y, Zuo Z, Gao C, Sang N (2021) Oadtr: Online action detection with transformers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' ICCV 12 91.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Wang X, Zhang S, Qing Z, Tang M, Zuo Z, Gao C, Jin R, Sang N (2022) Hybrid relation guided set matching for few-shot action recognition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' In: CVPR 3, 9 92.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Weng R, Lu J, Hu J, Yang G, Tan YP (2013) Robust feature set matching for partial face recognition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' In: ICCV, pp 601–608 3 93.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Weng R, Lu J, Tan YP (2016) Robust point set matching for par- tial face recognition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' TIP 25(3):1163–1176 3 94.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Wu J, Zhang T, Zhang Z, Wu F, Zhang Y (2022) Motion- modulated temporal fragment alignment network for few-shot action recognition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' In: CVPR, pp 9151–9160 2, 4, 8, 10 95.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Xian Y, Korbar B, Douze M, Torresani L, Schiele B, Akata Z (2021) Generalized few-shot video classification with video re- trieval and feature generation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' TPAMI 4 96.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Xu D, Xiao J, Zhao Z, Shao J, Xie D, Zhuang Y (2019) Self- supervised spatiotemporal learning via video clip order predic- tion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' In: CVPR, pp 10334–10343 16 97.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Xu J, Wang X (2021) Rethinking self-supervised correspondence learning: A video frame-level similarity perspective.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' In: ICCV, pp 10075–10085 11, 13, 16 98.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Ye HJ, Hu H, Zhan DC, Sha F (2020) Few-shot learning via embedding adaptation with set-to-set functions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' In: CVPR, pp 8808–8817 3 99.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Ye HJ, Ming L, Zhan DC, Chao WL (2022) Few-shot learning with a strong teacher.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' TPAMI 3 100.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Yoo S, Bahng H, Chung S, Lee J, Chang J, Choo J (2019) Col- oring with limited data: Few-shot colorization via memory aug- mented networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' In: CVPR, pp 11283–11292 3 101.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Yoon SW, Seo J, Moon J (2019) Tapnet: Neural network aug- mented with task-adaptive projection for few-shot learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' In: ICML, pp 7115–7123 2, 3, 13 102.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Yu CB, Qin HF, Cui YZ, Hu XQ (2009) Finger-vein image recog- nition combining modified hausdorff distance with minutiae fea- ture matching.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Interdisciplinary Sciences: Computational Life Sciences 1(4):280–289 6 103.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Yu Z, Chen L, Cheng Z, Luo J (2020) Transmatch: A transfer- learning scheme for semi-supervised few-shot learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' In: CVPR, pp 12856–12864 4 104.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Zhang H, Cisse M, Dauphin YN, Lopez-Paz D (2018) mixup: Beyond empirical risk minimization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' In: ICLR 7 105.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Zhang H, Zhang L, Qi X, Li H, Torr PH, Koniusz P (2020) Few- shot action recognition with permutation-invariant attention.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' In: ECCV, Springer, pp 525–542 1, 4, 8, 9, 10, 16 106.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Zhang S, Zhou J, He X (2021) Learning implicit temporal align- ment for few-shot video classification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' In: IJCAI 2, 4, 8, 9, 10 107.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Zhao C, Shi W, Deng Y (2005) A new hausdorff distance for image matching.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Pattern Recognition Letters 26(5):581–586 3 108.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Zheng S, Chen S, Jin Q (2022) Few-shot action recognition with hierarchical matching and contrastive learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' In: ECCV, Springer, pp 297–313 2, 4, 8, 10 109.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Zhou B, Andonian A, Oliva A, Torralba A (2018) Temporal rela- tional reasoning in videos.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' In: ECCV, pp 803–818 8 110.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Zhou ZH, Li M (2005) Tri-training: Exploiting unlabeled data using three classifiers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' TKDE 17(11):1529–1541 7 111.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Zhou ZQ, Wang B (2009) A modified hausdorff distance using edge gradient for robust object matching.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' In: IASP, IEEE, pp 250–254 6 112.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Zhu L, Yang Y (2018) Compound memory networks for few-shot video classification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' In: ECCV, pp 751–766 1, 2, 4, 8, 9, 10, 15, 16 113.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' Zhu L, Yang Y (2020) Label independent memory for semi- supervised few-shot video classification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content=' TPAMI 44(1):273–285, DOI 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='1109/TPAMI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} +page_content='3007511 4, 7, 8, 10, 12, 15, 16' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfpQWt/content/2301.03330v1.pdf'} diff --git a/CNAzT4oBgHgl3EQfh_3R/vector_store/index.faiss b/CNAzT4oBgHgl3EQfh_3R/vector_store/index.faiss new file mode 100644 index 0000000000000000000000000000000000000000..659ebecba65ada80f039ec18aa04bd8fe681ddb5 --- /dev/null +++ b/CNAzT4oBgHgl3EQfh_3R/vector_store/index.faiss @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:af084831e07578dff35c98200b524f590c6810d12c9a3175afd5d23a55d4807f +size 1966125 diff --git a/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf b/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..86fe928e47986b83db3fc2da7ad5ff9eba344390 --- /dev/null +++ b/CNE1T4oBgHgl3EQfpgW7/content/2301.03333v1.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:1353a64ed35ae431267642a315b673e92e18118dc75134d102dd687a77ff4fbb +size 368026 diff --git a/CNE1T4oBgHgl3EQfpgW7/vector_store/index.faiss b/CNE1T4oBgHgl3EQfpgW7/vector_store/index.faiss new file mode 100644 index 0000000000000000000000000000000000000000..a409feb6ac3276b0ec600fe3b59607235072df8c --- /dev/null +++ b/CNE1T4oBgHgl3EQfpgW7/vector_store/index.faiss @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:6d7f0084f652a7fbc55ceb6f753972583727d3a06ce7e32fc2fe7c62eeedd065 +size 1638445 diff --git a/CNE1T4oBgHgl3EQfpgW7/vector_store/index.pkl b/CNE1T4oBgHgl3EQfpgW7/vector_store/index.pkl new file mode 100644 index 0000000000000000000000000000000000000000..67e049b9d338627fc55ba6199e7a8e182d39d4eb --- /dev/null +++ b/CNE1T4oBgHgl3EQfpgW7/vector_store/index.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:8ff245893cd64b861fe5b9e7a2c21222c1f79b14420bc0f96a587b7f01d53b34 +size 69447 diff --git a/ENE1T4oBgHgl3EQf-QbO/content/tmp_files/2301.03567v1.pdf.txt b/ENE1T4oBgHgl3EQf-QbO/content/tmp_files/2301.03567v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..b3a8d53020b64bea8573a73bcd3c0c06b3d41d49 --- /dev/null +++ b/ENE1T4oBgHgl3EQf-QbO/content/tmp_files/2301.03567v1.pdf.txt @@ -0,0 +1,4048 @@ +Safer Together: Machine Learning Models Trained on Shared Accident +Datasets Predict Construction Injuries Better than Company-Specific +Models +Submitted to Automation in Construction +Antoine J.-P. Tixier1a, Matthew R. Hallowella,b +aSafetyAI R&D +bUniversity of Colorado at Boulder +Abstract +Highlights +• 9 companies from 3 domains (construction, electric T&D, oil & gas) shared their accident datasets. +• Machine learning models were trained to predict safety outcomes from fundamental attributes. +• Models trained on all datasets (full generic models) outperformed the company-specific models +in 82% of the company-domain-outcome combinations, with large gains in F1 score (+4.4 on +average and up to +15.3). +• On average, generic models predicted 2.26 categories more than specific models (up to 7), making +for more useful forecasts in practice. +• Per-domain generic models were not always better than full generic models. +• Combining generic and specific models (data quantity and relevance) was often very beneficial. +• Generic models give companies devoid of accident datasets access to safety predictions. +• Generic models address safety cross-organizational learning and dissemination in construction. +In this study, we capitalized on a collective dataset repository of 57k accidents from 9 companies be- +longing to 3 domains and tested whether models trained on multiple datasets (generic models) predicted +safety outcomes better than the company-specific models. We experimented with full generic models +(trained on all data), per-domain generic models (construction, electric T&D, oil & gas), and with en- +sembles of generic and specific models. Results are very positive, with generic models outperforming the +company-specific models in most cases while also generating finer-grained, hence more useful, forecasts. +Successful generic models remove the needs for training company-specific models, saving a lot of time +and resources, and give small companies, whose accident datasets are too limited to train their own mod- +els, access to safety outcome predictions. It may still however be advantageous to train specific models +to get an extra boost in performance through ensembling with the generic models. Overall, by learning +lessons from a pool of datasets whose accumulated experience far exceeds that of any single company, +and making these lessons easily accessible in the form of simple forecasts, generic models tackle the +holy grail of safety cross-organizational learning and dissemination in the construction industry. +Keywords: construction safety, artificial intelligence, supervised learning, injury prediction, +transfer learning, data sharing, collective intelligence +1antoine.tixier@safetyfunction.com +arXiv:2301.03567v1 [cs.LG] 9 Jan 2023 + +1. Introduction +The SafetyAI council is a community of large organizations from the construction, oil & +gas, and electric Transmission and Delivery (T&D) domains, that share their safety-related data +with the SafetyAI Research and Development (R&D) team. +Before exploiting the data, the R&D team is in charge of standardizing the datasets received +by each company, which is crucial, as each one features different variables and different category +names for each variable. Standardization makes sure that all datasets are based on the same +taxonomy, i.e., speak the same language. +The SafetyAI community dataset, comprising close to a million events including near misses, +observations, good catches, etc., is only accessible to the R&D team, a neutral party, which guar- +antees that it is impossible for companies to see each other’s data, and that the output of all the +R&D conducted on the collective dataset is made available to the entire community. This is of +paramount importance, in a very competitive environment. +In this study, we started by extracting attributes from accident reports. We briefly introduce +the attribute framework in what follows. +1.1. Attribute-based framework +Attributes are basic descriptors of construction work that are observable before accident +occurrence, and cover means, methods, and environmental conditions [1, 2]. One advantage of +the attribute-based framework over modeling at the task or work package level is that attributes +are fundamental and universal. That is, any situation from any site around the world, in any +industry sector, can be characterized by a set of attributes. Attributes can be recorded on-the-fly +on site, or can be extracted offline from various mediums such as photos and text reports. For +instance, four attributes can be extracted from the narrative worker tripped on a cable +when carrying a 2x4 to his truck: (1) cable, (2) object on the floor, (3) lumber, and +(4) light vehicle. +Narratives are particularly well-suited if the goal is to use attributes for predictive modeling. +Indeed, in incident report databases, narratives are often paired with outcomes such as accident +type, injury severity, body part impacted, etc. Attributes also completely anonymize narratives, +which is especially desirable when considering a pool of datasets aggregated from different +companies. For any given event, everything that remains is a set of attributes and a set of +standardized safety outcomes. +However, manually extracting attributes from large amounts of text reports is very costly in +terms of human resources and pose inter-annotator agreement issues. To solve this problem, we +developed and validated a Natural Language Processing (NLP) tool based on rules and lexicons +[3]. We later proved that using the attributes extracted by the tool to predict safety outcomes +was effective and valid [4, 5]. We also used the attributes extracted by the tool for unsupervised +learning applications, such as clustering and visualization [6], and risk modeling and simulation +[7]. +1.2. Differences with our previous research and objective of the current study +In our original study [4], we provided a proof for the concept of predicting safety outcomes +from attributes, both extracted with the NLP tool. Then, in [5], we showed that attributes were +still highly predictive when the safety outcomes were given by independent human annotations, +which definitely validated the approach. We also used a much larger dataset than in the orig- +inal study, two new supervised learning algorithms, model stacking, a healthier experimental +setup with more appropriate performance metrics, and we analyzed per-category attribute im- +portance scores. We also showed that unlike what we had concluded in [4], injury severity was +predictable from attributes. +2 + +In the present research, we interested ourselves with a new, completely different problem. +We had access to a pool of accident datasets coming from 9 companies, and our goal was to: +“Test whether predictive models trained on a generic dataset (i.e., aggregated from the datasets +of multiple companies) outperformed the models trained on the specific dataset of each com- +pany.” +More precisely, we experimented with two types of generic models: +• Full generic model: one model trained on the datasets of all companies. +• Per-domain generic models: one model per industry sector, trained only on the datasets +of the companies involved in that sector (or the parts thereof, as some companies belong +to multiple domains). +The potential advantages of generic models are numerous: +1. Usually with machine learning, the more data, the better, so generic models are expected +to bring improvements in predictive skill compared to the company-specific models. This +is not guaranteed however, as one important question is whether (1) more data (generic +datasets) or (2) more relevant data (specific datasets) is better. +2. By being trained on larger datasets, the generic models learn to predict a greater variety +of outcome categories than the specific models, making for more useful forecasts. +3. Successful generic models would remove the needs for training specific models for each +company, saving a lot of time and resources. +4. Alternatively, if company-specific models are already available, combining them with the +generic models may provide an extra boost in performance. +5. Last but not least, successful generic models would give small companies -whose accident +datasets are too limited to train their own specific models- access to high quality safety +outcome forecasts. +From a high level, generic models tackle the holy grail of safety cross-organizational learn- +ing and dissemination in the construction industry. Indeed, generic models (1) learn lessons +from a pool of datasets whose quantity and diversity2 of accumulated experience far exceeds +that of any single company, and (2) disseminate these lessons as forecasts, which are clear, di- +rect, and easily accessible information, via, e.g., a user interface (desktop or mobile) or API +taking attributes as input and returning probabilities for each category of each outcome. +Moreover, one should note that in the pool, the individual biases of each dataset, due to +specific annotators, reporting practices and policies, etc., tend to average out. Consequently, the +lessons learned by the supervised learning algorithms on the generic datasets are more objective +and broadly applicable than that learned on the specific datasets. +2. Background +The needs to share standardized incident data at the industry level to enable collaborative +learning have long been recognized in aviation and transportation [8]. Some examples include +2Diversity of situations, means and methods, environmental conditions, geographical areas... +3 + +the NASA-managed Aviation Safety Reporting System (ASRS) database, created in 1976 and +featuring over a million incidents, or the European Coordination Center for Accident and In- +cident Reporting Systems (ECCAIRS) database, started in 2004. Such collective repositories +also exist in the chemical industry, with the Major Accident Reporting System (eMARS) of the +European Commission, launched in 1982, and the Process Safety Incident Database (PSID) of +the Center for Chemical Process Safety [9]. +However, the construction industry still lacks comparable initiatives. The needs for data +storage and access infrastructures for construction safety did start to receive some attention +recently [10, 11], but most efforts placed themselves at the company or project level. Cross- +organizational safety data collection is still rare in practice [12, 13]. This is a major issue, +as collaborative machine learning at the industry level is not possible until a common pool of +standardized datasets has been put together. This provided the motivation for us to create the +SafetyAI council in 2020. +One should note that some consortiums already exist, such as the INGAA Foundation, the +Edison Electric Institute (EEI), the Construction Safety Research Alliance (CSRA), or the Na- +tional Safety Council (NSC), but their activities do not revolve around systematic large-scale +accident data collection and analysis. These initiatives rather involve working groups, com- +munities of practice, qualitative analyses, and conferences, towards building communications, +policies, best practices, business intelligence, safety culture and leadership, training material, +etc. In other words, they are based on “soft” methods for knowledge sharing and collabo- +rative learning at the human level. They do not primarily conduct “hard” scientific research +and software development, and do not pool accident datasets for AI applications and automatic +large-scale learning and dissemination. +3. Data Description +As already explained, as part of the SafetyAI initiative, we had access to a pool of safety +datasets coming from nine large companies from the construction, oil & gas, and electric Trans- +mission and Delivery (T&D) domains. One company, Company73, also had about 600 corporate +services (office) events for the severity outcome. We kept these cases as training data for the +full generic model but did not train a specific model on them. +Member companies conduct work mostly in North America, and rely on their own teams as +well as contractors. The collective dataset covers the period 2000 to 2022, with a distribution +biased towards the last decade and especially more recent years. +While the entire pool comprises almost a million events including near misses and observa- +tions, we focused on accident cases only in this effort. As can be seen in Table 1, the sizes of +the individual datasets ranged from 2k to 20k cases, with an average of 6k per company. There +were 57262 accident cases in total, recorded over tens of millions of work hours. +We considered the same outcomes as in [5]: injury severity, body part impacted, injury +type, and accident type. The columns corresponding to each outcome were selected from the +company datasets and normalized to use a common, standard set of categories, shown in Table +2. Not all outcomes were available for every event of every company. From the narrative of +each report, we extracted with the NLP tool [3] the original set of 80 attributes [3, 5], plus 11 +new items (see Table A.7). We also used the tool to extract a fifth outcome, energy source, that +was not available in the company datasets. +3Company names have been anonymized. +4 + +Comp.1 +Comp.2 +Comp.3 +Comp.4 +Comp.5 +Comp.6 +Comp.7 +Comp.8 +Comp.9 +Domains +Constr., +elec. +Oilgas +Constr., +oilgas +Elec. +Constr. +Constr., +elec. +Elec., +oilgas, +corp. +Oilgas +Elec. +Regions +Canada +California +NAM +NAM +NAM +NAM +NAM, +Mexico +World⋆ +Southeast +USA +n +4481 +1965 +4072 +5321 +7245 +4310 +8345 +19298 +2225 +Table 1: Company overview. NAM: North America (Canada + USA). Constr.: construction. Elec: electric T&D. +Oilgas: oil & gas. ⋆Including ships and rigs. Corp: corporate. +Injury Severity +Body Part +Injury Type +Accident Type +Energy Source +first aid +38994 +hand +15782 +cut +14086 +handling +6379 +motion +33958 +report-only +6993 +head +10296 +strain +10069 +fall +5374 +gravity +15904 +lost time +5319 +leg +6550 +contusion +8558 +exposure +3986 +chemical +2411 +medical +4913 +arm +5943 +foreign body +3348 +struck +3834 +biological +2044 +recordable +1043 +trunk +5375 +pinch +1756 +contact +2269 +thermal +1691 +foot +4632 +fracture +1681 +caught +1758 +mechanical +611 +multiple/entire +942 +burn +1454 +overexertion +1523 +pressure +296 +irritation +1222 +equipment +1449 +electricity +181 +pain +1194 +PPE +949 +radiation +166 +exhaustion +1054 +transitioning +578 +bite +710 +error +425 +Table 2: Outcome category counts, across all companies and domains. PPE: personal protective equipment. +4. Experimental Setup +4.1. Splits +Train, validation and test splits were created for each of the 51 company-domain-outcome +combinations for which at least 2 categories with more than 100 observations each were avail- +able (shown in Table 4), by randomly sampling without replacement 64%, 16%, and 20% of +cases, respectively. The counts summed over companies are shown in Table 3. Note that the +proportions we used in our previous work [5] were 81%, 9% and 10%, but in the present re- +search, we decided to reserve more observations for the validation and test sets to make them +more representative of the training sets, in order to increase the stability and validity of hyper- +parameter tuning and evaluation4. +A specific model was trained on each of the 51 company-domain-outcome combinations for +which sufficient data were available, except for that one combination involving the corporate +cases, making for a total of 50 specific models. +For a given domain and a given outcome, the splits of the per-domain generic model were +obtained by combining, across all companies, the splits corresponding to that domain and that +outcome. In total, there was one per-domain generic model for each domain and for each +outcome, hence a total of 3 × 5 = 15 per-domain generic models. +For a given outcome, the splits of the full generic model were obtained by combining, across +all companies and across all domains, the splits corresponding to that outcome. In total, there +was one full generic model for each outcome, hence a total of 5 full generic models. +For each of the aforementioned cases, we tried 3 different algorithms, as will be explained +in subsection 4.3. Hence, a total of (15 + 5) × 3 = 60 generic models were trained. +4Increasing the sizes of the validation and test sets was a good alternative to k-fold cross-validation, which would +have taken too much time. +5 + +# Companies +Train +Val +Test +Severity +Construction +4 +9980 +2494 +3119 +Electric T&D +4 +6672 +1669 +2085 +Oil & Gas +4 +18381 +4595 +5744 +Corporate +1 +418 +105 +131 +Full +9 +35451 +8863 +11079 +Body Part +Construction +4 +8209 +2052 +2565 +Electric T&D +4 +6036 +1508 +1885 +Oil & Gas +3 +15788 +3947 +4933 +Full +9 +30033 +7507 +9383 +Injury Type +Construction +4 +6267 +1566 +1958 +Electric T&D +4 +4764 +1191 +1489 +Oil & Gas +3 +14960 +3740 +4675 +Full +9 +25991 +6497 +8122 +Acc. Type +Construction +2 +2740 +685 +856 +Electric T&D +2 +1600 +400 +500 +Oil & Gas +3 +2910 +728 +910 +Full +6 +7250 +1813 +2266 +En. Source +Construction +4 +4875 +1218 +1524 +Electric T&D +3 +2637 +660 +825 +Oil & Gas +2 +2600 +650 +813 +Full +8 +10112 +2528 +3162 +Table 3: Split counts for each domain-outcome combination, summed over companies. For # Companies, full ̸= +total as some companies belong to multiple domains (see Tables 1 and 4). +Construction +Electric T&D +Oil & Gas +Corp. +Comp. +S +B +IT +AT +E +S +B +IT +AT +E +S +B +IT +AT +E +S +1 +x +x +x +x +2 +x +x +x +3 +x +x +x +x +x +x +x +4 +x +x +x +x +x +5 +x +x +x +x +x +6 +x +x +x +x +x +x +x +x +7 +x +x +x +x +x +x +x +x +x +8 +x +x +x +x +x +9 +x +x +x +x +x +Table 4: The 51 company-domain-outcome combinations associated with at least 2 categories with more than 100 +observations each. S: severity, B: body part, IT: injury type, AT: accident type, E: energy source. Corp.: corportate. +4.2. Class imbalance +To address the problem of class imbalance, weights inversely proportional to category +counts in the training set were computed with the formula max(counts)/counts, like in +[5]. During training, these weights forced the models to pay more attention to the cases from +the minority categories. Per-category counts with training weights can be found in Tables B.8 +and B.9 for the 15 domain-outcome combinations. +4.3. Supervised learning algorithms +Like in [5], we relied on three popular machine learning models: Random Forest (RF) [14], +eXtreme Gradient Boosting (XGBoost or XGB) [15], and linear Support Vector Machine (SVM) +[16]. More precisely, we used the Python’s scikit-learn implementations of Random +Forest5 and linear SVM6, while, for XGBoost, we used the original Python library7 and in +5https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html +6https://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVC.html +7https://xgboost.readthedocs.io/en/latest/python/python api.html#module-xgboost.sklearn +6 + +particular the GPU-accelerated implementation of the “fast histogram” algorithm (gpu hist) +as the tree method8. +For theoretical details about each algorithm, we refer the reader to our paper [5], publicly +available9. +4.4. Hyperparameter optimization +We tuned the models by performing grid searches on the validation sets. Details about the +parameters searched are available in Appendix C. The final models were trained on the union +of the training and validation sets with the best parameter values. Both the specific models and +the generic models were tested on the test sets of the specific models, to ensure fair comparison. +As already explained, there were 50 such test sets, one for each company-domain-outcome +combination. +4.5. Transfer learning by stacking generic and specific models +As was mentioned in the introduction, one important question is the extent to which (1) more +data (generic datasets) or (2) more relevant data (specific datasets) is better. In what follows, +we explore a way to move past this binary choice and have a tradeoff between quantity and +relevance. +Inspired by transfer learning, which is very successful in computer vision [17] and NLP +[18, 19, 20, 21], we experimented with combining the predictions of the generic and specific +models via an ensemble model. +Very briefly, in AI, transfer learning refers to a two-step process. First, a model is trained +at solving a general task on large amounts of data. This phase is called the pretraining phase, +as it allows the model to acquire generic knowledge (e.g., in NLP, reading and writing), that +is applicable to a great variety of situations downstream. Second, the pretrained model is fine- +tuned on a specific task of interest, often associated with a much smaller dataset (e.g. in NLP, +summarization, classification, question answering, paraphrase detection, etc.). +In our case, the generic and the specific models have to perform the same task, i.e., predict- +ing a given safety outcome10, and there is no pretraining phase per se, in that the generic and the +specific models are two different models. However, our approach is similar in spirit to transfer +learning, as our goal is to capitalize on generic knowledge gained from large amounts of data to +improve performance on a specific task associated with a smaller dataset. +More precisely, for each company-domain-outcome combination, we trained a meta-model +taking as input the weighted elementwise sum of the probabilistic forecasts of the best generic +and specific models11. We used a simple logistic regression12 as our meta-model, with the C +parameter fixed and equal to 0.2, like in [5]. We grid searched the validation set to find the best +values of coefficients a and b where: +inputensemble = a × outputgeneric + b × outputspecific +(1) +Besides performance considerations, using tunable weights improves interpretability, by +providing information regarding which of the generic model or the specific model makes the +most important contribution to predictive skill. +8https://xgboost.readthedocs.io/en/latest/gpu/ +9https://arxiv.org/pdf/1908.05972.pdf +10The generic model has to perform a more difficult version of the task, though (more categories to predict). +11The entries of the specific model vector for the categories that it did not predict were set to zero. +12https://scikit-learn.org/stable/modules/generated/sklearn.linear model.LogisticRegression.html +7 + +We tried values from 0.1 to 1 with 0.1 steps, holding the other parameter equal to 1, and +conversely. That is, the following 19 pairs: (0.1, 1), (0.2, 1), ... , (1, 1), (1, 0.1), (1, 0.2), ... , +(1, 0.9). +SVM issue. By design, the implementation of the linear SVM model we used, linearSVC, +only returns discrete predictions, that is, a single label corresponding to the most likely category, +rather than a probability distribution over all categories. To address this issue, in [5], we tried +retraining the best SVM using the SVC implementation13 with linear Kernel. However, results +were not convincing. Therefore, in the present study, we decided simply not to use model +stacking when one of the two models involved (e.g., best generic or specific model) was a +SVM. +4.6. Performance metrics +Due to the large class imbalance for all outcomes, measuring classification performance +with accuracy was inadequate. Rather, we computed precision, recall, and F1-score. +Precision, respectively recall, for category i, is equal to the number of correct predictions +for category i (number of hits), divided by the number of predictions made for category i (hits +and false alarms), respectively by the number of observations in category i (hits and misses). +precision = +Ci,i +�K +j=1 Cj,i +recall = +Ci,i +�K +j=1 Ci,j +(2) +Where the confusion matrix C is a square matrix of dimension K ×K (K being the number +of categories) and whose (i, j)th element Ci,j indicates how many of the observations known +to be in category i were predicted to be in category j. Finally, we computed the F1-score, the +harmonic mean of precision and recall: +F1 = 2 × precision × recall +precision + recall +(3) +4.7. Configuration +We relied on a single Ubuntu 20.04.4 machine featuring a 4.9 MHz 12-thread CPU, a 12 +GB Nvidia Titan V GPU, 64 GB of RAM, R version 4.1.3 [22], and Python version 3.8.13 with +scikit-learn version 1.1.1 [23]. Running all experiments took approximately ten days. +5. Results +Each generic model (full and per-domain), as well as ensembles thereof (stacking approach +described in section 4.5) was tested on the test set of each company-domain-outcome combina- +tion and compared against the best performing specific model for this combination. +Results are very positive. As can be seen in Table 5, across all companies, the generic mod- +els (full or per-domain) outperform the specific models 82% of the time, i.e., for 41 company- +domain-outcome combinations out of 50. Detailed per-company results can be found in Ap- +pendix E for the full generic models and Appendix F for the per-domain generic models. At +the company level, improvements are brought on average for 80.6% of outcomes (across all +domains), ranging from 33.3% for Company2 to 100% for Company1, Company4, Company6, +and Company9. +13https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html +8 + +Construction +Electric T&D +Oil & Gas +C +S +B +IT +AT +E +S +B +IT +AT +E +S +B +IT +AT +E +1 ++1.26 ++0.2 ++2.55 ++3.07 +2 +x ++3.15 +x +3 +x ++6.56 ++0.49 +x ++12.47 ++0.99 +x +4 ++3.49 ++0.47 ++3.06 ++0.98 ++0.63 +5 +x ++2.64 ++1.29 ++3.14 ++2.79 +6 ++12.86 ++4.39 ++1.63 ++7.09 ++12.87 ++5 ++11.19 ++0.59 +7 +x ++6.69 ++15.3 +x ++1.04 ++9.54 ++2.12 ++2.2 +8 ++1.11 ++0.47 ++2.78 +x ++3.13 +9 ++1.56 ++5.38 ++12.16 ++5.01 ++6.16 +Table 5: Company-level max gains. x: no improvement. S: severity, B: body part, IT: injury type, AT: accident type, +E: energy source. C: company +Furthermore, as shown in Fig. 1, gains are high on average (+4.4 in F1 score) and reach im- +pressive values, e.g., +15.3 for Company7 on electric T&D-injury type, +12.87 for Company6 +on electric T&D-severity, +12.86 for Company6 on construction-severity, +6.56 for Company3 +on construction-body part, etc. And all of that, while predicting more categories. +Distribution of Company−level Max Gains +Gain in F1 score over specific models +0 +5 +10 +15 +0 +2 +4 +6 +8 +10 +12 +14 +Counts ++ ++ ++++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ +++ ++ ++ +++ ++ ++ ++ ++ ++ +Figure 1: Company-level max gains, across all domains and outcomes. n=41, min=0.2, max=15.3, mean=4.4. +There are only 9 domain-outcome combinations over 50, across 5 companies, on which +the generic models do not bring any quantitative improvement. However, since their forecasts +are more informative (more categories predicted), it may still make sense in practice to use the +generic models in lieu of the specific models, even on these combinations. For instance, for +Company3-oil & gas-accident type, the specific model only predicts exposure and struck, but +the generic model also predicts the categories caught, fall, and overexertion. +The F1 scores averaged over all companies are shown in Table 6. Overall, the generic mod- +els bring improvement over the specific models for 73.3 % of the domain-outcome combinations +(11 out of 15). As shown on the right of Fig. 2, maximum gains range from 0.95 (for electric +T&D-energy source) to 9.98 (for electric T&D-injury type) with an average of 3.37. Also, not +only do the 11 best generic models outperform their specific counterparts with a comfortable +margin, but they also generate finer-grained forecasts, which are much more useful in practice. +More specifically, generic models predict 2.26 additional categories on average, even up to 7 +for construction-injury type (while still providing a gain of 3.48 in F1 score). This is remarkable, +considering that the more categories to be predicted, the more difficult the task (see Appendix +D). +9 + +Distribution of All Gains +Gain in F1 score over specific models +Counts +0 +2 +4 +6 +8 +10 +0 +5 +10 +15 +20 +25 +30 +Counts +++ ++ ++ ++ ++ ++ + + ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ +++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++++ ++ ++++ +++ ++ ++ ++ ++ +Distribution of Max Gains +Gain in F1 score over specific models +Frequency +0 +2 +4 +6 +8 +10 +0 +1 +2 +3 +4 +5 +6 +Counts ++++ ++ ++ ++ ++ ++ ++ ++ ++ +Figure 2: Gains averaged over companies. Left: n=48, min=0.16, max=9.98, mean=2.22. Right: n=11, min=0.95, +max=9.98, mean=3.37. +The construction and oil & gas domains see gains for 3 outcomes out of 5, while on the +electric T&D domain, we observe improvement for every outcome. Further, for the body part, +injury type, and energy source outcomes, there is at least one generic model that outperforms +its specific counterpart, on every domain, while the severity and accident type outcomes see +improvements only on the electric T&D domain. +However, it is important to note that even on those 4 domain-outcome combinations on +which the generic models do not offer gains in predictive performance, it can still be desirable +to use them in practice over the specific models, as they generate more informative forecasts, +with 2 additional categories predicted, on average. +Overall, more than half of all F1 scores recorded for the generic models (79 out of 150, +or 53%) are greater or within two points of that of the specific models, while predicting 1.83 +more categories on average. And, as shown on the left of Fig. 2, the 48 generic models that +outperform their specific counterparts bring on average an improvement of 2.22 in F1 score. +5.1. Body part, injury type, and energy source +Some of the greatest improvements are observed for injury type, where the best generic +models provide large average gains of 3.48, 9.98, and 3.07, respectively on the construction, +electric T&D, and oil & gas domains, while predicting on average 4.25 more categories than +the company-specific models. This large boost in performance is remarkable considering the +significant increase in task difficulty. +Similarly, for energy source, the best generic models provide 4.48, 0.95, and 1.83 improve- +ments in F1 score, while predicting 1.53 more categories on average; and for body part, the +gains are 3.38, 3.42, and 1.37, with 0.17 more categories predicted. +5.2. Severity and accident type +For severity and accident type, the generic models outperform the company-specific ones +on the electric T&D domain, with 3.09 and 2.03 gains in F1 scores, while predicting 2 and 0.5 +more categories on average. +On the construction and oil & gas domains, the best generic models are between 2.4 and 6 +points below the company-specific ones. However, they still offer the benefit of predicting more +categories (+1.6 on average). +10 + +Construction +Electric T&D +Oil & Gas +Full +Dom. +Full +Dom. +Full +Dom. +Severity +F1 +SVM +gen +31.66 +30.29 +35.52 +35.79 +30.92 +28.97 +RF +gen +27.26 +31.04 +33.37 +41.28 +23.48 +26.08 +ens +30.33 +31.82 +41.17† +43.88† +28.98 +30.76 +XGB +gen +26.98 +28.74 +36.4 +39.69⋆ +24.25 +24.19 +ens +29.67 +31.81 +40.01⋆ +40.95 +29.14 +31.44 +spec +35.34† +40.79 +33.86† +Count +# categories +spec +3.5 +3 +3.5 +gen +5 +5 +5 +5 +5 +5 +# datasets +9 +4 +9 +4 +9 +4 +Body Part +F1 +SVM +gen +25.51 +31.32 +26.68 +25.24 +23.65 +24.66 +RF +gen +34.41† +31.81 +34.94† +33.05 +30.22† +28.85† +ens +30.33⋆ +30.39⋆ +34.08 +29.25 +26.43 +27.54⋆ +XGB +gen +32.86 +32.23† +33.76 +35.21† +29.22 +28.59⋆ +ens +29.05⋆ +29.2⋆ +32.31 +34.71 +26.37 +27.74⋆ +spec +31.03 +31.79 +28.85 +Count +# categories +spec +6 +5.5 +6 +gen +6 +6 +6 +6 +6 +6 +# datasets +9 +4 +9 +4 +9 +3 +Injury Type +F1 +SVM +gen +38.73 +42.78⋆ +53.7† +42.91⋆ +35.11⋆ +33.89 +RF +gen +40.03 +42.11⋆ +42.44⋆ +41.68⋆ +32.15 +32.82 +ens +41.75 +45.46† +49.42 +45.10 +38.65† +38.97 +XGB +gen +36.76 +42.55⋆ +41.03 +41.48 +31.33 +32.34 +ens +47.4† +45.45 +51.44 +49.28† +38.05 +39.79† +spec +43.92 +43.72 +36.72 +Count +# categories +spec +4 +5.25 +7 +gen +11 +6 +11 +8 +11 +11 +# datasets +9 +4 +9 +4 +9 +3 +Accident Type +F1 +SVM +gen +42.39 +42.20 +44.58 +44.84 +60.69 +64.85 +RF +gen +42.46 +42.42 +48.58† +50.2† +63.14 +64.12 +ens +44.35 +40.8 +41.29 +39.72 +66.40 +65.74 +XGB +gen +48.27 +49.21 +47.80⋆ +49.58 +58.58 +63.04 +ens +42.02 +43.40 +41.08 +43.53 +64.56 +67.13 +spec +54.98† +48.17 +73.16† +Count +# categories +spec +3.5 +4.5 +2.67 +gen +5 +5 +5 +5 +5 +4 +# datasets +6 +2 +6 +2 +6 +3 +Energy Source +F1 +SVM +gen +74.12† +73.78 +77.64⋆ +78.87† +69.54⋆ +55.63 +RF +gen +72.71 +73.91† +77.12⋆ +78.61 +71.12 +70.72† +ens +69.06⋆ +69.64⋆ +75.83 +76.48⋆ +70.58 +69.12⋆ +XGB +gen +73.77 +71.04 +78.83† +75.61 +72.22† +70.35⋆ +ens +69.05⋆ +70.23 +76.47⋆ +75.03 +70.98 +70.38⋆ +spec +69.64 +77.92 +70.39 +Count +# categories +spec +2.25 +2.67 +3 +gen +5 +3 +5 +3 +5 +4 +# datasets +8 +4 +8 +3 +8 +2 +Table 6: Results averaged over companies. †: best of their sub-column. Bold/⋆: better than/within 2 pts of spec. Full: full generic +model (one per outcome, same across domains). Dom.: per-domain generic model (one per outcome per domain). Gen/spec: +generic/specific. Ens: ensemble thereof. # datasets: number of company datasets forming the generic dataset. Note: for the same +outcome, # categories and # datasets are the same for Full across domains, we repeat them only to ease comparison. +5.3. Full vs. per-domain +In what follows, we refer to the full and per-domain models and their ensemble versions. +When considering full generic models, the average improvement in F1-score over the specific +models is 2.85 and there are 2.44 additional categories predicted (min=0, max=7), while when +11 + +considering per-domain generic models, the average improvement is 2.57 and 1.38 additional +categories are predicted (min=0, max=4). The per-domain models reach a higher max score than +the full models on 9 combinations out of 15 (60%), and in 5 out of 11 (45%) when the specific +models are outperformed. The full and per-domain models outperform the specific models on +the same 11 domain-outcome combinations. +So, in terms of performance, there is no clear winner. However, since the full generic models +predict more categories, and are also simpler conceptually (just one model per outcome), full +models seem like the way to go. This conclusion however will need to be validated when more +datasets are available for each domain. One thing to note, however, is that specific models may +still be desirable in the context of model stacking, as covered next. +5.4. Generic vs. ensemble (generic + specific) +The transfer learning-like stacking approach, i.e., combining the predictions of the generic +and specific models, boosts performance over the generic models (both full and per-domain) +on all domains for the severity and injury type outcomes, in some cases for accident type, and +nowhere for body part and energy source. +For severity, the average gains are of 3.93, and range from 0.78 to an impressive 7.8 (for +electric T&D-full-RF). Results are even more impressive for injury type. Gains range from 1.72 +to 10.64 (for construction-full-XGB), with a high average of 6.17. +It is interesting to note that for severity and injury type, very few of the generic models +outperform the specific models in the first place, and it is only by combining their predictions +with that of the specific models that absolute best performance can be reached, on the electrical +domain for severity, and on all domains for injury type. +We also observe that conversely, for body part and energy source, where model stacking +does not bring additional skill, the generic models are stronger than the specific models in the +first place. +All in all, these results may suggest that ensembling only works when the generic models are +not already better than the specific models. However, this rule does not hold everywhere (e.g., +construction-accident type-XGB), so additional data, experiments and results will be necessary +to draw any general conclusion here. +5.5. Quantity vs. relevance +As far as whether more data or more relevant data is best, Fig. 3 shows the distributions of +the best a and b coefficients as determined on the validation sets. It tends to indicate that, on +average, the best tradeoff involves anywhere from a little bit to a lot of generic model (anywhere +in the [0.1,1] range, with peaks towards [0.1,0.2] and [0.9,1]), but almost always a lot of specific +model (between 0.9 and 1). In other words, data relevance always seems important, while +the contribution of data quantity fluctuates. However, this is only a general trend. As can be +seen in the detailed results per company (Appendix E and Appendix F), in some cases, the +contribution of the generic model is more important than that of the specific model, e.g., (1,0.6) +for Company6-XGB in the first table of Appendix F. +5.6. Best model type +For the full generic models, the best algorithm is RF (6 domain-outcome combinations over +15), followed by SVM (5/15) and XGB (4/15). When stacked with the specific model, RF +reaches best performance in 10 out of 15 combinations. +12 + +Coefficient Distributions +Coefficient Value +Count +0.2 +0.4 +0.6 +0.8 +1.0 +0 +10 +20 +30 +40 +50 +60 +generic +specific +Coefficient Distributions +Coefficient Value +Count +0.2 +0.4 +0.6 +0.8 +1.0 +0 +10 +20 +30 +40 +50 +generic +specific +Figure 3: Distributions of the best coefficient values a (generic) and b (specific). Left: full. Right: per-domain. +When considering the per-domain generic models, SVM obtains the best score 7 times out +of 15, followed by RF (5/15) and XGB (3/5). However, when used in the ensemble, XGB is the +best (10/15). +RF and XGB are better choices than SVM as they consistently top the scores and can be +used in ensembles. In terms of performance though, there is no clear winner between the two. +One or the other could be used interchangeably. However, XGBoost is superior in practice as +far as deployment is concerned, as the Random Forest models take a lot of disk space, even after +applying some compression tricks. +6. Conclusion +We showed that generic models provide consistent and large improvements over company- +specific models. Moreover, generic models issue finer-grained forecasts that are more useful in +practice, as they predict more categories of each safety outcome. +Generic models remove the needs for training company-specific models, saving a lot of time +and resources, and give small companies, whose accident datasets are too limited to train their +own models, access to safety outcome predictions. +Per-domain generic models (trained on data from a specific industry sector) are not always +better than full generic models (trained on all data). Ensembling generic and specific models is +often very beneficial. Therefore, it might still be worth training specific models to combine their +predictions with that of the generic models. If specific models are already in use, combining +them with the generic models may provide a boost in performance. +The forecasts are in essence clear and direct information that can be accessed via a user +interface (as a desktop or mobile webpage or application), or via an API for integration into any +existing ecosystem. In each case, the only input required is a set of attributes, and the output are +probabilities for each category of each outcome. +By learning lessons from a pool of datasets whose accumulated experience far exceeds that +of any single company, and making these lessons easily accessible, generic models tackle the +holy grail of safety cross-organizational learning and dissemination in the construction industry. +7. Acknowledgements +We thank the Nvidia corporation for donating the Titan V GPU that was used in this re- +search, as part of their GPU grant program. +13 + +8. References +References +[1] M. Desvignes, Requisite empirical risk data for integration of safety with advanced technologies and intelligent +systems, Ph.D. thesis, University of Colorado at Boulder (2014). +URL https://scholar.colorado.edu/downloads/0r967398g +[2] M. P. Villanova, Attribute-based risk model for assessing risk to industrial construction tasks, Ph.D. thesis, +University of Colorado at Boulder (2014). +URL https://scholar.colorado.edu/downloads/jd472w76t +[3] A. J.-P. Tixier, M. R. Hallowell, B. Rajagopalan, D. Bowman, Automated content analysis for construction +safety: a natural language processing system to extract precursors and outcomes from unstructured injury +reports, Automation in Construction 62 (2016) 45–56. doi:10.1016/j.autcon.2015.11.001. +[4] A. J.-P. Tixier, M. R. Hallowell, B. Rajagopalan, D. Bowman, Application of machine learning to construction +injury prediction, Automation in Construction 69 (2016) 102–114. doi:10.1016/j.autcon.2016.05. +016. +[5] H. Baker, M. R. Hallowell, A. J.-P. Tixier, Ai-based prediction of independent construction safety outcomes +from universal attributes, Automation in Construction 118 (2020) 103146. +[6] A. J.-P. Tixier, M. R. Hallowell, B. Rajagopalan, D. Bowman, Construction safety clash detection: identify- +ing safety incompatibilities among fundamental attributes using data mining, Automation in Construction 74 +(2017) 39–54. +[7] A. J.-P. Tixier, M. R. Hallowell, B. Rajagopalan, Construction safety risk modeling and simulation, Risk +Analysis 37 (10) (2017) 1917–1935. doi:10.1111/risa.12772. +[8] L. Tanguy, N. Tulechki, A. Urieli, E. Hermann, C. Raynal, Natural language processing for aviation safety +reports: From classification to interactive analysis, Computers in Industry 78 (2016) 80–95. +[9] A. L. Sepeda, Lessons learned from process incident databases and the process safety incident database (psid) +approach sponsored by the center for chemical process safety, Journal of hazardous materials 130 (1-2) (2006) +9–14. +[10] Q. T. Le, D. Y. Lee, C. S. Park, A social network system for sharing construction safety and health knowledge, +Automation in Construction 46 (2014) 30–37. +[11] A. Pedro, A.-T. Pham-Hang, P. T. Nguyen, H. C. Pham, Data-driven construction safety information sharing +system based on linked data, ontologies, and knowledge graph technologies, International journal of environ- +mental research and public health 19 (2) (2022) 794. +[12] K. W. Edwin, Sharing incident experiences: a roadmap towards collective safety information in the norwegian +construction industry, International Journal of Occupational Safety and Ergonomics (2022) 1–11. +[13] K. Wasilkiewicz, Information flow and knowledge transfer of accident investigation results in the norwegian +construction industry, in: Safety and Reliability–Safe Societies in a Changing World, CRC Press, 2018, pp. +2855–2862. +[14] L. Breiman, Random forests, Machine Learning 45 (1) (2001) 5–32. +[15] T. Chen, C. Guestrin, Xgboost: A scalable tree boosting system, in: Proceedings of the 22nd ACM SIGKDD +International Conference on Knowledge Discovery and Data Mining, ACM, 2016, pp. 785–794. +[16] B. E. Boser, I. M. Guyon, V. N. Vapnik, A training algorithm for optimal margin classifiers, in: ACM +Proceedings of the Fifth Annual Workshop on Computational learning theory, 1992, pp. 144–152. doi: +10.1145/130385.130401. +[17] A. Krizhevsky, I. Sutskever, G. E. Hinton, Imagenet classification with deep convolutional neural networks, in: +Advances in neural information processing systems, 2012, pp. 1097–1105. +14 + +[18] A. +Radford, +K. +Narasimhan, +T. +Salimans, +I. +Sutskever, +Improving +language +under- +standing +by +generative +pre-training, +URL +https://s3-us-west-2. +amazonaws. +com/openai- +assets/researchcovers/languageunsupervised/language understanding paper. pdf. +[19] J. Devlin, M.-W. Chang, K. Lee, K. Toutanova, Bert: Pre-training of deep bidirectional transformers for lan- +guage understanding, arXiv preprint arXiv:1810.04805. +[20] M. Lewis, Y. Liu, N. Goyal, M. Ghazvininejad, A. Mohamed, O. Levy, V. Stoyanov, L. Zettlemoyer, Bart: +Denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension, +arXiv preprint arXiv:1910.13461. +[21] M. K. Eddine, A. J.-P. Tixier, M. Vazirgiannis, Barthez: a skilled pretrained french sequence-to-sequence +model, arXiv preprint arXiv:2010.12321. +[22] R Core Team, R: A Language and Environment for Statistical Computing, R Foundation for Statistical Com- +puting, Vienna, Austria (2022). +URL https://www.R-project.org/ +[23] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, +R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, E. Duchesnay, Scikit- +learn: Machine learning in Python, Journal of Machine Learning Research 12 (2011) 2825–2830. +Appendices +Appendix A. Attribute List +adverse low temps +fuses⋆ +machinery +spark +bolt +grinding +manlift +splinter/sliver +breaker⋆ +grout +mud +spool +cable +guardrail/handrail +nail +stairs +cable tray +hammer +no/improper PPE +steel/steel sections +chipping +hand size pieces +object at height +stripping +cleaning +hazardous substance +object on the floor +stud +clearance⋆ +heat source/high temps +piping +switch/switching⋆ +concrete +heater⋆ +pole⋆ +tank +concrete liquid +heavy material/tool +pontoon +transformer⋆ +conduit +heavy vehicle +poor housekeeping +uneven surface +confined work space +hose +poor visibility +unpowered tool +congested work space +improper body position +powered tool +unpowered transporter +crane +improper procedure/inattention +rebar +unstable support/surface +door +improper security of materials +relay⋆ +valve +drill +improper security of tools +repetitive motion +vault⋆ +dunnage +insect/animal +scaffold +welding +electricity +job trailer +screw +wind +exiting +ladder +sharp edge +wire +fan⋆ +lifting/pulling/manipulating +slag +working at height +fatigued dizzy +light vehicle +slippery surface +working below elev wksp/mat +forklift +LOTO/labeling⋆ +small particle +working overhead +formwork +lumber +soffit +wrench +Table A.7: 92 attributes used in this study. LOTO: lockout-tagout. PPE: personal protective equipment. ⋆: eleven +new attributes added since [4, 5]. +15 + +Appendix B. Detailed split counts +Severity +Train +w +Val +Test +Construction +report-only +917 +8.2 +226 +283 +1st aid +7486 +1.0 +1876 +2369 +medical +470 +15.9 +114 +140 +recordable +147 +50.9 +28 +42 +lost time +960 +7.8 +250 +285 +total +9980 +2494 +3119 +Electric T&D +report-only +2392 +1.2 +576 +712 +1st aid +2809 +1.0 +736 +905 +medical +554 +5.1 +140 +162 +recordable +310 +9.1 +74 +101 +lost time +607 +4.6 +143 +205 +total +6672 +1669 +2085 +Oil & Gas +report-only +929 +14.8 +244 +279 +1st aid +13766 +1.0 +3405 +4279 +medical +1919 +7.2 +489 +618 +recordable +152 +90.6 +42 +52 +lost time +1615 +8.5 +415 +516 +total +18381 +4595 +5744 +Corporate +report-only +97 +3.3 +31 +22 +1st aid +321 +1.0 +74 +109 +total +418 +105 +131 +Full +report-only +4335 +5.6 +1077 +1296 +1st aid +24382 +1.0 +6091 +7662 +medical +2943 +8.3 +743 +920 +recordable +609 +40.0 +144 +195 +lost time +3182 +7.7 +808 +1006 +total +35451 +8863 +11079 +Body Part +Train +w +Val +Test +Construction +arm +1059 +2.6 +285 +338 +foot +694 +3.9 +167 +232 +hand +2732 +1.0 +701 +864 +head +1682 +1.6 +394 +494 +leg +958 +2.9 +262 +307 +trunk +1084 +2.5 +243 +330 +total +8209 +2052 +2565 +Electric T&D +arm +1061 +1.4 +274 +319 +foot +372 +4.0 +89 +135 +hand +1473 +1.0 +368 +452 +head +1246 +1.2 +318 +403 +leg +1084 +1.4 +251 +307 +trunk +800 +1.8 +208 +269 +total +6036 +1508 +1885 +Oil & Gas +arm +1445 +3.9 +386 +477 +foot +1741 +3.2 +421 +568 +hand +5586 +1.0 +1385 +1740 +head +3514 +1.6 +887 +1088 +leg +2053 +2.7 +498 +596 +trunk +1449 +3.9 +370 +464 +total +15788 +3947 +4933 +Full +arm +3565 +2.7 +945 +1134 +foot +2807 +3.5 +677 +935 +hand +9791 +1.0 +2454 +3056 +head +6442 +1.5 +1599 +1985 +leg +4095 +2.4 +1011 +1210 +trunk +3333 +2.9 +821 +1063 +total +30033 +7507 +9383 +Accident Type +Train +w +Val +Test +Construction +caught +396 +2.3 +105 +137 +exposure +119 +7.8 +38 +40 +fall +803 +1.2 +200 +243 +overexertion +492 +1.9 +128 +160 +struck +930 +1.0 +214 +276 +total +2740 +685 +856 +Electric T&D +caught +207 +2.2 +55 +62 +exposure +454 +1.0 +123 +142 +fall +403 +1.1 +102 +143 +overexertion +288 +1.6 +51 +65 +struck +248 +1.8 +69 +88 +total +1600 +400 +500 +Oil & Gas +caught +198 +7.7 +43 +53 +exposure +526 +2.9 +127 +184 +fall +1527 +1.0 +393 +463 +struck +659 +2.3 +165 +210 +total +2910 +728 +910 +Full +caught +801 +3.4 +203 +252 +exposure +1099 +2.5 +288 +366 +fall +2733 +1.0 +695 +849 +overexertion +780 +3.5 +179 +225 +struck +1837 +1.5 +448 +574 +total +7250 +1813 +2266 +Energy Source +Train +w +Val +Test +Construction +chemical +76 +42.7 +21 +14 +gravity +1551 +2.1 +405 +479 +motion +3248 +1.0 +792 +1031 +total +4875 +1218 +1524 +Electric +biological +221 +7.6 +52 +88 +gravity +733 +2.3 +179 +230 +motion +1683 +1.0 +429 +507 +total +2637 +660 +825 +Oil & Gas +chemical +70 +21.2 +13 +21 +gravity +1485 +1.0 +361 +448 +motion +914 +1.6 +246 +300 +thermal +131 +11.3 +30 +44 +total +2600 +650 +813 +Full +biological +221 +26.4 +52 +88 +chemical +146 +40.0 +34 +35 +gravity +3769 +1.6 +945 +1157 +motion +5845 +1.0 +1467 +1838 +thermal +131 +44.6 +30 +44 +total +10112 +2528 +3162 +Table B.8: Split counts (1/2). w: training weights. +16 + +Injury Type +Train +w +Val +Test +Construction +contusion +728 +3.6 +185 +229 +cut +2644 +1.0 +682 +795 +fob +399 +6.6 +84 +118 +fracture +100 +26.4 +24 +39 +pinch +267 +9.9 +90 +97 +strain +2129 +1.2 +501 +680 +total +6267 +1566 +1958 +Electric T&D +bite +129 +12.3 +35 +42 +burn +75 +21.2 +14 +21 +contusion +861 +1.8 +216 +277 +cut +1305 +1.2 +330 +400 +fob +209 +7.6 +46 +69 +fracture +176 +9.0 +39 +53 +irritation +420 +3.8 +101 +141 +strain +1589 +1.0 +410 +486 +total +4764 +1191 +1489 +Oil & Gas +bite +168 +27.6 +39 +52 +burn +572 +8.1 +150 +179 +contusion +3587 +1.30 +848 +1091 +cut +4638 +1.0 +1160 +1509 +exhaustion +75 +61.8 +24 +25 +fob +1440 +3.2 +381 +455 +fracture +622 +7.5 +160 +199 +irritation +127 +36.5 +37 +42 +pain +704 +6.6 +176 +215 +pinch +720 +6.4 +181 +231 +strain +2307 +2.0 +584 +677 +total +14960 +3740 +4675 +Full +bite +297 +28.9 +74 +94 +burn +647 +13.3 +164 +200 +contusion +5176 +1.7 +1249 +1597 +cut +8587 +1.0 +2172 +2704 +exhaustion +75 +114.5 +24 +25 +fob +2048 +4.2 +511 +642 +fracture +898 +9.6 +223 +291 +irritation +547 +15.7 +138 +183 +pain +704 +12.2 +176 +215 +pinch +987 +8.7 +271 +328 +strain +6025 +1.4 +1495 +1843 +total +25991 +6497 +8122 +Table B.9: Split counts (2/2). w: training weights. +Appendix C. Hyperparameter Optimization Details +For Random Forest14, we searched the number of trees (ntree parameter, from 100 to +1600 with steps of 100), the number of variables to try when making each split (mtry, from 5 +to 45 with steps of 5), and the leaf size (nodesize, 1, 2, 5, 10, 25, and 50). +For XGBoost15, we searched the maximum depth of a tree in the sequence (max depth, +from 3 to 6 with steps of 1), the learning rate (learning rate, 0.01, 0.05, and 0.1), the +minimum leaf size (min child weight, 1, 3, 5, and 10), the percentage of training instances +to be used in building each tree (subsample, 0.3, 0.5, 0.7, and 1) , and the percentage of +predictors to be considered in making each split of a given tree (colsample bylevel, 0.3, +0.5, 0.7, and 1). The number of trees in the sequence (ntrees) was set to 2000. The loss was +the multinomial one. Finally, for the SVM model, we optimized the C parameter (C, 10x with +x taking 3000 evenly spaced values in [−9, 9]). +14https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html +15https://xgboost.readthedocs.io/en/latest/parameter.html +17 + +Appendix D. Illustration of Task Difficulty vs. Number of Categories +To illustrate how the prediction task gets more and more difficult as the number of cate- +gories increases, we designed a synthetic example in which 105 observations were drawn from +an increasing number of categories (2 to 12). Class imbalance was simulated by drawing from +the categories with probabilities following the lognormal distribution (mean=0, sd=2). We con- +sidered two baselines: a random baseline, that predicts categories uniformly at random, and a +most frequent baseline, which always returns the most frequent category. Our proxy for diffi- +culty was one minus the F1 score of the baselines. In other words, the less well the baselines +are doing, the more difficult the task. We can see on Fig. D.4 that the task difficulty rapidly +increases with the number of categories, and that going from 2 to 6 categories almost makes the +task twice as hard. +2 +4 +6 +8 +10 +12 +0.5 +0.6 +0.7 +0.8 +0.9 +Prediction Task Difficulty vs Number of Categories +Number of Categories +1 − F1 score +Random Baseline +Most Frequent Baseline +Figure D.4 +Appendix E. Per-Company Results for the Full Generic Models +Note: the ensemble (“ens”) rows are left blank whenever the specific model is a SVM, as +we could not use ensembling in this case (the forecast of the SVM is not probabilistic). +Appendix E.1. Severity +Comp.1 +Comp.3 +Comp.5 +Comp.6 +Avg +spec +29.51 +32.62 +45.35 +33.9 +35.34† +SVM +gen +20.23 +25.64 +34.01 +46.76 +31.66 +gen +25.75 +21.54 +29.75 +31.99 +27.26 +RF +ens +28.68 +31.62 +30.69 +30.33 +coef. +(0.4,1) +(0.8,1) +(0.4,1) +gen +27.58 +23.26 +27.58 +29.48 +26.98 +XGB +ens +28.85 +28.34 +31.82 +29.67 +coef. +(0.1,1) +(0.3,1) +(0.5,1) +#lev. spec +4 +4 +3 +3 +3.5 +#lev. gen +5 +5 +5 +5 +5 +Table E.10: Severity, construction. †: best model on average. +18 + +Comp.4 +Comp.6 +Comp.7 +Comp.9 +Avg +spec +29.48 +45.66 +57.67 +30.34 +40.79 +SVM +gen +20.93 +42.56 +46.67 +31.9 +35.52 +gen +27.46 +38.61 +39.97 +27.42 +33.37 +RF +ens +28.73 +53.62 +41.17† +coef. +(1,0.9) +(0.5,1) +gen +27.39 +53.02 +39.24 +25.95 +36.4 +XGB +ens +28.74 +51.27 +40.01⋆ +coef. +(0.8,1) +(0.2,1) +#lev. spec +4 +2 +2 +4 +3 +#lev. gen +5 +5 +5 +5 +5 +Table E.11: Severity, electric T&D. †: best model on average. Bold/⋆: better/within 2pts of the company-specific +model. +Comp.2 +Comp.3 +Comp.8 +Comp.7 +Avg +spec +42.53 +24.74 +39.72 +28.44 +33.86† +SVM +gen +37.91 +22.53 +38.85 +24.41 +30.92 +gen +17.96 +17.12 +35.69 +23.14 +23.48 +RF +ens +27.87 +24.05 +39.81 +24.2 +28.98 +coef. +(0.2,1) +(0.7,1) +(0.7,1) +(0.1,1) +gen +16.75 +23.25 +35.27 +21.72 +24.25 +XGB +ens +27.89 +25.36 +39.61 +23.7 +29.14 +coef. +(0.2,1) +(1,0.8) +(0.3,1) +(0.1,1) +#lev. spec +3 +4 +3 +4 +3.5 +#lev. gen +5 +5 +5 +5 +5 +Table E.12: Severity, oil & gas. †: best model on average. +Appendix E.2. Body Part +Comp.1 +Comp.3 +Comp.5 +Comp.6 +Avg +spec +34.14 +26.48 +32.09 +31.39 +31.03 +SVM +gen +23.26 +25.09 +27.02 +26.66 +25.51 +gen +34.14 +33.04 +34.68 +35.78 +34.41† +RF +ens +33.49 +22.43 +32.7 +32.7 +30.33⋆ +coef. +(0.4,1) +(0.1,1) +(0.7,1) +(0.6,1) +gen +31.92 +30.57 +34.73 +34.22 +32.86 +XGB +ens +32.44 +20.38 +32.62 +30.77 +29.05⋆ +coef. +(0.1,1) +(0.2,1) +(0.2,1) +(0.5,1) +#lev. spec +6 +6 +6 +6 +6 +#lev. gen +6 +6 +6 +6 +6 +Table E.13: Body part, construction. †: best model on average. Bold/⋆: better/within 2pts of the company-specific +model. +19 + +Comp.4 +Comp.6 +Comp.7 +Comp.9 +Avg +spec +29.25 +27.7 +46.34 +23.86 +31.79 +SVM +gen +19.21 +28.86 +38.26 +20.4 +26.68 +gen +27.96 +32 +51.02 +28.76 +34.94† +RF +ens +27.94 +50.75 +23.56 +34.08 +coef. +(0.4,1) +(0.1,1) +(0.4,1) +gen +28.24 +31.12 +46.44 +29.24 +33.76 +XGB +ens +27.96 +41.17 +27.81 +32.31 +coef. +(0.2,1) +(0.1,1) +(0.5,1) +#lev. spec +6 +6 +4 +6 +5.5 +#lev. gen +6 +6 +6 +6 +6 +Table E.14: Body part, electric T&D. †: best model on average. Bold: better the company-specific model. +Comp.2 +Comp.8 +Comp.7 +Avg +spec +22.96 +32.41 +31.17 +28.85 +SVM +gen +22.66 +26.23 +22.06 +23.65 +gen +26.11 +32.34 +32.21 +30.22† +RF +ens +20.31 +32.88 +26.09 +26.43 +coef. +(0.1,1) +(1,0.1) +(0.1,1) +gen +25.5 +32.36 +29.81 +29.22 +XGB +ens +16.26 +32.28 +30.56 +26.37 +coef. +(0.1,1) +(1,0.3) +(0.2,1) +#lev. spec +6 +6 +6 +6 +#lev. gen +6 +6 +6 +6 +Table E.15: Body part, oil & gas. †: best model on average. Bold: better the company-specific model. +Appendix E.3. Injury Type +Comp.1 +Comp.3 +Comp.5 +Comp.6 +Avg +spec +54 +37.7 +33.91 +50.07 +43.92 +SVM +gen +34.67 +36.66 +34.78 +48.81 +38.73 +gen +47.84 +33.86 +33.11 +45.3 +40.03 +RF +ens +47.6 +31.98 +45.67 +41.75 +coef. +(0.2,1) +(0.1,1) +(0.4,1) +gen +46.46 +23.99 +31.9 +44.7 +36.76 +XGB +ens +56.55 +35.2 +50.46 +47.4† +coef. +(0.6,1) +(0.4,1) +(0.2,1) +#lev. spec +3 +3 +6 +4 +4 +#lev. gen +11 +11 +11 +11 +11 +Table E.16: Injury type, construction. †: best model on average. Bold: better the company-specific model. +Comp.4 +Comp.6 +Comp.7 +Comp.9 +Avg +spec +39.21 +43.4 +47.28 +44.98 +43.72 +SVM +gen +42.27 +54.59 +60.78 +57.14 +53.7† +gen +26.44 +42.41 +56.74 +44.16 +42.44⋆ +RF +ens +39.33 +59.52 +49.42 +coef. +(1,0.5) +(1,0.2) +gen +28.57 +41.6 +51.45 +42.49 +41.03 +XGB +ens +40.31 +62.58 +51.44 +coef. +(1,0.8) +(1,0.1) +#lev. spec +5 +6 +4 +6 +5.25 +#lev. gen +11 +11 +11 +11 +11 +Table E.17: Injury type, electric T&D. †: best model on average. Bold/⋆: better/within 2pts of the company-specific +model. +20 + +Comp.2 +Comp.8 +Comp.7 +Avg +spec +35.39 +34.04 +40.72 +36.72 +SVM +gen +27.97 +30.67 +46.69 +35.11⋆ +gen +23.72 +32.22 +40.52 +32.15 +RF +ens +36.82 +40.48 +38.65† +coef. +(0.5,1) +(0.7,1) +gen +23.69 +31.01 +39.28 +31.33 +XGB +ens +35.09 +41 +38.05 +coef. +(1,0.7) +(1,0.6) +#lev. spec +3 +10 +8 +7 +#lev. gen +11 +11 +11 +11 +Table E.18: Injury type, oil & gas. †: best model on average. Bold/⋆: better/within 2pts of the company-specific +model. +Appendix E.4. Accident Type +Comp.3 +Comp.5 +Avg +spec +68.63 +41.34 +54.98† +SVM +gen +41.87 +42.91 +42.39 +gen +40.44 +44.48 +42.46 +RF +ens +44.35 +44.35 +coef. +(1,0.7) +gen +54.04 +42.51 +48.27 +XGB +ens +42.02 +42.02 +coef. +(1,1) +#lev. spec +2 +5 +3.5 +#lev. gen +5 +5 +5 +Table E.19: Accident type, construction. †: best model on average. +Comp.4 +Comp.9 +Avg +spec +43.15 +53.2 +48.17 +SVM +gen +36.46 +52.71 +44.58 +gen +40.05 +57.11 +48.58† +RF +ens +41.29 +41.29 +coef. +(0.4,1) +gen +38.13 +57.46 +47.8⋆ +XGB +ens +41.08 +41.08 +coef. +(0.4,1) +#lev. spec +5 +4 +4.5 +#lev. gen +5 +5 +5 +Table E.20: Accident type, electric T&D. †: best model on average. Bold/⋆: better/within 2pts of the company- +specific model. +21 + +Comp.3 +Comp.8 +Comp.7 +Avg +spec +80.91 +85 +53.58 +73.16† +SVM +gen +58.06 +78.09 +45.92 +60.69 +gen +61.67 +78.03 +49.71 +63.14 +RF +ens +78.46 +54.35 +66.4 +coef. +(0.1,1) +(1,0.1) +gen +46.65 +76.93 +52.16 +58.58 +XGB +ens +73.8 +55.31 +64.56 +coef. +(1,0.7) +(1,0.7) +#lev. spec +2 +2 +4 +2.67 +#lev. gen +5 +5 +5 +5 +Table E.21: Accident type, oil & gas. †: best model on average. +Appendix E.5. Energy Source +Comp.1 +Comp.3 +Comp.5 +Comp.6 +Avg +spec +71.69 +70.97 +68.07 +67.82 +69.64 +SVM +gen +74.76 +78.16 +70.86 +72.69 +74.12† +gen +70.36 +76.03 +70.14 +74.31 +72.71 +RF +ens +71.05 +68.02 +68.1 +69.06⋆ +coef. +(0.9,1) +(0.2,1) +(0.4,1) +gen +74.33 +83.44 +64.62 +72.7 +73.77 +XGB +ens +71.88 +66.81 +68.47 +69.05⋆ +coef. +(0.4,1) +(0.1,1) +(0.4,1) +#lev. spec +2 +2 +3 +2 +2.25 +#lev. gen +5 +5 +5 +5 +5 +Table E.22: Energy source, construction. +†: best model on average. Bold/⋆: better/within 2pts of the company- +specific model. +Comp.4 +Comp.6 +Comp.9 +Avg +spec +79.5 +73.22 +81.05 +77.92 +SVM +gen +76.59 +70.61 +85.73 +77.64⋆ +gen +74.99 +73.06 +83.32 +77.12⋆ +RF +ens +77.85 +73.81 +75.83 +coef. +(0.9,1) +(0.2,1) +gen +76.43 +72.85 +87.21 +78.83† +XGB +ens +79.41 +73.52 +76.47⋆ +coef. +(0.2,1) +(0.3,1) +#lev. spec +3 +2 +3 +2.67 +#lev. gen +5 +5 +5 +5 +Table E.23: Energy source, electric T&D. †: best model on average. Bold/⋆: better/within 2pts of the company- +specific model. +22 + +Comp.8 +Comp.7 +Avg +spec +68.98 +71.8 +70.39 +SVM +gen +68.73 +70.36 +69.54⋆ +gen +70.43 +71.81 +71.12 +RF +ens +68.27 +72.89 +70.58 +coef. +(0.4,1) +(1,0.2) +gen +70.44 +74 +72.22† +XGB +ens +68.72 +73.25 +70.98 +coef. +(0.1,1) +(0.3,1) +#lev. spec +4 +2 +3 +#lev. gen +5 +5 +5 +Table E.24: Energy source, oil & gas. †: best model on average. Bold/⋆: better/within 2pts of the company-specific +model. +Appendix F. Per-Company Results for the Per-Domain Generic Models +Note: the ensemble (‘ens’) rows are left blank whenever the specific model is a SVM, as we +could not use ensembling in this case (the forecast of the SVM is not probabilistic). +Appendix F.1. Severity +Comp.5 +Comp.3 +Comp.6 +Comp.1 +Avg +spec +45.35 +32.62 +33.9 +29.51 +35.34† +SVM +gen +39.86 +26.03 +32.61 +22.66 +30.29 +gen +34.1 +27.7 +32.62 +29.74 +31.04 +RF +ens +31.2 +33.5 +30.77 +31.82 +Coeffs +(0.8,1) +(0.6,1) +(1,0.3) +gen +30.84 +26.84 +28.33 +28.95 +28.74 +XGB +ens +31.3 +34.14 +30 +31.81 +Coeffs +(0.3,1) +(1,0.6) +(0.5,1) +#categories spec +3 +4 +3 +4 +3.5 +#categories gen +5 +5 +5 +5 +5 +Table F.25: Severity, construction. †: best model on average. +Comp.7 +Comp.4 +Comp.9 +Comp.6 +Avg +spec +57.67 +29.48 +30.34 +45.66 +40.79 +SVM +gen +36 +30.47 +24.62 +52.06 +35.79 +gen +47.19 +30.91 +28.5 +58.53 +41.28 +RF +ens +54.8 +32.97 +43.88† +Coeffs +(1,0.6) +(1,0.9) +gen +44.23 +30.59 +26.49 +57.44 +39.69⋆ +XGB +ens +54.95 +26.96 +40.95 +Coeffs +(0.4,1) +(0.1,1) +#categories spec +2 +4 +4 +2 +3 +#categories gen +5 +5 +5 +5 +5 +Table F.26: Severity, elec. †: best model on average. Bold/⋆: better/within 2pts of the company-specific model. +23 + +Comp.7 +Comp.3 +Comp.8 +Comp.2 +Avg +spec +28.44 +24.74 +39.72 +42.53 +33.86† +SVM +gen +26.7 +21.05 +40.83 +27.31 +28.97 +gen +26.22 +19.82 +35.7 +22.59 +26.08 +RF +ens +27.59 +22.38 +40.22 +32.86 +30.76 +Coeffs +(0.8,1) +(1,0.9) +(1,0.8) +(0.7,1) +gen +23.82 +19.7 +33.09 +20.15 +24.19 +XGB +ens +27.97 +25.73 +40.1 +31.96 +31.44 +Coeffs +(0.4,1) +(1,0.7) +(1,0.2) +(0.7,1) +#categories spec +4 +4 +3 +3 +3.5 +#categories gen +5 +5 +5 +5 +5 +Table F.27: Severity, oil & gas. †: best model on average. +Appendix F.2. Body part +Comp.5 +Comp.3 +Comp.6 +Comp.1 +Avg +spec +32.09 +26.48 +31.39 +34.14 +31.03 +SVM +gen +31.08 +28.14 +31.92 +34.13 +31.32 +gen +32.19 +27.06 +33.64 +34.34 +31.81 +RF +ens +31.23 +25.77 +35.14 +29.41 +30.39⋆ +Coeffs +(0.1,1) +(0.2,1) +(0.6,1) +(0.1,1) +gen +33.6 +29.91 +32.48 +32.92 +32.23† +XGB +ens +32.34 +20.72 +32.33 +31.41 +29.2⋆ +Coeffs +(0.1,1) +(0.2,1) +(0.5,1) +(0.1,1) +#categories spec +6 +6 +6 +6 +6 +#categories gen +6 +6 +6 +6 +6 +Table F.28: Body part, construction. †: best model on average. Bold/⋆: better/within 2pts of the company-specific +model. +Comp.7 +Comp.4 +Comp.9 +Comp.6 +Avg +spec +46.34 +29.25 +23.86 +27.7 +31.79 +SVM +gen +34.02 +18.16 +19.6 +29.17 +25.24 +gen +48.21 +26.31 +25.71 +31.97 +33.05 +RF +ens +39.52 +28.63 +19.59 +29.25 +Coeffs +(0.1,1) +(0.1,1) +(0.1,1) +gen +53.03 +28.55 +26.56 +32.7 +35.21† +XGB +ens +49.41 +29.72 +25.01 +34.71 +Coeffs +(1,1) +(0.6,1) +(0.2,1) +#categories spec +4 +6 +6 +6 +5.5 +#categories gen +6 +6 +6 +6 +6 +Table F.29: Body part, elec. †: best model on average. Bold/⋆: better/within 2pts of the company-specific model. +24 + +Comp.7 +Comp.8 +Comp.2 +Avg +spec +31.17 +32.41 +22.96 +28.85† +SVM +gen +27.22 +25.91 +20.84 +24.66 +gen +29.64 +31.8 +25.12 +28.85† +RF +ens +30.15 +31.66 +20.81 +27.54⋆ +Coeffs +(0.1,1) +(0.1,1) +(0.4,1) +gen +29.69 +32.36 +23.72 +28.59⋆ +XGB +ens +31.84 +32.1 +19.28 +27.74⋆ +Coeffs +(1,0.5) +(1,0.1) +(0.2,1) +#categories spec +6 +6 +6 +6 +#categories gen +6 +6 +6 +6 +Table F.30: Body part, oil & gas. +†: best model on average. Bold/⋆: better/within 2pts of the company-specific +model. +Appendix F.3. Injury type +Comp.5 +Comp.3 +Comp.6 +Comp.1 +Avg +spec +33.91 +37.7 +50.07 +54 +43.92 +SVM +gen +34.16 +36.31 +51.7 +48.97 +42.78⋆ +gen +33.56 +33.91 +49.34 +51.64 +42.11⋆ +RF +ens +33.38 +48.57 +54.42 +45.46† +Coeffs +(0.1,1) +(0.1,1) +(1,0.2) +gen +33.3 +38.19 +48.17 +50.54 +42.55⋆ +XGB +ens +34.74 +47.08 +54.53 +45.45 +Coeffs +(0.3,1) +(0.1,1) +(0.5,1) +#categories spec +6 +3 +4 +3 +4 +#categories gen +6 +6 +6 +6 +6 +Table F.31: Injury type, construction. †: best model on average. Bold/⋆: better/within 2pts of the company-specific +model. +Comp.7 +Comp.4 +Comp.9 +Comp.6 +Avg +spec +47.28 +39.21 +44.98 +43.4 +43.72 +SVM +gen +57.28 +28.12 +44.54 +41.7 +42.91⋆ +gen +53.99 +29.2 +43.07 +40.47 +41.68⋆ +RF +ens +51.33 +38.87 +45.1 +Coeffs +(0.8,1) +(0.4,1) +gen +49.62 +29.63 +40.26 +46.42 +41.48 +XGB +ens +59.48 +39.09 +49.28† +Coeffs +(1,0.3) +(1,0.3) +#categories spec +4 +5 +6 +6 +5.25 +#categories gen +8 +8 +8 +8 +8 +Table F.32: Injury type, elec. †: best model on average. Bold/⋆: better/within 2pts of the company-specific model. +25 + +Comp.7 +Comp.8 +Comp.2 +Avg +spec +40.72 +34.04 +35.39 +36.72 +SVM +gen +50.26 +33.24 +18.18 +33.89 +gen +39.57 +33.87 +25.02 +32.82 +RF +ens +41.69 +36.25 +38.97 +Coeffs +(1,0.7) +(0.8,1) +gen +38.32 +32.64 +26.07 +32.34 +XGB +ens +42.88 +36.7 +39.79† +Coeffs +(1,0.7) +(1,0.1) +#categories spec +8 +10 +3 +7 +#categories gen +11 +11 +11 +11 +Table F.33: Injury type, oil & gas. †: best model on average. Bold/⋆: better/within 2pts of the company-specific +model. +Appendix F.4. Accident type +Comp.5 +Comp.3 +Avg +spec +41.34 +68.63 +54.98† +SVM +gen +44.25 +40.15 +42.2 +gen +41.37 +43.48 +42.42 +RF +ens +40.8 +40.8 +Coeffs +(0.1,1) +gen +43.21 +55.21 +49.21 +XGB +ens +43.4 +43.4 +Coeffs +(1,0.1) +#categories spec +5 +2 +3.5 +#categories gen +5 +5 +5 +Table F.34: Accident type, construction. †: best model on average. +Comp.4 +Comp.9 +Avg +spec +43.15 +53.2 +48.17 +SVM +gen +39.45 +50.22 +44.84 +gen +44.13 +56.28 +50.2† +RF +ens +39.72 +39.72 +Coeffs +(0.3,1) +gen +40.96 +58.21 +49.58 +XGB +ens +43.53 +43.53 +Coeffs +(0.4,1) +#categories spec +5 +4 +4.5 +#categories gen +5 +5 +5 +Table F.35: Accident type, elec. †: best model on average. Bold/⋆: better/within 2pts of the company-specific model. +Comp.7 +Comp.3 +Comp.8 +Avg +spec +53.58 +80.91 +85 +73.16† +SVM +gen +55.04 +59.76 +79.75 +64.85 +gen +51.77 +58.06 +82.53 +64.12 +RF +ens +53.02 +78.46 +65.74 +Coeffs +(1,0.1) +(0.1,1) +gen +49.03 +62.16 +77.93 +63.04 +XGB +ens +55.7 +78.56 +67.13 +Coeffs +(1,0.9) +(0.1,1) +#categories spec +4 +2 +2 +2.67 +#categories gen +4 +4 +4 +4 +Table F.36: Accident type, oil & gas. †: best model on average. +26 + +Appendix F.5. Energy source +Comp.5 +Comp.3 +Comp.6 +Comp.1 +Avg +spec +68.07 +70.97 +67.82 +71.69 +69.64 +SVM +gen +70.3 +76.99 +73.32 +74.5 +73.78 +gen +68.17 +79.98 +74.28 +73.21 +73.91† +RF +ens +67.85 +69.62 +71.45 +69.64⋆ +Coeffs +(0.1,1) +(0.9,1) +(0.4,1) +gen +62.88 +73.28 +74.91 +73.09 +71.04 +XGB +ens +68.05 +70.75 +71.9 +70.23 +Coeffs +(0.1,1) +(0.7,1) +(0.5,1) +#categories spec +3 +2 +2 +2 +2.25 +#categories gen +3 +3 +3 +3 +3 +Table F.37: Energy source, construction. +†: best model on average. Bold/⋆: better/within 2pts of the company- +specific model. +Comp.4 +Comp.9 +Comp.6 +Avg +spec +79.5 +81.05 +73.22 +77.92 +SVM +gen +78.31 +85.83 +72.46 +78.87† +gen +80.13 +83.73 +71.96 +78.61 +RF +ens +79.75 +73.22 +76.48⋆ +Coeffs +(0.5,1) +(0.1,1) +gen +75.63 +82.34 +68.86 +75.61 +XGB +ens +77.15 +72.91 +75.03 +Coeffs +(1,0.8) +(0.1,1) +#categories spec +3 +3 +2 +2.67 +#categories gen +3 +3 +3 +3 +Table F.38: Energy source, elec. +†: best model on average. Bold/⋆: better/within 2pts of the company-specific +model. +Comp.7 +Comp.8 +Avg +spec +71.8 +68.98 +70.39 +SVM +gen +49.94 +61.33 +55.63 +gen +69.34 +72.11 +70.72† +RF +ens +70.44 +67.8 +69.12⋆ +Coeffs +(1,0.5) +(0.4,1) +gen +72.58 +68.12 +70.35⋆ +XGB +ens +72.06 +68.69 +70.38⋆ +Coeffs +(0.2,1) +(0.1,1) +#categories spec +2 +4 +3 +#categories gen +4 +4 +4 +Table F.39: Energy source, oil & gas. †: best model on average. Bold/⋆: better/within 2pts of the company-specific +model. +27 + diff --git a/ENE1T4oBgHgl3EQf-QbO/content/tmp_files/load_file.txt b/ENE1T4oBgHgl3EQf-QbO/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..2feca50a89e29a0e981031323d4d581a025ce6d7 --- /dev/null +++ b/ENE1T4oBgHgl3EQf-QbO/content/tmp_files/load_file.txt @@ -0,0 +1,2384 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf,len=2383 +page_content='Safer Together: Machine Learning Models Trained on Shared Accident Datasets Predict Construction Injuries Better than Company-Specific Models Submitted to Automation in Construction Antoine J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='-P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Tixier1a, Matthew R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Hallowella,b aSafetyAI R&D bUniversity of Colorado at Boulder Abstract Highlights 9 companies from 3 domains (construction, electric T&D, oil & gas) shared their accident datasets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Machine learning models were trained to predict safety outcomes from fundamental attributes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Models trained on all datasets (full generic models) outperformed the company-specific models in 82% of the company-domain-outcome combinations, with large gains in F1 score (+4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='4 on average and up to +15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' On average, generic models predicted 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='26 categories more than specific models (up to 7), making for more useful forecasts in practice.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Per-domain generic models were not always better than full generic models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Combining generic and specific models (data quantity and relevance) was often very beneficial.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Generic models give companies devoid of accident datasets access to safety predictions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Generic models address safety cross-organizational learning and dissemination in construction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' In this study, we capitalized on a collective dataset repository of 57k accidents from 9 companies be- longing to 3 domains and tested whether models trained on multiple datasets (generic models) predicted safety outcomes better than the company-specific models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' We experimented with full generic models (trained on all data), per-domain generic models (construction, electric T&D, oil & gas), and with en- sembles of generic and specific models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Results are very positive, with generic models outperforming the company-specific models in most cases while also generating finer-grained, hence more useful, forecasts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Successful generic models remove the needs for training company-specific models, saving a lot of time and resources, and give small companies, whose accident datasets are too limited to train their own mod- els, access to safety outcome predictions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' It may still however be advantageous to train specific models to get an extra boost in performance through ensembling with the generic models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Overall, by learning lessons from a pool of datasets whose accumulated experience far exceeds that of any single company, and making these lessons easily accessible in the form of simple forecasts, generic models tackle the holy grail of safety cross-organizational learning and dissemination in the construction industry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Keywords: construction safety, artificial intelligence, supervised learning, injury prediction, transfer learning, data sharing, collective intelligence 1antoine.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='tixier@safetyfunction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='com arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='03567v1 [cs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='LG] 9 Jan 2023 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Introduction The SafetyAI council is a community of large organizations from the construction, oil & gas, and electric Transmission and Delivery (T&D) domains, that share their safety-related data with the SafetyAI Research and Development (R&D) team.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Before exploiting the data, the R&D team is in charge of standardizing the datasets received by each company, which is crucial, as each one features different variables and different category names for each variable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Standardization makes sure that all datasets are based on the same taxonomy, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=', speak the same language.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' The SafetyAI community dataset, comprising close to a million events including near misses, observations, good catches, etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=', is only accessible to the R&D team, a neutral party, which guar- antees that it is impossible for companies to see each other’s data, and that the output of all the R&D conducted on the collective dataset is made available to the entire community.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' This is of paramount importance, in a very competitive environment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' In this study, we started by extracting attributes from accident reports.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' We briefly introduce the attribute framework in what follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Attribute-based framework Attributes are basic descriptors of construction work that are observable before accident occurrence, and cover means, methods, and environmental conditions [1, 2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' One advantage of the attribute-based framework over modeling at the task or work package level is that attributes are fundamental and universal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' That is, any situation from any site around the world, in any industry sector, can be characterized by a set of attributes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Attributes can be recorded on-the-fly on site, or can be extracted offline from various mediums such as photos and text reports.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' For instance, four attributes can be extracted from the narrative worker tripped on a cable when carrying a 2x4 to his truck: (1) cable, (2) object on the floor, (3) lumber, and (4) light vehicle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Narratives are particularly well-suited if the goal is to use attributes for predictive modeling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Indeed, in incident report databases, narratives are often paired with outcomes such as accident type, injury severity, body part impacted, etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Attributes also completely anonymize narratives, which is especially desirable when considering a pool of datasets aggregated from different companies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' For any given event, everything that remains is a set of attributes and a set of standardized safety outcomes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' However, manually extracting attributes from large amounts of text reports is very costly in terms of human resources and pose inter-annotator agreement issues.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' To solve this problem, we developed and validated a Natural Language Processing (NLP) tool based on rules and lexicons [3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' We later proved that using the attributes extracted by the tool to predict safety outcomes was effective and valid [4, 5].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' We also used the attributes extracted by the tool for unsupervised learning applications, such as clustering and visualization [6], and risk modeling and simulation [7].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Differences with our previous research and objective of the current study In our original study [4], we provided a proof for the concept of predicting safety outcomes from attributes, both extracted with the NLP tool.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Then, in [5], we showed that attributes were still highly predictive when the safety outcomes were given by independent human annotations, which definitely validated the approach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' We also used a much larger dataset than in the orig- inal study, two new supervised learning algorithms, model stacking, a healthier experimental setup with more appropriate performance metrics, and we analyzed per-category attribute im- portance scores.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' We also showed that unlike what we had concluded in [4], injury severity was predictable from attributes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' 2 In the present research, we interested ourselves with a new, completely different problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' We had access to a pool of accident datasets coming from 9 companies, and our goal was to: “Test whether predictive models trained on a generic dataset (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=', aggregated from the datasets of multiple companies) outperformed the models trained on the specific dataset of each com- pany.” More precisely, we experimented with two types of generic models: Full generic model: one model trained on the datasets of all companies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Per-domain generic models: one model per industry sector, trained only on the datasets of the companies involved in that sector (or the parts thereof, as some companies belong to multiple domains).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' The potential advantages of generic models are numerous: 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Usually with machine learning, the more data, the better, so generic models are expected to bring improvements in predictive skill compared to the company-specific models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' This is not guaranteed however, as one important question is whether (1) more data (generic datasets) or (2) more relevant data (specific datasets) is better.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' By being trained on larger datasets, the generic models learn to predict a greater variety of outcome categories than the specific models, making for more useful forecasts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Successful generic models would remove the needs for training specific models for each company, saving a lot of time and resources.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Alternatively, if company-specific models are already available, combining them with the generic models may provide an extra boost in performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Last but not least, successful generic models would give small companies -whose accident datasets are too limited to train their own specific models- access to high quality safety outcome forecasts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' From a high level, generic models tackle the holy grail of safety cross-organizational learn- ing and dissemination in the construction industry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Indeed, generic models (1) learn lessons from a pool of datasets whose quantity and diversity2 of accumulated experience far exceeds that of any single company, and (2) disseminate these lessons as forecasts, which are clear, di- rect, and easily accessible information, via, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=', a user interface (desktop or mobile) or API taking attributes as input and returning probabilities for each category of each outcome.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Moreover, one should note that in the pool, the individual biases of each dataset, due to specific annotators, reporting practices and policies, etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=', tend to average out.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Consequently, the lessons learned by the supervised learning algorithms on the generic datasets are more objective and broadly applicable than that learned on the specific datasets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Background The needs to share standardized incident data at the industry level to enable collaborative learning have long been recognized in aviation and transportation [8].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Some examples include 2Diversity of situations, means and methods, environmental conditions, geographical areas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' 3 the NASA-managed Aviation Safety Reporting System (ASRS) database, created in 1976 and featuring over a million incidents, or the European Coordination Center for Accident and In- cident Reporting Systems (ECCAIRS) database, started in 2004.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Such collective repositories also exist in the chemical industry, with the Major Accident Reporting System (eMARS) of the European Commission, launched in 1982, and the Process Safety Incident Database (PSID) of the Center for Chemical Process Safety [9].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' However, the construction industry still lacks comparable initiatives.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' The needs for data storage and access infrastructures for construction safety did start to receive some attention recently [10, 11], but most efforts placed themselves at the company or project level.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Cross- organizational safety data collection is still rare in practice [12, 13].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' This is a major issue, as collaborative machine learning at the industry level is not possible until a common pool of standardized datasets has been put together.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' This provided the motivation for us to create the SafetyAI council in 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' One should note that some consortiums already exist, such as the INGAA Foundation, the Edison Electric Institute (EEI), the Construction Safety Research Alliance (CSRA), or the Na- tional Safety Council (NSC), but their activities do not revolve around systematic large-scale accident data collection and analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' These initiatives rather involve working groups, com- munities of practice, qualitative analyses, and conferences, towards building communications, policies, best practices, business intelligence, safety culture and leadership, training material, etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' In other words, they are based on “soft” methods for knowledge sharing and collabo- rative learning at the human level.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' They do not primarily conduct “hard” scientific research and software development, and do not pool accident datasets for AI applications and automatic large-scale learning and dissemination.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Data Description As already explained, as part of the SafetyAI initiative, we had access to a pool of safety datasets coming from nine large companies from the construction, oil & gas, and electric Trans- mission and Delivery (T&D) domains.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' One company, Company73, also had about 600 corporate services (office) events for the severity outcome.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' We kept these cases as training data for the full generic model but did not train a specific model on them.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Member companies conduct work mostly in North America, and rely on their own teams as well as contractors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' The collective dataset covers the period 2000 to 2022, with a distribution biased towards the last decade and especially more recent years.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' While the entire pool comprises almost a million events including near misses and observa- tions, we focused on accident cases only in this effort.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' As can be seen in Table 1, the sizes of the individual datasets ranged from 2k to 20k cases, with an average of 6k per company.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' There were 57262 accident cases in total, recorded over tens of millions of work hours.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' We considered the same outcomes as in [5]: injury severity, body part impacted, injury type, and accident type.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' The columns corresponding to each outcome were selected from the company datasets and normalized to use a common, standard set of categories, shown in Table 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Not all outcomes were available for every event of every company.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' From the narrative of each report, we extracted with the NLP tool [3] the original set of 80 attributes [3, 5], plus 11 new items (see Table A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='7).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' We also used the tool to extract a fifth outcome, energy source, that was not available in the company datasets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' 3Company names have been anonymized.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' 4 Comp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='1 Comp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='2 Comp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='3 Comp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='4 Comp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='5 Comp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='6 Comp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='7 Comp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='8 Comp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='9 Domains Constr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=', elec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Oilgas Constr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=', oilgas Elec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Constr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Constr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=', elec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Elec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=', oilgas, corp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Oilgas Elec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Regions Canada California NAM NAM NAM NAM NAM, Mexico World⋆ Southeast USA n 4481 1965 4072 5321 7245 4310 8345 19298 2225 Table 1: Company overview.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' NAM: North America (Canada + USA).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Constr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' : construction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Elec: electric T&D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Oilgas: oil & gas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' ⋆Including ships and rigs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Corp: corporate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='Injury Severity ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='Body Part ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='Injury Type ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='Accident Type ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='Energy Source ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='first aid ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='38994 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='hand ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='15782 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='cut ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='14086 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='handling ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='6379 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='motion ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='33958 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='report-only ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='6993 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='head ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='10296 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='strain ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='10069 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='fall ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='5374 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='gravity ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='15904 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='lost time ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='5319 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='leg ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='6550 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='contusion ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='8558 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='exposure ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='3986 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='chemical ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='2411 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='medical ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='4913 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='arm ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='5943 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='foreign body ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='3348 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='struck ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='3834 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='biological ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='2044 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='recordable ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='1043 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='trunk ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='5375 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='pinch ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='1756 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='contact ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='2269 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='thermal ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='1691 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='foot ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='4632 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='fracture ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='1681 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='caught ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='1758 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='mechanical ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='611 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='multiple/entire ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='942 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='burn ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='1454 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='overexertion ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='1523 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='pressure ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='296 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='irritation ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='1222 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='equipment ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='1449 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='electricity ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='181 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='pain ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='1194 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='PPE ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='949 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='radiation ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='166 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='exhaustion ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='1054 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='transitioning ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='578 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='bite ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='710 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='error ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='425 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='Table 2: Outcome category counts,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' across all companies and domains.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' PPE: personal protective equipment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Experimental Setup 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Splits Train, validation and test splits were created for each of the 51 company-domain-outcome combinations for which at least 2 categories with more than 100 observations each were avail- able (shown in Table 4), by randomly sampling without replacement 64%, 16%, and 20% of cases, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' The counts summed over companies are shown in Table 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Note that the proportions we used in our previous work [5] were 81%, 9% and 10%, but in the present re- search, we decided to reserve more observations for the validation and test sets to make them more representative of the training sets, in order to increase the stability and validity of hyper- parameter tuning and evaluation4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' A specific model was trained on each of the 51 company-domain-outcome combinations for which sufficient data were available, except for that one combination involving the corporate cases, making for a total of 50 specific models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' For a given domain and a given outcome, the splits of the per-domain generic model were obtained by combining, across all companies, the splits corresponding to that domain and that outcome.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' In total, there was one per-domain generic model for each domain and for each outcome, hence a total of 3 × 5 = 15 per-domain generic models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' For a given outcome, the splits of the full generic model were obtained by combining, across all companies and across all domains, the splits corresponding to that outcome.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' In total, there was one full generic model for each outcome, hence a total of 5 full generic models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' For each of the aforementioned cases, we tried 3 different algorithms, as will be explained in subsection 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Hence, a total of (15 + 5) × 3 = 60 generic models were trained.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' 4Increasing the sizes of the validation and test sets was a good alternative to k-fold cross-validation, which would have taken too much time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' 5 # Companies Train Val Test Severity Construction 4 9980 2494 3119 Electric T&D 4 6672 1669 2085 Oil & Gas 4 18381 4595 5744 Corporate 1 418 105 131 Full 9 35451 8863 11079 Body Part Construction 4 8209 2052 2565 Electric T&D 4 6036 1508 1885 Oil & Gas 3 15788 3947 4933 Full 9 30033 7507 9383 Injury Type Construction 4 6267 1566 1958 Electric T&D 4 4764 1191 1489 Oil & Gas 3 14960 3740 4675 Full 9 25991 6497 8122 Acc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Type Construction 2 2740 685 856 Electric T&D 2 1600 400 500 Oil & Gas 3 2910 728 910 Full 6 7250 1813 2266 En.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Source Construction 4 4875 1218 1524 Electric T&D 3 2637 660 825 Oil & Gas 2 2600 650 813 Full 8 10112 2528 3162 Table 3: Split counts for each domain-outcome combination, summed over companies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' For # Companies, full ̸= total as some companies belong to multiple domains (see Tables 1 and 4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Construction Electric T&D Oil & Gas Corp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Comp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' S B IT AT E S B IT AT E S B IT AT E S 1 x x x x 2 x x x 3 x x x x x x x 4 x x x x x 5 x x x x x 6 x x x x x x x x 7 x x x x x x x x x 8 x x x x x 9 x x x x x Table 4: The 51 company-domain-outcome combinations associated with at least 2 categories with more than 100 observations each.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' S: severity, B: body part, IT: injury type, AT: accident type, E: energy source.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Corp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=': corportate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Class imbalance To address the problem of class imbalance, weights inversely proportional to category counts in the training set were computed with the formula max(counts)/counts, like in [5].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' During training, these weights forced the models to pay more attention to the cases from the minority categories.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Per-category counts with training weights can be found in Tables B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='8 and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='9 for the 15 domain-outcome combinations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Supervised learning algorithms Like in [5], we relied on three popular machine learning models: Random Forest (RF) [14], eXtreme Gradient Boosting (XGBoost or XGB) [15], and linear Support Vector Machine (SVM) [16].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' More precisely, we used the Python’s scikit-learn implementations of Random Forest5 and linear SVM6, while, for XGBoost, we used the original Python library7 and in 5https://scikit-learn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='org/stable/modules/generated/sklearn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='ensemble.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='RandomForestClassifier.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='html 6https://scikit-learn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='org/stable/modules/generated/sklearn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='svm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='LinearSVC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='html 7https://xgboost.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='readthedocs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='io/en/latest/python/python api.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='html#module-xgboost.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='sklearn 6 particular the GPU-accelerated implementation of the “fast histogram” algorithm (gpu hist) as the tree method8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' For theoretical details about each algorithm, we refer the reader to our paper [5], publicly available9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Hyperparameter optimization We tuned the models by performing grid searches on the validation sets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Details about the parameters searched are available in Appendix C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' The final models were trained on the union of the training and validation sets with the best parameter values.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Both the specific models and the generic models were tested on the test sets of the specific models, to ensure fair comparison.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' As already explained, there were 50 such test sets, one for each company-domain-outcome combination.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Transfer learning by stacking generic and specific models As was mentioned in the introduction, one important question is the extent to which (1) more data (generic datasets) or (2) more relevant data (specific datasets) is better.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' In what follows, we explore a way to move past this binary choice and have a tradeoff between quantity and relevance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Inspired by transfer learning, which is very successful in computer vision [17] and NLP [18, 19, 20, 21], we experimented with combining the predictions of the generic and specific models via an ensemble model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Very briefly, in AI, transfer learning refers to a two-step process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' First, a model is trained at solving a general task on large amounts of data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' This phase is called the pretraining phase, as it allows the model to acquire generic knowledge (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=', in NLP, reading and writing), that is applicable to a great variety of situations downstream.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Second, the pretrained model is fine- tuned on a specific task of interest, often associated with a much smaller dataset (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' in NLP, summarization, classification, question answering, paraphrase detection, etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' In our case, the generic and the specific models have to perform the same task, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=', predict- ing a given safety outcome10, and there is no pretraining phase per se, in that the generic and the specific models are two different models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' However, our approach is similar in spirit to transfer learning, as our goal is to capitalize on generic knowledge gained from large amounts of data to improve performance on a specific task associated with a smaller dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' More precisely, for each company-domain-outcome combination, we trained a meta-model taking as input the weighted elementwise sum of the probabilistic forecasts of the best generic and specific models11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' We used a simple logistic regression12 as our meta-model, with the C parameter fixed and equal to 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='2, like in [5].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' We grid searched the validation set to find the best values of coefficients a and b where: inputensemble = a × outputgeneric + b × outputspecific (1) Besides performance considerations, using tunable weights improves interpretability, by providing information regarding which of the generic model or the specific model makes the most important contribution to predictive skill.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' 8https://xgboost.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='readthedocs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='io/en/latest/gpu/ 9https://arxiv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='org/pdf/1908.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='05972.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='pdf 10The generic model has to perform a more difficult version of the task, though (more categories to predict).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' 11The entries of the specific model vector for the categories that it did not predict were set to zero.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' 12https://scikit-learn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='org/stable/modules/generated/sklearn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='linear model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='LogisticRegression.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='html 7 We tried values from 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='1 to 1 with 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='1 steps, holding the other parameter equal to 1, and conversely.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' That is, the following 19 pairs: (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='1, 1), (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='2, 1), .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' , (1, 1), (1, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='1), (1, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='2), .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' , (1, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='9).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' SVM issue.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' By design, the implementation of the linear SVM model we used, linearSVC, only returns discrete predictions, that is, a single label corresponding to the most likely category, rather than a probability distribution over all categories.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' To address this issue, in [5], we tried retraining the best SVM using the SVC implementation13 with linear Kernel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' However, results were not convincing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Therefore, in the present study, we decided simply not to use model stacking when one of the two models involved (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=', best generic or specific model) was a SVM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Performance metrics Due to the large class imbalance for all outcomes, measuring classification performance with accuracy was inadequate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Rather, we computed precision, recall, and F1-score.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Precision, respectively recall, for category i, is equal to the number of correct predictions for category i (number of hits), divided by the number of predictions made for category i (hits and false alarms), respectively by the number of observations in category i (hits and misses).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' precision = Ci,i �K j=1 Cj,i recall = Ci,i �K j=1 Ci,j (2) Where the confusion matrix C is a square matrix of dimension K ×K (K being the number of categories) and whose (i, j)th element Ci,j indicates how many of the observations known to be in category i were predicted to be in category j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Finally, we computed the F1-score, the harmonic mean of precision and recall: F1 = 2 × precision × recall precision + recall (3) 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Configuration We relied on a single Ubuntu 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='04.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='4 machine featuring a 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='9 MHz 12-thread CPU, a 12 GB Nvidia Titan V GPU, 64 GB of RAM, R version 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='3 [22], and Python version 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='13 with scikit-learn version 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='1 [23].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Running all experiments took approximately ten days.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Results Each generic model (full and per-domain), as well as ensembles thereof (stacking approach described in section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='5) was tested on the test set of each company-domain-outcome combina- tion and compared against the best performing specific model for this combination.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Results are very positive.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' As can be seen in Table 5, across all companies, the generic mod- els (full or per-domain) outperform the specific models 82% of the time, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=', for 41 company- domain-outcome combinations out of 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Detailed per-company results can be found in Ap- pendix E for the full generic models and Appendix F for the per-domain generic models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' At the company level, improvements are brought on average for 80.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='6% of outcomes (across all domains), ranging from 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='3% for Company2 to 100% for Company1, Company4, Company6, and Company9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' 13https://scikit-learn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='org/stable/modules/generated/sklearn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='svm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='SVC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='html 8 Construction Electric T&D Oil & Gas C S B IT AT E S B IT AT E S B IT AT E 1 +1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='26 +0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='2 +2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='55 +3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='07 2 x +3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='15 x 3 x +6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='56 +0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='49 x +12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='47 +0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='99 x 4 +3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='49 +0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='47 +3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='06 +0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='98 +0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='63 5 x +2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='64 +1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='29 +3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='14 +2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='79 6 +12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='86 +4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='39 +1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='63 +7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='09 +12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='87 +5 +11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='19 +0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='59 7 x +6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='69 +15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='3 x +1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='04 +9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='54 +2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='12 +2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='2 8 +1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='11 +0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='47 +2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='78 x +3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='13 9 +1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='56 +5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='38 +12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='16 +5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='01 +6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='16 Table 5: Company-level max gains.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' x: no improvement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' S: severity, B: body part, IT: injury type, AT: accident type, E: energy source.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' C: company Furthermore, as shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' 1, gains are high on average (+4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='4 in F1 score) and reach im- pressive values, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=', +15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='3 for Company7 on electric T&D-injury type, +12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='87 for Company6 on electric T&D-severity, +12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='86 for Company6 on construction-severity, +6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='56 for Company3 on construction-body part, etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' And all of that, while predicting more categories.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Distribution of Company−level Max Gains Gain in F1 score over specific models 0 5 10 15 0 2 4 6 8 10 12 14 Counts + + +++ + + + + + + + + + + + + + + + + + + + + + + + + + ++ + + ++ + + + + + Figure 1: Company-level max gains, across all domains and outcomes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' n=41, min=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='2, max=15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='3, mean=4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' There are only 9 domain-outcome combinations over 50, across 5 companies, on which the generic models do not bring any quantitative improvement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' However, since their forecasts are more informative (more categories predicted), it may still make sense in practice to use the generic models in lieu of the specific models, even on these combinations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' For instance, for Company3-oil & gas-accident type, the specific model only predicts exposure and struck, but the generic model also predicts the categories caught, fall, and overexertion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' The F1 scores averaged over all companies are shown in Table 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Overall, the generic mod- els bring improvement over the specific models for 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='3 % of the domain-outcome combinations (11 out of 15).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' As shown on the right of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' 2, maximum gains range from 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='95 (for electric T&D-energy source) to 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='98 (for electric T&D-injury type) with an average of 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='37.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Also, not only do the 11 best generic models outperform their specific counterparts with a comfortable margin, but they also generate finer-grained forecasts, which are much more useful in practice.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' More specifically, generic models predict 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='26 additional categories on average, even up to 7 for construction-injury type (while still providing a gain of 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='48 in F1 score).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' This is remarkable, considering that the more categories to be predicted, the more difficult the task (see Appendix D).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' 9 Distribution of All Gains Gain in F1 score over specific models Counts 0 2 4 6 8 10 0 5 10 15 20 25 30 Counts ++ + + + + + + + + + + + + + + + + + ++ + + + + + + + + + + + + + + +++ + +++ ++ + + + + Distribution of Max Gains Gain in F1 score over specific models Frequency 0 2 4 6 8 10 0 1 2 3 4 5 6 Counts +++ + + + + + + + + Figure 2: Gains averaged over companies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Left: n=48, min=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='16, max=9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='98, mean=2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Right: n=11, min=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='95, max=9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='98, mean=3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='37.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' The construction and oil & gas domains see gains for 3 outcomes out of 5, while on the electric T&D domain, we observe improvement for every outcome.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Further, for the body part, injury type, and energy source outcomes, there is at least one generic model that outperforms its specific counterpart, on every domain, while the severity and accident type outcomes see improvements only on the electric T&D domain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' However, it is important to note that even on those 4 domain-outcome combinations on which the generic models do not offer gains in predictive performance, it can still be desirable to use them in practice over the specific models, as they generate more informative forecasts, with 2 additional categories predicted, on average.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Overall, more than half of all F1 scores recorded for the generic models (79 out of 150, or 53%) are greater or within two points of that of the specific models, while predicting 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='83 more categories on average.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' And, as shown on the left of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' 2, the 48 generic models that outperform their specific counterparts bring on average an improvement of 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='22 in F1 score.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Body part, injury type, and energy source Some of the greatest improvements are observed for injury type, where the best generic models provide large average gains of 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='48, 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='98, and 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='07, respectively on the construction, electric T&D, and oil & gas domains, while predicting on average 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='25 more categories than the company-specific models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' This large boost in performance is remarkable considering the significant increase in task difficulty.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Similarly, for energy source, the best generic models provide 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='48, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='95, and 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='83 improve- ments in F1 score, while predicting 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='53 more categories on average;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' and for body part, the gains are 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='38, 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='42, and 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='37, with 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='17 more categories predicted.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Severity and accident type For severity and accident type, the generic models outperform the company-specific ones on the electric T&D domain, with 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='09 and 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='03 gains in F1 scores, while predicting 2 and 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='5 more categories on average.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' On the construction and oil & gas domains, the best generic models are between 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='4 and 6 points below the company-specific ones.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' However, they still offer the benefit of predicting more categories (+1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='6 on average).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' 10 Construction Electric T&D Oil & Gas Full Dom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Full Dom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Full Dom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Severity F1 SVM gen 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='66 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='29 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='52 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='79 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='92 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='97 RF gen 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='26 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='04 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='37 41.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='28 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='48 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='08 ens 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='33 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='82 41.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='17† 43.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='88† 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='98 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='76 XGB gen 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='98 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='74 36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='4 39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='69⋆ 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='25 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='19 ens 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='67 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='81 40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='01⋆ 40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='95 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='14 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='44 spec 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='34† 40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='79 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='86† Count # categories spec 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='5 3 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='5 gen 5 5 5 5 5 5 # datasets 9 4 9 4 9 4 Body Part F1 SVM gen 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='51 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='32 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='68 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='24 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='65 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='66 RF gen 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='41† 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='81 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='94† 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='05 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='22† 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='85† ens 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='33⋆ 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='39⋆ 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='08 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='25 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='43 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='54⋆ XGB gen 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='86 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='23† 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='76 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='21† 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='22 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='59⋆ ens 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='05⋆ 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='2⋆ 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='31 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='71 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='37 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='74⋆ spec 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='03 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='79 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='85 Count # categories spec 6 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='5 6 gen 6 6 6 6 6 6 # datasets 9 4 9 4 9 3 Injury Type F1 SVM gen 38.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='73 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='78⋆ 53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='7† 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='91⋆ 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='11⋆ 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='89 RF gen 40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='03 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='11⋆ 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='44⋆ 41.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='68⋆ 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='15 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='82 ens 41.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='75 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='46† 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='42 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='10 38.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='65† 38.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='97 XGB gen 36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='76 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='55⋆ 41.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='03 41.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='48 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='33 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='34 ens 47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='4† 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='45 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='44 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='28† 38.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='05 39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='79† spec 43.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='92 43.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='72 36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='72 Count # categories spec 4 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='25 7 gen 11 6 11 8 11 11 # datasets 9 4 9 4 9 3 Accident Type F1 SVM gen 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='39 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='20 44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='58 44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='84 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='69 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='85 RF gen 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='46 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='42 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='58† 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='2† 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='14 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='12 ens 44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='35 40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='8 41.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='29 39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='72 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='40 65.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='74 XGB gen 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='27 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='21 47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='80⋆ 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='58 58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='58 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='04 ens 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='02 43.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='40 41.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='08 43.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='53 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='56 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='13 spec 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='98† 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='17 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='16† Count # categories spec 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='5 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='5 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='67 gen 5 5 5 5 5 4 # datasets 6 2 6 2 6 3 Energy Source F1 SVM gen 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='12† 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='78 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='64⋆ 78.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='87† 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='54⋆ 55.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='63 RF gen 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='71 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='91† 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='12⋆ 78.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='61 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='12 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='72† ens 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='06⋆ 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='64⋆ 75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='83 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='48⋆ 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='58 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='12⋆ XGB gen 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='77 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='04 78.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='83† 75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='61 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='22† 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='35⋆ ens 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='05⋆ 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='23 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='47⋆ 75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='03 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='98 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='38⋆ spec 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='64 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='92 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='39 Count # categories spec 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='25 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='67 3 gen 5 3 5 3 5 4 # datasets 8 4 8 3 8 2 Table 6: Results averaged over companies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' †: best of their sub-column.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Bold/⋆: better than/within 2 pts of spec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Full: full generic model (one per outcome, same across domains).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Dom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' : per-domain generic model (one per outcome per domain).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Gen/spec: generic/specific.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Ens: ensemble thereof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' # datasets: number of company datasets forming the generic dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Note: for the same outcome, # categories and # datasets are the same for Full across domains, we repeat them only to ease comparison.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Full vs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' per-domain In what follows, we refer to the full and per-domain models and their ensemble versions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' When considering full generic models, the average improvement in F1-score over the specific models is 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='85 and there are 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='44 additional categories predicted (min=0, max=7), while when 11 considering per-domain generic models, the average improvement is 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='57 and 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='38 additional categories are predicted (min=0, max=4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' The per-domain models reach a higher max score than the full models on 9 combinations out of 15 (60%), and in 5 out of 11 (45%) when the specific models are outperformed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' The full and per-domain models outperform the specific models on the same 11 domain-outcome combinations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' So, in terms of performance, there is no clear winner.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' However, since the full generic models predict more categories, and are also simpler conceptually (just one model per outcome), full models seem like the way to go.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' This conclusion however will need to be validated when more datasets are available for each domain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' One thing to note, however, is that specific models may still be desirable in the context of model stacking, as covered next.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Generic vs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' ensemble (generic + specific) The transfer learning-like stacking approach, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=', combining the predictions of the generic and specific models, boosts performance over the generic models (both full and per-domain) on all domains for the severity and injury type outcomes, in some cases for accident type, and nowhere for body part and energy source.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' For severity, the average gains are of 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='93, and range from 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='78 to an impressive 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='8 (for electric T&D-full-RF).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Results are even more impressive for injury type.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Gains range from 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='72 to 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='64 (for construction-full-XGB), with a high average of 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' It is interesting to note that for severity and injury type, very few of the generic models outperform the specific models in the first place, and it is only by combining their predictions with that of the specific models that absolute best performance can be reached, on the electrical domain for severity, and on all domains for injury type.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' We also observe that conversely, for body part and energy source, where model stacking does not bring additional skill, the generic models are stronger than the specific models in the first place.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' All in all, these results may suggest that ensembling only works when the generic models are not already better than the specific models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' However, this rule does not hold everywhere (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=', construction-accident type-XGB), so additional data, experiments and results will be necessary to draw any general conclusion here.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Quantity vs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' relevance As far as whether more data or more relevant data is best, Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' 3 shows the distributions of the best a and b coefficients as determined on the validation sets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' It tends to indicate that, on average, the best tradeoff involves anywhere from a little bit to a lot of generic model (anywhere in the [0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='1,1] range, with peaks towards [0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='1,0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='2] and [0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='9,1]), but almost always a lot of specific model (between 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='9 and 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' In other words, data relevance always seems important, while the contribution of data quantity fluctuates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' However, this is only a general trend.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' As can be seen in the detailed results per company (Appendix E and Appendix F), in some cases, the contribution of the generic model is more important than that of the specific model, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=', (1,0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='6) for Company6-XGB in the first table of Appendix F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Best model type For the full generic models, the best algorithm is RF (6 domain-outcome combinations over 15), followed by SVM (5/15) and XGB (4/15).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' When stacked with the specific model, RF reaches best performance in 10 out of 15 combinations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' 12 Coefficient Distributions Coefficient Value Count 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='0 0 10 20 30 40 50 60 generic specific Coefficient Distributions Coefficient Value Count 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='0 0 10 20 30 40 50 generic specific Figure 3: Distributions of the best coefficient values a (generic) and b (specific).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Left: full.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Right: per-domain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' When considering the per-domain generic models, SVM obtains the best score 7 times out of 15, followed by RF (5/15) and XGB (3/5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' However, when used in the ensemble, XGB is the best (10/15).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' RF and XGB are better choices than SVM as they consistently top the scores and can be used in ensembles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' In terms of performance though, there is no clear winner between the two.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' One or the other could be used interchangeably.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' However, XGBoost is superior in practice as far as deployment is concerned, as the Random Forest models take a lot of disk space, even after applying some compression tricks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Conclusion We showed that generic models provide consistent and large improvements over company- specific models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Moreover, generic models issue finer-grained forecasts that are more useful in practice, as they predict more categories of each safety outcome.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Generic models remove the needs for training company-specific models, saving a lot of time and resources, and give small companies, whose accident datasets are too limited to train their own models, access to safety outcome predictions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Per-domain generic models (trained on data from a specific industry sector) are not always better than full generic models (trained on all data).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Ensembling generic and specific models is often very beneficial.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Therefore, it might still be worth training specific models to combine their predictions with that of the generic models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' If specific models are already in use, combining them with the generic models may provide a boost in performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' The forecasts are in essence clear and direct information that can be accessed via a user interface (as a desktop or mobile webpage or application), or via an API for integration into any existing ecosystem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' In each case, the only input required is a set of attributes, and the output are probabilities for each category of each outcome.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' By learning lessons from a pool of datasets whose accumulated experience far exceeds that of any single company, and making these lessons easily accessible, generic models tackle the holy grail of safety cross-organizational learning and dissemination in the construction industry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Acknowledgements We thank the Nvidia corporation for donating the Titan V GPU that was used in this re- search, as part of their GPU grant program.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' 13 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' References References [1] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Desvignes, Requisite empirical risk data for integration of safety with advanced technologies and intelligent systems, Ph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' thesis, University of Colorado at Boulder (2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' URL https://scholar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='colorado.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='edu/downloads/0r967398g [2] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Villanova, Attribute-based risk model for assessing risk to industrial construction tasks, Ph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' thesis, University of Colorado at Boulder (2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' URL https://scholar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='colorado.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='edu/downloads/jd472w76t [3] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='-P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Tixier, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Hallowell, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Rajagopalan, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Bowman, Automated content analysis for construction safety: a natural language processing system to extract precursors and outcomes from unstructured injury reports, Automation in Construction 62 (2016) 45–56.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='autcon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='001.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' [4] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='-P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Tixier, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Hallowell, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Rajagopalan, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Bowman, Application of machine learning to construction injury prediction, Automation in Construction 69 (2016) 102–114.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='autcon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='05.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' 016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' [5] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Baker, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Hallowell, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='-P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Tixier, Ai-based prediction of independent construction safety outcomes from universal attributes, Automation in Construction 118 (2020) 103146.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' [6] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='-P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Tixier, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Hallowell, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Rajagopalan, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Bowman, Construction safety clash detection: identify- ing safety incompatibilities among fundamental attributes using data mining, Automation in Construction 74 (2017) 39–54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' [7] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='-P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Tixier, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Hallowell, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Rajagopalan, Construction safety risk modeling and simulation, Risk Analysis 37 (10) (2017) 1917–1935.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='1111/risa.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='12772.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' [8] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Tanguy, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Tulechki, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Urieli, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Hermann, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Raynal, Natural language processing for aviation safety reports: From classification to interactive analysis, Computers in Industry 78 (2016) 80–95.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' [9] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Sepeda, Lessons learned from process incident databases and the process safety incident database (psid) approach sponsored by the center for chemical process safety, Journal of hazardous materials 130 (1-2) (2006) 9–14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' [10] Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Le, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Lee, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Park, A social network system for sharing construction safety and health knowledge, Automation in Construction 46 (2014) 30–37.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' [11] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Pedro, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='-T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Pham-Hang, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Nguyen, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Pham, Data-driven construction safety information sharing system based on linked data, ontologies, and knowledge graph technologies, International journal of environ- mental research and public health 19 (2) (2022) 794.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' [12] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Edwin, Sharing incident experiences: a roadmap towards collective safety information in the norwegian construction industry, International Journal of Occupational Safety and Ergonomics (2022) 1–11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' [13] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Wasilkiewicz, Information flow and knowledge transfer of accident investigation results in the norwegian construction industry, in: Safety and Reliability–Safe Societies in a Changing World, CRC Press, 2018, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' 2855–2862.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' [14] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Breiman, Random forests, Machine Learning 45 (1) (2001) 5–32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' [15] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Chen, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Guestrin, Xgboost: A scalable tree boosting system, in: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM, 2016, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' 785–794.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' [16] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Boser, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Guyon, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Vapnik, A training algorithm for optimal margin classifiers, in: ACM Proceedings of the Fifth Annual Workshop on Computational learning theory, 1992, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' 144–152.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='1145/130385.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='130401.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' [17] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Krizhevsky, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Sutskever, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Hinton, Imagenet classification with deep convolutional neural networks, in: Advances in neural information processing systems, 2012, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' 1097–1105.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' 14 [18] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Radford, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Narasimhan, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Salimans, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Sutskever, Improving language under- standing by generative pre-training, URL https://s3-us-west-2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' amazonaws.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' com/openai- assets/researchcovers/languageunsupervised/language understanding paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' pdf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' [19] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Devlin, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='-W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Chang, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Lee, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Toutanova, Bert: Pre-training of deep bidirectional transformers for lan- guage understanding, arXiv preprint arXiv:1810.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='04805.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' [20] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Lewis, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Liu, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Goyal, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Ghazvininejad, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Mohamed, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Levy, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Stoyanov, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Zettlemoyer, Bart: Denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension, arXiv preprint arXiv:1910.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='13461.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' [21] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Eddine, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='-P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Tixier, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Vazirgiannis, Barthez: a skilled pretrained french sequence-to-sequence model, arXiv preprint arXiv:2010.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='12321.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' [22] R Core Team, R: A Language and Environment for Statistical Computing, R Foundation for Statistical Com- puting, Vienna, Austria (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' URL https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='R-project.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='org/ [23] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Pedregosa, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Varoquaux, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Gramfort, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Michel, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Thirion, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Grisel, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Blondel, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Prettenhofer, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Weiss, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Dubourg, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Vanderplas, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Passos, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Cournapeau, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Brucher, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Perrot, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Duchesnay, Scikit- learn: Machine learning in Python, Journal of Machine Learning Research 12 (2011) 2825–2830.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Appendices Appendix A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Attribute List ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='adverse low temps ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='fuses⋆ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='machinery ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='spark ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='bolt ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='grinding ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='manlift ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='splinter/sliver ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='breaker⋆ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='grout ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='mud ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='spool ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='cable ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='guardrail/handrail ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='nail ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='stairs ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='cable tray ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='hammer ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='no/improper PPE ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='steel/steel sections ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='chipping ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='hand size pieces ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='object at height ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='stripping ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='cleaning ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='hazardous substance ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='object on the floor ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='stud ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='clearance⋆ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='heat source/high temps ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='piping ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='switch/switching⋆ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='concrete ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='heater⋆ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='pole⋆ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='tank ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='concrete liquid ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='heavy material/tool ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='pontoon ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='transformer⋆ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='conduit ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='heavy vehicle ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='poor housekeeping ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='uneven surface ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='confined work space ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='hose ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='poor visibility ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='unpowered tool ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='congested work space ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='improper body position ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='powered tool ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='unpowered transporter ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='crane ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='improper procedure/inattention ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='rebar ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='unstable support/surface ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='door ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='improper security of materials ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='relay⋆ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='valve ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='drill ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='improper security of tools ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='repetitive motion ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='vault⋆ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='dunnage ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='insect/animal ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='scaffold ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='welding ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='electricity ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='job trailer ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='screw ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='wind ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='exiting ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='ladder ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='sharp edge ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='wire ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='fan⋆ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='lifting/pulling/manipulating ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='slag ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='working at height ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='fatigued dizzy ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='light vehicle ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='slippery surface ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='working below elev wksp/mat ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='forklift ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='LOTO/labeling⋆ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='small particle ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='working overhead ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='formwork ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='lumber ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='soffit ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='wrench ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='Table A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='7: 92 attributes used in this study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' LOTO: lockout-tagout.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' PPE: personal protective equipment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' ⋆: eleven new attributes added since [4, 5].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' 15 Appendix B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Detailed split counts Severity Train w Val Test Construction report-only 917 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='2 226 283 1st aid 7486 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='0 1876 2369 medical 470 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='9 114 140 recordable 147 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='9 28 42 lost time 960 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='8 250 285 total 9980 2494 3119 Electric T&D report-only 2392 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='2 576 712 1st aid 2809 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='0 736 905 medical 554 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='1 140 162 recordable 310 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='1 74 101 lost time 607 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='6 143 205 total 6672 1669 2085 Oil & Gas report-only 929 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='8 244 279 1st aid 13766 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='0 3405 4279 medical 1919 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='2 489 618 recordable 152 90.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='6 42 52 lost time 1615 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='5 415 516 total 18381 4595 5744 Corporate report-only 97 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='3 31 22 1st aid 321 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='0 74 109 total 418 105 131 Full report-only 4335 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='6 1077 1296 1st aid 24382 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='0 6091 7662 medical 2943 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='3 743 920 recordable 609 40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='0 144 195 lost time 3182 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='7 808 1006 total 35451 8863 11079 Body Part Train w Val Test Construction arm 1059 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='6 285 338 foot 694 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='9 167 232 hand 2732 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='0 701 864 head 1682 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='6 394 494 leg 958 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='9 262 307 trunk 1084 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='5 243 330 total 8209 2052 2565 Electric T&D arm 1061 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='4 274 319 foot 372 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='0 89 135 hand 1473 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='0 368 452 head 1246 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='2 318 403 leg 1084 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='4 251 307 trunk 800 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='8 208 269 total 6036 1508 1885 Oil & Gas arm 1445 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='9 386 477 foot 1741 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='2 421 568 hand 5586 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='0 1385 1740 head 3514 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='6 887 1088 leg 2053 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='7 498 596 trunk 1449 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='9 370 464 total 15788 3947 4933 Full arm 3565 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='7 945 1134 foot 2807 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='5 677 935 hand 9791 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='0 2454 3056 head 6442 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='5 1599 1985 leg 4095 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='4 1011 1210 trunk 3333 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='9 821 1063 total 30033 7507 9383 Accident Type Train w Val Test Construction caught 396 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='3 105 137 exposure 119 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='8 38 40 fall 803 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='2 200 243 overexertion 492 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='9 128 160 struck 930 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='0 214 276 total 2740 685 856 Electric T&D caught 207 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='2 55 62 exposure 454 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='0 123 142 fall 403 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='1 102 143 overexertion 288 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='6 51 65 struck 248 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='8 69 88 total 1600 400 500 Oil & Gas caught 198 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='7 43 53 exposure 526 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='9 127 184 fall 1527 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='0 393 463 struck 659 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='3 165 210 total 2910 728 910 Full caught 801 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='4 203 252 exposure 1099 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='5 288 366 fall 2733 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='0 695 849 overexertion 780 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='5 179 225 struck 1837 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='5 448 574 total 7250 1813 2266 Energy Source Train w Val Test Construction chemical 76 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='7 21 14 gravity 1551 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='1 405 479 motion 3248 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='0 792 1031 total 4875 1218 1524 Electric biological 221 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='6 52 88 gravity 733 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='3 179 230 motion 1683 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='0 429 507 total 2637 660 825 Oil & Gas chemical 70 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='2 13 21 gravity 1485 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='0 361 448 motion 914 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='6 246 300 thermal 131 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='3 30 44 total 2600 650 813 Full biological 221 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='4 52 88 chemical 146 40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='0 34 35 gravity 3769 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='6 945 1157 motion 5845 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='0 1467 1838 thermal 131 44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='6 30 44 total 10112 2528 3162 Table B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='8: Split counts (1/2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' w: training weights.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' 16 Injury Type Train w Val Test Construction contusion 728 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='6 185 229 cut 2644 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='0 682 795 fob 399 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='6 84 118 fracture 100 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='4 24 39 pinch 267 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='9 90 97 strain 2129 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='2 501 680 total 6267 1566 1958 Electric T&D bite 129 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='3 35 42 burn 75 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='2 14 21 contusion 861 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='8 216 277 cut 1305 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='2 330 400 fob 209 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='6 46 69 fracture 176 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='0 39 53 irritation 420 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='8 101 141 strain 1589 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='0 410 486 total 4764 1191 1489 Oil & Gas bite 168 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='6 39 52 burn 572 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='1 150 179 contusion 3587 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='30 848 1091 cut 4638 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='0 1160 1509 exhaustion 75 61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='8 24 25 fob 1440 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='2 381 455 fracture 622 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='5 160 199 irritation 127 36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='5 37 42 pain 704 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='6 176 215 pinch 720 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='4 181 231 strain 2307 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='0 584 677 total 14960 3740 4675 Full bite 297 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='9 74 94 burn 647 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='3 164 200 contusion 5176 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='7 1249 1597 cut 8587 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='0 2172 2704 exhaustion 75 114.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='5 24 25 fob 2048 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='2 511 642 fracture 898 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='6 223 291 irritation 547 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='7 138 183 pain 704 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='2 176 215 pinch 987 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='7 271 328 strain 6025 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='4 1495 1843 total 25991 6497 8122 Table B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='9: Split counts (2/2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' w: training weights.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Appendix C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Hyperparameter Optimization Details For Random Forest14, we searched the number of trees (ntree parameter, from 100 to 1600 with steps of 100), the number of variables to try when making each split (mtry, from 5 to 45 with steps of 5), and the leaf size (nodesize, 1, 2, 5, 10, 25, and 50).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' For XGBoost15, we searched the maximum depth of a tree in the sequence (max depth, from 3 to 6 with steps of 1), the learning rate (learning rate, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='01, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='05, and 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='1), the minimum leaf size (min child weight, 1, 3, 5, and 10), the percentage of training instances to be used in building each tree (subsample, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='3, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='5, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='7, and 1) , and the percentage of predictors to be considered in making each split of a given tree (colsample bylevel, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='3, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='5, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='7, and 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' The number of trees in the sequence (ntrees) was set to 2000.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' The loss was the multinomial one.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Finally, for the SVM model, we optimized the C parameter (C, 10x with x taking 3000 evenly spaced values in [−9, 9]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' 14https://scikit-learn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='org/stable/modules/generated/sklearn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='ensemble.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='RandomForestClassifier.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='html 15https://xgboost.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='readthedocs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='io/en/latest/parameter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='html 17 Appendix D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Illustration of Task Difficulty vs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Number of Categories To illustrate how the prediction task gets more and more difficult as the number of cate- gories increases, we designed a synthetic example in which 105 observations were drawn from an increasing number of categories (2 to 12).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Class imbalance was simulated by drawing from the categories with probabilities following the lognormal distribution (mean=0, sd=2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' We con- sidered two baselines: a random baseline, that predicts categories uniformly at random, and a most frequent baseline, which always returns the most frequent category.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Our proxy for diffi- culty was one minus the F1 score of the baselines.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' In other words, the less well the baselines are doing, the more difficult the task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' We can see on Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='4 that the task difficulty rapidly increases with the number of categories, and that going from 2 to 6 categories almost makes the task twice as hard.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' 2 4 6 8 10 12 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='9 Prediction Task Difficulty vs Number of Categories Number of Categories 1 − F1 score Random Baseline Most Frequent Baseline Figure D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='4 Appendix E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Per-Company Results for the Full Generic Models Note: the ensemble (“ens”) rows are left blank whenever the specific model is a SVM, as we could not use ensembling in this case (the forecast of the SVM is not probabilistic).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Appendix E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Severity Comp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='1 Comp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='3 Comp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='5 Comp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='6 Avg spec 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='51 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='62 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='35 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='9 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='34† SVM gen 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='23 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='64 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='01 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='76 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='66 gen 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='75 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='54 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='75 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='99 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='26 RF ens 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='68 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='62 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='69 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='33 coef.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='4,1) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='8,1) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='4,1) gen 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='58 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='26 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='58 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='48 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='98 XGB ens 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='85 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='34 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='82 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='67 coef.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='1,1) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='3,1) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='5,1) #lev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' spec 4 4 3 3 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='5 #lev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' gen 5 5 5 5 5 Table E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='10: Severity, construction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' †: best model on average.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' 18 Comp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='4 Comp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='6 Comp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='7 Comp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='9 Avg spec 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='48 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='66 57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='67 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='34 40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='79 SVM gen 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='93 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='56 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='67 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='9 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='52 gen 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='46 38.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='61 39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='97 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='42 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='37 RF ens 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='73 53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='62 41.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='17† coef.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' (1,0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='9) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='5,1) gen 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='39 53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='02 39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='24 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='95 36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='4 XGB ens 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='74 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='27 40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='01⋆ coef.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='8,1) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='2,1) #lev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' spec 4 2 2 4 3 #lev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' gen 5 5 5 5 5 Table E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='11: Severity, electric T&D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' †: best model on average.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Bold/⋆: better/within 2pts of the company-specific model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Comp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='2 Comp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='3 Comp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='8 Comp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='7 Avg spec 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='53 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='74 39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='72 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='44 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='86† SVM gen 37.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='91 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='53 38.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='85 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='41 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='92 gen 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='96 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='12 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='69 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='14 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='48 RF ens 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='87 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='05 39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='81 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='2 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='98 coef.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='2,1) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='7,1) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='7,1) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='1,1) gen 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='75 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='25 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='27 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='72 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='25 XGB ens 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='89 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='36 39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='61 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='7 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='14 coef.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='2,1) (1,0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='8) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='3,1) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='1,1) #lev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' spec 3 4 3 4 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='5 #lev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' gen 5 5 5 5 5 Table E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='12: Severity, oil & gas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' †: best model on average.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Appendix E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Body Part Comp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='1 Comp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='3 Comp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='5 Comp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='6 Avg spec 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='14 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='48 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='09 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='39 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='03 SVM gen 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='26 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='09 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='02 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='66 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='51 gen 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='14 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='04 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='68 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='78 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='41† RF ens 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='49 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='43 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='7 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='7 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='33⋆ coef.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='4,1) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='1,1) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='7,1) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='6,1) gen 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='92 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='57 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='73 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='22 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='86 XGB ens 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='44 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='38 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='62 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='77 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='05⋆ coef.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='1,1) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='2,1) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='2,1) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='5,1) #lev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' spec 6 6 6 6 6 #lev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' gen 6 6 6 6 6 Table E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='13: Body part, construction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' †: best model on average.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Bold/⋆: better/within 2pts of the company-specific model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' 19 Comp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='4 Comp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='6 Comp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='7 Comp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='9 Avg spec 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='25 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='7 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='34 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='86 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='79 SVM gen 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='21 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='86 38.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='26 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='4 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='68 gen 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='96 32 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='02 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='76 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='94† RF ens 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='94 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='75 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='56 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='08 coef.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='4,1) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='1,1) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='4,1) gen 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='24 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='12 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='44 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='24 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='76 XGB ens 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='96 41.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='17 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='81 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='31 coef.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='2,1) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='1,1) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='5,1) #lev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' spec 6 6 4 6 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='5 #lev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' gen 6 6 6 6 6 Table E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='14: Body part, electric T&D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' †: best model on average.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Bold: better the company-specific model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Comp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='2 Comp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='8 Comp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='7 Avg spec 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='96 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='41 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='17 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='85 SVM gen 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='66 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='23 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='06 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='65 gen 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='11 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='34 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='21 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='22† RF ens 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='31 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='88 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='09 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='43 coef.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='1,1) (1,0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='1) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='1,1) gen 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='5 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='36 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='81 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='22 XGB ens 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='26 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='28 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='56 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='37 coef.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='1,1) (1,0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='3) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='2,1) #lev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' spec 6 6 6 6 #lev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' gen 6 6 6 6 Table E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='15: Body part, oil & gas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' †: best model on average.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Bold: better the company-specific model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Appendix E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Injury Type Comp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='1 Comp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='3 Comp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='5 Comp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='6 Avg spec 54 37.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='7 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='91 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='07 43.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='92 SVM gen 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='67 36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='66 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='78 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='81 38.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='73 gen 47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='84 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='86 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='11 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='3 40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='03 RF ens 47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='6 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='98 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='67 41.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='75 coef.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='2,1) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='1,1) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='4,1) gen 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='46 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='99 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='9 44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='7 36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='76 XGB ens 56.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='55 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='2 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='46 47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='4† coef.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='6,1) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='4,1) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='2,1) #lev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' spec 3 3 6 4 4 #lev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' gen 11 11 11 11 11 Table E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='16: Injury type, construction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' †: best model on average.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Bold: better the company-specific model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Comp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='4 Comp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='6 Comp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='7 Comp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='9 Avg spec 39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='21 43.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='4 47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='28 44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='98 43.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='72 SVM gen 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='27 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='59 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='78 57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='14 53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='7† gen 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='44 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='41 56.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='74 44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='16 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='44⋆ RF ens 39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='33 59.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='52 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='42 coef.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' (1,0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='5) (1,0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='2) gen 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='57 41.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='6 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='45 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='49 41.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='03 XGB ens 40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='31 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='58 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='44 coef.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' (1,0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='8) (1,0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='1) #lev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' spec 5 6 4 6 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='25 #lev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' gen 11 11 11 11 11 Table E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='17: Injury type, electric T&D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' †: best model on average.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Bold/⋆: better/within 2pts of the company-specific model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' 20 Comp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='2 Comp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='8 Comp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='7 Avg spec 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='39 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='04 40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='72 36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='72 SVM gen 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='97 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='67 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='69 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='11⋆ gen 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='72 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='22 40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='52 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='15 RF ens 36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='82 40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='48 38.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='65† coef.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='5,1) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='7,1) gen 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='69 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='01 39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='28 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='33 XGB ens 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='09 41 38.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='05 coef.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' (1,0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='7) (1,0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='6) #lev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' spec 3 10 8 7 #lev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' gen 11 11 11 11 Table E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='18: Injury type, oil & gas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' †: best model on average.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Bold/⋆: better/within 2pts of the company-specific model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Appendix E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Accident Type Comp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='3 Comp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='5 Avg spec 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='63 41.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='34 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='98† SVM gen 41.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='87 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='91 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='39 gen 40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='44 44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='48 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='46 RF ens 44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='35 44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='35 coef.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' (1,0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='7) gen 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='04 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='51 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='27 XGB ens 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='02 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='02 coef.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' (1,1) #lev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' spec 2 5 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='5 #lev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' gen 5 5 5 Table E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='19: Accident type, construction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' †: best model on average.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Comp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='4 Comp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='9 Avg spec 43.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='15 53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='2 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='17 SVM gen 36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='46 52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='71 44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='58 gen 40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='05 57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='11 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='58† RF ens 41.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='29 41.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='29 coef.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='4,1) gen 38.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='13 57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='46 47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='8⋆ XGB ens 41.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='08 41.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='08 coef.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='4,1) #lev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' spec 5 4 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='5 #lev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' gen 5 5 5 Table E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='20: Accident type, electric T&D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' †: best model on average.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Bold/⋆: better/within 2pts of the company- specific model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' 21 Comp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='3 Comp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='8 Comp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='7 Avg spec 80.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='91 85 53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='58 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='16† SVM gen 58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='06 78.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='09 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='92 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='69 gen 61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='67 78.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='03 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='71 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='14 RF ens 78.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='46 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='35 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='4 coef.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='1,1) (1,0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='1) gen 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='65 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='93 52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='16 58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='58 XGB ens 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='8 55.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='31 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='56 coef.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' (1,0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='7) (1,0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='7) #lev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' spec 2 2 4 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='67 #lev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' gen 5 5 5 5 Table E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='21: Accident type, oil & gas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' †: best model on average.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Appendix E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Energy Source Comp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='1 Comp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='3 Comp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='5 Comp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='6 Avg spec 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='69 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='97 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='07 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='82 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='64 SVM gen 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='76 78.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='16 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='86 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='69 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='12† gen 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='36 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='03 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='14 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='31 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='71 RF ens 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='05 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='02 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='1 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='06⋆ coef.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='9,1) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='2,1) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='4,1) gen 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='33 83.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='44 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='62 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='7 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='77 XGB ens 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='88 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='81 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='47 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='05⋆ coef.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='4,1) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='1,1) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='4,1) #lev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' spec 2 2 3 2 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='25 #lev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' gen 5 5 5 5 5 Table E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='22: Energy source, construction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' †: best model on average.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Bold/⋆: better/within 2pts of the company- specific model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Comp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='4 Comp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='6 Comp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='9 Avg spec 79.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='5 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='22 81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='05 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='92 SVM gen 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='59 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='61 85.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='73 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='64⋆ gen 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='99 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='06 83.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='32 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='12⋆ RF ens 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='85 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='81 75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='83 coef.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='9,1) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='2,1) gen 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='43 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='85 87.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='21 78.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='83† XGB ens 79.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='41 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='52 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='47⋆ coef.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='2,1) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='3,1) #lev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' spec 3 2 3 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='67 #lev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' gen 5 5 5 5 Table E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='23: Energy source, electric T&D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' †: best model on average.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Bold/⋆: better/within 2pts of the company- specific model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' 22 Comp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='8 Comp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='7 Avg spec 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='98 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='8 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='39 SVM gen 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='73 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='36 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='54⋆ gen 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='43 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='81 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='12 RF ens 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='27 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='89 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='58 coef.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='4,1) (1,0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='2) gen 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='44 74 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='22† XGB ens 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='72 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='25 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='98 coef.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='1,1) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='3,1) #lev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' spec 4 2 3 #lev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' gen 5 5 5 Table E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='24: Energy source, oil & gas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' †: best model on average.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Bold/⋆: better/within 2pts of the company-specific model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Appendix F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Per-Company Results for the Per-Domain Generic Models Note: the ensemble (‘ens’) rows are left blank whenever the specific model is a SVM, as we could not use ensembling in this case (the forecast of the SVM is not probabilistic).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Appendix F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Severity Comp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='5 Comp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='3 Comp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='6 Comp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='1 Avg spec 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='35 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='62 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='9 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='51 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='34† SVM gen 39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='86 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='03 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='61 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='66 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='29 gen 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='1 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='7 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='62 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='74 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='04 RF ens 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='2 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='5 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='77 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='82 Coeffs (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='8,1) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='6,1) (1,0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='3) gen 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='84 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='84 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='33 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='95 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='74 XGB ens 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='3 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='14 30 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='81 Coeffs (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='3,1) (1,0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='6) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='5,1) #categories spec 3 4 3 4 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='5 #categories gen 5 5 5 5 5 Table F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='25: Severity, construction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' †: best model on average.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Comp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='7 Comp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='4 Comp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='9 Comp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='6 Avg spec 57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='67 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='48 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='34 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='66 40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='79 SVM gen 36 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='47 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='62 52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='06 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='79 gen 47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='19 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='91 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='5 58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='53 41.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='28 RF ens 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='8 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='97 43.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='88† Coeffs (1,0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='6) (1,0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='9) gen 44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='23 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='59 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='49 57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='44 39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='69⋆ XGB ens 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='95 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='96 40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='95 Coeffs (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='4,1) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='1,1) #categories spec 2 4 4 2 3 #categories gen 5 5 5 5 5 Table F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='26: Severity, elec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' †: best model on average.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Bold/⋆: better/within 2pts of the company-specific model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' 23 Comp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='7 Comp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='3 Comp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='8 Comp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='2 Avg spec 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='44 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='74 39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='72 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='53 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='86† SVM gen 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='7 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='05 40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='83 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='31 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='97 gen 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='22 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='82 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='7 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='59 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='08 RF ens 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='59 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='38 40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='22 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='86 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='76 Coeffs (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='8,1) (1,0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='9) (1,0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='8) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='7,1) gen 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='82 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='7 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='09 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='15 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='19 XGB ens 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='97 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='73 40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='1 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='96 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='44 Coeffs (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='4,1) (1,0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='7) (1,0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='2) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='7,1) #categories spec 4 4 3 3 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='5 #categories gen 5 5 5 5 5 Table F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='27: Severity, oil & gas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' †: best model on average.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Appendix F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Body part Comp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='5 Comp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='3 Comp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='6 Comp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='1 Avg spec 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='09 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='48 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='39 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='14 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='03 SVM gen 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='08 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='14 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='92 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='13 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='32 gen 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='19 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='06 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='64 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='34 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='81 RF ens 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='23 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='77 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='14 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='41 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='39⋆ Coeffs (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='1,1) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='2,1) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='6,1) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='1,1) gen 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='6 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='91 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='48 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='92 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='23† XGB ens 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='34 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='72 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='33 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='41 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='2⋆ Coeffs (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='1,1) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='2,1) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='5,1) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='1,1) #categories spec 6 6 6 6 6 #categories gen 6 6 6 6 6 Table F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='28: Body part, construction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' †: best model on average.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Bold/⋆: better/within 2pts of the company-specific model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Comp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='7 Comp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='4 Comp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='9 Comp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='6 Avg spec 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='34 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='25 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='86 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='7 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='79 SVM gen 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='02 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='16 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='6 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='17 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='24 gen 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='21 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='31 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='71 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='97 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='05 RF ens 39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='52 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='63 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='59 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='25 Coeffs (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='1,1) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='1,1) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='1,1) gen 53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='03 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='55 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='56 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='7 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='21† XGB ens 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='41 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='72 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='01 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='71 Coeffs (1,1) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='6,1) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='2,1) #categories spec 4 6 6 6 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='5 #categories gen 6 6 6 6 6 Table F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='29: Body part, elec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' †: best model on average.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Bold/⋆: better/within 2pts of the company-specific model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' 24 Comp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='7 Comp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='8 Comp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='2 Avg spec 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='17 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='41 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='96 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='85† SVM gen 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='22 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='91 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='84 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='66 gen 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='64 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='8 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='12 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='85† RF ens 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='15 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='66 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='81 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='54⋆ Coeffs (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='1,1) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='1,1) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='4,1) gen 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='69 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='36 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='72 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='59⋆ XGB ens 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='84 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='1 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='28 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='74⋆ Coeffs (1,0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='5) (1,0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='1) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='2,1) #categories spec 6 6 6 6 #categories gen 6 6 6 6 Table F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='30: Body part, oil & gas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' †: best model on average.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Bold/⋆: better/within 2pts of the company-specific model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Appendix F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Injury type Comp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='5 Comp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='3 Comp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='6 Comp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='1 Avg spec 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='91 37.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='7 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='07 54 43.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='92 SVM gen 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='16 36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='31 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='7 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='97 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='78⋆ gen 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='56 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='91 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='34 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='64 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='11⋆ RF ens 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='38 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='57 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='42 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='46† Coeffs (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='1,1) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='1,1) (1,0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='2) gen 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='3 38.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='19 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='17 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='54 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='55⋆ XGB ens 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='74 47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='08 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='53 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='45 Coeffs (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='3,1) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='1,1) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='5,1) #categories spec 6 3 4 3 4 #categories gen 6 6 6 6 6 Table F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='31: Injury type, construction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' †: best model on average.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Bold/⋆: better/within 2pts of the company-specific model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Comp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='7 Comp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='4 Comp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='9 Comp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='6 Avg spec 47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='28 39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='21 44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='98 43.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='4 43.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='72 SVM gen 57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='28 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='12 44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='54 41.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='7 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='91⋆ gen 53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='99 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='2 43.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='07 40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='47 41.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='68⋆ RF ens 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='33 38.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='87 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='1 Coeffs (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='8,1) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='4,1) gen 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='62 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='63 40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='26 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='42 41.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='48 XGB ens 59.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='48 39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='09 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='28† Coeffs (1,0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='3) (1,0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='3) #categories spec 4 5 6 6 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='25 #categories gen 8 8 8 8 8 Table F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='32: Injury type, elec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' †: best model on average.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Bold/⋆: better/within 2pts of the company-specific model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' 25 Comp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='7 Comp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='8 Comp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='2 Avg spec 40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='72 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='04 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='39 36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='72 SVM gen 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='26 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='24 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='18 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='89 gen 39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='57 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='87 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='02 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='82 RF ens 41.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='69 36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='25 38.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='97 Coeffs (1,0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='7) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='8,1) gen 38.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='32 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='64 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='07 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='34 XGB ens 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='88 36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='7 39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='79† Coeffs (1,0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='7) (1,0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='1) #categories spec 8 10 3 7 #categories gen 11 11 11 11 Table F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='33: Injury type, oil & gas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' †: best model on average.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Bold/⋆: better/within 2pts of the company-specific model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Appendix F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Accident type Comp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='5 Comp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='3 Avg spec 41.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='34 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='63 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='98† SVM gen 44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='25 40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='15 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='2 gen 41.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='37 43.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='48 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='42 RF ens 40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='8 40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='8 Coeffs (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='1,1) gen 43.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='21 55.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='21 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='21 XGB ens 43.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='4 43.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='4 Coeffs (1,0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='1) #categories spec 5 2 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='5 #categories gen 5 5 5 Table F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='34: Accident type, construction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' †: best model on average.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Comp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='4 Comp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='9 Avg spec 43.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='15 53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='2 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='17 SVM gen 39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='45 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='22 44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='84 gen 44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='13 56.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='28 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='2† RF ens 39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='72 39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='72 Coeffs (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='3,1) gen 40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='96 58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='21 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='58 XGB ens 43.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='53 43.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='53 Coeffs (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='4,1) #categories spec 5 4 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='5 #categories gen 5 5 5 Table F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='35: Accident type, elec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' †: best model on average.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Bold/⋆: better/within 2pts of the company-specific model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Comp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='7 Comp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='3 Comp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='8 Avg spec 53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='58 80.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='91 85 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='16† SVM gen 55.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='04 59.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='76 79.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='75 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='85 gen 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='77 58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='06 82.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='53 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='12 RF ens 53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='02 78.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='46 65.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='74 Coeffs (1,0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='1) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='1,1) gen 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='03 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='16 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='93 63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='04 XGB ens 55.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='7 78.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='56 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='13 Coeffs (1,0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='9) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='1,1) #categories spec 4 2 2 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='67 #categories gen 4 4 4 4 Table F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='36: Accident type, oil & gas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' †: best model on average.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' 26 Appendix F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Energy source Comp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='5 Comp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='3 Comp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='6 Comp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='1 Avg spec 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='07 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='97 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='82 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='69 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='64 SVM gen 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='3 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='99 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='32 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='5 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='78 gen 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='17 79.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='98 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='28 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='21 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='91† RF ens 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='85 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='62 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='45 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='64⋆ Coeffs (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='1,1) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='9,1) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='4,1) gen 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='88 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='28 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='91 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='09 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='04 XGB ens 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='05 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='75 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='9 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='23 Coeffs (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='1,1) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='7,1) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='5,1) #categories spec 3 2 2 2 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='25 #categories gen 3 3 3 3 3 Table F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='37: Energy source, construction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' †: best model on average.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Bold/⋆: better/within 2pts of the company- specific model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Comp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='4 Comp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='9 Comp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='6 Avg spec 79.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='5 81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='05 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='22 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='92 SVM gen 78.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='31 85.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='83 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='46 78.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='87† gen 80.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='13 83.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='73 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='96 78.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='61 RF ens 79.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='75 73.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='22 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='48⋆ Coeffs (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='5,1) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='1,1) gen 75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='63 82.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='34 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='86 75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='61 XGB ens 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='15 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='91 75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='03 Coeffs (1,0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='8) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='1,1) #categories spec 3 3 2 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='67 #categories gen 3 3 3 3 Table F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='38: Energy source, elec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' †: best model on average.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Bold/⋆: better/within 2pts of the company-specific model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Comp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='7 Comp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='8 Avg spec 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='8 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='98 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='39 SVM gen 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='94 61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='33 55.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='63 gen 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='34 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='11 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='72† RF ens 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='44 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='8 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='12⋆ Coeffs (1,0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='5) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='4,1) gen 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='58 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='12 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='35⋆ XGB ens 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='06 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='69 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='38⋆ Coeffs (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='2,1) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='1,1) #categories spec 2 4 3 #categories gen 4 4 4 Table F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content='39: Energy source, oil & gas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' †: best model on average.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' Bold/⋆: better/within 2pts of the company-specific model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} +page_content=' 27' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ENE1T4oBgHgl3EQf-QbO/content/2301.03567v1.pdf'} diff --git a/EtAzT4oBgHgl3EQfw_5J/content/tmp_files/2301.01730v1.pdf.txt b/EtAzT4oBgHgl3EQfw_5J/content/tmp_files/2301.01730v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..4109b957060c1e34546c48a21c1b5eced54f6e44 --- /dev/null +++ b/EtAzT4oBgHgl3EQfw_5J/content/tmp_files/2301.01730v1.pdf.txt @@ -0,0 +1,925 @@ +arXiv:2301.01730v1 [quant-ph] 4 Jan 2023 +Multitime Quantum Communication: Interesting But +Not Counterfactual +Robert B. Griffiths∗ +Department of Physics +Carnegie Mellon University +Pittsburgh, PA 15213 +Version of 4 January 2023 +Abstract +A protocol for transmission of information between two parties introduced by Salih +et al., Phys. Rev. Lett. 110 (2013) 170502 (hereafter SLAZ), involves sending quan- +tum amplitude back and forth through a quantum channel in a series of steps, rather +than simply sending a signal in one direction. The authors claimed that their protocol +was “counterfactual” in the sense that while a quantum channel is needed to connect +the parties, its actual usage becomes vanishingly small in the asymptotic limit as the +number of steps tends to infinity. Here we show that this claim is incorrect because it +uses probabilistic reasoning that is not valid at intermediate times in the presence of +quantum interference. When ill-defined probabilities are replaced with a well-defined +measure of channel usage here called “Cost”, equal to the absolute square of the am- +plitude sent through the channel, the total Cost does not go to zero in the asymptotic +limit of a large number of steps, but is bounded below by a rigorous inequality. A +detailed analysis shows that this bound is satisfied in the SLAZ protocol. The analysis +leading to the bound uses the fact that the Gram matrix formed by inner products of +a collection of pure quantum states is additive over Hilbert subspaces and invariant +under unitary time transformations. Its off-diagonal elements, which in general are not +positive, play a significant role in the formal argument as well as providing a somewhat +strange way of visualizing the transfer of information. +Contents +I +Introduction +2 +II +One-Way Protocols +3 +II.1 +Multiple Channels in Parallel . . . . . . . . . . . . . . . . . . . . . . . . . . +3 +II.2 +One Channel Used Multiple Times . . . . . . . . . . . . . . . . . . . . . . . +5 +∗Electronic address: rgrif@cmu.edu +1 + +III Two-way Protocols +6 +III.1 Gram Matrices +. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +6 +III.2 Basic Two-Way Protocol +. . . . . . . . . . . . . . . . . . . . . . . . . . . . +6 +III.3 Sending One Classical Bit +. . . . . . . . . . . . . . . . . . . . . . . . . . . +7 +III.4 Lower Bound on Costs +. . . . . . . . . . . . . . . . . . . . . . . . . . . . . +10 +IV The SLAZ Protocol +11 +IV.1 Description of the Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . +11 +IV.2 Calculation of Costs and Overlap +. . . . . . . . . . . . . . . . . . . . . . . +13 +IV.3 Discussion of Costs and Probabilities . . . . . . . . . . . . . . . . . . . . . . +14 +V +Conclusion +15 +I +Introduction +The motivation for this paper is a scheme for the transmission of quantum informatiom +introduced by Salih et. al [1] with the title “Protocol for direct counterfactual quantum com- +munication”, and referred to hereafter as SLAZ, the initials of the authors. One ordinarily +thinks of the transmission of information as sending a signal through a channel from sender +to receiver. However the idea in SLAZ is that information can be sent from Bob to Alice if +the quantum particle used to carry the information starts off in Alice’s domain, and a part +of its quantum amplitude is sent to Bob through a quantum channel. Bob modifies this is +some way before sending (or possibly not sending) it back to Alice, depending on the signal +he wants to send. Alice then employs what Bob has returned to begin a second round of +sending amplitude to Bob, who again modifies it before returning it, and so forth. This +back-and-forth motion can continue for a large number of rounds until the information that +Bob is sending has arrived in Alice’s domain, where she can carry out a measurement or +perhaps perform additional processing. A key feature of protocols of this type is that all the +intermediate steps can be represented by purely unitary time evolution, with intermediate +time measurements, if any replaced by unitaries—a process of purification. +The use of amplitude rather than particle in the previous paragraph is intentional, be- +cause the state of the photon or other particle is in general a coherent superposition of parts +associated with different spatial locations: Alice’s domain, Bob’s domain, and the channel +connecting them. One generally thinks of a particle as something with a spatial location, +but in quantum mechanics one cannot simultaneously ascribe particle and wave properties +to the same entity at the same time because of wave-particle duality. In Hilbert-space quan- +tum mechanics physical properties, such as location in space, are represented by projectors +(Sec. III.5 of [2]), and when a projector representing a wave, think of |ψ⟩⟨ψ|, does not com- +mute with a projector specifying a spatial location, ignoring this fact can rapidly lead to +paradoxes. The double-slit paradox is an example: when a coherent wave passes through +the slit system one cannot say through which slit the particle passed. +The term “counterfactual” in the original SLAZ paper has the following significance. A +quantum channel connecting the communicating parties is essential: this is not a case of +mysterious nonlocal influences of the sort which are sometimes invoked to explain quantum +violations of Bell inequalities. +However, if the number of steps in an SLAZ protocol is +2 + +sufficiently large, the magnitude of the amplitude sent through the channel in each step can +be made very small, and vanishes in the limit as the number of steps tends to infinity. +A similar claim of counterfactuality has been made in much of the rather substantial +literature motivated by the original SLAZ publication, which contains various modifications +and extensions of the original protocol. There have also been criticisms of these counter- +factual claims, and (of course) replies to criticisms. The Conclusion, Sec. V, of the present +paper contains a few remarks about how its results apply to some of these publications, but +a review, much less a detailed discussion, lies far outside its scope. The interested reader is +referred to the extensive bibliographies found in [3,4]. +The aim of the present paper is to study the use of quantum channels in protocols of the +SLAZ type, in particular the sense in which this usage is or is not counterfactual. To this end +the concept of the Cost of using a quantum channel, the absolute square of the amplitude +passing through it in a particular step in the protocol, is suggested, for reasons discussed +in Sec. II, as a useful substitute for “probabiilities”, which in a quantum context are often +ill-defined. The example of multiple channels in parallel, which few would want to claim are +“counterfactual”, serves as an introduction to how information can be sent through a single +channel in a single direction at multiple times, in a process in which all of the intermediate +steps are represented by unitary maps. +The main mathematical results of this paper are in Sec. III: Gram matrices and some of +their properties are discssed in Sec. III.1, while Sec. III.2 gives the basic structure of simple +two-way multiple time protocols. Section III.3 considers simple schemes for transmitting one +classical bit, while the rigorous lower bound that undermines various counterfactual claims +is the topic of Sec. III.4. +The original SLAZ protocol is studied in detail in Sec. IV. In particular the total Cost +of transmitting a classical bit λ = 0, in which Bob reflects the amplitude back to Alice, and +for transmitting λ = 1, in which he absorbs rather than returns it, are evaluated explicitly. +It turns out that in the asymptotic limit the λ = 1 Cost is miniscule, but that for λ = 0 +is enormous, while the product of the two remains finite and satisfies the rigourous bound +in Sec. III.4. The mistaken claim that the SLAZ protocol is counterfactual results from two +errors: a concept of channel use which would be questionable even for a classical stochastic +process, and an improper use of probabilities in a way that violates quantum principles. +The concluding Sec. V has a summary of the main results of this paper, a few comments +on some parts of the literature related to SLAZ, and some suggestions for future directions +of research. +This author believes that protocols of the SLAZ type are quite interesting, +deserve further exploration, and might contribute to useful ways of studying multipartite +and multitime transmission of quantum information, as in quantum networks. And that such +studies would prove more fruitful in the absence of misleading claims of counterfactuality. +II +One-Way Protocols +II.1 +Multiple Channels in Parallel +Think of quantum information as the information carried by a photon as it passes through +a quantum channel, such as an optical fiber. +The information could be encoded in its +polarization. Rather than using a single channel, one could imagine sending the photon as a +3 + +coherent state through a set of N channels in parallel, using a collection of beamsplitters to +divide up the initial amplitude among the different channels, and a corresponding collection +to later recombine them. Let us suppose that the normalized |Φ⟩ that represents the photon +at some intermediate time is a superposition of amplitudes +|Φ⟩ = +N +� +n=1 +cn|φn⟩ +(1) +associated with the individual channels, labeled by n. Define the Cost qn associated with +the use of channel n, and the total Cost Q for the channel system as: +qn := |cn|2, +Q := +N +� +n=1 +qn. +(2) +If the |φn⟩ and |Φ⟩ are normalized, Q is equal to 1, so one might identify qn with the prob- +ability that the photon is in channel n. But what does that mean? In standard (textbook) +quantum mechanics probability refers to the outcome of a measurement, but a measurement +carried out at an intermediate time, when the quantum state is a coherent superposition +over various locations, can alter what occurs later, and hence it is dangerous to associate +such a probability with a situation in which a measurement does not take place. +Another way of viewing this difficulty is to recall that von Neumann (Sec. III.5 of [2]) +identified quantum physical properties—which in classical physics are asociated with sets +of points in the classical phase space—with projectors, self-adjoint idempotent operators, +P = P † = P 2, on the quantum Hilbert space. For example, in the case of a spin-half particle +the projectors +P = (I − σz)/2 +R = (I + σx)/2, +(3) +where I is the identity and σz and σx are Pauli operators, represent the properties Sz = +−¯h/2 and Sx = +¯h/2, respectively. In general, if two projectors P and R commute their +product PR = RP represents the property P AND R. But if they do not commute, neither +PR nor RP is a projector, and so neither represents a quantum property. In some sense +noncommutation is the very essence of quantum mechanics; it is what distinguishes it from +classical physics. The use of standard (Kolmogorov) probabilities requires a sample space of +mutually-exclusive possibilities, one and only one of which occurs in a particular run of an +experiment. In quantum theory such a sample space is a collection of mutually orthogonal +projectors that sum to the identity, a projective decomposition of the identity. For example, R +and I −R in (3) in the case of spin half; see (7) below for the general definition. In quantum +mechanics there are often many possible sample spaces that one might be interested in, +and carelessly combining incompatible spaces—some projectors in one do not commute with +projectors in the other—inevitably leads to paradoxes rather than physical understanding. +In the present context the dyad |Φ⟩⟨Φ| is a projector that does not commute with any +of the projectos |φn⟩⟨φn| for which cn is nonzero, and thus it is meaningless to assign a +probability to the latter in a situation where the coherent state |Φ⟩ will later be transformed +by the final beamsplitters into the original state that entered the channel system. +4 + +II.2 +One Channel Used Multiple Times +The possible advantanges, if any, of using many channels in parallel can also be realized +by employing a single channel and sending quantum amplitude through it at a succession of +times; this is what makes protocols of the SLAZ type of some interest. Let us suppose that +information is being sent from Bob to Alice. One can think of the photon at a particular time +as being in a coherent superposition of amplitudes in three different physical locations: Alice’s +domain A, Bob’s domain B, and the channel C connecting them. The same symbols can be +used for the Hilbert-space projectors associated with these locations, thus operators which are +self-adjoint and idempotent, A = A† = A2, and mutually orthogonal, AB = BC = AC = 0. +They sum to the identity +A + C + B = I +(4) +and hence form a projective decomposition of the identity—see the general definition in +(7) below. A projective decomposition of the identity is the quantum counterpart of the +sample space of mutually exclusive possibilities essential for using standard (Kolmogorov) +probability theory in the case of a quantum system. Note that A, B, and C are subspaces of a +single Hilbert space, not subsystems represented by a tensor product. If the quantum particle +possesses other degrees of freedom, these projectors are to be understood using the usual +convention as including the identity operator on these additional degrees of freedom. Thus +for a photon, A means that it is located in Alice’s domain, whatever may be its polarization. +Bob can send a particular type of information λ to Alice by starting with a normalized +reference state |ψ0⟩ = B|ψ0⟩, the particle is somewhere in his domain B, and using a unitary +transformation Bλ acting on the subspace B + C to place it in a state +|ψλ +1⟩ = C|ψλ +1⟩ = Bλ|ψ0⟩, +(5) +in the channel, at which point it travels through the channel to Alice. As the channel has no +effect except to transmit the particle from one end to the other, we simplify the discussion +(here and later) by using the same symbol for the ket that arrives at Alice’s end. She then +applies a unitary A that does not depend on λ, for she does not know what Bob is sending, +to empty the channel and arrive at a final state +|ψλ +2⟩ = A|ψλ +2⟩ = A|ψλ +1⟩, +(6) +which she can then measure or subject to further processing. +This single-round transmission process can be carried out in a number of rounds in which +during the n’th round Bob employs a unitary Bλ +n acting on the B + C subspace to map an +amplitude cn|ψ0⟩ into C, which is initially empty, and which travels to Alice, who uses a +unitary An acting on A + C to remove it from the channel, which is then empty and ready +for the next round. One way to visualize this is that Bob has a domain B of high dimension, +and at the outset splits up the initial amplitude |ψ0⟩ into pieces placed in different subspaces +of B with the help of a suitable set of beamsplitters. At round n the unitary Bλ +n interchanges +the appropriate subspace of B with the empty C. Alice’s A is also large, and her An maps +whatever Bob has sent into an empty subspace reserved for this purpose. When the run is +completed Alice can then combine the amplitudes in these different subspaces into a smaller +space—e.g., using beamsplitters—or she can do a similar combination at the end of each +5 + +round. Of course Alice’s and Bob’s unitaries cannot be chosen independently; the two must +work together to design the protocol. What is unknown to Alice is Bob’s choice of λ for a +particular run; this is the information that she can extract at the end. +Some multiple-time protocols employ measurements by Alice at intermediate times. In +cases such as the original SLAZ scheme, discussed below in Sec. IV, it is possible to store the +amplitude that could have triggered the measuring device in an empty subspace in Alice’s +domain and put off the measurement until the protocol is finished. Of course, amplitudes +that correspond to several measurements in succession can be combined, just as in the case +of simultaneous transmission through several channels in parallel, as discussed earlier. +III +Two-way Protocols +III.1 +Gram Matrices +Let {Pj} be a projective decomposition of the Hilbert space identity I: +I = +� +j +Pj, +Pj = P † +j , +PjPk = δjkPj, +(7) +and let {|ψµ⟩}, µ = 0, 1, . . ., be a collection of kets on the same Hilbert space. The Gram +matrix +Gµν = ⟨ψµ|ψν⟩ = +� +j +Gµν(Pj) = +� +j +⟨ψµ|Pj|ψν⟩ +(8) +is additive in that it is a sum over contributions from the different subspaces. In addition, +Gµν is invariant (or conserved) under a unitary operation U that acts on every ket in the +collection {|ψµ⟩}. Also, if this unitary acts on only some of the subspaces, say P1 and P2, and +is the identity operator on the others, then while both Gµν(P1) and Gµν(P2) may change, +their sum Gµν(P1) + Gµν(P2) remains unchanged. That Gram matrices are additive and +conserved plays an important role in what follows. +We shall refer to the diagonal elements Gµµ(Pj), which are non-negative, as weights. +As these are rather like probabilities, their additivity and conservation is not surprising. +However, that the same is true of the nondiagonal elements Gµν(Pj) with µ ̸= ν, hereafter +referred to as overlaps, comes as something of a surprise, especially since |ψµ⟩ and |ψν⟩ may +refer to two different runs of an experiment, one on Friday and one on Monday. Nonetheless, +overlaps play a key role in the following analysis, not only as part of the mathematics but +also in a surprising but useful “intuitive” way of thinking about what is going on. The +absolute value of an overlap corresponds to a notion of fidelity in quantum information, but +in general an overlap is a complex number, and the fact that it can be negative as well as +positive is a key element in what follows. +III.2 +Basic Two-Way Protocol +In the following discussion the projective decomposition of the identity (7) that will +concern us is {A, C, B}, where A means that the photon or other quantum particle is in +Alice’s domain, B that it is Bob’s domain, and C in the channel connecting them. At the +6 + +beginning of a two-way protocol of the SLAZ type in which Bob is sending information to +Alice of the photon amplitude is in Alice’s domain A. She initiates the run by sending some +amplitude to Bob through the channel. He then modifies it and returns some or all of it to +Alice, in a manner that depends on the information λ he wishes to transmit. Alice processes +what Bob has returned, and begins the second round by again sending amplitude to Bob, +who again returns it, etc. This can go on for N rounds, following which Alice makes a +measurement to determine the value of λ. +In further detail: At the beginning of round n, Alice uses a unitary An1 acting on A + C +to map some of the amplitude in A into an empty channel C. This amplitude then flows +through the channel to Bob, where he empties the channel into B, does some processing, +and then maps some amplitude back into C. This flows to Alice, who empties C into A +using a unitary An2. We assume that “flow through the channel” does not change anything, +and hence it is convenient not to think of C as divided into close-to-Alice, close-to-Bob, and +in-between subspaces, but simply imagine that Alice and then Bob and then Alice are acting +on a single C subspace. Alice uses unitaries that act on A + C and are independent of λ, +while Bob uses unitaries Bλ +n, that depend on the information λ he wants to transmit, which +act on C + B. Both the Alice and Bob unitaries will in general depend upon the round n, +but Alice’s do not depend upon λ. In addition we impose the restriction that Bob’s actions +are passive in the sense that that the magnitude of the amplitude he sends back to Alice +in round n cannot be greater than what he has just received. This last condition clearly +differentiates these two-way protocols from the one-way protocols of Sec. II.2. +The requirement that Alice and Bob only employ unitary operations simplifies the anal- +ysis. It is true that various published protocols of this type, including the original SLAZ +version to be discussed in Sec. IV, employ nonunitary measurements at intermediate times. +In the cases of interest to us these measurements can be replaced by unitary operations +which allow the measurements to be put off until the end of the run, in a manner indicated +in Sec. II.2 and employed in the discussion in Sec. IV. +To quantify the channel usage for these protocols we use the notions of Cost, equal to the +absolute square of the amplitude for a single use of the channel, and total Cost for the sum of +the Costs involved in a single experimental run, as in Sec. II.1, see (2). An important issue +connected to claims that these protocols are counterfactual has to do with the difference +between Cost and probability, as will be discussed later for the SLAZ protocol in Sec. IV— +the importance of this has already been noted in Sec. II.1. In particular we will be interested +in identifying protocols that minimize the overall Cost, as in the example discussed next. +III.3 +Sending One Classical Bit +In the simplest SLAZ protocol Bob wants to send a single classical bit, λ = 0 or 1, to +Alice. At the start all of the amplitude is in A for both a λ = 0 and a λ = 1 run, so all four +of the initial Gram matrix elements Gµν +0 (A), µ and ν equal to 0 or 1, are equal to 1. The +goal is that after N rounds the result will be +Gµν +N (A) = δµν, +(9) +so that Alice can determine the value of λ Bob has sent by making a measurement in an +appropriate basis. Thus the desired change is that during the course of the run the overlaps, +7 + +the off diagonal elements G01(A) and G10(A), decrease from 1 to 0, while the weights G00(A) +and G11(A), remain equal to 1. +At this point it is worth noting that if both weights are not maintained—for example if +at the end G00(A) = 1 while G11(A) = G01(A) = 0, Alice can still extract the value of λ by +measuring whether or not the photon is in the state |ψ0⟩. Let us call this, for want of a better +term, a partial protocol in contrast to a full protocol that results in (9). A partial protocol +can be used for one-way transmission, and the obvious advantage is that it costs nothing to +transmit λ = 1. A possible disadvantage is that when Alice’s measurement reveals nothing +it could be because of some failure in the channel or in the measuring device. In the present +discussion we focus on full protocols. +A very simple way to implement such a protocol is that on the very first step Alice sends +the entire amplitude to Bob, with a Cost of 1 for this use of the channel. Bob then simply +modifies this using the unitary Bλ and sends it back to Alice, either in one round or several +rounds, with Alice sending nothing back. The Cost for using the channel in the Bob-to-Alice +direction is also 1, see the discussion in Sec. II.2. Hence a total Cost of 2 for the protocol +as a whole. Notice that since there is no restriction on Bλ this rather trivial protocol can be +used to send “quantum” information. From the perspective of Cost, two-way protocols of +the kind under discussion are interesting because a classical bit, λ = 0 or 1, can be sent at +a total Cost of 1 rather than 2. And as shown below in Sec. III.4, the product of the Costs +for λ = 0 and 1 cannot be less than 1. +To discuss the successive steps in protocols that optimize the Cost, we need an appropriate +notation. We will represent kets as row vectors as in the following example +|ψ⟩ = |a; c; b⟩ = |a1, a2, a3; c1, c2; b1, b2⟩ +(10) +where the dimensions of the A, B, and C subspaces are d(A) = 3, d(B) = 2 and d(C) = 2. +Note that we are dealing with a direct sum of subspaces, A ⊕ B ⊕ C, not a tensor product +of subsystems. In much of what follows, B is empty or can be ignored, so |a; c⟩ will suffice; +this and other minor variants in notation should be self-explanatory. +Let us start with an extremely simple one-round full protocol with d(A) = 2, d(C) = 1. +It consists of the following steps: +|a1, a2; c⟩ = |1, 0; 0⟩ → |1/ +√ +2, 0; 1/ +√ +2⟩ +⇒ |1/ +√ +2, 0; (−1)λ/ +√ +2⟩ → |1/ +√ +2, (−1)λ/ +√ +2; 0⟩, +(11) +where 0 means this amplitude is equal to zero; do not confuse it with the label 0 for one of +the two orthogonal states of a qubit. Here → indicates the action of a unitary on A + C +carried out by Alice, and ⇒ a λ-dependent unitary on C carried out by Bob. The action by +Bob could involve intermediate steps requiring the B subspace, but its net effect is only to +change the contents of C, so there is no need to include B in the discussion. +In words: At the outset all of the amplitude is in Alice’s A, a1 = 1. She maps half (in +the sense of the absolute square) of it into C and sends it to Bob, who either sends it back +unchanged in order to transmit λ = 0, or with the opposite phase to send λ = 1. Alice then +empties the channel into the a2 position, using a unitary on A + C that is independent of λ, +as it simply requires interchanging two subspaces. A final measurement by Alice determines +which of the two orthogonal states is present in A, and thus which bit Bob was sending. +8 + +Next consider what is happening to the Gram matrices Gµν(A) and Gµν(C) during the +successive steps. In particular, the overlap G01(A) is equal to 1 at the outset, and the first +step reduces it to 1/2 by placing 1/2 in C. Bob’s action changes G01(C) from +1/2 to −1/2, +and this negative contribution to the overlap moves back into A when Alice empties the +channel, leading to the desired G01(A) = 0. On the other hand, whereas the weight G00(A) +is reduced to 1/2 during the first step, Bob’s action does not change the sign of G00(C), so in +the final step Alice moves this weight back to its initial value of 1, and similarly for G11(A). +Thus the goals of a full protocol have been achieved. +The Costs of using the channel are easily evaluated: 1/2 for the Alice-to-Bob step and +the same for Bob-to-Alice, for a total Cost of Qλ = 1, the same for λ = 0 and 1. These +satisfy the rigorous lower bound worked out below in Sec. III.4, so this protocol is optimal +if one uses total Cost as an appropriate measure of channel usage. +This protocol is easily extended to an equally efficient version involving N rounds, N any +positive integer. Let +ǫ = 1/2N, +(12) +and for the first, n = 1, round replace (11) with +|1, 0; 0⟩ → | +√ +1 − ǫ, 0; √ǫ ⟩ ⇒ | +√ +1 − ǫ, 0; (−1)λ√ǫ ⟩ → | +√ +1 − ǫ, (−1)λ√ǫ; 0⟩, +(13) +while for round n + 1, +| +√ +1 − nǫ, (−1)λ√nǫ; 0⟩ → | +� +1 − (n + 1)ǫ, (−1)λ√nǫ; √ǫ⟩ +⇒ | +� +1 − (n + 1)ǫ, (−1)λ√nǫ; (−1)λ√ǫ ⟩ → | +� +1 − (n + 1)ǫ, (−1)λ� +(n + 1)ǫ; 0⟩, +(14) +where it is straightforward to show that there exists a λ-independent unitary for the last +step. The final result at the end of round N is the same as in (11), the case in which N = 1, +and again the total Cost is Q0 = Q1 = 1, independent of λ. One can also let ǫ depend on n, +thus ǫn > 0 for round n, subject to the condition +� +n +ǫn = 1/2, +(15) +and the Cost is again equal to 1. +There are other protocols with larger Costs which may have some practical advantage. +Thus rather than a scalar amplitude, Alice might use photon polarization, say horizontal +H, which Bob could return as H to send λ = 0 or rotate to vertical V to send λ = 1. +In this case the Costs are Q0 = Q1 = 2, so twice that for an optimal one-way protocol. +However, there is now no need to maintain a particular phase relation between what is in +Alice’s domain and what is available to Bob during each round. If polarization is easier to +maintain than phase—one leaves that up to the experts—one could imagine the added Cost +being worthwhile if Alice has a large apparatus capable of generating single photons, while +Bob, off on a trip to spy on Eve, needs only something easily carried in a suitcase. +The protocol used in SLAZ, in which Bob returns the amplitude for λ = 0, but absorbs +it or feeds it to a measuring apparatus for λ = 1, looks less promising. Because the λ = 1 +weight only moves from Alice to Bob it is difficult to have G11(A) = 1 at the end of the +protocol. In fact SLAZ, discussed in Sec. IV, employs a clever trick (“Zeno effect”) to get +around this problem, albeit at the cost of a large number of rounds to keep the probability +of failure small, and a large channel usage Cost for one of the bits. +9 + +III.4 +Lower Bound on Costs +The additivity and conservation properties of the Gram matrix Gµν introduced in Sec. III.1 +will now be used to obtain lower bounds on the total Cost of two-way protocols of the sort +exemplified by, but not limited to, the case of 1 classical bit discussed above in Sec. III.3. +Using the |a; c⟩ notation of (10)—the b entry is not needed in the following discussion—round +n of an N round protocol consists of the following steps carried out on A + C: +|aµ; 0⟩n → |¯aµ; cµ⟩n ⇒ |¯aµ; ˆcµ⟩n → |aµ; 0⟩n+1. +(16) +Here µ labels the bit which Bob is transmitting during this run. Thus after Alice uses a +unitary An1 on A + C to move some amplitude, |cµ⟩n into an initially empty channel. Bob +applies a unitary Bµ +n to C + B, leading to an amplitude |ˆcµ⟩n—note the hat added to c—in +the channel. If Bob’s action is passive, as assumed in Sec. III.3 (and in the later discussion +of SLAZ in Sec. IV), one would have +∥ˆcµ∥n ≤ ∥cµ∥n, +(17) +but this conditions is actually not needed to obtain the general results and inequalities given +below, which thus apply equally to one-way multi-time transmission. As a final step Alice +employs a unitary An2 on A + C to empty the channel by placing its amplitude into A. It is +important that Alice’s unitaries An1 and An2, unlike Bob’s Bµ +n, do not depend upon µ, which +can be different in different runs of the experiment. +The change in the Gram matrix associated with A during round n is given by +Gµν +n+1(A) − Gµν +n (A) = ⟨aµ|aν⟩n+1 − ⟨aµ|aν⟩n = ⟨ˆcµ|ˆcν⟩n − ⟨cµ|cν⟩n, +(18) +where ⟨aµ|aν⟩n is the inner product of |aµ⟩n and |aν⟩n. The equality follows from the fact that +Gµν(A + C) is invariant under An1 and An2, and additive: Gµν(A + C) = Gµν(A) + Gµν(C). +To discuss the total change during N rounds, n = 1, 2, . . . N, it is convenient to define +|Cµ⟩ := {|cµ⟩1, |cµ⟩2, . . . |cµ⟩N}, +| ˆCµ⟩ := {|ˆcµ⟩1, |ˆcµ⟩2, . . . |ˆcµ⟩N} +(19) +with inner products +⟨Cµ|Cν⟩ = +N +� +n=1 +⟨cµ|cν⟩n, +⟨ ˆCµ| ˆCν⟩ = +N +� +n=1 +⟨ˆcµ|ˆcν⟩n. +(20) +Summing (18) over N rounds yields the following formula +∆Gµν(A) = Gµν +N (A) − Gµν +0 (A) = ⟨ ˆCµ| ˆCν⟩ − ⟨Cµ|Cν⟩, +(21) +for the total change in the A portion of the Gram matrix during the full protocol. This +quantity is bounded by +|∆Gµν(A)| ≤ |⟨ ˆCµ| ˆCν⟩| + |⟨Cµ|Cν⟩| ≤ ∥ ˆCµ∥ · ∥ ˆCν∥ + ∥Cµ∥ · ∥Cν∥ +(22) +using the norm ⟨Cµ|Cµ⟩ = ∥Cµ∥2. +10 + +Next define the total Cost Kµ for Alice-to-Bob and ˆKµ for Bob-to-Alice uses of the +channel, with Qµ their sum: +Kµ = ⟨Cµ|Cµ⟩ = ∥Cµ∥2, +ˆKµ = ⟨Cµ|Cµ⟩ = ∥ ˆCµ∥2, +Qµ = Kµ + ˆKµ. +(23) +Combining (22) and (23) gives +|∆Gµν(A)| ≤ +√ +KµKν + +� +ˆKµ ˆKν ≤ +� +QµQν. +(24) +This yields an upper bound +∆Gµµ(A) ≤ Qµ +(25) +for a non-negative diagonal weight, and for the off-diagonal overlap: +|∆Gµν(A)| ≤ +� +QµQν. +(26) +In the particular case of the 1-bit two-way protocol, Sec. III.3, the aim is to reduce G01(A) +from its initial value of 1 to 0 after N rounds. Setting µ = 0 and ν = 1 in (26), we see that +to achieve this result it is necessarily the case that the Costs Q0 and Q1 for sending bits +λ = 0 and λ = 1 must satisfy the condition +Q0Q1 ≥ 1. +(27) +This is satisfied as an equality with Q0 = Q1 = 1 for the specific protocols discussed in +Sec. III.3, which shows that they are optimal if total Cost is used as a measure. For more +general protocols there is no reason to expect that the two Costs will be equal, and in that +case if, say, the Cost for λ = 1 is made very small, that for λ = 0 must be very large. This +is in fact the case for the original SLAZ protocol, as discussed below in Sec. IV, which thus +provides an interesting illustration of such a tradeoff. +IV +The SLAZ Protocol +IV.1 +Description of the Protocol +The original SLAZ protocol differs from the simpler situation discussed in Sec. III.3 in +two respects. First, it has a hierarchical structure: there are a large number M of outer +rounds or cycles, each of which consists of a large number N of inner rounds or cycles, and +the protocol will succeed with high probability provided +1 ≪ M ≪ N. +(28) +Second, while Bob sends a bit λ = 0 by reflecting the amplitude sent by Alice back into +the channel, for λ = 1 he simply empties the channel, which can be described as a unitary +operation in which the C amplitude is placed in Bob’s subspace B. In addition, the original +SLAZ protocol and some of its modifications involve measurements at intermediate times, +and these will be replaced in the discussion below by unitary operations in the manner +suggested at the end of Sec. II.2. +11 + +We use a notation +|ψ⟩ = |a1, a2, a3, a4; c; b⟩ +(29) +of the form introduced in (10), where the aj are scalar amplitudes in Alice’s domain A = +A1+A2+A3+A4, c is the amplitude the channel C, and b is in Bob’s domain B. Here capital +letters are used to denote subspaces and the corresponding projectors, while lower case letters +indicate (in general complex) scalar amplitudes. While A4 and B are one-dimensional, one +can also make these larger spaces for reasons that will appear during the discussion. An +abbreviated notation is often convenient: |a2, a3⟩ in the case of a unitary acting on A2 + A3 +while all the other amplitudes remain unchanged. +Central to the discussion are unitary operators that represent a rotation by an angle θ +on a 2-dimensional space: +R(θ)|α, β⟩ = |α cos θ − β sin θ, α sin θ + β cos θ⟩. +(30) +In particular, RM and RN, defined in terms of small angles, play a central role: +RM := R(θM), +θM := π/(2M), +RN := R(θN), +θN := π/(2N). +(31) +Note in particular that +(RM)M = (RN)N = R(π/2); +R(π/2) |α, β⟩ = | − β, α⟩. +(32) +In view of the fact that θN is a small angle, the following approximations turn out to be +userful: +cos θN ≈ exp[−θ2 +N/2] = exp[−π2/(8N2)] ≈ 1 − π2/(8N2), +(cos θN)N ≈ exp[−π2/(8N)] ≈ 1 − π2/(8N) ≈ 1, +(33) +and similarly if N is replaced by M. +These approximations are useful for understanding the overall structure of the protocol, +which is the following. At the beginning of outer round m, 1 ≤ m ≤ M, RM is applied to +A1 + A2 to yield, +|a1, a2⟩λ = RM|¯a1, ¯a2⟩λ, +(34) +where ¯a1 and ¯a2 are the values of these amplitudes at the end of the previous outer round. In +general they depend upon which bit λ = 0 or 1 is being transmitted, whence the superscript +label, even though Alice’s operations do not depend upon λ. The very first outer round +m = 1 begins by applying (34) to the starting state (29) with a1 = 1 and all the other +amplitudes equal to zero. +The initial step (34) of outer round m is followed by a sequance of N inner rounds, each +involving the following steps, here displayed using the type of notation employed in Sec. III.3, +but now with reference to the subspace A2 + A3 + C. +|a2, a3; c = 0⟩ → |a′ +2, a′ +3; c = 0⟩ → |a′ +2, 0; a′ +3⟩ +⇒ |a′ +2, 0; (1 − λ)a′ +3⟩ → |a′ +2, (1 − λ)a′ +3; 0⟩, +(35) +where +|a′ +2, a′ +3⟩ = RN|a2, a3⟩. +(36) +12 + +In words, Alice applies the unitary rotation RN, (31), to A2 +A3, and then maps A3 into the +empty channel. Next comes Bob’s action, indicated by ⇒, to either reflect the amplitude a′ +3 +back into C if he is sending λ = 0, or shift it into his domain B, leaving the channel empty +if sending λ = 1. Alice, who does not know the value of λ, maps whatever is in the channel +back into A3 by a unitary that simply exchanges the contents of A3 and C, and then begins +the next inner round. The result of N inner rounds in succession is +|a2, a3⟩ → +� +|0, a2⟩ for λ = 0, +|(cos θN)Na2, 0⟩ ≈ |a2, 0⟩ for λ = 1. +(37) +where the λ = 1 approximation is justified when N is very large, see (33). +Following the N inner rounds Alice completes this outer round by applying a unitary to +A3 + A4 that empties the contents of A3 into A4. For λ = 1, a3 = 0, (37), so this emptying +step is trivial, while for λ = 0 it is nontrivial, and plays a signficant role in understanding +the true Costs of the protocol. In the original SLAZ protocol this emptying step is replaced +by a measurement, but instead of a measurement one can just as well let the amplitudes +accumulate in A4, which is the perspective used here. +At the end of the protocol after +completing M outer rounds the final result is +λ = 0 : |a1 = 1 − r1, a2 = 0, a3 = 0, a4 = r4, c = 0, b = 0⟩ +λ = 1 : |a1 = s1, a2 = 1 − s2, a3 = 0, a4 = 0, c = 0, b = sb⟩, +(38) +where the quantities denoted by rj and sk are small corrections, of order 1/M or M/N +If these are ignored, all the amplitude is in A1 for λ = 0 or A2 for λ = 1, and a simple +measurement allows Alice to determine which bit Bob sent. +IV.2 +Calculation of Costs and Overlap +It is fairly straightforward to work out the Costs for the SLAZ protocol using approxi- +mations justified by 1 ≪ M ≪ N, and the results are summarized in Sec. IV.3 below. We +begin with the case λ = 1. If one ignores small quantities, the nonzero components of |ψ⟩m +at the beginning and at the end of outer round m are +a1 = cos(mθM), +a2 = sin(mθM), +(39) +and since MθM = π/2, at the end of outer round M the result is the λ = 1 line in (38). +The probability that the photon arrives in B during outer round m—the probability that +Bob will detect it if he uses a measuring device—is the sum of the absolute squares of the +amplitudes in the channel C in the N inner rounds, as this is an incoherent process: +N(sin(mθM))2(sin(θN))2 ≈ (π2/4)(sin(mθ/M))2/N. +(40) +Summing over m gives the total probability +K1 = Q1 = (π2/8)(M/N). +(41) +that the photon will end up in Bob’s domain by the end of the protocol, which is the same +as the total Cost for λ = 1. +13 + +In the case λ = 0, any amplitude placed by Alice in C is immediately returned by Bob, +and at the end of each outer round is emptied into a4, so that at the end of outer round m +the state is +|ψ⟩m = |a1 = (cos θM)m, a2 = 0, a3 = 0, a4, c = 0, b = 0⟩. +(42) +For m = M this is (38) with r1 = (π2/8M). Thus at the end of the protocol a2, a3, c and +b are strictly zero. The Cost associated with inner round n—note that the channel is used +twice—is +2[sin θM · sin(nπ/2N)]2. +(43) +Summing over n gives a total of (π2/4)(N/M2) for each outer round, and hence for M outer +rounds a total Cost of +Q0 = (π2/4)(N/M2). +(44) +To compute the total change in overlap ∆G01(A), note that since for λ = 1 Bob does not +return an amplitude, only the ⟨Cµ|Cν⟩ term in (21) contributes. The contribution for inner +round n of outer round m is the product of the factors +[sin θM sin(nθN)] · [sin(mθM) sin θN] +(45) +corresponding to λ = 0 and 1. Summing them yields +(sin θM sin θN) +M,N +� +m,n +sin(mθM) sin(nθN) = (π2/4MN)(4MN/π2) = 1, +(46) +and hence +∆G01(A) = −1, +(47) +as expected. +IV.3 +Discussion of Costs and Probabilities +To summarize the results of Sec. IV.2: The total Costs Q0 and Q1 for λ = 0 and 1 are: +Q0 = (π2/4)(N/M), +Q1 = (π2/8)(M/N), +Q0Q1 ≈ 3.044. +Q0/Q1 = 2N2/M2. +(48) +Given that M ≪ N, Q1 is miniscule, Q0 is enormous, while their product is of order 1, and +satisfies the rigorous bound (27). The case λ = 1 is the easiest to understand. Since Bob +does not return the amplitude put into the channel by Alice, the Bob-to-Alice Cost ˆK1 is +zero. The Alice-to-Bob Cost is |sb|2 in (38), i.e., the probability that at the very end the +photon is in Bob’s domain. The physical reason for this is that the process by which the +amplitude gets there is incoherent, no quantum interference, since no amplitude goes back +through the channel. Bob could either accumulate these amplitudes until the end of the +protocol and then measure to see if the photon is in B, or carry out a measurement at the +end of each inner round; in either case the probabilility of his detecting the photon is |sb|2 in +(38). The situation is analogous to the use of intermediate time measurements in a one-way +protocol as discussed at the end of Sec. II.2. +The enormous Cost Q0 for λ = 0 comes about because Bob repeatedly returns the +amplitude sent by Alice in a coherent process. While the amplitude bouncing back and +14 + +forth through the channel is relatively small, of order 1/M, multiplying its absolute square +by 2N, the number of times this amplitude is is in the channel during each outer round, +leads to a Cost of order N/M2 for each outer round, and hence a total of order N/M for the +complete process. +Clearly the large value of Q0 means the claim that protocol is counterfactual cannot +be maintained if Cost is used as a criterion for channel use, so it is worth discussing how +the authors of SLAZ reached a different conclusion. In essence their reasoning was based +on the small value of the amplitude in A3 at the end of an outer round just before it is +transferred to A4, as per the discussion in Sec. IV.1. The absolute square of this amplitude +is the probability that the corresponding detector D3 in Fig. 2(b) in the SLAZ paper will +be triggered. This amplitude was earlier oscillating back and forth inside the subspace with +projector S = A2+A3+C, and hence it is reasonable to assume that if this detector triggers, +the photon was earlier in S during all N inner rounds making up this particular outer round1. +As this probability is of order 1/M2, the probability that one of the D3 detectors triggers +during the M outer rounds that make up a given run is of order 1/M, and hence small. +There are two serious objections to using this small probability to justify the claim that +the protocol is counterfactual: one classical and the other quantum. Let us start with the +former. During a particular outer round the photon amplitude in a λ = 0 run rattles back +and forth inside S a total of N times, and in particular it is in C a total of 2N times. +Consider a stochastic classical protocol for transmitting information in which most of the +time Alice and Bob exchange no information at all. However, with a small probability ǫ +Alice sends a little white ball into the channel leading to Bob, who colors it green or red +and sends it back to Alice to convey one bit of information. She records the color, paints +the ball white, and returns it to Bob who again colors it to send a second bit, and so forth, +for a total of N rounds. The average rate of transmitting information is Nǫ bits, and one +cannot simply throw away the factor of N and claim that this protocol is in some sense +‘counterfactual’. +The quantum difficulty has to do with what can be inferred from the probability that +the photon was in S = A2 + A3 + C during the inner rounds that make up a particular outer +round. One may be tempted to use classical reasoning and assume that the probabilities of +being in each of the mutually exclusive regions, A2, A3, and C, that combine to make up S +are well-defined and sum to the probability of being in S. But in the presence of quantum +interference this sort of reasoning is invalid and leads to paradoxes. See the discussion of +parallel channels in Sec. II.1. +V +Conclusion +The original SLAZ proposal has motivated a large number of papers; see the extensive +bibliographies in [3, 4]. Merely trying to summarize them, much less provide a detailed re- +view, lies outside the scope of the present paper. Broadly speaking, this literature consists +of modifications, extensions, or improvements of the original SLAZ scheme; along with crit- +icisms of the claim that these protocols are counterfactual and replies to such criticisms. It +is hoped that the following rather brief comments will provide some orientation. +1This assumption can be justified using Consistent Histories; see the discussion of measurements in [5,6] +15 + +Significant extensions of the original SLAZ scheme by the last three members of the +original collaboration include: the use of a phase change rather than absorption to transmit +the λ = 1 bit [7]; a scheme to transmit quantum states by multiple iterations of the original +SLAZ scheme [8]; using many photons in place of a single photon to transmit a classical +bit [4]. These and others are certainly interesting ideas from the perspective of transmitting +quantum information, and worth further exploration. +On the other hand, in these and all other extensions or modifications of SLAZ this author +has examined, the claim that the protocol is “counterfactual,” in the sense that the total use +of a quantum channel is negligible in the asymptotic limit, is subject to the same objections +discussed in Sec. IV.3: An improper use of probabilistic reasoning in a situation where +quantum interference means probabilities cannot be defined, and where even in a classical +situation Cost would be better than probability as a measure of channel usage. The total +Cost remains finite in the asymptotic limit of a very large number of steps, which means that +counterfactual claims should be dropped. Doing so will aid, not hinder, the serious study of +these interesting quantum schemes for transmitting information. +Shortly after the original SLAZ publication, Vaidman published a Comment [9] claiming +that in the λ = 0 case in which Bob reflects the amplitude rather than absorbing it, the +photon which was later (with high probability) detected by Alice must at an earlier time have +been in the channel C. In their Reply [10] the SLAZ authors pointed out this way of reasoning +about events at an intermediate time in the presence of quantum interference was invalid, +and leads to paradoxes, a position supported by the analysis in Sec. IV.2 above. However, +they then repeated their original counterfactual claim which itself is based on a defective +understanding of probabilities at an intermediate time. A later and much more extended +criticism of counterfactuality claims by Vaidman [11] suffers from the same difficulty as his +earlier Comment. +Some years later Aharonov and Vaidman [12] claimed to have found a scheme of the +general SLAZ type which is genuinely counterfactual. +However, when measurements or +absortion of a photon at intermediate times are replaced by unitary processes—mapping +amplitude into an empty subspace reserved for this purpose, as discussed in Sec. IV.1—the +inequality in Sec. III.4 applies to this case and undermines the counterfactual claim. The +fundamental difficulty with such claims is that the Hilbert space projector which identifies the +position of a particle at some intermediate time does not commute with the one representing +the quantum state evolving unitarily in time. +The most significant contributions of the present paper to the analysis of SLAZ-type +protocols is the use of Cost as a measure of channel usage, and the use of Gram matrices for +discussing information transfer at intermediate times in the presence of quantum interference. +In particular, the fact that these Gram matrices are additive over subspaces and invariant +(“conserved”) under unitary time transformations, plays a key part in the discussions in +Sec. III. A rather surprising feature is the role of off-diagonal elements, “overlaps”, as a type +of information measure which, unlike most such measures, is not in general positive. That it +can be negative plays a very signficant part in understanding its intuitive role in information +transfer. That its total change on Alice’s side must be −1 during the course of a successful +protocol is confirmed for the SLAZ protocol in Sec. IV.2. +This use of Gram matrices requires that the intermediate time steps be unitary. In the +case of SLAZ, measurements at intermediate times can be eliminated by mapping photon +16 + +amplitude into empty subspaces, and this can be achieved in certain other cases, e.g., the +Aharonov and Vaidman protocol [12]. However, it is less clear whether something similar +could be done in a case in which, for example, Alice uses measurements at intermediate times +to change later steps in the protocol in hopes of reducing the total Cost. This author believes +that such an improvement is impossible, because measurements themselves are quantum +processes whose description simply requires a large enough Hilbert space in Alice’s domain +[13]. But this has not yet been demonstrated. +And what is special about classical information? Sending an arbitrary one-qubit quantum +state from Alice to Bob using the 2-way protocol of Sec. III.3 could be done with a Cost of 2, +which is to say twice that of simply using a 1-way protocol from Bob to Alice. That this is +the minimum seems likely, but has not been demonstrated. What about a two-way protocol +with all the amplitude starting on Alice’s side, with the aim of a perfect transmission of each +of two specified nonorthogonal states from Bob to Alice—what would be the minimum total +Cost? +An interesting feature of the original SLAZ protocol is the enormous ratio 2N2/M2, see +(48), of the Costs to transmit λ = 0 and 1, in contrast to the relatively simple protocols +discussed in Sec. III.3 for which the ratio is 1. Because the success of SLAZ depends upon N +being much larger than M, this large ratio presumably has something to do with Bob’s not +sending anything back through the channel when λ = 1. Might there be some interesting +physical principles, in addition to the Zeno effect, hiding here and waiting to be explored? +In conclusion it is hoped that the thinking and tools employed in this paper will be useful +for studying other problems of quantum information at intermediate times in situations +where the careless use of ill-defined probabilities generates paradoxes rather than physical +understanding. In particular, information transfer among three or more parties, of current +interest in the study of quantum networks, might benefit from the sort of analysis used here. +Acknowledgements +The author expresses his appreciation to Carnegie-Mellon University and its Physics +Department for continuing support of his activities as an emeritus faculty member. +References +[1] Hatim Salih, Zheng-Hong Li, M. Al-Amri, and M. Suhail Zubairy. Protocol for di- +rect counterfactual quantum communication. +Phys. Rev. Lett., 110:170502, 2013. +arXiv:1206.2042. +[2] Johann von Neumann. Mathematische Grundlagen der Quantenmechanik. Springer- +Verlag, Berlin, 1932. English translation by R. T. Beyer: Mathematical Foundations of +Quantum Mechanics, Princeton University Press, Princeton, New Jersey (1955). +[3] Jonte R. Hance, James Ladyman, and John Rarity. How quantum is quantum counter- +factual communication? Found. Phys., 51:12, 2021. arXiv:1909.07530. +17 + +[4] Zheng-Hong Li, Shang-Yue Feng, M. Al-Amri, and M. Suhail Zubairy. Direct counter- +factual quantum communication protocol beyond a single photon source. Phys. Rev. A, +106:032610, 2022. arXiv:2202.03935. +[5] Robert B. Griffiths. What quantum measurements measure. Phys. Rev. A, 96:032110, +2017. arXiv:1704.08725. +[6] Robert B. Griffiths. +The Consistent Histories Approach to Quantum Mechanics. +Stanford Encyclopedia of Philosophy, 2019. +https://plato.stanford.edu/entries/qm- +consistent-histories/. +[7] Zheng-Hong Li, M. Al-Amri, and M. Suhail Zubairy. Direct quantum communication +with almost invisible photons. Phys. Rev. A, 89:052334, 2014. +[8] Zheng-Hong Li, M. Al-Amri, and M. Suhail Zubairy. Direct counterfactual transmission +of a quantum state. Phys. Rev. A, 92:052315, 2015. +[9] Lev Vaidman. Tracing the past of a quantum particle. Phys. Rev. A, 89:024102, 2014. +arXiv:1312.7566. +[10] Hatim Salih, Zheng-Hong Li, M. Al-Amri, and M. Suhail Zubairy. Salih et al. reply. +Phys. Rev. Lett., 112:208902, 2014. arXiv:1404.5392. +[11] L. Vaidman. +Counterfactuality of ‘counterfactual’ communication. +J. Phys. A, +48:465303, 2015. arXiv:1410.2723. +[12] Yakir Aharonov and Lev Vaidman. +Modification of counterfactual communication +protocols that eliminates weak particle traces. +Phys. Rev. A, 99:010103, 2019. +arXiv:1805.10634. +[13] For a consistent quantum-mechanical description of the measuring process, see [5], the +relevant sections of [6], and Chs. 17 and 18 of [14]. +[14] Robert B. Griffiths. Consistent Quantum Theory. Cambridge University Press, Cam- +bridge, U.K., 2002. http://quantum.phys.cmu.edu/CQT/. +18 + diff --git a/EtAzT4oBgHgl3EQfw_5J/content/tmp_files/load_file.txt b/EtAzT4oBgHgl3EQfw_5J/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..7b42b81b3b1af0b1df6995576f628783d795b131 --- /dev/null +++ b/EtAzT4oBgHgl3EQfw_5J/content/tmp_files/load_file.txt @@ -0,0 +1,796 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf,len=795 +page_content='arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content='01730v1 [quant-ph] 4 Jan 2023 Multitime Quantum Communication: Interesting But Not Counterfactual Robert B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' Griffiths∗ Department of Physics Carnegie Mellon University Pittsburgh, PA 15213 Version of 4 January 2023 Abstract A protocol for transmission of information between two parties introduced by Salih et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=', Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' 110 (2013) 170502 (hereafter SLAZ), involves sending quan- tum amplitude back and forth through a quantum channel in a series of steps, rather than simply sending a signal in one direction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' The authors claimed that their protocol was “counterfactual” in the sense that while a quantum channel is needed to connect the parties, its actual usage becomes vanishingly small in the asymptotic limit as the number of steps tends to infinity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' Here we show that this claim is incorrect because it uses probabilistic reasoning that is not valid at intermediate times in the presence of quantum interference.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' When ill-defined probabilities are replaced with a well-defined measure of channel usage here called “Cost”, equal to the absolute square of the am- plitude sent through the channel, the total Cost does not go to zero in the asymptotic limit of a large number of steps, but is bounded below by a rigorous inequality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' A detailed analysis shows that this bound is satisfied in the SLAZ protocol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' The analysis leading to the bound uses the fact that the Gram matrix formed by inner products of a collection of pure quantum states is additive over Hilbert subspaces and invariant under unitary time transformations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' Its off-diagonal elements, which in general are not positive, play a significant role in the formal argument as well as providing a somewhat strange way of visualizing the transfer of information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' Contents I Introduction 2 II One-Way Protocols 3 II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content='1 Multiple Channels in Parallel .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' 3 II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content='2 One Channel Used Multiple Times .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' 5 ∗Electronic address: rgrif@cmu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content='edu 1 III Two-way Protocols 6 III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content='1 Gram Matrices .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' 6 III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content='2 Basic Two-Way Protocol .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' 6 III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content='3 Sending One Classical Bit .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' 7 III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content='4 Lower Bound on Costs .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' 10 IV The SLAZ Protocol 11 IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content='1 Description of the Protocol .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' 11 IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content='2 Calculation of Costs and Overlap .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' 13 IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content='3 Discussion of Costs and Probabilities .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' 14 V Conclusion 15 I Introduction The motivation for this paper is a scheme for the transmission of quantum informatiom introduced by Salih et.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' al [1] with the title “Protocol for direct counterfactual quantum com- munication”, and referred to hereafter as SLAZ, the initials of the authors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' One ordinarily thinks of the transmission of information as sending a signal through a channel from sender to receiver.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' However the idea in SLAZ is that information can be sent from Bob to Alice if the quantum particle used to carry the information starts off in Alice’s domain, and a part of its quantum amplitude is sent to Bob through a quantum channel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' Bob modifies this is some way before sending (or possibly not sending) it back to Alice, depending on the signal he wants to send.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' Alice then employs what Bob has returned to begin a second round of sending amplitude to Bob, who again modifies it before returning it, and so forth.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' This back-and-forth motion can continue for a large number of rounds until the information that Bob is sending has arrived in Alice’s domain, where she can carry out a measurement or perhaps perform additional processing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' A key feature of protocols of this type is that all the intermediate steps can be represented by purely unitary time evolution, with intermediate time measurements, if any replaced by unitaries—a process of purification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' The use of amplitude rather than particle in the previous paragraph is intentional, be- cause the state of the photon or other particle is in general a coherent superposition of parts associated with different spatial locations: Alice’s domain, Bob’s domain, and the channel connecting them.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' One generally thinks of a particle as something with a spatial location, but in quantum mechanics one cannot simultaneously ascribe particle and wave properties to the same entity at the same time because of wave-particle duality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' In Hilbert-space quan- tum mechanics physical properties, such as location in space, are represented by projectors (Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content='5 of [2]), and when a projector representing a wave, think of |ψ⟩⟨ψ|, does not com- mute with a projector specifying a spatial location, ignoring this fact can rapidly lead to paradoxes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' The double-slit paradox is an example: when a coherent wave passes through the slit system one cannot say through which slit the particle passed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' The term “counterfactual” in the original SLAZ paper has the following significance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' A quantum channel connecting the communicating parties is essential: this is not a case of mysterious nonlocal influences of the sort which are sometimes invoked to explain quantum violations of Bell inequalities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' However, if the number of steps in an SLAZ protocol is 2 sufficiently large, the magnitude of the amplitude sent through the channel in each step can be made very small, and vanishes in the limit as the number of steps tends to infinity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' A similar claim of counterfactuality has been made in much of the rather substantial literature motivated by the original SLAZ publication, which contains various modifications and extensions of the original protocol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' There have also been criticisms of these counter- factual claims, and (of course) replies to criticisms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' The Conclusion, Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' V, of the present paper contains a few remarks about how its results apply to some of these publications, but a review, much less a detailed discussion, lies far outside its scope.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' The interested reader is referred to the extensive bibliographies found in [3,4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' The aim of the present paper is to study the use of quantum channels in protocols of the SLAZ type, in particular the sense in which this usage is or is not counterfactual.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' To this end the concept of the Cost of using a quantum channel, the absolute square of the amplitude passing through it in a particular step in the protocol, is suggested, for reasons discussed in Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' II, as a useful substitute for “probabiilities”, which in a quantum context are often ill-defined.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' The example of multiple channels in parallel, which few would want to claim are “counterfactual”, serves as an introduction to how information can be sent through a single channel in a single direction at multiple times, in a process in which all of the intermediate steps are represented by unitary maps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' The main mathematical results of this paper are in Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' III: Gram matrices and some of their properties are discssed in Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content='1, while Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content='2 gives the basic structure of simple two-way multiple time protocols.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' Section III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content='3 considers simple schemes for transmitting one classical bit, while the rigorous lower bound that undermines various counterfactual claims is the topic of Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' The original SLAZ protocol is studied in detail in Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' In particular the total Cost of transmitting a classical bit λ = 0, in which Bob reflects the amplitude back to Alice, and for transmitting λ = 1, in which he absorbs rather than returns it, are evaluated explicitly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' It turns out that in the asymptotic limit the λ = 1 Cost is miniscule, but that for λ = 0 is enormous, while the product of the two remains finite and satisfies the rigourous bound in Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' The mistaken claim that the SLAZ protocol is counterfactual results from two errors: a concept of channel use which would be questionable even for a classical stochastic process, and an improper use of probabilities in a way that violates quantum principles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' The concluding Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' V has a summary of the main results of this paper, a few comments on some parts of the literature related to SLAZ, and some suggestions for future directions of research.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' This author believes that protocols of the SLAZ type are quite interesting, deserve further exploration, and might contribute to useful ways of studying multipartite and multitime transmission of quantum information, as in quantum networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' And that such studies would prove more fruitful in the absence of misleading claims of counterfactuality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' II One-Way Protocols II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content='1 Multiple Channels in Parallel Think of quantum information as the information carried by a photon as it passes through a quantum channel, such as an optical fiber.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' The information could be encoded in its polarization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' Rather than using a single channel, one could imagine sending the photon as a 3 coherent state through a set of N channels in parallel, using a collection of beamsplitters to divide up the initial amplitude among the different channels, and a corresponding collection to later recombine them.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' Let us suppose that the normalized |Φ⟩ that represents the photon at some intermediate time is a superposition of amplitudes |Φ⟩ = N � n=1 cn|φn⟩ (1) associated with the individual channels, labeled by n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' Define the Cost qn associated with the use of channel n, and the total Cost Q for the channel system as: qn := |cn|2, Q := N � n=1 qn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' (2) If the |φn⟩ and |Φ⟩ are normalized, Q is equal to 1, so one might identify qn with the prob- ability that the photon is in channel n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' But what does that mean?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' In standard (textbook) quantum mechanics probability refers to the outcome of a measurement, but a measurement carried out at an intermediate time, when the quantum state is a coherent superposition over various locations, can alter what occurs later, and hence it is dangerous to associate such a probability with a situation in which a measurement does not take place.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' Another way of viewing this difficulty is to recall that von Neumann (Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content='5 of [2]) identified quantum physical properties—which in classical physics are asociated with sets of points in the classical phase space—with projectors, self-adjoint idempotent operators, P = P † = P 2, on the quantum Hilbert space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' For example, in the case of a spin-half particle the projectors P = (I − σz)/2 R = (I + σx)/2, (3) where I is the identity and σz and σx are Pauli operators, represent the properties Sz = −¯h/2 and Sx = +¯h/2, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' In general, if two projectors P and R commute their product PR = RP represents the property P AND R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' But if they do not commute, neither PR nor RP is a projector, and so neither represents a quantum property.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' In some sense noncommutation is the very essence of quantum mechanics;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' it is what distinguishes it from classical physics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' The use of standard (Kolmogorov) probabilities requires a sample space of mutually-exclusive possibilities, one and only one of which occurs in a particular run of an experiment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' In quantum theory such a sample space is a collection of mutually orthogonal projectors that sum to the identity, a projective decomposition of the identity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' For example, R and I −R in (3) in the case of spin half;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' see (7) below for the general definition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' In quantum mechanics there are often many possible sample spaces that one might be interested in, and carelessly combining incompatible spaces—some projectors in one do not commute with projectors in the other—inevitably leads to paradoxes rather than physical understanding.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' In the present context the dyad |Φ⟩⟨Φ| is a projector that does not commute with any of the projectos |φn⟩⟨φn| for which cn is nonzero, and thus it is meaningless to assign a probability to the latter in a situation where the coherent state |Φ⟩ will later be transformed by the final beamsplitters into the original state that entered the channel system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' 4 II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content='2 One Channel Used Multiple Times The possible advantanges, if any, of using many channels in parallel can also be realized by employing a single channel and sending quantum amplitude through it at a succession of times;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' this is what makes protocols of the SLAZ type of some interest.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' Let us suppose that information is being sent from Bob to Alice.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' One can think of the photon at a particular time as being in a coherent superposition of amplitudes in three different physical locations: Alice’s domain A, Bob’s domain B, and the channel C connecting them.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' The same symbols can be used for the Hilbert-space projectors associated with these locations, thus operators which are self-adjoint and idempotent, A = A† = A2, and mutually orthogonal, AB = BC = AC = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' They sum to the identity A + C + B = I (4) and hence form a projective decomposition of the identity—see the general definition in (7) below.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' A projective decomposition of the identity is the quantum counterpart of the sample space of mutually exclusive possibilities essential for using standard (Kolmogorov) probability theory in the case of a quantum system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' Note that A, B, and C are subspaces of a single Hilbert space, not subsystems represented by a tensor product.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' If the quantum particle possesses other degrees of freedom, these projectors are to be understood using the usual convention as including the identity operator on these additional degrees of freedom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' Thus for a photon, A means that it is located in Alice’s domain, whatever may be its polarization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' Bob can send a particular type of information λ to Alice by starting with a normalized reference state |ψ0⟩ = B|ψ0⟩, the particle is somewhere in his domain B, and using a unitary transformation Bλ acting on the subspace B + C to place it in a state |ψλ 1⟩ = C|ψλ 1⟩ = Bλ|ψ0⟩, (5) in the channel, at which point it travels through the channel to Alice.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' As the channel has no effect except to transmit the particle from one end to the other, we simplify the discussion (here and later) by using the same symbol for the ket that arrives at Alice’s end.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' She then applies a unitary A that does not depend on λ, for she does not know what Bob is sending, to empty the channel and arrive at a final state |ψλ 2⟩ = A|ψλ 2⟩ = A|ψλ 1⟩, (6) which she can then measure or subject to further processing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' This single-round transmission process can be carried out in a number of rounds in which during the n’th round Bob employs a unitary Bλ n acting on the B + C subspace to map an amplitude cn|ψ0⟩ into C, which is initially empty, and which travels to Alice, who uses a unitary An acting on A + C to remove it from the channel, which is then empty and ready for the next round.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' One way to visualize this is that Bob has a domain B of high dimension, and at the outset splits up the initial amplitude |ψ0⟩ into pieces placed in different subspaces of B with the help of a suitable set of beamsplitters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' At round n the unitary Bλ n interchanges the appropriate subspace of B with the empty C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' Alice’s A is also large, and her An maps whatever Bob has sent into an empty subspace reserved for this purpose.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' When the run is completed Alice can then combine the amplitudes in these different subspaces into a smaller space—e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=', using beamsplitters—or she can do a similar combination at the end of each 5 round.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' Of course Alice’s and Bob’s unitaries cannot be chosen independently;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' the two must work together to design the protocol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' What is unknown to Alice is Bob’s choice of λ for a particular run;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' this is the information that she can extract at the end.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' Some multiple-time protocols employ measurements by Alice at intermediate times.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' In cases such as the original SLAZ scheme, discussed below in Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' IV, it is possible to store the amplitude that could have triggered the measuring device in an empty subspace in Alice’s domain and put off the measurement until the protocol is finished.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' Of course, amplitudes that correspond to several measurements in succession can be combined, just as in the case of simultaneous transmission through several channels in parallel, as discussed earlier.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' III Two-way Protocols III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content='1 Gram Matrices Let {Pj} be a projective decomposition of the Hilbert space identity I: I = � j Pj, Pj = P † j , PjPk = δjkPj, (7) and let {|ψµ⟩}, µ = 0, 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=', be a collection of kets on the same Hilbert space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' The Gram matrix Gµν = ⟨ψµ|ψν⟩ = � j Gµν(Pj) = � j ⟨ψµ|Pj|ψν⟩ (8) is additive in that it is a sum over contributions from the different subspaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' In addition, Gµν is invariant (or conserved) under a unitary operation U that acts on every ket in the collection {|ψµ⟩}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' Also, if this unitary acts on only some of the subspaces, say P1 and P2, and is the identity operator on the others, then while both Gµν(P1) and Gµν(P2) may change, their sum Gµν(P1) + Gµν(P2) remains unchanged.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' That Gram matrices are additive and conserved plays an important role in what follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' We shall refer to the diagonal elements Gµµ(Pj), which are non-negative, as weights.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' As these are rather like probabilities, their additivity and conservation is not surprising.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' However, that the same is true of the nondiagonal elements Gµν(Pj) with µ ̸= ν, hereafter referred to as overlaps, comes as something of a surprise, especially since |ψµ⟩ and |ψν⟩ may refer to two different runs of an experiment, one on Friday and one on Monday.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' Nonetheless, overlaps play a key role in the following analysis, not only as part of the mathematics but also in a surprising but useful “intuitive” way of thinking about what is going on.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' The absolute value of an overlap corresponds to a notion of fidelity in quantum information, but in general an overlap is a complex number, and the fact that it can be negative as well as positive is a key element in what follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content='2 Basic Two-Way Protocol In the following discussion the projective decomposition of the identity (7) that will concern us is {A, C, B}, where A means that the photon or other quantum particle is in Alice’s domain, B that it is Bob’s domain, and C in the channel connecting them.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' At the 6 beginning of a two-way protocol of the SLAZ type in which Bob is sending information to Alice of the photon amplitude is in Alice’s domain A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' She initiates the run by sending some amplitude to Bob through the channel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' He then modifies it and returns some or all of it to Alice, in a manner that depends on the information λ he wishes to transmit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' Alice processes what Bob has returned, and begins the second round by again sending amplitude to Bob, who again returns it, etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' This can go on for N rounds, following which Alice makes a measurement to determine the value of λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' In further detail: At the beginning of round n, Alice uses a unitary An1 acting on A + C to map some of the amplitude in A into an empty channel C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' This amplitude then flows through the channel to Bob, where he empties the channel into B, does some processing, and then maps some amplitude back into C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' This flows to Alice, who empties C into A using a unitary An2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' We assume that “flow through the channel” does not change anything, and hence it is convenient not to think of C as divided into close-to-Alice, close-to-Bob, and in-between subspaces, but simply imagine that Alice and then Bob and then Alice are acting on a single C subspace.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' Alice uses unitaries that act on A + C and are independent of λ, while Bob uses unitaries Bλ n, that depend on the information λ he wants to transmit, which act on C + B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' Both the Alice and Bob unitaries will in general depend upon the round n, but Alice’s do not depend upon λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' In addition we impose the restriction that Bob’s actions are passive in the sense that that the magnitude of the amplitude he sends back to Alice in round n cannot be greater than what he has just received.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' This last condition clearly differentiates these two-way protocols from the one-way protocols of Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' The requirement that Alice and Bob only employ unitary operations simplifies the anal- ysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' It is true that various published protocols of this type, including the original SLAZ version to be discussed in Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' IV, employ nonunitary measurements at intermediate times.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' In the cases of interest to us these measurements can be replaced by unitary operations which allow the measurements to be put off until the end of the run, in a manner indicated in Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content='2 and employed in the discussion in Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' To quantify the channel usage for these protocols we use the notions of Cost, equal to the absolute square of the amplitude for a single use of the channel, and total Cost for the sum of the Costs involved in a single experimental run, as in Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content='1, see (2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' An important issue connected to claims that these protocols are counterfactual has to do with the difference between Cost and probability, as will be discussed later for the SLAZ protocol in Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' IV— the importance of this has already been noted in Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' In particular we will be interested in identifying protocols that minimize the overall Cost, as in the example discussed next.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content='3 Sending One Classical Bit In the simplest SLAZ protocol Bob wants to send a single classical bit, λ = 0 or 1, to Alice.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' At the start all of the amplitude is in A for both a λ = 0 and a λ = 1 run, so all four of the initial Gram matrix elements Gµν 0 (A), µ and ν equal to 0 or 1, are equal to 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' The goal is that after N rounds the result will be Gµν N (A) = δµν, (9) so that Alice can determine the value of λ Bob has sent by making a measurement in an appropriate basis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' Thus the desired change is that during the course of the run the overlaps, 7 the off diagonal elements G01(A) and G10(A), decrease from 1 to 0, while the weights G00(A) and G11(A), remain equal to 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' At this point it is worth noting that if both weights are not maintained—for example if at the end G00(A) = 1 while G11(A) = G01(A) = 0, Alice can still extract the value of λ by measuring whether or not the photon is in the state |ψ0⟩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' Let us call this, for want of a better term, a partial protocol in contrast to a full protocol that results in (9).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' A partial protocol can be used for one-way transmission, and the obvious advantage is that it costs nothing to transmit λ = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' A possible disadvantage is that when Alice’s measurement reveals nothing it could be because of some failure in the channel or in the measuring device.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' In the present discussion we focus on full protocols.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' A very simple way to implement such a protocol is that on the very first step Alice sends the entire amplitude to Bob, with a Cost of 1 for this use of the channel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' Bob then simply modifies this using the unitary Bλ and sends it back to Alice, either in one round or several rounds, with Alice sending nothing back.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' The Cost for using the channel in the Bob-to-Alice direction is also 1, see the discussion in Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' Hence a total Cost of 2 for the protocol as a whole.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' Notice that since there is no restriction on Bλ this rather trivial protocol can be used to send “quantum” information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' From the perspective of Cost, two-way protocols of the kind under discussion are interesting because a classical bit, λ = 0 or 1, can be sent at a total Cost of 1 rather than 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' And as shown below in Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content='4, the product of the Costs for λ = 0 and 1 cannot be less than 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' To discuss the successive steps in protocols that optimize the Cost, we need an appropriate notation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' We will represent kets as row vectors as in the following example |ψ⟩ = |a;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' c;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' b⟩ = |a1, a2, a3;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' c1, c2;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' b1, b2⟩ (10) where the dimensions of the A, B, and C subspaces are d(A) = 3, d(B) = 2 and d(C) = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' Note that we are dealing with a direct sum of subspaces, A ⊕ B ⊕ C, not a tensor product of subsystems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' In much of what follows, B is empty or can be ignored, so |a;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' c⟩ will suffice;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' this and other minor variants in notation should be self-explanatory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' Let us start with an extremely simple one-round full protocol with d(A) = 2, d(C) = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' It consists of the following steps: |a1, a2;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' c⟩ = |1, 0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' 0⟩ → |1/ √ 2, 0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' 1/ √ 2⟩ ⇒ |1/ √ 2, 0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' (−1)λ/ √ 2⟩ → |1/ √ 2, (−1)λ/ √ 2;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' 0⟩, (11) where 0 means this amplitude is equal to zero;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' do not confuse it with the label 0 for one of the two orthogonal states of a qubit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' Here → indicates the action of a unitary on A + C carried out by Alice, and ⇒ a λ-dependent unitary on C carried out by Bob.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' The action by Bob could involve intermediate steps requiring the B subspace, but its net effect is only to change the contents of C, so there is no need to include B in the discussion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' In words: At the outset all of the amplitude is in Alice’s A, a1 = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' She maps half (in the sense of the absolute square) of it into C and sends it to Bob, who either sends it back unchanged in order to transmit λ = 0, or with the opposite phase to send λ = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' Alice then empties the channel into the a2 position, using a unitary on A + C that is independent of λ, as it simply requires interchanging two subspaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' A final measurement by Alice determines which of the two orthogonal states is present in A, and thus which bit Bob was sending.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' 8 Next consider what is happening to the Gram matrices Gµν(A) and Gµν(C) during the successive steps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' In particular, the overlap G01(A) is equal to 1 at the outset, and the first step reduces it to 1/2 by placing 1/2 in C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' Bob’s action changes G01(C) from +1/2 to −1/2, and this negative contribution to the overlap moves back into A when Alice empties the channel, leading to the desired G01(A) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' On the other hand, whereas the weight G00(A) is reduced to 1/2 during the first step, Bob’s action does not change the sign of G00(C), so in the final step Alice moves this weight back to its initial value of 1, and similarly for G11(A).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' Thus the goals of a full protocol have been achieved.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' The Costs of using the channel are easily evaluated: 1/2 for the Alice-to-Bob step and the same for Bob-to-Alice, for a total Cost of Qλ = 1, the same for λ = 0 and 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' These satisfy the rigorous lower bound worked out below in Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content='4, so this protocol is optimal if one uses total Cost as an appropriate measure of channel usage.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' This protocol is easily extended to an equally efficient version involving N rounds, N any positive integer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' Let ǫ = 1/2N, (12) and for the first, n = 1, round replace (11) with |1, 0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' 0⟩ → | √ 1 − ǫ, 0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' √ǫ ⟩ ⇒ | √ 1 − ǫ, 0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' (−1)λ√ǫ ⟩ → | √ 1 − ǫ, (−1)λ√ǫ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' 0⟩, (13) while for round n + 1, | √ 1 − nǫ, (−1)λ√nǫ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' 0⟩ → | � 1 − (n + 1)ǫ, (−1)λ√nǫ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' √ǫ⟩ ⇒ | � 1 − (n + 1)ǫ, (−1)λ√nǫ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' (−1)λ√ǫ ⟩ → | � 1 − (n + 1)ǫ, (−1)λ� (n + 1)ǫ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' 0⟩, (14) where it is straightforward to show that there exists a λ-independent unitary for the last step.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' The final result at the end of round N is the same as in (11), the case in which N = 1, and again the total Cost is Q0 = Q1 = 1, independent of λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' One can also let ǫ depend on n, thus ǫn > 0 for round n, subject to the condition � n ǫn = 1/2, (15) and the Cost is again equal to 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' There are other protocols with larger Costs which may have some practical advantage.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' Thus rather than a scalar amplitude, Alice might use photon polarization, say horizontal H, which Bob could return as H to send λ = 0 or rotate to vertical V to send λ = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' In this case the Costs are Q0 = Q1 = 2, so twice that for an optimal one-way protocol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' However, there is now no need to maintain a particular phase relation between what is in Alice’s domain and what is available to Bob during each round.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' If polarization is easier to maintain than phase—one leaves that up to the experts—one could imagine the added Cost being worthwhile if Alice has a large apparatus capable of generating single photons, while Bob, off on a trip to spy on Eve, needs only something easily carried in a suitcase.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' The protocol used in SLAZ, in which Bob returns the amplitude for λ = 0, but absorbs it or feeds it to a measuring apparatus for λ = 1, looks less promising.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' Because the λ = 1 weight only moves from Alice to Bob it is difficult to have G11(A) = 1 at the end of the protocol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' In fact SLAZ, discussed in Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' IV, employs a clever trick (“Zeno effect”) to get around this problem, albeit at the cost of a large number of rounds to keep the probability of failure small, and a large channel usage Cost for one of the bits.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' 9 III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content='4 Lower Bound on Costs The additivity and conservation properties of the Gram matrix Gµν introduced in Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content='1 will now be used to obtain lower bounds on the total Cost of two-way protocols of the sort exemplified by, but not limited to, the case of 1 classical bit discussed above in Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' Using the |a;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' c⟩ notation of (10)—the b entry is not needed in the following discussion—round n of an N round protocol consists of the following steps carried out on A + C: |aµ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' 0⟩n → |¯aµ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' cµ⟩n ⇒ |¯aµ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' ˆcµ⟩n → |aµ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' 0⟩n+1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' (16) Here µ labels the bit which Bob is transmitting during this run.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' Thus after Alice uses a unitary An1 on A + C to move some amplitude, |cµ⟩n into an initially empty channel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' Bob applies a unitary Bµ n to C + B, leading to an amplitude |ˆcµ⟩n—note the hat added to c—in the channel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' If Bob’s action is passive, as assumed in Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content='3 (and in the later discussion of SLAZ in Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' IV), one would have ∥ˆcµ∥n ≤ ∥cµ∥n, (17) but this conditions is actually not needed to obtain the general results and inequalities given below, which thus apply equally to one-way multi-time transmission.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' As a final step Alice employs a unitary An2 on A + C to empty the channel by placing its amplitude into A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' It is important that Alice’s unitaries An1 and An2, unlike Bob’s Bµ n, do not depend upon µ, which can be different in different runs of the experiment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' The change in the Gram matrix associated with A during round n is given by Gµν n+1(A) − Gµν n (A) = ⟨aµ|aν⟩n+1 − ⟨aµ|aν⟩n = ⟨ˆcµ|ˆcν⟩n − ⟨cµ|cν⟩n, (18) where ⟨aµ|aν⟩n is the inner product of |aµ⟩n and |aν⟩n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' The equality follows from the fact that Gµν(A + C) is invariant under An1 and An2, and additive: Gµν(A + C) = Gµν(A) + Gµν(C).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' To discuss the total change during N rounds, n = 1, 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' N, it is convenient to define |Cµ⟩ := {|cµ⟩1, |cµ⟩2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' |cµ⟩N}, | ˆCµ⟩ := {|ˆcµ⟩1, |ˆcµ⟩2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' |ˆcµ⟩N} (19) with inner products ⟨Cµ|Cν⟩ = N � n=1 ⟨cµ|cν⟩n, ⟨ ˆCµ| ˆCν⟩ = N � n=1 ⟨ˆcµ|ˆcν⟩n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' (20) Summing (18) over N rounds yields the following formula ∆Gµν(A) = Gµν N (A) − Gµν 0 (A) = ⟨ ˆCµ| ˆCν⟩ − ⟨Cµ|Cν⟩, (21) for the total change in the A portion of the Gram matrix during the full protocol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' This quantity is bounded by |∆Gµν(A)| ≤ |⟨ ˆCµ| ˆCν⟩| + |⟨Cµ|Cν⟩| ≤ ∥ ˆCµ∥ · ∥ ˆCν∥ + ∥Cµ∥ · ∥Cν∥ (22) using the norm ⟨Cµ|Cµ⟩ = ∥Cµ∥2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' 10 Next define the total Cost Kµ for Alice-to-Bob and ˆKµ for Bob-to-Alice uses of the channel, with Qµ their sum: Kµ = ⟨Cµ|Cµ⟩ = ∥Cµ∥2, ˆKµ = ⟨Cµ|Cµ⟩ = ∥ ˆCµ∥2, Qµ = Kµ + ˆKµ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' (23) Combining (22) and (23) gives |∆Gµν(A)| ≤ √ KµKν + � ˆKµ ˆKν ≤ � QµQν.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' (24) This yields an upper bound ∆Gµµ(A) ≤ Qµ (25) for a non-negative diagonal weight, and for the off-diagonal overlap: |∆Gµν(A)| ≤ � QµQν.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' (26) In the particular case of the 1-bit two-way protocol, Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content='3, the aim is to reduce G01(A) from its initial value of 1 to 0 after N rounds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' Setting µ = 0 and ν = 1 in (26), we see that to achieve this result it is necessarily the case that the Costs Q0 and Q1 for sending bits λ = 0 and λ = 1 must satisfy the condition Q0Q1 ≥ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' (27) This is satisfied as an equality with Q0 = Q1 = 1 for the specific protocols discussed in Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content='3, which shows that they are optimal if total Cost is used as a measure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' For more general protocols there is no reason to expect that the two Costs will be equal, and in that case if, say, the Cost for λ = 1 is made very small, that for λ = 0 must be very large.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' This is in fact the case for the original SLAZ protocol, as discussed below in Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' IV, which thus provides an interesting illustration of such a tradeoff.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' IV The SLAZ Protocol IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content='1 Description of the Protocol The original SLAZ protocol differs from the simpler situation discussed in Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content='3 in two respects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' First, it has a hierarchical structure: there are a large number M of outer rounds or cycles, each of which consists of a large number N of inner rounds or cycles, and the protocol will succeed with high probability provided 1 ≪ M ≪ N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' (28) Second, while Bob sends a bit λ = 0 by reflecting the amplitude sent by Alice back into the channel, for λ = 1 he simply empties the channel, which can be described as a unitary operation in which the C amplitude is placed in Bob’s subspace B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' In addition, the original SLAZ protocol and some of its modifications involve measurements at intermediate times, and these will be replaced in the discussion below by unitary operations in the manner suggested at the end of Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' 11 We use a notation |ψ⟩ = |a1, a2, a3, a4;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' c;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' b⟩ (29) of the form introduced in (10), where the aj are scalar amplitudes in Alice’s domain A = A1+A2+A3+A4, c is the amplitude the channel C, and b is in Bob’s domain B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' Here capital letters are used to denote subspaces and the corresponding projectors, while lower case letters indicate (in general complex) scalar amplitudes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' While A4 and B are one-dimensional, one can also make these larger spaces for reasons that will appear during the discussion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' An abbreviated notation is often convenient: |a2, a3⟩ in the case of a unitary acting on A2 + A3 while all the other amplitudes remain unchanged.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' Central to the discussion are unitary operators that represent a rotation by an angle θ on a 2-dimensional space: R(θ)|α, β⟩ = |α cos θ − β sin θ, α sin θ + β cos θ⟩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' (30) In particular, RM and RN, defined in terms of small angles, play a central role: RM := R(θM), θM := π/(2M), RN := R(θN), θN := π/(2N).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' (31) Note in particular that (RM)M = (RN)N = R(π/2);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' R(π/2) |α, β⟩ = | − β, α⟩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' (32) In view of the fact that θN is a small angle, the following approximations turn out to be userful: cos θN ≈ exp[−θ2 N/2] = exp[−π2/(8N2)] ≈ 1 − π2/(8N2), (cos θN)N ≈ exp[−π2/(8N)] ≈ 1 − π2/(8N) ≈ 1, (33) and similarly if N is replaced by M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' These approximations are useful for understanding the overall structure of the protocol, which is the following.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' At the beginning of outer round m, 1 ≤ m ≤ M, RM is applied to A1 + A2 to yield, |a1, a2⟩λ = RM|¯a1, ¯a2⟩λ, (34) where ¯a1 and ¯a2 are the values of these amplitudes at the end of the previous outer round.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' In general they depend upon which bit λ = 0 or 1 is being transmitted, whence the superscript label, even though Alice’s operations do not depend upon λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' The very first outer round m = 1 begins by applying (34) to the starting state (29) with a1 = 1 and all the other amplitudes equal to zero.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' The initial step (34) of outer round m is followed by a sequance of N inner rounds, each involving the following steps, here displayed using the type of notation employed in Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content='3, but now with reference to the subspace A2 + A3 + C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' |a2, a3;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' c = 0⟩ → |a′ 2, a′ 3;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' c = 0⟩ → |a′ 2, 0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' a′ 3⟩ ⇒ |a′ 2, 0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' (1 − λ)a′ 3⟩ → |a′ 2, (1 − λ)a′ 3;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' 0⟩, (35) where |a′ 2, a′ 3⟩ = RN|a2, a3⟩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' (36) 12 In words, Alice applies the unitary rotation RN, (31), to A2 +A3, and then maps A3 into the empty channel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' Next comes Bob’s action, indicated by ⇒, to either reflect the amplitude a′ 3 back into C if he is sending λ = 0, or shift it into his domain B, leaving the channel empty if sending λ = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' Alice, who does not know the value of λ, maps whatever is in the channel back into A3 by a unitary that simply exchanges the contents of A3 and C, and then begins the next inner round.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' The result of N inner rounds in succession is |a2, a3⟩ → � |0, a2⟩ for λ = 0, |(cos θN)Na2, 0⟩ ≈ |a2, 0⟩ for λ = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' (37) where the λ = 1 approximation is justified when N is very large, see (33).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' Following the N inner rounds Alice completes this outer round by applying a unitary to A3 + A4 that empties the contents of A3 into A4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' For λ = 1, a3 = 0, (37), so this emptying step is trivial, while for λ = 0 it is nontrivial, and plays a signficant role in understanding the true Costs of the protocol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' In the original SLAZ protocol this emptying step is replaced by a measurement, but instead of a measurement one can just as well let the amplitudes accumulate in A4, which is the perspective used here.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' At the end of the protocol after completing M outer rounds the final result is λ = 0 : |a1 = 1 − r1, a2 = 0, a3 = 0, a4 = r4, c = 0, b = 0⟩ λ = 1 : |a1 = s1, a2 = 1 − s2, a3 = 0, a4 = 0, c = 0, b = sb⟩, (38) where the quantities denoted by rj and sk are small corrections, of order 1/M or M/N If these are ignored, all the amplitude is in A1 for λ = 0 or A2 for λ = 1, and a simple measurement allows Alice to determine which bit Bob sent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content='2 Calculation of Costs and Overlap It is fairly straightforward to work out the Costs for the SLAZ protocol using approxi- mations justified by 1 ≪ M ≪ N, and the results are summarized in Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content='3 below.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' We begin with the case λ = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' If one ignores small quantities, the nonzero components of |ψ⟩m at the beginning and at the end of outer round m are a1 = cos(mθM), a2 = sin(mθM), (39) and since MθM = π/2, at the end of outer round M the result is the λ = 1 line in (38).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' The probability that the photon arrives in B during outer round m—the probability that Bob will detect it if he uses a measuring device—is the sum of the absolute squares of the amplitudes in the channel C in the N inner rounds, as this is an incoherent process: N(sin(mθM))2(sin(θN))2 ≈ (π2/4)(sin(mθ/M))2/N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' (40) Summing over m gives the total probability K1 = Q1 = (π2/8)(M/N).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' (41) that the photon will end up in Bob’s domain by the end of the protocol, which is the same as the total Cost for λ = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' 13 In the case λ = 0, any amplitude placed by Alice in C is immediately returned by Bob, and at the end of each outer round is emptied into a4, so that at the end of outer round m the state is |ψ⟩m = |a1 = (cos θM)m, a2 = 0, a3 = 0, a4, c = 0, b = 0⟩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' (42) For m = M this is (38) with r1 = (π2/8M).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' Thus at the end of the protocol a2, a3, c and b are strictly zero.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' The Cost associated with inner round n—note that the channel is used twice—is 2[sin θM · sin(nπ/2N)]2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' (43) Summing over n gives a total of (π2/4)(N/M2) for each outer round, and hence for M outer rounds a total Cost of Q0 = (π2/4)(N/M2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' (44) To compute the total change in overlap ∆G01(A), note that since for λ = 1 Bob does not return an amplitude, only the ⟨Cµ|Cν⟩ term in (21) contributes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' The contribution for inner round n of outer round m is the product of the factors [sin θM sin(nθN)] · [sin(mθM) sin θN] (45) corresponding to λ = 0 and 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' Summing them yields (sin θM sin θN) M,N � m,n sin(mθM) sin(nθN) = (π2/4MN)(4MN/π2) = 1, (46) and hence ∆G01(A) = −1, (47) as expected.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content='3 Discussion of Costs and Probabilities To summarize the results of Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content='2: The total Costs Q0 and Q1 for λ = 0 and 1 are: Q0 = (π2/4)(N/M), Q1 = (π2/8)(M/N), Q0Q1 ≈ 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content='044.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' Q0/Q1 = 2N2/M2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' (48) Given that M ≪ N, Q1 is miniscule, Q0 is enormous, while their product is of order 1, and satisfies the rigorous bound (27).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' The case λ = 1 is the easiest to understand.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' Since Bob does not return the amplitude put into the channel by Alice, the Bob-to-Alice Cost ˆK1 is zero.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' The Alice-to-Bob Cost is |sb|2 in (38), i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=', the probability that at the very end the photon is in Bob’s domain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' The physical reason for this is that the process by which the amplitude gets there is incoherent, no quantum interference, since no amplitude goes back through the channel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' Bob could either accumulate these amplitudes until the end of the protocol and then measure to see if the photon is in B, or carry out a measurement at the end of each inner round;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' in either case the probabilility of his detecting the photon is |sb|2 in (38).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' The situation is analogous to the use of intermediate time measurements in a one-way protocol as discussed at the end of Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' The enormous Cost Q0 for λ = 0 comes about because Bob repeatedly returns the amplitude sent by Alice in a coherent process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' While the amplitude bouncing back and 14 forth through the channel is relatively small, of order 1/M, multiplying its absolute square by 2N, the number of times this amplitude is is in the channel during each outer round, leads to a Cost of order N/M2 for each outer round, and hence a total of order N/M for the complete process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' Clearly the large value of Q0 means the claim that protocol is counterfactual cannot be maintained if Cost is used as a criterion for channel use, so it is worth discussing how the authors of SLAZ reached a different conclusion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' In essence their reasoning was based on the small value of the amplitude in A3 at the end of an outer round just before it is transferred to A4, as per the discussion in Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' The absolute square of this amplitude is the probability that the corresponding detector D3 in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' 2(b) in the SLAZ paper will be triggered.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' This amplitude was earlier oscillating back and forth inside the subspace with projector S = A2+A3+C, and hence it is reasonable to assume that if this detector triggers, the photon was earlier in S during all N inner rounds making up this particular outer round1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' As this probability is of order 1/M2, the probability that one of the D3 detectors triggers during the M outer rounds that make up a given run is of order 1/M, and hence small.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' There are two serious objections to using this small probability to justify the claim that the protocol is counterfactual: one classical and the other quantum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' Let us start with the former.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' During a particular outer round the photon amplitude in a λ = 0 run rattles back and forth inside S a total of N times, and in particular it is in C a total of 2N times.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' Consider a stochastic classical protocol for transmitting information in which most of the time Alice and Bob exchange no information at all.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' However, with a small probability ǫ Alice sends a little white ball into the channel leading to Bob, who colors it green or red and sends it back to Alice to convey one bit of information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' She records the color, paints the ball white, and returns it to Bob who again colors it to send a second bit, and so forth, for a total of N rounds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' The average rate of transmitting information is Nǫ bits, and one cannot simply throw away the factor of N and claim that this protocol is in some sense ‘counterfactual’.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' The quantum difficulty has to do with what can be inferred from the probability that the photon was in S = A2 + A3 + C during the inner rounds that make up a particular outer round.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' One may be tempted to use classical reasoning and assume that the probabilities of being in each of the mutually exclusive regions, A2, A3, and C, that combine to make up S are well-defined and sum to the probability of being in S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' But in the presence of quantum interference this sort of reasoning is invalid and leads to paradoxes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' See the discussion of parallel channels in Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' V Conclusion The original SLAZ proposal has motivated a large number of papers;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' see the extensive bibliographies in [3, 4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' Merely trying to summarize them, much less provide a detailed re- view, lies outside the scope of the present paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' Broadly speaking, this literature consists of modifications, extensions, or improvements of the original SLAZ scheme;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' along with crit- icisms of the claim that these protocols are counterfactual and replies to such criticisms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' It is hoped that the following rather brief comments will provide some orientation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' 1This assumption can be justified using Consistent Histories;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' see the discussion of measurements in [5,6] 15 Significant extensions of the original SLAZ scheme by the last three members of the original collaboration include: the use of a phase change rather than absorption to transmit the λ = 1 bit [7];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' a scheme to transmit quantum states by multiple iterations of the original SLAZ scheme [8];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' using many photons in place of a single photon to transmit a classical bit [4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' These and others are certainly interesting ideas from the perspective of transmitting quantum information, and worth further exploration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' On the other hand, in these and all other extensions or modifications of SLAZ this author has examined, the claim that the protocol is “counterfactual,” in the sense that the total use of a quantum channel is negligible in the asymptotic limit, is subject to the same objections discussed in Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content='3: An improper use of probabilistic reasoning in a situation where quantum interference means probabilities cannot be defined, and where even in a classical situation Cost would be better than probability as a measure of channel usage.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' The total Cost remains finite in the asymptotic limit of a very large number of steps, which means that counterfactual claims should be dropped.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' Doing so will aid, not hinder, the serious study of these interesting quantum schemes for transmitting information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' Shortly after the original SLAZ publication, Vaidman published a Comment [9] claiming that in the λ = 0 case in which Bob reflects the amplitude rather than absorbing it, the photon which was later (with high probability) detected by Alice must at an earlier time have been in the channel C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' In their Reply [10] the SLAZ authors pointed out this way of reasoning about events at an intermediate time in the presence of quantum interference was invalid, and leads to paradoxes, a position supported by the analysis in Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content='2 above.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' However, they then repeated their original counterfactual claim which itself is based on a defective understanding of probabilities at an intermediate time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' A later and much more extended criticism of counterfactuality claims by Vaidman [11] suffers from the same difficulty as his earlier Comment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' Some years later Aharonov and Vaidman [12] claimed to have found a scheme of the general SLAZ type which is genuinely counterfactual.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' However, when measurements or absortion of a photon at intermediate times are replaced by unitary processes—mapping amplitude into an empty subspace reserved for this purpose, as discussed in Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content='1—the inequality in Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content='4 applies to this case and undermines the counterfactual claim.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' The fundamental difficulty with such claims is that the Hilbert space projector which identifies the position of a particle at some intermediate time does not commute with the one representing the quantum state evolving unitarily in time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' The most significant contributions of the present paper to the analysis of SLAZ-type protocols is the use of Cost as a measure of channel usage, and the use of Gram matrices for discussing information transfer at intermediate times in the presence of quantum interference.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' In particular, the fact that these Gram matrices are additive over subspaces and invariant (“conserved”) under unitary time transformations, plays a key part in the discussions in Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' A rather surprising feature is the role of off-diagonal elements, “overlaps”, as a type of information measure which, unlike most such measures, is not in general positive.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' That it can be negative plays a very signficant part in understanding its intuitive role in information transfer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' That its total change on Alice’s side must be −1 during the course of a successful protocol is confirmed for the SLAZ protocol in Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' This use of Gram matrices requires that the intermediate time steps be unitary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' In the case of SLAZ, measurements at intermediate times can be eliminated by mapping photon 16 amplitude into empty subspaces, and this can be achieved in certain other cases, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=', the Aharonov and Vaidman protocol [12].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' However, it is less clear whether something similar could be done in a case in which, for example, Alice uses measurements at intermediate times to change later steps in the protocol in hopes of reducing the total Cost.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' This author believes that such an improvement is impossible, because measurements themselves are quantum processes whose description simply requires a large enough Hilbert space in Alice’s domain [13].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' But this has not yet been demonstrated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' And what is special about classical information?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' Sending an arbitrary one-qubit quantum state from Alice to Bob using the 2-way protocol of Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content='3 could be done with a Cost of 2, which is to say twice that of simply using a 1-way protocol from Bob to Alice.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' That this is the minimum seems likely, but has not been demonstrated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' What about a two-way protocol with all the amplitude starting on Alice’s side, with the aim of a perfect transmission of each of two specified nonorthogonal states from Bob to Alice—what would be the minimum total Cost?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' An interesting feature of the original SLAZ protocol is the enormous ratio 2N2/M2, see (48), of the Costs to transmit λ = 0 and 1, in contrast to the relatively simple protocols discussed in Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content='3 for which the ratio is 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' Because the success of SLAZ depends upon N being much larger than M, this large ratio presumably has something to do with Bob’s not sending anything back through the channel when λ = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' Might there be some interesting physical principles, in addition to the Zeno effect, hiding here and waiting to be explored?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' In conclusion it is hoped that the thinking and tools employed in this paper will be useful for studying other problems of quantum information at intermediate times in situations where the careless use of ill-defined probabilities generates paradoxes rather than physical understanding.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' In particular, information transfer among three or more parties, of current interest in the study of quantum networks, might benefit from the sort of analysis used here.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' Acknowledgements The author expresses his appreciation to Carnegie-Mellon University and its Physics Department for continuing support of his activities as an emeritus faculty member.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' References [1] Hatim Salih, Zheng-Hong Li, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' Al-Amri, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' Suhail Zubairy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' Protocol for di- rect counterfactual quantum communication.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=', 110:170502, 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' arXiv:1206.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content='2042.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' [2] Johann von Neumann.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' Mathematische Grundlagen der Quantenmechanik.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' Springer- Verlag, Berlin, 1932.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' English translation by R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' Beyer: Mathematical Foundations of Quantum Mechanics, Princeton University Press, Princeton, New Jersey (1955).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' [3] Jonte R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' Hance, James Ladyman, and John Rarity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' How quantum is quantum counter- factual communication?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' Found.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=', 51:12, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' arXiv:1909.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content='07530.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' 17 [4] Zheng-Hong Li, Shang-Yue Feng, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' Al-Amri, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' Suhail Zubairy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' Direct counter- factual quantum communication protocol beyond a single photon source.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' A, 106:032610, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' arXiv:2202.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content='03935.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' [5] Robert B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' Griffiths.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' What quantum measurements measure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' A, 96:032110, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' arXiv:1704.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content='08725.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' [6] Robert B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' Griffiths.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' The Consistent Histories Approach to Quantum Mechanics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' Stanford Encyclopedia of Philosophy, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' https://plato.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content='stanford.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content='edu/entries/qm- consistent-histories/.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' [7] Zheng-Hong Li, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' Al-Amri, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' Suhail Zubairy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' Direct quantum communication with almost invisible photons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' A, 89:052334, 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' [8] Zheng-Hong Li, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' Al-Amri, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' Suhail Zubairy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' Direct counterfactual transmission of a quantum state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' A, 92:052315, 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' [9] Lev Vaidman.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' Tracing the past of a quantum particle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' A, 89:024102, 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' arXiv:1312.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content='7566.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' [10] Hatim Salih, Zheng-Hong Li, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' Al-Amri, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' Suhail Zubairy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' Salih et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' reply.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=', 112:208902, 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' arXiv:1404.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content='5392.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' [11] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' Vaidman.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' Counterfactuality of ‘counterfactual’ communication.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' A, 48:465303, 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' arXiv:1410.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content='2723.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' [12] Yakir Aharonov and Lev Vaidman.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' Modification of counterfactual communication protocols that eliminates weak particle traces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' A, 99:010103, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' arXiv:1805.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content='10634.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' [13] For a consistent quantum-mechanical description of the measuring process, see [5], the relevant sections of [6], and Chs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' 17 and 18 of [14].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' [14] Robert B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' Griffiths.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' Consistent Quantum Theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' Cambridge University Press, Cam- bridge, U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content='K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=', 2002.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' http://quantum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content='phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content='cmu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content='edu/CQT/.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} +page_content=' 18' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfw_5J/content/2301.01730v1.pdf'} diff --git a/F9E4T4oBgHgl3EQfgA1N/content/tmp_files/2301.05112v1.pdf.txt b/F9E4T4oBgHgl3EQfgA1N/content/tmp_files/2301.05112v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..f1c8e6c3568649c028c282118953602ca30d00be --- /dev/null +++ b/F9E4T4oBgHgl3EQfgA1N/content/tmp_files/2301.05112v1.pdf.txt @@ -0,0 +1,175 @@ +arXiv:2301.05112v1 [gr-qc] 12 Jan 2023 +GWitchHunters: Machine Learning and citizen science +to improve the performance of Gravitational Wave +detector +Massimiliano Razzanoa,b,1,∗, Francesco Di Renzoa,b, Francesco Fidecaroa,b, +Gary Hemmingc, Stavros Katsanevasc +aDepartment of Physics, University of Pisa, Largo B. Pontecorvo 3, Pisa, I-56127 +bINFN Section of Pisa, Largo B. Pontecorvo 3, Pisa, I-56127 +cEuropean Gravitational Observatory (EGO),Via E. Amaldi, 5, Cascina,I-56021 +Abstract +The Gravitational waves have opened a new window on the Universe and +paved the way to a new era of multimessenger observations of cosmic sources. +Second-generation ground-based detectors such as Advanced LIGO and Ad- +vanced Virgo have been extremely successful in detecting gravitational wave +signals from coalescence of black holes and/or neutron stars. However, in +order to reach the required sensitivities, the background noise must be inves- +tigated and removed. In particular, transient noise events called “glitches” +can affect data quality and mimic real astrophysical signals, and it is there- +fore of paramount importance to characterize them and find their origin, +a task that will support the activities of detector characterization of Virgo +and other interferometers. Machine learning is one of the most promising +approaches to characterize and remove noise glitches in real time, thus im- +proving the sensitivity of interferometers. A key input to the preparation of +a training dataset for these machine learning algorithms can originate from +citizen science initiatives, where volunteers contribute to classify and analyze +signals collected by detectors. We will present GWitchHunters, a new citi- +zen science project focused on the study of gravitational wave noise, that has +been developed within the REINFORCE project (a ”Science With And For +Society” project funded under the EU’s H2020 program). We will present +∗Corresponding author +Email address: massimiliano.razzano@unipi.it (Massimiliano Razzano) +1on behalf of the REINFORCE Consortium +Preprint submitted to Nuclear Instruments and Methods in Physics Research AJanuary 13, 2023 + +the project, its development and the key tasks that citizens are participating +in, as well as its impact on the study of noise in the Advanced Virgo detector. +Keywords: +gravitational waves, machine learning, citizen science +PACS: 04.20.–q, 04.30.Tv, +2000 MSC: 83C35, +1. Introduction +Gravitational wave physics is opening an entire new window on the Uni- +verse. Since their discovery in 2015 [1], the Advanced LIGO [2] and Advanced +Virgo [3] detectors have carried on three observing runs (O1, O2, O3) and +unveiled 90 signals produced by the coalescence of compact objects, mostly +binary black hole with a small fraction of neutron star and/or black hole +binaries [4]. +Advanced LIGO and Virgo are second-generation laser interferometers with +Fabry-Perot cavities hosted in km perpendicular arms, that are capable of +detecting the tiny deformations induced in the fabric of spacetime by the +passage of gravitational waves. In order to improve the sensitivity of the +detectors, there is a continuous effort to reduce the background noise due to +local disturbances. In particular, at low frequencies the noise is dominated by +seismic and Newtonian noise, while at mid frequencies the main component +is related to the thermal noise and at high frequencies the noise is mostly +related to quantum effects. +The activity of detector characterization and +noise hunting in gravitational wave detectors is focused on the investigation +of stationary and non stationary noise sources. In particular, non station- +ary transient noise events called glitches are of particular importance in the +noise studies. In fact, glitches can affect data quality and stability and mimic +real astrophysical signals, thus reducing the effective duty cycle of interfer- +ometers. The classification and characterization of glitches is therefore key +to understand the origin of noise in detector. However, glitches have com- +plex temporal signatures, that make difficult to classify them using standard +methods. Various works have shown that Machine Learning methods can be +promising for the classification of glitches [5, 7]. In particular, images built +from the time-frequency spectrograms of glitches are very effective in show- +ing the complex morphology of glitches and can be easily given in input to +machine learning algorithms, including deep convolutional neural networks +[6]. A possible approach to this problem is based on supervised learning, +2 + +that requires large number of labeled glitch samples, that could be produced +by dedicated citizen science initiatives, where volunteers look at images and +clssify them. +A successful example of this method is provided by Gravi- +tySpy2, a citizen science project focused on the classification of glitches in +LIGO and Virgo[8]. Here we present GWitchHunters3, a new citizen science +project complementary to GravitySpy and aimed at improving sensitivity of +gravitational wave detectors combining citizen science and machine learning. +2. The REINFORCE Project +GwitchHunters has been developed within the Research Infrastructures +FOR Citizens in Europe (REINFORCE) project4. REINFORCE is a Re- +search & Innovation Project, supported by the EU H2020 SWAFS “Science +with and for Society” work programme and aimed at creating a series of +cutting-edge citizen science projects on Frontier Physics research, with the +goal of engaging >100,000 citizens. REINFORCE is based on four citizen +science demonstrators focused Gravitational Waves (GWitchHunters), Astro- +physical neutrinos (Deep Sea Explorers), High Energy Physics (New Particle +Search at CERN) and muon-based tomography (Cosmic Muon Images). All +demonstrators are hosted on Zooniverse [9], the world leading platform for +citizen science projects. +3. Overview of GWitchHunters +GwitchHunters has been officially launched on Zooniverse in November +2021 after a dedicated review phase and offers to citizens a set of different +tasks of increasing difficulty. Data are presented as spectrograms and come +from the Virgo O3 run. A Playground task is specifically devoted to learning +the basics of glitch morphology and its classification. Three other levels offer +(1) the possibility to classify glitches among a larger set of classes, (2) localize +the glitches in the time-frequency space, and (3) compare the spectrogram +in the main channel of Virgo with that produced by auxiliary sensors. This +last task is particularly innovative, since it offer the possibility of linking the +glitches observed in the main channel to local disturbancies in the detector, +2http://https://gravityspy.org/ +3https://www.zooniverse.org/projects/reinforce/gwitchhunters +4https://www.reinforceeu.eu/ +3 + +Figure 1: Example of a GWitchHunters spectrogram showing two glitches, as well as the +rectagle drawn by citizens to locate them +thus suggesting a possible hint to the origin of each glitch. These tasks can +be carried both on a personal computer and on mobile devices. The project +also features a set of tutorials and examples to teach the volunteers how to +perform the different tasks, as well as a ”Field Guide” containing information +on the Advanced Virgo detector, the various glitch classes and the auxiliary +channels used in the project. +4. First Results and Conclusions +Since its official launch in November 2021, ∼2800 volunteers have sub- +scribed to the project, although another significant amount have contributed +without officially registering. This collective effort has produced more than +∼400000 classifications of ∼ 40000 data samples so far. In order to pro- +mote the project and engage citizens, the REINFORCE consortium has or- +ganized many initiatives, including workshops, press activities, online chal- +4 + +Virgo strain channel +Frequency [Hz] +Normalizedenergy +100 +0.8 +0.6 +-0.4 +-0.2 +0:2 +0.4 +0.6 +0.8 +Time [s]lenges5 and training school6. A monitoring of the project website has been +carried on, showing that these initiatives successfully attracted more volun- +teers to GWitchHunters, leading to peaks of ∼5000 classifications per day. +The results of the volunteers analysis are used for training a machine learning +algorithm that automatically analyze the glitch data. In particular, we fo- +cused on a 2D convolutional neural network architecture, that has been also +tested on simulations [6, 10] reaching an accuracy greater than 99%. These +first tests show how the GWitchHunters project could be successfully used +to join citizen science and machine learning with the goal of contributing to +increase the sensitivity of gravitational wave detectors. +Acknowledgements +REINFORCE has received funding from the European Union’s Horizon +2020 research and innovation program, under Grant Agreement no. 872859. +References +[1] Abbott, B. P. et al. 2016, Physical Review Letters, 116, 061102. +doi:10.1103/PhysRevLett.116.061102 +[2] Aasi, J. et al. 2015, Classical and Quantum Gravity, 32, 074001. +doi:10.1088/0264-9381/32/7/074001 +[3] Acernese, F. et al. 2015, Classical and Quantum Gravity, 32, 024001. +doi:10.1088/0264-9381/32/2/024001 +[4] Abbott, B. et al. 2021, arXiv:2111.03606 +[5] George, D., Shen, H., & Huerta, E. A. 2017, arXiv:1711.07468 +[6] Razzano, M. & Cuoco, E. 2018, Classical and Quantum Gravity, 35, +095016. doi:10.1088/1361-6382/aab793 +[7] Powell, J. et al. 2015, Classical and Quantum Gravity, 32, 215012. +doi:10.1088/0264-9381/32/21/215012 +5e.g. https://www.reinforceeu.eu/winter-challenge-2022 +6e.g. https://reinforce.ea.gr/international-training-course/ +5 + +[8] Zevin, M. et al. 2017, Classical and Quantum Gravity, 34, 064003. +doi:10.1088/1361-6382/aa5cea +[9] Lintott, C. J. et al. 2008, MNRAS, 389, 1179. doi:10.1111/j.1365- +2966.2008.13689.x +[10] Cuoco E., et al 2021 Mach. Learn.: Sci. Technol. 2 011002 +6 + diff --git a/F9E4T4oBgHgl3EQfgA1N/content/tmp_files/load_file.txt b/F9E4T4oBgHgl3EQfgA1N/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..47056407f68c42553e7eee026ed14b5c0c163f95 --- /dev/null +++ b/F9E4T4oBgHgl3EQfgA1N/content/tmp_files/load_file.txt @@ -0,0 +1,128 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E4T4oBgHgl3EQfgA1N/content/2301.05112v1.pdf,len=127 +page_content='arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E4T4oBgHgl3EQfgA1N/content/2301.05112v1.pdf'} +page_content='05112v1 [gr-qc] 12 Jan 2023 GWitchHunters: Machine Learning and citizen science to improve the performance of Gravitational Wave detector Massimiliano Razzanoa,b,1,∗, Francesco Di Renzoa,b, Francesco Fidecaroa,b, Gary Hemmingc, Stavros Katsanevasc aDepartment of Physics, University of Pisa, Largo B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E4T4oBgHgl3EQfgA1N/content/2301.05112v1.pdf'} +page_content=' Pontecorvo 3, Pisa, I-56127 bINFN Section of Pisa, Largo B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E4T4oBgHgl3EQfgA1N/content/2301.05112v1.pdf'} +page_content=' Pontecorvo 3, Pisa, I-56127 cEuropean Gravitational Observatory (EGO),Via E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E4T4oBgHgl3EQfgA1N/content/2301.05112v1.pdf'} +page_content=' Amaldi, 5, Cascina,I-56021 Abstract The Gravitational waves have opened a new window on the Universe and paved the way to a new era of multimessenger observations of cosmic sources.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E4T4oBgHgl3EQfgA1N/content/2301.05112v1.pdf'} +page_content=' Second-generation ground-based detectors such as Advanced LIGO and Ad- vanced Virgo have been extremely successful in detecting gravitational wave signals from coalescence of black holes and/or neutron stars.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E4T4oBgHgl3EQfgA1N/content/2301.05112v1.pdf'} +page_content=' However, in order to reach the required sensitivities, the background noise must be inves- tigated and removed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E4T4oBgHgl3EQfgA1N/content/2301.05112v1.pdf'} +page_content=' In particular, transient noise events called “glitches” can affect data quality and mimic real astrophysical signals, and it is there- fore of paramount importance to characterize them and find their origin, a task that will support the activities of detector characterization of Virgo and other interferometers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E4T4oBgHgl3EQfgA1N/content/2301.05112v1.pdf'} +page_content=' Machine learning is one of the most promising approaches to characterize and remove noise glitches in real time, thus im- proving the sensitivity of interferometers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E4T4oBgHgl3EQfgA1N/content/2301.05112v1.pdf'} +page_content=' A key input to the preparation of a training dataset for these machine learning algorithms can originate from citizen science initiatives, where volunteers contribute to classify and analyze signals collected by detectors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E4T4oBgHgl3EQfgA1N/content/2301.05112v1.pdf'} +page_content=' We will present GWitchHunters, a new citi- zen science project focused on the study of gravitational wave noise, that has been developed within the REINFORCE project (a ”Science With And For Society” project funded under the EU’s H2020 program).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E4T4oBgHgl3EQfgA1N/content/2301.05112v1.pdf'} +page_content=' We will present ∗Corresponding author Email address: massimiliano.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E4T4oBgHgl3EQfgA1N/content/2301.05112v1.pdf'} +page_content='razzano@unipi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E4T4oBgHgl3EQfgA1N/content/2301.05112v1.pdf'} +page_content='it (Massimiliano Razzano) 1on behalf of the REINFORCE Consortium Preprint submitted to Nuclear Instruments and Methods in Physics Research AJanuary 13, 2023 the project, its development and the key tasks that citizens are participating in, as well as its impact on the study of noise in the Advanced Virgo detector.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E4T4oBgHgl3EQfgA1N/content/2301.05112v1.pdf'} +page_content=' Keywords: gravitational waves, machine learning, citizen science PACS: 04.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E4T4oBgHgl3EQfgA1N/content/2301.05112v1.pdf'} +page_content='20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E4T4oBgHgl3EQfgA1N/content/2301.05112v1.pdf'} +page_content='–q, 04.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E4T4oBgHgl3EQfgA1N/content/2301.05112v1.pdf'} +page_content='30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E4T4oBgHgl3EQfgA1N/content/2301.05112v1.pdf'} +page_content='Tv, 2000 MSC: 83C35, 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E4T4oBgHgl3EQfgA1N/content/2301.05112v1.pdf'} +page_content=' Introduction Gravitational wave physics is opening an entire new window on the Uni- verse.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E4T4oBgHgl3EQfgA1N/content/2301.05112v1.pdf'} +page_content=' Since their discovery in 2015 [1], the Advanced LIGO [2] and Advanced Virgo [3] detectors have carried on three observing runs (O1, O2, O3) and unveiled 90 signals produced by the coalescence of compact objects, mostly binary black hole with a small fraction of neutron star and/or black hole binaries [4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E4T4oBgHgl3EQfgA1N/content/2301.05112v1.pdf'} +page_content=' Advanced LIGO and Virgo are second-generation laser interferometers with Fabry-Perot cavities hosted in km perpendicular arms, that are capable of detecting the tiny deformations induced in the fabric of spacetime by the passage of gravitational waves.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E4T4oBgHgl3EQfgA1N/content/2301.05112v1.pdf'} +page_content=' In order to improve the sensitivity of the detectors, there is a continuous effort to reduce the background noise due to local disturbances.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E4T4oBgHgl3EQfgA1N/content/2301.05112v1.pdf'} +page_content=' In particular, at low frequencies the noise is dominated by seismic and Newtonian noise, while at mid frequencies the main component is related to the thermal noise and at high frequencies the noise is mostly related to quantum effects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E4T4oBgHgl3EQfgA1N/content/2301.05112v1.pdf'} +page_content=' The activity of detector characterization and noise hunting in gravitational wave detectors is focused on the investigation of stationary and non stationary noise sources.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E4T4oBgHgl3EQfgA1N/content/2301.05112v1.pdf'} +page_content=' In particular, non station- ary transient noise events called glitches are of particular importance in the noise studies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E4T4oBgHgl3EQfgA1N/content/2301.05112v1.pdf'} +page_content=' In fact, glitches can affect data quality and stability and mimic real astrophysical signals, thus reducing the effective duty cycle of interfer- ometers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E4T4oBgHgl3EQfgA1N/content/2301.05112v1.pdf'} +page_content=' The classification and characterization of glitches is therefore key to understand the origin of noise in detector.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E4T4oBgHgl3EQfgA1N/content/2301.05112v1.pdf'} +page_content=' However, glitches have com- plex temporal signatures, that make difficult to classify them using standard methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E4T4oBgHgl3EQfgA1N/content/2301.05112v1.pdf'} +page_content=' Various works have shown that Machine Learning methods can be promising for the classification of glitches [5, 7].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E4T4oBgHgl3EQfgA1N/content/2301.05112v1.pdf'} +page_content=' In particular, images built from the time-frequency spectrograms of glitches are very effective in show- ing the complex morphology of glitches and can be easily given in input to machine learning algorithms, including deep convolutional neural networks [6].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E4T4oBgHgl3EQfgA1N/content/2301.05112v1.pdf'} +page_content=' A possible approach to this problem is based on supervised learning, 2 that requires large number of labeled glitch samples, that could be produced by dedicated citizen science initiatives, where volunteers look at images and clssify them.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E4T4oBgHgl3EQfgA1N/content/2301.05112v1.pdf'} +page_content=' A successful example of this method is provided by Gravi- tySpy2, a citizen science project focused on the classification of glitches in LIGO and Virgo[8].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E4T4oBgHgl3EQfgA1N/content/2301.05112v1.pdf'} +page_content=' Here we present GWitchHunters3, a new citizen science project complementary to GravitySpy and aimed at improving sensitivity of gravitational wave detectors combining citizen science and machine learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E4T4oBgHgl3EQfgA1N/content/2301.05112v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E4T4oBgHgl3EQfgA1N/content/2301.05112v1.pdf'} +page_content=' The REINFORCE Project GwitchHunters has been developed within the Research Infrastructures FOR Citizens in Europe (REINFORCE) project4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E4T4oBgHgl3EQfgA1N/content/2301.05112v1.pdf'} +page_content=' REINFORCE is a Re- search & Innovation Project, supported by the EU H2020 SWAFS “Science with and for Society” work programme and aimed at creating a series of cutting-edge citizen science projects on Frontier Physics research, with the goal of engaging >100,000 citizens.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E4T4oBgHgl3EQfgA1N/content/2301.05112v1.pdf'} +page_content=' REINFORCE is based on four citizen science demonstrators focused Gravitational Waves (GWitchHunters), Astro- physical neutrinos (Deep Sea Explorers), High Energy Physics (New Particle Search at CERN) and muon-based tomography (Cosmic Muon Images).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E4T4oBgHgl3EQfgA1N/content/2301.05112v1.pdf'} +page_content=' All demonstrators are hosted on Zooniverse [9], the world leading platform for citizen science projects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E4T4oBgHgl3EQfgA1N/content/2301.05112v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E4T4oBgHgl3EQfgA1N/content/2301.05112v1.pdf'} +page_content=' Overview of GWitchHunters GwitchHunters has been officially launched on Zooniverse in November 2021 after a dedicated review phase and offers to citizens a set of different tasks of increasing difficulty.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E4T4oBgHgl3EQfgA1N/content/2301.05112v1.pdf'} +page_content=' Data are presented as spectrograms and come from the Virgo O3 run.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E4T4oBgHgl3EQfgA1N/content/2301.05112v1.pdf'} +page_content=' A Playground task is specifically devoted to learning the basics of glitch morphology and its classification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E4T4oBgHgl3EQfgA1N/content/2301.05112v1.pdf'} +page_content=' Three other levels offer (1) the possibility to classify glitches among a larger set of classes, (2) localize the glitches in the time-frequency space, and (3) compare the spectrogram in the main channel of Virgo with that produced by auxiliary sensors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E4T4oBgHgl3EQfgA1N/content/2301.05112v1.pdf'} +page_content=' This last task is particularly innovative, since it offer the possibility of linking the glitches observed in the main channel to local disturbancies in the detector, 2http://https://gravityspy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E4T4oBgHgl3EQfgA1N/content/2301.05112v1.pdf'} +page_content='org/ 3https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E4T4oBgHgl3EQfgA1N/content/2301.05112v1.pdf'} +page_content='zooniverse.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E4T4oBgHgl3EQfgA1N/content/2301.05112v1.pdf'} +page_content='org/projects/reinforce/gwitchhunters 4https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E4T4oBgHgl3EQfgA1N/content/2301.05112v1.pdf'} +page_content='reinforceeu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E4T4oBgHgl3EQfgA1N/content/2301.05112v1.pdf'} +page_content='eu/ 3 Figure 1: Example of a GWitchHunters spectrogram showing two glitches, as well as the rectagle drawn by citizens to locate them thus suggesting a possible hint to the origin of each glitch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E4T4oBgHgl3EQfgA1N/content/2301.05112v1.pdf'} +page_content=' These tasks can be carried both on a personal computer and on mobile devices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E4T4oBgHgl3EQfgA1N/content/2301.05112v1.pdf'} +page_content=' The project also features a set of tutorials and examples to teach the volunteers how to perform the different tasks, as well as a ”Field Guide” containing information on the Advanced Virgo detector, the various glitch classes and the auxiliary channels used in the project.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E4T4oBgHgl3EQfgA1N/content/2301.05112v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E4T4oBgHgl3EQfgA1N/content/2301.05112v1.pdf'} +page_content=' First Results and Conclusions Since its official launch in November 2021, ∼2800 volunteers have sub- scribed to the project, although another significant amount have contributed without officially registering.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E4T4oBgHgl3EQfgA1N/content/2301.05112v1.pdf'} +page_content=' This collective effort has produced more than ∼400000 classifications of ∼ 40000 data samples so far.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E4T4oBgHgl3EQfgA1N/content/2301.05112v1.pdf'} +page_content=' In order to pro- mote the project and engage citizens, the REINFORCE consortium has or- ganized many initiatives, including workshops, press activities, online chal- 4 Virgo strain channel Frequency [Hz] Normalizedenergy 100 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E4T4oBgHgl3EQfgA1N/content/2301.05112v1.pdf'} +page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E4T4oBgHgl3EQfgA1N/content/2301.05112v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E4T4oBgHgl3EQfgA1N/content/2301.05112v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E4T4oBgHgl3EQfgA1N/content/2301.05112v1.pdf'} +page_content='2 0:2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E4T4oBgHgl3EQfgA1N/content/2301.05112v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E4T4oBgHgl3EQfgA1N/content/2301.05112v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E4T4oBgHgl3EQfgA1N/content/2301.05112v1.pdf'} +page_content='8 Time [s]lenges5 and training school6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E4T4oBgHgl3EQfgA1N/content/2301.05112v1.pdf'} +page_content=' A monitoring of the project website has been carried on, showing that these initiatives successfully attracted more volun- teers to GWitchHunters, leading to peaks of ∼5000 classifications per day.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E4T4oBgHgl3EQfgA1N/content/2301.05112v1.pdf'} +page_content=' The results of the volunteers analysis are used for training a machine learning algorithm that automatically analyze the glitch data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E4T4oBgHgl3EQfgA1N/content/2301.05112v1.pdf'} +page_content=' In particular, we fo- cused on a 2D convolutional neural network architecture, that has been also tested on simulations [6, 10] reaching an accuracy greater than 99%.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E4T4oBgHgl3EQfgA1N/content/2301.05112v1.pdf'} +page_content=' These first tests show how the GWitchHunters project could be successfully used to join citizen science and machine learning with the goal of contributing to increase the sensitivity of gravitational wave detectors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E4T4oBgHgl3EQfgA1N/content/2301.05112v1.pdf'} +page_content=' Acknowledgements REINFORCE has received funding from the European Union’s Horizon 2020 research and innovation program, under Grant Agreement no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E4T4oBgHgl3EQfgA1N/content/2301.05112v1.pdf'} +page_content=' 872859.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E4T4oBgHgl3EQfgA1N/content/2301.05112v1.pdf'} +page_content=' References [1] Abbott, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E4T4oBgHgl3EQfgA1N/content/2301.05112v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E4T4oBgHgl3EQfgA1N/content/2301.05112v1.pdf'} +page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E4T4oBgHgl3EQfgA1N/content/2301.05112v1.pdf'} +page_content=' 2016, Physical Review Letters, 116, 061102.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E4T4oBgHgl3EQfgA1N/content/2301.05112v1.pdf'} +page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E4T4oBgHgl3EQfgA1N/content/2301.05112v1.pdf'} +page_content='1103/PhysRevLett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E4T4oBgHgl3EQfgA1N/content/2301.05112v1.pdf'} +page_content='116.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E4T4oBgHgl3EQfgA1N/content/2301.05112v1.pdf'} +page_content='061102 [2] Aasi, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E4T4oBgHgl3EQfgA1N/content/2301.05112v1.pdf'} +page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E4T4oBgHgl3EQfgA1N/content/2301.05112v1.pdf'} +page_content=' 2015, Classical and Quantum Gravity, 32, 074001.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E4T4oBgHgl3EQfgA1N/content/2301.05112v1.pdf'} +page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E4T4oBgHgl3EQfgA1N/content/2301.05112v1.pdf'} +page_content='1088/0264-9381/32/7/074001 [3] Acernese, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E4T4oBgHgl3EQfgA1N/content/2301.05112v1.pdf'} +page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E4T4oBgHgl3EQfgA1N/content/2301.05112v1.pdf'} +page_content=' 2015, Classical and Quantum Gravity, 32, 024001.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E4T4oBgHgl3EQfgA1N/content/2301.05112v1.pdf'} +page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E4T4oBgHgl3EQfgA1N/content/2301.05112v1.pdf'} +page_content='1088/0264-9381/32/2/024001 [4] Abbott, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E4T4oBgHgl3EQfgA1N/content/2301.05112v1.pdf'} +page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E4T4oBgHgl3EQfgA1N/content/2301.05112v1.pdf'} +page_content=' 2021, arXiv:2111.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E4T4oBgHgl3EQfgA1N/content/2301.05112v1.pdf'} +page_content='03606 [5] George, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E4T4oBgHgl3EQfgA1N/content/2301.05112v1.pdf'} +page_content=', Shen, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E4T4oBgHgl3EQfgA1N/content/2301.05112v1.pdf'} +page_content=', & Huerta, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E4T4oBgHgl3EQfgA1N/content/2301.05112v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E4T4oBgHgl3EQfgA1N/content/2301.05112v1.pdf'} +page_content=' 2017, arXiv:1711.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E4T4oBgHgl3EQfgA1N/content/2301.05112v1.pdf'} +page_content='07468 [6] Razzano, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E4T4oBgHgl3EQfgA1N/content/2301.05112v1.pdf'} +page_content=' & Cuoco, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E4T4oBgHgl3EQfgA1N/content/2301.05112v1.pdf'} +page_content=' 2018, Classical and Quantum Gravity, 35, 095016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E4T4oBgHgl3EQfgA1N/content/2301.05112v1.pdf'} +page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E4T4oBgHgl3EQfgA1N/content/2301.05112v1.pdf'} +page_content='1088/1361-6382/aab793 [7] Powell, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E4T4oBgHgl3EQfgA1N/content/2301.05112v1.pdf'} +page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E4T4oBgHgl3EQfgA1N/content/2301.05112v1.pdf'} +page_content=' 2015, Classical and Quantum Gravity, 32, 215012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E4T4oBgHgl3EQfgA1N/content/2301.05112v1.pdf'} +page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E4T4oBgHgl3EQfgA1N/content/2301.05112v1.pdf'} +page_content='1088/0264-9381/32/21/215012 5e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E4T4oBgHgl3EQfgA1N/content/2301.05112v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E4T4oBgHgl3EQfgA1N/content/2301.05112v1.pdf'} +page_content=' https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E4T4oBgHgl3EQfgA1N/content/2301.05112v1.pdf'} +page_content='reinforceeu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E4T4oBgHgl3EQfgA1N/content/2301.05112v1.pdf'} +page_content='eu/winter-challenge-2022 6e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E4T4oBgHgl3EQfgA1N/content/2301.05112v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E4T4oBgHgl3EQfgA1N/content/2301.05112v1.pdf'} +page_content=' https://reinforce.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E4T4oBgHgl3EQfgA1N/content/2301.05112v1.pdf'} +page_content='ea.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E4T4oBgHgl3EQfgA1N/content/2301.05112v1.pdf'} +page_content='gr/international-training-course/ 5 [8] Zevin, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E4T4oBgHgl3EQfgA1N/content/2301.05112v1.pdf'} +page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E4T4oBgHgl3EQfgA1N/content/2301.05112v1.pdf'} +page_content=' 2017, Classical and Quantum Gravity, 34, 064003.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E4T4oBgHgl3EQfgA1N/content/2301.05112v1.pdf'} +page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E4T4oBgHgl3EQfgA1N/content/2301.05112v1.pdf'} +page_content='1088/1361-6382/aa5cea [9] Lintott, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E4T4oBgHgl3EQfgA1N/content/2301.05112v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E4T4oBgHgl3EQfgA1N/content/2301.05112v1.pdf'} +page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E4T4oBgHgl3EQfgA1N/content/2301.05112v1.pdf'} +page_content=' 2008, MNRAS, 389, 1179.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E4T4oBgHgl3EQfgA1N/content/2301.05112v1.pdf'} +page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E4T4oBgHgl3EQfgA1N/content/2301.05112v1.pdf'} +page_content='1111/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E4T4oBgHgl3EQfgA1N/content/2301.05112v1.pdf'} +page_content='1365- 2966.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E4T4oBgHgl3EQfgA1N/content/2301.05112v1.pdf'} +page_content='2008.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E4T4oBgHgl3EQfgA1N/content/2301.05112v1.pdf'} +page_content='13689.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E4T4oBgHgl3EQfgA1N/content/2301.05112v1.pdf'} +page_content='x [10] Cuoco E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E4T4oBgHgl3EQfgA1N/content/2301.05112v1.pdf'} +page_content=', et al 2021 Mach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E4T4oBgHgl3EQfgA1N/content/2301.05112v1.pdf'} +page_content=' Learn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E4T4oBgHgl3EQfgA1N/content/2301.05112v1.pdf'} +page_content=' : Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E4T4oBgHgl3EQfgA1N/content/2301.05112v1.pdf'} +page_content=' Technol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E4T4oBgHgl3EQfgA1N/content/2301.05112v1.pdf'} +page_content=' 2 011002 6' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/F9E4T4oBgHgl3EQfgA1N/content/2301.05112v1.pdf'} diff --git a/FdE0T4oBgHgl3EQfzALi/content/2301.02668v1.pdf b/FdE0T4oBgHgl3EQfzALi/content/2301.02668v1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..56b6d63f37e1cb2e62128bd92b0bac1d6b690aca --- /dev/null +++ b/FdE0T4oBgHgl3EQfzALi/content/2301.02668v1.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:096c2cc72813cd1bf4c9476f349fdc16265e816da92021fe1695f48b011f5c50 +size 4724319 diff --git a/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf b/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..c431f4e79b6ab78ce4dd5a69b62cbe1ae82cf4ca --- /dev/null +++ b/FdE1T4oBgHgl3EQfEwOD/content/2301.02894v1.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:9c49449c79ec1b6b23b64dc89b3ea76c002a3ad42888c3af6e6c1e65b33f5323 +size 432647 diff --git a/FdE1T4oBgHgl3EQfEwOD/vector_store/index.pkl b/FdE1T4oBgHgl3EQfEwOD/vector_store/index.pkl new file mode 100644 index 0000000000000000000000000000000000000000..6a6721fb26373b40c8f6bbf74b308e3260be9338 --- /dev/null +++ b/FdE1T4oBgHgl3EQfEwOD/vector_store/index.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:373a95f2685c44669db41187b22084b94b619d6af8e4465e97796881b48ddd1d +size 70372 diff --git a/H9E0T4oBgHgl3EQfhwGK/content/tmp_files/load_file.txt b/H9E0T4oBgHgl3EQfhwGK/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..70734e5628a7e4b5cf699ca7c84dadda12a5a791 --- /dev/null +++ b/H9E0T4oBgHgl3EQfhwGK/content/tmp_files/load_file.txt @@ -0,0 +1,509 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf,len=508 +page_content='arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content='02436v1 [math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content='CO] 6 Jan 2023 Vertex-Critical (P5, chair)-Free Graphs Shenwei Huang*† Zeyu Li‡§ January 4, 2022 Abstract Given two graphs H1 and H2, a graph G is (H1, H2)-free if it contains no induced subgraph isomorphic to H1 or H2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' A Pt is the path on t vertices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' A chair is a P4 with an additional vertex adjacent to one of the middle vertices of the P4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' A graph G is k-vertex-critical if G has chromatic number k but every proper induced subgraph of G has chromatic number less than k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' In this paper, we prove that there are finitely many 5-vertex-critical (P5, chair)-free graphs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Keywords.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Graph coloring;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' k-vertex-critical graphs;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' forbidden induced subgraphs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' 1 Introduction All graphs in this paper are finite and simple.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' We say that a graph G contains a graph H if H is isomorphic to an induced subgraph of G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' A graph G is H-free if it does not contain H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' For a family of graphs H, G is H-free if G is H-free for every H ∈ H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' When H consists of two graphs, we write (H1, H2)-free instead of {H1, H2}- free.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' As usual, Pt and Cs denote the path on t vertices and the cycle on s vertices, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' A clique (resp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' independent set) in a graph is a set of pairwise adjacent (resp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' nonadjacent) vertices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' The complete graph on n vertices is denoted by Kn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' The graph K3 is also referred to as the triangle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' The clique number of G, denoted by ω(G), is the size of a largest clique in G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' For two graphs G and H, we use G + H to denote the disjoint union of G and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' If a graph G can be partitioned into k independent sets S1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' , Sk such that there is an edge between every vertex in Si and every vertex in Sj for all 1 ≤ i < j ≤ k, G is called a complete k-partite graph;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' each Si is called a part of G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' If we do not specify the number of parts in G, we simply say that G is a complete multipartite graph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' We denote by Kn1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=',nk the complete k-partite graph such that the ith part Si has size ni, for each 1 ≤ i ≤ k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' A q-coloring of a graph G is a function φ : V (G) −→ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' , q} such that φ(u) ̸= φ(v) whenever u and v are adjacent in G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' And a q-coloring of G is also a partition of V (G) into q independent sets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' A graph is q-colorable if it admits a q-coloring.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' The College of Computer Science, Nankai University, Tianjin 300350, China.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Email: shenweihuang@nankai.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content='edu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content='cn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Supported by Natural Science Foundation of Tianjin (20JCY- BJC01190).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' †Tianjin Key Laboratory of Network and Data Security Technology, Nankai University, Tianjin 300071, China.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' ‡College of Computer Science, Nankai University, Tianjin 300350, China.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' §Tianjin Key Laboratory of Network and Data Security Technology, Nankai University, Tianjin 300071, China.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' 1 Figure 1: The graph chair.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' chromatic number of a graph G, denoted by χ(G), is the minimum number q for which G is q-colorable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' We call a graph G is k-chromatic when χ(G) = k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' A graph G is k-critical if it is k-chromatic and χ(G − e) < χ(G) for any edge e ∈ E(G).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' We call a graph is critical if it is k-critical for some integer k ≥ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' A graph G is k-vertex-critical if χ(G) = k and χ(G−v) < k for any v ∈ V (G).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' For a set H of graphs and a graph G, we say that G is k-vertex-critical H-free if it is k-vertex-critical and H-free.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Our research is mainly motivated by the following theorems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Theorem 1 ([7]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' For any fixed k ≥ 5, there are infinitely many k-vertex-critical P5- free graphs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Thus, it is natural to consider which subclasses of P5-free graphs have finitely many k-vertex-critical graphs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' The reason for finiteness is that if we know there are only finitely many k-vertex-critical graphs, then there is a polynomial-time algorithm for (k − 1)-coloring graphs in that class.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' In 2021, Kameron, Goedgebeur, Huang and Shi [4] obtained the following dichotomy result for k-vertex-critical (P5, H)-free graphs when |H| = 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Theorem 2 ([4]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Let H be a graph of order 4 and k ≥ 5 be a fixed integer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Then there are infinitely many k-vertex-critical (P5, H)-free graphs if and only if H is 2P2 or P1 + K3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' In [4], it was also asked which five-vertex graphs H can lead to finitely many k-vertex-critical (P5, H)-free graphs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' It is known that there are finitely many 5-vertex- critical (P5,banner)-free graphs [3, 9], and finitely many k-vertex-critical (P5, P5)- free graphs for every fixed k [5].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Hell and Huang proved that there are finitely many k-vertex-critical (P6, C4)-free graphs [6].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' This was later generalized to (Pt, Kr,s)- free graphs in the context of H-coloring [10].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' This gives an affirmative answer for H = K2,3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Recently, it was also shown that the answer to the above question is positive if H is gem or P2 + P3 [2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Moreover, it was proved that there are finitely many 5-vertex-critical (P5, bull)-free graphs [8].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' In this article, we continue such a study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' A chair is a P4 with an additional vertex adjacent to one of the middle vertices of the P4 (see Figure 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' In particular, we prove the following.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' There are finitely many 5-vertex-critical (P5, chair)-free graphs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' 2 Preliminaries For general graph theory notation we follow [1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Let G = (V, E) be a graph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' If uv ∈ E, we say that u and v are neighbors or adjacent;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' otherwise u and v are nonneighbors 2 or nonadjacent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' We use u ∼ v to mean that u and v are neighbors and u ≁ v to mean that u and v are nonneighbors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' The neighborhood of a vertex v, denoted by NG(v), is the set of neighbors of v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' For a set X ⊆ V (G), let NG(X) = � v∈X NG(v) \\ X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' We shall omit the subscript whenever the context is clear.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' For X, Y ⊆ V , we say that X is complete (resp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' anticomplete) to Y if every vertex in X is adjacent (resp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' nonadjacent) to every vertex in Y .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' If X = {x}, we write “x is complete (resp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' anticomplete) to Y ” instead of “{x} is complete (resp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' anticomplete) to Y ”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' If a vertex v is neither complete nor anticomplete to a set S, we say that v is mixed on S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' If a vertex v is neither complete nor anticomplete to two ends of an edge, we say that v is distinguish the edge.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' We say that H is a homogeneous set if no vertex in V − H is mixed on H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' More generally, we say that H is homogeneous with respect to a subset S ⊆ V if no vertex in S can be mixed on H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' For S ⊆ V , the subgraph induced by S, is denoted by G[S].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' A pair of comparable vertices of G is pairwise nonadjacent vertices u, v such that N(v) ⊆ N(u) or N(u) ⊆ N(v).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' It is well-known that k-vertex-critical graphs cannot contain comparable vertices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' We shall use the following generalization in later proofs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Lemma 1 ([4]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Let G be a k-vertex-critical graph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Then G has no two nonempty disjoint subsets X and Y of V (G) that satisfy all the following conditions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' X and Y are anticomplete to each other.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' χ(G[X]) ≤ χ(G[Y ]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Y is complete to N(X).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' 3 New Results In this section, we prove our new results: there are finitely many 5-vertex-critical (P5, chair)-free graphs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' To prove Theorem 3, we prove the following.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Let G be a 5-vertex-critical (P5, chair)-free graph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' If G contains a C5, then G has finite order.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Proof of Theorem 3 assuming Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Let G be a 5-vertex-critical(P5, chair)-free graph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' If G contains C5, then G has finite order by Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' If G is C5-free, then G has finite order by a result in [7] that there are only thirteen 5-vertex-critical (P5, C5)- free graphs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' In either case, G has finite order.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' This completes the proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Next we prove Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content='1 Structure Around C5 In this subsection, we discuss some structural properties of (P5, chair)-free graphs containing a C5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Let G be a connected (P5, chair)-free graph containing an induced C5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Let C = v1, v2, v3, v4, v5 be an induced C5 with vivi+1 being an edge.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' We divide V \\V (C) as follows, where all indices are modulo 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' S0 = {v ∈ V \\V (C) : NC(v) = ∅}, S1(i) = {v ∈ V \\V (C) : NC(v) = {vi}}, S1 2(i) = {v ∈ V \\V (C) : NC(v) = {vi, vi+1}}, 3 S2 2(i) = {v ∈ V \\V (C) : NC(v) = {vi, vi+2}}, S1 3(i) = {v ∈ V \\V (C) : NC(v) = {vi−1, vi, vi+1}}, S2 3(i) = {v ∈ V \\V (C) : NC(v) = {vi−2, vi, vi+2}}, S4(i) = {v ∈ V \\V (C) : NC(v) = {vi−2, vi−1, vi+1, vi+2}}, S5 = {v ∈ V \\V (C) : NC(v) = V (C)}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' We use Sm 3 (i ± 1) to denote Sm 3 (i + 1) ∪ Sm 3 (i − 1) for m = 1, 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' The notations Sm 3 (i±2), S4(i±1) and S4(i±2) are defined similarly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' We now prove some properties about these sets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Claim 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' S1(i) ∪ S1 2(i) ∪ S2 2(i) = ∅, for all 1 ≤ i ≤ 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Suppose not.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Let u, v be arbitrary two vertices such that v ∈ S1(i) ∪ S1 2(i), u ∈ S2 2(i).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Then {v, vi, vi−1, vi−2, vi−3} induces a P5, and {u, vi, vi−1, vi−2} and {vi+1} induce a chair.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Claim 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' S0 = ∅.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Suppose not.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' We will first show that N(S0) ⊆ S5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Since G is connected, there is a pair of vertices u and v such that u ∈ S0, v ∈ V (G)\\S0 and u ∼ v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' If v ∈ S1 3(i) for any i, then {u, v, vi+1, vi+2, vi−2} induces a P5, a contradiction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' If v ∈ S2 3(i) ∪ S4(i + 1) for any i, then {vi+1, vi, v, vi−2} and {u} induce a chair, a contradiction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Thus, v can only belong to S5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Then, two nonempty disjoint subsets S0 and C of V (G) satisfy the three conditions of Lemma 1, a contradiction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Therefore, S0 = ∅.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Claim 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' S1 3(i) is clique, for all 1 ≤ i ≤ 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Suppose not.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' We assume that there are two vertices u, v ∈ S1 3(i) with u ≁ v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Then {v, vi+1, vi+2, vi−2} and {u} induce a chair in G, a contradiction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Claim 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Each vertex in S4(i) ∪ S5 is either complete or anticomplete to a component of S2 3(i), for all 1 ≤ i ≤ 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' We assume that there is an edge uv of S2 3(i) can be distinguished by vertex s ∈ S4(i) ∪ S5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Without loss of generality, let s ∼ u, s ≁ v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Then {vi−1, s, u, v} and {vi+1} induce a chair.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Claim 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Each vertex in V (G)−(S2 3(i)∪S4(i)∪S5) is either complete or anticomplete to S2 3(i), for all 1 ≤ i ≤ 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' By symmetry, it suffices to prove the claim for i, i+ 1 and i+ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Let v ∈ S2 3(i).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' If v is adjacent to s1 ∈ S1 3(i + 1), then {vi−1, vi−2, v, s1, vi+1} is an induced P5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' If v is not adjacent to s2 ∈ S1 3(i) ∪ S2 3(i + 1) ∪ S4(i + 2), then {vi−1, s2, vi+1, vi+2, v} is an induced P5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' If v is not adjacent to s3 ∈ S2 3(i + 2) ∪ S4(i + 1), then {vi−1, s3, vi+2, v} and {vi+1} induce a chair.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' If v is not adjacent to s4 ∈ S1 3(i + 2), then {vi−1, vi, vi+1, v} and {s4} induce a chair.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Claim 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Every component of S2 3(i) is a homogeneous set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' By Claim 4 and Claim 5, there is no vertex of G\\S2 3(i) that can distinguish an edge of S2 3(i).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' 4 Let Ti = S1 3(i ± 2) ∪ S2 3(i ± 1) ∪ S2 3(i ± 2) for each i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Claim 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' S4(i) is complete to Ti, for all 1 ≤ i ≤ 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' By the symmetry, it suffers to prove the claim for S1 3(i+2)∪S2 3(i+1)∪S2 3(i+2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Let v ∈ S4(i).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' If v is not adjacent to s1 ∈ S1 3(i + 2), then {vi, vi−1, v, vi+2, s1} in- duces a P5, a contradiction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' If v is not adjacent to s2 ∈ S2 3(i + 1), then {vi, vi−1, v, vi+2} and {s2} induce a chair, a contradiction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' If v is not adjacent to s3 ∈ S2 3(i + 2), then {s3, vi, vi+1, v, vi−2} induces a P5, a contradiction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Claim 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' For each s ∈ S1 3(i) ∪ S4(i ± 2), u, v ∈ S4(i) with uv /∈ E, s cannot mix on {u, v}, for all 1 ≤ i ≤ 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' By the symmetry, it suffers to prove the claim for S1 3(i) ∪ S4(i + 2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Let s ∈ S1 3(i) ∪ S4(i + 2) with s ∼ u, s ≁ v , then {vi, s, u, vi+2, v} induces a P5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Let Ri = S1 3(i ± 1) ∪ S2 3(i) ∪ S4(i ± 1) ∪ S5, for each i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Claim 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' For each s ∈ Ri, u, v ∈ S4(i) with uv /∈ E, s is adjacent to at least one of {u, v}, for all 1 ≤ i ≤ 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' By the symmetry, it suffers to prove the claim for S1 3(i + 1) ∪ S2 3(i) ∪ S4(i + 1) ∪ S5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Let s1 ∈ S1 3(i + 1) ∪ S2 3(i) ∪ S4(i − 1), if s1 is nonadjacent to both {u, v}, then {v, vi−1, vi, s1} and {u} induce a chair.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Let s2 ∈ S5, if s2 is nonadjacent to both {u, v}, then {vi, s2, vi−2, v} and {u} induce a chair.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Claim 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Every vertex in S4(i ± 2) is complete to x, y ∈ S4(i) with xy /∈ E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' By symmetry, let v ∈ S4(i + 2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' v can not mix on x, y by Claim 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' If v ≁ x and v ≁ y, {vi, v, vi−2, x} and {y} induce a chair.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Then v is complete to {x, y}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content='2 Proof of Theorem 4 Let graph family F = {K5, W, P, Q1, Q2, Q3} (see Figure 2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' The adjacency lists of F are given in the Appendix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' It is routine to verify that every graph in F is a 5-vertex- critical (P5, chair)-free graph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Proof of Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Let G be a 5-vertex-critical (P5, chair)-free graph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' If G contains a induced F ∈ F, then G is isomorphic to F since G is 5-vertex-critical.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Therefore, we may assume that G is F-free.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' By Claim 1 and Claim 2, G has a finite order if and only if S3 ∪ S4 ∪ S5 has finite size.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Claim 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' |S1 3(i)| ≤ 2, for all 1 ≤ i ≤ 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' If |S1 3(i)| ≥ 3, then S1 3(i) ∪ {vi, vi+1} contains a K5 by Claim 3, a contradic- tion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Claim 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' χ(S2 3(i) ∪ S4(i) ∪ S5) ≤ 2, for all 1 ≤ i ≤ 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' If χ(S2 3(i) ∪ S4(i) ∪ S5) ≥ 3, then the proper subgraph S2 3(i) ∪ S4(i) ∪ S5 ∪ {vi−2, vi+2} has chromatic number at least 5, contradicting that G is 5-vertex-critical.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Claim 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' S5 is an independent set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' 5 0 1 2 3 4 K5 0 1 2 3 4 5 6 W 0 1 2 3 4 5 6 7 8 P 0 1 2 3 4 5 6 7 8 Q1 0 1 2 3 4 5 6 7 8 Q2 0 1 2 3 4 5 6 7 8 Q3 Figure 2: Graph Family F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' If there are two adjacent vertices u, v ∈ S5, then G contains a W ∈ F, a contradiction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Claim 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Every homogeneous component of S2 3(i) or S4(i) is isomorphic to K1 or K2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Let K be a component of S2 3(i) or S4(i).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Since G has no K5 or W, K has no triangles or C5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Since G is P5-free, G is bipartite.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' So χ(K) ≤ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Clearly, if χ(K) = 1, then K is isomorphic to K1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Now assume that χ(K) = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Let X and Y be the bipartition of K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Let x ∈ X and y ∈ Y with xy ∈ E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Suppose that (X ∪ Y ) \\ {x, y} ̸= ∅.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Since G is 5-vertex-critical, G − ((X ∪ Y ) \\ {x, y}) has a 4-coloring φ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Without loss of generality, we may assume that φ(x) = 1 and φ(y) = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Now if we color every vertex in X with color 1 and color every vertex in Y with color 2, the resulting coloring is a 4-coloring of G by Claim 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' This contradicts that G is 5-vertex-critical.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' So K is isomorphic to K2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Claim 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' |S2 3(i)| ≤ 3, for all 1 ≤ i ≤ 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Let K be a component of S2 3(i).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' We say that K is of type i if χ(K) = i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' We show that there is at most one component of type i for i = 1, 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Take two components K, K′ of the same type.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Let k ∈ K and k′ ∈ K′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' By Lemma 1, there are vertices u, v such that u ∈ N(K) \\ N(K′) and v ∈ N(K′) \\ N(K).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' By Claim 6, uk ∈ E, vk′ ∈ E and uk′, vk /∈ E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Any vertex in V (G)−(S2 3(i)∪S4(i)∪S5) can’t mix on two vertices of S2 3(i) by Claim 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' So u, v ∈ S4(i) ∪ S5 by our assumption about k, k′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' If u ≁ v, {k, u, vi+1, v, k′} induces a P5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Therefore, u ∼ v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' By Claim 13, u, v cannot be in S5 at the same time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' It is easy to see that C ∪ {k, k′, u, v} contains an induced P, a contradiction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' As a result, |S2 3(i)| ≤ 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Claim 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' S4(i) is a star, or S4(i) is complete to S4(i + 2) ∪ S4(i − 2), for all 1 ≤ i ≤ 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' If S4(i) is disconnected, S4(i) is complete to S4(i+2)∪S4(i − 2) by Claim 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' If S4(i) is connected, then S4(i) is a bipartite graph by Claim 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' If χ(S4(i)) = 1, S4(i) is isomorphic to K1 and we are done.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Now assume that |S4(i)| ≥ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Let X, Y be the bipartition of S4(i).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' If |X| ≥ 2 and |Y | ≥ 2, then every vertex in S4(i ± 2) is 6 complete to X ∪ Y by Claim 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Thus, S4(i) is complete to S4(i ± 2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Therefore, we may assume that |X| = 1 and so S4(i) is a star.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Recall that Ri = S1 3(i ± 1) ∪ S2 3(i) ∪ S4(i ± 1) ∪ S5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Claim 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' If S4(i) is a star, then |S4(i)| ≤ 2 for all 1 ≤ i ≤ 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Suppose that S4(i) = X ∪ Y with Y = {y}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' We show that |X| ≤ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Suppose not.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Let x1, x2 ∈ X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' By Lemma 1, there exist a ∈ N(x1)\\N(x2) and b ∈ N(x2)\\N(x1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Note that any vertex of G − Ri can’t mix on two nonadjacent vertices of X by Claim 7 - Claim 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' So a, b ∈ Ri.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' If a ≁ b, {x1, a, vi, b, x2} induces a P5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' So a ∼ b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' It is not hard to check that G contains one of Q1, Q2 and Q3, a contradiction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Thus, there are at most two vertices in X, and so |S4(i)| ≤ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Claim 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' For each i, when S4(i) is complete to S4(i ± 2) and Ri is not empty, then |S4(i)| ≤ 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' When S4(i) is (P1 + P2)-free, S4(i) is a complete bipartite graph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Let (X, Y ) be a partition of S4(i).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' We show that |X|, |Y | ≤ 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Suppose not.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Let x1, x2, x3, x4 be vertices in X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' By Lemma 1, there vertices a1 ∈ N(x1)\\N(x2), a2 ∈ N(x2)\\N(x1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Notice that a1, a2 ∈ Ri by Claim 7 - Claim 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' If a1 ≁ a2, G contains an induced P5 = {x1, a1, vi, a2, x2}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' So a1 ∼ a2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Then a1 ∈ S1 3(i − 1) ∪ S4(i + 1) and a2 ∈ S1 3(i + 1) ∪ S4(i − 1), otherwise, it is easy to check that G contains one of Q1 and Q2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Similarly, there exists a3 ∈ N(x3)\\N(x4), a4 ∈ N(x4)\\N(x3) and a3, a4 ∈ Ri, a3 ∼ a4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Thus {x3, x4} is complete to {a1, a2}, and {x1, x2} is complete to {a3, a4}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' This shows that a1, a2, a3, a4 are pairwise different vertices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Then a3 ∈ S1 3(i − 1) ∪ S4(i + 1), a4 ∈ S1 3(i + 1) ∪ S4(i − 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Recall that S1 3(i − 1) or S1 3(i + 1) is a clique by Claim 3, and S1 3(i − 1) is complete to S4(i + 1), S1 3(i + 1) is complete to S4(i − 1) by Claim 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' If a1 ≁ a3 and a2 ≁ a4, then a1, a3 ∈ S4(i + 1) and a2, a4 ∈ S4(i − 1), then {vi−2, vi+2, x3, a1, a2} is an induced K5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Otherwise, if a1 ∼ a3, {vi−1, vi−2, x3, a1, a3} induces K5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' So a2 ∼ a4, then {vi+1, vi+2, x3, a2, a4} induces a K5, a contradiction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' So |S4(i)| ≤ 6 if S4(i) is (P1 + P2)-free.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Now suppose that S4(i) contains a P1 + P2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Let P1 + P2 = {a, b, c : a ≁ b, a ≁ c, b ∼ c}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' We first prove some useful facts about P1 + P2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' S1 3(i) is anticomplete to P1 + P2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' (1) Every x ∈ S1 3(i) is either complete or anticomplete to {a, b, c} by Claim 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' If x is complete to {a, b, c}, then G contains an induced W, a contradiction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' So x is anticom- plete to {a, b, c}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' This completes the proof of (1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' For any y ∈ Ri, {y, a, b, c} induces either a P4 or a 2P2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' (2) Let y ∈ Ri.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Note that {y} ∪ S4(i) is triangle-free or else G contains a K5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' If y is not adjacent to a, then y ∼ b, y ∼ c by Claim 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Now G induces a K5, a contradiction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' So y ∼ a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' If y ≁ b, y ≁ c, then {y, a, b, c} induces a 2P2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' If y is adjacent to exact one vertex of {b, c}, we assume by symmetry that y ∼ b, y ≁ c and so {a, y, b, c} induces a P4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' This completes the proof of (2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Next we discuss about S4(i)\\{a, b, c}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Let x ∈ S1 3(i), z ∈ S4(i)\\{a, b, c}, and we define Y1 = {y1 ∈ Ri : {y1, a, b, c} induces a P4}, and Y2 = {y2 ∈ Ri : 7 {y2, a, b, c} induces a 2P2}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' S1 3(i) is anticomplete to S4(i)\\{a, b, c}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' (3) If z ∼ x, then z is complete to {a, b, c} by (1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Now G contains an induced W, a contradiction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' So z ≁ x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' This completes the proof of (3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' So S1 3(i) is anticomplete to S4(i) by (1) and (3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' For any y1 ∈ Y1, z1 ∈ S4(i)\\{a, b, c}, z1y1, z1c ∈ E, and z1a, z1b /∈ E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' (4) If z1 ≁ y1, then z1 ∼ c by y1c /∈ E and Claim 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' So z1 ≁ b by Claim 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' If z1 ≁ a, {y1, a, b, c, z} induces a P5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' So z1 ∼ a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Then there is an induced C5 = {a, y1, b, c, z1}, contradicting Claim 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' So z1 ∼ y1, then z1 ≁ a and z1 ≁ b since S4(i) is triangle- free.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' If z1 ≁ c, {a, y1, b, c} and {z1} induce a chair.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' So z1 ∼ c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' This completes the proof (4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' For any y2 ∈ Y2, z2 ∈ S4(i)\\{a, b, c}, z2y2 ∈ E, and z2a, z2b, z2c /∈ E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' (5) If z2 ≁ y2, then z2 ∼ b and z2 ∼ c by y2b, y2c /∈ E and Claim 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Then {z2, b, c} induces a triangle, contradicting Claim 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' So z2 ∼ y2 and then z2 ≁ a by the fact that {y2} ∪ S4(i) is triangle-free.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' If z2 is adjacent to exact one of b, c, then {z2, y2, a, b, c} induces a P5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' So z2 ≁ b and z2 ≁ c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' This completes the proof (5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' We can infer that any vertex in Ri is complete to S4(i)\\{a, b, c} by (4) and (5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Suppose that there exist two vertices z, z′ ∈ S4(i)\\{a, b, c}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' If Y1 ̸= ∅ and Y2 ̸= ∅, z is adjacent to c by (4) and is nonadjacent to c by (5), a contradiction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' So Ri = Y1 or Ri = Y2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Note that any vertex in Ri is complete to two ends of an edge of C5 ∩ N(S4(i)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Since G is K5-free, z ≁ z′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Then N(z) = N(z′) by Claim 7, contradicting to Lemma 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' So |S4(i)\\{a, b, c}| ≤ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Then |S4(i)| ≤ 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Claim 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' For each i, when S4(i) is complete to S4(i±2) and Ri is empty, |S4(i)| ≤ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' If S4(i) is disconnected, then there are two components K1, K2 of S4(i).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Every vertex of S1 3(i) is either complete or anticomplete to K1 ∪ K2 by Claim 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' So K1 and K2 are homogeneous components by Claim 7 - Claim 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Moreover, N(K1) = N(K2) ⊆ Ti ∪ S1 3(i) ∪ S4(i ± 2) ∪ C5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' This contradicts Lemma 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Therefore, S4(i) is connected.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Recall that χ(S4(i)) ≤ 2 by Claim 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' If χ(S4(i)) = 1, then |S4(i)| = |K1| = 1 and we are done.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' When χ(S4(i)) = 2, S4(i) is a bipartite graph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Let (X, Y ) be the bipartition of S4(i).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Every vertex s ∈ S1 3(i) is either complete or anticomplete to X(resp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Y ) by Claim 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' So X(resp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Y ) is homogeneous with respect to G − Y (resp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' G − X).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' If there are x ∈ X, y ∈ Y with x ≁ y, then every vertex s ∈ S1 3(i) cannot mix on S4(i).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Then S4(i) is a homogeneous set, and |S4(i)| = |K2| = 2 by Claim 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' If X is complete to Y .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Then X is a homogeneous set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' For any pairwise vertices x1, x2 ∈ X, we have N(x1) = N(x2), contradicting Lemma 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' So |X| = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' In the same way, |Y | = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Therefore, |S4(i)| ≤ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Claim 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' |S4(i)| ≤ 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' It follows from Claim 17 to Claim 19 that |S4(i)| ≤ 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' 8 Claim 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' |S5| ≤ 255.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Suppose that |S5| > 255.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' We know any two vertices in S5 are nonadjacent by Claim 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' By the pigeonhole principle, there are two vertices u, v ∈ S5 such that N(u) = N(v), contradicting Lemma 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' So |S5| ≤ 25(|S1 3(i)∪S2 3(i)∪S4(i)|) ≤ 25(2+3+6) = 255.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' The lemma follows from Claim 11, Claim 15, Claim 20 and Claim 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' 4 Appendix Below we give the adjacency lists of graphs in F other than K5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Graph W: {0: 1 4 5 6;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' 1: 0 2 5 6;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' 2: 1 3 5 6;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' 3: 2 4 5 6;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' 4: 0 3 5 6;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' 5: 0 1 2 3 4 6;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' 6: 0 1 2 3 4 5} Graph P: {0: 1 4 5 6;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' 1: 0 2 7 8;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' 2: 1 3 5 6 7 8;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' 3: 2 4 5 6 7 8;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' 4: 0 3 7 8;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' 5: 0 2 3 7;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' 6: 0 2 3 8;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' 7: 1 2 3 4 5 8;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' 8: 1 2 3 4 6 7} Graph Q1: {0: 1 4 5 6;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' 1: 0 2 5 6 7 8;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' 2: 1 3 5 6 7 8;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' 3: 2 4 7 8;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' 4: 0 3 7 8;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' 5: 0 1 2 6 7;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' 6: 0 1 2 5 8;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' 7: 1 2 3 4 5;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' 8: 1 2 3 4 6} Graph Q2: {0: 1 4 5 6;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' 1: 0 2 5 6 7 8;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' 2: 1 3 5 6 7 8;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' 3: 2 4 5 6 7 8;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' 4: 0 3 7 8;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' 5: 0 2 3 6 7;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' 6: 0 2 3 5 8;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' 7: 1 2 3 4 5;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' 8: 1 2 3 4 6} Graph Q3: {0: 1 4 5 6;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' 1: 0 2 5 7 8;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' 2: 1 3 5 7 8;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' 3: 2 4 6 7 8;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' 4: 0 3 6 7 8;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' 5: 0 1 2 6;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' 6: 0 3 4 5 8;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' 7: 1 2 3 4 8;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' 8: 1 2 3 4 6 7} References [1] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Bondy and U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Murty.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Graph Theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Springer, 2008.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' [2] Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Cai, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Goedgebeur, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Huang.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Some results on k-critical P5-free graphs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' arXiv:2108.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content='05492 [math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content='CO], 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' [3] Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Cai, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Huang, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Li, and Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Shi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Vertex-critical (P5, banner)-free graphs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' In Yijia Chen, Xiaotie Deng, and Mei Lu, editors, Frontiers in Algorithmics - 13th International Workshop, FAW 2019, Sanya, China, April 29–May 3, 2019, Proceedings, volume 11458 of Lecture Notes in Computer Science, pages 111– 120, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' [4] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Cameron, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Goedgebeur, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Huang, and Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Shi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' k-critical graphs in P5-free graphs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Theoretical Computer Science, 864:80–91, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' [5] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Dhaliwal, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Hamel, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Ho`ang, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Maffray, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' McConnell, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Panait.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' On color-critical (P5, co-P5)-free graphs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Discrete Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Mathemat- ics, 216:142–148, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' [6] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Hell and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Huang.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Complexity of coloring graphs without paths and cycles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Discrete Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Mathematics, 216:211–232, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' [7] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Ho`ang, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Moore, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Recoskiez, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Sawada, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Vatshelle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Constructions of k-critical P5-free graphs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Discrete Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=', 182:91–98, 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' 9 [8] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Huang and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Li.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Critical (P5,bull)-free graphs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' arXiv:2211.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content='04179 [math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content='CO], 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' [9] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Huang, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Li, and Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Shi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Critical (P6, banner)-free graphs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Discrete Applied Mathematics, 258:143–151, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' [10] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Kami´nski and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Pstrucha.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Certifying coloring algorithms for graphs without long induced paths.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' Discrete Applied Mathematics, 261:258–267, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} +page_content=' 10' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/H9E0T4oBgHgl3EQfhwGK/content/2301.02436v1.pdf'} diff --git a/I9AzT4oBgHgl3EQfjv2R/content/2301.01521v1.pdf b/I9AzT4oBgHgl3EQfjv2R/content/2301.01521v1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..f21f376c6b889aec061ffa13719f186f354b3b58 --- /dev/null +++ b/I9AzT4oBgHgl3EQfjv2R/content/2301.01521v1.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:81424c293ca4647f4aa5ec762d3aaff330b02f378b6c5856b89dadc141809ad3 +size 1888406 diff --git a/I9AzT4oBgHgl3EQfjv2R/vector_store/index.faiss b/I9AzT4oBgHgl3EQfjv2R/vector_store/index.faiss new file mode 100644 index 0000000000000000000000000000000000000000..93c6bb0b2022f4e454e9dfe34d4c2e5d25b5ec52 --- /dev/null +++ b/I9AzT4oBgHgl3EQfjv2R/vector_store/index.faiss @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:229225a81ad67d858d9ec78d938f7a4072c2edecbd504f604ba4ca9c77ff44ed +size 2424877 diff --git a/LNFJT4oBgHgl3EQfxy2s/content/tmp_files/2301.11636v1.pdf.txt b/LNFJT4oBgHgl3EQfxy2s/content/tmp_files/2301.11636v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..8331e738959a07b80f159ccf55984f815de0ed97 --- /dev/null +++ b/LNFJT4oBgHgl3EQfxy2s/content/tmp_files/2301.11636v1.pdf.txt @@ -0,0 +1,2084 @@ +arXiv:2301.11636v1 [math.DG] 27 Jan 2023 +CHERN-RICCI FLAT BALANCED METRICS ON SMALL RESOLUTIONS OF +CALABI-YAU THREEFOLDS +FEDERICO GIUSTI AND CRISTIANO SPOTTI +ABSTRACT. Given a (smoothable) projective nodal Kähler Calabi-Yau threefold, we show, via a +gluing construction, that all its - possibly non-Kähler - small resolutions admit Chern-Ricci flat +balanced metrics, which among other things solve the dilatino equation appearing in the Hull- +Strominger system. +1. INTRODUCTION +With the ultimate aim of geometrizing and classifying, one of the most studied problems in com- +plex geometry is the existence of hermitian metrics that can be regarded as special. Through the +years, the Kähler case is the one that has been studied and understood the most, however, in the last +decades the interest towards the non-Kähler world has been increasing more and more, leading to +the search for special metrics also in this particular context. While in the Kähler case special metrics +arise naturally, the non-Kähler scenario is too wild to guide us directly towards some central no- +tion of special metric, nevertheless, one can have indications on the path to follow by watching the +Kähler world. More specifically, given an n-dimensional complex manifold (M, J), if it is Kähler +the obvious class of special (on a first level) metrics is given exactly by Kähler metrics - which we +recall being hermitian metrics h whose fundamental form ω := h(J_, _) is d-closed. In addition, +this condition can also be combined with the notion of Einstein metric (thanks to the properties +of Kähler metrics) from the general riemannian case, giving rise to the notion of Kähler-Einstein +metrics, which are universally regarded as the "most special" in the Kähler world. Likewise, other +notions of special Kähler metrics have been introduced and studied (some of them are still central +in the study of Kähler geometry), like constant scalar curvature Kähler (cscK) metrics, or the more +general class of extremal Kähler metrics (introduced by Calabi in [C]), however they all share the +fact that they are giving a curvature condition on the metric, thus this suggests that when searching +for special metrics in the non-Kähler case we shall ask for these metrics to be special under two +aspects: the cohomological one (satisfying a condition possibly generalizing the Kähler one) and +the curvature one. +Regarding the cohomological aspect, several conditions have been introduced that generalize the +Kähler one, and one of the most studied is given by dωn−1 = 0, identifying the class of balanced +metrics (originally introduced by Gauduchon in [G] as semi-Kähler metrics, and later on studied +Date: January 30, 2023. +2010 Mathematics Subject Classification. 53C55, 53C25,53C07. +Key words and phrases. complex non-Kähler manifolds, balanced metrics, Chern-Ricci flat metrics, Calabi-Yau +manifolds, Hull-Strominger system. +1 + +CHERN-RICCI FLAT BALANCED METRICS ON SMALL RESOLUTIONS OF CALABI-YAU THREEFOLDS +2 +further by Michelsohn in [M]), which is the class of metrics we are interested in working with. +Balanced metrics carry many interesting properties such as the coincidence between the Hodge +laplacian and the Dolbeault laplacian on scalar functions (showed by Gauduchon in [G]), or the +preservation of the balanced condition for manifolds under holomorphic submersions proved in +[M] (showing a sort of duality between the Kähler condition and the balanced condition). Also in +[M], Michelsohn proved a characterization of balanced metrics in terms of currents, which leads to +the celebrated result from Alessandrini and Bassanelli (see [AB]) showing that the class of com- +pact balanced manifolds is closed under proper modifications (condition not satisfied by the class +of Kähler manifolds). Moreover, balanced metrics ended up being central in many interesting cur- +rently open problems, such as the conjecture from Fino and Vezzoni (see [FV]) and the Gauduchon +conjecture for balanced metrics (see [STW], in which was solved in its original version for Gaudu- +chon metrics - identified by the condition ∂∂ωn−1 = 0, which weakens the balanced condition - +posed by Gauduchon). +Moving instead on the curvature aspect, there are several known notions of special metrics in the +non-Kähler world such as Chern-Ricci flat metrics, Bismut-Ricci flat metrics (which in the bal- +anced case are equivalent to Chern-Ricci flat metrics, see [AI]), Chern-Einstein metrics and many +more. +The main goal of this paper is to construct Chern-Ricci flat balanced metrics on the compact small +resolutions of certain smoothable singular Kähler Calabi-Yau threefolds. More specifically we wish +to work on smoothable singular threefolds ˜ +M whose singular set is made of ordinary double points +and are endowed with a Kähler Ricci-flat singular metric ˜ω. Then, using the information on the +asymptotics of this metric around the singularity given by the results in [HS], together with what +it is known on the standard conifold (i.e. the local model of ordinary double points on threefolds) +and its small resolution to build, with a gluing construction (inspired mostly by [BM], but also +[AP] and [J]), Chern-Ricci flat balanced metrics on the compact small resolutions of the singu- +lar threefold. The strategy of the proof consists of two main steps: (1) a metric gluing between +the singular Calabi-Yau metric ˜ω with the (rescaled) Candelas-de la Ossa metrics ωco,a (that are +Kähler Calabi-Yau metrics on the small resolution of the standard conifold, introduced in [CO]), +and (2) an Implicit Function Theorem deformation argument, where the deformation is a balanced +deformation (introduced in [FWW]) and all the analysis is performed in suitable weighted Hölder +spaces. Our main result is the following. +Theorem 1.1. Let ( ˜ +M, ˜ω) be a smoothable projective Kähler Calabi-Yau nodal threefold (with ˜ω +a singular Calabi-Yau metric), and let M be a compact (not necessarily Kähler) small resolution +of ˜ +M. Then M admits a Chern-Ricci flat balanced metric ˆω such that [ˆω2] = [˜ω2] + ε4[P1], and +[ω2] converges to a nef class. +Here by "smoothable" we mean that ˜ +M admits a polarized flat deformation to a smooth pro- +jective Calabi-Yau threefold (examples of such manifolds are given by nodal quintic threefolds in +P4), and the reason why we require this condition to be satisfied is to be able to apply a result from +[HS]. +Our interest towards Chern-Ricci flat balanced metrics comes actually from the realm of Calabi- +Yau geometry. Indeed, for a not necessarily Kähler Calabi-Yau manifold (i.e. a complex manifold + +CHERN-RICCI FLAT BALANCED METRICS ON SMALL RESOLUTIONS OF CALABI-YAU THREEFOLDS +3 +endowed with a holomorphic volume form) it was introduced by Hull and Strominger (respec- +tively in [Hu] and [S]) a system of four equations coming from superstring theory known as the +Hull-Strominger system, whose solutions have proved to be extremely hard to construct (see [GF] +for a full presentation of the system and some known solutions, together with several other ref- +erences such as [AGF], [Fe], [FuY], [LY3], [P], [TY] and the very recent [CPY2], [FeY] for the +invariant case and [PPZ] for a flow approach). The problem of solving This system, apart from its +physical meaning, carries great geometric interest, since it generalizes the Calabi-Yau condition to +the non-Kähler framework, and it holds a central role in the geometrization conjecture for com- +pact Calabi-Yau threefolds known as Reid’s Fantasy (see [R]). This last conjecture, in particular, +states that all compact Kähler Calabi-Yau threefolds can be connected through a finite number of +conifold transitions (introduced by Clemens and Friedman, see [F]), i.e. a procedure consisting of +the contraction of a finite family of disjoint (−1, −1)-curves in a compact Calabi-Yau threefold, +followed by the smoothing of the ordinary double points obtained from the previous step. These +objects thus show our interest towards singular threefolds with a finite number of ordinary dou- +ble points and our aim to find special metrics on their small resolution; in particular the interest +towards Chern-Ricci flat balanced metrics is directly related to one of the equation of the Hull- +Strominger system, namely the conformally balanced equation, which on a compact Calabi-Yau +manifold (X, Ω) - where Ω is the holomorphic volume form - is an equation for hermitian metrics +(actually their fundamental forms) ω given by d(||Ω||ωωn−1) = 0 which is clearly satisfied by +balanced Chern-Ricci flat hermitian metrics. Moreover, Chern-Ricci flat metrics correspond also +to Hermite-Einstein metrics on the holomorphic tangent bundle, thus this kind of metric appears as +particularly suited to be used as a starting point from which possibly build solutions for the Hull- +Strominger system (we will briefly discuss some ideas at the end of the paper), and also portrays +our construction (in some sense) as aiming towards "reversing the arrow" of the construction done +by Fu, Li and Yau in [FLY] and Collins, Picard and Yau in [CPY1]. +It is also interesting to notice that the deformation argument used in Section 4 proves also that on +this class of manifolds the Gauduchon conjecture for balanced metrics holds for certain classes +nearby the boundary of the balanced cone. +The paper is structured as follows. In Section 2 we recall some basic aspects on ordinary dou- +ble points and their resolutions, both regarding their geometry and their topology, with focus on +some fundamental results useful for our construction. In Section 3 we present the first step of our +work, consisting of a gluing construction of a balanced metric made with the objects previously +introduced, together with the construction of a global "small" Chern-Ricci potential for our new +balanced metric. In the last section, i.e. Section 4, we apply a deformation argument to obtain a +Chern-Ricci flat balanced metric and we discuss its associated balanced class, as well as its possi- +ble applications to the search of solutions for the Hull-Strominger system. +Acknowledgements. Both the authors are supported by Villum Young Investigator 0019098. +The authors would like to thank Mario Garcia-Fernandez for useful conversations and remarks. + +CHERN-RICCI FLAT BALANCED METRICS ON SMALL RESOLUTIONS OF CALABI-YAU THREEFOLDS +4 +2. ORDINARY DOUBLE POINTS ON THREEFOLDS +In this preliminary section we shall recall some known facts about a certain type of singularity +on threefolds, regarding both their topology and their geometry, and also fix some notation for the +following sections. +The type of singularities we are interested in studying are called ordinary double points (which +are the most common kind of singularities in our context), and are described by the model +X := {z2 +1 + z2 +2 + z2 +3 + z2 +4 = 0} ⊆ C4, +which is known as the 3-dimensional standard conifold, whose only singular point is the origin. +Then we have: +Definition 2.1. A singular point p in a singular threefold Y is called ordinary double point (ODP) +if we can find a neighborhood p ∈ U ⊆ M and a neighborhood 0 ∈ V ⊆ X such that U and V are +biholomorphic through a map that sends p to 0. +2.1. Topological aspects. These singularities arise naturally on threefolds when collapsing (−1, −1)- +curves, i.e. rational curves biholomorphic to P1 whose normal bundle is isomorphic to OP1(−1)⊕2, +and actually this procedure to obtain ODPs covers all the possibilities on threefolds. Indeed, the +standard conifold can be constructed in several ways, one of which is the following: consider the +rank 2 bundle OP1(−1)⊕2 on P1 and notice that the map +([X1 : X2], (w1, w2)) �→ (w1X1, w1X2, w2X1, w2X2) +maps OP1(−1)⊕2 onto X - since X through a change of coordinates is biholomorphic to the set +{W1W2 − W3W4 = 0} - sending the zero section onto the origin. Moreover this map restricted +to OP1(−1)⊕2 \ P1 (where P1 is meant as the zero section) gives a biholomorphism with X \ +{0}, proving our previous statement. This shows us that these singularities always admit small +resolutions (with P1 as the exceptional curve) biholomorphic to ˜X := OP1(−1)⊕2, and it can be +shown that a singular threefold with n ordinary double points admits exactly 2n small resolutions +of this type (every singularity can be resolved with a curve in two distinct bimeromorphic ways). +Since our following work aims to face the case of singular threefolds whith a finite number of +ODPs which admit a compact small resolution, in particular those who do not admit Kähler metrics, +before going further in exploring the geometry of these singularities we will quickly show that this +kind of resolutions are actually a very common situation. +Remark 2.2. Thanks to a result from Cheltsov (see [Ch]) we know that a hypersurface ˜ +M in P4 of +degree d with only isolated ODPs is factorial when ˜ +M has at most (d−1)2 −1 singularities, thus is +in particular Q-factorial. We can then apply the work from Namikawa and Steenbrink (see [NS]) to +obtain that ˜ +M is smoothable, and hence, thanks to the results from Friedman (see [F]) we have that +any small resolution M of ˜ +M with exceptional curves C1, ..., Ck, Ci ≃ P1, satisfies necessarily a +condition +k +� +i=1 +λi[Ci] = 0 +in H2(M, R), +where each λi ̸= 0, + +CHERN-RICCI FLAT BALANCED METRICS ON SMALL RESOLUTIONS OF CALABI-YAU THREEFOLDS +5 +which immediately implies that if ˜ +M has only one ODP, then M can’t be Kähler because it contains +a homologically trivial curve (note that the generic quintic threefold has exactly one node, hence +satisfies this situation). +Moreover, Werner proved in [W] that M is projective if and only if all Cis are homologically +non-trivial, and since M is Moishezon, projectivity is equivalent to Kählerness. Thus the class of +examples above lies in a larger one, since every small resolution with at least a homologically +trivial exceptional curve is non-Kähler. +2.2. Geometric aspects. The standard conifold X is naturally endowed with a conical structure. +Indeed, we can introduce the function on C4 +r(z) := ||z|| +2 +3 , +which restricted to X yields the conical distance to the singularity, and can be used to define the +metric +ωco,0 := 3 +2i∂∂r2, +on the smooth part of X, which is clearly Kähler. Moreover, it can be seen that ωco,0 is actually +also Ricci flat, as well as a cone metric over the link L := {r = 1} ⊆ X which can be written as +gco,0 = 3 +2(dr2 + r2gL), +with gL a Sasaki-Einstein metric on the link L. +This metric structure of the standard conifold, with some further work, yields also a Kähler Calabi- +Yau structure on the small resolution. In fact, Candelas and de la Ossa (see [CO]) constructed a +family of metrics, depending on the parameter a > 0, of the form +ωco,a := i∂∂fa(r3) + 4a2π∗ +P1ωF S, +where ωF S is the Fubini-Study metric on P1, and fa is smooth function satisfying the ODE +(xf ′ +a(x))3 + 6a2(xf ′ +a(x))2 = x2, +fa(x) ≥ 0, +on [0, +∞), which immediately gives fa(x) = a2f1(x/a3). Here the function r is simply the +conical distance from the singularity re-read on the resolution, hence portraying the conical distance +from the exceptional curve. Moreover, this family of metrics is such that as a → 0 the metrics +ωco,a converges, away from the exceptional curve, to the standard cone metric ωco,0, and it is also +asymptotic (at infinity) to the cone metric ωco,0, and these facts can be seen explicitly with the +following expansion from [CPY1]. +Lemma 2.3. For x ≫ 1, the function f1(x) has a convergent expansion +f1(x) = 3 +2x +2 +3 − 2 log(x) + ++∞ +� +n=0 +cnx− 2n +3 . +This expansion is going to be crucial for our work, hence we will work again with it in the next +sections. +Before concluding this preliminary part, is extremely important for our construction (and highly + +CHERN-RICCI FLAT BALANCED METRICS ON SMALL RESOLUTIONS OF CALABI-YAU THREEFOLDS +6 +interesting just as a fact) to remark that the standard cone metric ωco,0 is actually the (asymptotic) +model near the singularities for all singular Kähler Calabi-Yau metrics around ODPs, and this was +shown by Hein and Sun in the following crucial theorem (Theorem 1.4 and Lemma A.1 from [HS]) +which can be simplified with the following statement (written only for threefolds): +Theorem 2.4 (Hein-Sun). Let ˜ +M be a smoothable singular threefold whose singular set is a finite +family of ODPs endowed with a Kähler Calabi-Yau metric ˜ω on its smooth part Mreg. Then for +every singular point p ∈ ˜ +M \ Mreg there exist a constant λ0 > 0, neighborhoods p ∈ Up ⊆ ˜ +M +and 0 ∈ Vp ⊆ X, and a biholomorphism P : Vp \ {0} → Up \ {p} such that +P ∗˜ω − ωco,0 = i∂∂ϕ, +for some ϕ ∈ C∞ +2+λ0, +where r is the conical distance from the singularities and C∞ +2+λ0 is the space of smooth functions +with decay rate at zero of 2 + λ0 (i.e. an f ∈ C∞ +2+λ0 is a smooth function such that nearby zero it +holds |∇kf| ≤ cr2+λ0−k for all k ≥ 0). +3. THE GLUING CONSTRUCTION +We now start presenting the first part of our work, which consists of a gluing construction of +a family of balanced metrics on the compact small resolution of a smoothable Kähler Calabi-Yau +singular threefold. This type of gluing constructions are not new in complex geometry, and have +been used in the past to construct significant examples, e.g. in [J], [AP] and [BM]. +Before going ahead with the details of the construction it is significant to make the following +remark. +Remark 3.1. Thanks to the results from Hironaka and Alessandrini-Bassanelli ([Hi] and [AB]), +we already know that compact small resolutions of smoothable Kähler Calabi-Yau threefolds with +a finite number of ODPs admit balanced metrics. However, we are interested in finding special +balanced metrics - in particular, as we will see, with a small Chern-Ricci potential - hence we +need to perform an explicit construction in order to build metrics satisfying our desired curvature +properties. +In what follows we will lay out the initial data and see in details the construction. +Let ˜ +M be a smoothable complex threefold obtained from the contraction of a finite family of +disjoint (−1, −1)-curves in a compact complex threefold (thus the singular set of ˜ +M is made of a +finite number of Ordinary Double Points), let M be a compact small resolution of ˜ +M and suppose +that the regular part Mreg of ˜ +M is equipped with ˜ω a Kähler Calabi-Yau metric. +The idea of the gluing construction is to use the ingredients we introduced in the previous sections, +and notice that they are suitable to be glued together. In particular, we know that around each one +of the exceptional curves we have the Candelas-de la Ossa metrics ωco,a which are asymptotic, far +from the exceptional curve, to the cone metric; on the other hand we have that also our background +metric ˜ω is asymptotic to the cone metric, but this time when approaching the singularity. We +then want to use the standard conifold as a "bridge" to glue together the metrics ˜ω and ωco,a, +while maintaining the balanced condition, and in order to be able to do the analysis for this gluing +construction is going to be crucial to have a "concrete" construction of the small resolution M. +To do this, we will divide the process into three natural steps, and for simplicity assume that ˜ +M has + +CHERN-RICCI FLAT BALANCED METRICS ON SMALL RESOLUTIONS OF CALABI-YAU THREEFOLDS +7 +just one singularity (the process obviously applies analogously to the case in which the singularities +are any finite number). In addition, since our resolution is known to be a crepant resolution, we are +also going to compute explicitly a holomorphic volume form for M (starting from the one on ˜ +M), +since such form is a crucial ingredient for the deformation argument in the following section. +3.1. Step 1. We first glue together the metrics ˜ω and ωco,0 nearby the singularity. To do this, +thanks to the nature of ODPs, we can introduce, with an abuse of notation (that we will keep on +using throughout the whole paper - as it does not generate any confusion), a function r on ˜ +M +which coincides with the (pullback) conical distance from the singularity in a neighborhood of said +singularity (induced by the local biholomorphism P from Theorem 2.4), and is identically equal to +1 far away from them (as a consequence we will do the same with the standard cone metric ωco,0). +In order to perform this first step of the gluing, we will need to work on the cone X and pull back +on Mreg the object obtained. +Let p > 0 and consider ε > 0 sufficiently small, such that, thanks to the result from Hein-Sun +cited above, on the region {0 < r ≤ 4εp} ⊆ X exists a constant λ0 > 0 and is defined a function +ϕ ∈ C∞ +2+λ0 such that +P ∗˜ω = ωco,0 + i∂∂ϕ. +Hence, we introduce a cut-off function χε(x) := χ1(x/εp) where χ1 is a smooth function on +[0, +∞) such that +χ1(x) := + + + + + +0 +if x ≤ 2, +Non decreasing +if x ∈ (2, 4), +1 +if x ≥ 4, +and define the smooth real (1, 1)-form +˜ωε := ωco,0 + i∂∂(χε(r)ϕ), +which for ε sufficiently small is such that +ωε := (P −1)∗˜ωε +defines a Kähler metric on Mreg (extended to the whole Mreg in the obvious way). Indeed, we +notice that on Gε := {2εp < r ≤ 4εp} it holds +|ωε − ωco,0|ωco,0 = |i∂∂(χε(r)ϕ)|ωco,0 ≤ c(r−2|ϕ| + r−1|∂ϕ|ωco,0 + |i∂∂ϕ|ωco,0) ≤ crλ0, +from which on Gε we can write +|∇k +ωco,0(ωε − ωco,0)|ωco,0 ≤ Crλ0−k, +for all k ≥ 0. +Moreover we notice that on {0 < r ≤ 2εp} the metric ωε is exactly conical, i.e. equal to ωco,0, +while on {r > 4εp} ωε coincides with the background metric ˜ω, and on Gε is the only region where +ωε is not Ricci-flat. + +CHERN-RICCI FLAT BALANCED METRICS ON SMALL RESOLUTIONS OF CALABI-YAU THREEFOLDS +8 +3.2. Step 2. In this second step we instead perform the gluing between the Candelas-de la Ossa +metrics ωco,a and the standard cone ωco,0, on the small resolution ˆX of the standard conifold X, +preserving the balanced condition. To do this we recall from Lemma 2.3 that the Candelas-de la +Ossa metrics are of the form +ωco,a := i∂∂fa(r3) + 4a2π∗ωF S, +which away from the exceptional curve have the expansion +fa(r3) = 3 +2r2 + a2ψa(r), +where +ψa(r) = 3 log r − 3 log a + ++∞ +� +n=0 +cna2nr−2n. +This suggests introducing a large parameter R ≫ 1 and a smooth cut-off function χR(x) := +χ2(x/R) on [0, +∞) such that +χ1(x) := + + + + + +1 +if x ≤ 1 +2, +Non increasing +if x ∈ +�1 +2, 1 +� +, +0 +if x ≥ 1, +from which we introduce the family of closed (2, 2)-forms +ω2 +a,R = +� +i∂∂ +�3 +2r2 + a2χR(r)ψa(r) +��2 ++ 2a2i∂∂ +� +χR(r)fa(r3) +� +∧ π∗ωF S. +The reason why the notation ω2 +a,R makes sense is because the results from Michelsohn ([M]) ensure +us that every real positive closed (n − 1, n − 1)-form admits a unique real positive (1, 1)-form as +a (n − 1)th root, and the forms we defined above happen to be positive for sufficiently large R. +Indeed, positivity is clear when r ≤ R +2 , where ω2 +a,R = ω2 +co,a, and when r ≥ R, where ω2 +a,R = ω2 +co,0. +In the gluing region GR := {R/2 ≤ r ≤ R}, instead, we need to do a few estimates to confirm +the positivity. In order to avoid having to impose limitations on the parameter a we substitute the +functions ψa with ψa + 3 log a; this won’t alter the metrics ωco,a and any of its properties, thus it +can be done without problems. For simplicity, we will keep writing ψa, and in the following the +constant c might vary from line to line. We have +|ω2 +a,R − ω2 +co,0|ωco,0 ≤2a2|ωco,0 ∧ i∂∂(χR(r)ψa(r))|ωco,0 + 2a2|i∂∂(χR(r)fa(r3)) ∧ π∗ωF S|ωco,0 ++ a4|i∂∂(χR(r)ψa(r))|2 +ωco,0 +≤ca2(|ωco,0|ωco,0(r−2|ψa| + r−1|∂ψa|ωco,0 + |i∂∂ψa|ωco,0) ++ |π∗ωF S|ωco,0(r−2|fa(r3)| + r−1|∂fa(r3)|ωco,0 + |i∂∂fa(r3)|ωco,0) ++ a2(r−2|ψa| + r−1|∂ψa|ωco,0 + |i∂∂ψa|ωco,0)2) +≤ca2(|ωco,0|ωco,0(r−2|ψa| + r−1|∂ψa|ωco,0 + |i∂∂ψa|ωco,0) ++ |π∗ωF S|ωco,0(1 + |ωco,0|ωco,0 + r−2|ψa| + r−1|∂ψa|ωco,0 + |i∂∂ψa|ωco,0) ++ a2(r−2|ψa| + r−1|∂ψa|ωco,0 + |i∂∂ψa|ωco,0)2) ≤ (∗) + +CHERN-RICCI FLAT BALANCED METRICS ON SMALL RESOLUTIONS OF CALABI-YAU THREEFOLDS +9 +To conclude the estimate let’s take a look at the single terms, keeping in mind that we are taking +the norms with respect to the standard cone metric. It holds +• |ωco,0|ωco,0 = O(1); +• |π∗ωF S|ωco,0 = O(r−2); +• |ψa| ≤ c(| log r| + �+∞ +n=0 |cn|a2nr−2n) ≤ c| log r|; +• |∂ψa|ωco,0 ≤ c(r−1 + �+∞ +n=0 |˜cn|a2nr−2n−1) ≤ cr−1; +• |i∂∂ψa|ωco,0 ≤ c(r−2 + �+∞ +n=0 |˜˜cn|a2nr−2n−2) ≤ cr−2; +from which we get +(∗) ≤ ca2(r−2| log r|+r−2+r−2(1+r−2| log r|+r−2)+a2(r−2| log r|+r−2)2) ≤ ca2r−2| log r|, +and hence +|∇k +ωco,0(ω2 +a,R − ω2 +co,0)|ωco,0 ≤ Ca2r−2−k| log r| +for all k ≥ 0, +which clearly implies the positivity also on GR, as long as R is chosen to be sufficiently large. +3.3. Step 3. In this third and last step we want to glue together the metrics ωε from step 1 with the +metric ωa,R from step 2 by matching isometrically the exactly conical regions. In order to do this +we are going to need to rescale by a constant λ > 0 the metric on ˆX, and we will now see that this +constant is a geometric constant, since it is dictated by the geometries of the two metrics we are +gluing together. +In what follows we will denote with z the coordinates on Mreg nearby the singularity and with +ζ the coordinates on ˆX, both given by the identification with the standard conifold X. We then +consider the regions +CR := {R/2 ≤ r(ζ) ≤ 4R} ⊆ ˆX +and +Cε := {εp/2 ≤ r(z) ≤ 4εp} ⊆ Mreg +and define a biholomorphism between them by imposing +ζ = +� R +εp +� 3 +2 +z. +From this expression we have that on the identified region the following identity holds +r(ζ) = r +�� R +εp +� 3 +2 +z +� += R +εp r(z) +which yields λ = λ(ε, R) := +�εp +R +�2. From this follows λr2(ζ) = r2(z), and thus on the identified +conical regions C′ +R := {R ≤ r(ζ) ≤ 2R} ≃ {εp ≤ r(z) ≤ 2εp} =: C′ +ε holds +λωco,0(ζ) = ωco,0(z), +and consequently +λωa,R = ωε. +Hence, λ is the needed rescaling factor, which allows us to define the glued family of balanced +metrics on the small resolution M as +ωa,ε,R := + + + + + +λωa,R +on r(ζ) ≤ R, +ωco,0 +on εp ≤ r(z) ≤ 2εp, +ωε +on r(z) ≥ 2εp. + +CHERN-RICCI FLAT BALANCED METRICS ON SMALL RESOLUTIONS OF CALABI-YAU THREEFOLDS +10 +Now we will move to the following part in which we will try to understand better the geometry of +this new family of metrics. +3.4. Description of the volume. We are mainly interested in the Chern-Ricci tensor - and in par- +ticular on its potential - hence, in order to understand it, we are going to need to obtain information +on the volume of our metrics ω = ωε,R := ω1,ε,R. To do this, we need to estimate the distance +between our glued metrics and the standard cone metric on the gluing region, since in the other +parts of the manifold we already know the geometry from the initial data. Moreover, inside the +gluing region there is also an exactly conical region - whose geometry is also understood - which +separates the two gluing regions from the first two steps, hence we can just estimate the said dis- +tance separately on the two regions and then take the maximum. +Clearly, the metric is unaltered on the gluing region from step 1, thus we still have on Gε that +|∇k +ωco,0(ωε − ωco,0)|ωco,o ≤ crλ0−k, +for all k ≥ 0. +On the other hand, since in step 3 we had to rescale the metric nearby the exceptional curve, we +are going to need to repeat the estimate to understand how the rescaling affected the distance from +the standard cone metric. At some point we are going to link the parameters ε and R. Again the +constant c might be varying from line to line. We have +(ω2 +ε,R − ω2 +co,0)(ζ) =λ2(2ωco,0 ∧ i∂∂(χR(r)ψ1(r)) + 2i∂∂(χR(r)f1(r3)) ∧ π∗ωF S ++ i∂∂(χR(r)ψ1(r))2)(ζ) = (∗) +Let’s now change coordinates from ζ to z, recalling that λr2(ζ) = r2(z) and noticing that, by +construction, π∗ωF S is invariant under rescalings. +(1) +(∗) =λ2 + +λ−1ωco,0 ∧ i∂∂ + +χR +� +λ− 1 +2 r +� + +3 log r − 3 +2 log λ + +� +n≥0 +cnλnr−2n + + + + ++ π∗ωF S ∧ i∂∂ + +χR +� +λ− 1 +2 r +� + +λ−1 3 +2r2 + 3 log r − 3 +2 log λ + +� +n≥0 +cnλnr−2n + + + + ++ + +i∂∂ + +χR +� +λ− 1 +2 r +� + +3 log r − 3 +2 log λ + +� +n≥0 +cnλnr−2n + + + + + + +2 + (z). + +CHERN-RICCI FLAT BALANCED METRICS ON SMALL RESOLUTIONS OF CALABI-YAU THREEFOLDS +11 +What we want to do now is estimate the norm (with respect to the cone metric) of this quantity, +thus we start computing the derivatives that appear in the above expression. We have +∂∂ + +χR +� +λ− 1 +2 r +� + +3 log r − 3 +2 log λ + +� +n≥0 +cnλnr−2n + + + + += λ−1 +R2 χ′′ +R +� +λ−1/2r +� � +3 log r − 3 +2 log λ + +� +n∈N +cnλnr−2n +� +∂r ∧ ∂r ++ 2λ−1/2 +R +χ′ +R +� +λ−1/2r +� � +3r−1 + +� +n∈N +˜cnλnr−2n−1 +� +∂r ∧ ∂r ++ λ−1/2 +R +χ′ +R +� +λ−1/2r +� + +3 log r − 3 +2 log λ + +� +n≥0 +cnλnr−2n + + ∂∂r ++ χR +� +λ−1/2r +� � +−3r−2 + +� +n∈N +˜˜cnλnr−2n−2 +� +∂r ∧ ∂r ++ χR +� +λ−1/2r +� � +3r−1 + +� +n∈N +˜cnλnr−2n−1 +� +∂∂r, +and +∂∂ + +χR +� +λ− 1 +2 r +� + +λ−1 3 +2r2 + 3 log r − 3 +2 log λ + +� +n≥0 +cnλnr−2n + + + + += +� +λ−1 +R2 χ′′ +R +� +λ−1/2r +� +r2 + 4λ−1/2 +R +χ′ +R +� +λ−1/2r +� +r + 2χR +� +λ−1/2r +�� +∂r ∧ ∂r ++ +� +λ−1/2 +R +χ′ +R +� +λ−1/2r +� +r2 + 2χR +� +λ−1/2r +� +r +� +∂∂r ++ ∂∂ + +χR +� +λ− 1 +2 r +� + +3 log r − 3 +2 log λ + +� +n≥0 +cnλnr−2n + + + + + +CHERN-RICCI FLAT BALANCED METRICS ON SMALL RESOLUTIONS OF CALABI-YAU THREEFOLDS +12 +From here we can obtain the estimates +������ +∂∂ + +χR +� +λ− 1 +2 r +� + +3 log r − 3 +2 log λ + +� +n≥0 +cnλnr−2n + + + + +������ +ωco,0 +≤ cλ−1 +R2 +� +| log r| + | log λ| + +� +n∈N +|cn|λnr−2n +� ++ cλ−1/2 +R +r−1 + +1 + +� +n∈N +|˜cn|λnr−2n + | log r| + | log λ| + +� +n≥0 +|cn|λnr−2n + + ++ cr−2 +� +1 + +� +n∈N +|˜˜cn|λnr−2n + +� +n∈N +|˜cn|λnr−2n +� +and������ +∂∂ + +χR +� +λ− 1 +2r +� + +λ−1 3 +2r2 + 3 log r − 3 +2 log λ + +� +n≥0 +cnλnr−2n + + + + +������ +ωco,0 +≤ c +� +λ−1 +R2 r2 + λ−1/2 +R +(r + 1) +� ++ +������ +∂∂ + +χR +� +λ− 1 +2 r +� + +3 log r − 3 +2 log λ + +� +n≥0 +cnλnr−2n + + + + +������ +ωco,0 +In order to conclude the estimate, we impose R := ε−q, with q > 0 to be chosen, from which +follows λ = ε2(p+q). Also we are now going to use that we are in the region {2εp ≤ r ≤ 4εp}, +which among the others implies the estimate +| log r| ≤ | log 4| + p| log ε| ≤ c(1 + | log ε|). +We thus get +������ +∂∂ + +χR +� +λ− 1 +2r +� + +3 log r − 3 +2 log λ + +� +n≥0 +cnλnr−2n + + + + +������ +ωco,0 +≤ cε−2p +� +1 + | log ε| + +� +n∈N +|cn|(1/2)2n +� ++ cε−2p + +1 + +� +n∈N +|˜cn|(1/2)2n + 1 + | log ε| + +� +n≥0 +|cn|(1/2)2n + + ++ cε−2p +� +1 + +� +n∈N +|˜˜cn|(1/2)2n + +� +n∈N +|˜cn|(1/2)2n +� +≤ cε−2p| log ε| +and + +CHERN-RICCI FLAT BALANCED METRICS ON SMALL RESOLUTIONS OF CALABI-YAU THREEFOLDS +13 +������ +∂∂ + +χR +� +λ− 1 +2r +� + +λ−1 3 +2r2 + 3 log r − 3 +2 log λ + +� +n≥0 +cnλnr−2n + + + + +������ +ωco,0 +≤ c(1 + ε−p(ε + 1)) + +������ +∂∂ + +χR +� +λ− 1 +2 r +� + +3 log r − 3 +2 log λ + +� +n≥0 +cnλnr−2n + + + + +������ +ωco,0 +≤ c(ε−p + ε−2p| log ε|) ≤ cε−2p| log ε| +Hence, putting together this estimates we can finally obtain +|ω2 +ε,R − ω2 +co,0|ωco,0 +≤ cε4(p+q) + + +ε−2(p+q) +������ +i∂∂ + +χR +� +λ− 1 +2r +� + +3 log r − 3 +2 log λ + +� +n≥0 +cnλnr−2n + + + + +������ +ωco,0 ++ ε−2p +������ +i∂∂ + +χR +� +λ− 1 +2 r +� + +λ−1 3 +2r2 + 3 log r − 3 +2 log λ + +� +n≥0 +cnλnr−2n + + + + +������ +ωco,0 ++ +������ +i∂∂ + +χR +� +λ− 1 +2r +� + +3 log r − 3 +2 log λ + +� +n≥0 +cnλnr−2n + + + + +������ +2 +ωco,0 + + + +≤ cε4(p+q)(ε−4p−2q| log ε| + ε−4p| log ε|2) ≤ cε2q| log ε| +which implies, on the whole gluing region, that for all k ≥ 0 holds +|∇k +ωco,0(ω2 +q,ε − ω2 +co,0)|ωco,0 ≤ crm−k, +where m = m(λ0, p, q). +In order to obtain geometric information from this estimate, we are going to need to recall a result +from Michelsohn ([M]). This result gives an explicit isomorphism between the cone of strictly +positive (1, 1)-forms and the cone of strictly positive (n − 1, n − 1)-forms. In particular, if Ψ ∈ +�n−1,n−1 and ψ ∈ �1,1 are strictly positive forms such that ψn−1 = Ψ, we can always find a base +{ei} of (1, 0)-forms that "diagonalizes" simultaneously Ψ and ψ, giving the expressions +Ψ = +n +� +j=1 +Λj � +ej ∧ Jej +and +ψ = +n +� +j=1 +λjej ∧ Jej, +where J is the complex structure and +� +ej ∧ Jej means the wedge product of all the terms of the +form ek ∧ Jek except the one corresponding to the index j. Moreover, Michelsohn’s theorem gives + +CHERN-RICCI FLAT BALANCED METRICS ON SMALL RESOLUTIONS OF CALABI-YAU THREEFOLDS +14 +us also a formula relating the coefficients of ψ and Ψ in this basis, that is +λj = (Λ1 · ... · Λn) +1 +n−1 +Λj +for all j = 1, ..., n. +We will then use this to obtain an expansion for ω. In order to have a more compact notation we +will introduce the notation O(rl) to denote the decay of a function (or of the norm of a tensor) and +all its derivatives; to be clearer, saying that some tensor θ is such that θ = O(rl) means that for all +k ≥ 0 holds |∇k +ωco,0θ| ≤ crl−k. +Remark 3.2. Notice that we can choose a basis {ej} of (1, 0)-forms diagonalizing simultaneously +ωco,0 (we can actually assume it to be the identity) and ω; this means that also ω2 +co,0 and ω2 are +diagonal (in the sense of (n − 1, n − 1)-forms, implying that also the term O(rλ0) is necessarily +diagonal with respect to this basis. Thus we can write +ω2 = +n +� +j=1 +(αj + O(rm)) � +ej ∧ Jej +and applying Michelson’s theorem with Λj = αj + O(rm), we obtain ω = �n +j=1 λjej ∧ Jej, with +λj = ((α1 + O(rm))(α2 + O(rm))(α3 + O(rm))) +1 +2 +αj + O(rm) += (α1α2α3) +1 +2 +αj ++ O(rm), +which implies, again thanks to Michelson’s theorem +ω = +n +� +j=1 +� +(α1α2α3) +1 +2 +αj ++ O(rm) +� +ej ∧ Jej = ωco,0 + O(rm). +Hence we can write the volume form as ω3 = ω3 +co,0 + O(rm). +3.5. The Chern-Ricci potential. In order to use this description of the volume to estimate the +Chern-Ricci potential on the gluing region we are also going to need to understand how the holo- +morphic volume form of the resolution is related to the holomorphic volume of our background +Calabi-Yau singular manifold. +Before doing it we start by fixing some notation. Denote +• with Ω the holomorphic volume of Mreg such that +˜ω3 = iΩ ∧ Ω; +• with Ω0 the holomorphic volume of the cone X such that +ω3 +co,0 = iΩ0 ∧ Ω0; +• with χ the holomorphic volume of the resolution ˆX such that +(λωco,1)3 = iχ ∧ χ. + +CHERN-RICCI FLAT BALANCED METRICS ON SMALL RESOLUTIONS OF CALABI-YAU THREEFOLDS +15 +In order to explain clearly how these forms are related and how we can use them to construct +a holomorphic volume on M we shall take a step back and watch closer at the topological gluing +between Mreg and ˆX. +Call P the biholomorphism given from Theorem 2.4, and we can suppose ε to be sufficiently small +so that we can assume that P is defined (eventually after a restriction) on the set {0 < r(z) ≤ 4εp}. +Moreover, if we call Q the biholomorphism introduced at the beginning of Step 3 of the gluing +construction, we can assume it to be defined not only on the region written before, but actually on +the whole {0 < r(ζ) ≤ 4R}. This allows us to give a topologically concrete description of M, that +is +M = Mreg +◦� ˆX +∼ +, +where the equivalence relation ∼ is defined as +y ∈ Mreg, x ∈ ˆX, y ∼ x if and only if P −1(y) = Q−1(x). +Thanks to this explicit description we can observe that on the gluing region holds +Q∗χ = Ω0 +and there exists a holomorphic function h on the gluing region such +P ∗Ω = fQ∗χ = hΩ0, +and h can actually be extended to the whole ˆX. We can however obtain even more information on +h recalling again Theorem 2.4; indeed said theorem guarantees us that +P ∗Ω ∧ P ∗Ω = Ω0 ∧ Ω0 + i∂∂Φ +where Φ is a smooth (2, 2)-form that behaves as = O(r2+λ0) nearby the singularity. From this we +get that +(|h|2 − 1)Ω0 ∧ Ω0 = i∂∂Φ, +and thus +|h|2 = 1 + O(rλ0) on (a neighborhood of P1 in) ˆX, +from which, by continuity, we have that |h|2 ≡ 1 on the exceptional curve. Thus we can define the +holomorphic volume ˆΩ of M by gluing together hχ and Ω, and thus define a global Chern-Ricci +potential as +f = fa,q,ε := log +� +iˆΩ ∧ ˆΩ +ω3 +� +. +We now conclude this section by describing the behaviour of f in all the regions of M, to show +that it is suitable to apply a deformation argument similar to the one done in [BM]. We have +• on {r(z) > 4εp} hold ω = ˜ω and ˆΩ = Ω, thus f ≡ 0; +• on {2εp ≤ r(z) ≤ 4εp} hold ω = ωco,0 + O(rm) and ˆΩ ∧ ˆΩ = Ω0 ∧ Ω0 + O(rλ0), from +which we have +f = log +� +ω3 +co,0 + O(rm) +Ω0 ∧ Ω0 + O(rλ0) +� += log(1 + O(r ˜m)) = O(r ˜m), + +CHERN-RICCI FLAT BALANCED METRICS ON SMALL RESOLUTIONS OF CALABI-YAU THREEFOLDS +16 +where ˜m = min{λ0, m}; +• on{εp ≤ r(z) ≤ 2εp} hold ω = ωco,0 and ˆΩ ∧ ˆΩ = i(1 + O(rλ0))Ω0 ∧ Ω0, from which +follows f = O(rλ0); +• on {εp/2 ≤ r(z) ≤ εp} hold ω = ωco,0+O(rm) and ˆΩ∧ ˆΩ = Ω0∧Ω0+O(rλ0), implying +again f = O(r ˜m); +• on {r(z) < εp/2} hold ω = λωco,1 and ˆΩ∧ ˆΩ = i(1+O(rλ0))Ω0 ∧Ω0, giving once again +f = O(r ˜m). +Thus we can write globally (on M) that +|f| ≤ cr ˜m. +4. THE DEFORMATION ARGUMENT +In this last section we will see that what was built in the previous section are exactly the in- +gredients we need to introduce a deformation argument in the same fashion as [BM], in order to +obtain a balanced Chern-Ricci flat metric on our small resolution M. We will also analyze the co- +homology class of the metric obtained and see why said metric is interested in the framework of +the Hull-Strominger system. +4.1. The strategy. We will now set up the problem for this section. First of all we need to intro- +duce a deformation of the metric that preserves the balanced condition, and this can be done using +the one introduced in [FWW] +ω2 +ψ := ω2 + i∂∂(ψω), +ψ ∈ C∞(M, R) such that ω2 +ψ > 0. +Notice that again, thanks to the results of Michelsohn in [M], writing immediately ω2 +ψ makes sense. +Thus the problem we are interested in solving, following what was done in [BM], is the equation +ω3 +ψ = efω3 +for ψ ∈ C∞(M, R) such that ω2 +ψ > 0. +Remark 4.1. The equation introduced above makes sense, because, as we’ve seen, f = O(r ˜m), +thus ef = 1 + O(r ˜m), meaning that efω3 is nearby ω3 itself, hence it makes sense to try to obtain +it as a small deformation of ω. +For practicality is useful to reformulate our equation as an operator on the space of smooth +functions, thus we introduce F : C∞(M, R) → C∞(M, R) as +F(ψ) = Fε(ψ) := +ω3 +ψ +ω3 − ef. +Our aim is to solve this equation through a fixed point argument, i.e. turning the problem in a new +one that can be solved by applying Banach’s Lemma. In order to achieve this, the first step to take is +to start studying the linearization at 0 of the operator F. To do this we shall introduce the notation +ω′ +0 := d +dt |t=0ωtu, where ωtu is the curve corresponding to the tangent vector u ∈ C∞(M, R), and +compute the derivative at zero of ω3 +tu in two different ways: + +CHERN-RICCI FLAT BALANCED METRICS ON SMALL RESOLUTIONS OF CALABI-YAU THREEFOLDS +17 +d +dt |t=0 +ω3 +tu = 3ω2 ∧ ω′ +0; +d +dt |t=0 +ω3 +tu = i∂∂(uω) ∧ ω + ω2 ∧ ω′ +0. +Even though none of these two expressions are explicit, we can put them together to obtain an +explicit one, that is +d0F(u) = Lu = Lεu := 3 +2 +i∂∂u ∧ ω2 + ui∂ω ∧ ∂ω +ω3 +. +Remark 4.2. The estimates done in the previous sections ensure us that, on the gluing region from +Step 2 of the gluing construction, hold +∂ω = O(r2(q/p)−1| log r|) +and +∂∂ω = O(r2(q/p)−2| log r|), +and ∂ω = 0 and i∂∂ω = 0 everywhere else. Thus if q > p, then ∂ω, i∂∂ω → 0 as ε → 0, showing +that L is a bounded operator, and implying that ˜m = m = λ0 (assuming λ0 ≤ 2). +Before starting the analytical part, we shall establish once for all a value for p and q, and in light +of Remark 4.2, we have that a good choice is given by +p = 2 +5 +and +q = 3 +5, +from which we get λ = ε2 and m = 2 +5λ0. +4.2. Weighted analysis. Our aim is now to study the invertibility of this linear operator, and we +wish to do this in suitable weighted function spaces. In order to introduce said spaces we shall start +by introducing a weight function useful in our situation, and for simplicity we may assume that the +biholomorphism P is defined on the region {r(z) ≤ 1} (this is true up to a rescaling). Define then +ρ = ρε(z) := + + + + + + + + + + + + + + + +ε +on r(z) ≤ ε, +non decreasing +on ε ≤ r(z) ≤ 2ε, +r(z) +on 2ε ≤ r(z) ≤ 1/2, +non decreasing +on 1/2 ≤ r(z) ≤ 1, +1 +on r(z) ≥ 1, +where we recall that z are the "small" coordinates around the singularity in ˜ +M. Using this weight +function we can introduce the weighted Hölder norm and its corresponding weighted Hölder spaces +Ck,α +ε,b (M), where k ≥ 0, α ∈ (0, 1) is the Hölder constant, b ∈ R is the weight and ε indicates the +dependence on the metric ω obtained by the gluing construction done above. We define +||u||Ck,α +ε,b (M) := +k +� +i=0 +sup +M +|ρb+i∇i +εu|ω ++ +sup +dε(x,y) 0 such that for sufficiently +small ε it holds +||u||C2,α +ε,b ≤ c||˜Lu||C0,α +ε,b+2, +for all u ∈ C2,α +ε,b . +Proof. Suppose by contradiction that the above inequality does not hold. This means that for all +n ∈ N we can find εn > 0 and un ∈ C2,α +εn,b such that εn → 0 as n → 0, ||un||C2,α +εn,b = 1 and +(3) +||˜Lun||C0,α +εn,b+2 < 1 +n. +In the first place we analyze what happens on M \ P1 ≃ Mreg, i.e. away from the exceptional +curve. The properties of the sequence {un}n∈N guarantee us that up to subsequences we may +assume un → u∞ uniformly on compact subsets of Mreg in the sense of C0,α +b +, with respect to +the background Calabi-Yau metric ˜ω. Moreover, since for any compact set K ⊆ Mreg there exists +nK ∈ N such that for all n ≥ nK, on K it holds ω = ˜ω and hence ∇ω = ∇˜ω, we actually have +C2,α +b +-convergence (again uniformly on compact subsets of Mreg). Also, for the same reason, on +any compact subset of Mreg, for n sufficiently large the Chern-Ricci potential is identically zero, +thus we get ˜L = L + evx; and still choosing n sufficiently large, we end up with ω = ˜ω on K, +resulting in +Lun = 3 +2 +i∂∂un ∧ ˜ω2 +˜ω3 +, +i.e. a scalar multiple of the laplacian of un with respect to the Kähler metric ˜ω. Thus taking the +limit for n → +∞ of ˜Lun yields +(4) +L∞u∞ + u∞(x) = 0. + +CHERN-RICCI FLAT BALANCED METRICS ON SMALL RESOLUTIONS OF CALABI-YAU THREEFOLDS +19 +We shall now prove that u∞ is necessarily identically zero on the whole Mreg. Indeed, take δ > 0 +and Bδ a ball of radius δ around the singularity, and notice that +0 = +� +Mδ:=Mreg\Bδ +L∞u∞ + u∞(x)dV˜ω = − +� +∂Bδ +i∂u∞ ∧ ˜ω2 + Vol(Mδ)u∞(x). +Writing then with d ˆV the volume induced on ∂Bδ induced by ˜ω, we notice that +���� +� +∂Bδ +∂u∞ ∧ ˜ω2 +���� ≤ +� +∂Bδ +|∂u∞|ωd ˆV ≤ cδ4−b, +thus assuming b < 4 and taking the limit for δ → 0 in (4) we get u∞(x) = 0, and, consequently, +that u∞ is harmonic on the whole Mreg. Notice now that, since L∞u∞ = 0, we get +(5) +0 = +� +Mδ +u∞L∞u∞˜ω3 = +� +Mδ +u∞i∂∂u∞ ∧ ˜ω2 +and since ˜ω is balanced (actually Kähler) it holds +d(i∂u∞ ∧ (u∞˜ω2)) = u∞i∂∂u∞ ∧ ˜ω2 + i∂u∞ ∧ ∂u∞ ∧ ˜ω2, +which integrated on Mδ and combined with (5) gives +(6) +0 = +� +∂Bδ +u∞i∂u∞ ∧ ˜ω2 = +� +Mδ +i∂u∞ ∧ ∂u∞ ∧ ˜ω2 += 2 +� +Mδ +i∂u∞ ∧ ∂u∞ ∧ ∗˜ω = 2 +� +Mδ +⟨i∂u∞ ∧ ∂u∞, ˜ω⟩˜ω3 = 2 +� +Mδ +|∂u∞|2˜ω3. +But since +���� +� +∂Bδ +u∞i∂u∞ ∧ ˜ω2 +���� ≤ +� +∂Bδ +|u∞|ω|∂u∞|ωd ˆV ≤ cδ4−2b, +thus choosing b < 2 and taking the limit for δ → 0 in (6) we get +� +Mreg |∂u∞|2 +ω ˜ω3 = 0, that is +u∞ ≡ const., and since u∞(x) = 0, necessarily u∞ ≡ 0 on the whole Mreg. +Let now Mc := {r(z) ≥ 1/2} ⊆ Mreg be the compact set on which un → 0 uniformly in C2,α +b +. To +obtain a contradiction we want to prove that {un}n∈N admits a subsequence uniformly convergent +to zero in C2,α +b +also on A := {r(z) < 1/2}. +In order to work in this region, it is simpler to shift to the "large" coordinates ζ, i.e. the coordinates +on ˆX away from the exceptional divisor. It is then useful to recall the relations +ζ = ε−3/2z +and +r(z) = εr(ζ), +from which we can write down the explicit identification +� +r(z) < 1 +2 +� += A ≃ ˜A = ˜Aε = +� +r(ζ) < 1 +2ε−1 +� +; + +CHERN-RICCI FLAT BALANCED METRICS ON SMALL RESOLUTIONS OF CALABI-YAU THREEFOLDS +20 +this last set ˜A is the one we will be working on. +The first thing to do is rewrite the weight function in terms of this coordinates on ˜A, resulting in +ρ = + + + + + +ε +on r(ζ) ≤ 1, +non decreasing +on 1 ≤ r(ζ) ≤ 2, +εr(ζ) +on 2 ≤ r(ζ) ≤ 1/2ε−1. +Notice that the entire gluing region of the metric (from the previous step) is entirely contained +inside the third region, i.e. {2 ≤ r(ζ) ≤ 1/2ε−1}. +We now go back to our sequence {un}n∈N. Since ||un||C2,α +εn,b = 1 for all n ∈ N, we have in +particular that on all ˜An := ˜Aεn holds +|ρbun| ≤ c. +Introducing then the new sequence +Un := εb +nun, +the above weighted estimates for un imply the following ones for this new sequence: + + + + + +|Un| ≤ c +on r(ζ) ≤ 1, +|Un| ≤ c +on 1 ≤ r(ζ) ≤ 2, +|Un| ≤ cr−b(ζ) +on 2 ≤ r(ζ) ≤ 1/2ε−1 +n . +This estimates for Un suggest us to introduce a new weight function ˜ρ = ˜ρn on ˜An given by +˜ρ(ζ) = + + + + + +1 +on r(ζ) ≤ 1, +non decreasing +on 1 ≤ r(ζ) ≤ 2, +r(ζ) +on 2 ≤ r(ζ) ≤ 1/2ε−1 +n , +, +with which we get that +|˜ρbUn| ≤ c, +and analogous weighted estimates also for ∇Un and ∇2Un, hence again by Ascoli-Arzelà theorem +we have that Un → U∞ uniformly on compact sets of ˆX (since ˜An → ˆX) in the sense of ˜C2,α +b += +C2,α +b +(˜ρ), where this last space is the weighted Hölder space on ˆX identified by the weight ˜ρ and +the Candelas-de la Ossa metric ωco,1. +On the other hand it holds +ρb+2Lun = ˜ρb+2∆ωco,1Un, +hence +(7) +||Lun||C0,α +εn,b+2 = ||∆ωco,1Un|| ˜C0,α +b+2, +and since 1 +n > ||˜Lun||C0,α +εn,b+2 and un(x) → 0 hold, taking the limit in (7) we obtain that U∞ is +harmonic. Moreover, if we assume b > 0, then U∞ is a harmonic function decaying at infinity, thus +necessarily U∞ ≡ 0, and thus Un +˜C2,α +b→ 0 uniformly on compact sets of ˆX. +If we are now able to prove that Un admits a subsequence converging uniformly to zero on the +whole ˆX in the sense ˜C0 +b we get our contradiction, and we are done. Indeed, if Un +˜C0 +b +→ 0 uniformly + +CHERN-RICCI FLAT BALANCED METRICS ON SMALL RESOLUTIONS OF CALABI-YAU THREEFOLDS +21 +(up to subsequences) on ˆX, then scaled Schauder estimates imply that also Un +˜C2,α +b→ 0 uniformly, +which is the same as saying un +˜C2,α +εn,b +→ +0 uniformly on {r(z) < 1/2}. Thus {un}n∈N up to subse- +quences is uniformly convergent to zero on the whole manifold M, which is a contradiction with +the fact that ||un||C2,α +εn,b = 1 for all n ∈ N. +Now we will prove that the said uniformly convergent subsequence exists. If by contradiction this +was not the case, since we have the uniform convergence on compact sets, we would be able to find +γ > 0 and {xn}n∈N ⊆ ˆX, xn ∈ ˜An, such that Rn := r(ζ(xn)) → +∞ and Rb +nUn(xn) ≥ γ for +all n ∈ N. But {xn}n∈N is a bounded sequence (since it lies in {r(z) < 1/2}), thus if we name +rn := r(z(xn)) and recall that rn = εnRn, up to subsequences we can end up into two cases: +(i) if xn → x∞ such that r(x∞) > 0, then, since un is uniformly convergent on compact sets +on Mreg, we get that un(xn) is bounded, giving +0 < γ ≤ Rb +nUn(xn) = (Rnεn)bun(xn) = rb +nun(xn) −→ +n→∞ 0, +which is a contradiction; +(ii) if rn → 0, we consider the biholomorphisms σn : Bn → A \ {0}, given by +σn(z′) := r3/2 +n z′, +where Bn := {0 < r(z′) < r−1 +n +2 } ⊆ X. Then, if we endow Bn with the metric +ηn := r−2 +n σ∗ +nω, +using (1) it is easy to notice that the couple (Bn, ηn) converges to (X, ωco,0), i.e. the stan- +dard Calabi-Yau cone. If we then introduce the functions +wn := rb +nσ∗ +nun +on Bn, we notice that the pullback of the weight function ρ gives +ρ′(z′) = σ∗ +nρ(z′) = + + + + + +εn +on r(z′) < R−1 +n , +non decreasing +on R−1 +n +≤ r(z) ≤ 2R−1 +n , +rnr(z′) +on 2R−1 +n +≤ r(z) < r−1 +n +2 , +from which we get (pulling back the inequality ρbun ≤ 1) +(8) +rb(z′)wn(z′) ≤ 1 +on each z′ ∈ X (assuming n to be sufficiently large). Hence, this shows that for any +compact K ⊆ X, we can chose n ∈ N to be sufficiently large in order to have K ⊆ Bn +and ρ′(z′) = rnr(z′) on the whole K, and get that wn is uniformly bounded on K; and +since this works for any compact K ⊆ X, we obtain that - up to subsequences - {wn}n∈N +converges uniformly on compact sets of X to a function w∞, and from (8) we get that +w∞ is decaying at infinity. Moreover, recalling that Rb +nUn(xn) ≥ γ for all n ∈ N, if we +introduce the sequence yn := σ−1 +n (xn), it is straighforward to notice that from its definition +follows that wn(yn) + +CHERN-RICCI FLAT BALANCED METRICS ON SMALL RESOLUTIONS OF CALABI-YAU THREEFOLDS +22 +geqγ and ||yn||ηn = 1 for all n ∈ N, thus implying that - up to subsequences - yn → y∞ ∈ +X, and hence +(9) +w∞(y∞) > 0. +Now, if we recall the definition of the operator ˜L and take the pullback with respect to σn +of ρb+2 ˜Lun, it is immediate to see that on every compact K ⊆ X we get +(10) +σ∗ +n +� +ρb+2 ˜Lun +� += 3 +2rb+2(z′)i∂∂wn ∧ η2 +n +η3n ++ 3 +2 +i∂ηn ∧ ∂ηn +η3n ++ rb+2 +n +rb+2(z′)un(x). +Analyzing then the single terms, we can notice that as n → +∞ +• σ∗ +n +� +ρb+2 ˜Lun +� +→ 0 from the hypothesis (3); +• +i∂∂wn ∧ η2 +n +η3n +→ ∆ωco,0w∞ +from the above observations; +• rb+2 +n +rb+2(z′)un(x) → 0 trivially; +• +i∂ηn ∧ ∂ηn +η3n +→ 0, +since from Remark 4.2 we can pullback with σn the inequality +|∂ω|ω ≤ cr2| log r|, +and obtain +|∂ηn|ηn ≤ cr3 +nr2(z′)(| log rn| + | log r(z′)|) → 0. +Hence, taking the limit as n → +∞ in (10) we obtain +∆ωco,0w∞ ≡ 0, +and since it holds on every compact K subseteqX, we get that w∞ is harmonic on the +whole cone X. But now, since it holds (8), we can apply Lemma 6.9 from [CPY1] (actually +just its proof applied to ±w∞, without the hypothesis w∞ ≥ 0), and obtain that necessarily +w∞ ≡ 0 on X, which is a contradiction, as it holds (9). +Thus the proof is complete. +□ +As a direct consequence we get +Lemma 4.4. The operator ˜L : C2,α +ε,b (M) → C0,α +ε,b+2(M) defined above is an isomorphism. +Proof. Notice that L is elliptic and evx is a compact operator, thus L and ˜L share their index, which +is zero. Moreover, by Lemma 4.3 we have that ˜L is injective, thus we automatically get that ˜L is +also surjective and has bounded inverse, thus ˜L is an isomorphism. +□ + +CHERN-RICCI FLAT BALANCED METRICS ON SMALL RESOLUTIONS OF CALABI-YAU THREEFOLDS +23 +With this result we can now show how to reformulate the original equation as a fixed point +problem. +In order to do this we shall introduce the operators ˆF, E, G : C2,α +ε,b (M) → C0,α +ε,b+2(M) defined as +ˆF(ψ) := +ω3 +ψ +ω3 , +E(ψ) := ef+evx(ψ) +and +G(ψ) = efevx(ψ), +from which we can write +˜F = ˆF − E. +Now, we can consider the expansion +ˆF(ψ) = ˆF(0) + L(ψ) + ˆQ(ψ), +and thus rewrite Equation (2) as +ˆF(0) + L(ψ) + ˆQ(ψ) − E(ψ) = 0. +Here, we notice that ˜L = L − G, thus we can rewrite Equation (2) once more and get +ˆF(0) + ˜L(ψ) + ˆQ(ψ) + G(ψ) − E(ψ) = 0, +and using now Lemma 4.4, we get that Equation (2) is therefore equivalent to +(11) +ψ = ˜L−1(E(ψ) − G(ψ) − ˆF(0) − ˆQ(ψ)) =: N(ψ), +i.e. the search for a fixed point for the operator N : C2,α +ε,b (M) → C2,α +ε,b (M). To do this, we will +have to identify the open set on which we wish to apply Banach’s Lemma, and show that on said +open set N can be restricted and gives rise to a contraction. +The first thing to do, is the following remark. +Remark 4.5. If C, τ > 0, and ϕ is a function on M such that ||ϕ||C2,α +ε,−2 ≤ Cετ, thanks to Remark +4.2 it is straightforward to see that +||i∂∂(ϕω)||C0,α +ε,0 ≤ ||ϕ||C2,α +ε,−2 ≤ Cετ, +thus we’re guaranteed that, choosing ε to be sufficiently small, ω2 +ϕ > 0, and thus it’s square root ωϕ +exists and is a balanced metric. Moreover, we can apply again the argument used in Remark 3.2, +and obtain that if ||ϕ||C2,α +ε,−2 ≤ Cετ, then +|ωϕ − ω|ω ≤ c||ϕ||C2,α +ε,−2 ≤ cετ, +which also implies that ωϕ → ω, as ε → 0. +Thanks to this remark, we have a suggestion on how to choose the open set on which apply +Banach’s Lemma, hence we introduce +U := {ϕ ∈ C2,α +ε,b | ||ϕ||C2,α +ε,b < ˜cεb+2+τ} ⊆ C2,α +ε,b , + +CHERN-RICCI FLAT BALANCED METRICS ON SMALL RESOLUTIONS OF CALABI-YAU THREEFOLDS +24 +and we notice that for every ϕ ∈ U it holds ||ϕ||C2,α +ε,−2 ≤ Cετ, with C independent of ϕ and ε. +We will now prove that on U, the operator N is a contraction. In particular, given ϕ1, ϕ2 ∈ U, we +want to estimate +N(ϕ1) − N(ϕ2) = ˜L−1(E(ϕ1) − G(ϕ1) − (E(ϕ2) − G(ϕ2)) − ( ˆQ(ϕ1) − ˆQ(ϕ2))). +Starting by analyzing the ˆQ-term, we notice that by the Mean Value Theorem we can find t ∈ [0, 1] +such that +ˆQ(ϕ1) − ˆQ(ϕ2) = d ˆQη(ϕ1 − ϕ2) = (Lη − L)(ϕ1 − ϕ2), +where η = tϕ1 + (1 − t)ϕ2 ∈ U, and Lη is the linearization of ˆF at η. With the same strategy used +to compute L we can easily obtain an expression for Lη, and thus get +(Lη − L)(ϕ1 − ϕ2) = 3 +2 +(ωη − ω) ∧ i∂∂((ϕ1 − ϕ2)ω) +ω3 +. +From here, taking the norms with respect to ω, we can use the fact that η ∈ U together with Remark +4.5, to obtain +|(Lη − L)(ϕ1 − ϕ2)| ≤ c|ωη − ω|ω|i∂∂((ϕ1 − ϕ2)ω)|ω ≤ cετ|i∂∂((ϕ1 − ϕ2)ω)|ω, +and thus, by multiplying the inequality with ρb+2, get +(12) +|| ˆQ(ϕ1) − ˆQ(ϕ2)||C0,α +b+2,ε ≤ cετ||ϕ1 − ϕ2||C2,α +ε,b . +Focusing instead on the (E − G)-term, and again using that ϕ1, ϕ2 ∈ U together with Remark 4.5, +we get +|E(ϕ1) − G(ϕ1) − (E(ϕ2) − G(ϕ2))| =ef|(ϕ2(x) − ϕ1(x) + eϕ1(x) − eϕ2(x)| +≤c(|ϕ1(x)| + |ϕ2(x)|)|ϕ1(x) − ϕ2(x)| +≤cετ|ϕ1(x) − ϕ2(x)|. +Now, as above, multiplying the inequality with ρb+2 and recalling the choice of x ∈ M and the +definition of ρ, we get +ρb+2|E(ϕ1) − G(ϕ1) − (E(ϕ2) − G(ϕ2))| ≤ cετρb+2(x)|ϕ1(x) − ϕ2(x)| +and hence +(13) +||E(ϕ1) − G(ϕ1) − (E(ϕ2) − G(ϕ2))||C0,α +b+2,ε ≤ cετ||ϕ1 − ϕ2||C2,α +ε,b . +Thus, combining estimates (12) and (13) with Lemma 4.3, we get +(14) +||N(ϕ1) − N(ϕ2)||C2,α +ε,b ≤ cετ||ϕ1 − ϕ2||C2,α +ε,b , +hence, choosing ε sufficiently small ensures us that N is a contraction on U. +We are left with proving that N(U) ⊆ U. To do this, we shall impose a restriction on τ, that is + +CHERN-RICCI FLAT BALANCED METRICS ON SMALL RESOLUTIONS OF CALABI-YAU THREEFOLDS +25 +τ < 2 +5λ0, and we will use it in the inequalities to follow. Take then ϕ ∈ U, thanks to estimate (14) +and Lemma 4.3, we have +||N(ϕ)|||C2,α +ε,b ≤||N(ϕ) − N(0)|||C2,α +ε,b + ||N(0)|||C2,α +ε,b +≤cετ||ϕ|||C2,α +ε,b + ||˜L−1(1 − ef)|||C2,α +ε,b +≤cετ||ϕ|||C2,α +ε,b + ||f||C0,α +ε,b +≤c(εb+2+2τ + εb+2+(2/5)λ0) +≤cεmin{τ,(2/5)λ0−τ}εb+2+τ +≤˜cεb+2+τ, +implying that N(U) ⊆ U. +This shows that everything is into place to apply Banach’s Lemma on the open set U and obtain ˆω +a Chern-Ricci flat balanced metric ˆω on M, thus proving most of Theorem 1.1. +Remark 4.6. It is known that for a manifold which is Calabi-Yau with holomorphic volume Ω, +the existence of a Chern-Ricci flat balanced metric implies that Ω is parallel with respect to the +Bismut connection associated to said metric. Among the other things, this implies that the restricted +holonomy of the Bismut connection of Chern-Ricci flat balanced metrics is contained in SU(n). +Remark 4.7. Recalling Remark 4.5, we have that the couple (M, ˆω) Gromov-Hausdorff converges +to the singular Calabi-Yau metric on Mreg and, up to rescaling, to the Candelas-de la Ossa metrics +nearby the exceptional curve. +Remark 4.8. Notice that en passant we have proved that, on our small resolutions, for certain +classes nearby the boundary of the balanced cone, the Gauduchon conjecture for balanced metrics +(see [STW]) holds, i.e. in said balanced classes we can always find a Chern-Ricci flat balanced +metric. +4.3. Cohomology classes. We end the discussion on the construction by analyzing the cohomol- +ogy class naturally associated to the metric ˆω just obtained. Indeed, balanced metrics naturally +induce an (n − 1, n − 1)-class, thus in our case we get +[ˆω2] ∈ H2,2 +dR(M). +We are then interested in understanding if this cohomology class can be described in terms of the +cohomology classes of the objects we used for the gluing construction. The first thing to observe is +that the deformation introduced in the previous section preserves the balanced class, thus we have +that [ω2] = [ˆω2], thus we shall work with ω. +Let’s then introduce two cut off functions θ1, θ2 : [0, +∞) → [0, 1] defined as follows: +θ1(x) := + + + + + +1 +if x ≤ 1 +8ε−3/5 +non increasing +if 1 +8ε−3/5 ≤ x ≤ 1 +4ε−3/5 +0 +if x ≥ 1 +4ε−3/5 + +CHERN-RICCI FLAT BALANCED METRICS ON SMALL RESOLUTIONS OF CALABI-YAU THREEFOLDS +26 +and +θ2(x) := + + + + + +0 +if x ≤ 8ε−3/5 +non decreasing +if 8ε−3/5 ≤ x ≤ 16ε−3/5 +1 +if x ≥ 16ε−3/5; +and since for sufficiently small ε we have that ω is exact on K := {1 +8ε−3/5 ≤ r(ζ) ≤ 8ε−3/5}, it +exists a 3-form β such that +ω2 = dβ +on K. +Introduce then the form +Ωc := d(θ1(r(ζ)) + θ2(r(ζ)))β), +which is a smooth compactly supported form. Moreover, the form +β − (θ1(r) + θ2(r))β +can be extended as zero to the whole M, thanks to the definition of the cut-offs, and thus get that +[ω2] = [Ωc], +i.e. the class [ω2] admits a compactly supported representative. In addition, the two cut-offs intro- +duced also allow us to decompose Ωc = Ω′ +c + Ω′′ +c, such that on K hold +Ω′ +c = d(θ1(r)β) +and +Ω′′ +c = d(θ2(r)β), +and both Ω′ +c and Ω′′ +c are compactly supported and closed; in particular said compact supports are +respectively contained in ˆX and Mreg (via the obvious identifications), and from their definition it +is straightforward to see that +[Ω′ +c] = ε4[ω2 +co,1] ∈ H4 +c ( ˆX) +and +[Ω′′ +c] = [˜ω2] ∈ H4 +c (Mreg), +where Hc denotes the compactly supported cohomology group. Also, recalling that ˆX ≃ OP1(−1)⊕2, +it is clear that ˆX is homotopically equivalent to P1; hence applying Poincaré duality we get +H4 +c ( ˆX) ≃ Hc +2( ˆX) ≃ Hc +2(P1) = H2(P1) = ⟨[P1]⟩, +which means that the non-zero class [ω2 +co,1], up to multiplicative constants, is the Poincaré dual of +the generator of H2(P1) (thus we can "confuse" them with each other), and thus we can write +[ω2] = [˜ω2] + ε4[P1] +in H2,2 +dR(M). +Finally, we also notice that +� +P1 ω = ε2 +� +P1 ωco,1 −→ +ε→0 0, +hence the balanced class [ω2], as ε → 0, converges to a nef class, i.e. to the boundary of the bal- +anced cone. +This concludes the proof of Theorem 1.1. + +CHERN-RICCI FLAT BALANCED METRICS ON SMALL RESOLUTIONS OF CALABI-YAU THREEFOLDS +27 +Remark 4.9. Even though this construction is done to address the situation of a non-Kähler small +resolution, it can also be applied when said small resolution M is instead Kähler. In this case we +know from Yau’s theorem that M admits a Kähler Calabi-Yau metric ω1, hence together with the +balanced class induced by our Chern-Ricci flat balanced metric ˆω we also have the one induced by +ω1. This two balanced classes need not be the same, however, even if they are to coincide, there +is no uniqueness result that would guarantee that the two metrics have to be the same; moreover, +the deformation we used in our construction does not cover the whole balanced class, hence in this +case we are not even guaranteed that the two metrics are linked by our chosen deformation. +4.4. Relation to the Hull-Strominger system. As a conclusion of the paper, we would like to +briefly relate our construction to the Hull-Strominger system and how we intend to develop our +research in this direction, hence we shall first quickly recall the definition of said system (for more +details we refer to the notes [GF]). +The framework is given by (X, Ω) a (not necessarily Kähler) Calabi-Yau manifold, and the first +equation of the system, for ω a hermitian metric, is known as the dilatino equation and is given by +d∗ω = dc log ||Ω||ω, +which easily seen to be equivalent to the conformally balanced equation +d +� +||Ω||ωωn−1� += 0. +Hence, this last equation tells us that we need to work with balanced manifolds, and thus we see a +first relation to our scenario. +To complete the system we need to pair the dilatino equation with two Hermite-Einstein equations +for holomorphic vector bundles, thus, in the same fashion as what we had with the dilatino equa- +tion, the presence of the Hermite-Einstein equation in the Hull-Strominger system will limit us to +consider only polystable bundles. Finally, adding one last equation, known as the Bianchi identity, +we can introduce the system. +Definition 4.10. Given a Calabi-Yau manifold (X, Ω) and a holomorphic vector bundle E on X, +we say that the triple (ω, h, ∂T ) is a solution of the Hull-Strominger system if it satisfies +ΛωFh = 0, +ΛωR = 0, +d∗ω − dc log ||Ω||ω = 0, +ddcω − α(trR ∧ R − trFh ∧ Fh) = 0; +where, α is a non-vanishing constant, ω is a hermitian metric on X, h is a hermitian metric along +the fibers of E, ∂T is a holomorphic structure on the tangent bundle of X, and R is the Chern +curvature tensor of ω, read as a hermitian metric on the holomorphic vector bundle (TX, J, ∂T ). +The Bianchi identity (also known as anomaly cancellation equation), is the hardest and least +understood equation of the system and also the one we wish to address in the development of our +research. + +CHERN-RICCI FLAT BALANCED METRICS ON SMALL RESOLUTIONS OF CALABI-YAU THREEFOLDS +28 +It is significant to notice that if we choose (E, h) to be the holomorphic tangent bundle with the +metric ω, and take ω a Kähler Ricci-flat metric, we see that this satisfies the system, thus being +a solution of the Hull-Strominger system is a condition that generalizes being Kähler Calabi-Yau, +hence a very promising candidate class of special metrics. +Also, thanks to the equivalence between Hermite-Einstein metrics and Hermite-Yang-Mills con- +nections it is possible to rewrite the system from a gauge-theoretical point of view. +Definition 4.11. Given a Calabi-Yau manifold (X, Ω) and a hermitian vector bundle (E, h) (with +a fixed holomorphic structure) on M, the triple (ω, A, ∇) is a solution of the Hull-Strominger +system if it satisfies +ΛωFA = 0, +F 0,2 +A += 0, +ΛωR∇ = 0, +R0,2 +∇ = 0, +d +� +||Ω||ωωn−1� += 0, +ddcω − α(trR ∧ R − trFh ∧ Fh) = 0; +where α is a non-vanishing constant, ω a hermitian metric on X, A is unitary connection on (E, h) +and ∇ is a unitary connection on (TM, J, g). +This second description is useful to notice a series of necessary conditions when X is compact. +Indeed, as already observed we have that M has to be necessarily balanced, and given the natural +balanced class τ given by the dilatino equation, we have that E and TM have to be τ-polystable. +Morever, we have that c1(E) · τ = 0 and c1(M) = 0, and also +(15) +c1(E) · τ = 0 +ch2(E) = ch2(X) ∈ H2,2 +BC(X, R), +where ch2 denotes the second Chern character. +Although several examples of solutions have been studied over time (several can be found, for +example, in [GF]), there is still a very poor understanding on the existence of solutions, even on +threefolds, where however it was conjectured by Yau in [Y] that conditions (15) are not only a +necessary condition but even a sufficient one to the existence of solutions in the case of threefolds. +If we then take our construction, and we view it in the system’s scenario, we can make the +following final remark in which we explain our ideas on how to expand our construction in this +direction. +Remark 4.12. Given ˆβ a Chern-Ricci flat balanced metric on a Calabi-Yau threefold (Y, Ψ), it holds +||Ψ||ˆβ ≡ const., +showing that our metric ˆω gives a solution of the conformally balanced/dilatino equation on our +small resolutions (M, Ω). Thus our construction gives us two solutions of the dilatino equation +on (M, Ω), that are ˆω and ω′ := ||ˆΩ||−2 +ω ω, where this last one is the dilatino equation solution +associated to the balanced metric ω obtained in the first part of the gluing construction. From +here, thanks to the fact that this metrics are nearby a Kähler Ricci-flat metric, our idea (currently + +CHERN-RICCI FLAT BALANCED METRICS ON SMALL RESOLUTIONS OF CALABI-YAU THREEFOLDS +29 +in devolopment in the upcoming [Gi]) is to adapt the stretegy in [CPY1] to construct a Hermite- +Einstein metric on the tangent bundle with respect to the above metrics, and eventually from there +try and extend it to a whole solution of the Hull-Strominger system, using - for example - some +version of the approach of [AGF]. +REFERENCES +[AB] L. Alessandrini, G. Bassanelli, Modifications of compact balanced manifolds, C. R. Acad. Sci. Paris Sér. I Math. +320, 1517-1522 (1995). +[AGF] B. Andreas, M Garcia-Fernandez, Solutions of the Strominger System via Stable Bundles on Calabi-Yau Three- +folds, Communications in Mathematical Physics 315, 153–168 (2012) +[AI] +B. Alexandrov, S. Ivanov, Vanishing theorems on Hermitian manifolds, Differential Geom. Appl.14, 251–265 +(2001). +[AP] C. Arezzo, F. Pacard, Blowing up and desingularizing constant scalar curvature Kähler manifolds, Acta mathe- +matica 196.2 (2006): 179-228. +[BM] O. Biquard, V. Minerbe. A Kummer construction for gravitational instantons, Communications in mathematical +physics 308.3 (2011) 773-794. +[C] +E. Calabi, Extremal Kähler metrics, Seminar on Differential Geom., Ann. of Math. Stud. 16 (1982) 259-290. +[Ch] +I. Cheltsov, Factorial threefold hypersurfaces, J. Algebraic Geometry 19 (2010) 781-791. +[CO] P. Candelas, X. de la Ossa, Comments on conifolds, Nuclear Phys. B 342 (1990), no. 1, 246-268. +[CPY1] T. C. Collins, S. Picard, S.-T. Yau, Stability of the tangent bundle through conifold transitions, +arXiv:2102.11170v2, to appear in Comm. Pure and Appl. Math. +[CPY2] T. C. Collins, S. Picard, S.-T. Yau, The Strominger system in the square of a Kähler class, arXiv:2211.03784 +[F] +R. Friedman, Simultaneous resolution of threefold double points, Math. Ann. 274 (1986) 671-689. +[Fe] +T. Fei, Some torsional local models of heterotic strings, Communications in Analysis and Geometry Volume 25, +Number 5, 941–968, 2017. +[FeY] T. Fei, S.-T. Yau, Invariant solutions to the Strominger system on complex Lie groups and their quotients, Comm. +Math. Phys. 338, 1183–1195 (2015) +[FLY] J.-X. Fu, J. Li and S.-T. Yau, Constructing balanced metrics on some families of non- Kähler Calabi-Yau three- +folds, J. Diff. Geom. 90 (2012) 81–129. +[FuY] J. Fu, S.-T. Yau, The theory of superstring with flux on non-Kähler manifolds and the complex Monge-Ampère +equation, J. Differential Geom. 78 (2008), no. 3, 369-428. +[FV] A. Fino, L. Vezzoni, Special Hermitian metrics on compact solvmanifolds, J. Geom. Phys. 91 (2015), 40-53. +[FWW] J. Fu, Z. Wang, D. Wu, Form-type Calabi-Yau equations, Math. Res. Lett. 17 (2010), no. 05, 887-903. +[G] +P. Gauduchon, Fibré hermitiens à endomorphisme de Ricci non négativ, Bulletin de la S.M.F. 105, 113–140 +(1977). +[Gi] +F. Giusti, Hermite-Einstein metrics on non-Kähler flops, Upcoming +[GF] M. Garcia-Fernandez, Lectures on the Strominger system, Trav. Math. 24, 7–61 (2016). +[Hi] +H. Hironaka, Flattening theorems in complex analytic geometry, Amer. J. Math. 97 (1975) 503-547. +[HS] H. J. Hein, S. Sun, Calabi-Yau manifolds with isolated conical singularities, Publications mathématiques de +l’IHES 126.1 (2017), 73-130. +[Hu] C. Hull, Superstring compactifications with torsion and space-time supersimmetry, In Turin 1985 Proceedings +"Superunification and Extra Dimensions" (1986) 347-375. +[J] +D. D. Joyce, Compact manifolds with special holonomy, Oxford Mathematical Monographs, Oxford University +Press, Oxford, 2000. +[LY1] J. Li, S.-T. Yau, The existence of supersymmetric string theory with torsion, J. Diff. Geom. 70 (2005) 143-181. +[LY2] J. Li, S.-T. Yau, Hermitian-Yang-Mills connections on non-Kähler manifiolds, Mathematical aspects of string +theory (San Diego, Calif., 1986) 560-573, Adv. Ser. Math. Phys., 1, Worlds Sci. Publishing. +[LY3] J. Li, S.-T. Yau, The existence of supersymmetric string theory with torsion, J. Differential Geom. 70 (2005), no. +1, 143–181. + +CHERN-RICCI FLAT BALANCED METRICS ON SMALL RESOLUTIONS OF CALABI-YAU THREEFOLDS +30 +[M] +M.L. Michelsohn, On the existence of special metrics in complex geometry, Acta Math. 149, 261–295 (1982). +[NS] Y. Namikawa, J. H. M. Steenbrink. Global smoothing of Calabi-Yau threefolds, Inventiones Mathematicae 122 +(1995) 403-419. +[P] +D.H. Phong, Moduli in geometry and physics, in Geometry and Physics in Cracow, Acta Phys. Polon. B Proc. +Suppl. 4 (2011), no.3, 351–378. +[PPZ] D. H. Phong, S. Picard, and X. Zhang. Geometric flows and Strominger systems, Mathematische Zeitschrift 288.1 +(2018): 101-113. +[R] +M. Reid, The moduli space of 3-folds with K = 0 may nevertheless be irreducible, Math. Ann. 278 (1987), no. +1-4, 329-334. +[S] +A. Strominger, Superstrings with torsion, Nucl. Phys. B 274 (2) (1986) 253-284. +[STW] G. Székelyhidi, V. Tosatti, B. Weinkove, Gauduchon metrics with prescribed volume form, Acta Math., 219 +(2017), 181-211. +[Sz] +G. Székelyhidi, An introduction to extremal Kähler metrics, Graduate Studies in Mathematics. Vol. 152. American +Mathematical Soc. (2014). +[TW] V. Tosatti, B. Weinkove, The complex Monge-Ampère equation on compact Hermitian manifolds, J. Amer. Math. +Soc. 23 (2010), no.4, 1187–1195. +[TY] L.-S. Tseng, S.-T. Yau, Non-Kähler Calabi-Yau manifolds, in String-Math 2011, 241– 254, Proc. Sympos. Pure +Math., 85, Amer. Math. Soc., Providence, RI, 2012. +[W] +J. Werner Kleine Auflösungen spezieller dreidimensionaler Varietäten, Bonn, Univ., Diss., 1987 (Nicht f.d. Aus- +tausch). +[Y] +S.-T. Yau, Metrics on complex manifolds, Science in China Series A Mathematics 53 (2010) 565-572. +DEPARTMENT OF MATHEMATICS, AARHUS UNIVERSITY, NY MUNKEGADE 118, 8000 AARHUS C, DENMARK +Email address: federico.giusti@math.au.dk +DEPARTMENT OF MATHEMATICS, AARHUS UNIVERSITY, NY MUNKEGADE 118, 8000 AARHUS C, DENMARK +Email address: c.spotti@math.au.dk + diff --git a/LNFJT4oBgHgl3EQfxy2s/content/tmp_files/load_file.txt b/LNFJT4oBgHgl3EQfxy2s/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..fb0d028b251e40bf7333d5ed7a0eb1cdce2389da --- /dev/null +++ b/LNFJT4oBgHgl3EQfxy2s/content/tmp_files/load_file.txt @@ -0,0 +1,844 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf,len=843 +page_content='arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content='11636v1 [math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content='DG] 27 Jan 2023 CHERN-RICCI FLAT BALANCED METRICS ON SMALL RESOLUTIONS OF CALABI-YAU THREEFOLDS FEDERICO GIUSTI AND CRISTIANO SPOTTI ABSTRACT.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' Given a (smoothable) projective nodal Kähler Calabi-Yau threefold, we show, via a gluing construction, that all its - possibly non-Kähler - small resolutions admit Chern-Ricci flat balanced metrics, which among other things solve the dilatino equation appearing in the Hull- Strominger system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' INTRODUCTION With the ultimate aim of geometrizing and classifying, one of the most studied problems in com- plex geometry is the existence of hermitian metrics that can be regarded as special.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' Through the years, the Kähler case is the one that has been studied and understood the most, however, in the last decades the interest towards the non-Kähler world has been increasing more and more, leading to the search for special metrics also in this particular context.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' While in the Kähler case special metrics arise naturally, the non-Kähler scenario is too wild to guide us directly towards some central no- tion of special metric, nevertheless, one can have indications on the path to follow by watching the Kähler world.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' More specifically, given an n-dimensional complex manifold (M, J), if it is Kähler the obvious class of special (on a first level) metrics is given exactly by Kähler metrics - which we recall being hermitian metrics h whose fundamental form ω := h(J_, _) is d-closed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' In addition, this condition can also be combined with the notion of Einstein metric (thanks to the properties of Kähler metrics) from the general riemannian case, giving rise to the notion of Kähler-Einstein metrics, which are universally regarded as the "most special" in the Kähler world.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' Likewise,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' other notions of special Kähler metrics have been introduced and studied (some of them are still central in the study of Kähler geometry),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' like constant scalar curvature Kähler (cscK) metrics,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' or the more general class of extremal Kähler metrics (introduced by Calabi in [C]),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' however they all share the fact that they are giving a curvature condition on the metric,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' thus this suggests that when searching for special metrics in the non-Kähler case we shall ask for these metrics to be special under two aspects: the cohomological one (satisfying a condition possibly generalizing the Kähler one) and the curvature one.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' Regarding the cohomological aspect, several conditions have been introduced that generalize the Kähler one, and one of the most studied is given by dωn−1 = 0, identifying the class of balanced metrics (originally introduced by Gauduchon in [G] as semi-Kähler metrics, and later on studied Date: January 30, 2023.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' 2010 Mathematics Subject Classification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' 53C55, 53C25,53C07.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' Key words and phrases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' complex non-Kähler manifolds, balanced metrics, Chern-Ricci flat metrics, Calabi-Yau manifolds, Hull-Strominger system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' 1 CHERN-RICCI FLAT BALANCED METRICS ON SMALL RESOLUTIONS OF CALABI-YAU THREEFOLDS 2 further by Michelsohn in [M]), which is the class of metrics we are interested in working with.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' Balanced metrics carry many interesting properties such as the coincidence between the Hodge laplacian and the Dolbeault laplacian on scalar functions (showed by Gauduchon in [G]), or the preservation of the balanced condition for manifolds under holomorphic submersions proved in [M] (showing a sort of duality between the Kähler condition and the balanced condition).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' Also in [M], Michelsohn proved a characterization of balanced metrics in terms of currents, which leads to the celebrated result from Alessandrini and Bassanelli (see [AB]) showing that the class of com- pact balanced manifolds is closed under proper modifications (condition not satisfied by the class of Kähler manifolds).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' Moreover, balanced metrics ended up being central in many interesting cur- rently open problems, such as the conjecture from Fino and Vezzoni (see [FV]) and the Gauduchon conjecture for balanced metrics (see [STW], in which was solved in its original version for Gaudu- chon metrics - identified by the condition ∂∂ωn−1 = 0, which weakens the balanced condition - posed by Gauduchon).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' Moving instead on the curvature aspect, there are several known notions of special metrics in the non-Kähler world such as Chern-Ricci flat metrics, Bismut-Ricci flat metrics (which in the bal- anced case are equivalent to Chern-Ricci flat metrics, see [AI]), Chern-Einstein metrics and many more.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' The main goal of this paper is to construct Chern-Ricci flat balanced metrics on the compact small resolutions of certain smoothable singular Kähler Calabi-Yau threefolds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' More specifically we wish to work on smoothable singular threefolds ˜ M whose singular set is made of ordinary double points and are endowed with a Kähler Ricci-flat singular metric ˜ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' Then, using the information on the asymptotics of this metric around the singularity given by the results in [HS], together with what it is known on the standard conifold (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' the local model of ordinary double points on threefolds) and its small resolution to build, with a gluing construction (inspired mostly by [BM], but also [AP] and [J]), Chern-Ricci flat balanced metrics on the compact small resolutions of the singu- lar threefold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' The strategy of the proof consists of two main steps: (1) a metric gluing between the singular Calabi-Yau metric ˜ω with the (rescaled) Candelas-de la Ossa metrics ωco,a (that are Kähler Calabi-Yau metrics on the small resolution of the standard conifold, introduced in [CO]), and (2) an Implicit Function Theorem deformation argument, where the deformation is a balanced deformation (introduced in [FWW]) and all the analysis is performed in suitable weighted Hölder spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' Our main result is the following.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' Let ( ˜ M, ˜ω) be a smoothable projective Kähler Calabi-Yau nodal threefold (with ˜ω a singular Calabi-Yau metric), and let M be a compact (not necessarily Kähler) small resolution of ˜ M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' Then M admits a Chern-Ricci flat balanced metric ˆω such that [ˆω2] = [˜ω2] + ε4[P1], and [ω2] converges to a nef class.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' Here by "smoothable" we mean that ˜ M admits a polarized flat deformation to a smooth pro- jective Calabi-Yau threefold (examples of such manifolds are given by nodal quintic threefolds in P4), and the reason why we require this condition to be satisfied is to be able to apply a result from [HS].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' Our interest towards Chern-Ricci flat balanced metrics comes actually from the realm of Calabi- Yau geometry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' Indeed, for a not necessarily Kähler Calabi-Yau manifold (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' a complex manifold CHERN-RICCI FLAT BALANCED METRICS ON SMALL RESOLUTIONS OF CALABI-YAU THREEFOLDS 3 endowed with a holomorphic volume form) it was introduced by Hull and Strominger (respec- tively in [Hu] and [S]) a system of four equations coming from superstring theory known as the Hull-Strominger system,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' whose solutions have proved to be extremely hard to construct (see [GF] for a full presentation of the system and some known solutions,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' together with several other ref- erences such as [AGF],' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' [Fe],' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' [FuY],' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' [LY3],' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' [P],' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' [TY] and the very recent [CPY2],' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' [FeY] for the invariant case and [PPZ] for a flow approach).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' The problem of solving This system, apart from its physical meaning, carries great geometric interest, since it generalizes the Calabi-Yau condition to the non-Kähler framework, and it holds a central role in the geometrization conjecture for com- pact Calabi-Yau threefolds known as Reid’s Fantasy (see [R]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' This last conjecture, in particular, states that all compact Kähler Calabi-Yau threefolds can be connected through a finite number of conifold transitions (introduced by Clemens and Friedman, see [F]), i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' a procedure consisting of the contraction of a finite family of disjoint (−1, −1)-curves in a compact Calabi-Yau threefold, followed by the smoothing of the ordinary double points obtained from the previous step.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' These objects thus show our interest towards singular threefolds with a finite number of ordinary dou- ble points and our aim to find special metrics on their small resolution;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' in particular the interest towards Chern-Ricci flat balanced metrics is directly related to one of the equation of the Hull- Strominger system, namely the conformally balanced equation, which on a compact Calabi-Yau manifold (X, Ω) - where Ω is the holomorphic volume form - is an equation for hermitian metrics (actually their fundamental forms) ω given by d(||Ω||ωωn−1) = 0 which is clearly satisfied by balanced Chern-Ricci flat hermitian metrics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' Moreover,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' Chern-Ricci flat metrics correspond also to Hermite-Einstein metrics on the holomorphic tangent bundle,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' thus this kind of metric appears as particularly suited to be used as a starting point from which possibly build solutions for the Hull- Strominger system (we will briefly discuss some ideas at the end of the paper),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' and also portrays our construction (in some sense) as aiming towards "reversing the arrow" of the construction done by Fu,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' Li and Yau in [FLY] and Collins,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' Picard and Yau in [CPY1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' It is also interesting to notice that the deformation argument used in Section 4 proves also that on this class of manifolds the Gauduchon conjecture for balanced metrics holds for certain classes nearby the boundary of the balanced cone.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' The paper is structured as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' In Section 2 we recall some basic aspects on ordinary dou- ble points and their resolutions, both regarding their geometry and their topology, with focus on some fundamental results useful for our construction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' In Section 3 we present the first step of our work, consisting of a gluing construction of a balanced metric made with the objects previously introduced, together with the construction of a global "small" Chern-Ricci potential for our new balanced metric.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' In the last section, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' Section 4, we apply a deformation argument to obtain a Chern-Ricci flat balanced metric and we discuss its associated balanced class, as well as its possi- ble applications to the search of solutions for the Hull-Strominger system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' Acknowledgements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' Both the authors are supported by Villum Young Investigator 0019098.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' The authors would like to thank Mario Garcia-Fernandez for useful conversations and remarks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' CHERN-RICCI FLAT BALANCED METRICS ON SMALL RESOLUTIONS OF CALABI-YAU THREEFOLDS 4 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' ORDINARY DOUBLE POINTS ON THREEFOLDS In this preliminary section we shall recall some known facts about a certain type of singularity on threefolds, regarding both their topology and their geometry, and also fix some notation for the following sections.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' The type of singularities we are interested in studying are called ordinary double points (which are the most common kind of singularities in our context), and are described by the model X := {z2 1 + z2 2 + z2 3 + z2 4 = 0} ⊆ C4, which is known as the 3-dimensional standard conifold, whose only singular point is the origin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' Then we have: Definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' A singular point p in a singular threefold Y is called ordinary double point (ODP) if we can find a neighborhood p ∈ U ⊆ M and a neighborhood 0 ∈ V ⊆ X such that U and V are biholomorphic through a map that sends p to 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' Topological aspects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' These singularities arise naturally on threefolds when collapsing (−1, −1)- curves, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' rational curves biholomorphic to P1 whose normal bundle is isomorphic to OP1(−1)⊕2, and actually this procedure to obtain ODPs covers all the possibilities on threefolds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' Indeed, the standard conifold can be constructed in several ways, one of which is the following: consider the rank 2 bundle OP1(−1)⊕2 on P1 and notice that the map ([X1 : X2], (w1, w2)) �→ (w1X1, w1X2, w2X1, w2X2) maps OP1(−1)⊕2 onto X - since X through a change of coordinates is biholomorphic to the set {W1W2 − W3W4 = 0} - sending the zero section onto the origin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' Moreover this map restricted to OP1(−1)⊕2 \\ P1 (where P1 is meant as the zero section) gives a biholomorphism with X \\ {0}, proving our previous statement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' This shows us that these singularities always admit small resolutions (with P1 as the exceptional curve) biholomorphic to ˜X := OP1(−1)⊕2, and it can be shown that a singular threefold with n ordinary double points admits exactly 2n small resolutions of this type (every singularity can be resolved with a curve in two distinct bimeromorphic ways).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' Since our following work aims to face the case of singular threefolds whith a finite number of ODPs which admit a compact small resolution, in particular those who do not admit Kähler metrics, before going further in exploring the geometry of these singularities we will quickly show that this kind of resolutions are actually a very common situation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' Remark 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' Thanks to a result from Cheltsov (see [Ch]) we know that a hypersurface ˜ M in P4 of degree d with only isolated ODPs is factorial when ˜ M has at most (d−1)2 −1 singularities, thus is in particular Q-factorial.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' We can then apply the work from Namikawa and Steenbrink (see [NS]) to obtain that ˜ M is smoothable, and hence, thanks to the results from Friedman (see [F]) we have that any small resolution M of ˜ M with exceptional curves C1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=', Ck, Ci ≃ P1, satisfies necessarily a condition k � i=1 λi[Ci] = 0 in H2(M, R), where each λi ̸= 0, CHERN-RICCI FLAT BALANCED METRICS ON SMALL RESOLUTIONS OF CALABI-YAU THREEFOLDS 5 which immediately implies that if ˜ M has only one ODP, then M can’t be Kähler because it contains a homologically trivial curve (note that the generic quintic threefold has exactly one node, hence satisfies this situation).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' Moreover, Werner proved in [W] that M is projective if and only if all Cis are homologically non-trivial, and since M is Moishezon, projectivity is equivalent to Kählerness.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' Thus the class of examples above lies in a larger one, since every small resolution with at least a homologically trivial exceptional curve is non-Kähler.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' Geometric aspects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' The standard conifold X is naturally endowed with a conical structure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' Indeed, we can introduce the function on C4 r(z) := ||z|| 2 3 , which restricted to X yields the conical distance to the singularity, and can be used to define the metric ωco,0 := 3 2i∂∂r2, on the smooth part of X, which is clearly Kähler.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' Moreover, it can be seen that ωco,0 is actually also Ricci flat, as well as a cone metric over the link L := {r = 1} ⊆ X which can be written as gco,0 = 3 2(dr2 + r2gL), with gL a Sasaki-Einstein metric on the link L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' This metric structure of the standard conifold, with some further work, yields also a Kähler Calabi- Yau structure on the small resolution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' In fact, Candelas and de la Ossa (see [CO]) constructed a family of metrics, depending on the parameter a > 0, of the form ωco,a := i∂∂fa(r3) + 4a2π∗ P1ωF S, where ωF S is the Fubini-Study metric on P1, and fa is smooth function satisfying the ODE (xf ′ a(x))3 + 6a2(xf ′ a(x))2 = x2, fa(x) ≥ 0, on [0, +∞), which immediately gives fa(x) = a2f1(x/a3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' Here the function r is simply the conical distance from the singularity re-read on the resolution, hence portraying the conical distance from the exceptional curve.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' Moreover, this family of metrics is such that as a → 0 the metrics ωco,a converges, away from the exceptional curve, to the standard cone metric ωco,0, and it is also asymptotic (at infinity) to the cone metric ωco,0, and these facts can be seen explicitly with the following expansion from [CPY1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' For x ≫ 1, the function f1(x) has a convergent expansion f1(x) = 3 2x 2 3 − 2 log(x) + +∞ � n=0 cnx− 2n 3 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' This expansion is going to be crucial for our work, hence we will work again with it in the next sections.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' Before concluding this preliminary part, is extremely important for our construction (and highly CHERN-RICCI FLAT BALANCED METRICS ON SMALL RESOLUTIONS OF CALABI-YAU THREEFOLDS 6 interesting just as a fact) to remark that the standard cone metric ωco,0 is actually the (asymptotic) model near the singularities for all singular Kähler Calabi-Yau metrics around ODPs, and this was shown by Hein and Sun in the following crucial theorem (Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content='4 and Lemma A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content='1 from [HS]) which can be simplified with the following statement (written only for threefolds): Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content='4 (Hein-Sun).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' Let ˜ M be a smoothable singular threefold whose singular set is a finite family of ODPs endowed with a Kähler Calabi-Yau metric ˜ω on its smooth part Mreg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' Then for every singular point p ∈ ˜ M \\ Mreg there exist a constant λ0 > 0, neighborhoods p ∈ Up ⊆ ˜ M and 0 ∈ Vp ⊆ X, and a biholomorphism P : Vp \\ {0} → Up \\ {p} such that P ∗˜ω − ωco,0 = i∂∂ϕ, for some ϕ ∈ C∞ 2+λ0, where r is the conical distance from the singularities and C∞ 2+λ0 is the space of smooth functions with decay rate at zero of 2 + λ0 (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' an f ∈ C∞ 2+λ0 is a smooth function such that nearby zero it holds |∇kf| ≤ cr2+λ0−k for all k ≥ 0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' THE GLUING CONSTRUCTION We now start presenting the first part of our work, which consists of a gluing construction of a family of balanced metrics on the compact small resolution of a smoothable Kähler Calabi-Yau singular threefold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' This type of gluing constructions are not new in complex geometry, and have been used in the past to construct significant examples, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' in [J], [AP] and [BM].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' Before going ahead with the details of the construction it is significant to make the following remark.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' Remark 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' Thanks to the results from Hironaka and Alessandrini-Bassanelli ([Hi] and [AB]), we already know that compact small resolutions of smoothable Kähler Calabi-Yau threefolds with a finite number of ODPs admit balanced metrics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' However, we are interested in finding special balanced metrics - in particular, as we will see, with a small Chern-Ricci potential - hence we need to perform an explicit construction in order to build metrics satisfying our desired curvature properties.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' In what follows we will lay out the initial data and see in details the construction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' Let ˜ M be a smoothable complex threefold obtained from the contraction of a finite family of disjoint (−1, −1)-curves in a compact complex threefold (thus the singular set of ˜ M is made of a finite number of Ordinary Double Points), let M be a compact small resolution of ˜ M and suppose that the regular part Mreg of ˜ M is equipped with ˜ω a Kähler Calabi-Yau metric.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' The idea of the gluing construction is to use the ingredients we introduced in the previous sections, and notice that they are suitable to be glued together.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' In particular, we know that around each one of the exceptional curves we have the Candelas-de la Ossa metrics ωco,a which are asymptotic, far from the exceptional curve, to the cone metric;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' on the other hand we have that also our background metric ˜ω is asymptotic to the cone metric, but this time when approaching the singularity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' We then want to use the standard conifold as a "bridge" to glue together the metrics ˜ω and ωco,a, while maintaining the balanced condition, and in order to be able to do the analysis for this gluing construction is going to be crucial to have a "concrete" construction of the small resolution M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' To do this, we will divide the process into three natural steps, and for simplicity assume that ˜ M has CHERN-RICCI FLAT BALANCED METRICS ON SMALL RESOLUTIONS OF CALABI-YAU THREEFOLDS 7 just one singularity (the process obviously applies analogously to the case in which the singularities are any finite number).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' In addition, since our resolution is known to be a crepant resolution, we are also going to compute explicitly a holomorphic volume form for M (starting from the one on ˜ M), since such form is a crucial ingredient for the deformation argument in the following section.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' Step 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' We first glue together the metrics ˜ω and ωco,0 nearby the singularity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' To do this, thanks to the nature of ODPs, we can introduce, with an abuse of notation (that we will keep on using throughout the whole paper - as it does not generate any confusion), a function r on ˜ M which coincides with the (pullback) conical distance from the singularity in a neighborhood of said singularity (induced by the local biholomorphism P from Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content='4), and is identically equal to 1 far away from them (as a consequence we will do the same with the standard cone metric ωco,0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' In order to perform this first step of the gluing, we will need to work on the cone X and pull back on Mreg the object obtained.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' Let p > 0 and consider ε > 0 sufficiently small, such that, thanks to the result from Hein-Sun cited above, on the region {0 < r ≤ 4εp} ⊆ X exists a constant λ0 > 0 and is defined a function ϕ ∈ C∞ 2+λ0 such that P ∗˜ω = ωco,0 + i∂∂ϕ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' Hence, we introduce a cut-off function χε(x) := χ1(x/εp) where χ1 is a smooth function on [0, +∞) such that χ1(x) := \uf8f1 \uf8f4 \uf8f2 \uf8f4 \uf8f3 0 if x ≤ 2, Non decreasing if x ∈ (2, 4), 1 if x ≥ 4, and define the smooth real (1, 1)-form ˜ωε := ωco,0 + i∂∂(χε(r)ϕ), which for ε sufficiently small is such that ωε := (P −1)∗˜ωε defines a Kähler metric on Mreg (extended to the whole Mreg in the obvious way).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' Indeed, we notice that on Gε := {2εp < r ≤ 4εp} it holds |ωε − ωco,0|ωco,0 = |i∂∂(χε(r)ϕ)|ωco,0 ≤ c(r−2|ϕ| + r−1|∂ϕ|ωco,0 + |i∂∂ϕ|ωco,0) ≤ crλ0, from which on Gε we can write |∇k ωco,0(ωε − ωco,0)|ωco,0 ≤ Crλ0−k, for all k ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' Moreover we notice that on {0 < r ≤ 2εp} the metric ωε is exactly conical, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' equal to ωco,0, while on {r > 4εp} ωε coincides with the background metric ˜ω, and on Gε is the only region where ωε is not Ricci-flat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' CHERN-RICCI FLAT BALANCED METRICS ON SMALL RESOLUTIONS OF CALABI-YAU THREEFOLDS 8 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' Step 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' In this second step we instead perform the gluing between the Candelas-de la Ossa metrics ωco,a and the standard cone ωco,0, on the small resolution ˆX of the standard conifold X, preserving the balanced condition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' To do this we recall from Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content='3 that the Candelas-de la Ossa metrics are of the form ωco,a := i∂∂fa(r3) + 4a2π∗ωF S, which away from the exceptional curve have the expansion fa(r3) = 3 2r2 + a2ψa(r), where ψa(r) = 3 log r − 3 log a + +∞ � n=0 cna2nr−2n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' This suggests introducing a large parameter R ≫ 1 and a smooth cut-off function χR(x) := χ2(x/R) on [0, +∞) such that χ1(x) := \uf8f1 \uf8f4 \uf8f2 \uf8f4 \uf8f3 1 if x ≤ 1 2, Non increasing if x ∈ �1 2, 1 � , 0 if x ≥ 1, from which we introduce the family of closed (2, 2)-forms ω2 a,R = � i∂∂ �3 2r2 + a2χR(r)ψa(r) ��2 + 2a2i∂∂ � χR(r)fa(r3) � ∧ π∗ωF S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' The reason why the notation ω2 a,R makes sense is because the results from Michelsohn ([M]) ensure us that every real positive closed (n − 1, n − 1)-form admits a unique real positive (1, 1)-form as a (n − 1)th root, and the forms we defined above happen to be positive for sufficiently large R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' Indeed, positivity is clear when r ≤ R 2 , where ω2 a,R = ω2 co,a, and when r ≥ R, where ω2 a,R = ω2 co,0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' In the gluing region GR := {R/2 ≤ r ≤ R}, instead, we need to do a few estimates to confirm the positivity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' In order to avoid having to impose limitations on the parameter a we substitute the functions ψa with ψa + 3 log a;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' this won’t alter the metrics ωco,a and any of its properties, thus it can be done without problems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' For simplicity, we will keep writing ψa, and in the following the constant c might vary from line to line.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' We have |ω2 a,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content='R − ω2 co,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content='0|ωco,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content='0 ≤2a2|ωco,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content='0 ∧ i∂∂(χR(r)ψa(r))|ωco,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content='0 + 2a2|i∂∂(χR(r)fa(r3)) ∧ π∗ωF S|ωco,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content='0 + a4|i∂∂(χR(r)ψa(r))|2 ωco,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content='0 ≤ca2(|ωco,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content='0|ωco,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content='0(r−2|ψa| + r−1|∂ψa|ωco,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content='0 + |i∂∂ψa|ωco,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content='0) + |π∗ωF S|ωco,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content='0(r−2|fa(r3)| + r−1|∂fa(r3)|ωco,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content='0 + |i∂∂fa(r3)|ωco,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content='0) + a2(r−2|ψa| + r−1|∂ψa|ωco,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content='0 + |i∂∂ψa|ωco,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content='0)2) ≤ca2(|ωco,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content='0|ωco,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content='0(r−2|ψa| + r−1|∂ψa|ωco,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content='0 + |i∂∂ψa|ωco,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content='0) + |π∗ωF S|ωco,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content='0(1 + |ωco,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content='0|ωco,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content='0 + r−2|ψa| + r−1|∂ψa|ωco,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content='0 + |i∂∂ψa|ωco,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content='0) + a2(r−2|ψa| + r−1|∂ψa|ωco,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content='0 + |i∂∂ψa|ωco,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content='0)2) ≤ (∗) CHERN-RICCI FLAT BALANCED METRICS ON SMALL RESOLUTIONS OF CALABI-YAU THREEFOLDS 9 To conclude the estimate let’s take a look at the single terms,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' keeping in mind that we are taking the norms with respect to the standard cone metric.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' It holds |ωco,0|ωco,0 = O(1);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' |π∗ωF S|ωco,0 = O(r−2);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' |ψa| ≤ c(| log r| + �+∞ n=0 |cn|a2nr−2n) ≤ c| log r|;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' |∂ψa|ωco,0 ≤ c(r−1 + �+∞ n=0 |˜cn|a2nr−2n−1) ≤ cr−1;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' |i∂∂ψa|ωco,0 ≤ c(r−2 + �+∞ n=0 |˜˜cn|a2nr−2n−2) ≤ cr−2;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' from which we get (∗) ≤ ca2(r−2| log r|+r−2+r−2(1+r−2| log r|+r−2)+a2(r−2| log r|+r−2)2) ≤ ca2r−2| log r|, and hence |∇k ωco,0(ω2 a,R − ω2 co,0)|ωco,0 ≤ Ca2r−2−k| log r| for all k ≥ 0, which clearly implies the positivity also on GR, as long as R is chosen to be sufficiently large.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' Step 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' In this third and last step we want to glue together the metrics ωε from step 1 with the metric ωa,R from step 2 by matching isometrically the exactly conical regions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' In order to do this we are going to need to rescale by a constant λ > 0 the metric on ˆX, and we will now see that this constant is a geometric constant, since it is dictated by the geometries of the two metrics we are gluing together.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' In what follows we will denote with z the coordinates on Mreg nearby the singularity and with ζ the coordinates on ˆX, both given by the identification with the standard conifold X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' We then consider the regions CR := {R/2 ≤ r(ζ) ≤ 4R} ⊆ ˆX and Cε := {εp/2 ≤ r(z) ≤ 4εp} ⊆ Mreg and define a biholomorphism between them by imposing ζ = � R εp � 3 2 z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' From this expression we have that on the identified region the following identity holds r(ζ) = r �� R εp � 3 2 z � = R εp r(z) which yields λ = λ(ε, R) := �εp R �2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' From this follows λr2(ζ) = r2(z), and thus on the identified conical regions C′ R := {R ≤ r(ζ) ≤ 2R} ≃ {εp ≤ r(z) ≤ 2εp} =: C′ ε holds λωco,0(ζ) = ωco,0(z), and consequently λωa,R = ωε.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' Hence, λ is the needed rescaling factor, which allows us to define the glued family of balanced metrics on the small resolution M as ωa,ε,R := \uf8f1 \uf8f4 \uf8f2 \uf8f4 \uf8f3 λωa,R on r(ζ) ≤ R, ωco,0 on εp ≤ r(z) ≤ 2εp, ωε on r(z) ≥ 2εp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' CHERN-RICCI FLAT BALANCED METRICS ON SMALL RESOLUTIONS OF CALABI-YAU THREEFOLDS 10 Now we will move to the following part in which we will try to understand better the geometry of this new family of metrics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' Description of the volume.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' We are mainly interested in the Chern-Ricci tensor - and in par- ticular on its potential - hence, in order to understand it, we are going to need to obtain information on the volume of our metrics ω = ωε,R := ω1,ε,R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' To do this, we need to estimate the distance between our glued metrics and the standard cone metric on the gluing region, since in the other parts of the manifold we already know the geometry from the initial data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' Moreover, inside the gluing region there is also an exactly conical region - whose geometry is also understood - which separates the two gluing regions from the first two steps, hence we can just estimate the said dis- tance separately on the two regions and then take the maximum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' Clearly, the metric is unaltered on the gluing region from step 1, thus we still have on Gε that |∇k ωco,0(ωε − ωco,0)|ωco,o ≤ crλ0−k, for all k ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' On the other hand, since in step 3 we had to rescale the metric nearby the exceptional curve, we are going to need to repeat the estimate to understand how the rescaling affected the distance from the standard cone metric.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' At some point we are going to link the parameters ε and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' Again the constant c might be varying from line to line.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' We have (ω2 ε,R − ω2 co,0)(ζ) =λ2(2ωco,0 ∧ i∂∂(χR(r)ψ1(r)) + 2i∂∂(χR(r)f1(r3)) ∧ π∗ωF S + i∂∂(χR(r)ψ1(r))2)(ζ) = (∗) Let’s now change coordinates from ζ to z, recalling that λr2(ζ) = r2(z) and noticing that, by construction, π∗ωF S is invariant under rescalings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' (1) (∗) =λ2 \uf8eb \uf8edλ−1ωco,0 ∧ i∂∂ \uf8eb \uf8edχR � λ− 1 2 r � \uf8eb \uf8ed3 log r − 3 2 log λ + � n≥0 cnλnr−2n \uf8f6 \uf8f8 \uf8f6 \uf8f8 + π∗ωF S ∧ i∂∂ \uf8eb \uf8edχR � λ− 1 2 r � \uf8eb \uf8edλ−1 3 2r2 + 3 log r − 3 2 log λ + � n≥0 cnλnr−2n \uf8f6 \uf8f8 \uf8f6 \uf8f8 + \uf8eb \uf8edi∂∂ \uf8eb \uf8edχR � λ− 1 2 r � \uf8eb \uf8ed3 log r − 3 2 log λ + � n≥0 cnλnr−2n \uf8f6 \uf8f8 \uf8f6 \uf8f8 \uf8f6 \uf8f8 2\uf8f6 \uf8f8 (z).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' CHERN-RICCI FLAT BALANCED METRICS ON SMALL RESOLUTIONS OF CALABI-YAU THREEFOLDS 11 What we want to do now is estimate the norm (with respect to the cone metric) of this quantity, thus we start computing the derivatives that appear in the above expression.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' We have ∂∂ \uf8eb \uf8edχR � λ− 1 2 r � \uf8eb \uf8ed3 log r − 3 2 log λ + � n≥0 cnλnr−2n \uf8f6 \uf8f8 \uf8f6 \uf8f8 = λ−1 R2 χ′′ R � λ−1/2r � � 3 log r − 3 2 log λ + � n∈N cnλnr−2n � ∂r ∧ ∂r + 2λ−1/2 R χ′ R � λ−1/2r � � 3r−1 + � n∈N ˜cnλnr−2n−1 � ∂r ∧ ∂r + λ−1/2 R χ′ R � λ−1/2r � \uf8eb \uf8ed3 log r − 3 2 log λ + � n≥0 cnλnr−2n \uf8f6 \uf8f8 ∂∂r + χR � λ−1/2r � � −3r−2 + � n∈N ˜˜cnλnr−2n−2 � ∂r ∧ ∂r + χR � λ−1/2r � � 3r−1 + � n∈N ˜cnλnr−2n−1 � ∂∂r,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content='and ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content='∂∂ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content='\uf8eb ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content='\uf8edχR ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content='λ− 1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content='2 r ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content='\uf8eb ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content='\uf8edλ−1 3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content='2r2 + 3 log r − 3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content='2 log λ + ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content='n≥0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content='cnλnr−2n ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content='\uf8f6 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content='\uf8f8 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content='\uf8f6 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content='\uf8f8 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content='= ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content='λ−1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content='R2 χ′′ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content='R ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content='λ−1/2r ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content='r2 + 4λ−1/2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content='R ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content='χ′ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content='R ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content='λ−1/2r ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content='r + 2χR ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content='λ−1/2r ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content='�� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content='∂r ∧ ∂r ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content='+ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content='λ−1/2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content='R ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content='χ′ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content='R ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content='λ−1/2r ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content='r2 + 2χR ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content='λ−1/2r ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content='r ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content='∂∂r ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content='+ ∂∂ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content='\uf8eb ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content='\uf8edχR ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content='λ− 1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content='2 r ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content='\uf8eb ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content='\uf8ed3 log r − 3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content='2 log λ + ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content='n≥0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content='cnλnr−2n ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content='\uf8f6 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content='\uf8f8 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content='\uf8f6 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content='\uf8f8 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content='CHERN-RICCI FLAT BALANCED METRICS ON SMALL RESOLUTIONS OF CALABI-YAU THREEFOLDS ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content='12 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content='From here we can obtain the estimates ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content='������ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content='∂∂ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content='\uf8eb ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content='\uf8edχR ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content='λ− 1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content='2 r ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content='\uf8eb ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content='\uf8ed3 log r − 3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content='2 log λ + ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content='n≥0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content='cnλnr−2n ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content='\uf8f6 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content='\uf8f8 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content='\uf8f6 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content='\uf8f8 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content='������ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content='ωco,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content='0 ≤ cλ−1 R2 � | log r| + | log λ| + � n∈N |cn|λnr−2n � + cλ−1/2 R r−1 \uf8eb \uf8ed1 + � n∈N |˜cn|λnr−2n + | log r| + | log λ| + � n≥0 |cn|λnr−2n \uf8f6 \uf8f8 + cr−2 � 1 + � n∈N |˜˜cn|λnr−2n + � n∈N |˜cn|λnr−2n � and������ ∂∂ \uf8eb \uf8edχR � λ− 1 2r � \uf8eb \uf8edλ−1 3 2r2 + 3 log r − 3 2 log λ + � n≥0 cnλnr−2n \uf8f6 \uf8f8 \uf8f6 \uf8f8 ������ ωco,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content='0 ≤ c � λ−1 R2 r2 + λ−1/2 R (r + 1) � + ������ ∂∂ \uf8eb \uf8edχR � λ− 1 2 r � \uf8eb \uf8ed3 log r − 3 2 log λ + � n≥0 cnλnr−2n \uf8f6 \uf8f8 \uf8f6 \uf8f8 ������ ωco,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content='0 In order to conclude the estimate,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' we impose R := ε−q,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' with q > 0 to be chosen,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' from which follows λ = ε2(p+q).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' Also we are now going to use that we are in the region {2εp ≤ r ≤ 4εp}, which among the others implies the estimate | log r| ≤ | log 4| + p| log ε| ≤ c(1 + | log ε|).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' We thus get ������ ∂∂ \uf8eb \uf8edχR � λ− 1 2r � \uf8eb \uf8ed3 log r − 3 2 log λ + � n≥0 cnλnr−2n \uf8f6 \uf8f8 \uf8f6 \uf8f8 ������ ωco,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content='0 ≤ cε−2p � 1 + | log ε| + � n∈N |cn|(1/2)2n � + cε−2p \uf8eb \uf8ed1 + � n∈N |˜cn|(1/2)2n + 1 + | log ε| + � n≥0 |cn|(1/2)2n \uf8f6 \uf8f8 + cε−2p � 1 + � n∈N |˜˜cn|(1/2)2n + � n∈N |˜cn|(1/2)2n � ≤ cε−2p| log ε| and CHERN-RICCI FLAT BALANCED METRICS ON SMALL RESOLUTIONS OF CALABI-YAU THREEFOLDS 13 ������ ∂∂ \uf8eb \uf8edχR � λ− 1 2r � \uf8eb \uf8edλ−1 3 2r2 + 3 log r − 3 2 log λ + � n≥0 cnλnr−2n \uf8f6 \uf8f8 \uf8f6 \uf8f8 ������ ωco,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content='0 ≤ c(1 + ε−p(ε + 1)) + ������ ∂∂ \uf8eb \uf8edχR � λ− 1 2 r � \uf8eb \uf8ed3 log r − 3 2 log λ + � n≥0 cnλnr−2n \uf8f6 \uf8f8 \uf8f6 \uf8f8 ������ ωco,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content='0 ≤ c(ε−p + ε−2p| log ε|) ≤ cε−2p| log ε| Hence,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' putting together this estimates we can finally obtain |ω2 ε,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content='R − ω2 co,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content='0|ωco,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content='0 ≤ cε4(p+q) \uf8eb \uf8ec \uf8edε−2(p+q) ������ i∂∂ \uf8eb \uf8edχR � λ− 1 2r � \uf8eb \uf8ed3 log r − 3 2 log λ + � n≥0 cnλnr−2n \uf8f6 \uf8f8 \uf8f6 \uf8f8 ������ ωco,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content='0 + ε−2p ������ i∂∂ \uf8eb \uf8edχR � λ− 1 2 r � \uf8eb \uf8edλ−1 3 2r2 + 3 log r − 3 2 log λ + � n≥0 cnλnr−2n \uf8f6 \uf8f8 \uf8f6 \uf8f8 ������ ωco,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content='0 + ������ i∂∂ \uf8eb \uf8edχR � λ− 1 2r � \uf8eb \uf8ed3 log r − 3 2 log λ + � n≥0 cnλnr−2n \uf8f6 \uf8f8 \uf8f6 \uf8f8 ������ 2 ωco,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content='0 \uf8f6 \uf8f7 \uf8f8 ≤ cε4(p+q)(ε−4p−2q| log ε| + ε−4p| log ε|2) ≤ cε2q| log ε| which implies,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' on the whole gluing region,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' that for all k ≥ 0 holds |∇k ωco,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content='0(ω2 q,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content='ε − ω2 co,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content='0)|ωco,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content='0 ≤ crm−k,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' where m = m(λ0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' p,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' q).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' In order to obtain geometric information from this estimate, we are going to need to recall a result from Michelsohn ([M]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' This result gives an explicit isomorphism between the cone of strictly positive (1, 1)-forms and the cone of strictly positive (n − 1, n − 1)-forms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' In particular, if Ψ ∈ �n−1,n−1 and ψ ∈ �1,1 are strictly positive forms such that ψn−1 = Ψ, we can always find a base {ei} of (1, 0)-forms that "diagonalizes" simultaneously Ψ and ψ, giving the expressions Ψ = n � j=1 Λj � ej ∧ Jej and ψ = n � j=1 λjej ∧ Jej, where J is the complex structure and � ej ∧ Jej means the wedge product of all the terms of the form ek ∧ Jek except the one corresponding to the index j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' Moreover, Michelsohn’s theorem gives CHERN-RICCI FLAT BALANCED METRICS ON SMALL RESOLUTIONS OF CALABI-YAU THREEFOLDS 14 us also a formula relating the coefficients of ψ and Ψ in this basis, that is λj = (Λ1 · .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' · Λn) 1 n−1 Λj for all j = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=', n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' We will then use this to obtain an expansion for ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' In order to have a more compact notation we will introduce the notation O(rl) to denote the decay of a function (or of the norm of a tensor) and all its derivatives;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' to be clearer, saying that some tensor θ is such that θ = O(rl) means that for all k ≥ 0 holds |∇k ωco,0θ| ≤ crl−k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' Remark 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' Notice that we can choose a basis {ej} of (1, 0)-forms diagonalizing simultaneously ωco,0 (we can actually assume it to be the identity) and ω;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' this means that also ω2 co,0 and ω2 are diagonal (in the sense of (n − 1, n − 1)-forms, implying that also the term O(rλ0) is necessarily diagonal with respect to this basis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' Thus we can write ω2 = n � j=1 (αj + O(rm)) � ej ∧ Jej and applying Michelson’s theorem with Λj = αj + O(rm), we obtain ω = �n j=1 λjej ∧ Jej, with λj = ((α1 + O(rm))(α2 + O(rm))(α3 + O(rm))) 1 2 αj + O(rm) = (α1α2α3) 1 2 αj + O(rm), which implies, again thanks to Michelson’s theorem ω = n � j=1 � (α1α2α3) 1 2 αj + O(rm) � ej ∧ Jej = ωco,0 + O(rm).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' Hence we can write the volume form as ω3 = ω3 co,0 + O(rm).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' The Chern-Ricci potential.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' In order to use this description of the volume to estimate the Chern-Ricci potential on the gluing region we are also going to need to understand how the holo- morphic volume form of the resolution is related to the holomorphic volume of our background Calabi-Yau singular manifold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' Before doing it we start by fixing some notation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' Denote with Ω the holomorphic volume of Mreg such that ˜ω3 = iΩ ∧ Ω;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' with Ω0 the holomorphic volume of the cone X such that ω3 co,0 = iΩ0 ∧ Ω0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' with χ the holomorphic volume of the resolution ˆX such that (λωco,1)3 = iχ ∧ χ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' CHERN-RICCI FLAT BALANCED METRICS ON SMALL RESOLUTIONS OF CALABI-YAU THREEFOLDS 15 In order to explain clearly how these forms are related and how we can use them to construct a holomorphic volume on M we shall take a step back and watch closer at the topological gluing between Mreg and ˆX.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' Call P the biholomorphism given from Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content='4, and we can suppose ε to be sufficiently small so that we can assume that P is defined (eventually after a restriction) on the set {0 < r(z) ≤ 4εp}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' Moreover, if we call Q the biholomorphism introduced at the beginning of Step 3 of the gluing construction, we can assume it to be defined not only on the region written before, but actually on the whole {0 < r(ζ) ≤ 4R}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' This allows us to give a topologically concrete description of M, that is M = Mreg � ˆX ∼ , where the equivalence relation ∼ is defined as y ∈ Mreg, x ∈ ˆX, y ∼ x if and only if P −1(y) = Q−1(x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' Thanks to this explicit description we can observe that on the gluing region holds Q∗χ = Ω0 and there exists a holomorphic function h on the gluing region such P ∗Ω = fQ∗χ = hΩ0, and h can actually be extended to the whole ˆX.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' We can however obtain even more information on h recalling again Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content='4;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' indeed said theorem guarantees us that P ∗Ω ∧ P ∗Ω = Ω0 ∧ Ω0 + i∂∂Φ where Φ is a smooth (2, 2)-form that behaves as = O(r2+λ0) nearby the singularity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' From this we get that (|h|2 − 1)Ω0 ∧ Ω0 = i∂∂Φ, and thus |h|2 = 1 + O(rλ0) on (a neighborhood of P1 in) ˆX, from which, by continuity, we have that |h|2 ≡ 1 on the exceptional curve.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' Thus we can define the holomorphic volume ˆΩ of M by gluing together hχ and Ω, and thus define a global Chern-Ricci potential as f = fa,q,ε := log � iˆΩ ∧ ˆΩ ω3 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' We now conclude this section by describing the behaviour of f in all the regions of M, to show that it is suitable to apply a deformation argument similar to the one done in [BM].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' We have on {r(z) > 4εp} hold ω = ˜ω and ˆΩ = Ω, thus f ≡ 0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' on {2εp ≤ r(z) ≤ 4εp} hold ω = ωco,0 + O(rm) and ˆΩ ∧ ˆΩ = Ω0 ∧ Ω0 + O(rλ0), from which we have f = log � ω3 co,0 + O(rm) Ω0 ∧ Ω0 + O(rλ0) � = log(1 + O(r ˜m)) = O(r ˜m), CHERN-RICCI FLAT BALANCED METRICS ON SMALL RESOLUTIONS OF CALABI-YAU THREEFOLDS 16 where ˜m = min{λ0, m};' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' on{εp ≤ r(z) ≤ 2εp} hold ω = ωco,0 and ˆΩ ∧ ˆΩ = i(1 + O(rλ0))Ω0 ∧ Ω0, from which follows f = O(rλ0);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' on {εp/2 ≤ r(z) ≤ εp} hold ω = ωco,0+O(rm) and ˆΩ∧ ˆΩ = Ω0∧Ω0+O(rλ0), implying again f = O(r ˜m);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' on {r(z) < εp/2} hold ω = λωco,1 and ˆΩ∧ ˆΩ = i(1+O(rλ0))Ω0 ∧Ω0, giving once again f = O(r ˜m).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' Thus we can write globally (on M) that |f| ≤ cr ˜m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' THE DEFORMATION ARGUMENT In this last section we will see that what was built in the previous section are exactly the in- gredients we need to introduce a deformation argument in the same fashion as [BM], in order to obtain a balanced Chern-Ricci flat metric on our small resolution M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' We will also analyze the co- homology class of the metric obtained and see why said metric is interested in the framework of the Hull-Strominger system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' The strategy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' We will now set up the problem for this section.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' First of all we need to intro- duce a deformation of the metric that preserves the balanced condition, and this can be done using the one introduced in [FWW] ω2 ψ := ω2 + i∂∂(ψω), ψ ∈ C∞(M, R) such that ω2 ψ > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' Notice that again, thanks to the results of Michelsohn in [M], writing immediately ω2 ψ makes sense.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' Thus the problem we are interested in solving, following what was done in [BM], is the equation ω3 ψ = efω3 for ψ ∈ C∞(M, R) such that ω2 ψ > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' Remark 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' The equation introduced above makes sense, because, as we’ve seen, f = O(r ˜m), thus ef = 1 + O(r ˜m), meaning that efω3 is nearby ω3 itself, hence it makes sense to try to obtain it as a small deformation of ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' For practicality is useful to reformulate our equation as an operator on the space of smooth functions, thus we introduce F : C∞(M, R) → C∞(M, R) as F(ψ) = Fε(ψ) := ω3 ψ ω3 − ef.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' Our aim is to solve this equation through a fixed point argument, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' turning the problem in a new one that can be solved by applying Banach’s Lemma.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' In order to achieve this, the first step to take is to start studying the linearization at 0 of the operator F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' To do this we shall introduce the notation ω′ 0 := d dt |t=0ωtu, where ωtu is the curve corresponding to the tangent vector u ∈ C∞(M, R), and compute the derivative at zero of ω3 tu in two different ways: CHERN-RICCI FLAT BALANCED METRICS ON SMALL RESOLUTIONS OF CALABI-YAU THREEFOLDS 17 d dt |t=0 ω3 tu = 3ω2 ∧ ω′ 0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' d dt |t=0 ω3 tu = i∂∂(uω) ∧ ω + ω2 ∧ ω′ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' Even though none of these two expressions are explicit, we can put them together to obtain an explicit one, that is d0F(u) = Lu = Lεu := 3 2 i∂∂u ∧ ω2 + ui∂ω ∧ ∂ω ω3 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' Remark 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' The estimates done in the previous sections ensure us that, on the gluing region from Step 2 of the gluing construction, hold ∂ω = O(r2(q/p)−1| log r|) and ∂∂ω = O(r2(q/p)−2| log r|), and ∂ω = 0 and i∂∂ω = 0 everywhere else.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' Thus if q > p, then ∂ω, i∂∂ω → 0 as ε → 0, showing that L is a bounded operator, and implying that ˜m = m = λ0 (assuming λ0 ≤ 2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' Before starting the analytical part, we shall establish once for all a value for p and q, and in light of Remark 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content='2, we have that a good choice is given by p = 2 5 and q = 3 5, from which we get λ = ε2 and m = 2 5λ0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' Weighted analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' Our aim is now to study the invertibility of this linear operator, and we wish to do this in suitable weighted function spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' In order to introduce said spaces we shall start by introducing a weight function useful in our situation, and for simplicity we may assume that the biholomorphism P is defined on the region {r(z) ≤ 1} (this is true up to a rescaling).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' Define then ρ = ρε(z) := \uf8f1 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f2 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f3 ε on r(z) ≤ ε, non decreasing on ε ≤ r(z) ≤ 2ε, r(z) on 2ε ≤ r(z) ≤ 1/2, non decreasing on 1/2 ≤ r(z) ≤ 1, 1 on r(z) ≥ 1, where we recall that z are the "small" coordinates around the singularity in ˜ M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' Using this weight function we can introduce the weighted Hölder norm and its corresponding weighted Hölder spaces Ck,α ε,b (M), where k ≥ 0, α ∈ (0, 1) is the Hölder constant, b ∈ R is the weight and ε indicates the dependence on the metric ω obtained by the gluing construction done above.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/LNFJT4oBgHgl3EQfxy2s/content/2301.11636v1.pdf'} +page_content=' We define ||u||Ck,α ε,b (M) := k � i=0 sup M |ρb+i∇i εu|ω + sup dε(x,y) 0.05 and z > 0.9 and they are shown +by gray lines in Fig. 5. The selected region by z > 0.9 isolates the phase space where most +of the center of mass energy +√ +ˆs flows into the νee+ system and meν can be as large as +√ +ˆs +as is seen in the right panel of Fig. 5. It is also the phase space where the condition for the +typical EWA is expected to be satisfied. While the cut of z − z∗ > 0.05 makes it possible +to access a deeper off-shell region in a large +√ +ˆs region than that specified by the W mass +window of 10 GeV (red lines in Fig. 5), most events are still populated near the lower meν +value than +√ +ˆs. +Our numerical simulations of |σSM×BSM|/σSM binned in +√ +ˆs is illustrated in Fig. 6 3. As +is evident by the red-colored almost flat distribution in Fig. 6, the noninterference predicted +for the on-shell W in Section III A is numerically confirmed. The black-colored distribution +in Fig. 6 demonstrates the resurrected energy growing interference in the inclusive cross +section for the off-shell W and they agree with our expectation in Section III B. +The left panel of Fig. 7 illustrates the interference cross section with respect to the SM +in terms of the meν variable for the same phase space as those in Fig. 6, and the energy- +growing behavior is clearly seen. In the right panel of Fig. 7, we take a limit where almost +all energy +√ +ˆs flows into the eν system (see the solid gray line in the left panel of Fig. 5). For +3 In this work, we will not explore the sign of the interference and its sensitivity at the collider. The sign +of the interference depends on the phase space (see Appendix B 3 for the related discussion). +13 + +0 +500 +1000 +1500 +0.01 +0.05 +0.10 +0.50 +1 +5 +10 +s [GeV] +|σSMBSM|/σSM +uγ → dνe +|z - z*| > 0.05 +meν > 90 GeV +|z - z*| < 0.05 +|meν - mW| < 10 GeV +FIG. 6: The differential distribution of |σSM×BSM|/σSM in +√ +ˆs for the EW uγ → dνee+ at the +parton level. Black lines demonstrate the interference at off-shell region specified as |z − z∗| > 0.05 +and meν > 90 GeV. Red lines demonstrate the noninterference for the on-shell W defined by +|z − z∗| < 0.05 and |meν − mW | < 10 GeV. +0 +500 +1000 +1500 +0.01 +0.05 +0.10 +0.50 +1 +5 +10 +meν [GeV] +|σSMBSM|/σSM +uγ → dνe +|z - z*| > 0.05 +meν > 90 GeV +0 +500 +1000 +1500 +0.01 +0.05 +0.10 +0.50 +1 +meν [GeV] +|σSMBSM|/σSM +uγ → dνe +z = [1-ε, 1] +ε = 0.1 +meν > 90 GeV +FIG. 7: The differential distribution of |σSM×BSM|/σSM in meν for the EW uγ → dνee+ at the +parton level. Events are restricted to satisfy |z − z∗| > 0.05 and meν > 90 GeV (left) or z > 0.9 +and meν > 90 GeV (right). +this situation, the transverse momentum of the forward quark and the W mass are small +compared to the scale of the hard subprocess, or the EWA condition is satisfied. As is clearly +seen in the right panel of Fig. 7, the energy growing interference term looks survive in the +EWA limit of the full 2 → 3 process. However, this energy growing interference term allowed +by the helicity selection rule of the full 2 → 3 process will get lost if one simply assumes the +EWA and works on the 2 → 2 hard subprocess. Recall that the helicity selection rule of the +2 → 2 subprocess does not allow the interference in the massless limit. +While we have exploited the variable z to distinguish the phase spaces of the on-shell and +off-shell regions, it can be traded for a combination of experimental variables. Using the +14 + +transverse momentum of the forward quark, pT(q) = (1−z) +√ +ˆs sin θ (with sin θ = 1/ cosh η), +and meν = √2z − 1ˆs, one can easily derive the relation, +pT(q) cosh η +meν += +1 − z +√2z − 1 ≤ +1 − zmin +√2zmin − 1 ≡ δmin → pT(q) ≤ δmin +meν +cosh η , +(14) +where zmin = {z∗ +0.05, 1−ε} was used in the plots in Fig. 7 and η is the pseudorapidity of +the outgoing quark. Note that z∗ (thus δmin as well) is still a function of the experimentally +inaccessible ˆs although its dependence gets mild in the high ˆs limit. For the hard cut on +z, δmin becomes a constant. We have numerically checked that the cut pT(q) < 0.112 × +(meν/ cosh η) is physically equivalent to z > 1 − ε (with ε = 0.1) and reproduces the +same plot as the right panel of Fig. 7. For a small constant δmin, the cut in Eq. (14), or +pT/meν ≤ δmin/ cosh η, is consistent with the conditions for the EWA. +IV. +NUMERICAL ANALYSIS OF EW DILEPTON WITH TWO ASSOCIATED +JETS +In this section we numerically investigate the EW ℓℓ + two jets process at the LHC. We +take the CMS analysis in [12] as our baseline for both the validation of our analysis and the +derivation of the sensitivity on aTGCs at the LHC 4. The detail of the event generation can +be found in Appendix A. +A. +Interference resurrection +We can use the intuition from the EW uγ → dνe+ process in Section III to isolate the +phase space that reveals the interference resurrection in the EW ℓℓ+ two jets process. In the +partonic EW ℓℓ + qq′ process, we can treat the ℓℓ (qq′) system effectively as a single particle +with the energy of z +√ +ˆs ((1−z) +√ +ˆs) and the invariant mass of mℓℓ (mqq′). Similarly to our toy +process in Section III, the variable z represents the fraction of the total energy flowing into +the dilepton system. Three momentum conservation, ⃗pT(ℓℓ) = −⃗pT(qq′), in the center of +mass frame of two initial quarks leads to m2 +ℓℓ−m2 +qq′ = (2z−1)ˆs where z varies over the range +z = [ mℓℓ/ +√ +ˆs, 1 − mqq′/ +√ +ˆs ]. Similarly to the previous section, we start with the variable +z = 1/2+(m2 +ℓℓ −m2 +qq′)/(2ˆs) to separate the off-shell phase space from the on-shell one where +z∗ = 1/2 + (m2 +Z − m2 +qq′)/(2ˆs) at the Z pole. An appropriate cut on z such as |z − z∗| = +|(m2 +ℓℓ − m2 +Z)/(2ˆs)| > ∆z or z > zmin will select the corresponding off-shell region, while +ensuring a certain correlation between mℓℓ and +√ +ˆs. Combining m2 +ℓℓ − m2 +qq′ = (2z − 1)ˆs with +the transverse momentum of the effective qq′ system pT(qq′) = +� +(1 − z)2ˆs − m2 +qq′ sin θqq′, the +4 Similar study by the CMS collaboration for the EW ℓνℓ + two jets process has been made in [37] +15 + +500 +1000 +1500 +1 +2 +3 +4 +5 +mℓℓ [GeV] +|σSMBSM|/σSM +Partonic EW ℓℓ+qq', +s =13 TeV +VBFhardness > 5 +500 +1000 +1500 +0.1 +1 +10 +100 +1000 +mℓℓ [GeV] +|σSMBSM, BSM2|/σSM +Partonic EW ℓℓ+qq', +s =13 TeV +VBFhardness > 5 +BSM2 +SMBSM +FIG. 8: The distributions of |σSM×BSM|/σSM in mℓℓ for the partonic EW ℓℓ + qq′ (black lines in +both panels) for the λz coupling (other couplings are set to zero). Similarly for |σBSM2|/σSM (red +lines). Events for solid lines are restricted to those with VBFhardness > 5 in Eq. (15) along with +pT (q) > 25 GeV, pT (ℓ) > 10 GeV, and mqq′ > 120 GeV. For dashed lines in the right panel, the +VBFhardness cut is removed while others kept the same. +variable z can be translated into the nontrivial combination of various kinematic variables +via the relation, +VBFhardness ≡ +m2 +ℓℓ − m2 +qq′ +p2 +T(qq′) cosh2 ηqq′ + m2 +qq′ += 2z − 1 +(1 − z)2 ≥ 2zmin − 1 +(1 − zmin)2 +for +z ≥ zmin , +(15) +where the ratio is the monotonically increasing function, while it can have either sign, and +sin θqq′ = 1/ cosh ηqq′ was used to express in terms of the pseudorapidity of the qq′ system. +The positive value of the VBFhardness (or equivalently z > 1/2) corresponds to the case +where more than half the total energy flows into the dilepton system. Just like the case of +our toy process in Section III, zmin still has the ˆs dependence if one intends to impose a cut +on |z − z∗| instead of a constant cut on z itself. +As is evident in the right panel of Fig. 8 (see black dashed lines), the interference does not +reveal the energy growing behavior without a cut on the ratio in Eq. (15). As an illustration, +the resurrected interference in the inclusive cross section for the λz coupling is clearly shown +in the left panel of Fig. 8 for VBFhardness > 5 that corresponds to z ≥ zmin = 0.71. We +checked that a similar energy growing interference appears in terms of +√ +ˆs as well. The same +interference is displayed again with the quadratic cross section in the right panel of Fig. 8. +The square of the interference term in this illustrative example in Fig. 8 appears to have a +milder energy growing behavior than the quadratic term itself. The interference would have +been lost if one has not included the full effect of the forward quarks or not imposed a cut +on a proper variable like the one in Eq. (15). In Fig. 9, we show the resurrected interference +pattern continues to survive at the hadron level where the VBFhardness is constructed out of +16 + +500 +1000 +1500 +1 +10 +100 +1000 +104 +mℓℓ [GeV] +|σX|/σSM +EW ℓℓ+jets, +s =13 TeV +VBFhardness > 5 +SMBSM +BSM2 +500 +1000 +1500 +1 +2 +5 +10 +mℓℓ [GeV] +|σSMBSM|/σSM +EW ℓℓ+jets, +s =13 TeV +VBFhardness > 5 +0 +200 +400 +600 +800 +1000 +0.1 +1 +10 +100 +1000 +104 +pT(ℓℓ ) [GeV] +σX/σSM +EW ℓℓ+jets, +s =13 TeV +|mℓℓ-mZ|<15 GeV +SMBSM +BSM2 +FIG. 9: |σX|/σSM where X = SM×BSM (black) or BSM2 (red) for the EW ℓℓ + two jets for the +coupling Ci = λz (other couplings are set to zero). Plots are made with events at the jet level after +imposing the loosened cuts, compared to the CMS analysis [12], pT (j) > 30 GeV, pT (ℓ) > 20 GeV, +|η(j)| < 4.5 , |η(ℓ)| < 2.5, and mjj > 120 GeV. +two forward jet candidates and lepton pairs. The CMS analysis in [12] derives the sensitivity +on aTGC using the pT distribution of Z only for the events inside the Z mass window. In +the bottom panel of Fig. 9, the interference and quadratic terms of the inclusive cross section +are illustrated in pT(ℓℓ) only for the events in the Z mass window |mℓℓ − mZ| < 15 GeV. +B. +Validation against the CMS analysis and BDT analysis +We adopt the CMS analysis in [12] for the validation of our framework. Events with two +isolated leptons (electrons or muons) and at least two jets are selected. A lepton is declared +to be isolated if the ratio of the pT-sum of all particles within the isolation cone Riso = 0.4 +around the lepton to the pT of the lepton is below 15% and 25% for electrons and muons, +respectively. While two isolated leptons need to satisfy pT > 20 GeV and |η(ℓ)| < 2.4, and +have the opposite electric charges, the harder lepton must pass the cut pT > 30 GeV as well. +17 + +The particles excluding the isolated leptons are clustered into jets by anti-kt algorithm [44] +with the distance parameter of Rjet = 0.4. Jets are required to satisfy pT(j) > 15 GeV and +|η(j)| ≤ 4.7. Two hardest jets, called the tagging jets, are required to have pT(j) > 50 GeV +and pT(j) > 30 GeV for the leading and subleading jets, respectively, and their invariant +mass should satisfy mjj > 200 GeV. The initial cuts in CMS analysis in [12] are defined as +pT(ℓ1) > 30 GeV , +pT(ℓ2) > 20 GeV , +|η(µ)| < 2.4 , +|η(e)| < 2.1 , +pT(j1) > 50 GeV , +pT(j2) > 30 GeV , +|η(j)| ≤ 4.7 , +|mZ − mℓℓ| < 15 GeV , and +mjj > 200 GeV +(16) +where the subscripts 1 and 2 mean leading and subleading objects, respectively. The event +yields after imposing the initial cuts are given in Table I where we included only two largest +backgrounds. The smaller yield of the ee channel is due to the lower selection efficiency of +Initial +Sample +ee +µµ +t¯t +5454 (5363±48) +13962 (12938±81) +DY Zjj (pythia8) 146147 (152750±510) 373731 (394640±880) +EW Zjj (pythia8) +2639 (2833±10) +6328 (6665±16) +TABLE I: Validation of our simulation at √s =13 TeV assuming 35.9 fb−1 of the integrated +luminosity. The numbers in parenthesis are CMS values for comparison. The k-factor of 1.7 was +applied for the t¯t process. +electrons. We adopted the pT-dependent electron selection efficiency [43] in our analysis, +while setting the selection efficiency for muons to unity. The electron selection efficiency is +roughly 0.7 − 0.8 for the pT of interest. +Having our analysis validated with the initial cuts, we move onto the BDT analysis. +The CMS analysis introduces two additional variables. Event balance variable, R(phard +T +), is +defined as +R(phard +T +) = +|⃗pTj1 + ⃗pTj2 + ⃗pTZ| +|⃗pTj1| + |⃗pTj2| + |⃗pTZ| +(17) +The z∗ Zeppenfeld variable is defined as +z∗ = +y∗ +∆yjj +, +(18) +where y∗ = yZ − 1 +2 (yj1 + yj2). Additionally, the quark-gluon discrimination is applied to two +tagging jets. Instead of constructing a likelihood function for the q/g discrimination and +use it in the BDT analysis afterwards as done in the CMS analysis [38], we directly use the +18 + +three input variables to the likelihood in our BDT. They are multiplicity, jet shapes, and +the fragmentation function. The jet shape variable is defined as +σ = +� +σ2 +1 + σ2 +2 +with +σ1 = (λ1/ +� +i +p2 +T,i)1/2 , +σ2 = (λ2/ +� +i +p2 +T,i)1/2 , +(19) +where the sum runs over the jet constituents. λ1 and λ2 are the two eigenvalues of the +matrix with the elements, M11 = � +i p2 +T,i∆η2 +i , M22 = � +i p2 +T,i∆φ2 +i , and M12 = M21 = +− � +i p2 +T,i∆ηi∆φi where ∆ηi and ∆φi are the pseudorapidity and azimuthal distances be- +tween a constituent and the average direction which is defined as the p2 +T,i-weighted direction +of jet constituents in η − φ space. The fragmentation function is captured by the variable, +pTD = +�� +i p2 +T,i +� +i pT,i +, +(20) +where the sum runs over the jet constituents. For the multiplicity we count all charged and +neutral constituents of a jet whose energy is above 1 GeV, and it is denoted as ntracks(j). +Similarly to the CMS analysis in [12], we use the following set of the BDT variables to +train and test our signal and background samples with the initial cuts in Eq. (16): +mjj , +|∆ηjj| , +pT(jj) , +R(phard +T +) , +z∗(Z) , +ntracks(j1,2) , +pTD(j1,2) , +σ1(j1,2) , +(21) +where mjj, ηjj, and pT(jj) are the invariant mass, pseudorapidity, and transverse momentum +of two leading jets system, respectively. To simplify our analysis and at the same time to +take full advantage of kinematic distribution to efficiently suppress the largest QCD Drell- +Yan background, we first train and test over the EW ℓℓ + jets in the SM as a signal and +the remaining samples as the background using the gradient boosting algorithm (BDTG) +provided by the TMVA package [42]. Since the signal and the dominant background have the +largest population in the Z mass window with the small transverse momentum, the BSM +effect is expected to be small. This rejects the QCD Drell-Yan and top pair backgrounds as +much as possible. We impose an appropriate cut on the BDT variable, that was computed +in the previous training, for all the samples of EW ℓℓ + jets in the SM and BSM, and +background processes. While it is nontrivial to exactly reproduce the outcome of the CMS +BDT analysis, the outcome of our BDT training, illustrated in Fig. 20 in Appendix C, shows +the clear separation between the signal and background. +We do not add our newly introduced VBFhardness in Eq. (15) to the BDT variable set +although it has a correlation with mjj, ηjj, and pT(jj). Since we take the EW ℓℓ + jets in the +SM as a signal in the training, we expect its effect on the signal/background discrimination +to be mild as is indicated in Fig. 10. While the VBFhardness variable helps in resurrecting +19 + +1 +− +0.5 +− +0 +0.5 +1 +VBFhardness +0 +0.02 +0.04 +0.06 +0.08 +0.1 +0.12 +0.14 +0.16 +0.18 +0.2 +Normalized unit/0.04 +Z+jets ++jets +tt +EW Zjj + = 0.04 +z +λ +1 +− +0 +1 +2 +3 +4 +5 +6 +VBFhardness +5 +− +10 +4 +− +10 +3 +− +10 +2 +− +10 +1 +− +10 +Normalized unit/0.4 +Z+jets ++jets +tt +EW Zjj + = 0.04 +z +λ +FIG. 10: The normalized distribution of VBFhardness for the EFT signal for λz = 0.04, EW +dilepton (denoted by EW Zjj), t¯t+jets, and QCD Drell-Yan backgrounds (denoted by Z+jets) +after imposing pT (j) > 30 GeV, pT (ℓ) > 20 GeV, |η(j)| < 4.5 , |η(ℓ)| < 2.5, and mjj > 120 GeV. +Right panel is logarithmic plot of the left panel in a large VBFhardness range. +the interference, its effect should be small as well in the situation where the sensitivity +of aTGCs is mainly driven by the quadratic terms. It will be relevant in case where the +sensitivity is derived by the interference cross section. As is seen in Fig. 10, although a +proper cut may reduce the signal rate, VBFhardness seems to be a good discriminator for +the EFT signal as it controls the amount of energy going into the dilepton subsystem. It +will be important at the HL-LHC or future collider and we leave more dedicated analysis +for the future study. +C. +Sensitivity to aTGC at the LHC +To evaluate sentivity to aTGC, we construct 1D templates binned either in pT(ℓℓ) and +mℓℓ. Events are distributed over 20 equal-spaced bins of pT(ℓℓ) between 0 and 1200 GeV +where the last bin contains events beyond 1200 GeV. ℓ includes both electrons and muons 5. +We also newly construct templates of mℓℓ with 10 equal-spaced bins between 0 and 2000 GeV +where the last bin contains events beyond 2000 GeV. The distributions of backgrounds and +two selected EFT benchmark points (with the SM contribution subtracted) are illustrated in +5 On the contrary, the CMS analysis in [12] separately distribute events in 15 bins in pT (ℓℓ) = [0, 900] GeV +and 20 bins in [0, 1200] GeV for electrons and muons, respectively. +20 + +0 +200 +400 +600 +800 +1000 +1200 + (ll) (GeV) +T +p +10 +2 +10 +3 +10 +4 +10 +5 +10 +Events/60 GeV + (13 TeV) +-1 +35.9 fb +Z+jets ++jets +tt +EW Zjj + = 0.04 +z +λ + = 0.1 +1,z +g +δ +0 +200 400 600 800 100012001400160018002000 + (GeV) +ll +m +1 +10 +2 +10 +3 +10 +4 +10 +5 +10 +6 +10 +Events/200 GeV + (13 TeV) +-1 +35.9 fb +Z+jets ++jets +tt +EW Zjj + = 0.04 +z +λ + = 0.1 +1,z +g +δ +FIG. 11: The distributions of pT (ℓℓ) (left) and mℓℓ (right) at 13 TeV, using the integrated luminosity +of 35.9−1, for backgrounds and two selected EFT benchmark signals with the SM contribution +subtracted. Events are restricted to those satisfying CMS initial cuts in Eq. (16). +Fig. 11. +We construct a log likelihood in terms of aTGCs, assuming the Poisson distribution, +Using the template analysis of pT (ℓℓ) in the Z mass window at 13 TeV, L = 35.9 fb−1 +No BDT cut +BDT > 0.6 +aTGC +68% CL +95% CL +95% CL (Linear) +68% CL +95% CL +95% CL (Linear) +λz +[−0.026, 0.025] [−0.036, 0.036] +[−0.20, 0.20] +[−0.015, 0.016] [−0.025, 0.026] +[−0.099, 0.1] +δg1,z +[−0.069, 0.040] [−0.130, 0.068] +[−0.096, 0.097] +[−0.029, 0.024] [−0.066, 0.043] +[−0.051, 0.051] +δκz +[−0.18, 0.19] +[−0.29, 0.32] +[−0.41, 0.41] +[−0.089, 0.095] +[−0.16, 0.18] +[−0.18, 0.18] +TABLE II: One-dimensional limits on aTGCs at 68% and 95% CL. Linear denotes the limits +obtained using only the interference cross section between the SM and BSM amplitudes. +Using the template analysis of mℓℓ at 13 TeV, L = 35.9 fb−1 +No BDT cut +BDT > 0.6 +aTGC +68% CL +95% CL +95% CL (Linear) +68% CL +95% CL +95% CL (Linear) +λz +[−0.031, 0.029] [−0.045, 0.043] +[−0.22, 0.22] +[−0.025, 0.023] [−0.039, 0.035] +[−0.13, 0.13] +δg1,z +[−0.074, 0.056] [−0.13, 0.094] +[−0.13, 0.13] +[−0.033, 0.029] [−0.067, 0.052] +[−0.062, 0.063] +δκz +[−0.099, 0.099] +[−0.14, 0.15] +[−0.56, 0.56] +[−0.062, 0.062] [−0.097, 0.098] +[−0.26, 0.26] +TABLE III: Similar caption to Table II. +− 2∆ log L(λz, δg1,z, δκz) , +(22) +where ∆ indicates that the minimum is subtracted. We include only the statistical uncer- +tainty since the systematic uncertainty in each bin is not reported in [12] and the overall +size of it in Table I looks subdominant to the statistical one. +21 + +-0.2 +-0.1 +0.0 +0.1 +0.2 +-0.06 +-0.04 +-0.02 +0.00 +0.02 +0.04 +0.06 +δg1,z +λz +s = 13 TeV , 35.9 fb -1 +95% CL +68C% CL +95% CL (BDT >0.6 ) +68% CL (BDT >0.6 ) +-0.2 +-0.1 +0.0 +0.1 +0.2 +-0.15 +-0.10 +-0.05 +0.00 +0.05 +0.10 +0.15 +δg1,z +λz +s = 13 TeV , 35.9 fb -1 +95% CL +68C% CL +95% CL (BDT >0.6 ) +68% CL (BDT >0.6 ) +-0.20 -0.15 -0.10 -0.05 0.00 +0.05 +0.10 +-0.6 +-0.4 +-0.2 +0.0 +0.2 +0.4 +0.6 +δg1,z +δκz +s = 13 TeV , 35.9 fb -1 +95% CL +68% CL +95% CL (BDT >0.6 ) +68% CL (BDT >0.6 ) +-0.06-0.04-0.02 0.00 0.02 0.04 0.06 +-0.6 +-0.4 +-0.2 +0.0 +0.2 +0.4 +0.6 +λz +δκz +s = 13 TeV , 35.9 fb -1 +95% CL +68% CL +95% CL (BDT >0.6 ) +68% CL (BDT >0.6 ) +FIG. 12: Two-dimensional limits on aTGCs at 68% (dashed) and 95% CL (solid) regions obtained +using the binned analysis of pT (ℓℓ) in the Z mass window, assuming the integrated luminosity of +35.9 fb−1 at √s = 13 TeV. Compared to the red solid lines, thin gray lines were obtained only with +the interference term which is linear in the aTGC coupling for the BDT > 0.6. +The 68% and 95% CL intervals of an individual aTGC, where two others are set to +zero without the marginalization, are presented in Table II and III. For the result with +the BDT cut, we estimated the sensitivity with the incremental BDT cut starting with a +mild value, and did not find visible improvement with a stronger BDT cut than 0.6. For +λz, the 95% CL interval from BDT > 0.6 is worse than the expected value of the CMS +one, or λCMS +z += [ −0.014, 0.014 ] [12] 6. For the δg1,z coupling, our analysis gives roughly +6 Comparing two distributions of pT (Z) in Fig. 8 of [12] (separately displayed for electrons and muons) and +Fig. 11 (summed over both leptons), our signal to background ratio looks rather smaller than the CMS +one in a high pT region where a large statistical power is expected. We suspect that this discrepancy +could be partly due to the different configuration for simulation of the aTGC signal and lepton selection +22 + +-0.2 +-0.1 +0.0 +0.1 +0.2 +-0.06 +-0.04 +-0.02 +0.00 +0.02 +0.04 +0.06 +δg1,z +λz +s = 13 TeV , 35.9 fb -1 +95% CL +68% CL +95% CL (BDT >0.6 ) +68% CL (BDT >0.6 ) +-1.0 +-0.5 +0.0 +0.5 +1.0 +1.5 +-3 +-2 +-1 +0 +1 +2 +3 +δg1,z +λz +s = 13 TeV , 35.9 fb -1 +95% CL +68% CL +95% CL (BDT >0.6 ) +68% CL (BDT >0.6 ) +-0.5 -0.4 -0.3 -0.2 -0.1 +0.0 +0.1 +0.2 +-0.6 +-0.4 +-0.2 +0.0 +0.2 +0.4 +0.6 +δg1,z +δκz +s = 13 TeV , 35.9 fb -1 +95% CL +68% CL +95% CL (BDT >0.6 ) +68% CL (BDT >0.6 ) +-0.06 -0.04 -0.02 0.00 +0.02 +0.04 +0.06 +-0.6 +-0.4 +-0.2 +0.0 +0.2 +0.4 +0.6 +λz +δκz +s = 13 TeV , 35.9 fb -1 +95% CL +68% CL +95% CL (BDT >0.6 ) +68% CL (BDT >0.6 ) +FIG. 13: Two-dimensional limits on aTGCs at 68% (dashed) and 95% CL (solid) regions obtained +using the binned analysis of mℓℓ, assuming the integrated luminosity of 35.9 fb−1 at √s = 13 TeV. +Compared to the red solid lines, thin gray lines were obtained only with the interference term +which is linear in the aTGC coupling for the BDT > 0.6. No cuts on VBFhardness was imposed. +comparable with the CMS one, δgCMS +1,z += [−0.053, 0.061 ] [12]. The two-dimensional exclusion +regions from the binned analysis of pT(ℓℓ) in the Z mass window are illustrated in Fig. 12 +where the remaining coupling is set to zero without the marginalization. The gray lines in +Fig. 12 illustrate the exclusion region at 95% CL using only linear terms in aTGCs in our +parametrization of the cross section (see Eq. (3)). It indicates that the sensitivity of λz is +dominantly driven by the quadratic term whereas the effect of the quadratic term is less +pronounced for two other aTGC couplings. +We newly derive the sensitivity using the binned analysis of mℓℓ. As discussed in Sec- +tion IV A, the invariant mass of the dilepton system has the relation m2 +ℓℓ − m2 +jj = (2z − 1)ˆs, +efficiency and so on. As our estimation is conservative, we leave it as-is. +23 + +-0.3 +-0.2 +-0.1 +0.0 +0.1 +0.2 +0.3 +-0.10 +-0.05 +0.00 +0.05 +0.10 +δg1,z +λz +s = 13 TeV , 35.9 fb -1 +No BDT cut +pT(ℓℓ)=[0, +∞] GeV +pT(ℓℓ)=[0, 1140 ] GeV +pT(ℓℓ)=[0, 600 ] GeV +pT(ℓℓ)=[0, 300 ] GeV +-0.3 +-0.2 +-0.1 +0.0 +0.1 +0.2 +0.3 +-0.10 +-0.05 +0.00 +0.05 +0.10 +δg1,z +λz +s = 13 TeV , 35.9 fb -1 +BDT >0.6 +pT(ℓℓ)=[0, +∞] GeV +pT(ℓℓ)=[0, 1140 ] GeV +pT(ℓℓ)=[0, 600 ] GeV +pT(ℓℓ)=[0, 300 ] GeV +-0.4 +-0.2 +0.0 +0.2 +0.4 +-0.10 +-0.05 +0.00 +0.05 +0.10 +δg1,z +λz +s = 13 TeV , 35.9 fb -1 +No BDT cut +mℓℓ=[0, +∞] GeV +mℓℓ=[0,1800 ] GeV +mℓℓ=[0,1200 ] GeV +mℓℓ=[0, 600 ] GeV +-0.3 +-0.2 +-0.1 +0.0 +0.1 +0.2 +0.3 +-0.10 +-0.05 +0.00 +0.05 +0.10 +δg1,z +λz +s = 13 TeV , 35.9 fb -1 +BDT >0.6 +mℓℓ=[0, +∞] GeV +mℓℓ=[0,1800 ] GeV +mℓℓ=[0,1200 ] GeV +mℓℓ=[0, 600 ] GeV +FIG. 14: Breakdown of pT (ℓℓ) (top) and mℓℓ (bottom) categories in the plane (λz, δg1,z), assuming +the integrated luminosity of 35.9 fb−1 at √s = 13 TeV. Curves of various styles indicate the 95% +CL contours. +where mjj is the invariant mass of two forward jets, z is the fraction of the total energy of +the partonic system carried by the ℓℓ system, and mℓℓ alone does not guarantee the hardness +of the ℓℓ subsystem. However, while a nominal cut on the VBFhardness (see Eq. (15) for the +definition) ensures that at least some amount of the total energy goes into the ℓℓ subsystem +and greatly helps recovering the interference, as is clearly seen in Fig. 8, it may not improve +the situation for the case where the sensitivity is dominantly driven by the quadratic terms. +For this reason, we have not exploited VBFhardness. The 68% and 95% CL intervals of an +individual aTGC are presented in Table III. From the comparison between Tables II and III, +we observe that δκz is better constrained by the binned analysis of mℓℓ whereas λz and δg1,z +are better constrained by the analysis using the distribution of pT(ℓℓ). +The two-dimensional exclusion regions from the binned analysis of mℓℓ are illustrated in +Fig. 13 where similarly the remaining coupling was set to zero without the marginalization. +24 + +13 TeV, L = 300 fb−1 +Using the template analysis of pT (ℓℓ) in the Z mass +No BDT cut +BDT > 0.6 +aTGC +68% CL +95% CL +95% CL (Linear) +68% CL +95% CL +95% CL (Linear) +λz +[−0.017, 0.017] +[−0.025, 0.024] +[−0.070, 0.070] +[−0.0076, 0.0081] +[−0.012, 0.012] +[−0.035, 0.035] +δg1,z +[−0.019, 0.016] +[−0.042, 0.029] +[−0.033, 0.033] +[−0.0093, 0.0087] +[−0.019, 0.017] +[−0.018, 0.018] +δκz +[−0.069, 0.072] +[−0.13, 0.14] +[−0.14, 0.14] +[−0.032, 0.033] +[−0.062, 0.065] +[−0.064, 0.064] +Using the template analysis of mℓℓ +λz +[−0.017, 0.016] +[−0.025, 0.023] +[−0.075, 0.075] +[−0.013, 0.012] +[−0.022, 0.018] +[−0.045, 0.046] +δg1,z +[−0.025, 0.022] +[−0.051, 0.040] +[−0.047, 0.047] +[−0.011, 0.011] +[−0.023, 0.020] +[−0.022, 0.022] +δκz +[−0.054, 0.054] +[−0.080, 0.080] +[−0.19, 0.19] +[−0.031, 0.030] +[−0.049, 0.048] +[−0.089, 0.089] +13 TeV, L = 3000 fb−1 +Using the template analysis of pT (ℓℓ) in the Z mass +λz +[−0.0077, 0.0072] [−0.011, 0.011] +[−0.022, 0.022] +[−0.0036, 0.0039] [−0.0056, 0.0060] +[−0.011, 0.011] +δg1,z +[−0.0055, 0.0052] [−0.011, 0.010] +[−0.011, 0.011] +[−0.0029, 0.0028] [−0.0057, 0.0055] +[−0.0057, 0.0057] +δκz +[−0.023, 0.023] +[−0.044, 0.045] +[−0.045, 0.045] +[−0.010, 0.010] +[−0.020, 0.020] +[−0.020, 0.020] +Using the template analysis of mℓℓ +λz +[−0.0090, 0.0077] [−0.013, 0.012] +[−0.024, 0.024] +[−0.0060, 0.0053] [−0.0096, 0.0085] +[−0.014, 0.014] +δg1,z +[−0.0076, 0.0077] [−0.015, 0.014] +[−0.015, 0.015] +[−0.0035, 0.0034] [−0.0070, 0.0067] +[−0.0069, 0.0069] +δκz +[−0.025, 0.025] +[−0.040, 0.040] +[−0.062, 0.062] +[−0.013, 0.013] +[−0.022, 0.022] +[−0.028, 0.028] +TABLE IV: One-dimensional limits on aTGCs at 68% and 95% CL at 13 TeV using the integrated +luminosity of L = 300 fb−1 and L = 3000 fb−1. No cut on VBFhardness was imposed. +Unlike the case using pT(ℓℓ) in Fig. 12, the sensitivity, for instance, of λz is significantly +weakened (see upper right panel of Fig. 13) when the quadratic term is removed. This is +due to the interference suppression as illustrated by the black dashed line in the right panel +of Fig. 8. +The situation is contrasted to those obtained using the binned analysis with +pT(ℓℓ). As observed in the bottom panel of Fig. 9, the discrepancy between the interference +and quadratic terms in the pT(ℓℓ) distribution is less pronounced, compared to the current +case, and the interference term itself also shows the pT-growing behavior. +Fig. 14 illustrates how the sensitivity in the plane (λz, δg1,z) changes as some of the +higher bins are removed in the binned analysis of pT(ℓℓ) and mℓℓ, respectively, for two +cases without (left panels of Fig. 14) and with the BDT cut (right panels of Fig. 14). This +practice is meaningful especially for mℓℓ as the EFT cutoff can be directly imposed on the +mℓℓ variable. For the case with the BDT cut, sensitivity to δg1,z mostly comes from the +first small number of bins, corresponding to the well below sub-TeV in both pT(ℓℓ) and mℓℓ +whereas a wider range of the energy contributes to the sensitivity to λz. On the contrary, +for the case without the BDT cut, δg1,z becomes sensitive to the wide range of the energy. +We derive the sensitivity at the LHC and HL-LHC, assuming an integrated luminosity +of 300 fb−1 and 3 ab−1, respectively. We assume that the systematic errors remain to be +25 + +-0.10 -0.05 +0.00 +0.05 +0.10 +0.15 +-0.15 +-0.10 +-0.05 +0.00 +0.05 +0.10 +0.15 +δg1,z +λz +s = 13 TeV , BDT >0.6 +35.9 fb -1 +300 fb -1 +35.9 fb -1 (Linear ) +300 fb -1 (Linear ) +-0.15 -0.10 -0.05 +0.00 +0.05 +0.10 +-0.4 +-0.2 +0.0 +0.2 +0.4 +δg1,z +δκz +s = 13 TeV , BDT >0.6 +35.9 fb -1 +300 fb -1 +35.9 fb -1 (Linear ) +300 fb -1 (Linear ) +-0.04 +-0.02 +0.00 +0.02 +0.04 +-0.4 +-0.2 +0.0 +0.2 +0.4 +λz +δκz +s = 13 TeV , BDT >0.6 +35.9 fb -1 +300 fb -1 +35.9 fb -1 (Linear ) +300 fb -1 (Linear ) +-0.10 -0.05 +0.00 +0.05 +0.10 +0.15 +-0.15 +-0.10 +-0.05 +0.00 +0.05 +0.10 +0.15 +δg1,z +λz +s = 13 TeV , BDT >0.6 +35.9 fb -1 +300 fb -1 +35.9 fb -1 (Linear ) +300 fb -1 (Linear ) +-0.3 +-0.2 +-0.1 +0.0 +0.1 +-0.4 +-0.2 +0.0 +0.2 +0.4 +δg1,z +δκz +s = 13 TeV , BDT >0.6 +35.9 fb -1 +300 fb -1 +35.9 fb -1 (Linear ) +300 fb -1 (Linear ) +-0.04 +-0.02 +0.00 +0.02 +0.04 +-0.4 +-0.2 +0.0 +0.2 +0.4 +λz +δκz +s = 13 TeV , BDT >0.6 +35.9 fb -1 +300 fb -1 +35.9 fb -1 (Linear ) +300 fb -1 (Linear ) +FIG. 15: The two-dimensional contours at 95% CL, obtained using the binned analysis of pT (ℓℓ) +(upper) and mℓℓ (bottom), assuming the integrated luminosities of 35.9 fb−1 and 300 fb−1 at +√s = 13 TeV. The dashed lines were obtained only with the interference term which is linear in +the aTGC coupling. +negligible, and we include only the statistical uncertainty. Our projection for the LHC and +the HL-LHC is illustrated in Table IV. The 95% CL contours in the two-dimensional plane +are shown in Fig. 15 where upper two plots were obtained by the template analysis of pT(ℓℓ) +and the bottom ones using mℓℓ. The comparison between two analyses for δg1,z and δκz, +namely, one by total cross section up to the quadratic order in aTGC and the other only with +the interference cross section, indicates that the sensitivity is mainly driven by the linear term +for the case of pT(ℓℓ). While, for the case of mℓℓ, the role of the interference hardly becomes +important except for δg1,z where the other two couplings were set to zero, the VBFhardness +may help making the interference more important. Although, as is evident in Fig. 10 a cut +on VBFhardness may reduce the signal rate, loosening other cuts may compensate it and it +can be an important variable at the HL-LHC regarding the interference. +26 + +Bounds on aTGCs +Binned Anal. of pT(ℓℓ) +Binned Anal. of m(ℓℓ) +BDT>0.6 +No BDT +No BDT +BDT>0.6 +68%, 95% CL +68%, 95% CL +68%, 95% CL +68%, 95% CL +-x.xx +x.xx +68% CL bound +-x.xx +x.xx +95% CL bound +Tick size for λz/δg1,z/δκz +0.06/0.013/0.04 +0 +λz +LHC +35.9 fb-1 +LHC +300 fb-1 +HL-LHC ++0.026 +-0.025 ++0.016 +-0.015 ++0.036 +-0.036 ++0.025 +-0.026 ++0.035 +-0.039 ++0.023 +-0.025 ++0.043 +-0.045 ++0.029 +-0.031 ++0.012 +-0.012 ++0.0081 +-0.0076 ++0.024 +-0.025 ++0.017 +-0.017 ++0.018 +-0.022 ++0.012 +-0.013 ++0.023 +-0.025 ++0.016 +-0.017 ++0.0060 +-0.0056 ++0.0039 +-0.0036 ++0.011 +-0.011 ++0.0072 +-0.0077 ++0.0085 +-0.0096 ++0.0053 +-0.0060 ++0.012 +-0.013 ++0.0077 +-0.0090 +0 +δg1,z ++0.043 +-0.066 ++0.024 +-0.029 ++0.068 +-0.130 ++0.040 +-0.069 ++0.052 +-0.067 ++0.029 +-0.033 ++0.094 +-0.130 ++0.056 +-0.074 ++0.017 +-0.019 ++0.0087 +-0.0093 ++0.029 +-0.042 ++0.016 +-0.019 ++0.020 +-0.023 ++0.011 +-0.011 ++0.040 +-0.051 ++0.022 +-0.025 ++0.0055 +-0.0057 ++0.0028 +-0.0029 ++0.010 +-0.011 ++0.0052 +-0.0055 ++0.0067 +-0.0070 ++0.0034 +-0.0035 ++0.014 +-0.015 ++0.0077 +-0.0076 +0 +δκz ++0.18 +-0.16 ++0.095 +-0.089 ++0.32 +-0.29 ++0.19 +-0.18 ++0.098 +-0.097 ++0.062 +-0.062 ++0.150 +-0.140 ++0.099 +-0.099 ++0.065 +-0.062 ++0.033 +-0.032 ++0.14 +-0.13 ++0.072 +-0.069 ++0.048 +-0.049 ++0.03 +-0.031 ++0.08 +-0.08 ++0.054 +-0.054 ++0.02 +-0.02 ++0.01 +-0.01 ++0.045 +-0.044 ++0.023 +-0.023 ++0.022 +-0.022 ++0.013 +-0.013 ++0.04 +-0.04 ++0.025 +-0.025 +FIG. 16: The visual presentation of the sensitivity of aTGCs at 13 TeV, assuming three different +luminosities, given in Tables II, III, and IV. +V. +CONCLUSION +We have explored the EW dilepton production with two associated jets for the precision +measurement of aTGC couplings. This process has a few advantages compared to the typical +diboson production that has been a major process for studying aTGCs. The EFT cutoff +can be unambiguously imposed on the dilepton invariant mass. As was explicitly shown +(both analytically and numerically) in this work, the full amplitude, including the forward +quarks that radiate off the vector gauge bosons, exhibits the interference, importantly, in +the inclusive cross section. It contrasts with the interference resurrected in the differential +angular distributions of the diboson production process. For the purpose of the interference +27 + +resurrection in our dilepton production in vector boson fusion, we have introduced a new +variable, VBFhardness, that can control the amount of energy flowing into the dilepton +system. Using this variable, we have demonstrated that the interference clearly appears +when an appropriate cut is applied. It is also indicated that the usual practice of using +the EWA, namely, restricting ourselves to the subprocess initiated by gauge bosons and +convoluting its cross section with the probability distribution functions of the gauge bosons, +can be ill-defined. As a proof-of-concept example for the interference resurrection in the +inclusive cross section, we have performed the analytic study using the simpler toy process, +or uγ → dνe+, which was numerically confirmed as well. +We have derived the sensitivity to aTGCs for three scenarios of the LHC and HL-LHC, +assuming the integrated luminosity of 35.9 fb−1, 300 fb−1, and 3000 fb−1. In addition to the +template analysis using the transverse momentum of the dilepton, we also carried out the +template analysis using the invariant mass of the dilepton in this work. While the bounds +on λz and δg1,z from the dilepton invariant mass are rather weaker than those from the +transverse momentum of the dilepton system, the situation is opposite for δκz. The final +result of the one-dimensional bounds at 68% and 95% CL is summarized in Fig. 16. Our +analysis using the dilepton invariant mass may further be optimized. Vetoing b-jets could +help suppress top-enriched backgrounds. Exploiting VBFhardness may help in enhancing +the role of the interference with respect to the quadratic terms in aTGCs. +Acknowledgments +MS thanks A. Azatov and D. Marzocca for valuable discussions. Especially, MS thanks +A. Azatov for the explanation of his previous work regarding the interference resurec- +tion. JP, MS, and MU were supported by National Research Foundation of Korea under +Grant Number NRF-2021R1A2C1095430. JY and HH were supported by the National Re- +search Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. +2020R1C1C1005916). +Appendix A: Details on simulation +1. +Signal and background generation +The aTGC interaction in Eq. (2) is implemented in FeynRules [39] from which we +generate the UFO output for the MadGraph. Electroweak ℓ+ℓ−jj samples were simulated +at leading order (LO) by MadGraph5 aMC@NLO v2.6.7 [36] (QED=4, QCD=0) with the +default factorization and renormalization scales, interfaced with the Pythia8 v8.306 for +the parton shower and hadronization. For the parton distribution function, the NNPDF30 +28 + +(lo as0130) [40] is used. The linear (or interference) and quadratic terms in aTGC in our +parametrization of the cross section in Eq. (3) were separately simulated by using flags TGC2 += 1 and TGC2 = 2, respectively 7, where TGC denotes the order of aTGC interaction. The +phase space was restricted to those satisfying mℓℓ > 50 GeV, pT(j) > 25 GeV, and mjj > 120 +GeV at the generation level 8. +All background samples were similarly simulated at leading order (LO) by Mad- +Graph5 aMC@NLO v2.6.7 [36] with the default factorization and renormalization scales, +interfaced with the Pythia8. The NNPDF30 (lo as0130) was used. The QCD Drell-Yan +process γ∗/Z(ℓ+ℓ−)+jets samples where jets arise from QCD interaction were matched us- +ing kT-jet MLM matching at LO up to three extra jets in 5-flavor. k-factor of 1.23 was +applied [12]. The t¯t samples were matched using kT-jet MLM matching (QCUT = 45 GeV) +at LO up to two extra jets in 5-flavor and the total cross section was rescaled to match the +NLO value from Powheg [41] by applying the k-factor of 1.7. +Appendix B: Computation detail of qV → q′νℓ +1. +Choice of four momenta and amplitudes +The polarization vectors of the photon are obtained by rotating ϵL/R = +1 +√ +2(0, 1, ±i, 0) +(for the massless momenta moving to −z axis) with angle θ about y-axis (similarly angle φ +about z-axis). +ϵµ +L/R(p2) = 1 +√ +2 (0, cos θ cos φ ∓ i sin φ, cos θ sin φ ± i cos φ, − sin θ) . +(B1) +The spinor solutions in our coordinate system are +¯uL(k1) = ˆs1/4 +� +0, 0, − +√ +2z − 1 sin ψ +2 , cos ψ +2 +� +, +vL(k2) = ˆs1/4 +�√ +2z − 1 cos ψ +2 , sin ψ +2 , 0, 0 +�T +, +uL(p1) = ˆs1/4 +� +− sin θ +2, eiφ cos θ +2, 0, 0 +�T +, +¯uL(k3) = ˆs1/4� +2(1 − z) (0, 0, −1, 0) , +(B2) +7 On the other hand, the CMS analysis [12] generated aTGC signal samples (differently from ours) effectively +over 5 × 5 × 5 grid of cW W W /Λ2 × cW /Λ2 × cB/Λ2 which were equivalent to our aTGCs. We suspect that +this could be partly responsible for the discrepancy between our sensitivity of aTGCs and that in [12]. +8 To guarantee enough statistics and the smoothness of the differential distribution in the high invariant +mass tail, events were generated separately for multiple intervals of mℓℓ and combined. Similarly for the +EW ℓℓjj samples in the SM. +29 + +where T denotes the transpose. We choose the following four momenta of the particles in +d(k3) +γ(p2) +u(p1) +k +ντ(k1) +e+(k2) +ψ +φ +θ +FIG. 17: The angular configuration of the illustrative toy process, uγ → dνe+. +our 2 → 3 process, uγ → dνe+ and they are illustrated in Fig. 17. +pµ +1 = +√ +ˆs +2 (1, sin θ cos φ, sin θ sin φ, cos θ) , +pµ +2 = +√ +ˆs +2 (1, − sin θ cos φ, − sin θ sin φ, − cos θ) , +kµ +1 = +√ +ˆs +2 +� +z + (1 − z) cos ψ, +� +(2z − 1) sin ψ, 0, (1 − z) + z cos ψ +� +, +kµ +2 = +√ +ˆs +2 +� +z − (1 − z) cos ψ, − +� +(2z − 1) sin ψ, 0, (1 − z) − z cos ψ +� +, +kµ +3 = +√ +ˆs (1 − z, 0, 0, −(1 − z)) , +kµ = +√ +ˆs (z, 0, 0, (1 − z)) , +(B3) +where the momentum k has the invariant mass of m2 +k = (2z − 1)ˆs. Note that the 2 → 3 +process can be effectively factorized into 2 → 2 and 1 → 2 via an intermediate momentum +k. The momenta k1 and k2 in Eq. (B3) are obtained by boosting those in the νe rest frame, +kµ +1 = mk +2 (1, sin ψ, 0, cos ψ ) , +kµ +2 = mk +2 (1, − sin ψ, 0, − cos ψ) , +(B4) +along the z-axis with the boosting factor, +kz = γz mkβz → γz = k0 +mk += +z +√2z − 1 . +(B5) +When the intermediate W emitted from the quark line is produced nearly on shell, z is +nearly fixed to be +z ∼ 1 +2 +� +1 + m2 +W +ˆs +� +. +(B6) +30 + +The helicity amplitudes for four diagrams in Fig. 4 are given by +iϵ · Ma = ¯uL(k3) +� +i g +√ +2γρ� +uL(p1) −iηρν +q2 − m2 +W +× ϵλ(p2) i e +�� +ηµν(q − k)λ − (2 + δκγ)(pµ +2ηνλ − pν +2ηµλ) + ηνλkµ − ηµλqν� ++ λz +m2 +W +� +(pµ +2ηνλ − pν +2ηµλ)(k · q) + (qληµν − qµηνλ)(k · p2) ++ (kνηµλ − kληµν)(q · p2) − kνqλpµ +2 + kλqµpν +2 +�� +× +−iηµσ +k2 − m2 +W + imWΓW +¯uL(k1) +� +i g +√ +2γσ� +vL(k2) += +� +i g +√ +2 +�2 +(ie) +(−i)2 +q2 − m2 +W +1 +k2 − m2 +W + imWΓW +ϵλjν +q jµ +l V λνµ . +(B7) +where q = p2 − k = k3 − p1. +iϵ · Mb = ϵµ(p2)¯uL(k3) +� +i g +√ +2γρ� +uL(p1) −iηρσ +q2 − m2 +W +× ¯uL(k1) +� +i g +√ +2γσ�i( /p2 − /k2) +(p2 − k2)2 (−ieγµ) vL(k2) += +� +i g +√ +2 +�2 +(−ie) +(−i)i +q2 − m2 +W +1 +(p2 − k2)2 ¯uL(k1)/jq( /p2 − /k2)/ϵvL(k2) , +(B8) +where q = k3 − p1. +iϵ · Mc = ϵµ(p2)¯uL(k3) +� +− i +3eγµ +� i( /k3 − /p2) +(k3 − p2)2 +� +i g +√ +2γρ� +uL(p1) +× +−iηρσ +k2 − m2 +W + imWΓW +¯uL(k1) +� +i g +√ +2γσ� +vL(k2) += +� +i g +√ +2 +�2 � +− i +3e +� +(−i)i +k2 − m2 +W + imWΓW +1 +(k3 − p2)2 ¯uL(k3)/ϵ( /k3 − /p2)/jluL(p1) , +iϵ · Md = ϵµ(p2)¯uL(k3) +� +i g +√ +2γρ�i( /p1 + /p2) +(p1 + p2)2 +�2i +3 eγµ +� +uL(p1) +× +−iηρσ +k2 − m2 +W + imWΓW +¯uL(k1) +� +i g +√ +2γσ� +vL(k2) += +� +i g +√ +2 +�2 �2i +3 e +� +(−i)i +k2 − m2 +W + imWΓW +1 +(p1 + p2)2 ¯uL(k3)/jl( /p1 + /p2)/ϵuL(p1) +(B9) +where jµ +q = ¯uL(k3)γµuL(p1) and jµ +l = ¯uL(k1)γµvL(k2). +31 + +2. +Phase space integration +The partonic cross section of 2 → 3 process in our coordinate system is obtained by the +following phase space integration, +ˆσ = +1 +512π4 +� 1 +1/2 +dz(1 − z) +� 1 +−1 +d cos θ +� 1 +−1 +d cos ψ +� 2π +0 +dφ +��M +��2 , +(B10) +where +��M +��2 is the summed and averaged amplitude-squared over polarizations of the initial +partons and +��M +�� has a negative mass dimension of one. +3. +Interference between SM and BSM amplitudes for coupling λz +2000 +4000 +6000 +8000 +-0.0001 +0.0000 +0.0001 +0.0002 +s [GeV] +σ +SMBSM +Total +σ +SMBSM +hard +σ +SMBSM +rad +1000 +2000 +3000 +4000 +5000 +-0.0005 +0.0000 +0.0005 +0.0010 +0.0015 +0.0020 +s [GeV] +σ +SMBSM +σ +SMBSM +aa +σ +SMBSM +ab +σ +SMBSM +ac +σ +SMBSM +ad +FIG. 18: The partonic inclusive cross section in an arbitrary rate for the interference between the +SM and BSM, ˆσSM×BSM(uLγL → dνe+), integrated over the entire phase space. +In our 2 → 3 toy process, diagrams a and b in Fig. 4 are those of interest that probe the +hard subprocess and diagrams c and d belong to the radiation type where W decaying to e+ν +is attached to either incoming or outgoing quark line. Restricting only to the interference, +we split the contribution into two categories. +ˆσhard +SM×BSM ≡ ˆσaa +SM×BSM + ˆσab +SM×BSM , +ˆσrad +SM×BSM ≡ ˆσac +SM×BSM + ˆσad +SM×BSM , +(B11) +where ˆσij +SM×BSM refers to the partonic cross section from the product of two diagrams i and +j in Fig. 4. The relative difference between two categories is purely due to the SM as the +λz dependence comes from the common diagram a. The left panel of Fig. 18 shows that +ˆσhard +SM×BSM and ˆσrad +SM×BSM are comparable. While the magnitude of each ˆσaa +SM×BSM and ˆσab +SM×BSM +is bigger than both ˆσac +SM×BSM and ˆσad +SM×BSM, there is a cancellation between two contributions +from the hard subprocess, dictated by the gauge symmetry. It should be an artifact due +32 + +2000 +4000 +6000 +8000 +-1.×10-6 +-5.×10-7 +0 +s [GeV] +σ +SMBSM +Total +σ +SMBSM +hard +σ +SMBSM +rad +1000 +2000 +3000 +4000 +-0.00004 +-0.00002 +0.00000 +0.00002 +0.00004 +s [GeV] +σ +SMBSM +σ +SMBSM +aa +σ +SMBSM +ab +σ +SMBSM +ac +σ +SMBSM +ad +FIG. 19: The partonic inclusive cross section in an arbitrary rate for the interference between the +SM and BSM, ˆσSM×BSM(uLγL → dνe+), integrated over the restricted phase space z = [1 − ε, 1] +where ε = 0.1 was chosen. +to the gauge choice in the photon polarization. One may choose a particular gauge for the +photon polarization to suppress the contribution from the radiation type diagrams. The +observed property is more pronounced when the phase space is restricted to z = [1 − ε, 1] +with ε = 0.1 where the usual conditions for the EWA are satisfied. As is clearly seen in +Fig. 19, an individual contribution from the hard subprocess becomes much bigger than +those involving the radiation type diagrams, and the cancellation is more dramatic. The +gauge dependence may not be a problem in the 2 → 4 process where all gauge bosons +including the photon are attached to the fermion currents. +Another interesting observation is that the sign of interference is +√ +ˆs-dependent. For +instance, in Fig. 18, the interference stays positive until around +√ +ˆs ∼ 4 TeV whereas, in the +situation corresponding to Fig. 19, the interference becomes negative well before TeV. +Appendix C: Detail of BDT Analysis +For the purpose of the training and testing, we made separate inclusive EW ℓℓjj and QCD +Drell-Yan samples over the entire mℓℓ range whereas the samples (for the same processes) for +the actual BDT analysis were generated in multiple mℓℓ bins to guarantee the smoothness +with enough statistics up to the high invariant mass tail. +The ratio of samples for the +training and testing to those for the actual analysis is 1 to 4. For t¯t+jets samples, we used +30% for the training and testing and the remaining 70% for the analysis. We trained and +tested over the EW ℓℓjj in the SM as a signal and the remaining as the background using +the gradient boosting algorithm (called BDTG) provided in TMVA package. Our validation +of the BDT analysis is illustrated in Fig. 20 which shows the clear separation of the EW ℓℓ +33 + +0.8 +− +0.6 +− +0.4 +− +0.2 +− +0 +0.2 +0.4 +0.6 +0.8 +BDTG response +0 +0.2 +0.4 +0.6 +0.8 +1 +1.2 +1.4 +1.6 +1.8 +dx + / +(1/N) dN +Signal (test sample) +Background (test sample) +Signal (training sample) +Background (training sample) +FIG. 20: Our validation of the BDT analysis with the variable set in Eq. (21), using the gradient +boosting algorithm in TMVA package. ++ jets events from the QCD Drell-Yan and top pair backgrounds. +Training and testing by taking EFT benchmark points as signals and the remaining as +backgrounds may help in boosting the discrimination of the EFT signals from the back- +ground, and VBFhardness may play a role in that situation. We also have not included any +top-related variables, including b-jets, which may be important in the binned analysis of mℓℓ +as top backgrounds remain significant up to a higher energy tail (see right panel of Fig. 11). +The distributions for part of the BDT variables, given in Eq. (21), after imposing pT and +η cuts on jets and leptons are illustrated in Fig. 21 where we also added one selected EFT +benchmark point for λz = 0.04 as an illustration. +34 + +0 +200 400 600 800 1000 1200 1400 1600 1800 2000 + (GeV) +jj +m +4 +− +10 +3 +− +10 +2 +− +10 +1 +− +10 +Normalized unit/50 GeV +Z+jets ++jets +tt +EW Zjj + = 0.04 +z +λ +0 +100 +200 +300 +400 +500 +600 +700 +800 +(jj) (GeV) +T +p +2 +− +10 +1 +− +10 +Normalized unit/20 GeV +Z+jets ++jets +tt +EW Zjj + = 0.04 +z +λ +0 +1 +2 +3 +4 +5 +6 +7 +8 +9 +(jj)| +η| +6 +− +10 +5 +− +10 +4 +− +10 +3 +− +10 +2 +− +10 +1 +− +10 +Normalized unit/0.3 +Z+jets ++jets +tt +EW Zjj + = 0.04 +z +λ +0 +0.5 +1 +1.5 +2 +2.5 +3 +z* +2 +− +10 +1 +− +10 +Normalized unit/0.2 +Z+jets ++jets +tt +EW Zjj + = 0.04 +z +λ +0 +0.1 +0.2 +0.3 +0.4 +0.5 +0.6 +0.7 +0.8 +0.9 +1 +) +hard +T +R(p +5 +− +10 +4 +− +10 +3 +− +10 +2 +− +10 +1 +− +10 +Normalized unit/0.04 +Z+jets ++jets +tt +EW Zjj + = 0.04 +z +λ +FIG. 21: The normalized distribution of BDT variables for the EFT signal for λz = 0.04 and +backgrounds after imposing pT (j1) > 50 GeV, pT (j2) > 30 GeV, pT (ℓ1) > 30 GeV, pT (ℓ2) > 20 +GeV, |η(j)| < 4.5 , |η(ℓ)| < 2.5. Recall that EW Zjj and EFT samples were generated with +mjj > 120 GeV at the generation level. +35 + +[1] ATLAS Collaboration, G. Aad et al., Observation of a new particle in the search for the +Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) +1–29, [arXiv:1207.7214]. +[2] CMS Collaboration, S. Chatrchyan et al., Observation of a New Boson at a Mass of 125 +GeV with the CMS Experiment at the LHC, Phys. Lett. B 716 (2012) 30–61, +[arXiv:1207.7235]. +[3] R. Contino, A. Falkowski, F. Goertz, C. Grojean, and F. Riva, On the Validity of the +Effective Field Theory Approach to SM Precision Tests, JHEP 07 (2016) 144, +[arXiv:1604.06444]. +[4] A. Falkowski, M. Gonzalez-Alonso, A. Greljo, D. Marzocca, and M. Son, Anomalous Triple +Gauge Couplings in the Effective Field Theory Approach at the LHC, JHEP 02 (2017) 115, +[arXiv:1609.06312]. +[5] A. Azatov, J. Elias-Miro, Y. Reyimuaji, and E. Venturini, Novel measurements of anomalous +triple gauge couplings for the LHC, JHEP 10 (2017) 027, [arXiv:1707.08060]. +[6] C. Cheung and C.-H. Shen, Nonrenormalization Theorems without Supersymmetry, Phys. +Rev. Lett. 115 (2015), no. 7 071601, [arXiv:1505.01844]. +[7] A. Azatov, R. Contino, C. S. Machado, and F. Riva, Helicity selection rules and +noninterference for BSM amplitudes, Phys. Rev. D 95 (2017), no. 6 065014, +[arXiv:1607.05236]. +[8] G. Panico, F. Riva, and A. Wulzer, Diboson interference resurrection, Phys. Lett. B 776 +(2018) 473–480, [arXiv:1708.07823]. +[9] R. Franceschini, G. Panico, A. Pomarol, F. Riva, and A. Wulzer, Electroweak Precision Tests +in High-Energy Diboson Processes, JHEP 02 (2018) 111, [arXiv:1712.01310]. +[10] A. Azatov, D. Barducci, and E. Venturini, Precision diboson measurements at hadron +colliders, JHEP 04 (2019) 075, [arXiv:1901.04821]. +[11] A. Helset and M. Trott, On interference and non-interference in the SMEFT, JHEP 04 +(2018) 038, [arXiv:1711.07954]. +[12] CMS Collaboration, A. M. Sirunyan et al., Electroweak production of two jets in association +with a Z boson in proton–proton collisions at √s = 13 TeV, Eur. Phys. J. C 78 (2018), no. 7 +589, [arXiv:1712.09814]. +[13] S. Dawson, P. P. Giardino, and A. Ismail, Standard model EFT and the Drell-Yan process at +high energy, Phys. Rev. D 99 (2019), no. 3 035044, [arXiv:1811.12260]. +[14] M. Farina, G. Panico, D. Pappadopulo, J. T. Ruderman, R. Torre, and A. Wulzer, Energy +helps accuracy: electroweak precision tests at hadron colliders, Phys. Lett. B 772 (2017) +210–215, [arXiv:1609.08157]. +[15] A. Greljo and D. Marzocca, High-pT dilepton tails and flavor physics, Eur. Phys. J. C 77 +(2017), no. 8 548, [arXiv:1704.09015]. +[16] G. Panico, L. Ricci, and A. Wulzer, High-energy EFT probes with fully differential Drell-Yan +measurements, JHEP 07 (2021) 086, [arXiv:2103.10532]. +[17] L. Allwicher, D. A. Faroughy, F. Jaffredo, O. Sumensari, and F. Wilsch, Drell-Yan Tails +Beyond the Standard Model, arXiv:2207.10714. +[18] L. Allwicher, D. A. Faroughy, F. Jaffredo, O. Sumensari, and F. Wilsch, HighPT: A Tool for +high-pT Drell-Yan Tails Beyond the Standard Model, arXiv:2207.10756. +36 + +[19] A. Greljo, J. Salko, A. Smolkoviˇc, and P. Stangl, Rare b decays meet high-mass Drell-Yan, +arXiv:2212.10497. +[20] CMS Collaboration, A. M. Sirunyan et al., Search for resonant and nonresonant new +phenomena in high-mass dilepton final states at √s = 13 TeV, JHEP 07 (2021) 208, +[arXiv:2103.02708]. +[21] ATLAS Collaboration, G. Aad et al., Search for heavy Higgs bosons decaying into two tau +leptons with the ATLAS detector using pp collisions at √s = 13 TeV, Phys. Rev. Lett. 125 +(2020), no. 5 051801, [arXiv:2002.12223]. +[22] R. N. Cahn and S. Dawson, Production of Very Massive Higgs Bosons, Phys. Lett. B 136 +(1984) 196. [Erratum: Phys.Lett.B 138, 464 (1984)]. +[23] S. Dawson, The Effective W Approximation, Nucl. Phys. B 249 (1985) 42–60. +[24] G. L. Kane, W. W. Repko, and W. B. Rolnick, The Effective W+-, Z0 Approximation for +High-Energy Collisions, Phys. Lett. B 148 (1984) 367–372. +[25] R. N. Cahn, Production of Heavy Higgs Bosons: Comparisons of Exact and Approximate +Results, Nucl. Phys. B 255 (1985) 341. [Erratum: Nucl.Phys.B 262, 744 (1985)]. +[26] J. Lindfors, Distribution Functions for Heavy Vector Bosons Inside Colliding Particle +Beams, Z. Phys. C 28 (1985) 427. +[27] J. F. Gunion, J. Kalinowski, and A. Tofighi-Niaki, Exact F F → F F WW Calculation for +the Charged Current Sector and Comparison With the Effective W Approximation, Phys. +Rev. Lett. 57 (1986) 2351. +[28] R. Kleiss and W. J. Stirling, Anomalous High-energy Behavior in Boson Fusion, Phys. Lett. +B 182 (1986) 75. +[29] G. Altarelli, B. Mele, and F. Pitolli, Heavy Higgs Production at Future Colliders, Nucl. Phys. +B 287 (1987) 205–224. +[30] P. W. Johnson, F. I. Olness, and W.-K. Tung, The Effective Vector Boson Method for +High-energy Collisions, Phys. Rev. D 36 (1987) 291. +[31] Z. Kunszt and D. E. Soper, On the Validity of the Effective W Approximation, Nucl. Phys. +B 296 (1988) 253–289. +[32] I. Kuss and H. Spiesberger, Luminosities for vector boson - vector boson scattering at +high-energy colliders, Phys. Rev. D 53 (1996) 6078–6093, [hep-ph/9507204]. +[33] E. Accomando, A. Ballestrero, A. Belhouari, and E. Maina, Isolating Vector Boson +Scattering at the LHC: Gauge cancellations and the Equivalent Vector Boson Approximation +vs complete calculations, Phys. Rev. D 74 (2006) 073010, [hep-ph/0608019]. +[34] A. Alboteanu, W. Kilian, and J. Reuter, Resonances and Unitarity in Weak Boson +Scattering at the LHC, JHEP 11 (2008) 010, [arXiv:0806.4145]. +[35] P. Borel, R. Franceschini, R. Rattazzi, and A. Wulzer, Probing the Scattering of Equivalent +Electroweak Bosons, JHEP 06 (2012) 122, [arXiv:1202.1904]. +[36] J. Alwall, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, O. Mattelaer, H. S. Shao, +T. Stelzer, P. Torrielli, and M. Zaro, The automated computation of tree-level and +next-to-leading order differential cross sections, and their matching to parton shower +simulations, JHEP 07 (2014) 079, [arXiv:1405.0301]. +[37] CMS Collaboration, A. M. Sirunyan et al., Measurement of electroweak production of a W +boson in association with two jets in proton–proton collisions at √s = 13 TeV, Eur. Phys. J. +C 80 (2020), no. 1 43, [arXiv:1903.04040]. +[38] CMS Collaboration, Performance of quark/gluon discrimination in 8 TeV pp data, . +[39] A. Alloul, N. D. Christensen, C. Degrande, C. Duhr, and B. Fuks, FeynRules 2.0 - A +37 + +complete toolbox for tree-level phenomenology, Comput. Phys. Commun. 185 (2014) +2250–2300, [arXiv:1310.1921]. +[40] NNPDF Collaboration, R. D. Ball et al., Parton distributions for the LHC Run II, JHEP +04 (2015) 040, [arXiv:1410.8849]. +[41] P. Nason, A New method for combining NLO QCD with shower Monte Carlo algorithms, +JHEP 11 (2004) 040, [hep-ph/0409146]. +[42] Hocker, Andreas and others, TMVA - Toolkit for Multivariate Data Analysis, +CERN-OPEN-2007-007, [physics/0703039]. +[43] CMS Collaboration, Electron and photon performance in CMS with the full 2016 data +sample, CMS DP -2017/004. +[44] M. Cacciari, G. P. Salam, and G. Soyez, The anti-kt jet clustering algorithm, JHEP 04 +(2008) 063, [arXiv:0802.1189]. +38 + diff --git a/MtFRT4oBgHgl3EQf3Di-/content/tmp_files/load_file.txt b/MtFRT4oBgHgl3EQf3Di-/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..cef1217aad21a8839078e08ffcd5e8d2e1f7e3f0 --- /dev/null +++ b/MtFRT4oBgHgl3EQf3Di-/content/tmp_files/load_file.txt @@ -0,0 +1,1628 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf,len=1627 +page_content='Anomalous triple gauge couplings in electroweak dilepton tails at the LHC and interference resurrection Haeyun Hwang a,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Ui Min b,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Junghyeon Park b,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Minho Son b and Jae Hyeok Yoo a a Department of Physics,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Korea University,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Seoul,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Republic of Korea b Department of Physics,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Korea Advanced Institute of Science and Technology,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' 291 Daehak-ro,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Yuseong-gu,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Daejeon 34141,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Republic of Korea Abstract We study the electroweak dilepton production with two forward jets at the LHC,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' aiming to measure the anomalous triple gauge couplings in the Effective Field Theory (EFT) approach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' This process has two distinctive advantages compared to typical diboson processes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' The EFT cutoff can be unambiguously imposed on the dilepton invariant mass.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' The interference between Standard Model (SM) and beyond the SM is resurrected in the inclusive cross section of the full amplitude, including two forward jets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' As a concrete illustration, we perform the detailed analytic and numerical study of the interference using a simpler toy process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' We propose a new kinematic variable, VBFhardness, that controls the amount of energy flowing into the dilepton subprocess.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' We show that an appropriate cut on VBFhardness makes the interference resurrection manifest.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Finally, we use the invariant mass of the dilepton mass system as well as the transverse momentum, as done in the literature, to derive the sensitivity to anomalous triple gauge couplings at the LHC and the high luminosity LHC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='13663v1 [hep-ph] 31 Jan 2023 Contents I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Introduction 3 II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' EW dilepton production with two associated jets 6 III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Toy process for analytic study: Single lepton with an associated jet 7 A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Cross section for on-shell W boson 9 B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Cross section for off-shell W boson 10 C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Numerical calculation of toy process and interference resurrection 12 IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Numerical analysis of EW dilepton with two associated jets 15 A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Interference resurrection 15 B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Validation against the CMS analysis and BDT analysis 17 C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Sensitivity to aTGC at the LHC 20 V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Conclusion 27 Acknowledgments 28 A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Details on simulation 28 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Signal and background generation 28 B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Computation detail of qV → q′νℓ 29 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Choice of four momenta and amplitudes 29 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Phase space integration 32 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Interference between SM and BSM amplitudes for coupling λz 32 C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Detail of BDT Analysis 33 References 36 2 I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' INTRODUCTION Although the LHC has been performing great including the discovery of the Higgs boson [1, 2], it continuously shows no evidence for the new physics, or beyond the Standard Model (BSM), only confirming the Standard Model (SM) to a better precision.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' It indicates that either new particles, if they exist, are very weakly coupled to the SM or they may be hidden in the energy scale beyond the LHC reach, especially, if a new physics has a sizeable coupling to the SM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Given the strong indication for the mass gap between the electroweak and new physics scales, the effective field theory approach makes sense to parametrize the possible new physics effects encoded in the higher-dimensional operators.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Deviating from the SM with the Higgs doublet under the SM gauge symmetry, the effective La- grangian, known as the SM Effective Field Theory (SMEFT), below the cutoff Λ is written as L = LSM + � i c(6) i Λ2 O(6) i + � i c(8) i Λ4 O(8) i + · · · , (1) where the lepton number conservation was assumed and c(d) i is the Wilson coefficient for the dimension-d operator O(d) i .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' The non-vanishing effect from the new physics on the Wilson coefficients of higher-dimensional operators will cause a deviation of couplings among SM particles from the SM prediction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' In this work, we focus on the precision measurements of the cubic interaction of the gauge bosons at the LHC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Taking into account the property of the SMEFT up to dimension-6 operators,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' the deviation of the triple gauge couplings from the SM can be parametrized in terms of three anomalous Triple Gauge Couplings (aTGC) as Ltgc = ie � W + µνW − µ − W − µνW + µ � Aν + iecθ sθ (1 + δg1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='z) � W + µνW − µ − W − µνW + µ � Zν + ie(1 + δκγ)Aµν W + µ W − ν + iecθ sθ (1 + δκz) Zµν W + µ W − ν + i λze m2 W � W + µνW − νρAρµ + cθ sθ W + µνW − νρZρµ � ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' (2) where cθ = � 1 − s2 θ and δκz = δg1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='z − s2 θ c2 θ δκγ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Considering only amplitudes with a single insertion of aTGC, the cross section is in general a quadratic function of aTGC and it can be parametrized as σ = σSM + Ciσi SM×BSM + CiCjσij BSM×BSM , (3) where the index i runs over three aTGCs, Ci ≡ {λz, δg1,z, δκz}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Typically, measurements of aTGC at the LHC have been performed by using diboson processes such as WW, WZ, and Wγ in the lepton-enriched final state channels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Unlike the precision measurement in LEP from WW production process with the fixed center of mass 3 energy around the electroweak scale, the sensitivity on aTGC from the LHC relies on the accessibility to the higher energy as long as it does not violate the validity of the EFT [3], or one should not use the data at the energy E above the cutoff Λ, or E/Λ ≲ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' While the leptonic channel is clean and thus provides good sensitivity, the accompanying neutrinos make it difficult to experimentally extract the exact scale of the hard process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' When one can not impose an appropriate cut on the scale of the hard process to ensure E/Λ ≲ 1, one can only hope for setting a conservative bound in this situation [4, 5].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Another issue in the diboson process has been the noninterference between the SM and BSM amplitudes which was found to be dictated by the helicity structure of the amplitudes [6, 7].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Including only dimension-6 operators, in the absence of interference, the leading BSM contribution to the total cross section scales O(Λ−4), and it may invalidate the EFT expansion in terms of Λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' This also makes the translation of the data to the SMEFT sensitive to the dimension- 8 operators as the leading contribution is in the same order of the interference between dimension-8 operators and the SM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' There have been many attempts to resurrect the interference in the diboson process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' While 2 → 2 diboson processes are subject to the noninterference, unstable vector gauge bosons must decay.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Once the 2 → 2 diboson amplitude is extended to 2 → 3, 4 by gluing with the three point amplitude(s) for a gauge boson decay into two fermions, the total helicity of both amplitudes of the dimension-6 and the SM can match and thus interfere.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' The authors in [5, 8] suggested to look into differential angular distributions in the leptonic decay channels to resurrect the interference.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' See [9] for a related discussion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' The authors in [5, 10] pointed out the partial resurrection of the interference due to the QCD next- to-leading order (NLO) effect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' The role of off-shellness of the vector gauge bosons in the diboson process on the interference has been studied in [11].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' In this work, we newly add the dilepton production process with two associated forward jets in the vector boson fusion (VBF) to the list regarding the interference resurrection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' This process at √s = 13 TeV, using the integrated luminosity of 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='9 fb−1, has been analyzed by the CMS collaboration [12].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' While the signal rate of the VBF process is smaller than the diboson production from the QCD process, it can solve the two aforementioned issues: the scale of the hard subprocess can exactly be extracted from the invariant mass of two leptons and the helicity of the full 2 → 4 process apparently allows the interference between the amplitudes with dimension-6 operators and those from the SM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' While the electroweak (EW) ℓℓ + jets process which is our main interest in this work may be considered as the EW Drell-Yan process, we aim to measure aTGCs via the tree-level process whereas QCD Drell-Yan process can access them via one loop effect [13].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' One can see [14–19] (and [20, 21] for the experiment) for the precision study at the high energy tail of the QCD ℓℓ process focusing on the tree-level four-fermion interactions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' 4 A confusion arises due to the usual effective W approximation (EWA) [22–35] which takes the gauge boson radiated off the quark line as an on-shell particle and focuses on the WW initiated subprocess.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' If this is the case, the interference will be suppressed again as the different total helicities of the SM and BSM amplitudes of WW → ℓℓ do not allow the interference in the massless limit [7].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' For better understanding, an analytic study of the process that takes the full effect of the forward quark current would be highly beneficial.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' To this end, we carry out the full analytic calculation for a simpler process uγ → dνe+ that has only one forward quark current and one intermediate gauge boson as a toy process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' As will be discussed below in detail, we find that the interference cross section of uγ → dνe+ with respect to the SM counterpart does resurrect the energy growing behavior, importantly in the inclusive cross section, that would have been lost in the W +γ → νe+ subprocess due to the helicity structure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' The resurrected energy growing interference survives even when the apparent conditions for the EWA, namely, small transverse momenta of the forward quarks and small gauge boson masses compared to the overall energy scale of the hard subprocess, are applied in the full uγ → dνe+ process and thus provides a counter-example to the usual EWA assumption (see [35] for a related discussion).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Our simpler toy process provides the proof of concept example for the resurrected interference in the inclusive cross section, and the intuition from it greatly helps for a better qualitative understanding of our EW ℓℓ production process with two associated jets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' It turns out to be crucial that an enough energy must flow into the ℓℓ hard subprocess to resurrect the energy growing interference in the inclusive cross section of the full 2 → 4 process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Unlike the QCD Drell-Yan process where mℓℓ directly controls the fraction of the energy that goes into the dilepton system, it becomes ambiguous in our EW ℓℓ with two for- ward jets process because some fraction of energy goes to the scattered quarks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' In this work, we propose a new variable, what we call VBFhardness, that allows to control the fraction of energy carried by the ℓℓ subsystem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' We demonstrate that the energy growing interference with respect to the SM is clearly resurrected with an appropriate cut on VBFhardness.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' In Section II we briefly sketch the (non)interference of the dilepton production with two associated jets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' In Section III we provide the analytic result of a simpler 2 → 3 (instead of our 2 → 4) toy process as this simpler example can be analytically calculated to capture the full effect of the forward jet from the viewpoint of the interference resurrection and the validity of the EWA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' In Section IV we perform the numerical simulation of the EW ℓℓ production with two associated jets as our main process of interest.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' In particular, we validate our simulation against the CMS cut-and-count analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' We carry out the multivariate analysis using the Boosted Desicion Tree (BDT).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' We finally derive the sensitivity of aTGC at the LHC and high luminosity LHC (HL-LHC).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' 5 II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' EW DILEPTON PRODUCTION WITH TWO ASSOCIATED JETS ±1 2 ∓1 2 ±1 2 ∓1 2 ±1 2 ∓1 2 −1 +1 +1 +1 −1 −1 ±1 2 ∓1 2 ±1 2 ∓1 2 ±1 2 ∓1 2 −1 ∓1 2 ±1 2 +1 +1 −1 ±1 2 ∓1 2 ∓1 2 ±1 2 ∓1 2 ±1 2 −1 ±1 2 ∓1 2 −1 +1 +1 FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' 1: Interference between BSM and SM diagrams in the massless limit where only two types of SM diagrams are shown.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' The blob denotes the insertion of the dimension-6 operator tr(W 3 µν).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' The helicity assignment is displayed as an example.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' 1 illustrates the subset of diagrams for the 2 → 4 amplitudes, leading to the dilepton with two associated jets, and possible helicity assignments which allow the interference between SM and BSM amplitudes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' There is no similar diagram to the first one in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' 1 with the SM triple gauge couplings of the transverse modes as the helicity can not be correctly assigned.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Its non-vanishing diagram can arise via helicity flips along with the Higgs VEV insertions and it will be suppressed by O(m2 W/E2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' The virtuality of W emitted off the initial quark current induces the energy uncertainty of W whose inverse sets the time uncertainty ∆t ∼ E/V 2 where V is the virtuality of W and E is the scale of the hard process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' As long as ∆t is much longer than the typical interaction time t ∼ 1/E, one can not distinguish the virtual W from on-shell one.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' In this situation, one typically computes the partonic cross section of the hard subprocess, treating W as on-shell gauge boson, and convolutes it with the probability distribution function of the W gauge boson.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' This is known as the effective W approximation (EWA) [35].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' The helicity structure +1 +1 −1 +1 ±1 2 ∓1 2 +1 −1 +1 −1 ±1 2 ∓1 2 +1 −1 ±1 2 ∓1 2 ∓1 2 ±1 2 FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' 2: Noninterference between BSM and SM amlitudes for WW → ℓℓ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' The blob denotes the insertion of the tr(W 3 µν) operator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' The helicity assignment displayed is an example.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' of the forward quark current and the correlation of its phase space with that of the hard subprocess seem to be simply dropped in the EWA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' While diagrams that do not have two 6 ±1 2 ∓1 2 +1 −1 +1 −1 +1 ±1 2 ∓1 2 ±1 2 ∓1 2 −1 +1 +1 +1 −1 ±1 2 ∓1 2 FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' 3: The interference (noninterfernce) in the 2 → 3 process (2 → 2 subprocess).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' The blob denotes the single insertion of the tr(W 3 µν) operator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' The complete set of diagrams are shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' obvious forward quark currents, for instance, third diagram in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' 1 and other radiation type diagrams, are not included in the EWA assumption, they will be harmless upon the forward jet tagging.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Apparently, the SM amplitudes of the WW → ℓℓ process in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' 2 can not interfere with the BSM amplitudes in the massless limit, known as noninterference [7], unlike the aforementioned allowed interference in 2 → 4 amplitudes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' The middle diagram in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' 2 can interfere with the BSM amplitude via helicity flips in the sub-leading order.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' It is consistent with that it can extend to the 2 → 4 amplitude by attaching two quark currents upon helicity flips.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' On contrary, the extended amplitude with two attached quark currents of the third diagram in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' 2 can interfere with the corresponding BSM amplitude without any suppression as is evident in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' 1 Assuming the EWA from the beginning and working on the 2 → 2 process may not be the same as what is obtained by applying the EWA limit of the full amplitude.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' TOY PROCESS FOR ANALYTIC STUDY: SINGLE LEPTON WITH AN AS- SOCIATED JET The purpose of this section is to analytically investigate (and numerically confirm) the helicity structure and related kinematics of simpler 2 → 3 process uγ → dνe+ (see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' 3 and Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' 4) that captures the full effect of the quark current attached to a vector gauge boson.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' While the analytic calculation of the full 2 → 4 process in Section II is beyond the scope of this work, our analytically calculable 2 → 3 toy process 2 provides the proof of 1 In the 2 → 4 diboson process decaying into two pairs of fermions, the narrow width approximation allows to factorize the phase space of decaying on-shell gauge bosons from that of the hard process, and the process is subject to the noninterference.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' In this situation, the interference can appear, for instance, in the differential cross section of the azimuthal angle [5, 8].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' 2 A similar explicit computation may be applicable to the 2 → 3 process of qq′ → γW ∗ → γℓνℓ where the effect of the off-shell W gauge boson on the interference, for instance, whether the interference between 7 concept for the resurrected interference and an intuition on the validity of the EWA in the SMEFT.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' We expect this simpler toy process to capture important missing properties when simply approximating with 2 → 2 VBF process under the EWA assumption.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' We consider uγ → dνe+ since it involves with the exchange of only the W gauge boson.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' A similar discussion is applied to qV → q′ℓℓ although the evaluation is more challenging.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' The helicity assignments of two diagrams in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' 3 indicate that the interference between the SM and BSM amplitudes in the 2 → 3 process can be allowed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' We separately consider the kinematic regions for the on-shell and off-shell intermediate W gauge bosons decaying to ℓνℓ since they have different qualitative behaviors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' For the resonant on-shell W gauge boson, the 2 → 3 process is factorized into the production of the on-shell W gauge boson and its decay.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' It is expected that the inclusive cross section is subject to the noninterference and the interference at best can be resurrected only in the differential cross section of an angular observable (although it is difficult to be reconstructed in the experiment).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' On contrary, for the non-resonant 2 → 3 process, the aforementioned factorization is not possible and the interference in principle can appear in the inclusive cross section.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' u d γ W W p2 k1 k2 ν e+ p1 k3 k (a) u d W γ k1 k2 ν e+ p1 k3 e p2 (b) u p1 p2 k3 k1 k2 ν e+ W d d γ (c) p1 p2 u γ u d W ν e+ k3 k1 k2 (d) FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' 4: The complete set of SM diagrams for the process uγ → dνe+.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' These four diagrams are required to guarantee the Ward identity and to get the correct high energy behavior.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' The full set of SM diagrams of the EW uγ → dνe+ process are shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' We classify the first two diagrams a and b as the process of interest that probe the hard 2 → 2 subprocess and the last two diagrams c and d as the radiation type.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' All four diagrams in SM and BSM amplitudes can be resurrected in the inclusive cross section, can be explicitly understood.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' 8 Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' 4 are required to satisfy the Ward identity, namely p2 ·(Ma +Mb +Mc +Md) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' For the resonant intermediate W, the Ward identity can be shown to be satisfied among three diagrams, p2 · (Ma + Mc + Md) = 0, using the narrow width approximation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' We postpone all the details for the analytic calculation of uγ → dνe+ to Appendix B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' In what follows, we quote only the final result.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Cross section for on-shell W boson The diagrams a, c, and d in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' 4 mainly contribute to the resonant 2 → 3 process where we can restrict the phase space to those in the W mass window, or k2 = (2z − 1)ˆs ≈ m2 W where z = [1/2, 1] is the fraction of the total energy √ ˆs flowing into the νee+ system and k is the four-momentum of it.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' The process can be factorized into the 2 → 2 process of uγ → dW and the decay of W to νee+ using the narrow width approximation for the on-shell W boson of the width ΓW.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' We evaluate the partonic differential cross section with respect to φ in the limit of ˆs ≫ m2 W where φ is the angle between the planes made out of the forward quark current and the lepton current (see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' 17).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' The SM contribution is rather subtle to evaluate due to the forward singularity in the massless fermion limit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Its size is roughly given by dˆσSM dφ = � cos θmax cos θmin d cos θ d2ˆσSM dφd cos θ ≈ 1 2 · 2 1 512π2 8πe2g4 3 mW ΓW 1 ˆs 1 δ , (4) where δ = 2p2 T min/ˆs assuming δ ≪ 1 and it comes from the integration regularized by the pT cut of the forward quark, cos θmax/min = ± � 1 − p2 T min ˆs(1 − z)2 ≈ ± � 1 − 2 p2 T min ˆs � for ˆs ≫ m2 W, p2 T min .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' (5) On the other hand, the leading contribution to the partonic differential cross section for the interference in the high energy limit, ˆs ≫ m2 W, is estimated to be dˆσSM×BSM dφ = 1 2 · 2 λz 512π4 πe2g4 3 2 mWΓW � cos(2φ) � 2 − log ˆs m2 W �� + O(ˆs−1/2) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' (6) Upon the integration over the angle φ, the interference term vanishes while it is recovered in the differential cross section with respect to φ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' The individual contributions to the total 9 cross section for the interference are given by dˆσSM×BSM(uLγL → dνe+) dφ = λz 512π4 πe2g4 144 1 mWΓW × � 9π2 cos φ + 16 cos(2φ) � 5 − 3 log ˆs m2 W � � + O(ˆs−1/2) ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' dˆσSM×BSM(uLγR → dνe+) dφ = λz 512π4 πe2g4 144 1 mWΓW × � − 9π2 cos φ + 16 cos(2φ) � 7 − 3 log ˆs m2 W � � + O(ˆs−1/2) ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' (7) where linear terms in cos φ cancels upon the summation and there is no contribution from the right-handed quark in the massless limit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' In the same high energy limit, the quadratic term in the anomalous coupling λz is approximately estimated to be dˆσBSM2 dφ = 1 2 · 2 λ2 z 512π4 πe2g4 6 ˆs m3 WΓW � 1 + O(ˆs−1/2) � , (8) where φ dependent terms are subdominant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' For the quadratic terms in aTGC couplings, the leading contributions from both photon polarizations are the same.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' The energy flowing into the on-shell W is z √ ˆs ∼ √ ˆs/2 as usual in the high ˆs limit because of z ∼ 1/2 + m2 W/(2ˆs) → 1/2 for ˆs ≫ m2 W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' The produced on-shell W gets boosted with the transverse momentum of the order O( √ ˆs).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' The boosted W boson requires a large recoiling against a hard quark jet which likely invalidates the EWA as the jet can not be treated as a forward jet anymore.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' The process is subject to the noninterference, as is seen in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' (6), since it is basically 2 → 2 process uγ → dW where the W decay can be factorized.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' When generalizing our toy process to the 2 → 4 process with the intermediate resonant W by attaching the fermion line to the photon, the situation becomes less obvious.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Similarly the EWA of either jet or both will not be valid if the boosted W boson is considered.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' The interference can be in principle possible as the helicity structure of the 2 → 3 process for the on-shell W production (pp → qq′W) allows the amplitudes to interfere.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Cross section for off-shell W boson Alternatively, one can probe the high energy behavior of the anomalous coupling by directly accessing far off-shell region of W, or k2 = (2z − 1)ˆs ≫ m2 W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' For this case, the full matrix element for the 2 → 3 process needs to be considered.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' One new feature will be the resurrection of the interference in the inclusive cross section, and its size is expected to be proportional to the off-shellness of the W boson.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' While the analytic evaluation of the differential cross section in terms of φ is challenging due to the diagram b in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' 4, we have 10 managed to get the leading contribution only for the left-handed polarization of the photon in the high energy limit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Similarly to the previous Section III A, we will use ˆs to take a high energy limit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' The cross section for the interference in the limit of ˆs ≫ m2 W far away from the W mass window, k2 ≫ m2 W, is estimated to be dˆσSM×BSM(uLγL → dνe+) dφ = λz 512π4 e2g4 m2 W � − 2 9 − π2 6 cos φ + 1 18 � π2 − 26 + 22 ln ˆs m2 W − 6 ln2 ˆs m2 W � cos(2φ) � � 1 + O(ˆs−1) � , (9) where ΓW dependent terms are not shown as they contribute to the region of the W mass window.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Although the off-shell contribution is suppressed by the factor of O(ΓW/mW), or ∼ O(1/m2 W), compared to the cross section from the W mass window, the interference term can survive in the inclusive cross section even after the integration over all angular variables (see the first term in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' (9)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' The cross section for the quadratic term in λz is given by dˆσBSM2(uLγL → dνe+) dφ = λ2 z e2g4 512π4 ˆs m4 W � 1 24 � −9 + 4 ln ˆs m2 W � − π2 48 cos φ − 1 12 cos(2φ) � � 1 + O(ˆs−1/2) � , (10) where φ dependence only appears in cos φ and cos(2φ) terms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' For the quadratic term, the analytic expression in the high energy limit outside the W mass window can be obtained for both polarizations of the photon, and the summed and averaged cross section over helicities is given by dˆσBSM2 dφ = 1 2 · 2 λ2 z e2g4 512π4 ˆs m4 W � 1 216 � −143 + 60 ln ˆs m2 W � + π2 240 cos φ − 1 12 cos(2φ) � � 1 + O(ˆs−1/2) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' (11) While we have shown the evidence of the resurrected interference in the inclusive cross section through the computation of the differential cross section in terms of φ only for the left- handed photon helicity, the experimental reconstruction of the angle φ will be challenging and we may be able to access only to the inclusive cross section summed and averaged over helicities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' For the direct analytic computation of the inclusive cross section, we have managed to get the final result for both helicities of the photon by performing the integration over φ first and the remaining variables later.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' The leading contribution of the summed and averaged cross section over helicities is given by ˆσSM×BSM = 1 2 · 2 λz 512π4 e2g4 m2 W × π 3 � 13 − 6 ln ˆs m2 W � + · · · , (12) 11 where · · · denotes the higher order in ˆs and the logarithmic term is due to the contribution from the right-handed helicity of the photon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' The summed and averaged cross section which is quadratic in λz can be easily obtained by integrating Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' (11) over the angle φ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' For more off-shell W, more energy flows into the eν system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' For this case, the transverse momentum of the forward quark and the W mass are small compared to the scale of the hard subprocess, or the usual condition for the EWA is satisfied.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' We can isolate the behavior of the corresponding phase space by integrating over only the interval z = [1 − ε, 1] with ε ≪ 1, ˆσSM×BSM 512π4 λz m2 W 2πe2g4 = −1 3ε2 + 1 3 m2 W ˆs �� −3 + 2 ln 2εˆs m2 W � ε + � −13 + 6 ln 2εˆs m2 W � ε2 + · · · � + · · · , (13) where · · · denotes the higher order terms in ε and m2 W/ˆs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' In the high energy limit of ˆs → ∞, the first constant term will eventually dominate, and it will appear as the energy growing interference in ˆσSM×BSM/ˆσSM assuming ˆσSM ∼ 1/ˆs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' The variable meν may be considered to be more relevant one to take a high energy limit of the hard subprocess Wγ → νe+ inside uγ → dνe+.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Simply changing variable from √ ˆs to meν in expressions obtained in the high ˆs limit in Eqs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' 9, 10 and 11 could be misleading or not well defined, for instance, a wide range of √ ˆs can be associated with a small value of meν for z ∼ 1/2 (see the right panel of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' 5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' The analytic computation of the interference in terms of meν, performed at this time starting from amplitudes, reveals a similar energy growing behavior to Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' (13).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Numerical calculation of toy process and interference resurrection We numerically investigate the analytic behavior discussed in Sections III A and III B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' To this end, we generate partonic level events for the EW uγ → dνe+ process using Mad- Graph5 aMC@NLO v2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='7 [36] only with the nominal pT cuts of 10 GeV for the final quark, neutrino, and electron.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' As the noninterference is well established for the operator involving λz, the events for the interference are generated only for λz coupling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' While the separation of the off-shell region from the on-shell one in Section III B was done just by dropping out all ΓW dependent terms by hand, we numerically control the separation using two variables ∆mW = meν − mW and z for the purpose of the demonstration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' The fraction of the energy, z∗ = 1/2 + m2 W/(2ˆs), carried by the on-shell νee+ system is roughly order one for ˆs ∼ m2 W, and it rapidly drops to 1/2 with increasing √ ˆs as is seen in the left panel of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Due to the relation meν = � (2z − 1)ˆs, two variables meν and √ ˆs are comparable to each other only for a low √ ˆs where 2z − 1 is roughly order one and they can be very different for a large √ ˆs as 2z − 1 can be almost zero.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' The region bounded by 12 100 200 500 1000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='9 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='0 s\uf111 [GeV] z uγ → dνe z = z*+ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='05 z = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='9 z = z*- 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='05 z = z* |meν - mW| = 10 GeV 100 200 500 1000 1 10 100 1000 s\uf111 [GeV] meν [GeV] uγ → dνe z = z*+ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='05 z = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='9 z = z*- 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='05 z = z* FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' 5: Left: The fraction of the energy that flows into the eν system, z = Eeν/ √ ˆs, as a function of √ ˆs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' The band bounded by red lines correspond to the W mass window of 10 GeV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Black line denotes the z value for the on-shell W of the mass mW .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Right: the correlation between meν and √ ˆs depending on the cut on z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' red lines in the left panel of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' 5 corresponds to the z value for the W mass window of 10 GeV, or |mℓν(= � (2z − 1)ˆs) − mW| < 10 GeV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' To access the off-shell region, we impose the cut on z such as |z − z∗| = |(m2 eν − m2 W)/(2ˆs)| > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='05 and z > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='9 and they are shown by gray lines in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' The selected region by z > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='9 isolates the phase space where most of the center of mass energy √ ˆs flows into the νee+ system and meν can be as large as √ ˆs as is seen in the right panel of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' It is also the phase space where the condition for the typical EWA is expected to be satisfied.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' While the cut of z − z∗ > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='05 makes it possible to access a deeper off-shell region in a large √ ˆs region than that specified by the W mass window of 10 GeV (red lines in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' 5), most events are still populated near the lower meν value than √ ˆs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Our numerical simulations of |σSM×BSM|/σSM binned in √ ˆs is illustrated in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' 6 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' As is evident by the red-colored almost flat distribution in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' 6, the noninterference predicted for the on-shell W in Section III A is numerically confirmed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' The black-colored distribution in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' 6 demonstrates the resurrected energy growing interference in the inclusive cross section for the off-shell W and they agree with our expectation in Section III B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' The left panel of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' 7 illustrates the interference cross section with respect to the SM in terms of the meν variable for the same phase space as those in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' 6, and the energy- growing behavior is clearly seen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' In the right panel of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' 7, we take a limit where almost all energy √ ˆs flows into the eν system (see the solid gray line in the left panel of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' 5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' For 3 In this work, we will not explore the sign of the interference and its sensitivity at the collider.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' The sign of the interference depends on the phase space (see Appendix B 3 for the related discussion).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' 13 0 500 1000 1500 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='01 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='50 1 5 10 s\uf111 [GeV] |σSM\uf4a0BSM|/σSM uγ → dνe |z - z*| > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='05 meν > 90 GeV |z - z*| < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='05 |meν - mW| < 10 GeV FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' 6: The differential distribution of |σSM×BSM|/σSM in √ ˆs for the EW uγ → dνee+ at the parton level.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Black lines demonstrate the interference at off-shell region specified as |z − z∗| > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='05 and meν > 90 GeV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Red lines demonstrate the noninterference for the on-shell W defined by |z − z∗| < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='05 and |meν − mW | < 10 GeV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' 0 500 1000 1500 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='01 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='50 1 5 10 meν [GeV] |σSM\uf4a0BSM|/σSM uγ → dνe |z - z*| > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='05 meν > 90 GeV 0 500 1000 1500 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='01 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='50 1 meν [GeV] |σSM\uf4a0BSM|/σSM uγ → dνe z = [1-ε, 1] ε = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='1 meν > 90 GeV FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' 7: The differential distribution of |σSM×BSM|/σSM in meν for the EW uγ → dνee+ at the parton level.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Events are restricted to satisfy |z − z∗| > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='05 and meν > 90 GeV (left) or z > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='9 and meν > 90 GeV (right).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' this situation, the transverse momentum of the forward quark and the W mass are small compared to the scale of the hard subprocess, or the EWA condition is satisfied.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' As is clearly seen in the right panel of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' 7, the energy growing interference term looks survive in the EWA limit of the full 2 → 3 process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' However, this energy growing interference term allowed by the helicity selection rule of the full 2 → 3 process will get lost if one simply assumes the EWA and works on the 2 → 2 hard subprocess.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Recall that the helicity selection rule of the 2 → 2 subprocess does not allow the interference in the massless limit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' While we have exploited the variable z to distinguish the phase spaces of the on-shell and off-shell regions, it can be traded for a combination of experimental variables.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Using the 14 transverse momentum of the forward quark, pT(q) = (1−z) √ ˆs sin θ (with sin θ = 1/ cosh η), and meν = √2z − 1ˆs, one can easily derive the relation, pT(q) cosh η meν = 1 − z √2z − 1 ≤ 1 − zmin √2zmin − 1 ≡ δmin → pT(q) ≤ δmin meν cosh η , (14) where zmin = {z∗ +0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='05, 1−ε} was used in the plots in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' 7 and η is the pseudorapidity of the outgoing quark.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Note that z∗ (thus δmin as well) is still a function of the experimentally inaccessible ˆs although its dependence gets mild in the high ˆs limit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' For the hard cut on z, δmin becomes a constant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' We have numerically checked that the cut pT(q) < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='112 × (meν/ cosh η) is physically equivalent to z > 1 − ε (with ε = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='1) and reproduces the same plot as the right panel of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' For a small constant δmin, the cut in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' (14), or pT/meν ≤ δmin/ cosh η, is consistent with the conditions for the EWA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' NUMERICAL ANALYSIS OF EW DILEPTON WITH TWO ASSOCIATED JETS In this section we numerically investigate the EW ℓℓ + two jets process at the LHC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' We take the CMS analysis in [12] as our baseline for both the validation of our analysis and the derivation of the sensitivity on aTGCs at the LHC 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' The detail of the event generation can be found in Appendix A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Interference resurrection We can use the intuition from the EW uγ → dνe+ process in Section III to isolate the phase space that reveals the interference resurrection in the EW ℓℓ+ two jets process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' In the partonic EW ℓℓ + qq′ process, we can treat the ℓℓ (qq′) system effectively as a single particle with the energy of z √ ˆs ((1−z) √ ˆs) and the invariant mass of mℓℓ (mqq′).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Similarly to our toy process in Section III, the variable z represents the fraction of the total energy flowing into the dilepton system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Three momentum conservation, ⃗pT(ℓℓ) = −⃗pT(qq′), in the center of mass frame of two initial quarks leads to m2 ℓℓ−m2 qq′ = (2z−1)ˆs where z varies over the range z = [ mℓℓ/ √ ˆs, 1 − mqq′/ √ ˆs ].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Similarly to the previous section, we start with the variable z = 1/2+(m2 ℓℓ −m2 qq′)/(2ˆs) to separate the off-shell phase space from the on-shell one where z∗ = 1/2 + (m2 Z − m2 qq′)/(2ˆs) at the Z pole.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' An appropriate cut on z such as |z − z∗| = |(m2 ℓℓ − m2 Z)/(2ˆs)| > ∆z or z > zmin will select the corresponding off-shell region, while ensuring a certain correlation between mℓℓ and √ ˆs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=" Combining m2 ℓℓ − m2 qq′ = (2z − 1)ˆs with the transverse momentum of the effective qq′ system pT(qq′) = � (1 − z)2ˆs − m2 qq′ sin θqq′, the 4 Similar study by the CMS collaboration for the EW ℓνℓ + two jets process has been made in [37] 15 500 1000 1500 1 2 3 4 5 mℓℓ [GeV] |σSM\uf4a0BSM|/σSM Partonic EW ℓℓ+qq', s =13 TeV VBFhardness > 5 500 1000 1500 0." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content="1 1 10 100 1000 mℓℓ [GeV] |σSM\uf4a0BSM, BSM2|/σSM Partonic EW ℓℓ+qq', s =13 TeV VBFhardness > 5 BSM2 SM\uf4a0BSM FIG." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' 8: The distributions of |σSM×BSM|/σSM in mℓℓ for the partonic EW ℓℓ + qq′ (black lines in both panels) for the λz coupling (other couplings are set to zero).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Similarly for |σBSM2|/σSM (red lines).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Events for solid lines are restricted to those with VBFhardness > 5 in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' (15) along with pT (q) > 25 GeV, pT (ℓ) > 10 GeV, and mqq′ > 120 GeV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' For dashed lines in the right panel, the VBFhardness cut is removed while others kept the same.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' variable z can be translated into the nontrivial combination of various kinematic variables via the relation, VBFhardness ≡ m2 ℓℓ − m2 qq′ p2 T(qq′) cosh2 ηqq′ + m2 qq′ = 2z − 1 (1 − z)2 ≥ 2zmin − 1 (1 − zmin)2 for z ≥ zmin , (15) where the ratio is the monotonically increasing function, while it can have either sign, and sin θqq′ = 1/ cosh ηqq′ was used to express in terms of the pseudorapidity of the qq′ system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' The positive value of the VBFhardness (or equivalently z > 1/2) corresponds to the case where more than half the total energy flows into the dilepton system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Just like the case of our toy process in Section III, zmin still has the ˆs dependence if one intends to impose a cut on |z − z∗| instead of a constant cut on z itself.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' As is evident in the right panel of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' 8 (see black dashed lines), the interference does not reveal the energy growing behavior without a cut on the ratio in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' (15).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' As an illustration, the resurrected interference in the inclusive cross section for the λz coupling is clearly shown in the left panel of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' 8 for VBFhardness > 5 that corresponds to z ≥ zmin = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' We checked that a similar energy growing interference appears in terms of √ ˆs as well.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' The same interference is displayed again with the quadratic cross section in the right panel of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' The square of the interference term in this illustrative example in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' 8 appears to have a milder energy growing behavior than the quadratic term itself.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' The interference would have been lost if one has not included the full effect of the forward quarks or not imposed a cut on a proper variable like the one in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' (15).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' In Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' 9, we show the resurrected interference pattern continues to survive at the hadron level where the VBFhardness is constructed out of 16 500 1000 1500 1 10 100 1000 104 mℓℓ [GeV] |σX|/σSM EW ℓℓ+jets, s =13 TeV VBFhardness > 5 SM\uf4a0BSM BSM2 500 1000 1500 1 2 5 10 mℓℓ [GeV] |σSM\uf4a0BSM|/σSM EW ℓℓ+jets, s =13 TeV VBFhardness > 5 0 200 400 600 800 1000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='1 1 10 100 1000 104 pT(ℓℓ ) [GeV] σX/σSM EW ℓℓ+jets, s =13 TeV |mℓℓ-mZ|<15 GeV SM\uf4a0BSM BSM2 FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' 9: |σX|/σSM where X = SM×BSM (black) or BSM2 (red) for the EW ℓℓ + two jets for the coupling Ci = λz (other couplings are set to zero).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Plots are made with events at the jet level after imposing the loosened cuts, compared to the CMS analysis [12], pT (j) > 30 GeV, pT (ℓ) > 20 GeV, |η(j)| < 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='5 , |η(ℓ)| < 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='5, and mjj > 120 GeV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' two forward jet candidates and lepton pairs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' The CMS analysis in [12] derives the sensitivity on aTGC using the pT distribution of Z only for the events inside the Z mass window.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' In the bottom panel of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' 9, the interference and quadratic terms of the inclusive cross section are illustrated in pT(ℓℓ) only for the events in the Z mass window |mℓℓ − mZ| < 15 GeV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Validation against the CMS analysis and BDT analysis We adopt the CMS analysis in [12] for the validation of our framework.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Events with two isolated leptons (electrons or muons) and at least two jets are selected.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' A lepton is declared to be isolated if the ratio of the pT-sum of all particles within the isolation cone Riso = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='4 around the lepton to the pT of the lepton is below 15% and 25% for electrons and muons, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' While two isolated leptons need to satisfy pT > 20 GeV and |η(ℓ)| < 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='4, and have the opposite electric charges, the harder lepton must pass the cut pT > 30 GeV as well.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' 17 The particles excluding the isolated leptons are clustered into jets by anti-kt algorithm [44] with the distance parameter of Rjet = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Jets are required to satisfy pT(j) > 15 GeV and |η(j)| ≤ 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Two hardest jets, called the tagging jets, are required to have pT(j) > 50 GeV and pT(j) > 30 GeV for the leading and subleading jets, respectively, and their invariant mass should satisfy mjj > 200 GeV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' The initial cuts in CMS analysis in [12] are defined as pT(ℓ1) > 30 GeV , pT(ℓ2) > 20 GeV , |η(µ)| < 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='4 , |η(e)| < 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='1 , pT(j1) > 50 GeV , pT(j2) > 30 GeV , |η(j)| ≤ 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='7 , |mZ − mℓℓ| < 15 GeV , and mjj > 200 GeV (16) where the subscripts 1 and 2 mean leading and subleading objects, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' The event yields after imposing the initial cuts are given in Table I where we included only two largest backgrounds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' The smaller yield of the ee channel is due to the lower selection efficiency of Initial Sample ee µµ t¯t 5454 (5363±48) 13962 (12938±81) DY Zjj (pythia8) 146147 (152750±510) 373731 (394640±880) EW Zjj (pythia8) 2639 (2833±10) 6328 (6665±16) TABLE I: Validation of our simulation at √s =13 TeV assuming 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='9 fb−1 of the integrated luminosity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' The numbers in parenthesis are CMS values for comparison.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' The k-factor of 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='7 was applied for the t¯t process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' electrons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' We adopted the pT-dependent electron selection efficiency [43] in our analysis, while setting the selection efficiency for muons to unity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' The electron selection efficiency is roughly 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='7 − 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='8 for the pT of interest.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Having our analysis validated with the initial cuts, we move onto the BDT analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' The CMS analysis introduces two additional variables.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Event balance variable, R(phard T ), is defined as R(phard T ) = |⃗pTj1 + ⃗pTj2 + ⃗pTZ| |⃗pTj1| + |⃗pTj2| + |⃗pTZ| (17) The z∗ Zeppenfeld variable is defined as z∗ = y∗ ∆yjj , (18) where y∗ = yZ − 1 2 (yj1 + yj2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Additionally, the quark-gluon discrimination is applied to two tagging jets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Instead of constructing a likelihood function for the q/g discrimination and use it in the BDT analysis afterwards as done in the CMS analysis [38], we directly use the 18 three input variables to the likelihood in our BDT.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' They are multiplicity, jet shapes, and the fragmentation function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' The jet shape variable is defined as σ = � σ2 1 + σ2 2 with σ1 = (λ1/ � i p2 T,i)1/2 , σ2 = (λ2/ � i p2 T,i)1/2 , (19) where the sum runs over the jet constituents.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' λ1 and λ2 are the two eigenvalues of the matrix with the elements, M11 = � i p2 T,i∆η2 i , M22 = � i p2 T,i∆φ2 i , and M12 = M21 = − � i p2 T,i∆ηi∆φi where ∆ηi and ∆φi are the pseudorapidity and azimuthal distances be- tween a constituent and the average direction which is defined as the p2 T,i-weighted direction of jet constituents in η − φ space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' The fragmentation function is captured by the variable, pTD = �� i p2 T,i � i pT,i , (20) where the sum runs over the jet constituents.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' For the multiplicity we count all charged and neutral constituents of a jet whose energy is above 1 GeV, and it is denoted as ntracks(j).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Similarly to the CMS analysis in [12], we use the following set of the BDT variables to train and test our signal and background samples with the initial cuts in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' (16): mjj , |∆ηjj| , pT(jj) , R(phard T ) , z∗(Z) , ntracks(j1,2) , pTD(j1,2) , σ1(j1,2) , (21) where mjj, ηjj, and pT(jj) are the invariant mass, pseudorapidity, and transverse momentum of two leading jets system, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' To simplify our analysis and at the same time to take full advantage of kinematic distribution to efficiently suppress the largest QCD Drell- Yan background, we first train and test over the EW ℓℓ + jets in the SM as a signal and the remaining samples as the background using the gradient boosting algorithm (BDTG) provided by the TMVA package [42].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Since the signal and the dominant background have the largest population in the Z mass window with the small transverse momentum, the BSM effect is expected to be small.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' This rejects the QCD Drell-Yan and top pair backgrounds as much as possible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' We impose an appropriate cut on the BDT variable, that was computed in the previous training, for all the samples of EW ℓℓ + jets in the SM and BSM, and background processes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' While it is nontrivial to exactly reproduce the outcome of the CMS BDT analysis, the outcome of our BDT training, illustrated in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' 20 in Appendix C, shows the clear separation between the signal and background.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' We do not add our newly introduced VBFhardness in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' (15) to the BDT variable set although it has a correlation with mjj, ηjj, and pT(jj).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Since we take the EW ℓℓ + jets in the SM as a signal in the training, we expect its effect on the signal/background discrimination to be mild as is indicated in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' While the VBFhardness variable helps in resurrecting 19 1 − 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='5 − 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='5 1 VBFhardness 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='02 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='04 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='06 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='08 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='12 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='14 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='16 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='18 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='2 Normalized unit/0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='04 Z+jets +jets tt EW Zjj = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='04 z λ 1 − 0 1 2 3 4 5 6 VBFhardness 5 − 10 4 − 10 3 − 10 2 − 10 1 − 10 Normalized unit/0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='4 Z+jets +jets tt EW Zjj = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='04 z λ FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' 10: The normalized distribution of VBFhardness for the EFT signal for λz = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='04, EW dilepton (denoted by EW Zjj), t¯t+jets, and QCD Drell-Yan backgrounds (denoted by Z+jets) after imposing pT (j) > 30 GeV, pT (ℓ) > 20 GeV, |η(j)| < 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='5 , |η(ℓ)| < 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='5, and mjj > 120 GeV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Right panel is logarithmic plot of the left panel in a large VBFhardness range.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' the interference, its effect should be small as well in the situation where the sensitivity of aTGCs is mainly driven by the quadratic terms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' It will be relevant in case where the sensitivity is derived by the interference cross section.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' As is seen in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' 10, although a proper cut may reduce the signal rate, VBFhardness seems to be a good discriminator for the EFT signal as it controls the amount of energy going into the dilepton subsystem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' It will be important at the HL-LHC or future collider and we leave more dedicated analysis for the future study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Sensitivity to aTGC at the LHC To evaluate sentivity to aTGC, we construct 1D templates binned either in pT(ℓℓ) and mℓℓ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Events are distributed over 20 equal-spaced bins of pT(ℓℓ) between 0 and 1200 GeV where the last bin contains events beyond 1200 GeV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' ℓ includes both electrons and muons 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' We also newly construct templates of mℓℓ with 10 equal-spaced bins between 0 and 2000 GeV where the last bin contains events beyond 2000 GeV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' The distributions of backgrounds and two selected EFT benchmark points (with the SM contribution subtracted) are illustrated in 5 On the contrary, the CMS analysis in [12] separately distribute events in 15 bins in pT (ℓℓ) = [0, 900] GeV and 20 bins in [0, 1200] GeV for electrons and muons, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' 20 0 200 400 600 800 1000 1200 (ll) (GeV) T p 10 2 10 3 10 4 10 5 10 Events/60 GeV (13 TeV) 1 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='9 fb Z+jets +jets tt EW Zjj = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='04 z λ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='1 1,z g δ 0 200 400 600 800 100012001400160018002000 (GeV) ll m 1 10 2 10 3 10 4 10 5 10 6 10 Events/200 GeV (13 TeV) 1 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='9 fb Z+jets +jets tt EW Zjj = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='04 z λ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='1 1,z g δ FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' 11: The distributions of pT (ℓℓ) (left) and mℓℓ (right) at 13 TeV, using the integrated luminosity of 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='9−1, for backgrounds and two selected EFT benchmark signals with the SM contribution subtracted.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Events are restricted to those satisfying CMS initial cuts in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' (16).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' We construct a log likelihood in terms of aTGCs, assuming the Poisson distribution, Using the template analysis of pT (ℓℓ) in the Z mass window at 13 TeV, L = 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='9 fb−1 No BDT cut BDT > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='6 aTGC 68% CL 95% CL 95% CL (Linear) 68% CL 95% CL 95% CL (Linear) λz [−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='026, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='025] [−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='036, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='036] [−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='20, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='20] [−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='015, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='016] [−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='025, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='026] [−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='099, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='1] δg1,z [−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='069, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='040] [−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='130, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='068] [−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='096, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='097] [−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='029, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='024] [−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='066, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='043] [−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='051, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='051] δκz [−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='18, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='19] [−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='29, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='32] [−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='41, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='41] [−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='089, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='095] [−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='16, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='18] [−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='18, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='18] TABLE II: One-dimensional limits on aTGCs at 68% and 95% CL.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Linear denotes the limits obtained using only the interference cross section between the SM and BSM amplitudes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Using the template analysis of mℓℓ at 13 TeV, L = 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='9 fb−1 No BDT cut BDT > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='6 aTGC 68% CL 95% CL 95% CL (Linear) 68% CL 95% CL 95% CL (Linear) λz [−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='031, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='029] [−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='045, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='043] [−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='22, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='22] [−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='025, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='023] [−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='039, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='035] [−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='13, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='13] δg1,z [−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='074, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='056] [−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='13, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='094] [−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='13, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='13] [−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='033, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='029] [−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='067, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='052] [−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='062, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='063] δκz [−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='099, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='099] [−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='14, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='15] [−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='56, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='56] [−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='062, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='062] [−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='097, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='098] [−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='26, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='26] TABLE III: Similar caption to Table II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' − 2∆ log L(λz, δg1,z, δκz) , (22) where ∆ indicates that the minimum is subtracted.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' We include only the statistical uncer- tainty since the systematic uncertainty in each bin is not reported in [12] and the overall size of it in Table I looks subdominant to the statistical one.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' 21 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='06 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='04 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='02 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='02 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='04 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='06 δg1,z λz s = 13 TeV , 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='9 fb -1 95% CL 68C% CL 95% CL (BDT >0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='6 ) 68% CL (BDT >0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='6 ) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='15 δg1,z λz s = 13 TeV , 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='9 fb -1 95% CL 68C% CL 95% CL (BDT >0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='6 ) 68% CL (BDT >0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='6 ) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='20 -0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='15 -0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='10 -0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='6 δg1,z δκz s = 13 TeV , 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='9 fb -1 95% CL 68% CL 95% CL (BDT >0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='6 ) 68% CL (BDT >0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='6 ) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='06-0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='04-0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='02 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='02 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='04 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='06 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='6 λz δκz s = 13 TeV , 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='9 fb -1 95% CL 68% CL 95% CL (BDT >0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='6 ) 68% CL (BDT >0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='6 ) FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' 12: Two-dimensional limits on aTGCs at 68% (dashed) and 95% CL (solid) regions obtained using the binned analysis of pT (ℓℓ) in the Z mass window, assuming the integrated luminosity of 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='9 fb−1 at √s = 13 TeV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Compared to the red solid lines, thin gray lines were obtained only with the interference term which is linear in the aTGC coupling for the BDT > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' The 68% and 95% CL intervals of an individual aTGC, where two others are set to zero without the marginalization, are presented in Table II and III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' For the result with the BDT cut, we estimated the sensitivity with the incremental BDT cut starting with a mild value, and did not find visible improvement with a stronger BDT cut than 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' For λz, the 95% CL interval from BDT > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='6 is worse than the expected value of the CMS one, or λCMS z = [ −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='014, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='014 ] [12] 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' For the δg1,z coupling, our analysis gives roughly 6 Comparing two distributions of pT (Z) in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' 8 of [12] (separately displayed for electrons and muons) and Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' 11 (summed over both leptons), our signal to background ratio looks rather smaller than the CMS one in a high pT region where a large statistical power is expected.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' We suspect that this discrepancy could be partly due to the different configuration for simulation of the aTGC signal and lepton selection 22 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='06 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='04 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='02 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='02 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='04 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='06 δg1,z λz s = 13 TeV , 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='9 fb -1 95% CL 68% CL 95% CL (BDT >0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='6 ) 68% CL (BDT >0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='6 ) 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='5 3 2 1 0 1 2 3 δg1,z λz s = 13 TeV , 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='9 fb -1 95% CL 68% CL 95% CL (BDT >0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='6 ) 68% CL (BDT >0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='6 ) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='5 -0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='4 -0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='3 -0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='2 -0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='6 δg1,z δκz s = 13 TeV , 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='9 fb -1 95% CL 68% CL 95% CL (BDT >0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='6 ) 68% CL (BDT >0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='6 ) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='06 -0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='04 -0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='02 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='02 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='04 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='06 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='6 λz δκz s = 13 TeV , 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='9 fb -1 95% CL 68% CL 95% CL (BDT >0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='6 ) 68% CL (BDT >0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='6 ) FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' 13: Two-dimensional limits on aTGCs at 68% (dashed) and 95% CL (solid) regions obtained using the binned analysis of mℓℓ, assuming the integrated luminosity of 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='9 fb−1 at √s = 13 TeV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Compared to the red solid lines, thin gray lines were obtained only with the interference term which is linear in the aTGC coupling for the BDT > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' No cuts on VBFhardness was imposed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' comparable with the CMS one, δgCMS 1,z = [−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='053, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='061 ] [12].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' The two-dimensional exclusion regions from the binned analysis of pT(ℓℓ) in the Z mass window are illustrated in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' 12 where the remaining coupling is set to zero without the marginalization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' The gray lines in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' 12 illustrate the exclusion region at 95% CL using only linear terms in aTGCs in our parametrization of the cross section (see Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' (3)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' It indicates that the sensitivity of λz is dominantly driven by the quadratic term whereas the effect of the quadratic term is less pronounced for two other aTGC couplings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' We newly derive the sensitivity using the binned analysis of mℓℓ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' As discussed in Sec- tion IV A, the invariant mass of the dilepton system has the relation m2 ℓℓ − m2 jj = (2z − 1)ˆs, efficiency and so on.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' As our estimation is conservative, we leave it as-is.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' 23 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='10 δg1,z λz s = 13 TeV , 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='9 fb -1 No BDT cut pT(ℓℓ)=[0, ∞] GeV pT(ℓℓ)=[0, 1140 ] GeV pT(ℓℓ)=[0, 600 ] GeV pT(ℓℓ)=[0, 300 ] GeV 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='10 δg1,z λz s = 13 TeV , 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='9 fb -1 BDT >0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='6 pT(ℓℓ)=[0, ∞] GeV pT(ℓℓ)=[0, 1140 ] GeV pT(ℓℓ)=[0, 600 ] GeV pT(ℓℓ)=[0, 300 ] GeV 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='10 δg1,z λz s = 13 TeV , 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='9 fb -1 No BDT cut mℓℓ=[0, ∞] GeV mℓℓ=[0,1800 ] GeV mℓℓ=[0,1200 ] GeV mℓℓ=[0, 600 ] GeV 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='10 δg1,z λz s = 13 TeV , 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='9 fb -1 BDT >0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='6 mℓℓ=[0, ∞] GeV mℓℓ=[0,1800 ] GeV mℓℓ=[0,1200 ] GeV mℓℓ=[0, 600 ] GeV FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' 14: Breakdown of pT (ℓℓ) (top) and mℓℓ (bottom) categories in the plane (λz, δg1,z), assuming the integrated luminosity of 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='9 fb−1 at √s = 13 TeV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Curves of various styles indicate the 95% CL contours.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' where mjj is the invariant mass of two forward jets, z is the fraction of the total energy of the partonic system carried by the ℓℓ system, and mℓℓ alone does not guarantee the hardness of the ℓℓ subsystem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' However, while a nominal cut on the VBFhardness (see Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' (15) for the definition) ensures that at least some amount of the total energy goes into the ℓℓ subsystem and greatly helps recovering the interference, as is clearly seen in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' 8, it may not improve the situation for the case where the sensitivity is dominantly driven by the quadratic terms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' For this reason, we have not exploited VBFhardness.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' The 68% and 95% CL intervals of an individual aTGC are presented in Table III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' From the comparison between Tables II and III, we observe that δκz is better constrained by the binned analysis of mℓℓ whereas λz and δg1,z are better constrained by the analysis using the distribution of pT(ℓℓ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' The two-dimensional exclusion regions from the binned analysis of mℓℓ are illustrated in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' 13 where similarly the remaining coupling was set to zero without the marginalization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' 24 13 TeV, L = 300 fb−1 Using the template analysis of pT (ℓℓ) in the Z mass No BDT cut BDT > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='6 aTGC 68% CL 95% CL 95% CL (Linear) 68% CL 95% CL 95% CL (Linear) λz [−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='017, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='017] [−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='025, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='024] [−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='070, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='070] [−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='0076, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='0081] [−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='012, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='012] [−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='035, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='035] δg1,z [−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='019, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='016] [−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='042, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='029] [−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='033, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='033] [−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='0093, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='0087] [−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='019, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='017] [−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='018, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='018] δκz [−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='069, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='072] [−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='13, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='14] [−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='14, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='14] [−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='032, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='033] [−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='062, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='065] [−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='064, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='064] Using the template analysis of mℓℓ λz [−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='017, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='016] [−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='025, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='023] [−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='075, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='075] [−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='013, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='012] [−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='022, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='018] [−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='045, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='046] δg1,z [−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='025, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='022] [−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='051, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='040] [−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='047, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='047] [−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='011, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='011] [−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='023, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='020] [−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='022, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='022] δκz [−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='054, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='054] [−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='080, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='080] [−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='19, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='19] [−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='031, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='030] [−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='049, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='048] [−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='089, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='089] 13 TeV, L = 3000 fb−1 Using the template analysis of pT (ℓℓ) in the Z mass λz [−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='0077, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='0072] [−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='011, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='011] [−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='022, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='022] [−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='0036, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='0039] [−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='0056, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='0060] [−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='011, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='011] δg1,z [−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='0055, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='0052] [−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='011, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='010] [−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='011, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='011] [−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='0029, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='0028] [−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='0057, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='0055] [−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='0057, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='0057] δκz [−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='023, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='023] [−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='044, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='045] [−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='045, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='045] [−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='010, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='010] [−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='020, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='020] [−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='020, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='020] Using the template analysis of mℓℓ λz [−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='0090, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='0077] [−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='013, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='012] [−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='024, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='024] [−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='0060, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='0053] [−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='0096, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='0085] [−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='014, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='014] δg1,z [−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='0076, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='0077] [−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='015, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='014] [−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='015, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='015] [−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='0035, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='0034] [−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='0070, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='0067] [−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='0069, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='0069] δκz [−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='025, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='025] [−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='040, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='040] [−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='062, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='062] [−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='013, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='013] [−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='022, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='022] [−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='028, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='028] TABLE IV: One-dimensional limits on aTGCs at 68% and 95% CL at 13 TeV using the integrated luminosity of L = 300 fb−1 and L = 3000 fb−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' No cut on VBFhardness was imposed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Unlike the case using pT(ℓℓ) in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' 12, the sensitivity, for instance, of λz is significantly weakened (see upper right panel of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' 13) when the quadratic term is removed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' This is due to the interference suppression as illustrated by the black dashed line in the right panel of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' The situation is contrasted to those obtained using the binned analysis with pT(ℓℓ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' As observed in the bottom panel of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' 9, the discrepancy between the interference and quadratic terms in the pT(ℓℓ) distribution is less pronounced, compared to the current case, and the interference term itself also shows the pT-growing behavior.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' 14 illustrates how the sensitivity in the plane (λz, δg1,z) changes as some of the higher bins are removed in the binned analysis of pT(ℓℓ) and mℓℓ, respectively, for two cases without (left panels of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' 14) and with the BDT cut (right panels of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' 14).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' This practice is meaningful especially for mℓℓ as the EFT cutoff can be directly imposed on the mℓℓ variable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' For the case with the BDT cut, sensitivity to δg1,z mostly comes from the first small number of bins, corresponding to the well below sub-TeV in both pT(ℓℓ) and mℓℓ whereas a wider range of the energy contributes to the sensitivity to λz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' On the contrary, for the case without the BDT cut, δg1,z becomes sensitive to the wide range of the energy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' We derive the sensitivity at the LHC and HL-LHC, assuming an integrated luminosity of 300 fb−1 and 3 ab−1, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' We assume that the systematic errors remain to be 25 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='10 -0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='15 δg1,z λz s = 13 TeV , BDT >0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='6 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='9 fb -1 300 fb -1 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='9 fb -1 (Linear ) 300 fb -1 (Linear ) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='15 -0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='10 -0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='4 δg1,z δκz s = 13 TeV , BDT >0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='6 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='9 fb -1 300 fb -1 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='9 fb -1 (Linear ) 300 fb -1 (Linear ) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='04 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='02 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='02 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='04 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='4 λz δκz s = 13 TeV , BDT >0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='6 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='9 fb -1 300 fb -1 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='9 fb -1 (Linear ) 300 fb -1 (Linear ) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='10 -0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='15 δg1,z λz s = 13 TeV , BDT >0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='6 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='9 fb -1 300 fb -1 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='9 fb -1 (Linear ) 300 fb -1 (Linear ) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='4 δg1,z δκz s = 13 TeV , BDT >0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='6 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='9 fb -1 300 fb -1 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='9 fb -1 (Linear ) 300 fb -1 (Linear ) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='04 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='02 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='02 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='04 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='4 λz δκz s = 13 TeV , BDT >0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='6 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='9 fb -1 300 fb -1 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='9 fb -1 (Linear ) 300 fb -1 (Linear ) FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' 15: The two-dimensional contours at 95% CL, obtained using the binned analysis of pT (ℓℓ) (upper) and mℓℓ (bottom), assuming the integrated luminosities of 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='9 fb−1 and 300 fb−1 at √s = 13 TeV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' The dashed lines were obtained only with the interference term which is linear in the aTGC coupling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' negligible, and we include only the statistical uncertainty.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Our projection for the LHC and the HL-LHC is illustrated in Table IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' The 95% CL contours in the two-dimensional plane are shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' 15 where upper two plots were obtained by the template analysis of pT(ℓℓ) and the bottom ones using mℓℓ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' The comparison between two analyses for δg1,z and δκz, namely, one by total cross section up to the quadratic order in aTGC and the other only with the interference cross section, indicates that the sensitivity is mainly driven by the linear term for the case of pT(ℓℓ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' While, for the case of mℓℓ, the role of the interference hardly becomes important except for δg1,z where the other two couplings were set to zero, the VBFhardness may help making the interference more important.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Although, as is evident in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' 10 a cut on VBFhardness may reduce the signal rate, loosening other cuts may compensate it and it can be an important variable at the HL-LHC regarding the interference.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' 26 Bounds on aTGCs Binned Anal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' of pT(ℓℓ) Binned Anal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' of m(ℓℓ) BDT>0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='6 No BDT No BDT BDT>0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='6 68%, 95% CL 68%, 95% CL 68%, 95% CL 68%, 95% CL x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='xx +x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='xx 68% CL bound x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='xx +x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='xx 95% CL bound Tick size for λz/δg1,z/δκz 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='06/0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='013/0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='04 0 λz LHC 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='9 fb-1 LHC 300 fb-1 HL-LHC +0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='026 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='025 +0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='016 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='015 +0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='036 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='036 +0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='025 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='026 +0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='035 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='039 +0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='023 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='025 +0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='043 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='045 +0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='029 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='031 +0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='012 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='012 +0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='0081 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='0076 +0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='024 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='025 +0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='017 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='017 +0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='018 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='022 +0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='012 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='013 +0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='023 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='025 +0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='016 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='017 +0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='0060 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='0056 +0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='0039 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='0036 +0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='011 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='011 +0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='0072 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='0077 +0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='0085 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='0096 +0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='0053 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='0060 +0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='012 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='013 +0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='0077 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='0090 0 δg1,z +0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='043 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='066 +0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='024 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='029 +0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='068 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='130 +0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='040 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='069 +0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='052 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='067 +0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='029 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='033 +0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='094 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='130 +0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='056 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='074 +0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='017 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='019 +0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='0087 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='0093 +0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='029 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='042 +0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='016 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='019 +0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='020 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='023 +0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='011 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='011 +0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='040 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='051 +0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='022 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='025 +0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='0055 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='0057 +0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='0028 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='0029 +0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='010 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='011 +0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='0052 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='0055 +0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='0067 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='0070 +0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='0034 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='0035 +0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='014 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='015 +0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='0077 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='0076 0 δκz +0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='18 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='16 +0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='095 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='089 +0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='32 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='29 +0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='19 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='18 +0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='098 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='097 +0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='062 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='062 +0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='150 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='140 +0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='099 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='099 +0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='065 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='062 +0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='033 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='032 +0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='14 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='13 +0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='072 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='069 +0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='048 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='049 +0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='03 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='031 +0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='08 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='08 +0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='054 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='054 +0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='02 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='02 +0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='01 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='01 +0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='045 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='044 +0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='023 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='023 +0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='022 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='022 +0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='013 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='013 +0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='04 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='04 +0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='025 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='025 FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' 16: The visual presentation of the sensitivity of aTGCs at 13 TeV, assuming three different luminosities, given in Tables II, III, and IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' CONCLUSION We have explored the EW dilepton production with two associated jets for the precision measurement of aTGC couplings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' This process has a few advantages compared to the typical diboson production that has been a major process for studying aTGCs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' The EFT cutoff can be unambiguously imposed on the dilepton invariant mass.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' As was explicitly shown (both analytically and numerically) in this work, the full amplitude, including the forward quarks that radiate off the vector gauge bosons, exhibits the interference, importantly, in the inclusive cross section.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' It contrasts with the interference resurrected in the differential angular distributions of the diboson production process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' For the purpose of the interference 27 resurrection in our dilepton production in vector boson fusion, we have introduced a new variable, VBFhardness, that can control the amount of energy flowing into the dilepton system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Using this variable, we have demonstrated that the interference clearly appears when an appropriate cut is applied.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' It is also indicated that the usual practice of using the EWA, namely, restricting ourselves to the subprocess initiated by gauge bosons and convoluting its cross section with the probability distribution functions of the gauge bosons, can be ill-defined.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' As a proof-of-concept example for the interference resurrection in the inclusive cross section, we have performed the analytic study using the simpler toy process, or uγ → dνe+, which was numerically confirmed as well.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' We have derived the sensitivity to aTGCs for three scenarios of the LHC and HL-LHC, assuming the integrated luminosity of 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='9 fb−1, 300 fb−1, and 3000 fb−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' In addition to the template analysis using the transverse momentum of the dilepton, we also carried out the template analysis using the invariant mass of the dilepton in this work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' While the bounds on λz and δg1,z from the dilepton invariant mass are rather weaker than those from the transverse momentum of the dilepton system, the situation is opposite for δκz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' The final result of the one-dimensional bounds at 68% and 95% CL is summarized in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Our analysis using the dilepton invariant mass may further be optimized.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Vetoing b-jets could help suppress top-enriched backgrounds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Exploiting VBFhardness may help in enhancing the role of the interference with respect to the quadratic terms in aTGCs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Acknowledgments MS thanks A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Azatov and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Marzocca for valuable discussions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Especially, MS thanks A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Azatov for the explanation of his previous work regarding the interference resurec- tion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' JP, MS, and MU were supported by National Research Foundation of Korea under Grant Number NRF-2021R1A2C1095430.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' JY and HH were supported by the National Re- search Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' 2020R1C1C1005916).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Appendix A: Details on simulation 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Signal and background generation The aTGC interaction in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' (2) is implemented in FeynRules [39] from which we generate the UFO output for the MadGraph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Electroweak ℓ+ℓ−jj samples were simulated at leading order (LO) by MadGraph5 aMC@NLO v2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='7 [36] (QED=4, QCD=0) with the default factorization and renormalization scales, interfaced with the Pythia8 v8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='306 for the parton shower and hadronization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' For the parton distribution function, the NNPDF30 28 (lo as0130) [40] is used.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' The linear (or interference) and quadratic terms in aTGC in our parametrization of the cross section in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' (3) were separately simulated by using flags TGC2 = 1 and TGC2 = 2, respectively 7, where TGC denotes the order of aTGC interaction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' The phase space was restricted to those satisfying mℓℓ > 50 GeV, pT(j) > 25 GeV, and mjj > 120 GeV at the generation level 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' All background samples were similarly simulated at leading order (LO) by Mad- Graph5 aMC@NLO v2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='7 [36] with the default factorization and renormalization scales, interfaced with the Pythia8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' The NNPDF30 (lo as0130) was used.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' The QCD Drell-Yan process γ∗/Z(ℓ+ℓ−)+jets samples where jets arise from QCD interaction were matched us- ing kT-jet MLM matching at LO up to three extra jets in 5-flavor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' k-factor of 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='23 was applied [12].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' The t¯t samples were matched using kT-jet MLM matching (QCUT = 45 GeV) at LO up to two extra jets in 5-flavor and the total cross section was rescaled to match the NLO value from Powheg [41] by applying the k-factor of 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Appendix B: Computation detail of qV → q′νℓ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Choice of four momenta and amplitudes The polarization vectors of the photon are obtained by rotating ϵL/R = 1 √ 2(0, 1, ±i, 0) (for the massless momenta moving to −z axis) with angle θ about y-axis (similarly angle φ about z-axis).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' ϵµ L/R(p2) = 1 √ 2 (0, cos θ cos φ ∓ i sin φ, cos θ sin φ ± i cos φ, − sin θ) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' (B1) The spinor solutions in our coordinate system are ¯uL(k1) = ˆs1/4 � 0, 0, − √ 2z − 1 sin ψ 2 , cos ψ 2 � , vL(k2) = ˆs1/4 �√ 2z − 1 cos ψ 2 , sin ψ 2 , 0, 0 �T , uL(p1) = ˆs1/4 � − sin θ 2, eiφ cos θ 2, 0, 0 �T , ¯uL(k3) = ˆs1/4� 2(1 − z) (0, 0, −1, 0) , (B2) 7 On the other hand, the CMS analysis [12] generated aTGC signal samples (differently from ours) effectively over 5 × 5 × 5 grid of cW W W /Λ2 × cW /Λ2 × cB/Λ2 which were equivalent to our aTGCs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' We suspect that this could be partly responsible for the discrepancy between our sensitivity of aTGCs and that in [12].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' 8 To guarantee enough statistics and the smoothness of the differential distribution in the high invariant mass tail, events were generated separately for multiple intervals of mℓℓ and combined.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Similarly for the EW ℓℓjj samples in the SM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' 29 where T denotes the transpose.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' We choose the following four momenta of the particles in d(k3) γ(p2) u(p1) k ντ(k1) e+(k2) ψ φ θ FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' 17: The angular configuration of the illustrative toy process, uγ → dνe+.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' our 2 → 3 process, uγ → dνe+ and they are illustrated in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' pµ 1 = √ ˆs 2 (1, sin θ cos φ, sin θ sin φ, cos θ) , pµ 2 = √ ˆs 2 (1, − sin θ cos φ, − sin θ sin φ, − cos θ) , kµ 1 = √ ˆs 2 � z + (1 − z) cos ψ, � (2z − 1) sin ψ, 0, (1 − z) + z cos ψ � , kµ 2 = √ ˆs 2 � z − (1 − z) cos ψ, − � (2z − 1) sin ψ, 0, (1 − z) − z cos ψ � , kµ 3 = √ ˆs (1 − z, 0, 0, −(1 − z)) , kµ = √ ˆs (z, 0, 0, (1 − z)) , (B3) where the momentum k has the invariant mass of m2 k = (2z − 1)ˆs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Note that the 2 → 3 process can be effectively factorized into 2 → 2 and 1 → 2 via an intermediate momentum k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' The momenta k1 and k2 in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' (B3) are obtained by boosting those in the νe rest frame, kµ 1 = mk 2 (1, sin ψ, 0, cos ψ ) , kµ 2 = mk 2 (1, − sin ψ, 0, − cos ψ) , (B4) along the z-axis with the boosting factor, kz = γz mkβz → γz = k0 mk = z √2z − 1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' (B5) When the intermediate W emitted from the quark line is produced nearly on shell, z is nearly fixed to be z ∼ 1 2 � 1 + m2 W ˆs � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' (B6) 30 The helicity amplitudes for four diagrams in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' 4 are given by iϵ · Ma = ¯uL(k3) � i g √ 2γρ� uL(p1) −iηρν q2 − m2 W × ϵλ(p2) i e �� ηµν(q − k)λ − (2 + δκγ)(pµ 2ηνλ − pν 2ηµλ) + ηνλkµ − ηµλqν� + λz m2 W � (pµ 2ηνλ − pν 2ηµλ)(k · q) + (qληµν − qµηνλ)(k · p2) + (kνηµλ − kληµν)(q · p2) − kνqλpµ 2 + kλqµpν 2 �� × −iηµσ k2 − m2 W + imWΓW ¯uL(k1) � i g √ 2γσ� vL(k2) = � i g √ 2 �2 (ie) (−i)2 q2 − m2 W 1 k2 − m2 W + imWΓW ϵλjν q jµ l V λνµ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' (B7) where q = p2 − k = k3 − p1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' iϵ · Mb = ϵµ(p2)¯uL(k3) � i g √ 2γρ� uL(p1) −iηρσ q2 − m2 W × ¯uL(k1) � i g √ 2γσ�i( /p2 − /k2) (p2 − k2)2 (−ieγµ) vL(k2) = � i g √ 2 �2 (−ie) (−i)i q2 − m2 W 1 (p2 − k2)2 ¯uL(k1)/jq( /p2 − /k2)/ϵvL(k2) , (B8) where q = k3 − p1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' iϵ · Mc = ϵµ(p2)¯uL(k3) � − i 3eγµ � i( /k3 − /p2) (k3 − p2)2 � i g √ 2γρ� uL(p1) × −iηρσ k2 − m2 W + imWΓW ¯uL(k1) � i g √ 2γσ� vL(k2) = � i g √ 2 �2 � − i 3e � (−i)i k2 − m2 W + imWΓW 1 (k3 − p2)2 ¯uL(k3)/ϵ( /k3 − /p2)/jluL(p1) ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' iϵ · Md = ϵµ(p2)¯uL(k3) � i g √ 2γρ�i( /p1 + /p2) (p1 + p2)2 �2i 3 eγµ � uL(p1) × −iηρσ k2 − m2 W + imWΓW ¯uL(k1) � i g √ 2γσ� vL(k2) = � i g √ 2 �2 �2i 3 e � (−i)i k2 − m2 W + imWΓW 1 (p1 + p2)2 ¯uL(k3)/jl( /p1 + /p2)/ϵuL(p1) (B9) where jµ q = ¯uL(k3)γµuL(p1) and jµ l = ¯uL(k1)γµvL(k2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' 31 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Phase space integration The partonic cross section of 2 → 3 process in our coordinate system is obtained by the following phase space integration, ˆσ = 1 512π4 � 1 1/2 dz(1 − z) � 1 −1 d cos θ � 1 −1 d cos ψ � 2π 0 dφ ��M ��2 , (B10) where ��M ��2 is the summed and averaged amplitude-squared over polarizations of the initial partons and ��M �� has a negative mass dimension of one.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Interference between SM and BSM amplitudes for coupling λz 2000 4000 6000 8000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='0001 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='0000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='0001 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='0002 s\uf111 [GeV] σ\uf111 SM\uf4a0BSM Total σ\uf111 SM\uf4a0BSM hard σ\uf111 SM\uf4a0BSM rad 1000 2000 3000 4000 5000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='0005 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='0000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='0005 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='0010 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='0015 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='0020 s\uf111 [GeV] σ\uf111 SM\uf4a0BSM σ\uf111 SM\uf4a0BSM aa σ\uf111 SM\uf4a0BSM ab σ\uf111 SM\uf4a0BSM ac σ\uf111 SM\uf4a0BSM ad FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' 18: The partonic inclusive cross section in an arbitrary rate for the interference between the SM and BSM, ˆσSM×BSM(uLγL → dνe+), integrated over the entire phase space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' In our 2 → 3 toy process, diagrams a and b in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' 4 are those of interest that probe the hard subprocess and diagrams c and d belong to the radiation type where W decaying to e+ν is attached to either incoming or outgoing quark line.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Restricting only to the interference, we split the contribution into two categories.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' ˆσhard SM×BSM ≡ ˆσaa SM×BSM + ˆσab SM×BSM , ˆσrad SM×BSM ≡ ˆσac SM×BSM + ˆσad SM×BSM , (B11) where ˆσij SM×BSM refers to the partonic cross section from the product of two diagrams i and j in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' The relative difference between two categories is purely due to the SM as the λz dependence comes from the common diagram a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' The left panel of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' 18 shows that ˆσhard SM×BSM and ˆσrad SM×BSM are comparable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' While the magnitude of each ˆσaa SM×BSM and ˆσab SM×BSM is bigger than both ˆσac SM×BSM and ˆσad SM×BSM, there is a cancellation between two contributions from the hard subprocess, dictated by the gauge symmetry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' It should be an artifact due 32 2000 4000 6000 8000 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='×10-6 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='×10-7 0 s\uf111 [GeV] σ\uf111 SM\uf4a0BSM Total σ\uf111 SM\uf4a0BSM hard σ\uf111 SM\uf4a0BSM rad 1000 2000 3000 4000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='00004 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='00002 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='00000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='00002 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='00004 s\uf111 [GeV] σ\uf111 SM\uf4a0BSM σ\uf111 SM\uf4a0BSM aa σ\uf111 SM\uf4a0BSM ab σ\uf111 SM\uf4a0BSM ac σ\uf111 SM\uf4a0BSM ad FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' 19: The partonic inclusive cross section in an arbitrary rate for the interference between the SM and BSM, ˆσSM×BSM(uLγL → dνe+), integrated over the restricted phase space z = [1 − ε, 1] where ε = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='1 was chosen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' to the gauge choice in the photon polarization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' One may choose a particular gauge for the photon polarization to suppress the contribution from the radiation type diagrams.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' The observed property is more pronounced when the phase space is restricted to z = [1 − ε, 1] with ε = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='1 where the usual conditions for the EWA are satisfied.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' As is clearly seen in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' 19, an individual contribution from the hard subprocess becomes much bigger than those involving the radiation type diagrams, and the cancellation is more dramatic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' The gauge dependence may not be a problem in the 2 → 4 process where all gauge bosons including the photon are attached to the fermion currents.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Another interesting observation is that the sign of interference is √ ˆs-dependent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' For instance, in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' 18, the interference stays positive until around √ ˆs ∼ 4 TeV whereas, in the situation corresponding to Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' 19, the interference becomes negative well before TeV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Appendix C: Detail of BDT Analysis For the purpose of the training and testing, we made separate inclusive EW ℓℓjj and QCD Drell-Yan samples over the entire mℓℓ range whereas the samples (for the same processes) for the actual BDT analysis were generated in multiple mℓℓ bins to guarantee the smoothness with enough statistics up to the high invariant mass tail.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' The ratio of samples for the training and testing to those for the actual analysis is 1 to 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' For t¯t+jets samples, we used 30% for the training and testing and the remaining 70% for the analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' We trained and tested over the EW ℓℓjj in the SM as a signal and the remaining as the background using the gradient boosting algorithm (called BDTG) provided in TMVA package.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Our validation of the BDT analysis is illustrated in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' 20 which shows the clear separation of the EW ℓℓ 33 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='8 − 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='6 − 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='4 − 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='2 − 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='8 BDTG response 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='8 1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='4 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='6 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='8 dx / (1/N) dN Signal (test sample) Background (test sample) Signal (training sample) Background (training sample) FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' 20: Our validation of the BDT analysis with the variable set in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' (21), using the gradient boosting algorithm in TMVA package.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' + jets events from the QCD Drell-Yan and top pair backgrounds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Training and testing by taking EFT benchmark points as signals and the remaining as backgrounds may help in boosting the discrimination of the EFT signals from the back- ground, and VBFhardness may play a role in that situation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' We also have not included any top-related variables, including b-jets, which may be important in the binned analysis of mℓℓ as top backgrounds remain significant up to a higher energy tail (see right panel of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' 11).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' The distributions for part of the BDT variables, given in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' (21), after imposing pT and η cuts on jets and leptons are illustrated in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' 21 where we also added one selected EFT benchmark point for λz = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='04 as an illustration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' 34 0 200 400 600 800 1000 1200 1400 1600 1800 2000 (GeV) jj m 4 − 10 3 − 10 2 − 10 1 − 10 Normalized unit/50 GeV Z+jets +jets tt EW Zjj = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='04 z λ 0 100 200 300 400 500 600 700 800 (jj) (GeV) T p 2 − 10 1 − 10 Normalized unit/20 GeV Z+jets +jets tt EW Zjj = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='04 z λ 0 1 2 3 4 5 6 7 8 9 (jj)| η| 6 − 10 5 − 10 4 − 10 3 − 10 2 − 10 1 − 10 Normalized unit/0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='3 Z+jets +jets tt EW Zjj = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='04 z λ 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='5 1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='5 2 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='5 3 z* 2 − 10 1 − 10 Normalized unit/0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='2 Z+jets +jets tt EW Zjj = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='04 z λ 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='9 1 ) hard T R(p 5 − 10 4 − 10 3 − 10 2 − 10 1 − 10 Normalized unit/0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='04 Z+jets +jets tt EW Zjj = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='04 z λ FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' 21: The normalized distribution of BDT variables for the EFT signal for λz = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='04 and backgrounds after imposing pT (j1) > 50 GeV, pT (j2) > 30 GeV, pT (ℓ1) > 30 GeV, pT (ℓ2) > 20 GeV, |η(j)| < 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='5 , |η(ℓ)| < 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Recall that EW Zjj and EFT samples were generated with mjj > 120 GeV at the generation level.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' 35 [1] ATLAS Collaboration, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Aad et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=', Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' B 716 (2012) 1–29, [arXiv:1207.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='7214].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' [2] CMS Collaboration, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Chatrchyan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=', Observation of a New Boson at a Mass of 125 GeV with the CMS Experiment at the LHC, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' B 716 (2012) 30–61, [arXiv:1207.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='7235].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' [3] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Contino, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Falkowski, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Goertz, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Grojean, and F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Riva, On the Validity of the Effective Field Theory Approach to SM Precision Tests, JHEP 07 (2016) 144, [arXiv:1604.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='06444].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' [4] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Falkowski, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Gonzalez-Alonso, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Greljo, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Marzocca, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Son, Anomalous Triple Gauge Couplings in the Effective Field Theory Approach at the LHC, JHEP 02 (2017) 115, [arXiv:1609.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='06312].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' [5] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Azatov, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Elias-Miro, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Reyimuaji, and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Venturini, Novel measurements of anomalous triple gauge couplings for the LHC, JHEP 10 (2017) 027, [arXiv:1707.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='08060].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' [6] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Cheung and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='-H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Shen, Nonrenormalization Theorems without Supersymmetry, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' 115 (2015), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' 7 071601, [arXiv:1505.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='01844].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' [7] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Azatov, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Contino, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Machado, and F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Riva, Helicity selection rules and noninterference for BSM amplitudes, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' D 95 (2017), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' 6 065014, [arXiv:1607.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='05236].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' [8] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Panico, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Riva, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Wulzer, Diboson interference resurrection, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' B 776 (2018) 473–480, [arXiv:1708.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='07823].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' [9] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Franceschini, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Panico, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Pomarol, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Riva, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Wulzer, Electroweak Precision Tests in High-Energy Diboson Processes, JHEP 02 (2018) 111, [arXiv:1712.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='01310].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' [10] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Azatov, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Barducci, and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Venturini, Precision diboson measurements at hadron colliders, JHEP 04 (2019) 075, [arXiv:1901.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='04821].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' [11] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Helset and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Trott, On interference and non-interference in the SMEFT, JHEP 04 (2018) 038, [arXiv:1711.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='07954].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' [12] CMS Collaboration, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Sirunyan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=', Electroweak production of two jets in association with a Z boson in proton–proton collisions at √s = 13 TeV, Eur.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' C 78 (2018), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' 7 589, [arXiv:1712.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='09814].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' [13] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Dawson, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Giardino, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Ismail, Standard model EFT and the Drell-Yan process at high energy, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' D 99 (2019), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' 3 035044, [arXiv:1811.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='12260].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' [14] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Farina, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Panico, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Pappadopulo, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Ruderman, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Torre, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Wulzer, Energy helps accuracy: electroweak precision tests at hadron colliders, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' B 772 (2017) 210–215, [arXiv:1609.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='08157].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' [15] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Greljo and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Marzocca, High-pT dilepton tails and flavor physics, Eur.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' C 77 (2017), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' 8 548, [arXiv:1704.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='09015].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' [16] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Panico, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Ricci, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Wulzer, High-energy EFT probes with fully differential Drell-Yan measurements, JHEP 07 (2021) 086, [arXiv:2103.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='10532].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' [17] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Allwicher, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Faroughy, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Jaffredo, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Sumensari, and F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Wilsch, Drell-Yan Tails Beyond the Standard Model, arXiv:2207.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='10714.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' [18] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Allwicher, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Faroughy, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Jaffredo, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Sumensari, and F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Wilsch, HighPT: A Tool for high-pT Drell-Yan Tails Beyond the Standard Model, arXiv:2207.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='10756.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' 36 [19] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Greljo, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Salko, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Smolkoviˇc, and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Stangl, Rare b decays meet high-mass Drell-Yan, arXiv:2212.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='10497.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' [20] CMS Collaboration, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Sirunyan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=', Search for resonant and nonresonant new phenomena in high-mass dilepton final states at √s = 13 TeV, JHEP 07 (2021) 208, [arXiv:2103.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='02708].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' [21] ATLAS Collaboration, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Aad et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=', Search for heavy Higgs bosons decaying into two tau leptons with the ATLAS detector using pp collisions at √s = 13 TeV, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' 125 (2020), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' 5 051801, [arXiv:2002.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='12223].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' [22] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Cahn and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Dawson, Production of Very Massive Higgs Bosons, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' B 136 (1984) 196.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' [Erratum: Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='B 138, 464 (1984)].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' [23] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Dawson, The Effective W Approximation, Nucl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' B 249 (1985) 42–60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' [24] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Kane, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Repko, and W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Rolnick, The Effective W+-, Z0 Approximation for High-Energy Collisions, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' B 148 (1984) 367–372.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' [25] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Cahn, Production of Heavy Higgs Bosons: Comparisons of Exact and Approximate Results, Nucl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' B 255 (1985) 341.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' [Erratum: Nucl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='B 262, 744 (1985)].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' [26] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Lindfors, Distribution Functions for Heavy Vector Bosons Inside Colliding Particle Beams, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' C 28 (1985) 427.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' [27] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Gunion, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Kalinowski, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Tofighi-Niaki, Exact F F → F F WW Calculation for the Charged Current Sector and Comparison With the Effective W Approximation, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' 57 (1986) 2351.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' [28] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Kleiss and W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Stirling, Anomalous High-energy Behavior in Boson Fusion, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' B 182 (1986) 75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' [29] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Altarelli, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Mele, and F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Pitolli, Heavy Higgs Production at Future Colliders, Nucl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' B 287 (1987) 205–224.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' [30] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Johnson, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Olness, and W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='-K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Tung, The Effective Vector Boson Method for High-energy Collisions, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' D 36 (1987) 291.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' [31] Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Kunszt and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Soper, On the Validity of the Effective W Approximation, Nucl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' B 296 (1988) 253–289.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' [32] I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Kuss and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Spiesberger, Luminosities for vector boson - vector boson scattering at high-energy colliders, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' D 53 (1996) 6078–6093, [hep-ph/9507204].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' [33] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Accomando, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Ballestrero, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Belhouari, and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Maina, Isolating Vector Boson Scattering at the LHC: Gauge cancellations and the Equivalent Vector Boson Approximation vs complete calculations, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' D 74 (2006) 073010, [hep-ph/0608019].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' [34] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Alboteanu, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Kilian, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Reuter, Resonances and Unitarity in Weak Boson Scattering at the LHC, JHEP 11 (2008) 010, [arXiv:0806.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='4145].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' [35] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Borel, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Franceschini, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Rattazzi, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Wulzer, Probing the Scattering of Equivalent Electroweak Bosons, JHEP 06 (2012) 122, [arXiv:1202.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='1904].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' [36] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Alwall, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Frederix, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Frixione, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Hirschi, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Maltoni, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Mattelaer, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Shao, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Stelzer, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Torrielli, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Zaro, The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations, JHEP 07 (2014) 079, [arXiv:1405.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='0301].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' [37] CMS Collaboration, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Sirunyan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=', Measurement of electroweak production of a W boson in association with two jets in proton–proton collisions at √s = 13 TeV, Eur.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' C 80 (2020), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' 1 43, [arXiv:1903.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='04040].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' [38] CMS Collaboration, Performance of quark/gluon discrimination in 8 TeV pp data, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' [39] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Alloul, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Christensen, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Degrande, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Duhr, and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Fuks, FeynRules 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='0 - A 37 complete toolbox for tree-level phenomenology, Comput.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' 185 (2014) 2250–2300, [arXiv:1310.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='1921].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' [40] NNPDF Collaboration, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Ball et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=', Parton distributions for the LHC Run II, JHEP 04 (2015) 040, [arXiv:1410.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='8849].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' [41] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Nason, A New method for combining NLO QCD with shower Monte Carlo algorithms, JHEP 11 (2004) 040, [hep-ph/0409146].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' [42] Hocker, Andreas and others, TMVA - Toolkit for Multivariate Data Analysis, CERN-OPEN-2007-007, [physics/0703039].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' [43] CMS Collaboration, Electron and photon performance in CMS with the full 2016 data sample, CMS DP -2017/004.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' [44] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Cacciari, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Salam, and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' Soyez, The anti-kt jet clustering algorithm, JHEP 04 (2008) 063, [arXiv:0802.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content='1189].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} +page_content=' 38' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/MtFRT4oBgHgl3EQf3Di-/content/2301.13663v1.pdf'} diff --git a/NNFAT4oBgHgl3EQfxx6m/vector_store/index.faiss b/NNFAT4oBgHgl3EQfxx6m/vector_store/index.faiss new file mode 100644 index 0000000000000000000000000000000000000000..cd619b81210079ad63ccc7d03b01af7d5523c852 --- /dev/null +++ b/NNFAT4oBgHgl3EQfxx6m/vector_store/index.faiss @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:7a9802ad8cf160621a65c38163dce21d197aa731f4c9b969a889e6961201bc97 +size 13434925 diff --git a/NdE4T4oBgHgl3EQf9Q6K/content/tmp_files/2301.05354v1.pdf.txt b/NdE4T4oBgHgl3EQf9Q6K/content/tmp_files/2301.05354v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..f7f5ba8d45f65ba705b1ff90af56c4a99e1f599e --- /dev/null +++ b/NdE4T4oBgHgl3EQf9Q6K/content/tmp_files/2301.05354v1.pdf.txt @@ -0,0 +1,665 @@ +arXiv:2301.05354v1 [math.PR] 13 Jan 2023 +Maximum Likelihood Estimation for Maximal Distribution +under Sublinear Expectation ∗ +Xinpeng Li† Yue Liu +Jiaquan Lu +Research Center for Mathematics and Interdisciplinary Sciences +Shandong University, 266237, Qingdao, China +Abstract +Maximum likelihood estimation is a common method of estimating the parameters of the prob- +ability distribution from a given sample. This paper aims to introduce the maximum likelihood +estimation in the framework of sublinear expectation. We find the maximum likelihood estimator +for the parameters of the maximal distribution via the solution of the associated minimax prob- +lem, which coincides with the optimal unbiased estimation given by Jin and Peng [8]. A general +estimation method for samples with dependent structure is also provided. This result provides a +theoretical foundation for the estimator of upper and lower variances, which is widely used in the +G-VaR prediction model in finance. +Keywords: Law of large numbers; Maximal distribution; Maximum likelihood estimation; +Sublinear expectation +1 +Introduction +The sublinear expectation theory established by Peng [14] is a powerful tool to deal with prob- +lems involving model uncertainties in many fields, especially to solve dynamic problems with +uncertainty in finance (see, for example, Epstein and Ji [3]), in which the number of underlying +probability measures may be infinite. +One typical distribution in sublinear expectation theory is the maximal distribution. +It is +usually used to characterize the worst case risk in finance, especially the uncertainty of returns +of financial assets (see Li et al. [10] and Pei et al. [12]). The primary advantage of maximally +distributed random variables for modelling purposes in applications is the simplicity of its calcu- +lation. For example, considering one-dimensional case, the distribution of maximally distributed +random variable X under the sublinear expectation ˆE can be determined by two parameters µ +and µ, i.e., +ˆE[ϕ(X)] = max +µ≤µ≤µ ϕ(µ), +∀ϕ ∈ Cb(R). +It describes many real phenomena due to the law of large numbers with uncertainty, which is +initialled by Peng [14] (see Theorem 2.10). +A fundamental problem is how to choose suitable estimators of upper mean µ = ˆE[X] and +lower mean µ = −ˆE[−X] for the maximally distributed random variable X? Recently, Jin and +∗This work was supported by NSF of Shandong Provence (No.ZR2021MA018), NSF of China (No.11601281), National +Key R&D Program of China (No.2018YFA0703900) and the Young Scholars Program of Shandong University. +†Corresponding author. Email: lixinpeng@sdu.edu.cn +1 + +Peng [8] finds that the largest unbiased estimator for µ and the smallest unbiased estimator for µ +based on the independent maximally distributed samples {Xi}n +i=1 can be calculated respectively +by +ˆµ = max{X1, · · · , Xn}, +ˆµ = min{X1, · · · , Xn}. +(1) +Based on these estimators, Peng et al. [16] and Peng and Yang [15] do extensive experiments +on both the NASDAQ Composite Index and S&P 500 Index and demonstrate the excellent per- +formance of the G-VaR predictor, which is a non-trivial generalization of classical normal VaR +model. +This paper provides a new perspective of these estimators based on the principle of maximum +likelihood estimation (MLE) in the classical statistics theory (see, for example, Lehmann and +Casella [9]). We propose a minimax problem in accordance with the essence of classical MLE. We +maximize the “probability” of the samples with the smallest uncertainty, in which the additional +minimum problem aims to reduce the uncertainty in the model. We find that our MLE for µ and µ +coincides with Jin and Peng’s optimal unbiased estimation (1). In addition, our estimators are also +valid for the dependent structure, and can be applied to approximate the samples unnecessarily +maximally distributed. This new result provides the theoretical foundation for the estimator of +upper and lower variances which is widely used in the G-VaR predictor model. +The remainder of this paper is organized as follows: in Section 2, we present some basic +notions and results of sublinear expectation theory and the properties of maximal distribution. +The detailed MLE of parameters for maximal distribution is provided in Section 3. In Section 4, +we study the general estimator for the non-maximally distributed samples. +2 +Preliminaries of Sublinear Expectation Theory +Let Ω be a Polish space and H be a linear space of real functions defined on Ω such that if +X1, · · · , Xn ∈ H for each n ∈ N, then ϕ(X1, · · · , Xn) ∈ H, ∀ϕ ∈ CLip(Rn), where CLip(Rn) is the +space of all Lipschitz functions on Rn. +Definition 2.1 A sublinear expectation ˆE on H is a functional ˆE : H → R satisfying the following +conditions: ∀X, Y ∈ H, we have +(1) Monotonicity: if X ≥ Y , then ˆE[X] ≥ ˆE[Y ]; +(2) Constant preserving: ˆE[c] = c, ∀c ∈ R; +(3) Sub-additivity: ˆE[X + Y ] ≤ ˆE[X] + ˆE[Y ]; +(4) Positive homogeneity: ˆE[λX] = λˆE[X], ∀λ ≥ 0. +The triple (Ω, H, ˆE) is called the sublinear expectation space, which is analogous to the prob- +ability space (Ω, F, P). +One typical example of sublinear expectation is the upper expectation represented by +ˆE[X] = sup +P ∈P +EP [X], +∀X ∈ H, +(2) +where P is some set of probability measures on (Ω, B(Ω)) and EP is the linear expectation in- +troduced by P. The size of P is used to characterize the uncertainty of model. In this case, the +corresponding capacity introduced by P can be defined as +V (A) := sup +P ∈P +P(A), +∀A ∈ B(Ω). +The notions of identical distribution and independence are important in the classical proba- +bility theory and can also be non-trivially generalized to the framework of sublinear expectation +theory in Peng [13, 14]. +2 + +Definition 2.2 Given an n-dimensional random vector X = (X1, · · · , Xn) on a sublinear expec- +tation space (Ω, H, ˆE), where Xi ∈ H, 1 ≤ i ≤ n, we define a functional on CLip(Rn) by +ˆFX[ϕ] := ˆE[ϕ(X)], +∀ ϕ ∈ CLip(Rn). +We call ˆFX[ϕ] the sublinear distribution of X under ˆE. +It is easy to see that (Rn, CLip(Rn), FX) forms a sublinear expectation space. +Remark 2.3 Given an integrable random variable X on the classical probability space (Ω, F, P), +we recall that the distribution function of X is defined by +FX(x) = P(X ≤ x), +∀x ∈ R. +For each ϕ ∈ CLip(R), we can easily calculate +ˆFX[ϕ] = EP [ϕ(X)] = +ˆ +R +ϕ(x)dFX(x). +Conversely, if we know the value of ˆFX[ϕ] for every ϕ ∈ CLip(R), then for each x ∈ R, there exists +a sequence of bounded and Lipschitz functions +ϕn(y) = +1 +1 + n(y − x)+ +such that +ϕn(y) ↓ 1(−∞,x](y), +∀y ∈ R. +Then we obtain ˆFX[ϕn(X)] ↓ FX(x). Thus the distribution function FX is determined by ˆFX +in the linear case. But for the sublinear case, in particular, the sublinear expectation ˆE admits +representation (2), we emphasize that the following capacity +V (X ≤ x) := sup +P ∈P +P(X ≤ x), +∀x ∈ R, +can not always determine the value of ˆE[ϕ(X)]. So we directly define ˆE[ϕ(X)] for each ϕ ∈ CLip(R) +as the distribution of X. +Definition 2.4 Let X and Y be two n-dimensional random vectors defined on sublinear expecta- +tion spaces (Ω, H, ˆE). They are called identically distributed if +ˆE[ϕ(X)] = ˆE[ϕ(Y )], +∀ ϕ ∈ CLip(Rn), +denoted by X +d= Y . +The following notion of independence provides a simple model of joint distribution ˆE[ϕ(X, Y )] +provided the marginal distributions. +Definition 2.5 Let (Ω, H, ˆE) be a sublinear expectation space, an n-dimensional random vec- +tor Y is said to be independent of another m-dimensional random vector X under the sublinear +expectation ˆE, if ∀ ϕ ∈ CLip(Rm+n), +ˆE[ϕ(X, Y )] = ˆE[ˆE[ϕ(x, Y )]x=X]. +(3) +Moreover, the sequence of random variables {Xi}∞ +i=1 is said to be independent, if for each i ≥ 1, +Xi+1 is independent of (X1, · · · , Xi). +3 + +Remark 2.6 In order to explain the equation (3), for simplicity, we only consider two random +variables X and Y , which are defined on the probability space (Ω, F, P) with the joint distribution +function F(x, y) = P(X ≤ x, Y ≤ y). If they are independent, then F(x, y) = FX(x)FY (y) for all +x, y ∈ R, where FX and FY are distribution functions of X and Y respectively, we further have +EP[ϕ(X, Y )] = +ˆ +R2 ϕ(x, y)dF(x, y) += +ˆ +R2 ϕ(x, y)dFX(x)dFY (y) += +ˆ +R +dFX(x) +ˆ +R +ϕ(x, y)dFY (y) += +ˆ +R +[EP [ϕ(x, Y )]dFX(x) += EP [EP[ϕ(x, Y )]|x=X]. +Thus Definition 2.5 is the natural generalization of classical notion of independence. By Fubini’s +theorem, we obtain +EP [ϕ(X, Y )] = EP[EP [ϕ(x, Y )]|x=X] = EP [EP [ϕ(X, y)]|y=Y ]. +But it does not hold for sublinear expectation in general, the notion of independence under sublinear +expectation is usually not symmetric, i.e., Y being independent of X can not automatically imply +that X is independent of Y . An interesting example can be found in Example 1.3.15 of Peng [14]. +More properties of such independence under sublinear expectation and its relations with classical +conditional expectations is referred to Guo et al. [6]. +Remark 2.7 We note that f(x) := ˆE[ϕ(x, Y )] may be not continuous (resp. measurable) even if +ϕ(x, y) is continuous (resp. measurable). Thus the joint distribution ˆE[ϕ(X, Y )] := ˆE[f(X)] is not +well-defined by the marginal distributions, since ˆE is defined on the domain of continuous (resp. +measurable) functions. So we consider the Lipschitz functions in the sublinear expectation theory. +Remark 2.8 By (3), it is obvious that for independent random variables {Xi}n +i=1 and bounded +Lipschitz functions ϕi ≥ 0, 1 ≤ i ≤ n, we have +ˆE[Πn +i=1ϕi(Xi)] = Πn +i=1ˆE[ϕi(Xi)], +(4) +which is equivalent to the classical independence when ˆE is the linear expectation. +We also note that (4) is weaker than (3). Moreover, (4) is an important property to obtain +likelihood function in Section 3. +Now we introduce the notion of maximal distribution, one of the fundamental sublinear dis- +tributions in the sublinear expectation theory. +Definition 2.9 Let (Ω, H, ˆE) be a sublinear expectation space, an n-dimensional random vector +X is said to be maximally distributed if there exists a bounded, closed and convex subset Λ ⊂ Rn +such that +ˆE[ϕ(X)] = max +x∈Λ ϕ(x), +∀ ϕ ∈ CLip(Rn). +For simplicity, we only consider one-dimensional case in this paper. More details about the +maximal distribution, especially, the related maximally distributed random fields, can be found +in Li and Peng [11]. +The sublinear distribution of one-dimensional maximally distributed random variable X is +defined simply as +ˆFX[ϕ] = ˆE[ϕ(X)] = max +µ≤x≤µ ϕ(x), ∀ ϕ ∈ CLip(Rn), +(5) +4 + +where µ := ˆE[X] and µ := −ˆE[−X], denoted maximally distributed random variable X by +X +d= M[µ,µ]. The interval [µ, µ] describes the uncertainty of the sublinear distribution of X. Since +such interval is bounded, (5) still holds for all continuous function ϕ. +The following law of large numbers in Peng [14] plays an important role in the sublinear +expectation theory. +Theorem 2.10 (Law of large numbers) Let {Xi}∞ +i=1 be an independent and identically dis- +tributed (i.i.d.) sequence of random variables defined on (Ω, H, ˆE) and we further assume that X1 +is uniformly integrable under ˆE, i.e., +lim +λ→∞ +ˆE[(|X1| − λ)+] = 0. +(6) +Then for all ϕ ∈ CLip(R), we have +lim +n→∞ +ˆE +� +ϕ +� +1 +n +n +� +i=1 +Xi +�� += max +µ∈[µ,µ] ϕ(µ). +(7) +Remark 2.11 Recently, Fang et al. [4], Song [17] and Hu et al. [7] obtained the convergence +rate of (7) under higher moment conditions. If we further assume that ˆE[X2 +1] < ∞ in Theorem +2.10, then we have +����ˆE +� +d2 +[µ,µ] +��n +i=1 Xi +n +������ ≤ +ˆE[X2 +1] +n +, +(8) +where d[µ,µ](x) = infy∈[µ,µ] |x − y|. +In addition, Chen [1] and Zhang [18] established the corresponding strong law of large numbers. +Proposition 2.12 Let X be a random variable defined on sublinear expectation spaces (Ω, H, ˆE), +we further assume that X is uniformly integrable under ˆE. Then X is maximally distributed if +and only if +aX + b ¯ +X +d=(a + b)X, +∀a, b ≥ 0. +(9) +where ¯ +X is an independent copy of X, i.e., ¯ +X is independent of X and ¯ +X +d= X. +Proof. Let X +d= M[µ,µ] and Λ = [µ, µ], then we have, ∀ϕ ∈ CLip(R), +ˆE[ϕ(aX + b ¯ +X)] = ˆE[ˆE[ϕ(ax + b ¯ +X)]x=X] += max +x∈Λ max +¯x∈Λ ϕ(ax + b¯x) += max +µ∈Λ ϕ[(a + b)µ] += ˆE[ϕ((a + b)X)], +thus (9) holds. +Conversely, we construct an i.i.d. sequences {Xi}∞ +i=1 with X1 +d= X and define +ηn := 1 +2n (X1 + X2 + · · · + X2n), +∀n ∈ N +In particular, taking a = b = 1 in (9), we have +X1 + X2 +d= 2X1, +· · · +X2n−1 + X2n d= 2X2n−1. +5 + +By induction, we obtain, for each n ∈ N, +ηn +d= 1 +2n (2X1 + 2X3 + · · · + X2n−1) +d= +1 +2n−1 (X1 + X3 + · · · + X2n−1) +d= · · · +d= X1 +d= X. +By Theorem 2.10, we have +lim +n→∞ +ˆE[ϕ(ηn)] = max +µ∈Λ ϕ(µ), +which implies that +ˆE[ϕ(X)] = max +µ∈Λ ϕ(µ). +Hence X is maximally distributed. +Corollary 2.13 An uniformly integrable random variable X on (Ω, H, ˆE) is maximally distributed +if and only if +X + ¯ +X +d= 2X, +where ¯ +X is the independent copy of X. +Remark 2.14 A counterexample in Guo and Li [5] shows that the law of large numbers fails +without the uniformly integrable condition (6). It is still open that whether Proposition 2.12 still +holds without such integrable condition. +3 +Maximum Likelihood Estimation for Independent Sam- +ples +The idea of MLE is to find proper parameters to maximize the probability P(X1 = x1, · · · , Xn = +xn) of realized samples {xi}n +i=1 of population X which has prescribed probability measure P. +Analogously, for the maximal distribution, we hope to maximize the following capacity and call +it the likelihood function, +V (x1, · · · , xn) := ˆE[I{X1=x1,··· ,Xn=xn}]. +It is worth pointing out that I{X1=x1,··· ,Xn=xn} /∈ H since indicator function is not continuous. +But it can be well-defined by the fact that such indicator function can be approximated by the +Lipschitz functions (see Theorem 3.3). +Moreover, if ˆE can be represent as +ˆE[·] = sup +P ∈P +EP[·], +then it is natural to define +V (x1, · · · , xn) := sup +P ∈P +P(X1 = x1, · · · , Xn = xn). +In particular, for the maximally distributed population X with parameters µ and µ, we denote +the corresponding likelihood function as +V (x1, · · · , xn; µ, µ). +Obviously, the value of likelihood function is increasing when the interval [µ, µ] is enlarging. +6 + +Let ∆ = µ − µ be the degree of uncertainty of maximal distribution, and we also hope to +deduce the uncertainty when we maximize the likelihood function, thus the MLE of parameters +µ and µ is to solve the following minimax problem: +min +∆ max +µ,µ V (x1, · · · , xn; µ, µ). +(10) +In order to solve such minimax problem, we firstly establish a representation theorem for +maximal distribution by the Dirac measures, where the Dirac measure on a point µ ∈ R is +denoted by δµ satisfying +δµ(A) = +� +1, +µ ∈ A, +0, +µ /∈ A, +∀A ∈ B(R). +Theorem 3.1 Let (Ω, H, ˆE) be a sublinear expectation space and X +d= M[µ, µ], then for each +ϕ ∈ CLip(R), +ˆE[ϕ(X)] = max +µ≤x≤µ ϕ(x) += max +µ≤µ≤µ +ˆ µ +µ +ϕ(y)δµ(dy). +Proof. On one hand, it is clear that +max +µ≤µ≤µ +ˆ µ +µ +ϕ(y)δµ(dy) ≤ max +µ≤µ≤µ max +µ≤y≤µ ϕ(y) +ˆ µ +µ +δµ(dy) += max +µ≤y≤µ ϕ(y). +On the other hand, there exists µ∗ ∈ [µ, µ] such that ϕ(µ∗) = max +µ≤x≤µ ϕ(x). Then we have +maxµ≤µ≤µ +ˆ µ +µ +ϕ(y)δµ(dy) ≥ +ˆ µ +µ +ϕ(y)δµ∗(dy) += ϕ(µ∗) = max +µ≤x≤µ ϕ(x). +Remark 3.2 Let {δµn}∞ +n=1 be a sequence of Dirac measures with µn ∈ [µ, µ]. Then there exists +a point µ∗ ∈ [µ, µ] and subsequence {δµni }∞ +i=1 such that δµni weakly converges to δµ∗ provided +µni → µ∗. Thus the set of Dirac measures P = {δµ, µ ∈ [µ, µ]} is weakly compact. +Secondly, by the independence of samples, we can simply calculate the likelihood function. +Theorem 3.3 Let {Xi}n +i=1 be a sequence of independent random variables on sublinear expecta- +tion space (Ω, H, ˆE). We further assume that ˆE can be represented by +ˆE[X] = max +P ∈P EP[X], +∀X ∈ H, +where P is a weakly compact set of probability measures on (Ω, B(Ω)). +Then the terms ˆE[I{X1=x1,··· ,Xn=xn}] and ˆE[I{Xi=xi}], 1 ≤ i ≤ n are well-defined. +Furthermore, ∀xi ∈ R, 1 ≤ i ≤ n. +ˆE[I{X1=x1,··· ,Xn=xn}] = Πn +i=1ˆE[I{Xi=xi}]. +(11) +7 + +Proof. +The indicator function Ix∗(·), x∗ ∈ R is not continuous, thus I{Xi=xi} /∈ H. +But it +can be approximated by the Lipschitz functions, thus ˆE[I{Xi=xi}] can be well-defined, so does +ˆE[I{X1=x1,··· ,Xn=xn}]. +Indeed, for fixed x∗ ∈ R, consider the function +ϕx∗ +k (x) = +1 +1 + k|x − x∗|. +It is easily seen that ϕx∗ +k (·) is a non-negative bounded continuous function and ϕx∗ +k (·) ↓ Ix∗(·). +For each k ∈ N, we also have +|ϕx∗ +k (x1) − ϕx∗ +k (x2)| = +���� +1 + k|x2 − x∗| − 1 − k|x1 − x∗| +(1 + k|x1 − x∗|)(1 + k|x2 − x∗|) +���� +≤ +k|x2 − x1| +(1 + k|x1 − x∗|)(1 + k|x2 − x∗|) +≤ k|x2 − x1|. +Thus ϕx∗ +k +is a Lipschitz function. +Then by Theorem 31 in Denis et al. [2], we obtain +ˆE[ϕx∗ +k (Xi)] ↓ ˆE[I{Xi=x∗}]. +Similarly, the term ˆE[I{X1=x1,··· ,Xn=xn}] is well-defined for each n ∈ N, which can be approximated +as +ˆE[Πn +i=1ϕxi +k (Xi)] ↓ ˆE[I{X1=x1,··· ,Xn=xn}]. +By the independence of {Xi}n +i=1, we obtain, ∀xi ∈ R, 1 ≤ i ≤ n, +ˆE[I{X1=x1,··· ,Xn=xn}] = lim +k→∞ +ˆE[Πn +i=1ϕxi +k (Xi)] += lim +k→∞ Πn +i=1ˆE[ϕxi +k (Xi)] += Πn +i=1 lim +k→∞ +ˆE[ϕxi +k (Xi)] += Πn +i=1ˆE[I{Xi=xi}]. +By Theorem 3.3 and 3.1, we can see that if X +d= M[µ, µ], then +ˆE[I{X=x∗}] = max +µ≤µ≤µ δµ(x∗). +Now we can solve the minimax problem (10). +Theorem 3.4 Let {Xi}n +i=1 be an i.i.d. sequence with X1 +d= M[µ,µ]. Then the MLE of parameters +µ and µ is given by +ˆµ = min{X1, · · · , Xn}; +ˆµ = max{X1, · · · , Xn}. +(12) +Proof. Let {xi}n +i=1 be the samples of population {Xi}n +i=1. +By Theorem 3.1 and 3.3, we have +V (x1, · · · , xn; µ, µ) = ˆE[I{X1=x1,··· ,Xn=xn}] += Πn +i=1ˆE[I{Xi=xi}] += Πn +i=1 max +µ≤µ≤µ δµ(xi). +8 + +It is clear that +V (x1, · · · , xn; µ, µ) = +� +1, +µ ≤ x ≤ x ≤ µ, +0, +otherwise, +(13) +where x = min{x1, · · · , xn} and x = max{x1, · · · , xn}. +Thus the solution of minimax problem (10) is given by +ˆµ = min{X1, · · · , Xn}, +ˆµ = max{X1, · · · , Xn}. +Remark 3.5 The MLE in (12) is the same as the largest unbiased estimator for µ and smallest +unbiased estimator for µ obtained in Jin and Peng [8]. In which, a statistic Tn = fn(X1, · · · , Xn) +is called an unbiased estimator of parameter µ if ˆE[fn(X1, · · · , Xn)] = µ, where fn is continuous +on Rn. +4 +General Maximum Likelihood Estimator +In this section, we firstly prove that Theorem 3.4 still holds without the assumption of inde- +pendence, which indicates that our results can also be applied to the samples with dependent +structure. +Theorem 4.1 Let {Xi}n +i=1 be identically distributed sequence with X1 +d= M[µ,µ]. Then the MLE +of parameters µ and µ is given by +ˆµ = min{X1, · · · , Xn}; +ˆµ = max{X1, · · · , Xn}. +(14) +Proof. Let {xi}n +i=1 be the sample of population {Xi}n +i=1. Obviously, ∀ 0 ≤ ϕi ∈ CLip(R), 1 ≤ +i ≤ n, we have +ˆE[Πn +i=1ϕi(Xi)] ≤ Πn +i=1 +max +µ≤µi≤µ ϕi(µi). +By the similar argument in the previous proofs, we obtain +ˆE[Πn +i=1I{Xi=xi}] ≤ Πn +i=1ˆE[I{Xi=xi}]. +Then we have +¯V (x1, · · · , xn; µ, µ) : = ˆE[I{X1=x1,··· ,Xn=xn}] += ˆE[Πn +i=1I{Xi=xi}] +≤ Πn +i=1ˆE[I{Xi=xi}] += V (x1, · · · , xn; µ, µ), +where V (x1, · · · , xn; µ, µ) is defined as in (13). +Since the sample {xi}n +i=1 is realized, we have +0 < ¯V (x1, · · · , xn; µ, µ) ≤ 1, +thus +V (x1, · · · , xn; µ, µ) = 1, +which implies that +ˆµ = min{x1, · · · , xn}, +ˆµ = max{x1, · · · , xn}. +9 + +In many practical situations, we often have i.i.d. condition for samples {Xi}n +i=1 of population +X which is not maximally distributed, and we hope to estimate the value of ˆE[ϕ(X)] for some ϕ +based on the i.i.d. samples {Xi}n +i=1. Thanks to the law of large numbers, our results can also be +applied to approximate the non-maximally distributed population. +One typical application is to estimate the upper and lower variance of population Z which has +model uncertainty based on the historical time series {Zt−i}i≥1 (see Li et al. [10], Peng et al. [16] +and Peng and Yang [15]). +We assume that Z has mean-zero, i.e., +ˆE[Z] = ˆE[−Z] = 0. +The upper and lower variance of Z, defined as σ2 = ˆE[Z2] and σ2 = −ˆE[−Z2], can be estimated +as follows: +Taking L ∈ N to be large enough, and we calculate the local sample variance with window L +by +σ2 +j = +�L +i=1(Zt−L+i−j − µj)2 +L − 1 +, 1 ≤ j ≤ K, +where µj = +�L +i=1 Zt−L+i−j +L +is the sample mean under the same window L and the number K ∈ N +is fixed with prior knowledge. The value of K can be used to characterize the uncertainty of +model. The larger K means that we prefer more uncertainty in the model. +We note that the term µj is closed to 0 when L is large enough, since ˆE[Z] = ˆE[−Z] = 0. Thus +we have +σ2 +j ≈ +�L +i=1 Z2 +t−L+i−j +L − 1 +, +1 ≤ j ≤ K. +For each j ∈ {1, · · · , K}, by the law of large numbers (Theorem 2.10), σ2 +j can be regarded as the +maximally distributed random variable on [σ2, σ2] when L is large enough. In fact, the error term +of such approximation can be estimated by (8). +By Theorem 4.1, we obtain the MLE of σ2 and σ2 by +ˆσ +2 = max +1≤j≤K σ2 +j ; +ˆσ2 = +min +1≤j≤K σ2 +j . +Based on such estimations of upper and lower variance, extensive experiments on both NASDAQ +Composite Index and S&P 500 Index demonstrate the excellent performances of G-VaR model, a +new benchmark predictor for value-at-risk based on the so-called G-normal distribution, which is +superior to most existing benchmark VaR predictors (see [16] and [15]). +Remark 4.2 Theorem 3.4 or Jin and Peng’s optimal unbiased estimator can not be applied to +this situation since the sequence {σ2 +j }K +j=1 is not independent. In fact, it is L-dependent in sublinear +case. Our results provide the theoretical foundation for the widely used estimator of upper and +lower variances in finance. +References +[1] Chen, Z. (2016), Strong laws of large numbers for sub-linear expectations. Science in China- +Mathematics, 59(5): 945–954. +[2] Denis, L., Hu, M. and Peng, S. (2011) Function spaces and capacity related to a sublinear +expectation: application to G-Brownian motion paths. Potential analysis, 34(2): 139–161. +[3] Epstein, L. and Ji, S. (2013) Ambiguous volatility and asset pricing in continuous time. +Review of Financial Studies 26(7): 1740C-1786. +10 + +[4] Fang, X., Peng, S., Shao, Q. and Yong, S. (2019) Limit theorems with rate of convergence +under sublinear expectations. Bernoulli, 25(4A): 2564–2596. +[5] Guo, X. and Li, X. (2021) On the laws of large numbers for pseudo-independent random +variables under sublinear expectation. Statistics and Probability Letters, 172: No.109042. +[6] Guo, X., Li, S. and Li, X. (2023) Notes on Peng’s independence in sublinear expectation +theory. Statistics and Probability Letters, 193: No.109719. +[7] Hu, M., Li, X. and Li, X. (2021) Convergence rate of Peng’s law of large numbers under +sublinear expectations. Probability, Uncertainty and Quantitative Risk, 6(3): 261–266. +[8] Jin, H. and Peng, S. (2021) Optimal unbiased estimation for maximal distribution. Proba- +bility, Uncertainty and Quantitative Risk, 6(3): 189–198. +[9] Lehmann, E. L. and Casella, G. (1998) Theory of point estimation. Second edition. Springer +Texts in Statistics. Springer-Verlag, New York. +[10] Li, S., Li, X. and Yang, X. (2022) Upper and lower variances under model uncertainty +and their applications in finance. International Journal of Financial Engineering 9(1): No. +2250007. +[11] Li, X. and Peng, S. (2022) Maximally distributed random fields under sublinear expectation. +In Stochastic Analysis, Filtering, and Stochastic Optimization, 339–356, Springer. +[12] Pei, Z., Wang, X., Xu, Y. and Yue, X. (2021) A worst-case risk measure by G-VaR. Acta +Mathematicae Applicatae Sinica, English Series, 37(2): 421–440. +[13] Peng, S. (2019) Law of large numbers and central limit theorem under nonlinear expectations. +Probability, Uncertainty and Quantitative Risk, 4, No. 4. +[14] Peng, S. (2019) Nonlinear expectations and stochastic calculus under uncertainty: with robust +CLT and G-Brownian motion. Springer. +[15] Peng, S. and Yang, S. (2022) Distributional uncertainty of the financial time series measured +by G-expectation. Theory of Probability and its Applications, 66(4): 729–741. +[16] Peng, S., Yang, S. and Yao, J. (2020) Improving Value-at-Risk prediction under model un- +certainty. Journal of Financial Econometrics, nbaa022(online). +[17] Song, Y. (2021) Stein’s method for the law of large numbers under sublinear expectations. +Probability, Uncertainty and Quantitative Risk, 6(3):199–212. +[18] Zhang, L. (2021) The sufficient and necessary conditions of the strong law of large numbers +under the sub-linear expectations, arXiv:2104.08471. +11 + diff --git a/NdE4T4oBgHgl3EQf9Q6K/content/tmp_files/load_file.txt b/NdE4T4oBgHgl3EQf9Q6K/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..1116897e6878db3cbd96fcdf40e55e48df924914 --- /dev/null +++ b/NdE4T4oBgHgl3EQf9Q6K/content/tmp_files/load_file.txt @@ -0,0 +1,338 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf,len=337 +page_content='arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content='05354v1 [math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content='PR] 13 Jan 2023 Maximum Likelihood Estimation for Maximal Distribution under Sublinear Expectation ∗ Xinpeng Li† Yue Liu Jiaquan Lu Research Center for Mathematics and Interdisciplinary Sciences Shandong University, 266237, Qingdao, China Abstract Maximum likelihood estimation is a common method of estimating the parameters of the prob- ability distribution from a given sample.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' This paper aims to introduce the maximum likelihood estimation in the framework of sublinear expectation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' We find the maximum likelihood estimator for the parameters of the maximal distribution via the solution of the associated minimax prob- lem, which coincides with the optimal unbiased estimation given by Jin and Peng [8].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' A general estimation method for samples with dependent structure is also provided.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' This result provides a theoretical foundation for the estimator of upper and lower variances, which is widely used in the G-VaR prediction model in finance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' Keywords: Law of large numbers;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' Maximal distribution;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' Maximum likelihood estimation;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' Sublinear expectation 1 Introduction The sublinear expectation theory established by Peng [14] is a powerful tool to deal with prob- lems involving model uncertainties in many fields, especially to solve dynamic problems with uncertainty in finance (see, for example, Epstein and Ji [3]), in which the number of underlying probability measures may be infinite.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' One typical distribution in sublinear expectation theory is the maximal distribution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' It is usually used to characterize the worst case risk in finance, especially the uncertainty of returns of financial assets (see Li et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' [10] and Pei et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' [12]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' The primary advantage of maximally distributed random variables for modelling purposes in applications is the simplicity of its calcu- lation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' For example, considering one-dimensional case, the distribution of maximally distributed random variable X under the sublinear expectation ˆE can be determined by two parameters µ and µ, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=', ˆE[ϕ(X)] = max µ≤µ≤µ ϕ(µ), ∀ϕ ∈ Cb(R).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' It describes many real phenomena due to the law of large numbers with uncertainty, which is initialled by Peng [14] (see Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content='10).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' A fundamental problem is how to choose suitable estimators of upper mean µ = ˆE[X] and lower mean µ = −ˆE[−X] for the maximally distributed random variable X?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' Recently, Jin and ∗This work was supported by NSF of Shandong Provence (No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content='ZR2021MA018), NSF of China (No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content='11601281), National Key R&D Program of China (No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content='2018YFA0703900) and the Young Scholars Program of Shandong University.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' †Corresponding author.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' Email: lixinpeng@sdu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content='edu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content='cn 1 Peng [8] finds that the largest unbiased estimator for µ and the smallest unbiased estimator for µ based on the independent maximally distributed samples {Xi}n i=1 can be calculated respectively by ˆµ = max{X1, · · · , Xn}, ˆµ = min{X1, · · · , Xn}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' (1) Based on these estimators, Peng et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' [16] and Peng and Yang [15] do extensive experiments on both the NASDAQ Composite Index and S&P 500 Index and demonstrate the excellent per- formance of the G-VaR predictor, which is a non-trivial generalization of classical normal VaR model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' This paper provides a new perspective of these estimators based on the principle of maximum likelihood estimation (MLE) in the classical statistics theory (see, for example, Lehmann and Casella [9]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' We propose a minimax problem in accordance with the essence of classical MLE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' We maximize the “probability” of the samples with the smallest uncertainty, in which the additional minimum problem aims to reduce the uncertainty in the model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' We find that our MLE for µ and µ coincides with Jin and Peng’s optimal unbiased estimation (1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' In addition, our estimators are also valid for the dependent structure, and can be applied to approximate the samples unnecessarily maximally distributed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' This new result provides the theoretical foundation for the estimator of upper and lower variances which is widely used in the G-VaR predictor model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' The remainder of this paper is organized as follows: in Section 2, we present some basic notions and results of sublinear expectation theory and the properties of maximal distribution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' The detailed MLE of parameters for maximal distribution is provided in Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' In Section 4, we study the general estimator for the non-maximally distributed samples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' 2 Preliminaries of Sublinear Expectation Theory Let Ω be a Polish space and H be a linear space of real functions defined on Ω such that if X1, · · · , Xn ∈ H for each n ∈ N, then ϕ(X1, · · · , Xn) ∈ H, ∀ϕ ∈ CLip(Rn), where CLip(Rn) is the space of all Lipschitz functions on Rn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' Definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content='1 A sublinear expectation ˆE on H is a functional ˆE : H → R satisfying the following conditions: ∀X, Y ∈ H, we have (1) Monotonicity: if X ≥ Y , then ˆE[X] ≥ ˆE[Y ];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' (2) Constant preserving: ˆE[c] = c, ∀c ∈ R;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' (3) Sub-additivity: ˆE[X + Y ] ≤ ˆE[X] + ˆE[Y ];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' (4) Positive homogeneity: ˆE[λX] = λˆE[X], ∀λ ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' The triple (Ω, H, ˆE) is called the sublinear expectation space, which is analogous to the prob- ability space (Ω, F, P).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' One typical example of sublinear expectation is the upper expectation represented by ˆE[X] = sup P ∈P EP [X], ∀X ∈ H, (2) where P is some set of probability measures on (Ω, B(Ω)) and EP is the linear expectation in- troduced by P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' The size of P is used to characterize the uncertainty of model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' In this case, the corresponding capacity introduced by P can be defined as V (A) := sup P ∈P P(A), ∀A ∈ B(Ω).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' The notions of identical distribution and independence are important in the classical proba- bility theory and can also be non-trivially generalized to the framework of sublinear expectation theory in Peng [13, 14].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' 2 Definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content='2 Given an n-dimensional random vector X = (X1, · · · , Xn) on a sublinear expec- tation space (Ω, H, ˆE), where Xi ∈ H, 1 ≤ i ≤ n, we define a functional on CLip(Rn) by ˆFX[ϕ] := ˆE[ϕ(X)], ∀ ϕ ∈ CLip(Rn).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' We call ˆFX[ϕ] the sublinear distribution of X under ˆE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' It is easy to see that (Rn, CLip(Rn), FX) forms a sublinear expectation space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' Remark 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content='3 Given an integrable random variable X on the classical probability space (Ω, F, P), we recall that the distribution function of X is defined by FX(x) = P(X ≤ x), ∀x ∈ R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' For each ϕ ∈ CLip(R), we can easily calculate ˆFX[ϕ] = EP [ϕ(X)] = ˆ R ϕ(x)dFX(x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' Conversely, if we know the value of ˆFX[ϕ] for every ϕ ∈ CLip(R), then for each x ∈ R, there exists a sequence of bounded and Lipschitz functions ϕn(y) = 1 1 + n(y − x)+ such that ϕn(y) ↓ 1(−∞,x](y), ∀y ∈ R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' Then we obtain ˆFX[ϕn(X)] ↓ FX(x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' Thus the distribution function FX is determined by ˆFX in the linear case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' But for the sublinear case, in particular, the sublinear expectation ˆE admits representation (2), we emphasize that the following capacity V (X ≤ x) := sup P ∈P P(X ≤ x), ∀x ∈ R, can not always determine the value of ˆE[ϕ(X)].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' So we directly define ˆE[ϕ(X)] for each ϕ ∈ CLip(R) as the distribution of X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' Definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content='4 Let X and Y be two n-dimensional random vectors defined on sublinear expecta- tion spaces (Ω, H, ˆE).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' They are called identically distributed if ˆE[ϕ(X)] = ˆE[ϕ(Y )], ∀ ϕ ∈ CLip(Rn), denoted by X d= Y .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' The following notion of independence provides a simple model of joint distribution ˆE[ϕ(X, Y )] provided the marginal distributions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' Definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content='5 Let (Ω, H, ˆE) be a sublinear expectation space, an n-dimensional random vec- tor Y is said to be independent of another m-dimensional random vector X under the sublinear expectation ˆE, if ∀ ϕ ∈ CLip(Rm+n), ˆE[ϕ(X, Y )] = ˆE[ˆE[ϕ(x, Y )]x=X].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' (3) Moreover, the sequence of random variables {Xi}∞ i=1 is said to be independent, if for each i ≥ 1, Xi+1 is independent of (X1, · · · , Xi).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' 3 Remark 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content='6 In order to explain the equation (3), for simplicity, we only consider two random variables X and Y , which are defined on the probability space (Ω, F, P) with the joint distribution function F(x, y) = P(X ≤ x, Y ≤ y).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' If they are independent, then F(x, y) = FX(x)FY (y) for all x, y ∈ R, where FX and FY are distribution functions of X and Y respectively, we further have EP[ϕ(X, Y )] = ˆ R2 ϕ(x, y)dF(x, y) = ˆ R2 ϕ(x, y)dFX(x)dFY (y) = ˆ R dFX(x) ˆ R ϕ(x, y)dFY (y) = ˆ R [EP [ϕ(x, Y )]dFX(x) = EP [EP[ϕ(x, Y )]|x=X].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' Thus Definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content='5 is the natural generalization of classical notion of independence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' By Fubini’s theorem, we obtain EP [ϕ(X, Y )] = EP[EP [ϕ(x, Y )]|x=X] = EP [EP [ϕ(X, y)]|y=Y ].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' But it does not hold for sublinear expectation in general, the notion of independence under sublinear expectation is usually not symmetric, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=', Y being independent of X can not automatically imply that X is independent of Y .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' An interesting example can be found in Example 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content='15 of Peng [14].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' More properties of such independence under sublinear expectation and its relations with classical conditional expectations is referred to Guo et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' [6].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' Remark 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content='7 We note that f(x) := ˆE[ϕ(x, Y )] may be not continuous (resp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' measurable) even if ϕ(x, y) is continuous (resp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' measurable).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' Thus the joint distribution ˆE[ϕ(X, Y )] := ˆE[f(X)] is not well-defined by the marginal distributions, since ˆE is defined on the domain of continuous (resp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' measurable) functions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' So we consider the Lipschitz functions in the sublinear expectation theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' Remark 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content='8 By (3), it is obvious that for independent random variables {Xi}n i=1 and bounded Lipschitz functions ϕi ≥ 0, 1 ≤ i ≤ n, we have ˆE[Πn i=1ϕi(Xi)] = Πn i=1ˆE[ϕi(Xi)], (4) which is equivalent to the classical independence when ˆE is the linear expectation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' We also note that (4) is weaker than (3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' Moreover, (4) is an important property to obtain likelihood function in Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' Now we introduce the notion of maximal distribution, one of the fundamental sublinear dis- tributions in the sublinear expectation theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' Definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content='9 Let (Ω, H, ˆE) be a sublinear expectation space, an n-dimensional random vector X is said to be maximally distributed if there exists a bounded, closed and convex subset Λ ⊂ Rn such that ˆE[ϕ(X)] = max x∈Λ ϕ(x), ∀ ϕ ∈ CLip(Rn).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' For simplicity, we only consider one-dimensional case in this paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' More details about the maximal distribution, especially, the related maximally distributed random fields, can be found in Li and Peng [11].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' The sublinear distribution of one-dimensional maximally distributed random variable X is defined simply as ˆFX[ϕ] = ˆE[ϕ(X)] = max µ≤x≤µ ϕ(x), ∀ ϕ ∈ CLip(Rn), (5) 4 where µ := ˆE[X] and µ := −ˆE[−X], denoted maximally distributed random variable X by X d= M[µ,µ].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' The interval [µ, µ] describes the uncertainty of the sublinear distribution of X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' Since such interval is bounded, (5) still holds for all continuous function ϕ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' The following law of large numbers in Peng [14] plays an important role in the sublinear expectation theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content='10 (Law of large numbers) Let {Xi}∞ i=1 be an independent and identically dis- tributed (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content='i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content='d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=') sequence of random variables defined on (Ω, H, ˆE) and we further assume that X1 is uniformly integrable under ˆE, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=', lim λ→∞ ˆE[(|X1| − λ)+] = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' (6) Then for all ϕ ∈ CLip(R), we have lim n→∞ ˆE � ϕ � 1 n n � i=1 Xi �� = max µ∈[µ,µ] ϕ(µ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' (7) Remark 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content='11 Recently, Fang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' [4], Song [17] and Hu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' [7] obtained the convergence rate of (7) under higher moment conditions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' If we further assume that ˆE[X2 1] < ∞ in Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content='10, then we have ����ˆE � d2 [µ,µ] ��n i=1 Xi n ������ ≤ ˆE[X2 1] n , (8) where d[µ,µ](x) = infy∈[µ,µ] |x − y|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' In addition, Chen [1] and Zhang [18] established the corresponding strong law of large numbers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content='12 Let X be a random variable defined on sublinear expectation spaces (Ω, H, ˆE), we further assume that X is uniformly integrable under ˆE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' Then X is maximally distributed if and only if aX + b ¯ X d=(a + b)X, ∀a, b ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' (9) where ¯ X is an independent copy of X, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=', ¯ X is independent of X and ¯ X d= X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' Let X d= M[µ,µ] and Λ = [µ, µ], then we have, ∀ϕ ∈ CLip(R), ˆE[ϕ(aX + b ¯ X)] = ˆE[ˆE[ϕ(ax + b ¯ X)]x=X] = max x∈Λ max ¯x∈Λ ϕ(ax + b¯x) = max µ∈Λ ϕ[(a + b)µ] = ˆE[ϕ((a + b)X)], thus (9) holds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' Conversely, we construct an i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content='i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content='d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' sequences {Xi}∞ i=1 with X1 d= X and define ηn := 1 2n (X1 + X2 + · · · + X2n), ∀n ∈ N In particular, taking a = b = 1 in (9), we have X1 + X2 d= 2X1, · · X2n−1 + X2n d= 2X2n−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' 5 By induction, we obtain, for each n ∈ N, ηn d= 1 2n (2X1 + 2X3 + · · · + X2n−1) d= 1 2n−1 (X1 + X3 + · · · + X2n−1) d= · · · d= X1 d= X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' By Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content='10, we have lim n→∞ ˆE[ϕ(ηn)] = max µ∈Λ ϕ(µ), which implies that ˆE[ϕ(X)] = max µ∈Λ ϕ(µ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' Hence X is maximally distributed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' Corollary 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content='13 An uniformly integrable random variable X on (Ω, H, ˆE) is maximally distributed if and only if X + ¯ X d= 2X, where ¯ X is the independent copy of X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' Remark 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content='14 A counterexample in Guo and Li [5] shows that the law of large numbers fails without the uniformly integrable condition (6).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' It is still open that whether Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content='12 still holds without such integrable condition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' 3 Maximum Likelihood Estimation for Independent Sam- ples The idea of MLE is to find proper parameters to maximize the probability P(X1 = x1, · · · , Xn = xn) of realized samples {xi}n i=1 of population X which has prescribed probability measure P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' Analogously, for the maximal distribution, we hope to maximize the following capacity and call it the likelihood function, V (x1, · · · , xn) := ˆE[I{X1=x1,··· ,Xn=xn}].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' It is worth pointing out that I{X1=x1,··· ,Xn=xn} /∈ H since indicator function is not continuous.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' But it can be well-defined by the fact that such indicator function can be approximated by the Lipschitz functions (see Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content='3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' Moreover, if ˆE can be represent as ˆE[·] = sup P ∈P EP[·], then it is natural to define V (x1, · · · , xn) := sup P ∈P P(X1 = x1, · · · , Xn = xn).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' In particular, for the maximally distributed population X with parameters µ and µ, we denote the corresponding likelihood function as V (x1, · · · , xn;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' µ, µ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' Obviously, the value of likelihood function is increasing when the interval [µ, µ] is enlarging.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' 6 Let ∆ = µ − µ be the degree of uncertainty of maximal distribution, and we also hope to deduce the uncertainty when we maximize the likelihood function, thus the MLE of parameters µ and µ is to solve the following minimax problem: min ∆ max µ,µ V (x1, · · · , xn;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' µ, µ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' (10) In order to solve such minimax problem, we firstly establish a representation theorem for maximal distribution by the Dirac measures, where the Dirac measure on a point µ ∈ R is denoted by δµ satisfying δµ(A) = � 1, µ ∈ A, 0, µ /∈ A, ∀A ∈ B(R).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content='1 Let (Ω, H, ˆE) be a sublinear expectation space and X d= M[µ, µ], then for each ϕ ∈ CLip(R), ˆE[ϕ(X)] = max µ≤x≤µ ϕ(x) = max µ≤µ≤µ ˆ µ µ ϕ(y)δµ(dy).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' On one hand, it is clear that max µ≤µ≤µ ˆ µ µ ϕ(y)δµ(dy) ≤ max µ≤µ≤µ max µ≤y≤µ ϕ(y) ˆ µ µ δµ(dy) = max µ≤y≤µ ϕ(y).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' On the other hand, there exists µ∗ ∈ [µ, µ] such that ϕ(µ∗) = max µ≤x≤µ ϕ(x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' Then we have maxµ≤µ≤µ ˆ µ µ ϕ(y)δµ(dy) ≥ ˆ µ µ ϕ(y)δµ∗(dy) = ϕ(µ∗) = max µ≤x≤µ ϕ(x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' Remark 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content='2 Let {δµn}∞ n=1 be a sequence of Dirac measures with µn ∈ [µ, µ].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' Then there exists a point µ∗ ∈ [µ, µ] and subsequence {δµni }∞ i=1 such that δµni weakly converges to δµ∗ provided µni → µ∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' Thus the set of Dirac measures P = {δµ, µ ∈ [µ, µ]} is weakly compact.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' Secondly, by the independence of samples, we can simply calculate the likelihood function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content='3 Let {Xi}n i=1 be a sequence of independent random variables on sublinear expecta- tion space (Ω, H, ˆE).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' We further assume that ˆE can be represented by ˆE[X] = max P ∈P EP[X], ∀X ∈ H, where P is a weakly compact set of probability measures on (Ω, B(Ω)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' Then the terms ˆE[I{X1=x1,··· ,Xn=xn}] and ˆE[I{Xi=xi}], 1 ≤ i ≤ n are well-defined.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' Furthermore, ∀xi ∈ R, 1 ≤ i ≤ n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' ˆE[I{X1=x1,··· ,Xn=xn}] = Πn i=1ˆE[I{Xi=xi}].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' (11) 7 Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' The indicator function Ix∗(·), x∗ ∈ R is not continuous, thus I{Xi=xi} /∈ H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' But it can be approximated by the Lipschitz functions, thus ˆE[I{Xi=xi}] can be well-defined, so does ˆE[I{X1=x1,··· ,Xn=xn}].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' Indeed, for fixed x∗ ∈ R, consider the function ϕx∗ k (x) = 1 1 + k|x − x∗|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' It is easily seen that ϕx∗ k (·) is a non-negative bounded continuous function and ϕx∗ k (·) ↓ Ix∗(·).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' For each k ∈ N, we also have |ϕx∗ k (x1) − ϕx∗ k (x2)| = ���� 1 + k|x2 − x∗| − 1 − k|x1 − x∗| (1 + k|x1 − x∗|)(1 + k|x2 − x∗|) ���� ≤ k|x2 − x1| (1 + k|x1 − x∗|)(1 + k|x2 − x∗|) ≤ k|x2 − x1|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' Thus ϕx∗ k is a Lipschitz function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' Then by Theorem 31 in Denis et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' [2], we obtain ˆE[ϕx∗ k (Xi)] ↓ ˆE[I{Xi=x∗}].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' Similarly, the term ˆE[I{X1=x1,··· ,Xn=xn}] is well-defined for each n ∈ N, which can be approximated as ˆE[Πn i=1ϕxi k (Xi)] ↓ ˆE[I{X1=x1,··· ,Xn=xn}].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' By the independence of {Xi}n i=1, we obtain, ∀xi ∈ R, 1 ≤ i ≤ n, ˆE[I{X1=x1,··· ,Xn=xn}] = lim k→∞ ˆE[Πn i=1ϕxi k (Xi)] = lim k→∞ Πn i=1ˆE[ϕxi k (Xi)] = Πn i=1 lim k→∞ ˆE[ϕxi k (Xi)] = Πn i=1ˆE[I{Xi=xi}].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' By Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content='3 and 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content='1, we can see that if X d= M[µ, µ], then ˆE[I{X=x∗}] = max µ≤µ≤µ δµ(x∗).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' Now we can solve the minimax problem (10).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content='4 Let {Xi}n i=1 be an i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content='i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content='d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' sequence with X1 d= M[µ,µ].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' Then the MLE of parameters µ and µ is given by ˆµ = min{X1, · · · , Xn};' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' ˆµ = max{X1, · · · , Xn}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' (12) Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' Let {xi}n i=1 be the samples of population {Xi}n i=1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' By Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content='1 and 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content='3, we have V (x1, · · · , xn;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' µ, µ) = ˆE[I{X1=x1,··· ,Xn=xn}] = Πn i=1ˆE[I{Xi=xi}] = Πn i=1 max µ≤µ≤µ δµ(xi).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' 8 It is clear that V (x1, · · · , xn;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' µ, µ) = � 1, µ ≤ x ≤ x ≤ µ, 0, otherwise, (13) where x = min{x1, · · · , xn} and x = max{x1, · · · , xn}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' Thus the solution of minimax problem (10) is given by ˆµ = min{X1, · · · , Xn}, ˆµ = max{X1, · · · , Xn}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' Remark 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content='5 The MLE in (12) is the same as the largest unbiased estimator for µ and smallest unbiased estimator for µ obtained in Jin and Peng [8].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' In which, a statistic Tn = fn(X1, · · · , Xn) is called an unbiased estimator of parameter µ if ˆE[fn(X1, · · · , Xn)] = µ, where fn is continuous on Rn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' 4 General Maximum Likelihood Estimator In this section, we firstly prove that Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content='4 still holds without the assumption of inde- pendence, which indicates that our results can also be applied to the samples with dependent structure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content='1 Let {Xi}n i=1 be identically distributed sequence with X1 d= M[µ,µ].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' Then the MLE of parameters µ and µ is given by ˆµ = min{X1, · · · , Xn};' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' ˆµ = max{X1, · · · , Xn}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' (14) Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' Let {xi}n i=1 be the sample of population {Xi}n i=1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' Obviously, ∀ 0 ≤ ϕi ∈ CLip(R), 1 ≤ i ≤ n, we have ˆE[Πn i=1ϕi(Xi)] ≤ Πn i=1 max µ≤µi≤µ ϕi(µi).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' By the similar argument in the previous proofs, we obtain ˆE[Πn i=1I{Xi=xi}] ≤ Πn i=1ˆE[I{Xi=xi}].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' Then we have ¯V (x1, · · · , xn;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' µ, µ) : = ˆE[I{X1=x1,··· ,Xn=xn}] = ˆE[Πn i=1I{Xi=xi}] ≤ Πn i=1ˆE[I{Xi=xi}] = V (x1, · · · , xn;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' µ, µ), where V (x1, · · · , xn;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' µ, µ) is defined as in (13).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' Since the sample {xi}n i=1 is realized, we have 0 < ¯V (x1, · · · , xn;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' µ, µ) ≤ 1, thus V (x1, · · · , xn;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' µ, µ) = 1, which implies that ˆµ = min{x1, · · · , xn}, ˆµ = max{x1, · · · , xn}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' 9 In many practical situations, we often have i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content='i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content='d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' condition for samples {Xi}n i=1 of population X which is not maximally distributed, and we hope to estimate the value of ˆE[ϕ(X)] for some ϕ based on the i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content='i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content='d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' samples {Xi}n i=1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' Thanks to the law of large numbers, our results can also be applied to approximate the non-maximally distributed population.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' One typical application is to estimate the upper and lower variance of population Z which has model uncertainty based on the historical time series {Zt−i}i≥1 (see Li et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' [10], Peng et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' [16] and Peng and Yang [15]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' We assume that Z has mean-zero, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=', ˆE[Z] = ˆE[−Z] = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' The upper and lower variance of Z, defined as σ2 = ˆE[Z2] and σ2 = −ˆE[−Z2], can be estimated as follows: Taking L ∈ N to be large enough, and we calculate the local sample variance with window L by σ2 j = �L i=1(Zt−L+i−j − µj)2 L − 1 , 1 ≤ j ≤ K, where µj = �L i=1 Zt−L+i−j L is the sample mean under the same window L and the number K ∈ N is fixed with prior knowledge.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' The value of K can be used to characterize the uncertainty of model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' The larger K means that we prefer more uncertainty in the model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' We note that the term µj is closed to 0 when L is large enough, since ˆE[Z] = ˆE[−Z] = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' Thus we have σ2 j ≈ �L i=1 Z2 t−L+i−j L − 1 , 1 ≤ j ≤ K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' For each j ∈ {1, · · · , K}, by the law of large numbers (Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content='10), σ2 j can be regarded as the maximally distributed random variable on [σ2, σ2] when L is large enough.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' In fact, the error term of such approximation can be estimated by (8).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' By Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content='1, we obtain the MLE of σ2 and σ2 by ˆσ 2 = max 1≤j≤K σ2 j ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' ˆσ2 = min 1≤j≤K σ2 j .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' Based on such estimations of upper and lower variance, extensive experiments on both NASDAQ Composite Index and S&P 500 Index demonstrate the excellent performances of G-VaR model, a new benchmark predictor for value-at-risk based on the so-called G-normal distribution, which is superior to most existing benchmark VaR predictors (see [16] and [15]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' Remark 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content='2 Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content='4 or Jin and Peng’s optimal unbiased estimator can not be applied to this situation since the sequence {σ2 j }K j=1 is not independent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' In fact, it is L-dependent in sublinear case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' Our results provide the theoretical foundation for the widely used estimator of upper and lower variances in finance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' References [1] Chen, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' (2016), Strong laws of large numbers for sub-linear expectations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' Science in China- Mathematics, 59(5): 945–954.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' [2] Denis, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=', Hu, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' and Peng, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' (2011) Function spaces and capacity related to a sublinear expectation: application to G-Brownian motion paths.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' Potential analysis, 34(2): 139–161.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' [3] Epstein, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' and Ji, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' (2013) Ambiguous volatility and asset pricing in continuous time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' Review of Financial Studies 26(7): 1740C-1786.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' 10 [4] Fang, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=', Peng, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=', Shao, Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' and Yong, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' (2019) Limit theorems with rate of convergence under sublinear expectations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' Bernoulli, 25(4A): 2564–2596.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' [5] Guo, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' and Li, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' (2021) On the laws of large numbers for pseudo-independent random variables under sublinear expectation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' Statistics and Probability Letters, 172: No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content='109042.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' [6] Guo, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=', Li, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' and Li, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' (2023) Notes on Peng’s independence in sublinear expectation theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' Statistics and Probability Letters, 193: No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content='109719.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' [7] Hu, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=', Li, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' and Li, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' (2021) Convergence rate of Peng’s law of large numbers under sublinear expectations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' Probability, Uncertainty and Quantitative Risk, 6(3): 261–266.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' [8] Jin, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' and Peng, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' (2021) Optimal unbiased estimation for maximal distribution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' Proba- bility, Uncertainty and Quantitative Risk, 6(3): 189–198.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' [9] Lehmann, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' and Casella, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' (1998) Theory of point estimation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' Second edition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' Springer Texts in Statistics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' Springer-Verlag, New York.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' [10] Li, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=', Li, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' and Yang, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' (2022) Upper and lower variances under model uncertainty and their applications in finance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' International Journal of Financial Engineering 9(1): No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' 2250007.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' [11] Li, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' and Peng, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' (2022) Maximally distributed random fields under sublinear expectation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' In Stochastic Analysis, Filtering, and Stochastic Optimization, 339–356, Springer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' [12] Pei, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=', Wang, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=', Xu, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' and Yue, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' (2021) A worst-case risk measure by G-VaR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' Acta Mathematicae Applicatae Sinica, English Series, 37(2): 421–440.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' [13] Peng, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' (2019) Law of large numbers and central limit theorem under nonlinear expectations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' Probability, Uncertainty and Quantitative Risk, 4, No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' [14] Peng, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' (2019) Nonlinear expectations and stochastic calculus under uncertainty: with robust CLT and G-Brownian motion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' Springer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' [15] Peng, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' and Yang, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' (2022) Distributional uncertainty of the financial time series measured by G-expectation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' Theory of Probability and its Applications, 66(4): 729–741.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' [16] Peng, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=', Yang, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' and Yao, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' (2020) Improving Value-at-Risk prediction under model un- certainty.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' Journal of Financial Econometrics, nbaa022(online).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' [17] Song, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' (2021) Stein’s method for the law of large numbers under sublinear expectations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' Probability, Uncertainty and Quantitative Risk, 6(3):199–212.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' [18] Zhang, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' (2021) The sufficient and necessary conditions of the strong law of large numbers under the sub-linear expectations, arXiv:2104.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content='08471.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} +page_content=' 11' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/NdE4T4oBgHgl3EQf9Q6K/content/2301.05354v1.pdf'} diff --git a/ONE1T4oBgHgl3EQfZwTX/vector_store/index.faiss b/ONE1T4oBgHgl3EQfZwTX/vector_store/index.faiss new file mode 100644 index 0000000000000000000000000000000000000000..1a91049bbd7669ece43c49bac0a58d5425e54a7a --- /dev/null +++ b/ONE1T4oBgHgl3EQfZwTX/vector_store/index.faiss @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:980330e0e52acd778c32a40acb272c6cec30839c59946aaf69101d338eb1e62a +size 1310765 diff --git a/ONE1T4oBgHgl3EQfZwTX/vector_store/index.pkl b/ONE1T4oBgHgl3EQfZwTX/vector_store/index.pkl new file mode 100644 index 0000000000000000000000000000000000000000..3fb910c0fa0065e48bc84866e553f370606e6811 --- /dev/null +++ b/ONE1T4oBgHgl3EQfZwTX/vector_store/index.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:a4ee85cedc2ab87206a54061a1b9cad30959c90744caeae34c45f6e52c8a9bb2 +size 46388 diff --git a/ONFIT4oBgHgl3EQfdyse/content/tmp_files/2301.11271v1.pdf.txt b/ONFIT4oBgHgl3EQfdyse/content/tmp_files/2301.11271v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..8ad777fc53394e5d3b75b700aa528b1a879a62bf --- /dev/null +++ b/ONFIT4oBgHgl3EQfdyse/content/tmp_files/2301.11271v1.pdf.txt @@ -0,0 +1,545 @@ +arXiv:2301.11271v1 [physics.hist-ph] 14 Jan 2023 +A "network of networks" (from history to algebra) +Daniel Parrochia +University of Lyon (France) +Abstract. +Recall first the algebraic treatment of flows or tensions in a transportation network +N, i.e. a connected antisymmetric 1-graph G(X, U). Assume that, unusually, we +take the values of flows (resp. tensions) in C. So the algebraic lattices Γ of flow +(resp. tension) values associated to G(X, U) are lattices of C. These lattices are +congruent modulo the action of the special linear group SL(2, C). Then, it is well +known one can define a lattice function Gk(Γ), as a modular function of weight 2k, +on the set R of all lattices of C. Let now N1, N2, ..., Np be connected antisymmetric +1-graphs and Cn, the set of hermitian symmetric matrices n × n. Let also R′ be the +set of all the lattices of Cn. The previous structure can be transposed to any n × n +symmetric hermitian matrices of flow (or tension) values of the Gi. In this case, +the Siegel space Sn = Cn replaces the Poincaré half-plane, and the symplectic group +Sp(2n, R) takes the place of the special linear group SL(2, C). We get now the new +lattice function as a function of all the lattices of Sn, i.e. a model of the "network of +networks" R′. In the end, we study the tree of minimal length of R′. +Key words. network, flows, tensions, lattices, lattice functions, modular functions, +network algebra. +1 +Introduction +Consider a connected 1-graph G whose arcs are denoted by 1, 2, ..., m and let some +quantities bi, ci be such that +−∞ ≤ bi ≤ ci ≤ +∞ +1 + +with the conditions: +1) bi = 0 +(i = 1, 2, ..., m); +2) ci ≥ 0 +for all i, and ci = +∞; +3) Arc i = 1 is the arc (b, a) which connects a point b named the output with a point +a named the input, these two points verifying: +ω−(a) = (1, 0, 0, ..., 0), +ω+(a) = (1, 0, 0, ..., 0); +4) G is an antisymmetric 1-graph. +The arc 1 = (b, a), that will not be drawn, is named the return arc and is just intro- +duced to maintain the Kirchoff law at the vertices a and b. +Definition 1.1. A graph G, with a capacity ci associated to any arc i, and which +satisfies all these conditions, is called a transportation network (see [3])1 and it will +be denoted by: +N = (X, U, c(u)). +In the following, as we will not pay attention to capacities, the previous network will +be reduced to a connected 1-graph G. +2 +Flows and tensions in networks +Definition 2.1. A flow in a connected graph G is usually defined as a vector φ = +(φ1, φ2, ..., φm) ∈ Zm such that: +(1) φi ∈ Z for i = 1, 2, ..., m. (The integer φi is called an arc flow and may be +regarded as the number of vehicules (signals, etc.) travelling through arc i along its +direction if φi ≥ 0 or against its direction if φi < 0.) +1Historically, before Ford and Fulkerson, it seems that interest for combinatorial optimization +may be found in an article of A. N. Tolsto˘ı from 1930, in which the transportation problem is +studied, as well as an, until recently secret, RAND report of T. E. Harris and F. S. Ross from 1955, +that Ford and Fulkerson mention as motivation to study the maximum flow problem. These papers +have in common that they both apply their methods to the Soviet railway network. As Schrijver +recalled, the transportation problem was formulated by ([8], and a cycle criterion for optimality +was considered by [9], [10], [12], [13], [19], [20] [5], [6], [14], [4] and [11]. On all that, see [21]. +2 + +(2) For each vertex x, the sum of the arc flows entering x equals the sum of the arc +flows leaving x (Kirchoff law), i.e., +� +i∈ω−(x) +φi = +� +j∈ω+(x) +φj +(x ∈ X). +According to Berge (see [1], 85), it is possible to develop an algebraic study of flows +in such a graph. +Firstable, as Zm is a module on Z (not a vector space, because Z is not a field), the +set Φ of all flows in the graph G constitutes a submodule of Zm, i.e we have: +φ1, φ2 ∈ Φ ⇒ φ1 + φ2 ∈ Φ, +s ∈ Z, φ ∈ Φ ⇒ sφ ∈ Φ. +Berge proves the following theorem: +Theorem 2.1. Let G = (X, U) a connected graph; H = (X, V ) an arbitrary tree of +G; 1, 2, ..., k, the arcs of U − V ; µ1, µ2, ..., µk the cycles associated with H. A flow +φ is uniquely defined by its values φ1, φ2, ..., φk ∈ U − V by: +φ = φ1⃗µ1 + φ2⃗µ2 + ... + φk⃗µk, +where the φi are scalars and the ⃗µi are vectors associated with independent elementary +cycles. +This means that a flow is uniquely defined by its components on a cotree of G. +Let now come to tensions. +Definition 2.2. A tension (or potential difference) in a connected graph G is defined +to be a vector θ = (θ1, θ2, ..., θm) ∈ Zm such that, for each elementary cycle µ, +� +i∈µ+ +θi = +� +i∈µ− +θi. +For every arc i, we have: θi = t (terminal end of arc i) - t (initial end of arc i). +Let Θ denote the set of all tensions. Note that Θ is also a submodule of Zm, i.e., +θ1, θ2 ∈ Θ ⇒ θ1 + θ2 ∈ Θ, +3 + +s ∈ Z, θ ∈ Θ ⇒ sθ ∈ Θ. +Here again, Berge proves the following theorem: +Theorem 2.2. Let G = (X, U) a connected graph; H = (X, V ) an arbitrary tree of +G; 1, 2, ..., k, the arcs of this tree; ⃗ω1, ⃗ω2, ..., ⃗ωℓ the cocycles associated with H. A +tension θ is uniquely defined by its values θ1, θ2, ..., θℓ on the arcs of the tree by: +θ = θ1⃗ω1 + θ2⃗ω2 + ... + θℓ⃗ωℓ, +where the θi are scalars and the ⃗ωi are vectors associated with independent elementary +cocycles. +This means that a tension is uniquely defined by its components on a tree of G. +We can easily see that Θ and Φ are two orthogonal submodules of Zm, which means +that, for every elementary cycle µ, we have: +⟨φ, θ⟩ = +m +� +i=1 +φiθi = 0. +3 +Algebraic lattices +We propose to extend the previous model. Let us consider now the set of all possible +values of tensions or flows in some network N. We will prove that this set can be +associated to a metanetwork Gk(Γ) which satisfies good properties. Recall first the +following definition: +Definition 3.1. A lattice Γ, in an R-vector space V of finite dimension, is a subgroup +of V verifying one of the following equivalent conditions enumerated by Serre (see +[22], 133): +1) Γ is discrete and V/Γ is compact; +2) Γ is discrete and generates the R-vector space V ; +3) There exists an R-basis {e1, ...en} of V , which is a Z-basis of Γ and Γ = Ze1 ⊕ +... ⊕ Zen. +Now, let us choose values of flows (or tensions) in an R-vector space V = Rn. +4 + +Theorem 3.1. The set of all possible flow (resp. tension) values of the network N +is a lattice in Rn. +Proof. Let ǫ = (ǫ1, ǫ2, ..., ǫn), a flow (resp. +a tension) in some arc(s) of G. +By +definition, ǫ belongs to Rn, viewed as a vector space on R. Moreover, according to +the definition of flows (Def. 2.1) and of tensions (Def. 2.2), the set Γ, of all flow +(resp. tension) values in the graph G, is the subgroup of all linear combinations with +integer coefficients of the basis vectors of Rn (cycles, resp. cocyles). So it is such +that: +Γ = Zǫ1 ⊕ ... ⊕ Zǫn, +for any basis of Rn. In other words, it forms a lattice in Rn. +4 +The lattices of C +Assume now that the flow (resp. tension) values of G are in C, and consider only +two-valued flows (resp. tensions). +Let us call R the set of lattices of C, considered as an R-vector space, and let us now +choose a pair of flow (resp. tension) values (α1, α2) ∈ C∗ so that Im(α1/α2) > 0. M +will be the set of these pairs. +To such a pair (α1, α2), we associate the lattice: +Γ(α1, α2) = Zα1 ⊕ Zα2. +with basis {α1, α2}. +Thus we get a map M → R, which is clearly surjective. +Now let: +g = +� +a +b +c +d +� +∈ SL(2, Z) +the special linear group of square matrices 2 × 2 with relative coefficients, and let +(α1, α2) ∈ M. One proves (see [22], 134) the following theorem: +Theorem 4.1. For two elements of M to define the same lattice, it is necessary and +sufficient that they are congruent modulo SL(2, Z). +5 + +Proof. (Serre) The condition is sufficient. Let us put: +α′ +1 = aα1 + bα2 and α′ +2 = cα1 + dα2. +Il is clear that {α′ +1, α′ +2} is a basis of Γ(α1, α2). Moreover, if the set z = α1/α2 and +z′ = {α′ +1/α′ +2}, we have: +z′ = az + b +cz + d = gz. +This shows that Im(z′) > 0, hence that (α′ +1, α′ +2) belongs to M. +Conversely, if (α1, α2) and (α′ +1, α′ +2) are two elements of M which define the same +lattice, there exists an integer matrix +g = +� +a +b +c +d +� +of determinant ±1 which transforms the first basis into the second. If det(g) was +< 0, the sign of Im(α′ +1/α′ +2) would be the opposite of Im(α1/α2) as one sees by an +immediate computation. The two signs being the same, we have necessarily det(g) += 1, which proves the theorem. +Hence we can identify the set R of all the lattices of C (which are, for us, sets of flow +(or tension) values associated to connected 1-graphs (or networks) with the quotient +of M by the action of SL(2, Z). +5 +Modular functions +Let now F be a function on R, with complex values, and let k ∈ √Z. We say (with +Serre) that F is of weight 2k if: +F(λΓ) = λ−2kF(Γ), +(1) +for all lattices Γ and all λ ∈ C∗. +Let F be such a function. If (α1, α2) ∈ M, we denote by F(α1, α2) the value of F on +the lattice Γ(α1, α2). The formula (1) translates to: +F(λα1, λα2) = λ−2kF(α1, α2). +(2) +Writing that F is invariant by SL(2, Z), we can see that it satisfies the identity: +6 + +F(z) = (cz + d)−2kF(az + b +cz + d), +(3) +for all: +�a +b +c +d +� +∈ SL(2, Z). +Conversely, if F verifies (3), F is a function on R which is of weight 2k. We can +thus identify modular functions of weight 2k with some lattice functions of weight +2k. +Then we know that some lattice functions, that are modular functions, can be iden- +tified with Eisenstein series, which are themselves convergent. Serre (1973) proves +the following lemma: +Lemma 5.1. Let Γ be a lattice in C. The series: +′ +� +γ∈Γ +1/|γ|σ +is convergent for σ > 2. +(The symbol �′ signifies that the summation runs over the nonzero elements of +Γ.) +Now let k be an integer >1. If Γ is a lattice of C, put: +Gk(Γ) = +′ +� +γ∈Γ +1/γ2k. +This series converges absolutely thanks to the preceding lemma. It proves the exis- +tence of a lattice function on the set R of lattices of C. +In other words, all the lattices of C, which represent sets of flow (or tension) val- +ues in connected 1-graphs (or networks) are themselves connected by this lattice +function. +Let now k be an integer >1. Like all the Eisentein series of the type Gk(z): +1) Gk(Γ), which is a modular form of weight 2k, is holomorphic everywhere (including +at the infinite); +7 + +2) Gk(∞) = 2ζ(2k); +3) Gk has a limit for Im(z) → ∞, z being the value for which Γ vanishes at one and +only one point. +6 +Siegel space +We can still extend the previous construction. +Let N1, N2, ..., Nm be some finite connected 1-graphs and consider, for each of them, +their associated matrices of flow (or tension) values. Let Z1, Z2, ..., Zm be such ma- +trices with complex coefficients. +Let L be the set of all n × n complex symmetric matrices and Cn the set of matrices +Z of L such that the hermitian matrix I − Z ¯Z is strictly positive. +Let now Sn (the Siegel space) be the set of matrices Z of L whose imaginary part +Im Z = (1/2i)(Z − ¯Z) is strictly positive. It is well known that the so-called "Cayley +transformations" apply Cn to Sn and vice versa (see [2], 437-438). +Hence, the real symplectic group Sp(2n, R) plays the same role, with respect to the +Siegel space Sn, than the group Sp(2, R) = SL(2, R) with respect to the upper half- +plane of the complex plane. When the group SL(2, R) operates in C by the Poincaré +Fuchsian transformations, the group Sp(2n, R) now operates in the Siegel space Sn +by the transformations: +g′ = +�A +B +C +D, +� +∈ Sp(2n, R). +(4) +So we have: +g′Z = (AZ + B)(CZ + D)−1. +Now let us call R′ the set of all the matrix lattices of Cn, and let M′ be the set of pairs +(A1, A2) ∈ Cn, such that Im(A1, A− +2 ) > 0, which supposes that A2 is inversible. +To such a pair (A1, A2), we associate now the lattice: +Γ′(A1, A2) = ZA1 ⊕ ZA2. +with basis {A1, A2}. Thus, we get a map M′ → R′, which is clearly surjective. +8 + +One gets the following theorem: +Theorem 6.1. So that two elements of M′ define the same lattice, it is necessary +and sufficient that they are congruent modulo Sp(2n, R). +Proof. The condition is sufficient. Let A1, A2 ∈ M′. Then, put : +A′ +1 = aA1 + bA2 and A′ +2 = cA1 + dA2. +Il is clear that {A′ +1, A′ +2} is a basis of Γ(A1, A2). Moreover, if Z = A1A− +2 and Z′ = +A′ +1A′− +2 , +Z′ = (AZ + B)(CZ + D)− = g′Z. +This shows that Im(Z′) > 0, hence that (A′ +1, A′ +2) belongs to M′. +Conversely, if (A1, A2) and (A′ +1, A′ +2) are two elements of M′ which define the same +lattice, there exists an integer matrix +g′ = +�A +B +C +D +� +of determinant >0 which transforms the first basis into the second. If det(g′) was +<0, the sign of Im(A′ +1A′− +2 ) would be the opposite of Im(A1A− +2 ) as one sees by an +immediate computation. The two signs being the same, we have necessarily det(g′) +>0, which proves the theorem. +Thus, we can identify the set M′ of all the lattice matrices of Cn with the quotient +of Sn by the action of Sp(2n, R). +For the same reasons, we can also define, as previously, a lattice function of weight +2k. +Let F ′ be such a function. If (A1, A2) ∈ M′, we denote by F ′(A1, A2) the value of F ′ +on the lattice Γ′(A1, A2). The formula (2) translates to: +F ′(λA1, λA2) = λ−2kF ′(A1, A2). +(5) +Writing now that F ′ is invariant by Sp(2n, R), we can see that this function satisfies +the identity: +9 + +F ′(Z) = (XZ + D)−2kf(AZ + B +CZ + D), +(6) +for all: +�A +B +C +D +� +∈ Sp(2n, R). +As previously, this function can be identified with an Eisenstein series G′ +k(Γ′) on the +set R′ of the matrix lattices of Cn, which is absolutely convergent. +In other words, all the n × n matrix lattices of Cn, which represent sets of subsets +of flows (or tensions) in connected 1-graphs (or networks), are linked by this lattice +function. +If we associate networks with subsets of flow (or tension) values, this proves the +existence of a "network of networks". +7 +The tree of minimal length +Let Gk(Γ) be the graph associated with the set of all subsets of flows and A0, the +minimal tree of Gk(Γ). If U is the set of arcs of Gk(Γ), U − A0 = A′ +0 is the maximal +cotree of Gk(Γ)2. Now, it is easy to see that : +(1) The smallest arc of all cocycles (tensions) is in A0; +(2) The greatest arc of all cycles (flows) is in U − A0 = A′ +0. +We finally obtain a set of arcs without a maximal cycle and we can always find an +optimal flow in the graph because any flow does not circulate in all the arcs of the +whole graph but only in those of a tree whose capacities, which do not admit a higher +bound, are infinite. +Let us now precise the form of the tree of minimal length A0. Let n be the number +of vertices of A0, A the set of its arcs, a an arc of A, d the distance between two +vertices s and s′. We have: +(1) Card(A) = n(n − 1)/2; +(2) a = {s, s′} : d(a) = d(s, s′). +2On trees and co-trees, see ([7], 103-128. +10 + +Now let P be a polygon, i.e. a set of edges which is a subset of A0. The support +of P will be the union of the edges of A0, that is, the set of vertices of Gk(Γ) which +are ends of at least one edge of P. One can speak of polygon P on Gk(Γ) (resp. in +Gk(Γ)) according to whether the support of P is Gk(Γ) or a subset of Gk(Γ) distinct +from itself. +A0, which is the set of all possible edges on Gk(Γ), is a complete polygon of Gk(Γ). +A graph being the conjunction of a polygon and its support, a chain C will be a +polygon in Gk(Γ) whose vertices that form its support can be ordered in a sequence +(s0, s1, ...sp). We have: +(1) For every i ∈ ]P[, {si−1, si} ∈ C; +(2) For every i, j ∈ [P], i ̸= j ⇒ si ̸= sj. +A cycle is a chain where condition (2) holds for all the points of its support except +s0 and sp which are merged (the ends of C). +To exhibit Gk(Γ), we need the following complementary considerations: +A) A tree is a connected polygon that does not contain a loop. +B) The length of a polygon is the sum of the lengths of all its edges. +C) The width of a polygon is the length of its longest edge. +Suppose that the polygon reduced to the edge (s, s′) represents the chain of A with +minimum width joining s to s′, then {s, s′} is an element of the tree of minimal +length T on Gk(Γ) and there exists at least one such edge on A, the edge of minimal +length. +Conversely, if {r, s} is an element of the tree T on Gk(Γ), then {r, s} is the chain of +A having the smallest width and joining r to s. +In this context, Gk(Γ) can be identified with a classification of classifications. This +would amount to doing a factor analysis on all parts of the representative tree. Such +a classification would correspond to all the axes of a factor analysis, with an original +calculation on the first axis. +8 +Construction of Gk(Γ) +In order to construct Gk(Γ), we must first look at the lattice Γ = Zα1 ⊕ Zα2, which +makes possible to distinguish a lattice function and a modular function. It must be +11 + +assumed that the minimal bases of this lattice suppose a matroid M. If B is the set +of these bases, then C, the set of cycles of M (resp. D the set of cocycles of M) is +the set of subsets which are not included in any basis (resp. which have a non-empty +intersection with any basis) and minimal for inclusion with this property. +Let now B ∈ B, b ∈ B, c ∈ X − B. Let D(b, B) be the unique cocycle satisfying +B ∩ D(b, B) = {b} and C(c, B), the unique cycle satisfying C(c, B) − B = {c}. We +then have: +B ∈ C(c, B) ⇐⇒ c ∈ D(b, B) ⇐⇒ B − b ∪ c ∈ B. +C and D are the sets of cycles and minimal cocycles for the inclusion of the graph. +The minimum tree of a graph is the set of minimum edges of a cocycle, its complement +being the set of the maximum edges of a cycle. +If we consider the lattice (F, ∪, ∩), a sublattice of M, the algebraic properties of F +(distributivity) are stronger than those of M (semi-modularity). It is thus possible +to construct Gk(Γ), the super-lattice, by defining it as the set of distributive sub- +lattices of any geometric lattice, that is to say, a sub-lattice of the semi-geometric +lattice associated with M. +9 +Possible applications +Let’s finish with some more epistemological considerations: after all, mathematical +physics and philosophy are not so far apart (see [18]). +The space associated with this "network of networks", that is, the zeros and poles +of the modular function of all networks, has been studied in hard proof theorems, +because one does not define a structure of complex analytic variety on the single com- +pactified network. (A natural way of proceeding would be to define a compactified +isomorphism on the Riemann sphere S = C ∪ {∞}.) +Whatever the difficulties of study, it is proved that this network function exists, and +we have thus proved also that the set of all sets of possible flows exists as a modular +function of all networks in the algebraic sense of the term. +Let us now consider some possible applications of the previous formalism. +1. Since the old work of [Von Neuman 1946], quantum mechanics represents all the +physical states of the universe by a vector space of infinite dimension called "Hilbert +space". However, the separability property and the convergence condition make it +12 + +possible to reduce to closed subspaces. +In this case, the complex vectors form a +finite dimensional subspace and their mathematics is identical to that of flows or +tensions on a graph, except that their coefficients can take on complex values. This +situation makes it possible, as we have seen, to apply known theorems of arithmetic +to them. +2. Because of the flow-tension duality, the network function defines as well the set of +all the sets of possible tensions, and hence it specifies the shortest path in the total +set of all possible paths, as well as the most rational scheduling of tasks in the set of +all possible actions. Here we have a theorem of the existence of an optimal behavior, +whatever the field we consider. +3. Moreover, the problem of the shortest path in a graph is related to the question +of the tree of minimum length, which itself formalizes the notion of classification. A +"network of networks" with a maximum voltage would thus make it possible both: +to confirm the existence of a tree of minimum length of the network of all networks, +and hence, of a classification of classifications (see [17]). +4. In general, the variable "weights" can receive different meanings (reliability, econ- +omy, etc.) on a tree, other than the length of the arcs. So the network of networks +Gk(Γ) can still make it possible to calculate the maximum reliability path, or the +most economical route, etc., in the set of all possible paths. +5. I will say a final word about the aim of this construction : though the world +may be multiple and chaotic, circulations and actions can be ordered in relation +to the same structure, which is expressed - in the linear case - through the form +of this remarkable holomorphic function which has been here constructed. Doing +that, we tried in fact to formalize the intuition of a "network of networks", as it +is expressed in the conclusion of our book on networks (see [15], 265-286). This is +also the achievement of what we called elsewhere a "rationalité réticulaire" (reticular +rationality)(see [16]). +References +[1] Berge, C., Graphes et hypergraphes, Dunod, Paris, 1970. +[2] Deheuvels, R., Formes quadratiques et groupes classiques, P.U.F., Paris, 1981. +[3] Ford, L. R., Fulkerson, D. R., Flows in Networks, Rand Corporation, Santa +Monica, 1962. +13 + +[4] Fulkerson, D. R., "An out-of-kilter method for minimal-cost flow problems", +Journal of the Society for Industrial and Applied Mathematics 9, 18-27, 1961. +[5] Gallai, +T., +"Gráfokkal +kapcsolatos +maximum-minimum +tételek, +I +rész",[Hungarian: +Maximum-minimum theorems for networks (part I)] A +Magyar Tudományos Akadémia Matematikai és Fizikai Tudományok Osztályának +Közleményei, 7, S. 305-338, 1957. +[6] Gallai, T., "Maximum-minimum Sätze Über Graphen", Acta Mathematica +Academiae Scientiarum Hungaricae 9, 395-434, 1958. +[7] Gondran, M., Minoux, M., Graphes et Algorithmes, Eyrolles, Paris, 1979. +[8] Hitchcock, F. L., "The distribution of a product from several sources to numerous +localities", Journal of Mathematics and Physics 20, 224-230, 1941. +[9] Kantorovich, L. V., "O peremeshchenii mass" [Russian], Doklady Akademii Nauk +SSSR 37, 7-8, 227-230, 1942. [English translation: +"On the translocation of +masses", Comptes Rendus (Doklady) de l’Académie des Sciences de l’U.R.S.S, +37, 199-201,1942, [reprinted: Management Science 5, 1-4, 1958]. +[10] Kantorovich L. V., Gavurin, M. K., "Primenenie matematicheskikh metodov +v voprosakh analiza gruzopotokov" [Russian; "The application of mathematical +methods to freight flow analysis"], in Problemy povysheniya effectivnosti raboty +transporta [Russian; Collection of Problems of Raising the Efficiency of Transport +Performance], Akademiia Nauk SSSR, Moscow-Leningrad, 1949, pp. 110-138. +[11] Klein, M., "A primal method for minimal cost flows with applications to the +assignment and transportation problems", Management Science 14, 205-220, 1967. +[12] Koopmans, "Optimum utilization of the transportation system", in: The Econo- +metric Society Meeting Washington, D.C., September 6-18, 1947; D.H. Leavens, +(ed.), Proceedings of the International Statistical Conferences - Volume V, 1948, +pp. 136-146; reprinted in Econometrica 17 (Supplement) 136-146, 1949; reprinted +in Scientific Papers of Tjalling C. Koopmans, Springer, Berlin, 184-193. +[13] Koopmans, Tj.C., Reiter, S., "A model of transportation", Activity Analysis of +Production and Allocation - Proceedings of a Conference, Tj.C. Koopmans (ed.), +222-259, Wiley, New York, 1951. +[14] Lur’e, A. L., "Methods of establishing the shortest running distances for freights +on setting up transportation systems" [in Russian], in Primenenie matematiki +èkonomicheskikh issle-dovaniyakh [Russian; V.S. Nemchinov (ed.), Application of +14 + +Mathematics in Economical Studies, Izdatel’stvo Sotsial’no-Èkonomichesk˘i Liter- +atury, 249-382, Moscow, 1959. English translation in: V.S Nemchinov (ed), The +Use of Mathematics in Economics, 322-355, Oliver and Boyd, Edinburgh, 1964. +[15] Parrochia, D., Philosophie des réseaux, P.U.F., Paris, 1993. +[16] Parrochia, D., "La rationalité réticulaire", in D. Parrochia (ed.), Penser les +réaux, 7-23, Champ Vallon, Seyssel, 2001. +[17] Parrochia D., Neuville, P., Towards a general theory of classifications, Basel, +Birkhäuser, 2013. +[18] Parrochia, D., Mathematics and Philosophy, Wiley-Iste, London, 2018. +[19] Robinson, J., "On the Hamiltonian Game (A Traveling Salesman Problem)", +Research Memorandum RM-303, The RAND Corporation, Santa Monica, Califor- +nia, 1949. +[20] Robinson, J., "A Note on the Hitchcock-Koopmans Problem", Research Mem- +orandum RM-407, The RAND Corporation, Santa Monica, California, 1950. +[21] Schrijver, A., "On the history of the transportation and maximum flow prob- +lems", Math. Program., 91, 437-445, 2002. +[22] Serre, J.-P., Course in Arithmetics, Springer-Verlag, Berlin, 1973. +15 + diff --git a/ONFIT4oBgHgl3EQfdyse/content/tmp_files/load_file.txt b/ONFIT4oBgHgl3EQfdyse/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..39ffa9e31c2f99af83d07998697f157f08c88fde --- /dev/null +++ b/ONFIT4oBgHgl3EQfdyse/content/tmp_files/load_file.txt @@ -0,0 +1,394 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf,len=393 +page_content='arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content='11271v1 [physics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content='hist-ph] 14 Jan 2023 A "network of networks" (from history to algebra) Daniel Parrochia University of Lyon (France) Abstract.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' Recall first the algebraic treatment of flows or tensions in a transportation network N, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' a connected antisymmetric 1-graph G(X, U).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' Assume that, unusually, we take the values of flows (resp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' tensions) in C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' So the algebraic lattices Γ of flow (resp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' tension) values associated to G(X, U) are lattices of C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' These lattices are congruent modulo the action of the special linear group SL(2, C).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' Then, it is well known one can define a lattice function Gk(Γ), as a modular function of weight 2k, on the set R of all lattices of C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' Let now N1, N2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=', Np be connected antisymmetric 1-graphs and Cn, the set of hermitian symmetric matrices n × n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' Let also R′ be the set of all the lattices of Cn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' The previous structure can be transposed to any n × n symmetric hermitian matrices of flow (or tension) values of the Gi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' In this case, the Siegel space Sn = Cn replaces the Poincaré half-plane, and the symplectic group Sp(2n, R) takes the place of the special linear group SL(2, C).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' We get now the new lattice function as a function of all the lattices of Sn, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' a model of the "network of networks" R′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' In the end, we study the tree of minimal length of R′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' Key words.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' network, flows, tensions, lattices, lattice functions, modular functions, network algebra.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' 1 Introduction Consider a connected 1-graph G whose arcs are denoted by 1, 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=', m and let some quantities bi, ci be such that −∞ ≤ bi ≤ ci ≤ +∞ 1 with the conditions: 1) bi = 0 (i = 1, 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=', m);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' 2) ci ≥ 0 for all i, and ci = +∞;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' 3) Arc i = 1 is the arc (b, a) which connects a point b named the output with a point a named the input, these two points verifying: ω−(a) = (1, 0, 0, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=', 0), ω+(a) = (1, 0, 0, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=', 0);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' 4) G is an antisymmetric 1-graph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' The arc 1 = (b, a), that will not be drawn, is named the return arc and is just intro- duced to maintain the Kirchoff law at the vertices a and b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' Definition 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' A graph G, with a capacity ci associated to any arc i, and which satisfies all these conditions, is called a transportation network (see [3])1 and it will be denoted by: N = (X, U, c(u)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' In the following, as we will not pay attention to capacities, the previous network will be reduced to a connected 1-graph G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' 2 Flows and tensions in networks Definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' A flow in a connected graph G is usually defined as a vector φ = (φ1, φ2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=', φm) ∈ Zm such that: (1) φi ∈ Z for i = 1, 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=', m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' (The integer φi is called an arc flow and may be regarded as the number of vehicules (signals, etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=') travelling through arc i along its direction if φi ≥ 0 or against its direction if φi < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=') 1Historically, before Ford and Fulkerson, it seems that interest for combinatorial optimization may be found in an article of A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' Tolsto˘ı from 1930, in which the transportation problem is studied, as well as an, until recently secret, RAND report of T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' Harris and F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' Ross from 1955, that Ford and Fulkerson mention as motivation to study the maximum flow problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' These papers have in common that they both apply their methods to the Soviet railway network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' As Schrijver recalled, the transportation problem was formulated by ([8], and a cycle criterion for optimality was considered by [9], [10], [12], [13], [19], [20] [5], [6], [14], [4] and [11].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' On all that, see [21].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' 2 (2) For each vertex x, the sum of the arc flows entering x equals the sum of the arc flows leaving x (Kirchoff law), i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=', � i∈ω−(x) φi = � j∈ω+(x) φj (x ∈ X).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' According to Berge (see [1], 85), it is possible to develop an algebraic study of flows in such a graph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' Firstable, as Zm is a module on Z (not a vector space, because Z is not a field), the set Φ of all flows in the graph G constitutes a submodule of Zm, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content='e we have: φ1, φ2 ∈ Φ ⇒ φ1 + φ2 ∈ Φ, s ∈ Z, φ ∈ Φ ⇒ sφ ∈ Φ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' Berge proves the following theorem: Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' Let G = (X, U) a connected graph;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' H = (X, V ) an arbitrary tree of G;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' 1, 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=', k, the arcs of U − V ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' µ1, µ2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=', µk the cycles associated with H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' A flow φ is uniquely defined by its values φ1, φ2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=', φk ∈ U − V by: φ = φ1⃗µ1 + φ2⃗µ2 + .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' + φk⃗µk, where the φi are scalars and the ⃗µi are vectors associated with independent elementary cycles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' This means that a flow is uniquely defined by its components on a cotree of G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' Let now come to tensions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' Definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' A tension (or potential difference) in a connected graph G is defined to be a vector θ = (θ1, θ2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=', θm) ∈ Zm such that, for each elementary cycle µ, � i∈µ+ θi = � i∈µ− θi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' For every arc i, we have: θi = t (terminal end of arc i) - t (initial end of arc i).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' Let Θ denote the set of all tensions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' Note that Θ is also a submodule of Zm, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=', θ1, θ2 ∈ Θ ⇒ θ1 + θ2 ∈ Θ, 3 s ∈ Z, θ ∈ Θ ⇒ sθ ∈ Θ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' Here again, Berge proves the following theorem: Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' Let G = (X, U) a connected graph;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' H = (X, V ) an arbitrary tree of G;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' 1, 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=', k, the arcs of this tree;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' ⃗ω1, ⃗ω2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=', ⃗ωℓ the cocycles associated with H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' A tension θ is uniquely defined by its values θ1, θ2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=', θℓ on the arcs of the tree by: θ = θ1⃗ω1 + θ2⃗ω2 + .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' + θℓ⃗ωℓ, where the θi are scalars and the ⃗ωi are vectors associated with independent elementary cocycles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' This means that a tension is uniquely defined by its components on a tree of G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' We can easily see that Θ and Φ are two orthogonal submodules of Zm, which means that, for every elementary cycle µ, we have: ⟨φ, θ⟩ = m � i=1 φiθi = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' 3 Algebraic lattices We propose to extend the previous model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' Let us consider now the set of all possible values of tensions or flows in some network N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' We will prove that this set can be associated to a metanetwork Gk(Γ) which satisfies good properties.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' Recall first the following definition: Definition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' A lattice Γ, in an R-vector space V of finite dimension, is a subgroup of V verifying one of the following equivalent conditions enumerated by Serre (see [22], 133): 1) Γ is discrete and V/Γ is compact;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' 2) Γ is discrete and generates the R-vector space V ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' 3) There exists an R-basis {e1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content='en} of V , which is a Z-basis of Γ and Γ = Ze1 ⊕ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' ⊕ Zen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' Now, let us choose values of flows (or tensions) in an R-vector space V = Rn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' 4 Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' The set of all possible flow (resp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' tension) values of the network N is a lattice in Rn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' Let ǫ = (ǫ1, ǫ2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=', ǫn), a flow (resp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' a tension) in some arc(s) of G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' By definition, ǫ belongs to Rn, viewed as a vector space on R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' Moreover, according to the definition of flows (Def.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content='1) and of tensions (Def.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content='2), the set Γ, of all flow (resp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' tension) values in the graph G, is the subgroup of all linear combinations with integer coefficients of the basis vectors of Rn (cycles, resp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' cocyles).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' So it is such that: Γ = Zǫ1 ⊕ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' ⊕ Zǫn, for any basis of Rn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' In other words, it forms a lattice in Rn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' 4 The lattices of C Assume now that the flow (resp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' tension) values of G are in C, and consider only two-valued flows (resp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' tensions).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' Let us call R the set of lattices of C, considered as an R-vector space, and let us now choose a pair of flow (resp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' tension) values (α1, α2) ∈ C∗ so that Im(α1/α2) > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' M will be the set of these pairs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' To such a pair (α1, α2), we associate the lattice: Γ(α1, α2) = Zα1 ⊕ Zα2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' with basis {α1, α2}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' Thus we get a map M → R, which is clearly surjective.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' Now let: g = � a b c d � ∈ SL(2, Z) the special linear group of square matrices 2 × 2 with relative coefficients, and let (α1, α2) ∈ M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' One proves (see [22], 134) the following theorem: Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' For two elements of M to define the same lattice, it is necessary and sufficient that they are congruent modulo SL(2, Z).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' 5 Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' (Serre) The condition is sufficient.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' Let us put: α′ 1 = aα1 + bα2 and α′ 2 = cα1 + dα2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' Il is clear that {α′ 1, α′ 2} is a basis of Γ(α1, α2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' Moreover, if the set z = α1/α2 and z′ = {α′ 1/α′ 2}, we have: z′ = az + b cz + d = gz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' This shows that Im(z′) > 0, hence that (α′ 1, α′ 2) belongs to M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' Conversely, if (α1, α2) and (α′ 1, α′ 2) are two elements of M which define the same lattice, there exists an integer matrix g = � a b c d � of determinant ±1 which transforms the first basis into the second.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' If det(g) was < 0, the sign of Im(α′ 1/α′ 2) would be the opposite of Im(α1/α2) as one sees by an immediate computation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' The two signs being the same, we have necessarily det(g) = 1, which proves the theorem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' Hence we can identify the set R of all the lattices of C (which are, for us, sets of flow (or tension) values associated to connected 1-graphs (or networks) with the quotient of M by the action of SL(2, Z).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' 5 Modular functions Let now F be a function on R, with complex values, and let k ∈ √Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' We say (with Serre) that F is of weight 2k if: F(λΓ) = λ−2kF(Γ), (1) for all lattices Γ and all λ ∈ C∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' Let F be such a function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' If (α1, α2) ∈ M, we denote by F(α1, α2) the value of F on the lattice Γ(α1, α2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' The formula (1) translates to: F(λα1, λα2) = λ−2kF(α1, α2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' (2) Writing that F is invariant by SL(2, Z), we can see that it satisfies the identity: 6 F(z) = (cz + d)−2kF(az + b cz + d), (3) for all: �a b c d � ∈ SL(2, Z).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' Conversely, if F verifies (3), F is a function on R which is of weight 2k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' We can thus identify modular functions of weight 2k with some lattice functions of weight 2k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' Then we know that some lattice functions, that are modular functions, can be iden- tified with Eisenstein series, which are themselves convergent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' Serre (1973) proves the following lemma: Lemma 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' Let Γ be a lattice in C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' The series: ′ � γ∈Γ 1/|γ|σ is convergent for σ > 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' (The symbol �′ signifies that the summation runs over the nonzero elements of Γ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=') Now let k be an integer >1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' If Γ is a lattice of C, put: Gk(Γ) = ′ � γ∈Γ 1/γ2k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' This series converges absolutely thanks to the preceding lemma.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' It proves the exis- tence of a lattice function on the set R of lattices of C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' In other words, all the lattices of C, which represent sets of flow (or tension) val- ues in connected 1-graphs (or networks) are themselves connected by this lattice function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' Let now k be an integer >1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' Like all the Eisentein series of the type Gk(z): 1) Gk(Γ), which is a modular form of weight 2k, is holomorphic everywhere (including at the infinite);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' 7 2) Gk(∞) = 2ζ(2k);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' 3) Gk has a limit for Im(z) → ∞, z being the value for which Γ vanishes at one and only one point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' 6 Siegel space We can still extend the previous construction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' Let N1, N2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=', Nm be some finite connected 1-graphs and consider, for each of them, their associated matrices of flow (or tension) values.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' Let Z1, Z2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=', Zm be such ma- trices with complex coefficients.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' Let L be the set of all n × n complex symmetric matrices and Cn the set of matrices Z of L such that the hermitian matrix I − Z ¯Z is strictly positive.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' Let now Sn (the Siegel space) be the set of matrices Z of L whose imaginary part Im Z = (1/2i)(Z − ¯Z) is strictly positive.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' It is well known that the so-called "Cayley transformations" apply Cn to Sn and vice versa (see [2], 437-438).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' Hence, the real symplectic group Sp(2n, R) plays the same role, with respect to the Siegel space Sn, than the group Sp(2, R) = SL(2, R) with respect to the upper half- plane of the complex plane.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' When the group SL(2, R) operates in C by the Poincaré Fuchsian transformations, the group Sp(2n, R) now operates in the Siegel space Sn by the transformations: g′ = �A B C D, � ∈ Sp(2n, R).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' (4) So we have: g′Z = (AZ + B)(CZ + D)−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' Now let us call R′ the set of all the matrix lattices of Cn, and let M′ be the set of pairs (A1, A2) ∈ Cn, such that Im(A1, A− 2 ) > 0, which supposes that A2 is inversible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' To such a pair (A1, A2), we associate now the lattice: Γ′(A1, A2) = ZA1 ⊕ ZA2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' with basis {A1, A2}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' Thus, we get a map M′ → R′, which is clearly surjective.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' 8 One gets the following theorem: Theorem 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' So that two elements of M′ define the same lattice, it is necessary and sufficient that they are congruent modulo Sp(2n, R).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' The condition is sufficient.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' Let A1, A2 ∈ M′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' Then, put : A′ 1 = aA1 + bA2 and A′ 2 = cA1 + dA2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' Il is clear that {A′ 1, A′ 2} is a basis of Γ(A1, A2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' Moreover, if Z = A1A− 2 and Z′ = A′ 1A′− 2 , Z′ = (AZ + B)(CZ + D)− = g′Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' This shows that Im(Z′) > 0, hence that (A′ 1, A′ 2) belongs to M′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' Conversely, if (A1, A2) and (A′ 1, A′ 2) are two elements of M′ which define the same lattice, there exists an integer matrix g′ = �A B C D � of determinant >0 which transforms the first basis into the second.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' If det(g′) was <0, the sign of Im(A′ 1A′− 2 ) would be the opposite of Im(A1A− 2 ) as one sees by an immediate computation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' The two signs being the same, we have necessarily det(g′) >0, which proves the theorem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' Thus, we can identify the set M′ of all the lattice matrices of Cn with the quotient of Sn by the action of Sp(2n, R).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' For the same reasons, we can also define, as previously, a lattice function of weight 2k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' Let F ′ be such a function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' If (A1, A2) ∈ M′, we denote by F ′(A1, A2) the value of F ′ on the lattice Γ′(A1, A2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' The formula (2) translates to: F ′(λA1, λA2) = λ−2kF ′(A1, A2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' (5) Writing now that F ′ is invariant by Sp(2n, R), we can see that this function satisfies the identity: 9 F ′(Z) = (XZ + D)−2kf(AZ + B CZ + D), (6) for all: �A B C D � ∈ Sp(2n, R).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' As previously, this function can be identified with an Eisenstein series G′ k(Γ′) on the set R′ of the matrix lattices of Cn, which is absolutely convergent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' In other words, all the n × n matrix lattices of Cn, which represent sets of subsets of flows (or tensions) in connected 1-graphs (or networks), are linked by this lattice function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' If we associate networks with subsets of flow (or tension) values, this proves the existence of a "network of networks".' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' 7 The tree of minimal length Let Gk(Γ) be the graph associated with the set of all subsets of flows and A0, the minimal tree of Gk(Γ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' If U is the set of arcs of Gk(Γ), U − A0 = A′ 0 is the maximal cotree of Gk(Γ)2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' Now, it is easy to see that : (1) The smallest arc of all cocycles (tensions) is in A0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' (2) The greatest arc of all cycles (flows) is in U − A0 = A′ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' We finally obtain a set of arcs without a maximal cycle and we can always find an optimal flow in the graph because any flow does not circulate in all the arcs of the whole graph but only in those of a tree whose capacities, which do not admit a higher bound, are infinite.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' Let us now precise the form of the tree of minimal length A0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' Let n be the number of vertices of A0, A the set of its arcs, a an arc of A, d the distance between two vertices s and s′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' We have: (1) Card(A) = n(n − 1)/2;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' (2) a = {s, s′} : d(a) = d(s, s′).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' 2On trees and co-trees, see ([7], 103-128.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' 10 Now let P be a polygon, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' a set of edges which is a subset of A0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' The support of P will be the union of the edges of A0, that is, the set of vertices of Gk(Γ) which are ends of at least one edge of P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' One can speak of polygon P on Gk(Γ) (resp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' in Gk(Γ)) according to whether the support of P is Gk(Γ) or a subset of Gk(Γ) distinct from itself.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' A0, which is the set of all possible edges on Gk(Γ), is a complete polygon of Gk(Γ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' A graph being the conjunction of a polygon and its support, a chain C will be a polygon in Gk(Γ) whose vertices that form its support can be ordered in a sequence (s0, s1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content='sp).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' We have: (1) For every i ∈ ]P[, {si−1, si} ∈ C;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' (2) For every i, j ∈ [P], i ̸= j ⇒ si ̸= sj.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' A cycle is a chain where condition (2) holds for all the points of its support except s0 and sp which are merged (the ends of C).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' To exhibit Gk(Γ), we need the following complementary considerations: A) A tree is a connected polygon that does not contain a loop.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' B) The length of a polygon is the sum of the lengths of all its edges.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' C) The width of a polygon is the length of its longest edge.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' Suppose that the polygon reduced to the edge (s, s′) represents the chain of A with minimum width joining s to s′, then {s, s′} is an element of the tree of minimal length T on Gk(Γ) and there exists at least one such edge on A, the edge of minimal length.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' Conversely, if {r, s} is an element of the tree T on Gk(Γ), then {r, s} is the chain of A having the smallest width and joining r to s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' In this context, Gk(Γ) can be identified with a classification of classifications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' This would amount to doing a factor analysis on all parts of the representative tree.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' Such a classification would correspond to all the axes of a factor analysis, with an original calculation on the first axis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' 8 Construction of Gk(Γ) In order to construct Gk(Γ), we must first look at the lattice Γ = Zα1 ⊕ Zα2, which makes possible to distinguish a lattice function and a modular function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' It must be 11 assumed that the minimal bases of this lattice suppose a matroid M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' If B is the set of these bases, then C, the set of cycles of M (resp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' D the set of cocycles of M) is the set of subsets which are not included in any basis (resp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' which have a non-empty intersection with any basis) and minimal for inclusion with this property.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' Let now B ∈ B, b ∈ B, c ∈ X − B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' Let D(b, B) be the unique cocycle satisfying B ∩ D(b, B) = {b} and C(c, B), the unique cycle satisfying C(c, B) − B = {c}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' We then have: B ∈ C(c, B) ⇐⇒ c ∈ D(b, B) ⇐⇒ B − b ∪ c ∈ B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' C and D are the sets of cycles and minimal cocycles for the inclusion of the graph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' The minimum tree of a graph is the set of minimum edges of a cocycle, its complement being the set of the maximum edges of a cycle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' If we consider the lattice (F, ∪, ∩), a sublattice of M, the algebraic properties of F (distributivity) are stronger than those of M (semi-modularity).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' It is thus possible to construct Gk(Γ), the super-lattice, by defining it as the set of distributive sub- lattices of any geometric lattice, that is to say, a sub-lattice of the semi-geometric lattice associated with M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' 9 Possible applications Let’s finish with some more epistemological considerations: after all, mathematical physics and philosophy are not so far apart (see [18]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' The space associated with this "network of networks", that is, the zeros and poles of the modular function of all networks, has been studied in hard proof theorems, because one does not define a structure of complex analytic variety on the single com- pactified network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' (A natural way of proceeding would be to define a compactified isomorphism on the Riemann sphere S = C ∪ {∞}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=') Whatever the difficulties of study, it is proved that this network function exists, and we have thus proved also that the set of all sets of possible flows exists as a modular function of all networks in the algebraic sense of the term.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' Let us now consider some possible applications of the previous formalism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' Since the old work of [Von Neuman 1946], quantum mechanics represents all the physical states of the universe by a vector space of infinite dimension called "Hilbert space".' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' However, the separability property and the convergence condition make it 12 possible to reduce to closed subspaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' In this case, the complex vectors form a finite dimensional subspace and their mathematics is identical to that of flows or tensions on a graph, except that their coefficients can take on complex values.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' This situation makes it possible, as we have seen, to apply known theorems of arithmetic to them.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' Because of the flow-tension duality, the network function defines as well the set of all the sets of possible tensions, and hence it specifies the shortest path in the total set of all possible paths, as well as the most rational scheduling of tasks in the set of all possible actions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' Here we have a theorem of the existence of an optimal behavior, whatever the field we consider.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' Moreover, the problem of the shortest path in a graph is related to the question of the tree of minimum length, which itself formalizes the notion of classification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' A "network of networks" with a maximum voltage would thus make it possible both: to confirm the existence of a tree of minimum length of the network of all networks, and hence, of a classification of classifications (see [17]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' In general, the variable "weights" can receive different meanings (reliability, econ- omy, etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=') on a tree, other than the length of the arcs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' So the network of networks Gk(Γ) can still make it possible to calculate the maximum reliability path, or the most economical route, etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=', in the set of all possible paths.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' I will say a final word about the aim of this construction : though the world may be multiple and chaotic, circulations and actions can be ordered in relation to the same structure, which is expressed - in the linear case - through the form of this remarkable holomorphic function which has been here constructed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' Doing that, we tried in fact to formalize the intuition of a "network of networks", as it is expressed in the conclusion of our book on networks (see [15], 265-286).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' This is also the achievement of what we called elsewhere a "rationalité réticulaire" (reticular rationality)(see [16]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' References [1] Berge, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=', Graphes et hypergraphes, Dunod, Paris, 1970.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' [2] Deheuvels, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=', Formes quadratiques et groupes classiques, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content='U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content='F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=', Paris, 1981.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' [3] Ford, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=', Fulkerson, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=', Flows in Networks, Rand Corporation, Santa Monica, 1962.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' 13 [4] Fulkerson, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=', "An out-of-kilter method for minimal-cost flow problems", Journal of the Society for Industrial and Applied Mathematics 9, 18-27, 1961.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' [5] Gallai, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=', "Gráfokkal kapcsolatos maximum-minimum tételek, I rész",[Hungarian: Maximum-minimum theorems for networks (part I)] A Magyar Tudományos Akadémia Matematikai és Fizikai Tudományok Osztályának Közleményei, 7, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' 305-338, 1957.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' [6] Gallai, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=', "Maximum-minimum Sätze Über Graphen", Acta Mathematica Academiae Scientiarum Hungaricae 9, 395-434, 1958.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' [7] Gondran, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=', Minoux, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=', Graphes et Algorithmes, Eyrolles, Paris, 1979.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' [8] Hitchcock, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=', "The distribution of a product from several sources to numerous localities", Journal of Mathematics and Physics 20, 224-230, 1941.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' [9] Kantorovich, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=', "O peremeshchenii mass" [Russian], Doklady Akademii Nauk SSSR 37, 7-8, 227-230, 1942.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' [English translation: "On the translocation of masses", Comptes Rendus (Doklady) de l’Académie des Sciences de l’U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content='R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content='S, 37, 199-201,1942, [reprinted: Management Science 5, 1-4, 1958].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' [10] Kantorovich L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=', Gavurin, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=', "Primenenie matematicheskikh metodov v voprosakh analiza gruzopotokov" [Russian;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' "The application of mathematical methods to freight flow analysis"], in Problemy povysheniya effectivnosti raboty transporta [Russian;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' Collection of Problems of Raising the Efficiency of Transport Performance], Akademiia Nauk SSSR, Moscow-Leningrad, 1949, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' 110-138.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' [11] Klein, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=', "A primal method for minimal cost flows with applications to the assignment and transportation problems", Management Science 14, 205-220, 1967.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' [12] Koopmans, "Optimum utilization of the transportation system", in: The Econo- metric Society Meeting Washington, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content='C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=', September 6-18, 1947;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content='H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' Leavens, (ed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' ), Proceedings of the International Statistical Conferences - Volume V, 1948, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' 136-146;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' reprinted in Econometrica 17 (Supplement) 136-146, 1949;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' reprinted in Scientific Papers of Tjalling C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' Koopmans, Springer, Berlin, 184-193.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' [13] Koopmans, Tj.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content='C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=', Reiter, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=', "A model of transportation", Activity Analysis of Production and Allocation - Proceedings of a Conference, Tj.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content='C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' Koopmans (ed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' ), 222-259, Wiley, New York, 1951.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' [14] Lur’e, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=', "Methods of establishing the shortest running distances for freights on setting up transportation systems" [in Russian], in Primenenie matematiki èkonomicheskikh issle-dovaniyakh [Russian;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' Nemchinov (ed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' ), Application of 14 Mathematics in Economical Studies, Izdatel’stvo Sotsial’no-Èkonomichesk˘i Liter- atury, 249-382, Moscow, 1959.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' English translation in: V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content='S Nemchinov (ed), The Use of Mathematics in Economics, 322-355, Oliver and Boyd, Edinburgh, 1964.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' [15] Parrochia, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=', Philosophie des réseaux, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content='U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content='F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=', Paris, 1993.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' [16] Parrochia, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=', "La rationalité réticulaire", in D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' Parrochia (ed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' ), Penser les réaux, 7-23, Champ Vallon, Seyssel, 2001.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' [17] Parrochia D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=', Neuville, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=', Towards a general theory of classifications, Basel, Birkhäuser, 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' [18] Parrochia, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=', Mathematics and Philosophy, Wiley-Iste, London, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' [19] Robinson, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=', "On the Hamiltonian Game (A Traveling Salesman Problem)", Research Memorandum RM-303, The RAND Corporation, Santa Monica, Califor- nia, 1949.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' [20] Robinson, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=', "A Note on the Hitchcock-Koopmans Problem", Research Mem- orandum RM-407, The RAND Corporation, Santa Monica, California, 1950.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' [21] Schrijver, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=', "On the history of the transportation and maximum flow prob- lems", Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' Program.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=', 91, 437-445, 2002.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' [22] Serre, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content='-P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=', Course in Arithmetics, Springer-Verlag, Berlin, 1973.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} +page_content=' 15' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ONFIT4oBgHgl3EQfdyse/content/2301.11271v1.pdf'} diff --git a/P9AyT4oBgHgl3EQfUve2/content/2301.00132v1.pdf b/P9AyT4oBgHgl3EQfUve2/content/2301.00132v1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..0d4e4e5fd3b469f18f0e874e6b6f0e5f3d29fee9 --- /dev/null +++ b/P9AyT4oBgHgl3EQfUve2/content/2301.00132v1.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:b0b3b77a97c1097f7a9429913223127c9727ea1d9c1ba46c7e4e839104c5eba2 +size 637521 diff --git a/P9AyT4oBgHgl3EQfUve2/vector_store/index.pkl b/P9AyT4oBgHgl3EQfUve2/vector_store/index.pkl new file mode 100644 index 0000000000000000000000000000000000000000..8282001bf050a1dbbc55ab88c707ea5ff07f5423 --- /dev/null +++ b/P9AyT4oBgHgl3EQfUve2/vector_store/index.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:b6f466f55a5c9d2e2bbe688d3ea09b12193c0a16f706b012e9532ce0eb24c880 +size 325935 diff --git a/P9AyT4oBgHgl3EQfhPht/vector_store/index.pkl b/P9AyT4oBgHgl3EQfhPht/vector_store/index.pkl new file mode 100644 index 0000000000000000000000000000000000000000..9c8e9e3a0260d120a1a6d358b1b99d8f8362b862 --- /dev/null +++ b/P9AyT4oBgHgl3EQfhPht/vector_store/index.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:374c01986dfa9075f9afd2035abfd89798ed85220ffaca73999b744a1ab8c74c +size 589396 diff --git a/Plough Knowledge Ocean Intro/vector_store/index.pkl b/Plough Knowledge Ocean Intro/vector_store/index.pkl new file mode 100644 index 0000000000000000000000000000000000000000..46c831db2a99e81ad7827c324adedd41680215cf --- /dev/null +++ b/Plough Knowledge Ocean Intro/vector_store/index.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:fc6cb13b4b73c5eca1d89ddb9c88514099c3323fc3f4c46bb388ee0ac006ca8c +size 115996 diff --git a/QdAyT4oBgHgl3EQftvmX/vector_store/index.faiss b/QdAyT4oBgHgl3EQftvmX/vector_store/index.faiss new file mode 100644 index 0000000000000000000000000000000000000000..b6ddf917b1e6419078f22fabee0a967b0ba9c84a --- /dev/null +++ b/QdAyT4oBgHgl3EQftvmX/vector_store/index.faiss @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:48f8c5228b5eea72dd623ae5097fbba3e1f84dee7911d37deec6321afaa18f1a +size 6160429 diff --git a/QtE0T4oBgHgl3EQfUADF/content/tmp_files/2301.02245v1.pdf.txt b/QtE0T4oBgHgl3EQfUADF/content/tmp_files/2301.02245v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..7c68fce4e4db6b07314bf890a0e634342e8d6910 --- /dev/null +++ b/QtE0T4oBgHgl3EQfUADF/content/tmp_files/2301.02245v1.pdf.txt @@ -0,0 +1,235 @@ +arXiv:2301.02245v1 [quant-ph] 5 Jan 2023 +Comments on the Bell-Clauser-Horne-Shimony-Holt +inequality +S. P. Sorella∗ +UERJ – State University of Rio de Janeiro, +Physics Institute – Department of Theoretical Physics – Rua São Francisco Xavier 524, +20550-013, Maracanã, Rio de Janeiro, Brazil +Abstract +We point out that the violation of the Bell-CHSH inequality in Quantum Mechanics exhibits a simple un- +derstanding when the entangled spin singlet states are thought as the vacuum states of suitable Hamiltonians. +The construction of the four bounded operators entering the Bell-CHSH inequality can be worked out in an +elementary way. The inequality acquires a form in which its violation can be traced back to the vacuum prop- +erties, a feature which enables us to make a bridge among a large class of models, whose vacuum state can be +described by a Bogoliubov transformation as, for example: superfluids, superconductors and Quantum Field +Theories. The examples of a pair of entangled spin 1 particles in Quantum Mechanics and of the scalar field +in relativistic Quantum Field Theory are discussed. In the latter case, we rely on the relation expressing the +Minkowski vacuum in terms of left and right Rindler modes. As such, the Bell-CHSH inequality turns out to be +parametrized by the Unruh temperature. +1 +Introduction +The aim of this letter is that of pointing out that the Bell-Clauser-Horne-Shimony-Holt inequality [1, 2] can be +ascribed to the vacuum state |Ω⟩, taking the form +|⟨Ω|CCHSH|Ω⟩| = |⟨Ω|(A1 + A2)B1 + (A1 − A2)B2|Ω⟩| > 2 , +(1) +where the four Hermitian operators Ai, Bi, i = 1, 2 are such that [3] +A2 +i = B2 +i = 1 , +[Ai, Bk] = 0 . +(2) +We underline that, when rewritten in the form (1), the Bell-CHSH inequality applies to a variety of models, ranging +from Quantum Mechanics to more sophisticated examples such as: relativistic Quantum Field Theories. +To grasp the meaning of eq.(1), let us discuss two examples. +∗silvio.sorella@gmail.com +1 + +2 +Entangled pair of spin 1 particles +Let us start by considering a pair of entangled spin 1 particles. The singlet state reads +|Ω⟩ = +�|1⟩A| − 1⟩B − |0⟩A|0⟩B + | − 1⟩A|1⟩B +√ +3 +� +. +(3) +It is easily checked that expression (3) can be thought as the vacuum state of the spin Hamiltonian +H = ⃗SA · ⃗SB = 1 +2 +� +⃗SA + ⃗SB +�2 +− 2 . +(4) +with +� +⃗SA, ⃗SB +� +denoting the spin 1 matrices. For the operators (Ai, Bi) we write +Ai| − 1⟩A += +eiαi|0⟩A , +Ai|0⟩A = e−iαi| − 1⟩A , +Ai|1⟩A = |1⟩A , +Bi|1⟩B += +eiβi|0⟩B , +Bi|0⟩B = e−iβi|1⟩B , +Bi| − 1⟩B = | − 1⟩B , +(5) +where (αi, βi) are arbitrary real coefficients. The Bell-CHSH correlator is easily evaluated, yielding +⟨Ω|CCHSH|Ω⟩ = 2 +3 (1 − cos(α1 + β1) − cos(α2 + β1) − cos(α1 + β2) + cos(α2 + β2)) . +(6) +Choosing, for example, α2 = β2 = 0, α1 = π +2 , β1 = 3π +4 , one gets the violation1 +|⟨Ω|CCHSH|Ω⟩| = 2(2 + +√ +2) +3 +≈ 2.27 , +(9) +which compares well with the value reported by [4]. +3 +Relativistic scalar Quantum Field Theory +As second example, we consider a free scalar field ϕ in relativistic Quantum Field Theory. The violation of the +Bell-CHSH has been established by [5] using Algebraic Quantum Field Theory techniques. Also here, the violation +of the Bell-CHSH inequality can be understood in a simple way as a consequence of the entanglement properties of +the vacuum. To that end, we make use of the expansion of the Minkowski vacuum in terms of left and right Rindler +modes [6, 7]: +|Ω⟩ = +� +i +� +(1 − e− 2πωi +a ) +1 +2 +∞ +� +ni=0 +e− πniωi +a +|ni⟩L|ni⟩R +� +, +(10) +1The same reasoning applies to the Bell spin 1/2 singlet state +|Ω⟩ = +� |+⟩A|−⟩B − |−⟩A|+⟩B +√ +2 +� +. +(7) +For the operators (Ai, Bi) we have now +Ai|+⟩A += +eiαi|−⟩A , +Ai|−⟩A = e−iαi|+⟩A , , +Bi|+⟩B += +eiβi|−⟩B , +Bi|−⟩B = e−iβi|+⟩B . +(8) +Setting α1 = 0, α2 = π +2 , β1 = π +4 , β2 = − π +4 , one recovers Tsirelson’s bound [3], namely |⟨Ω|CCHSH|Ω⟩| = 2 +√ +2. +2 + +where (|ni⟩L, |ni⟩R) are the left and right Rindler modes and T = +a +2π is the Unruh temperature. The relation (10) +follows from the use of a Bogoliubov transformation applied to the the quantization of the scalar field in the Rindler +wedges [6, 7]. Proceeding as in the case of the spin 1 example, for the four operators (Ak, Bk), k = 1, 2, we have +now +Ak|2ni⟩L += +eiαk|2ni + 1⟩L , +Ak|2ni + 1⟩L = e−iαk|2ni⟩L , +Bk|2ni⟩R += +eiβk|2ni + 1⟩R , +Bk|2ni + 1⟩R = e−iβk|2ni⟩R +(11) +; . +(12) +As a consequence, choosing [5] +α1 = 0 , +α2 = π +2 , +β1 = −π +4 , +β2 = π +4 , +(13) +the Bell-CHSH inequality can be parametrized as +|⟨Ω|CCHSH|Ω⟩| = 2 +√ +2 τ(T ) , +(14) +where the form factor τ reads +τ(T ) = 2 +� +i +� +e +πωi +a − e− πωi +a +� +� +e +2πωi +a +− e− 2πωi +a +� = +� +i +1 +cosh( ωi +2T ) , +(15) +from which it follows that the violation of the Bell-CHSH inequality in relativistic Quantum Field Theory can be +anlysed in terms of the Unruh temperature [8]. +4 +Conclusion +In this note we have pointed out that the Bell-CHSH inequality acquires a general meaning when entanglement is +seen as being encrypted into the vacuum state !Ω⟩. Thinking in that way, enables us to make a bridge among a +large class of systems, ranging from Quantum Mechanics to Quantum Field Theory. We also underline that the +construction of the four operators (Ai, Bi), i = 1, 2 entering the Bell-CHSH inequality becomes very simple and +elegant, besides of having large applicability. +Acknowledgements +The authors would like to thank the Brazilian agencies CNPq and FAPERJ for financial support. S.P. Sorella is a +level 1 CNPq researcher under the contract 301030/2019-7. +References +[1] J. S. Bell, Physics Physique Fizika 1, 195-200 (1964) doi:10.1103/PhysicsPhysiqueFizika.1.195 +3 + +[2] J. F. Clauser, +M. A. Horne, +A. Shimony and R. A. Holt, +Phys. Rev. Lett. 23, +880-884 (1969) +doi:10.1103/PhysRevLett.23.880 +[3] B .S . Cirelson, Lett. Math. Phys. 4, 93-100, (1980) +[4] J . C. Howell, A . Lamas-Linares, D . Bouwmeester, Phys. Rev. Lett. 88, 030401 (2002) +[5] Stephen J. Summers and Reinhard Werner, J. Math. Phys. 28, 2448 (1987); doi: 10.1063/1.527734 +[6] L. +C. +B. +Crispino, +A. +Higuchi +and +G. +E. +A. +Matsas, +Rev. +Mod. +Phys. +80, +787-838 +(2008) +doi:10.1103/RevModPhys.80.787 [arXiv:0710.5373 [gr-qc]]. +[7] D. Harlow, Rev. Mod. Phys. 88, 015002 (2016) doi:10.1103/RevModPhys.88.015002 [arXiv:1409.1231 [hep-th]]. +[8] In preparation +4 + diff --git a/QtE0T4oBgHgl3EQfUADF/content/tmp_files/load_file.txt b/QtE0T4oBgHgl3EQfUADF/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..bbb53f1b3de151524f72967620f30c15aab8c276 --- /dev/null +++ b/QtE0T4oBgHgl3EQfUADF/content/tmp_files/load_file.txt @@ -0,0 +1,105 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QtE0T4oBgHgl3EQfUADF/content/2301.02245v1.pdf,len=104 +page_content='arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QtE0T4oBgHgl3EQfUADF/content/2301.02245v1.pdf'} +page_content='02245v1 [quant-ph] 5 Jan 2023 Comments on the Bell-Clauser-Horne-Shimony-Holt inequality S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QtE0T4oBgHgl3EQfUADF/content/2301.02245v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QtE0T4oBgHgl3EQfUADF/content/2301.02245v1.pdf'} +page_content=' Sorella∗ UERJ – State University of Rio de Janeiro, Physics Institute – Department of Theoretical Physics – Rua São Francisco Xavier 524, 20550-013, Maracanã, Rio de Janeiro, Brazil Abstract We point out that the violation of the Bell-CHSH inequality in Quantum Mechanics exhibits a simple un- derstanding when the entangled spin singlet states are thought as the vacuum states of suitable Hamiltonians.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QtE0T4oBgHgl3EQfUADF/content/2301.02245v1.pdf'} +page_content=' The construction of the four bounded operators entering the Bell-CHSH inequality can be worked out in an elementary way.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QtE0T4oBgHgl3EQfUADF/content/2301.02245v1.pdf'} +page_content=' The inequality acquires a form in which its violation can be traced back to the vacuum prop- erties, a feature which enables us to make a bridge among a large class of models, whose vacuum state can be described by a Bogoliubov transformation as, for example: superfluids, superconductors and Quantum Field Theories.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QtE0T4oBgHgl3EQfUADF/content/2301.02245v1.pdf'} +page_content=' The examples of a pair of entangled spin 1 particles in Quantum Mechanics and of the scalar field in relativistic Quantum Field Theory are discussed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QtE0T4oBgHgl3EQfUADF/content/2301.02245v1.pdf'} +page_content=' In the latter case, we rely on the relation expressing the Minkowski vacuum in terms of left and right Rindler modes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QtE0T4oBgHgl3EQfUADF/content/2301.02245v1.pdf'} +page_content=' As such, the Bell-CHSH inequality turns out to be parametrized by the Unruh temperature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QtE0T4oBgHgl3EQfUADF/content/2301.02245v1.pdf'} +page_content=' 1 Introduction The aim of this letter is that of pointing out that the Bell-Clauser-Horne-Shimony-Holt inequality [1, 2] can be ascribed to the vacuum state |Ω⟩, taking the form |⟨Ω|CCHSH|Ω⟩| = |⟨Ω|(A1 + A2)B1 + (A1 − A2)B2|Ω⟩| > 2 , (1) where the four Hermitian operators Ai, Bi, i = 1, 2 are such that [3] A2 i = B2 i = 1 , [Ai, Bk] = 0 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QtE0T4oBgHgl3EQfUADF/content/2301.02245v1.pdf'} +page_content=' (2) We underline that, when rewritten in the form (1), the Bell-CHSH inequality applies to a variety of models, ranging from Quantum Mechanics to more sophisticated examples such as: relativistic Quantum Field Theories.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QtE0T4oBgHgl3EQfUADF/content/2301.02245v1.pdf'} +page_content=' To grasp the meaning of eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QtE0T4oBgHgl3EQfUADF/content/2301.02245v1.pdf'} +page_content=' (1), let us discuss two examples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QtE0T4oBgHgl3EQfUADF/content/2301.02245v1.pdf'} +page_content=' ∗silvio.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QtE0T4oBgHgl3EQfUADF/content/2301.02245v1.pdf'} +page_content='sorella@gmail.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QtE0T4oBgHgl3EQfUADF/content/2301.02245v1.pdf'} +page_content='com 1 2 Entangled pair of spin 1 particles Let us start by considering a pair of entangled spin 1 particles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QtE0T4oBgHgl3EQfUADF/content/2301.02245v1.pdf'} +page_content=' The singlet state reads |Ω⟩ = �|1⟩A| − 1⟩B − |0⟩A|0⟩B + | − 1⟩A|1⟩B √ 3 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QtE0T4oBgHgl3EQfUADF/content/2301.02245v1.pdf'} +page_content=' (3) It is easily checked that expression (3) can be thought as the vacuum state of the spin Hamiltonian H = ⃗SA · ⃗SB = 1 2 � ⃗SA + ⃗SB �2 − 2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QtE0T4oBgHgl3EQfUADF/content/2301.02245v1.pdf'} +page_content=' (4) with � ⃗SA, ⃗SB � denoting the spin 1 matrices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QtE0T4oBgHgl3EQfUADF/content/2301.02245v1.pdf'} +page_content=' For the operators (Ai, Bi) we write Ai| − 1⟩A = eiαi|0⟩A , Ai|0⟩A = e−iαi| − 1⟩A , Ai|1⟩A = |1⟩A , Bi|1⟩B = eiβi|0⟩B , Bi|0⟩B = e−iβi|1⟩B , Bi| − 1⟩B = | − 1⟩B , (5) where (αi, βi) are arbitrary real coefficients.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QtE0T4oBgHgl3EQfUADF/content/2301.02245v1.pdf'} +page_content=' The Bell-CHSH correlator is easily evaluated, yielding ⟨Ω|CCHSH|Ω⟩ = 2 3 (1 − cos(α1 + β1) − cos(α2 + β1) − cos(α1 + β2) + cos(α2 + β2)) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QtE0T4oBgHgl3EQfUADF/content/2301.02245v1.pdf'} +page_content=' (6) Choosing, for example, α2 = β2 = 0, α1 = π 2 , β1 = 3π 4 , one gets the violation1 |⟨Ω|CCHSH|Ω⟩| = 2(2 + √ 2) 3 ≈ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QtE0T4oBgHgl3EQfUADF/content/2301.02245v1.pdf'} +page_content='27 , (9) which compares well with the value reported by [4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QtE0T4oBgHgl3EQfUADF/content/2301.02245v1.pdf'} +page_content=' 3 Relativistic scalar Quantum Field Theory As second example, we consider a free scalar field ϕ in relativistic Quantum Field Theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QtE0T4oBgHgl3EQfUADF/content/2301.02245v1.pdf'} +page_content=' The violation of the Bell-CHSH has been established by [5] using Algebraic Quantum Field Theory techniques.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QtE0T4oBgHgl3EQfUADF/content/2301.02245v1.pdf'} +page_content=' Also here, the violation of the Bell-CHSH inequality can be understood in a simple way as a consequence of the entanglement properties of the vacuum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QtE0T4oBgHgl3EQfUADF/content/2301.02245v1.pdf'} +page_content=' To that end, we make use of the expansion of the Minkowski vacuum in terms of left and right Rindler modes [6, 7]: |Ω⟩ = � i � (1 − e− 2πωi a ) 1 2 ∞ � ni=0 e− πniωi a |ni⟩L|ni⟩R � , (10) 1The same reasoning applies to the Bell spin 1/2 singlet state |Ω⟩ = � |+⟩A|−⟩B − |−⟩A|+⟩B √ 2 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QtE0T4oBgHgl3EQfUADF/content/2301.02245v1.pdf'} +page_content=' (7) For the operators (Ai, Bi) we have now Ai|+⟩A = eiαi|−⟩A , Ai|−⟩A = e−iαi|+⟩A , , Bi|+⟩B = eiβi|−⟩B , Bi|−⟩B = e−iβi|+⟩B .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QtE0T4oBgHgl3EQfUADF/content/2301.02245v1.pdf'} +page_content=' (8) Setting α1 = 0, α2 = π 2 , β1 = π 4 , β2 = − π 4 , one recovers Tsirelson’s bound [3], namely |⟨Ω|CCHSH|Ω⟩| = 2 √ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QtE0T4oBgHgl3EQfUADF/content/2301.02245v1.pdf'} +page_content=' 2 where (|ni⟩L, |ni⟩R) are the left and right Rindler modes and T = a 2π is the Unruh temperature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QtE0T4oBgHgl3EQfUADF/content/2301.02245v1.pdf'} +page_content=' The relation (10) follows from the use of a Bogoliubov transformation applied to the the quantization of the scalar field in the Rindler wedges [6, 7].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QtE0T4oBgHgl3EQfUADF/content/2301.02245v1.pdf'} +page_content=' Proceeding as in the case of the spin 1 example, for the four operators (Ak, Bk), k = 1, 2, we have now Ak|2ni⟩L = eiαk|2ni + 1⟩L , Ak|2ni + 1⟩L = e−iαk|2ni⟩L , Bk|2ni⟩R = eiβk|2ni + 1⟩R , Bk|2ni + 1⟩R = e−iβk|2ni⟩R (11) ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QtE0T4oBgHgl3EQfUADF/content/2301.02245v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QtE0T4oBgHgl3EQfUADF/content/2301.02245v1.pdf'} +page_content=' (12) As a consequence, choosing [5] α1 = 0 , α2 = π 2 , β1 = −π 4 , β2 = π 4 , (13) the Bell-CHSH inequality can be parametrized as |⟨Ω|CCHSH|Ω⟩| = 2 √ 2 τ(T ) , (14) where the form factor τ reads τ(T ) = 2 � i � e πωi a − e− πωi a � � e 2πωi a − e− 2πωi a � = � i 1 cosh( ωi 2T ) , (15) from which it follows that the violation of the Bell-CHSH inequality in relativistic Quantum Field Theory can be anlysed in terms of the Unruh temperature [8].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QtE0T4oBgHgl3EQfUADF/content/2301.02245v1.pdf'} +page_content=' 4 Conclusion In this note we have pointed out that the Bell-CHSH inequality acquires a general meaning when entanglement is seen as being encrypted into the vacuum state !' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QtE0T4oBgHgl3EQfUADF/content/2301.02245v1.pdf'} +page_content='Ω⟩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QtE0T4oBgHgl3EQfUADF/content/2301.02245v1.pdf'} +page_content=' Thinking in that way, enables us to make a bridge among a large class of systems, ranging from Quantum Mechanics to Quantum Field Theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QtE0T4oBgHgl3EQfUADF/content/2301.02245v1.pdf'} +page_content=' We also underline that the construction of the four operators (Ai, Bi), i = 1, 2 entering the Bell-CHSH inequality becomes very simple and elegant, besides of having large applicability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QtE0T4oBgHgl3EQfUADF/content/2301.02245v1.pdf'} +page_content=' Acknowledgements The authors would like to thank the Brazilian agencies CNPq and FAPERJ for financial support.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QtE0T4oBgHgl3EQfUADF/content/2301.02245v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QtE0T4oBgHgl3EQfUADF/content/2301.02245v1.pdf'} +page_content='P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QtE0T4oBgHgl3EQfUADF/content/2301.02245v1.pdf'} +page_content=' Sorella is a level 1 CNPq researcher under the contract 301030/2019-7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QtE0T4oBgHgl3EQfUADF/content/2301.02245v1.pdf'} +page_content=' References [1] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QtE0T4oBgHgl3EQfUADF/content/2301.02245v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QtE0T4oBgHgl3EQfUADF/content/2301.02245v1.pdf'} +page_content=' Bell, Physics Physique Fizika 1, 195-200 (1964) doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QtE0T4oBgHgl3EQfUADF/content/2301.02245v1.pdf'} +page_content='1103/PhysicsPhysiqueFizika.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QtE0T4oBgHgl3EQfUADF/content/2301.02245v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QtE0T4oBgHgl3EQfUADF/content/2301.02245v1.pdf'} +page_content='195 3 [2] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QtE0T4oBgHgl3EQfUADF/content/2301.02245v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QtE0T4oBgHgl3EQfUADF/content/2301.02245v1.pdf'} +page_content=' Clauser, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QtE0T4oBgHgl3EQfUADF/content/2301.02245v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QtE0T4oBgHgl3EQfUADF/content/2301.02245v1.pdf'} +page_content=' Horne, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QtE0T4oBgHgl3EQfUADF/content/2301.02245v1.pdf'} +page_content=' Shimony and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QtE0T4oBgHgl3EQfUADF/content/2301.02245v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QtE0T4oBgHgl3EQfUADF/content/2301.02245v1.pdf'} +page_content=' Holt, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QtE0T4oBgHgl3EQfUADF/content/2301.02245v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QtE0T4oBgHgl3EQfUADF/content/2301.02245v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QtE0T4oBgHgl3EQfUADF/content/2301.02245v1.pdf'} +page_content=' 23, 880-884 (1969) doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QtE0T4oBgHgl3EQfUADF/content/2301.02245v1.pdf'} +page_content='1103/PhysRevLett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QtE0T4oBgHgl3EQfUADF/content/2301.02245v1.pdf'} +page_content='23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QtE0T4oBgHgl3EQfUADF/content/2301.02245v1.pdf'} +page_content='880 [3] B .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QtE0T4oBgHgl3EQfUADF/content/2301.02245v1.pdf'} +page_content='S .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QtE0T4oBgHgl3EQfUADF/content/2301.02245v1.pdf'} +page_content=' Cirelson, Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QtE0T4oBgHgl3EQfUADF/content/2301.02245v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QtE0T4oBgHgl3EQfUADF/content/2301.02245v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QtE0T4oBgHgl3EQfUADF/content/2301.02245v1.pdf'} +page_content=' 4, 93-100, (1980) [4] J .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QtE0T4oBgHgl3EQfUADF/content/2301.02245v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QtE0T4oBgHgl3EQfUADF/content/2301.02245v1.pdf'} +page_content=' Howell, A .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QtE0T4oBgHgl3EQfUADF/content/2301.02245v1.pdf'} +page_content=' Lamas-Linares, D .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QtE0T4oBgHgl3EQfUADF/content/2301.02245v1.pdf'} +page_content=' Bouwmeester, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QtE0T4oBgHgl3EQfUADF/content/2301.02245v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QtE0T4oBgHgl3EQfUADF/content/2301.02245v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QtE0T4oBgHgl3EQfUADF/content/2301.02245v1.pdf'} +page_content=' 88, 030401 (2002) [5] Stephen J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QtE0T4oBgHgl3EQfUADF/content/2301.02245v1.pdf'} +page_content=' Summers and Reinhard Werner, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QtE0T4oBgHgl3EQfUADF/content/2301.02245v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QtE0T4oBgHgl3EQfUADF/content/2301.02245v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QtE0T4oBgHgl3EQfUADF/content/2301.02245v1.pdf'} +page_content=' 28, 2448 (1987);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QtE0T4oBgHgl3EQfUADF/content/2301.02245v1.pdf'} +page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QtE0T4oBgHgl3EQfUADF/content/2301.02245v1.pdf'} +page_content='1063/1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QtE0T4oBgHgl3EQfUADF/content/2301.02245v1.pdf'} +page_content='527734 [6] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QtE0T4oBgHgl3EQfUADF/content/2301.02245v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QtE0T4oBgHgl3EQfUADF/content/2301.02245v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QtE0T4oBgHgl3EQfUADF/content/2301.02245v1.pdf'} +page_content=' Crispino, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QtE0T4oBgHgl3EQfUADF/content/2301.02245v1.pdf'} +page_content=' Higuchi and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QtE0T4oBgHgl3EQfUADF/content/2301.02245v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QtE0T4oBgHgl3EQfUADF/content/2301.02245v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QtE0T4oBgHgl3EQfUADF/content/2301.02245v1.pdf'} +page_content=' Matsas, Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QtE0T4oBgHgl3EQfUADF/content/2301.02245v1.pdf'} +page_content=' Mod.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QtE0T4oBgHgl3EQfUADF/content/2301.02245v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QtE0T4oBgHgl3EQfUADF/content/2301.02245v1.pdf'} +page_content=' 80, 787-838 (2008) doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QtE0T4oBgHgl3EQfUADF/content/2301.02245v1.pdf'} +page_content='1103/RevModPhys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QtE0T4oBgHgl3EQfUADF/content/2301.02245v1.pdf'} +page_content='80.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QtE0T4oBgHgl3EQfUADF/content/2301.02245v1.pdf'} +page_content='787 [arXiv:0710.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QtE0T4oBgHgl3EQfUADF/content/2301.02245v1.pdf'} +page_content='5373 [gr-qc]].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QtE0T4oBgHgl3EQfUADF/content/2301.02245v1.pdf'} +page_content=' [7] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QtE0T4oBgHgl3EQfUADF/content/2301.02245v1.pdf'} +page_content=' Harlow, Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QtE0T4oBgHgl3EQfUADF/content/2301.02245v1.pdf'} +page_content=' Mod.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QtE0T4oBgHgl3EQfUADF/content/2301.02245v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QtE0T4oBgHgl3EQfUADF/content/2301.02245v1.pdf'} +page_content=' 88, 015002 (2016) doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QtE0T4oBgHgl3EQfUADF/content/2301.02245v1.pdf'} +page_content='1103/RevModPhys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QtE0T4oBgHgl3EQfUADF/content/2301.02245v1.pdf'} +page_content='88.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QtE0T4oBgHgl3EQfUADF/content/2301.02245v1.pdf'} +page_content='015002 [arXiv:1409.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QtE0T4oBgHgl3EQfUADF/content/2301.02245v1.pdf'} +page_content='1231 [hep-th]].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QtE0T4oBgHgl3EQfUADF/content/2301.02245v1.pdf'} +page_content=' [8] In preparation 4' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QtE0T4oBgHgl3EQfUADF/content/2301.02245v1.pdf'} diff --git a/R9E3T4oBgHgl3EQfDQnp/vector_store/index.pkl b/R9E3T4oBgHgl3EQfDQnp/vector_store/index.pkl new file mode 100644 index 0000000000000000000000000000000000000000..938198fa399ea7b8ebaef2e2fcef397e67d5f0ad --- /dev/null +++ b/R9E3T4oBgHgl3EQfDQnp/vector_store/index.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:cae5416191f21ec68d33fc7f37d1a80596f77d2c3408406b0b3793f311acc01b +size 107154 diff --git a/RdAzT4oBgHgl3EQf0P6C/content/2301.01781v1.pdf b/RdAzT4oBgHgl3EQf0P6C/content/2301.01781v1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..ec2fe919472f0c8d49afea3d79d27f6cdef98526 --- /dev/null +++ b/RdAzT4oBgHgl3EQf0P6C/content/2301.01781v1.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:dbcce9ab0e6c9afc7d3f5d39e6175704127b9e3b51a38992dc3adbb8d15567ea +size 356005 diff --git a/RdAzT4oBgHgl3EQf0P6C/vector_store/index.pkl b/RdAzT4oBgHgl3EQf0P6C/vector_store/index.pkl new file mode 100644 index 0000000000000000000000000000000000000000..2a33f16d28578840089d8c433e7ec5a19584457e --- /dev/null +++ b/RdAzT4oBgHgl3EQf0P6C/vector_store/index.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:33c3173dd663ca2b0f1f6cc6847e426136971474df428ea13f261a7341a69bba +size 179658 diff --git a/RtAzT4oBgHgl3EQfJPsM/content/tmp_files/2301.01074v1.pdf.txt b/RtAzT4oBgHgl3EQfJPsM/content/tmp_files/2301.01074v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..31d1f8075c55f3d577d653e63f245ce497adee87 --- /dev/null +++ b/RtAzT4oBgHgl3EQfJPsM/content/tmp_files/2301.01074v1.pdf.txt @@ -0,0 +1,1054 @@ +1 + +Surprisingly large anomalous Hall effect and giant negative magnetoresistance in half- +topological semimetals +Yanglin Zhu1+, Cheng-Yi Huang2+, Yu Wang1, David Graf 3, Hsin Lin4, Seng Huat Lee1, John Singleton5, +Lujin Min1, Johanna C. Palmstrom5, Arun Bansil2, Bahadur Singh6*, and Zhiqiang Mao1* +1 Department of Physics, Pennsylvania State University, University Park, PA, 16802 +2 Department of Physics, Northeastern University, Boston, USA, 02115 +3National High Magnetic Field Laboratory, Tallahassee, FL, 32310 + 4 Institute of Physics, Academia Sinica, Taipei 11529, Taiwan +5 National High Magnetic Field Laboratory, Pulse Field Facility, Los Alamos National Laboratory, + Los Alamos, NM, 87545 +6 Department of Condensed Matter Physics and Materials Science, Tata Institute of Fundamental +Research, Mumbai 400005, India + +Abstract +Large intrinsic anomalous Hall effect (AHE) due to the Berry curvature in magnetic +topological semimetals is attracting enormous interest due to its fundamental importance and +technological relevance. Mechanisms resulting in large intrinsic AHE include diverging Berry +curvature in Weyl semimetals, anticrossing nodal rings or points of non-trivial bands, and +noncollinear spin structures. Here we show that a half-topological semimetal (HTS) state near a +topological critical point can provide a new mechanism for driving an exceptionally large AHE. +We reveal this through a systematic experimental and theoretical study of the antiferromagnetic +(AFM) half-Heusler compound TbPdBi. We not only observed an unusual AHE with a +surprisingly large anomalous Hall angle H (tanH  2, the largest among the antiferromagnets) +in its field-driven ferromagnetic (FM) phase, but also found a distinct Hall resistivity peak in the +canted AFM phase within a low field range, where its isothermal magnetization is nearly linearly + +2 + +dependent on the field. Moreover, we observed a nearly isotropic, giant negative +magnetoresistance with a magnitude of ~98%. Our in-depth theoretical modelling demonstrates +that these exotic transport properties originate from the HTS state. A minimal Berry curvature +cancellation between the trivial spin-up and nontrivial spin-down bands results not only in an +extremely large AHE, but it also enhances the spin polarization of the spin-down bands +substantially and thus leads to a giant negative magnetoresistance. Our study advances the +understanding of the interplay between band topology and magnetism and offers new clues for +materials design for spintronics and other applications. + + ++These two authors equally contribute to this work +*emails: bahadur.singh@tifr.res.in, zim1@psu.edu + + + + + + + + + + + + + + + + +3 + + +Large intrinsic anomalous Hall effect (AHE) in topological semimetals has been a subject +under intensive studies. Unlike the conventional Hall effect, which is caused by the Lorentz force +under an external magnetic field, the intrinsic AHE stems from the net Berry curvature  (k) of +the band structure [1-3].  (k), which describes the geometry of the Bloch wavefunctions, is +determined by the topology of the band structure. When a longitudinal electric field is applied, + (k) imparts transverse velocity [ E   (k)] to Bloch electrons and thus results in the AHE. To +observe intrinsic AHE, time-reversal symmetry (TRS) is required to be broken. Therefore, large +intrinsic AHE is usually expected in magnetic materials with Berry curvature hot spots near the +Fermi level. Prior studies have found that several types of magnetic topological materials can +exhibit large intrinsic AHE. These include ferromagnetic (FM) Weyl semimetals such as Co3Sn2S2 +[4,5] and Co2MnGa [6,7], which host Weyl nodal crossings that lie close to the Fermi level and +carry a diverging Berry curvature. With the TRS broken by ferromagnetism, the Berry curvature +contribution from the Weyl nodes with opposite chirality will not cancel out, resulting in a large +AHE. Strength of the AHE is usually characterized by the intrinsic anomalous Hall angle (AHA) +H, where H = tan-1( 𝜎𝑦𝑥 +𝐴𝐻/𝜎𝑥𝑥), and 𝜎𝑦𝑥 +𝐴𝐻 and 𝜎𝑥𝑥 are the anomalous Hall conductivity and +longitudinal conductivity, respectively. Co3Sn2S2 and Co2MnGa both exhibit large AHA with +tanH = 0.2 (Co3Sn2S2) [4] and 0.12 (Co2MnGa) [8]. Antiferromagnetic (AFM) half-Heusler +materials such as GdPtBi [9] and TbPtBi [10] also display a large intrinsic AHE with tanH values +as large as 0.16-0.76 [9-12]. Although these materials harbor Weyl nodes induced by magnetic +fields, their large AHE does not originate from Weyl nodes but arises from the large net Berry +curvature produced by the anticrossing of spin-split bands near the Fermi level [9,12]. Besides the +large AHE caused by the presence of anticrossing Weyl nodes or bands, recent studies show that + +4 + +gapped nodal rings can also generate extremely large AHE [13,14]. This was experimentally +demonstrated in FM Heusler Co2MnAl [14], whose AHA reaches a record value with tanH = 0.21 +at room temperature. In addition, the non-collinear AFM structure can lead to a large Berry +curvature, resulting in a large intrinsic AHE [15,16]; this has been seen in a range of AFM +topological materials with broken TRS, such as Mn3Sn [17] and Mn3Ge [18]. +In this paper, we report a surprisingly large AHE in the Pd-based half-Heusler compound +TbPdBi. Its tanH value reaches ~ 2, which is the largest among all known magnetic topological +materials. Our detailed theoretical analysis suggests that such an extremely large AHE originates +from a half-topological semimetal (HTS) state. HTS is a long-sought topological state in materials +and can be viewed as a topological version of the half-metallic state in which electrons conduct in +only one spin channel, while the other spin channel is insulating [19-21]. Since such a state could +generate low power consuming spin current, it holds great promise for applications in topological +quantum spintronic devices [22]. Moreover, it has been theoretically shown that a gap opening at +the non-trivial band crossing points transforms the HTS into a quantum anomalous Hall insulator +[23,24]. These exotic properties have inspired extensive interest and a variety of material systems +have been predicted to be HTS, such as two-dimensional(2D) MnN [25], PrOBr [26], and PtCl3 +[24]; quasi-1D X2RhF6 (X=K, Rb, Cs) [27] and XYZ3 (X=Cs, Rb, Y=Cr, Cu, Z=Cl, I) [28]; 3D +MF3 (M=Pd, Mn) [29], LiV2F6 [30], etc. The Dirac/Weyl points or nodal rings in all these materials +are comprised of spin-polarized bands [21,30,31]. However, these theoretical predictions are still +awaiting experimental verifications. Our work here demonstrates that TbPdBi hosts a unique HTS +in proximity to a topological critical point. Such a peculiar HTS in TbPdBi results in not only an +unusually large AHE but also leads to a giant negative magnetoresistance. Additionally, we find +that the Hall resistivity of TbPdBi exhibits a distinct anomalous peak in the low field range, where + +5 + +its isothermal magnetization nearly linearly depends on field and this behavior can be understood +in terms of the Berry curvature enhancement induced by spin canting. +Single crystals of TbPdBi were grown using the Bi-flux method (see Methods). They +exhibit semi-metallic behavior, manifested by the broad peak in the temperature dependence of +resistivity xx around 50K (see supplemental Fig. S1a). The magnetic susceptibility ( ) +measurements (Fig. S1a) show its AFM state with TN = 5.2 K. xx exhibits a steeper drop below +TN, indicating electronic transport coupled with magnetism. We performed a Curie-Weiss (CW) +fit for its temperature dependence of susceptibility (T); the best fit was obtained in the +temperature range of 100-300K (Fig. S1b) which yields the effective magnetic moment (eff) of +9.4 B/Tb, consistent with a prior report [32]. +From Hall resistivity xy measurements under high magnetic fields, we observed +exceptionally strong AHE in TbPdBi. Figure 1a shows the xy data measured up to 31T at various +temperatures. The most significant feature of the xy data of TbPdBi is that it exhibits a striking +peak. This peak not only occurs below TN (= 5.2K) but also extends to temperatures above TN. The +peak field is ~ 5T below TN, and slightly shifts to high field with increasing temperature. xy(B) +gradually evolves into a linear field dependence after exhibiting a peak and this occurs above 15T +for T < TN, at higher temperatures (e.g. 15K & 20K), due to the shift of the peak to higher field, +the linear trend develops at higher fields, with the linear slope remaining similar to those of low +temperatures. Such a distinct peak in xy has never been observed in any other half-Heusler +compounds, full-Heusler antiferromagnets, or conventional ferromagnets. As noted above, prior +work has shown isostructural half Heusler compounds (Gd/Tb)PtBi also exhibits large AHE [9- +12]; their xy data also display anomalous peaks near 4.5T where their AHAs achieve maxima with + +6 + +tanH = 0.16-0.76 [9-12]. However, the xy anomalous peak of (Tb/Dy)PtBi is far weaker than +that of TbPdBi. For comparison, we have added the xy data of TbPtBi at 1.7K to Fig. 1a. While +its weak xy peak near 4.5T can be clearly resolved when the data is zoomed into the field range +of 0-9T (see Fig. 1(c) in ref. [12]), it is hardly discernible when this data is plotted together with +the data of TbPdBi in the field range up to 31T as shown in Fig. 1a, suggesting that the replacement +of Pt by Pd leads to essential changes to the band structure, as discussed below. In the field regime +where xy exhibits an anomalous peak, the longitudinal resistivity xx displays a drastic decrease, +followed by a saturation trend in the high field range where xy evolves into a linear field +dependence, as shown in Fig. 2b which presents representative xx and xy data at 4K. Note that +the anomalous xy peak near 5T is not caused by the xx component which might not be removed +from the xy data’s anti-symmetrizing process; this can be seen clearly from the raw data of xy and +xx shown in supplementary Fig. S2 which shows the xx component in xy is negligibly small. To +find whether the unusual field dependences of xy and xy arise from a magnetic transition, we +measured the magnetization of TbPdBi up to 35T at various temperatures (see Methods) and added +the data from these measurements to Fig. 1b. From these data, we find a spin-flop transition near +15T and the saturated magnetic moment of Tb3+ in the FM phase is ~8.5B/f.u. at 0.57K, +comparable with the effective magnetic moment extracted from the CW fit (eff ~ 9.4 B/Tb). The +unusual field dependences of xx and xy are indeed coupled with such a magnetic spin-flop +transition. The xy peak as well as the sharp drop of xx are present in the canted AFM state, while +the linear field dependence of xy and the xx saturation behavior occur in the polarized FM phase. +These observations imply that the spin-flop transition leads to an electronic structure transition. + +7 + +As to be shown below, our theoretical calculations shows that such a spin-flop transition gives rise +to a HTS state. +Given that the remarkable ρxy peak is present in the CAFM state, its origin is most likely +associated with Berry curvature induced by noncolinear spin structure. In general, ρxy of magnetic +systems can be described by ρxy= R0B + RSM +ρxy +T , where the first term is normal Hall contribution +(R0, the normal Hall coefficient), the second term represents the anomalous Hall resistivity linearly +coupled with magnetization M (RS, the anomalous Hall coefficient), and the last term ρxy +T is the +anomalous Hall resistivity arising from Berry curvature effects. The remarkable ρxy peak of +TbPdBi present in the canted AFM state suggests it involves a significant component of anomalous +Hall resistivity Δρxy +AH(=ρxy- R0B). To find how the magnetization contributes to Δρxy +AH, we have +plotted Δρxy +AH as a function of magnetization in supplementary Fig. S3 (Note that Δρxy +AH is obtained +by subtracting the normal Hall contribution, i.e. the dashed line in Fig. 1a which is inferred from +the high-field linear field dependence of ρxy(B)). We find Δρxy +AH strongly deviates from linear +dependence on magnetization and exhibits a striking peak, indicating the anomalous Hall +resistivity of TbPdBi involves a significant contribution of ρxy +T . The maximal Δρxy +AH near 5T is ~ +0.67 mΩ cm (supplementary Fig. S4a), almost 5-15 times larger than that in (Gd/Tb)PtBi [9,12]. +From Δρxy +AH, we derive anomalous Hall conductivity σyx +AH using σyx +AH = Δρxy +AH/(ρxy2 +ρxx2) and AHA +as shown in supplementary Fig. S4b and Fig. 1c. The maximal value of tanH is ~ 2 at about 20T +and 10K (Fig.1c), which is surprisingly large as compared to other magnetic topological materials, +as shown in Fig. 1d, which plots tanH versus σyx +AH for TbPdBi and other magnetic topological +materials showing large AHE. Such an extremely large AHE seen in TbPdBi is unlikely induced + +8 + +by extrinsic mechanisms such as skew scattering or side jump, since their induced Hall angle is +usually a few percent [33,34]. The intrinsic mechanisms due to Berry curvature should play a key +role in generating such an unusually large AHE in TbPdBi as discussed below. Previous studies +have shown Skyrmion magnetic lattices could give rise to an anomalous peak in ρxy (i.e. +topological Hall effect [35]). Compared to the topological Hall effect of a prototype Skyrmion +system MnSi where anomalous Hall resistivity jump (i.e. ρxy +T ) induced by the spin-texture is less +than 0.04 µΩ cm [36], our observed maximal Δρxy +AH value of ~0.67 mΩ cm in TbPdBi is four orders +of magnitude larger. This implies that the extremely large AHE in TbPdBi should have a unique +mechanism. As to be shown below, it is indeed associated with a peculiar HTS state. +The steep decrease of xx in field regions where xy exhibits an anomalous peak (Fig. 1b) +suggests that TbPdBi exhibits large negative magnetoresistance. Although we observed large +negative magnetoresistance in our earlier low-field ( 9T) measurements on TbPdBi [37], its +origin remained mysterious; it was also unclear whether its magnetoresistance saturates in high +field range. With the advantage of high-field measurements and theoretical analyses, we have an +opportunity to address these issues in this work. Figures 2a-2b present the transverse and +longitudinal magnetoresistivity MR (= +𝑥𝑥(𝐵)− 𝑥𝑥(0) +𝑥𝑥(0) +) of TbPdBi, measured with the current +applied perpendicular and parallel to the magnetic field respectively at various temperatures (see +the insets to Fig. 2a & 2b) (Note that these data were measured on the identical sample which was +used for the Hall resistivity measurements shown in Fig. 1a). Both transverse and longitudinal MR +decreases steeply with increasing magnetic field, and then tend to saturate above 15T; the +magnitude of the MR’s drop reaches ~98% as the field rises to 15T. Such a giant negative MR is +observed at both T  TN and T >TN. The magnitude of MR remains nearly temperature independent + +9 + +below 20K, but gradually decreases with increasing temperature above 20K (Fig. 2c). Even as the +temperature rises to 200K, the negative MR remains significant, with its magnitude being ~ 20% +at 9T (Fig. 2c). The MR changes from negative to positive only at room temperature, with the +magnitude of positive MR being much smaller than that of negative MR at lower temperatures. +Since TbPdBi is a superconductor with Tc = 1.7K, its MR data measured at 1.7K (the base +temperature of the measurement system) first shows a steep increase as the superconducting state +is suppressed by magnetic field, then followed by the steep decrease as discussed above (see +supplementary Fig. S5). We chose to not include this data in Fig. 2a-2b to avoid complications. It +is worth pointing out that giant negative MR observed in TbPdBi does not occur to isostructural +compounds (Gd/Tb/Dy)PtBi [10-12,38,39], which again suggests TbPdBi has a distinct electronic +state from (Gd/Tb/Dy)PtBi. +Negative MR has been observed in various material systems and originates from several +different mechanisms. In topological Weyl semimetals, the topological current induced by the +chiral anomaly could lead to large negative MR when the magnetic field is parallel to the current, +as observed in GdPtBi [11,38] and TbPtBi [10,12]. When the magnetic field is rotated away from +the current, the chiral anomaly is gradually suppressed so that the sign of MR could change from +negative to positive above a certain rotation angle. Prior studies have also shown materials with +macroscopic disorders may also cause negative longitudinal MR, e.g. polycrystalline Ag2+δSe [40], +gallium arsenide Quantum wells [41], and disordered topological insulator TlBi0.15Sb0.85Te2 [42]. +Another mechanism is the spin-scattering suppression driven by spin flip/flop transition; for +instance, the colossal MR in Ca3Ru2O7 can be attributed to this mechanism [43]. Apparently, none +of the above mechanisms is relevant to our observation of giant negative MR in TbPdBi. This is +because that (i) our observed negative MR is nearly independent of field orientation and tends to + +10 + +saturate in the high field regime, which excludes the chiral anomaly effect, (ii) our samples are +high-quality single crystals and do not involve macroscopic disorders, and (iii) the giant negative +MR of TbPdBi occurs at both T  TN and T >TN. If its giant negative MR was due to the spin- +scattering suppression in the spin flop transition, we would expect its MR’s magnitude should +significantly drop as the spin-flop transition is suppressed at T >TN, which is inconsistent with the +observation of the temperature independence of MR between TN and 20K and the survival of large +negative MR in a wide temperature region above 20K (Fig. 2c). Additionally, we note that large +negative transverse/longitudinal MR was recently reported in EuMnSb2 [44] and EuB6 [45]. The +origin of large negative MR in EuMnSb2 is ascribed to the field-induced metal-insulator transition, +while the large negative MR of EuB6 is suggested to be from the charge carriers’ high spin +polarization arising from a half Weyl semimetal [45]. As to be shown below, our band structure +calculations for TbPdBi also reveals a high spin-polarization state, which is caused by a unique +FM HTS state close to the topological critical point. Our observed giant negative MR in TbPdBi +provides strong support for such a HTS state. +To understand the unusual transport properties of TbPdBi discussed above, we now present +our detailed theoretical analysis of the electronic and transport properties of TbPdBi. Figures 3a-c +show the arrangement of atoms in nonmagnetic, ferromagnetic (FM) with ordering vector [100], +and A-type AFM state with propagation vector [111]. The high-symmetry nonmagnetic state of +TbPdBi is described by the inversion asymmetric space group 𝑇𝑑 +2 (𝐹4̅3𝑚 , No. 216). On +considering the [100] FM state, the symmetry of the lattice reduces to fourfold rotary reflection +𝑆̅4, which combines the fourfold rotational and mirror symmetries. The associated band structure +is semimetallic as shown in Fig. 3d without spin-orbit coupling. Importantly, the band structure +constitutes a band inversion between Γ8 (p-type) and Γ6 (s-type) states reminiscent of half-Heulser + +11 + +materials only in the spin-down states whereas spin-up states remain uninverted. Such a unique +band structure with single spin-channel band inversion can be closely associated with the half- +metallic state of magnets and thus termed as HTS here. This HTS state can constitute multiband +anticrossing points comprised of opposite spin channels. In the presence of SOC, the band +anticrossing points are gapped, inducing a non-zero Berry curvature field and leading to large AHE +[see Fig. 3e]. Figure 3f shows the band structure of the A-type AFM state of TbPtBi (ground state). +The associated crystalline symmetries are threefold rotational symmetry (C3) about [111] direction +and spacetime symmetry 𝑇̃ = {𝑇| +1 +2 +1 +2 +1 +2}, which combines both time-reversal symmetry and half- +translation along [111] direction. The band structure is semimetallic with various band crossings +along the Γ − 𝑍 line and constitutes band inversion in both the spin-channels. This nontrivial band +inversion AFM state evolves to an HTS state with a single-spin channel band inversion in presence +of the magnetic field. Such a band structure evolution with the magnetic field can lead to an +intermediate spin-canted state with various band anticrossing points, enhancing the Berry +curvature field and associated AHE. +We want to emphasize that the distinct anomalous Hall resistivity peak of TbPdBi occurs +near 5T (Fig.1a) where the system is in a spin-canted AFM state. We can therefore expect an +additional contribution to the AHE stemming from the canted AFM state. As noted in the +introduction, the non-collinear spin texture could induce large non-vanishing Berry curvature. +Since our TbPdBi possess the same magnetic structure as that of GdPtBi/TbPtBi [46], i.e., the +magnetic moments of Tb order ferromagnetically on the (111) planes, but are +antiferromagnetically coupled along the [111] direction. When the magnetic field is applied long +[100] direction, the magnetic moments will gradually tilt toward this direction, resulting in a spin- +canted state. A recent theoretical study indicates that, in AFM nodal line materials AMnBi2 (A=Ca, + +12 + +and Yb), a strong AHE could be induced by a weak spin canting, and the anomalous Hall +conductivity keeps growing as the canting angle increases [47]. The remarkable anomalous Hall +resistivity peak near 5T in TbPdBi probably is likely accredited to the canted spin state formed by +Tb+ ions. Such an interpretation is supported by our Berry curvature calculation at spin canted state, +as discussed below. +To calculate the band structure and anomalous Hall conductivity (AHC) in the spin-canted +states of TbPdBi under an external magnetic, we employ the virtual crystal approximation (VCA) +with AFM and FM states model Hamiltonians as end members. The VCA Hamiltonian Hvca of the +spin canted state is defined as follows, +𝐻vca = (1 − 𝑥)𝐻AFM + 𝑥𝐻FM, +where 𝐻AFM (𝐻FM) is the Hamiltonian for AFM (FM) phase and x is the tuning parameter from 0 +to 1. x = 0 (1) denotes purely AFM (FM) phase while 0 < x <1 describes the spin-canted states. In +the ground state (x = 0), the dominant Berry curvature Ωyz resides on anticrossing points in the ΓZ +direction as shown in Fig. 4a. With an increase of x to 0.1 (low external magnetic field), the strong +Berry curvature Ωyz although remains on the ΓZ path, the finite FM coupling splits the oppositely +spin-polarized bands, shifting the Berry curvature hot-spots to distinct energies [Fig. 4b]. In the +fully polarized FM phase, the Berry curvature Ωyz around Γ becomes significantly small [see Fig. +4c]. Calculated AHC for x = 0 ~ 1 as a function of energy is shown in Fig. 4d. The AHC is nearly +zero at x = 0 due to Berry curvature cancellation induced by effective 𝑇̃ symmetry. A dramatical +peak emerges near 0.1 eV above the Fermi level at x = 0.1 because the band splitting caused by +breaking both C3 and 𝑇̃ reduces the Berry curvature cancellation. The AHC peak gradually flattens +and shifts to a higher energy with increasing x. The negative AHC at the Fermi level grows + +13 + +monotonically from x = 0 to 1, which implies that there are non-zero Berry curvatures away from +Γ point in the spin-canted AFM states. + +We consider the doping effect on the AHC behavior in the magnetic transition. For each +doping concentration, the chemical potential is determined by fixing the number of occupied states. +Positive (negative) doping concentration Δn indicates the number of occupied states above (below) +the original occupied particle number, i.e., Δn = n-n0, where n (n0) is the current (origin) occupied +particle number per formula unit cell. When Δn = 0.0085/f.u., σyz reaches a maximum near x = 0.1, +as shown in Fig. 4e, qualitatively consistent with our experimental observation (Fig.1a). Note that +the VCA cannot fully capture the behavior of magnetic state evolution under an external magnetic +field due to the lack of actual correlated-electronic corrections effects. In this sense, x is not +quantitatively comparable to the external field applied during the experiment. However, this +approach can give a reasonable physical insight into the band structure effects in spin-canted states. +On comparing to the experimental AHC (Fig. S4b), our calculated AHC are smaller than the +experimental value. Such a discrepancy further suggests that effects other than those not captured +in our VCA calculations are also at play. +Next, we first discuss the origin of the large Berry curvature in our system. Fig. 3d-e show +the band structure without and with SOC when the magnetic field is applied along [100] direction. +The band degeneracy lifting by exchange interaction is commonly seen in other Heusler +compounds, such as GdPtBi/TbPtBi [9,11,12]. However, the weaker exchange interaction of Tb +ions and nearly zero band inversion strength lead to the band splitting in TbPdBi smaller than that +in (Gd/Tb)PtBi. As a result, the spin-split bands create more crossing points near the Fermi-level. +A small gap is opened at the anti-crossing points with SOC, and the large non-vanished berry +curvature is accumulated here. + +14 + +We note that in REPtBi (RE = Gd, Nd), the non-vanishing Berry curvature is induced by +the field-induced Weyl state. The location and number of Weyl nodes depend on the direction of +applied magnetic field B. For TbPdBi, our calculation indeed reveals a Weyl state. We found that +two pairs of Weyl nodes appear around 𝛤 point in the FM phase driven by the magnetic field +applied along [100] axis; the positions of these Weyl nodes are summarized in supplementary table +I. However, these Weyl nodes are far away from the Fermi level, which cannot induce large AHE. +Furthermore, the absence of chiral anomaly revealed in our magnetotransport measurements +indicates that the Weyl nodes do not contribute to the transport properties of TbPdBi. Hence, we +believe the giant AHC in TbPdBi cannot be attributed to the Weyl state. +The second origin of the large Berry curvature is the spin-canted state. As revealed by our +calculations, increasing the canted angle widens the band splitting and enlarges the gap at the anti- +crossing points, which results in the Berry curvature along yz direction (Ωyz) continually increasing. +However, the Berry curvature arises from the anti-crossing points and the spin-canted state is not +the unique property for TbPdBi. It also has been observed in other half-Heusler compounds such +as GdPtBi [9,11], TbPtBi [12], and DyPtBi [39]; their anomalous Hall conductivity and Hall angle +are much smaller than that in TbPdBi. One may wonder what makes TbPdBi so unique. Our above +band structure calculations reveal TbPdBi shows a distinct topological state: TbPdBi is at the +critical point at the AFM ground state since its band inversion strength is nearly zero. At the field- +driven FM state, it evolves to a HTS state: its spin-down bands maintain band inversion, while its +spin-up bands lose their band inversion and become topological trivial. We note a similar state has +been predicted in EuB6 [48], where a large AHE and large negative MR have been recently +reported [45]. Such findings imply that the HTS state probably plays a crucial role in enhancing +the AHE in topological materials. As we stated before, the net Berry curvature requires the sum- + +15 + +up of the Berry curvature among all the occupied states. Thus, the number of the bands crossing +the Fermi level could affect the Berry curvature cancellation. In general, the compounds showing +good-metal behavior usually exhibit a large Berry curvature cancellation, resulting in a small net +Berry curvature. However, in some compounds with bad-metal or semimetal behavior, only a few +bands cross through the Fermi level, which could reduce the possibility of Berry curvature +cancellation. In TbPdBi, the spin-up and spin-down bands are pushed to opposite directions, with +a bandgap opening in the spin-up bands, which substantially reduces the number of the bands +which cross the Fermi level, thus minimizing the Berry curvature cancellation. +The exotic HTS state in TbPdBi leads to not only a large AHE but also a giant isotropic +negative MR. As described above, the spins are polarized near the Fermi level (spin-polarization +reaches 40%) when applying an external magnetic field, such that the carriers from spin-down +bands dominate the transport properties of TbPdBi. In this case, spin-scattering is significantly +suppressed across the spin-flop transition, which leads to steep resistivity drop with the increase +of magnetic field. When the magnetic field reaches above 15T, the spins are fully polarized (Fig. +1b), so the MR remains constant. Since the large negative MR is attributed to such an exotic 3D +band structure, it is expected to be independent of the field orientation, which is exactly what we +observed in experiments (Fig. 2a & 2b). The temperature independence of MR(B) between +TN(=5.2K) and 20K (Fig. 2a&2b) can also well understood in terms of the field-induced FM HTS. +Although there is not a long-range spin-flop transition above TN, short-range AFM should exist in +a temperature range above TN at zero field so that a crossover-like transition from PM to FM should +occur under high magnetic fields, which is indeed manifested in the magnetization data measured +at 20K as shown in Fig. 2b. This indicates a FM HTS can extend to temperatures above TN under +high magnetic fields. However, when the temperature is increased above 50K, thermal excitation + +16 + +would bring out the electrons from the spin-up bands, thus increasing the spin-scattering and +leading to the decrease of the magnitude of negative MR as shown in Fig. 2c. +In summary, we have observed an unusual AHE effect with a surprisingly large anomalous +Hall angle (tanH  2) and a giant negative MR in TbPdBi. Our theoretical analysis indicates that +these exotic transport properties originate from the unique HTS state of TbPdBi, dominated by the +contribution of spin-down bands. The greatly enhanced AHE results from a significantly reduced +Berry curvature cancellation between the spin-down and spin-up bands. Spin canting of the AFM +state under magnetic field increases the number of band anticrossing points and widens the gaps, +which in turn increases the Berry curvature hot spots near the Fermi level and accounts for the +distinct anomalous Hall resistivity peak at low fields. We also find that the HTS state enhances the +spin-polarization for the spin-down band in the FM phase, which explains the giant negative MR. +Our study unveils a new pathway for generating an extremely large AHE by tuning the electronic +structure and the magnetic state in half-Heusler materials. It thus advances the understanding of +the interplay between topological state and magnetism and provides clues for materials design for +spintronics and applications. +Methods +The single crystals of TbPdBi were synthesized using the Bi-flux method [49]. The starting +materials of Tb, Pd, and Bi powders were mixed with a molar ratio of Tb: Pd: Bi=1:1:20, loaded +into Al2O3 crucibles, and sealed in quartz tubes under high vacuum. The mixtures of source +materials were heated to 1050°C in a crucible furnace and held at this temperature for 48 hours for +homogeneously melting, then followed by slow cooling down to 700°C at a rate of 3° C /h. Cubic- +shape single crystals of TbPdBi were obtained by removing the excess Bi flux through centrifuging. +The structures and compositions of the grown crystals are confirmed by X-ray diffraction + +17 + +measurements and Energy-dispersive X-ray spectroscopy (EDS). Magnetoresistivity and Hall +resistivity measurements were performed using a standard six-probe method in a Physical Property +Measurement System (PPMS, Quantum Design). The high-field transport measurements were +carried out at the National High Magnetic Field Laboratory (NHMFL) in Tallahassee. The +magnetoresistivity and Hall resistivity data presented in this paper are obtained through +symmetrizing and antisymmetrizing the longitudinal and transverse Hall resistivity data measured +at positive and negative magnetic fields respectively. All the samples used for transport +measurements were polished to rectangular shapes with dimensions of ~0.8mm × 0.7mm × 0.2mm, +and the polished surfaces were parallel to the (001) plane. The current was applied to the [100] or +[001] directions for both longitudinal resistivity and Hall resistivity measurements. Magnetization +measurements were measured using the National High Magnetic Field Pulsed Field Facility at Los +Alamos National Laboratory and the SQUID magnetometer (Quantum Design). +Electronic structure calculations were performed within the density functional theory +framework using the Vienna ab-initio simulation package (VASP) based on the projector- +augmented wave method [50-52].The generalized gradient approximation (GGA) was employed +to include the exchange-correlation effects [53] and an on-site Coulomb interaction was added for +Tb f-electrons within the GGA+U scheme with Ueff = 10 eV. A plane wave cut-off energy of 500 +eV was used and a 11 × 11 × 11 Γ centered k-point mesh to sample the first Brillouin zones of +cubic and trigonal unit cells associated with various magnetic ordering. Spin-orbit coupling effects +were included self-consistently. Transport properties were calculated using a first-principles +material-specific, +effective +tight-binding +model +Hamiltonian +generated +using +the +VASP2WANNIER90 interface [54]. Tb d and f orbitals, Pd s, p, and d orbitals, and Bi p orbitals +were included in constructing the wannier functions. + +18 + +References: +[1] +M. Onoda and N. Nagaosa, Topological Nature of Anomalous Hall Effect in Ferromagnets, Journal +of the Physical Society of Japan 71 1, 19 (2002). +[2] +F. D. M. Haldane, Berry Curvature on the Fermi Surface: Anomalous Hall Effect as a Topological +Fermi-Liquid Property, Physical Review Letters 93 20, 206602 (2004). +[3] +N. Nagaosa, J. Sinova, S. Onoda, A. H. MacDonald, and N. P. Ong, Anomalous Hall effect, +Reviews of Modern Physics 82 2, 1539 (2010). +[4] +E. Liu, Y. Sun, N. Kumar, L. Muechler, A. Sun, L. Jiao, S.-Y. Yang, D. Liu, A. Liang, Q. Xu, J. +Kroder, V. Süß, H. Borrmann, C. Shekhar, Z. Wang, C. Xi, W. Wang, W. Schnelle, S. Wirth, Y. Chen, S. +T. B. Goennenwein, and C. Felser, Giant anomalous Hall effect in a ferromagnetic kagome-lattice +semimetal, Nature Phys 14 11, 1125 (2018). +[5] +Q. Wang, Y. Xu, R. Lou, Z. Liu, M. Li, Y. Huang, D. Shen, H. Weng, S. Wang, and H. Lei, Large +intrinsic anomalous Hall effect in half-metallic ferromagnet Co3Sn2S2 with magnetic Weyl fermions, Nature +Communications 9 1, 3681 (2018). +[6] +A. Sakai, Y. P. Mizuta, A. A. Nugroho, R. Sihombing, T. Koretsune, M.-T. Suzuki, N. Takemori, +R. Ishii, D. Nishio-Hamane, R. Arita, P. Goswami, and S. Nakatsuji, Giant anomalous Nernst effect and +quantum-critical scaling in a ferromagnetic semimetal, Nature Phys 14 11, 1119 (2018). +[7] +S. N. Guin, K. Manna, J. Noky, S. J. Watzman, C. Fu, N. Kumar, W. Schnelle, C. Shekhar, Y. Sun, +J. Gooth, and C. Felser, Anomalous Nernst effect beyond the magnetization scaling relation in the +ferromagnetic Heusler compound Co2MnGa, NPG Asia Materials 11 1, 16 (2019). +[8] +K. Manna, L. Muechler, T.-H. Kao, R. Stinshoff, Y. Zhang, J. Gooth, N. Kumar, G. Kreiner, K. +Koepernik, R. Car, J. Kübler, G. H. Fecher, C. Shekhar, Y. Sun, and C. Felser, From Colossal to Zero: +Controlling the Anomalous Hall Effect in Magnetic Heusler Compounds via Berry Curvature Design, +Physical Review X 8 4 (2018). +[9] +T. Suzuki, R. Chisnell, A. Devarakonda, Y. T. Liu, W. Feng, D. Xiao, J. W. Lynn, and J. G. +Checkelsky, Large anomalous Hall effect in a half-Heusler antiferromagnet, Nature Phys 12 12, 1119 +(2016). +[10] +R. Singha, S. Roy, A. Pariari, B. Satpati, and P. Mandal, Magnetotransport properties and giant +anomalous Hall angle in the half-Heusler compound TbPtBi, Phys. Rev. B 99 3, 035110 (2019). +[11] +C. Shekhar, N. Kumar, V. Grinenko, S. Singh, R. Sarkar, H. Luetkens, S.-C. Wu, Y. Zhang, A. C. +Komarek, E. Kampert, Y. Skourski, J. Wosnitza, W. Schnelle, A. McCollam, U. Zeitler, J. Kübler, B. Yan, +H. H. Klauss, S. S. P. Parkin, and C. Felser, Anomalous Hall effect in Weyl semimetal half-Heusler +compounds RPtBi (R = Gd and Nd), PNAS 115 37, 9140 (2018). +[12] +Y. L. Zhu, B. Singh, Y. Wang, C. Y. Huang, W. C. Chiu, B. K. Wang, D. Graf, Y. B. Zhang, H. +Lin, J. W. Sun, A. Bansil, and Z. Q. Mao, Exceptionally large anomalous Hall effect due to anticrossing of +spin-split bands in the antiferromagnetic half-Heusler compound TbPtBi, Phys. Rev. B 101 16 (2020). +[13] +Y. Ominato, A. Yamakage, and K. Nomura, Phase Diagram of a Magnetic Topological Nodal +Semimetal: Stable Nodal Line in an Easy-Plane Ferromagnet, Journal of the Physical Society of Japan 88 +11, 114701 (2019). +[14] +P. G. Li, J. Koo, W. Ning, J. G. Li, L. X. Miao, L. J. Min, Y. L. Zhu, Y. Wang, N. Alem, C. X. Liu, +Z. Q. Mao, and B. H. Yan, Giant room temperature anomalous Hall effect and tunable topology in a +ferromagnetic topological semimetal Co2MnAl, NATURE COMMUNICATIONS 11 1 (2020). +[15] +H. Chen, Q. Niu, and A. H. MacDonald, Anomalous Hall Effect Arising from Noncollinear +Antiferromagnetism, Physical Review Letters 112 1, 017205 (2014). +[16] +J. Kübler and C. Felser, Non-collinear antiferromagnets and the anomalous Hall effect, EPL +(Europhysics Letters) 108 6, 67001 (2014). +[17] +S. Nakatsuji, N. Kiyohara, and T. Higo, Large anomalous Hall effect in a non-collinear +antiferromagnet at room temperature, Nature 527 7577, 212 (2015). + +19 + +[18] +A. K. Nayak, J. E. Fischer, Y. Sun, B. Yan, J. Karel, A. C. Komarek, C. Shekhar, N. Kumar, W. +Schnelle, J. Kübler, and others, Large anomalous Hall effect driven by a nonvanishing Berry curvature in +the noncolinear antiferromagnet Mn3Ge, Science advances 2 4, e1501870 (2016). +[19] +X. L. Wang, Proposal for a New Class of Materials: Spin Gapless Semiconductors, Physical +Review Letters 100 15, 156404 (2008). +[20] +H. Ishizuka and Y. Motome, Dirac Half-Metal in a Triangular Ferrimagnet, Physical Review +Letters 109 23, 237207 (2012). +[21] +R.-W. Zhang, Z. Zhang, C.-C. Liu, and Y. Yao, Nodal Line Spin-Gapless Semimetals and High- +Quality Candidate Materials, Physical Review Letters 124 1, 016402 (2020). +[22] +X.-L. Wang, S. X. Dou, and C. Zhang, Zero-gap materials for future spintronics, electronics and +optics, NPG Asia Materials 2 1, 31 (2010). +[23] +Y. Li, D. West, H. Huang, J. Li, S. B. Zhang, and W. Duan, Theory of the Dirac half metal and +quantum anomalous Hall effect in Mn-intercalated epitaxial graphene, Phys. Rev. B 92 20, 201403 (2015). +[24] +J.-Y. You, C. Chen, Z. Zhang, X.-L. Sheng, S. A. Yang, and G. Su, Two-dimensional Weyl half- +semimetal and tunable quantum anomalous Hall effect, Phys. Rev. B 100 6, 064408 (2019). +[25] +S.-S. Wang, Z.-M. Yu, Y. Liu, Y. Jiao, S. Guan, X.-L. Sheng, and S. A. Yang, Two-dimensional +nodal-loop half-metal in monolayer MnN, Physical Review Materials 3 8, 084201 (2019). +[26] +L. Jin, X. Zhang, Y. Liu, X. Dai, and G. Liu, Theoretical realization of two-dimensional half- +metallicity and fully spin-polarized multiple nodal-line fermions in monolayer PrOBr, Phys. Rev. B 105 7, +075414 (2022). +[27] +L. Jin, X. Zhang, Y. Liu, X. Dai, L. Wang, and G. Liu, Fully spin-polarized double-Weyl fermions +with type-III dispersion in the quasi-one-dimensional materials X2RhF6 (X=K, Rb, Cs), Phys. Rev. B 102 +19, 195104 (2020). +[28] +T. He, Y. Liu, L. Tian, X. Zhang, W. Meng, X. Dai, and G. Liu, Coexistence of fully spin-polarized +Weyl nodal loop, nodal surface, and Dirac point in a family of quasi-one-dimensional half-metals, Phys. +Rev. B 103 8, 085135 (2021). +[29] +X. Zhou, R.-W. Zhang, X. Yang, X.-P. Li, W. Feng, Y. Mokrousov, and Y. Yao, Disorder- and +Topology-Enhanced Fully Spin-Polarized Currents in Nodal Chain Spin-Gapless Semimetals, Physical +Review Letters 129 9, 097201 (2022). +[30] +R.-W. Zhang, X. Zhou, Z. Zhang, D.-S. Ma, Z.-M. Yu, W. Feng, and Y. Yao, Weyl Monoloop +Semi-Half-Metal and Tunable Anomalous Hall Effect, Nano Letters 21 20, 8749 (2021). +[31] +X.-L. Wang, Dirac spin-gapless semiconductors: promising platforms for massless and +dissipationless spintronics and new (quantum) anomalous spin Hall effects, National Science Review 4 2, +252 (2017). +[32] +Y. Nakajima, R. Hu, K. Kirshenbaum, A. Hughes, P. Syers, X. Wang, K. Wang, R. Wang, S. R. +Saha, D. Pratt, J. W. Lynn, and J. Paglione, Topological RPdBi half-Heusler semimetals: A new family of +noncentrosymmetric magnetic superconductors, Science Advances 1 5, e1500242 (2015). +[33] +S. Onoda, N. Sugimoto, and N. Nagaosa, Intrinsic Versus Extrinsic Anomalous Hall Effect in +Ferromagnets, Physical Review Letters 97 12, 126602 (2006). +[34] +T. Miyasato, N. Abe, T. Fujii, A. Asamitsu, S. Onoda, Y. Onose, N. Nagaosa, and Y. Tokura, +Crossover Behavior of the Anomalous Hall Effect and Anomalous Nernst Effect in Itinerant Ferromagnets, +Physical Review Letters 99 8, 086602 (2007). +[35] +A. Neubauer, C. Pfleiderer, B. Binz, A. Rosch, R. Ritz, P. G. Niklowitz, and P. Böni, Topological +Hall Effect in the A Phase of MnSi, Physical Review Letters 102 18, 186602 (2009). +[36] +M. Lee, W. Kang, Y. Onose, Y. Tokura, and N. P. Ong, Unusual Hall Effect Anomaly in MnSi +under Pressure, Physical Review Letters 102 18, 186601 (2009). +[37] +H. Xiao, T. Hu, W. Liu, Y. L. Zhu, P. G. Li, G. Mu, J. Su, K. Li, and Z. Q. Mao, Superconductivity +in the half-Heusler compound TbPdBi, Phys. Rev. B 97 22, 224511 (2018). +[38] +M. Hirschberger, S. Kushwaha, Z. Wang, Q. Gibson, S. Liang, C. A. Belvin, B. A. Bernevig, R. J. +Cava, and N. P. Ong, The chiral anomaly and thermopower of Weyl fermions in the half-Heusler GdPtBi, +Nature materials 15 11, 1161 (2016). + +20 + +[39] +H. Zhang, Y. L. Zhu, Y. Qiu, W. Tian, H. B. Cao, Z. Q. Mao, and X. Ke, Field-induced magnetic +phase transitions and the resultant giant anomalous Hall effect in the antiferromagnetic half-Heusler +compound DyPtBi, Phys. Rev. B 102 9 (2020). +[40] +J. Hu, T. F. Rosenbaum, and J. B. Betts, Current Jets, Disorder, and Linear Magnetoresistance in +the Silver Chalcogenides, Physical Review Letters 95 18, 186603 (2005). +[41] +J. Xu, M. K. Ma, M. Sultanov, Z.-L. Xiao, Y.-L. Wang, D. Jin, Y.-Y. Lyu, W. Zhang, L. N. Pfeiffer, +K. W. West, K. W. Baldwin, M. Shayegan, and W.-K. Kwok, Negative longitudinal magnetoresistance in +gallium arsenide quantum wells, Nature Communications 10 1, 287 (2019). +[42] +O. Breunig, Z. Wang, A. A. Taskin, J. Lux, A. Rosch, and Y. Ando, Gigantic negative +magnetoresistance in the bulk of a disordered topological insulator, Nature Communications 8 1, 15545 +(2017). +[43] +M. Zhu, J. Peng, T. Zou, K. Prokes, S. D. Mahanti, T. Hong, Z. Q. Mao, G. Q. Liu, and X. Ke, +Colossal Magnetoresistance in a Mott Insulator via Magnetic Field-Driven Insulator-Metal Transition, +Physical Review Letters 116 21, 216401 (2016). +[44] +C. Yi, S. Yang, M. Yang, L. Wang, Y. Matsushita, S. Miao, Y. Jiao, J. Cheng, Y. Li, K. Yamaura, +Y. Shi, and J. Luo, Large negative magnetoresistance of a nearly Dirac material: Layered antimonide +EuMnSb2, Phys. Rev. B 96 20, 205103 (2017). +[45] +J. Shen, J. Gao, C. Yi, Q. Zeng, S. Zhang, J. Yang, X. Zhang, B. Wang, J. Cong, Y. Shi, X. Xu, Z. +Wang, and E. Liu, Dynamic Band-Folding Induced Giant Unconventional Anomalous Hall Effect in +Magnetic Weyl Semimetal EuB6, arXiv:2106.02904 (2021). +[46] +O. Pavlosiuk, X. Fabreges, A. Gukasov, M. Meven, D. Kaczorowski, and P. Wiśniewski, Magnetic +structures of REPdBi half-Heusler bismuthides (RE = Gd, Tb, Dy, Ho, Er), Physica B: Condensed Matter +536, 56 (2018). +[47] +C. Le, C. Felser, and Y. Sun, Design strong anomalous Hall effect via spin canting in +antiferromagnetic nodal line materials, Phys. Rev. B 104 12, 125145 (2021). +[48] +S. Nie, Y. Sun, F. B. Prinz, Z. Wang, H. Weng, Z. Fang, and X. Dai, Magnetic Semimetals and +Quantized Anomalous Hall Effect in EuB6, Physical Review Letters 124 7, 076403 (2020). +[49] +P. C. Canfield, J. D. Thompson, W. P. Beyermann, A. Lacerda, M. F. Hundley, E. Peterson, Z. Fisk, +and H. R. Ott, Magnetism and heavy fermion‐like behavior in the RBiPt series, Journal of Applied Physics +70 10, 5800 (1991). +[50] +P. Hohenberg and W. Kohn, Inhomogeneous Electron Gas, Physical Review 136 3B, B864 (1964). +[51] +G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations +using a plane-wave basis set, Phys. Rev. B 54 16, 11169 (1996). +[52] +G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, +Phys. Rev. B 59 3, 1758 (1999). +[53] +J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized Gradient Approximation Made Simple, +Physical Review Letters 77 18, 3865 (1996). +[54] +N. Marzari and D. Vanderbilt, Maximally localized generalized Wannier functions for composite +energy bands, Phys. Rev. B 56 20, 12847 (1997). +[55] +L. Ye, M. Kang, J. Liu, F. von Cube, C. R. Wicker, T. Suzuki, C. Jozwiak, A. Bostwick, E. +Rotenberg, D. C. Bell, L. Fu, R. Comin, and J. G. Checkelsky, Massive Dirac fermions in a ferromagnetic +kagome metal, Nature 555 7698, 638 (2018). +[56] +N. Manyala, Y. Sidis, J. F. DiTusa, G. Aeppli, D. P. Young, and Z. Fisk, Large anomalous Hall +effect in a silicon-based magnetic semiconductor, Nature Materials 3 4, 255 (2004). +[57] +X. Cao, J.-X. Yu, P. Leng, C. Yi, X. Chen, Y. Yang, S. Liu, L. Kong, Z. Li, X. Dong, Y. Shi, M. +Bibes, R. Peng, J. Zang, and F. Xiu, Giant nonlinear anomalous Hall effect induced by spin-dependent band +structure evolution, Physical Review Research 4 2, 023100 (2022). + + + +21 + +Acknowledgment +The experimental part of this work is based upon research conducted at The Pennsylvania +State University Two-Dimensional Crystal Consortium–Materials Innovation Platform (2DCC- +MIP), which is supported by NSF Cooperative Agreement No. DMR-2039351. Z.Q.M. also +acknowledges the support from NSF under Grant No. DMR 2211327. The work at Northeastern +University was supported by the Air Force Office of Scientific Research under award number +FA9550-20-1-0322 and benefited from the computational resources of Northeastern University's +Advanced Scientific Computation Center (ASCC) and the Discovery Cluster. The work at the +National High Magnetic Field Laboratory is supported by the NSF Cooperative Agreement +No.DMR-1644779 and No. DMR-1157490 and the State of Florida. The work at TIFR Mumbai is +supported by the Department of Atomic Energy of the Government of India under Project No. 12- +R&D-TFR-5.10-0100. +Author contributions +The crystal growth and transport measurements were carried out and analyzed by Y.L.Z, Y.W., & Z.Q.M. +The high magnetic field measurements were carried out by Y.L.Z., D.G. S.H.L., L.J.M., J.C.P. & J. S. The +theoretical work was done by C.Y.H., H.L., B.S. & A.B. This work is supervised by Z.Q.M. (experiment) +and B.S. and A.B. (theory). + + + + + + +22 + + + +Figure 1. (a) Hall resistivity of TbPdBi as a function of the magnetic field B up to 31T at various +temperatures. The Hall data have been anti-symmetrized to remove the minor component of 𝜌𝑥𝑥. +Inset: the schematic of the experimental setup for Hall measurements. (b) Left axis: longitudinal +resistivity 𝜌𝑥𝑥 and Hall resistivity 𝜌𝑥𝑦 at 4K for TbPdBi (marked as hollow circles). Right axis: +magnetization measured at various temperatures (solid line). (c) The tanΘ𝐻 of TbPdBi as a +function of magnetic field B at 4K (below Neel temperature),7K and 10K (above Neel temperature). +(d) The comparison of 𝜎𝑦𝑥 +𝐴𝐻 and tan Θ𝐻 between TbPdBi and other magnetic conductors +[4,6,8,9,12,14,17,18,39,45,55-57]. + + + +(a) +1.2 +(b) +10 +1.7K +TbPdBi +M(0.57K) +4K +0.8 +7K +1.6 +T= 4K +8 +cm +10K +5K +15K +u) +20K +( u)d +1.2 +20K +6 +(HB) +0.0 +TbPtBi +TbPdBi +1.7K +0.8 +4 +/f.u.) +-0.4 +B +Pxy +2 +0.4 +-0.8 +(100) +-1.2 +0.0 +-30 +-20 +-10 +0 +10 +20 +30 +0 +5 +10 +15 +20 +25 +30 +35 +B (T) +B (T) +3.0 +(d) +(c) +4K +1500 +4 DyPtBi +TbPdBi +7K +★ +1200 +Co,MnAl +10K +Fe,Sn +Co,Sn,S +EuB +Co,MnGa +1.5 +r.0) +006 +? +TbPtBi +600 +Mn,Ge +TbPdBi +300 +MnSi +GdPtBi +EuCd,As, +0.0 +oMn,Sn +0 +10 +20 +30 +0.0 +0.5 +1.0 +1.5 +2.0 +B (T) +tan@?23 + + +Figure 2. Magnetoresistivity (MR) of TbPdBi: (a-b) Transverse (a) and longitudinal (b) MR = Δρ +/ρ0 = [ρ(B)–ρ(B = 0)]/ρ(B = 0) at 4K (below Neel temperature), 10K and 20K (above Neel +temperature). The MR at 4K and 10K were measured up to31T, while the MR for 20K was +measured up to 18T. The Insets show the schematic of the experimental setup for transverse and +longitudinal MR measurements. (c) Longitudinal MR versus magnetic field measured in PPMS at +various temperatures. + + + +a) +b +TbPdBi B I I +300 K +B +20 +-20 +0 +200 K +TbPdBi +TbPdBi +-40 +(100) +(100) +-30 +MR +20K +MR +20K +MR +-60 +-60 +100 K +10K +10K +-60 +50 K +-80 +4K +-80 +4K +4 K +-90 +-100 +-100 +10 K +-30 +-20 +-10 +0 +10 +20 +30 +-30 -20 -10 +10 +20 +30 +-10 +-5 +0 +5 +10 +B (T) +B (T) +B (T)24 + +Figure 3. (a) Crystal structure of half-Heusler TbPdBi. [111] and [100] vectors denote the principal +magnetic axes for AFM and FM states, respectively. Spin structures of (b) [100] FM and (c) [111] +AFM magnetic structure in FM. Spins are aligned ferromagnetically in a (111) plane and +antiferromagnetically between the (111) planes in the AFM state shown in (c). (d) Calculated spin- +resolved bulk band structure of FM TbPdBi without SOC considering the primitive unit cell. (e) +Spin-polarized band structure with SOC in (e) FM and (f) AFM states. Trigonal supercells are +considered in (e) and (f). Insets in (d)-(e) show the first Brillouin zones associated with the unit +cells employed in the calculations. + + + + + + +(a) +(b) +(c) +[111] +Tb +Pd +Bi +[100] +(d) +(e) +(f) +S(111] +1.2 +60 +60 +(%) I +0.6 +0.6 +Spin-polarization +0.6 +e +0.0 +0.0 +0 +0.0. +0 +E +0.6 +-0.6 +0.6 +1.2. +1.2 +-60 +1.21 +-60 +M +L +r +X +M +K +Z +F +L +r +Z +F +L25 + + +Figure 4. Berry curvature Ωyz distribution of TbPdBi band structures for (a) x = 0 (AFM), (b) x = +0.1 (spin canted states) and (c) x =1 (FM) along selected high-symmetry directions. (d) Calculated +anomalous Hall conductivity σyz as function of energy for varying x = 0 (dark blue curve) to x = 1 +(red curve). (e) Anomalous Hall conductivity as a function of x with Δn = 0.0085/f.u. See the text +for more details. + + +(a) +(b) +(c) +σyz(Ω-1cm-1) +E-EFM/AFM (eV) +x = 0 +x = 0.1 +x = 1 +Ωyz(nm2) +E-EFM\AFM (eV) +Z +Γ +F +Z +Γ +F +E-EF,AFM (eV) +Ωyz(nm2) +Ωyz(nm2) +E-EF,AFM (eV) +Z +Γ +F +x = 0 (AFM) +x = 0.1 (canted state) +x = 1 (FM) +(d) +(e) +x +σxy +σyz +σzx +σ (Ω-1cm-1) + +0.2 +100 +0.1 +50 +0 +0 +-0.1 +-50 +-0.2 +1000.2 +100 +0.1 +50 +11 +0 +0 +-0.1 +-50 +-0.2 +-1000.2 +100 +0.1 +50 +0 +0 +-0.1 +-50 +11 +-0.2 +-100100 +50 +-50 +-100 +-150 +-0.5-0.4-0.3-0.2-0.1 +0 +0.1 +0.2 +0.3 +0.4 +0.5120 +100 +80 +60 +40 +20 +0 +0 +0.05 +0.1 +0.15 +0.2 \ No newline at end of file diff --git a/RtAzT4oBgHgl3EQfJPsM/content/tmp_files/load_file.txt b/RtAzT4oBgHgl3EQfJPsM/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..9ad20193c8edb79b1eb5ff6802cab291b0b3349a --- /dev/null +++ b/RtAzT4oBgHgl3EQfJPsM/content/tmp_files/load_file.txt @@ -0,0 +1,1080 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf,len=1079 +page_content='1 Surprisingly large anomalous Hall effect and giant negative magnetoresistance in half- topological semimetals Yanglin Zhu1+, Cheng-Yi Huang2+, Yu Wang1, David Graf 3, Hsin Lin4, Seng Huat Lee1, John Singleton5, Lujin Min1, Johanna C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Palmstrom5,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Arun Bansil2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Bahadur Singh6*,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' and Zhiqiang Mao1* 1 Department of Physics,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Pennsylvania State University,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' University Park,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' PA,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' 16802 2 Department of Physics,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Northeastern University,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Boston,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' USA,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' 02115 3National High Magnetic Field Laboratory,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Tallahassee,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' FL,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' 32310 4 Institute of Physics,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Academia Sinica,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Taipei 11529,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Taiwan 5 National High Magnetic Field Laboratory,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Pulse Field Facility,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Los Alamos National Laboratory,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Los Alamos,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' NM,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' 87545 6 Department of Condensed Matter Physics and Materials Science,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Tata Institute of Fundamental Research,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Mumbai 400005,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' India Abstract Large intrinsic anomalous Hall effect (AHE) due to the Berry curvature in magnetic topological semimetals is attracting enormous interest due to its fundamental importance and technological relevance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Mechanisms resulting in large intrinsic AHE include diverging Berry curvature in Weyl semimetals, anticrossing nodal rings or points of non-trivial bands, and noncollinear spin structures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Here we show that a half-topological semimetal (HTS) state near a topological critical point can provide a new mechanism for driving an exceptionally large AHE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' We reveal this through a systematic experimental and theoretical study of the antiferromagnetic (AFM) half-Heusler compound TbPdBi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' We not only observed an unusual AHE with a surprisingly large anomalous Hall angle \uf051H (tan\uf051H \uf0bb 2, the largest among the antiferromagnets) in its field-driven ferromagnetic (FM) phase, but also found a distinct Hall resistivity peak in the canted AFM phase within a low field range, where its isothermal magnetization is nearly linearly 2 dependent on the field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Moreover, we observed a nearly isotropic, giant negative magnetoresistance with a magnitude of ~98%.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Our in-depth theoretical modelling demonstrates that these exotic transport properties originate from the HTS state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' A minimal Berry curvature cancellation between the trivial spin-up and nontrivial spin-down bands results not only in an extremely large AHE, but it also enhances the spin polarization of the spin-down bands substantially and thus leads to a giant negative magnetoresistance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Our study advances the understanding of the interplay between band topology and magnetism and offers new clues for materials design for spintronics and other applications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' +These two authors equally contribute to this work emails: bahadur.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content='singh@tifr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content='res.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content='in, zim1@psu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content='edu 3 Large intrinsic anomalous Hall effect (AHE) in topological semimetals has been a subject under intensive studies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Unlike the conventional Hall effect, which is caused by the Lorentz force under an external magnetic field, the intrinsic AHE stems from the net Berry curvature \uf057 (k) of the band structure [1-3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' \uf057 (k), which describes the geometry of the Bloch wavefunctions, is determined by the topology of the band structure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' When a longitudinal electric field is applied, \uf057 (k) imparts transverse velocity [\uf0b5 E \uf0b4 \uf057 (k)] to Bloch electrons and thus results in the AHE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' To observe intrinsic AHE, time-reversal symmetry (TRS) is required to be broken.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Therefore, large intrinsic AHE is usually expected in magnetic materials with Berry curvature hot spots near the Fermi level.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Prior studies have found that several types of magnetic topological materials can exhibit large intrinsic AHE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' These include ferromagnetic (FM) Weyl semimetals such as Co3Sn2S2 [4,5] and Co2MnGa [6,7], which host Weyl nodal crossings that lie close to the Fermi level and carry a diverging Berry curvature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' With the TRS broken by ferromagnetism, the Berry curvature contribution from the Weyl nodes with opposite chirality will not cancel out, resulting in a large AHE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Strength of the AHE is usually characterized by the intrinsic anomalous Hall angle (AHA) \uf051H, where \uf051H = tan-1( 𝜎𝑦𝑥 𝐴𝐻/𝜎𝑥𝑥), and 𝜎𝑦𝑥 𝐴𝐻 and 𝜎𝑥𝑥 are the anomalous Hall conductivity and longitudinal conductivity, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Co3Sn2S2 and Co2MnGa both exhibit large AHA with tan\uf051H = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content='2 (Co3Sn2S2) [4] and 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content='12 (Co2MnGa) [8].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Antiferromagnetic (AFM) half-Heusler materials such as GdPtBi [9] and TbPtBi [10] also display a large intrinsic AHE with tan\uf051H values as large as 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content='16-0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content='76 [9-12].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Although these materials harbor Weyl nodes induced by magnetic fields, their large AHE does not originate from Weyl nodes but arises from the large net Berry curvature produced by the anticrossing of spin-split bands near the Fermi level [9,12].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Besides the large AHE caused by the presence of anticrossing Weyl nodes or bands, recent studies show that 4 gapped nodal rings can also generate extremely large AHE [13,14].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' This was experimentally demonstrated in FM Heusler Co2MnAl [14], whose AHA reaches a record value with tan\uf051H = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content='21 at room temperature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' In addition, the non-collinear AFM structure can lead to a large Berry curvature, resulting in a large intrinsic AHE [15,16];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' this has been seen in a range of AFM topological materials with broken TRS, such as Mn3Sn [17] and Mn3Ge [18].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' In this paper, we report a surprisingly large AHE in the Pd-based half-Heusler compound TbPdBi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Its tan\uf051H value reaches ~ 2, which is the largest among all known magnetic topological materials.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Our detailed theoretical analysis suggests that such an extremely large AHE originates from a half-topological semimetal (HTS) state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' HTS is a long-sought topological state in materials and can be viewed as a topological version of the half-metallic state in which electrons conduct in only one spin channel, while the other spin channel is insulating [19-21].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Since such a state could generate low power consuming spin current, it holds great promise for applications in topological quantum spintronic devices [22].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Moreover, it has been theoretically shown that a gap opening at the non-trivial band crossing points transforms the HTS into a quantum anomalous Hall insulator [23,24].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' These exotic properties have inspired extensive interest and a variety of material systems have been predicted to be HTS, such as two-dimensional(2D) MnN [25], PrOBr [26], and PtCl3 [24];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' quasi-1D X2RhF6 (X=K, Rb, Cs) [27] and XYZ3 (X=Cs, Rb, Y=Cr, Cu, Z=Cl, I) [28];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' 3D MF3 (M=Pd, Mn) [29], LiV2F6 [30], etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' The Dirac/Weyl points or nodal rings in all these materials are comprised of spin-polarized bands [21,30,31].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' However, these theoretical predictions are still awaiting experimental verifications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Our work here demonstrates that TbPdBi hosts a unique HTS in proximity to a topological critical point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Such a peculiar HTS in TbPdBi results in not only an unusually large AHE but also leads to a giant negative magnetoresistance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Additionally, we find that the Hall resistivity of TbPdBi exhibits a distinct anomalous peak in the low field range, where 5 its isothermal magnetization nearly linearly depends on field and this behavior can be understood in terms of the Berry curvature enhancement induced by spin canting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Single crystals of TbPdBi were grown using the Bi-flux method (see Methods).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' They exhibit semi-metallic behavior, manifested by the broad peak in the temperature dependence of resistivity \uf072xx around 50K (see supplemental Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' S1a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' The magnetic susceptibility (\uf063 ) measurements (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' S1a) show its AFM state with TN = 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content='2 K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' \uf072xx exhibits a steeper drop below TN, indicating electronic transport coupled with magnetism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' We performed a Curie-Weiss (CW) fit for its temperature dependence of susceptibility \uf063(T);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' the best fit was obtained in the temperature range of 100-300K (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' S1b) which yields the effective magnetic moment (\uf06deff) of 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content='4 \uf06dB/Tb, consistent with a prior report [32].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' From Hall resistivity \uf072xy measurements under high magnetic fields, we observed exceptionally strong AHE in TbPdBi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Figure 1a shows the \uf072xy data measured up to 31T at various temperatures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' The most significant feature of the \uf072xy data of TbPdBi is that it exhibits a striking peak.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' This peak not only occurs below TN (= 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content='2K) but also extends to temperatures above TN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' The peak field is ~ 5T below TN, and slightly shifts to high field with increasing temperature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' \uf072xy(B) gradually evolves into a linear field dependence after exhibiting a peak and this occurs above 15T for T < TN, at higher temperatures (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' 15K & 20K), due to the shift of the peak to higher field, the linear trend develops at higher fields, with the linear slope remaining similar to those of low temperatures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Such a distinct peak in \uf072xy has never been observed in any other half-Heusler compounds, full-Heusler antiferromagnets, or conventional ferromagnets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' As noted above, prior work has shown isostructural half Heusler compounds (Gd/Tb)PtBi also exhibits large AHE [9- 12];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' their \uf072xy data also display anomalous peaks near 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content='5T where their AHAs achieve maxima with 6 tan\uf051H = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content='16-0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content='76 [9-12].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' However, the \uf072xy anomalous peak of (Tb/Dy)PtBi is far weaker than that of TbPdBi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' For comparison, we have added the \uf072xy data of TbPtBi at 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content='7K to Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' 1a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' While its weak \uf072xy peak near 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content='5T can be clearly resolved when the data is zoomed into the field range of 0-9T (see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' 1(c) in ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' [12]), it is hardly discernible when this data is plotted together with the data of TbPdBi in the field range up to 31T as shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' 1a, suggesting that the replacement of Pt by Pd leads to essential changes to the band structure, as discussed below.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' In the field regime where \uf072xy exhibits an anomalous peak, the longitudinal resistivity \uf072xx displays a drastic decrease, followed by a saturation trend in the high field range where \uf072xy evolves into a linear field dependence, as shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' 2b which presents representative \uf072xx and \uf072xy data at 4K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Note that the anomalous \uf072xy peak near 5T is not caused by the \uf072xx component which might not be removed from the \uf072xy data’s anti-symmetrizing process;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' this can be seen clearly from the raw data of \uf072xy and \uf072xx shown in supplementary Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' S2 which shows the \uf072xx component in \uf072xy is negligibly small.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' To find whether the unusual field dependences of \uf072xy and \uf072xy arise from a magnetic transition, we measured the magnetization of TbPdBi up to 35T at various temperatures (see Methods) and added the data from these measurements to Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' 1b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' From these data, we find a spin-flop transition near 15T and the saturated magnetic moment of Tb3+ in the FM phase is ~8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content='5\uf06dB/f.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content='u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' at 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content='57K, comparable with the effective magnetic moment extracted from the CW fit (\uf06deff ~ 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content='4 \uf06dB/Tb).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' The unusual field dependences of \uf072xx and \uf072xy are indeed coupled with such a magnetic spin-flop transition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' The \uf072xy peak as well as the sharp drop of \uf072xx are present in the canted AFM state, while the linear field dependence of \uf072xy and the \uf072xx saturation behavior occur in the polarized FM phase.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' These observations imply that the spin-flop transition leads to an electronic structure transition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' 7 As to be shown below, our theoretical calculations shows that such a spin-flop transition gives rise to a HTS state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Given that the remarkable ρxy peak is present in the CAFM state, its origin is most likely associated with Berry curvature induced by noncolinear spin structure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' In general, ρxy of magnetic systems can be described by ρxy= R0B + RSM +ρxy T , where the first term is normal Hall contribution (R0, the normal Hall coefficient), the second term represents the anomalous Hall resistivity linearly coupled with magnetization M (RS, the anomalous Hall coefficient), and the last term ρxy T is the anomalous Hall resistivity arising from Berry curvature effects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' The remarkable ρxy peak of TbPdBi present in the canted AFM state suggests it involves a significant component of anomalous Hall resistivity Δρxy AH(=ρxy- R0B).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' To find how the magnetization contributes to Δρxy AH, we have plotted Δρxy AH as a function of magnetization in supplementary Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' S3 (Note that Δρxy AH is obtained by subtracting the normal Hall contribution, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' the dashed line in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' 1a which is inferred from the high-field linear field dependence of ρxy(B)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' We find Δρxy AH strongly deviates from linear dependence on magnetization and exhibits a striking peak, indicating the anomalous Hall resistivity of TbPdBi involves a significant contribution of ρxy T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' The maximal Δρxy AH near 5T is ~ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content='67 mΩ cm (supplementary Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' S4a), almost 5-15 times larger than that in (Gd/Tb)PtBi [9,12].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' From Δρxy AH, we derive anomalous Hall conductivity σyx AH using σyx AH = Δρxy AH/(ρxy2 +ρxx2) and AHA as shown in supplementary Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' S4b and Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' 1c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' The maximal value of tan\uf051H is ~ 2 at about 20T and 10K (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content='1c), which is surprisingly large as compared to other magnetic topological materials, as shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' 1d, which plots tan\uf051H versus σyx AH for TbPdBi and other magnetic topological materials showing large AHE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Such an extremely large AHE seen in TbPdBi is unlikely induced 8 by extrinsic mechanisms such as skew scattering or side jump, since their induced Hall angle is usually a few percent [33,34].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' The intrinsic mechanisms due to Berry curvature should play a key role in generating such an unusually large AHE in TbPdBi as discussed below.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Previous studies have shown Skyrmion magnetic lattices could give rise to an anomalous peak in ρxy (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' topological Hall effect [35]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Compared to the topological Hall effect of a prototype Skyrmion system MnSi where anomalous Hall resistivity jump (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' ρxy T ) induced by the spin-texture is less than 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content='04 µΩ cm [36], our observed maximal Δρxy AH value of ~0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content='67 mΩ cm in TbPdBi is four orders of magnitude larger.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' This implies that the extremely large AHE in TbPdBi should have a unique mechanism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' As to be shown below, it is indeed associated with a peculiar HTS state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' The steep decrease of \uf072xx in field regions where \uf072xy exhibits an anomalous peak (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' 1b) suggests that TbPdBi exhibits large negative magnetoresistance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Although we observed large negative magnetoresistance in our earlier low-field (\uf0a3 9T) measurements on TbPdBi [37], its origin remained mysterious;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' it was also unclear whether its magnetoresistance saturates in high field range.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' With the advantage of high-field measurements and theoretical analyses, we have an opportunity to address these issues in this work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Figures 2a-2b present the transverse and longitudinal magnetoresistivity MR (= \uf072𝑥𝑥(𝐵)− \uf072𝑥𝑥(0) \uf072𝑥𝑥(0) ) of TbPdBi, measured with the current applied perpendicular and parallel to the magnetic field respectively at various temperatures (see the insets to Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' 2a & 2b) (Note that these data were measured on the identical sample which was used for the Hall resistivity measurements shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' 1a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Both transverse and longitudinal MR decreases steeply with increasing magnetic field, and then tend to saturate above 15T;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' the magnitude of the MR’s drop reaches ~98% as the field rises to 15T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Such a giant negative MR is observed at both T \uf0a3 TN and T >TN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' The magnitude of MR remains nearly temperature independent 9 below 20K, but gradually decreases with increasing temperature above 20K (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' 2c).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Even as the temperature rises to 200K, the negative MR remains significant, with its magnitude being ~ 20% at 9T (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' 2c).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' The MR changes from negative to positive only at room temperature, with the magnitude of positive MR being much smaller than that of negative MR at lower temperatures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Since TbPdBi is a superconductor with Tc = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content='7K, its MR data measured at 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content='7K (the base temperature of the measurement system) first shows a steep increase as the superconducting state is suppressed by magnetic field, then followed by the steep decrease as discussed above (see supplementary Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' S5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' We chose to not include this data in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' 2a-2b to avoid complications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' It is worth pointing out that giant negative MR observed in TbPdBi does not occur to isostructural compounds (Gd/Tb/Dy)PtBi [10-12,38,39], which again suggests TbPdBi has a distinct electronic state from (Gd/Tb/Dy)PtBi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Negative MR has been observed in various material systems and originates from several different mechanisms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' In topological Weyl semimetals, the topological current induced by the chiral anomaly could lead to large negative MR when the magnetic field is parallel to the current, as observed in GdPtBi [11,38] and TbPtBi [10,12].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' When the magnetic field is rotated away from the current, the chiral anomaly is gradually suppressed so that the sign of MR could change from negative to positive above a certain rotation angle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Prior studies have also shown materials with macroscopic disorders may also cause negative longitudinal MR, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' polycrystalline Ag2+δSe [40], gallium arsenide Quantum wells [41], and disordered topological insulator TlBi0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content='15Sb0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content='85Te2 [42].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Another mechanism is the spin-scattering suppression driven by spin flip/flop transition;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' for instance, the colossal MR in Ca3Ru2O7 can be attributed to this mechanism [43].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Apparently, none of the above mechanisms is relevant to our observation of giant negative MR in TbPdBi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' This is because that (i) our observed negative MR is nearly independent of field orientation and tends to 10 saturate in the high field regime, which excludes the chiral anomaly effect, (ii) our samples are high-quality single crystals and do not involve macroscopic disorders, and (iii) the giant negative MR of TbPdBi occurs at both T \uf0a3 TN and T >TN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' If its giant negative MR was due to the spin- scattering suppression in the spin flop transition, we would expect its MR’s magnitude should significantly drop as the spin-flop transition is suppressed at T >TN, which is inconsistent with the observation of the temperature independence of MR between TN and 20K and the survival of large negative MR in a wide temperature region above 20K (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' 2c).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Additionally, we note that large negative transverse/longitudinal MR was recently reported in EuMnSb2 [44] and EuB6 [45].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' The origin of large negative MR in EuMnSb2 is ascribed to the field-induced metal-insulator transition, while the large negative MR of EuB6 is suggested to be from the charge carriers’ high spin polarization arising from a half Weyl semimetal [45].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' As to be shown below, our band structure calculations for TbPdBi also reveals a high spin-polarization state, which is caused by a unique FM HTS state close to the topological critical point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Our observed giant negative MR in TbPdBi provides strong support for such a HTS state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' To understand the unusual transport properties of TbPdBi discussed above, we now present our detailed theoretical analysis of the electronic and transport properties of TbPdBi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Figures 3a-c show the arrangement of atoms in nonmagnetic, ferromagnetic (FM) with ordering vector [100], and A-type AFM state with propagation vector [111].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' The high-symmetry nonmagnetic state of TbPdBi is described by the inversion asymmetric space group 𝑇𝑑 2 (𝐹4̅3𝑚 , No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' 216).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' On considering the [100] FM state, the symmetry of the lattice reduces to fourfold rotary reflection 𝑆̅4, which combines the fourfold rotational and mirror symmetries.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' The associated band structure is semimetallic as shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' 3d without spin-orbit coupling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Importantly, the band structure constitutes a band inversion between Γ8 (p-type) and Γ6 (s-type) states reminiscent of half-Heulser 11 materials only in the spin-down states whereas spin-up states remain uninverted.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Such a unique band structure with single spin-channel band inversion can be closely associated with the half- metallic state of magnets and thus termed as HTS here.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' This HTS state can constitute multiband anticrossing points comprised of opposite spin channels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' In the presence of SOC, the band anticrossing points are gapped, inducing a non-zero Berry curvature field and leading to large AHE [see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' 3e].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Figure 3f shows the band structure of the A-type AFM state of TbPtBi (ground state).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' The associated crystalline symmetries are threefold rotational symmetry (C3) about [111] direction and spacetime symmetry 𝑇̃ = {𝑇| 1 2 1 2 1 2}, which combines both time-reversal symmetry and half- translation along [111] direction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' The band structure is semimetallic with various band crossings along the Γ − 𝑍 line and constitutes band inversion in both the spin-channels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' This nontrivial band inversion AFM state evolves to an HTS state with a single-spin channel band inversion in presence of the magnetic field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Such a band structure evolution with the magnetic field can lead to an intermediate spin-canted state with various band anticrossing points, enhancing the Berry curvature field and associated AHE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' We want to emphasize that the distinct anomalous Hall resistivity peak of TbPdBi occurs near 5T (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content='1a) where the system is in a spin-canted AFM state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' We can therefore expect an additional contribution to the AHE stemming from the canted AFM state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' As noted in the introduction, the non-collinear spin texture could induce large non-vanishing Berry curvature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Since our TbPdBi possess the same magnetic structure as that of GdPtBi/TbPtBi [46], i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=', the magnetic moments of Tb order ferromagnetically on the (111) planes, but are antiferromagnetically coupled along the [111] direction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' When the magnetic field is applied long [100] direction, the magnetic moments will gradually tilt toward this direction, resulting in a spin- canted state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' A recent theoretical study indicates that, in AFM nodal line materials AMnBi2 (A=Ca, 12 and Yb), a strong AHE could be induced by a weak spin canting, and the anomalous Hall conductivity keeps growing as the canting angle increases [47].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' The remarkable anomalous Hall resistivity peak near 5T in TbPdBi probably is likely accredited to the canted spin state formed by Tb+ ions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Such an interpretation is supported by our Berry curvature calculation at spin canted state, as discussed below.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' To calculate the band structure and anomalous Hall conductivity (AHC) in the spin-canted states of TbPdBi under an external magnetic, we employ the virtual crystal approximation (VCA) with AFM and FM states model Hamiltonians as end members.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' The VCA Hamiltonian Hvca of the spin canted state is defined as follows, 𝐻vca = (1 − 𝑥)𝐻AFM + 𝑥𝐻FM, where 𝐻AFM (𝐻FM) is the Hamiltonian for AFM (FM) phase and x is the tuning parameter from 0 to 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' x = 0 (1) denotes purely AFM (FM) phase while 0 < x <1 describes the spin-canted states.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' In the ground state (x = 0), the dominant Berry curvature Ωyz resides on anticrossing points in the ΓZ direction as shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' 4a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' With an increase of x to 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content='1 (low external magnetic field), the strong Berry curvature Ωyz although remains on the ΓZ path, the finite FM coupling splits the oppositely spin-polarized bands, shifting the Berry curvature hot-spots to distinct energies [Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' 4b].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' In the fully polarized FM phase, the Berry curvature Ωyz around Γ becomes significantly small [see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' 4c].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Calculated AHC for x = 0 ~ 1 as a function of energy is shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' 4d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' The AHC is nearly zero at x = 0 due to Berry curvature cancellation induced by effective 𝑇̃ symmetry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' A dramatical peak emerges near 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content='1 eV above the Fermi level at x = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content='1 because the band splitting caused by breaking both C3 and 𝑇̃ reduces the Berry curvature cancellation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' The AHC peak gradually flattens and shifts to a higher energy with increasing x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' The negative AHC at the Fermi level grows 13 monotonically from x = 0 to 1, which implies that there are non-zero Berry curvatures away from Γ point in the spin-canted AFM states.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' We consider the doping effect on the AHC behavior in the magnetic transition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' For each doping concentration, the chemical potential is determined by fixing the number of occupied states.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Positive (negative) doping concentration Δn indicates the number of occupied states above (below) the original occupied particle number, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=', Δn = n-n0, where n (n0) is the current (origin) occupied particle number per formula unit cell.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' When Δn = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content='0085/f.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content='u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=', σyz reaches a maximum near x = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content='1, as shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' 4e, qualitatively consistent with our experimental observation (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content='1a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Note that the VCA cannot fully capture the behavior of magnetic state evolution under an external magnetic field due to the lack of actual correlated-electronic corrections effects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' In this sense, x is not quantitatively comparable to the external field applied during the experiment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' However, this approach can give a reasonable physical insight into the band structure effects in spin-canted states.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' On comparing to the experimental AHC (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' S4b), our calculated AHC are smaller than the experimental value.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Such a discrepancy further suggests that effects other than those not captured in our VCA calculations are also at play.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Next, we first discuss the origin of the large Berry curvature in our system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' 3d-e show the band structure without and with SOC when the magnetic field is applied along [100] direction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' The band degeneracy lifting by exchange interaction is commonly seen in other Heusler compounds, such as GdPtBi/TbPtBi [9,11,12].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' However, the weaker exchange interaction of Tb ions and nearly zero band inversion strength lead to the band splitting in TbPdBi smaller than that in (Gd/Tb)PtBi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' As a result, the spin-split bands create more crossing points near the Fermi-level.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' A small gap is opened at the anti-crossing points with SOC, and the large non-vanished berry curvature is accumulated here.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' 14 We note that in REPtBi (RE = Gd, Nd), the non-vanishing Berry curvature is induced by the field-induced Weyl state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' The location and number of Weyl nodes depend on the direction of applied magnetic field B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' For TbPdBi, our calculation indeed reveals a Weyl state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' We found that two pairs of Weyl nodes appear around 𝛤 point in the FM phase driven by the magnetic field applied along [100] axis;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' the positions of these Weyl nodes are summarized in supplementary table I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' However, these Weyl nodes are far away from the Fermi level, which cannot induce large AHE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Furthermore, the absence of chiral anomaly revealed in our magnetotransport measurements indicates that the Weyl nodes do not contribute to the transport properties of TbPdBi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Hence, we believe the giant AHC in TbPdBi cannot be attributed to the Weyl state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' The second origin of the large Berry curvature is the spin-canted state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' As revealed by our calculations, increasing the canted angle widens the band splitting and enlarges the gap at the anti- crossing points, which results in the Berry curvature along yz direction (Ωyz) continually increasing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' However, the Berry curvature arises from the anti-crossing points and the spin-canted state is not the unique property for TbPdBi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' It also has been observed in other half-Heusler compounds such as GdPtBi [9,11], TbPtBi [12], and DyPtBi [39];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' their anomalous Hall conductivity and Hall angle are much smaller than that in TbPdBi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' One may wonder what makes TbPdBi so unique.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Our above band structure calculations reveal TbPdBi shows a distinct topological state: TbPdBi is at the critical point at the AFM ground state since its band inversion strength is nearly zero.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' At the field- driven FM state, it evolves to a HTS state: its spin-down bands maintain band inversion, while its spin-up bands lose their band inversion and become topological trivial.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' We note a similar state has been predicted in EuB6 [48], where a large AHE and large negative MR have been recently reported [45].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Such findings imply that the HTS state probably plays a crucial role in enhancing the AHE in topological materials.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' As we stated before, the net Berry curvature requires the sum- 15 up of the Berry curvature among all the occupied states.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Thus, the number of the bands crossing the Fermi level could affect the Berry curvature cancellation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' In general, the compounds showing good-metal behavior usually exhibit a large Berry curvature cancellation, resulting in a small net Berry curvature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' However, in some compounds with bad-metal or semimetal behavior, only a few bands cross through the Fermi level, which could reduce the possibility of Berry curvature cancellation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' In TbPdBi, the spin-up and spin-down bands are pushed to opposite directions, with a bandgap opening in the spin-up bands, which substantially reduces the number of the bands which cross the Fermi level, thus minimizing the Berry curvature cancellation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' The exotic HTS state in TbPdBi leads to not only a large AHE but also a giant isotropic negative MR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' As described above, the spins are polarized near the Fermi level (spin-polarization reaches 40%) when applying an external magnetic field, such that the carriers from spin-down bands dominate the transport properties of TbPdBi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' In this case, spin-scattering is significantly suppressed across the spin-flop transition, which leads to steep resistivity drop with the increase of magnetic field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' When the magnetic field reaches above 15T, the spins are fully polarized (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' 1b), so the MR remains constant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Since the large negative MR is attributed to such an exotic 3D band structure, it is expected to be independent of the field orientation, which is exactly what we observed in experiments (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' 2a & 2b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' The temperature independence of MR(B) between TN(=5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content='2K) and 20K (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' 2a&2b) can also well understood in terms of the field-induced FM HTS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Although there is not a long-range spin-flop transition above TN, short-range AFM should exist in a temperature range above TN at zero field so that a crossover-like transition from PM to FM should occur under high magnetic fields, which is indeed manifested in the magnetization data measured at 20K as shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' 2b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' This indicates a FM HTS can extend to temperatures above TN under high magnetic fields.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' However, when the temperature is increased above 50K, thermal excitation 16 would bring out the electrons from the spin-up bands, thus increasing the spin-scattering and leading to the decrease of the magnitude of negative MR as shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' 2c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' In summary, we have observed an unusual AHE effect with a surprisingly large anomalous Hall angle (tan\uf051H \uf0bb 2) and a giant negative MR in TbPdBi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Our theoretical analysis indicates that these exotic transport properties originate from the unique HTS state of TbPdBi, dominated by the contribution of spin-down bands.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' The greatly enhanced AHE results from a significantly reduced Berry curvature cancellation between the spin-down and spin-up bands.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Spin canting of the AFM state under magnetic field increases the number of band anticrossing points and widens the gaps, which in turn increases the Berry curvature hot spots near the Fermi level and accounts for the distinct anomalous Hall resistivity peak at low fields.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' We also find that the HTS state enhances the spin-polarization for the spin-down band in the FM phase, which explains the giant negative MR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Our study unveils a new pathway for generating an extremely large AHE by tuning the electronic structure and the magnetic state in half-Heusler materials.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' It thus advances the understanding of the interplay between topological state and magnetism and provides clues for materials design for spintronics and applications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Methods The single crystals of TbPdBi were synthesized using the Bi-flux method [49].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' The starting materials of Tb, Pd, and Bi powders were mixed with a molar ratio of Tb: Pd: Bi=1:1:20, loaded into Al2O3 crucibles, and sealed in quartz tubes under high vacuum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' The mixtures of source materials were heated to 1050°C in a crucible furnace and held at this temperature for 48 hours for homogeneously melting, then followed by slow cooling down to 700°C at a rate of 3° C /h.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Cubic- shape single crystals of TbPdBi were obtained by removing the excess Bi flux through centrifuging.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' The structures and compositions of the grown crystals are confirmed by X-ray diffraction 17 measurements and Energy-dispersive X-ray spectroscopy (EDS).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Magnetoresistivity and Hall resistivity measurements were performed using a standard six-probe method in a Physical Property Measurement System (PPMS, Quantum Design).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' The high-field transport measurements were carried out at the National High Magnetic Field Laboratory (NHMFL) in Tallahassee.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' The magnetoresistivity and Hall resistivity data presented in this paper are obtained through symmetrizing and antisymmetrizing the longitudinal and transverse Hall resistivity data measured at positive and negative magnetic fields respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' All the samples used for transport measurements were polished to rectangular shapes with dimensions of ~0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content='8mm × 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content='7mm × 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content='2mm, and the polished surfaces were parallel to the (001) plane.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' The current was applied to the [100] or [001] directions for both longitudinal resistivity and Hall resistivity measurements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Magnetization measurements were measured using the National High Magnetic Field Pulsed Field Facility at Los Alamos National Laboratory and the SQUID magnetometer (Quantum Design).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Electronic structure calculations were performed within the density functional theory framework using the Vienna ab-initio simulation package (VASP) based on the projector- augmented wave method [50-52].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content='The generalized gradient approximation (GGA) was employed to include the exchange-correlation effects [53] and an on-site Coulomb interaction was added for Tb f-electrons within the GGA+U scheme with Ueff = 10 eV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' A plane wave cut-off energy of 500 eV was used and a 11 × 11 × 11 Γ centered k-point mesh to sample the first Brillouin zones of cubic and trigonal unit cells associated with various magnetic ordering.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Spin-orbit coupling effects were included self-consistently.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Transport properties were calculated using a first-principles material-specific, effective tight-binding model Hamiltonian generated using the VASP2WANNIER90 interface [54].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Tb d and f orbitals, Pd s, p, and d orbitals, and Bi p orbitals were included in constructing the wannier functions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' 18 References: [1] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Onoda and N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Nagaosa, Topological Nature of Anomalous Hall Effect in Ferromagnets, Journal of the Physical Society of Japan 71 1, 19 (2002).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' [2] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Haldane, Berry Curvature on the Fermi Surface: Anomalous Hall Effect as a Topological Fermi-Liquid Property, Physical Review Letters 93 20, 206602 (2004).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' [3] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Nagaosa, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Sinova, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Onoda, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' MacDonald, and N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Ong, Anomalous Hall effect, Reviews of Modern Physics 82 2, 1539 (2010).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' [4] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Liu, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Sun, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Kumar, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Muechler, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Sun, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Jiao, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content='-Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Yang, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Liu, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Liang, Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Xu, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Kroder, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Süß, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Borrmann, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Shekhar, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Wang, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Xi, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Wang, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Schnelle, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Wirth, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Chen, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Goennenwein, and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Felser, Giant anomalous Hall effect in a ferromagnetic kagome-lattice semimetal, Nature Phys 14 11, 1125 (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' [5] Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Wang, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Xu, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Lou, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Liu, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Li, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Huang, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Shen, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Weng, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Wang, and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Lei, Large intrinsic anomalous Hall effect in half-metallic ferromagnet Co3Sn2S2 with magnetic Weyl fermions, Nature Communications 9 1, 3681 (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' [6] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Sakai, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Mizuta, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Nugroho, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Sihombing, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Koretsune, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content='-T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Suzuki, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Takemori, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Ishii, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Nishio-Hamane, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Arita, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Goswami, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Nakatsuji, Giant anomalous Nernst effect and quantum-critical scaling in a ferromagnetic semimetal, Nature Phys 14 11, 1119 (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' [7] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Guin, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Manna, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Noky, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Watzman, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Fu, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Kumar, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Schnelle, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Shekhar, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Sun, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Gooth, and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Felser, Anomalous Nernst effect beyond the magnetization scaling relation in the ferromagnetic Heusler compound Co2MnGa, NPG Asia Materials 11 1, 16 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' [8] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Manna, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Muechler, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content='-H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Kao, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Stinshoff, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Zhang, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Gooth, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Kumar, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Kreiner, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Koepernik, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Car, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Kübler, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Fecher, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Shekhar, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Sun, and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Felser, From Colossal to Zero: Controlling the Anomalous Hall Effect in Magnetic Heusler Compounds via Berry Curvature Design, Physical Review X 8 4 (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' [9] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Suzuki, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Chisnell, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Devarakonda, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Liu, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Feng, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Xiao, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Lynn, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Checkelsky, Large anomalous Hall effect in a half-Heusler antiferromagnet, Nature Phys 12 12, 1119 (2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' [10] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Singha, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Roy, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Pariari, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Satpati, and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Mandal, Magnetotransport properties and giant anomalous Hall angle in the half-Heusler compound TbPtBi, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' B 99 3, 035110 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' [11] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Shekhar, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Kumar, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Grinenko, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Singh, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Sarkar, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Luetkens, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content='-C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Wu, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Zhang, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Komarek, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Kampert, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Skourski, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Wosnitza, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Schnelle, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' McCollam, U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Zeitler, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Kübler, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Yan, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Klauss, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Parkin, and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Felser, Anomalous Hall effect in Weyl semimetal half-Heusler compounds RPtBi (R = Gd and Nd), PNAS 115 37, 9140 (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' [12] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Zhu, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Singh, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Wang, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Huang, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Chiu, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Wang, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Graf, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Zhang, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Lin, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Sun, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Bansil, and Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Mao, Exceptionally large anomalous Hall effect due to anticrossing of spin-split bands in the antiferromagnetic half-Heusler compound TbPtBi, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' B 101 16 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' [13] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Ominato, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Yamakage, and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Nomura, Phase Diagram of a Magnetic Topological Nodal Semimetal: Stable Nodal Line in an Easy-Plane Ferromagnet, Journal of the Physical Society of Japan 88 11, 114701 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' [14] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Li, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Koo, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Ning, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Li, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Miao, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Min, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Zhu, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Wang, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Alem, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Liu, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Mao, and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Yan, Giant room temperature anomalous Hall effect and tunable topology in a ferromagnetic topological semimetal Co2MnAl, NATURE COMMUNICATIONS 11 1 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' [15] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Chen, Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Niu, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' MacDonald, Anomalous Hall Effect Arising from Noncollinear Antiferromagnetism, Physical Review Letters 112 1, 017205 (2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' [16] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Kübler and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Felser, Non-collinear antiferromagnets and the anomalous Hall effect, EPL (Europhysics Letters) 108 6, 67001 (2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' [17] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Nakatsuji, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Kiyohara, and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Higo, Large anomalous Hall effect in a non-collinear antiferromagnet at room temperature, Nature 527 7577, 212 (2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' 19 [18] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Nayak, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Fischer, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Sun, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Yan, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Karel, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Komarek, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Shekhar, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Kumar, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Schnelle, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Kübler, and others, Large anomalous Hall effect driven by a nonvanishing Berry curvature in the noncolinear antiferromagnet Mn3Ge, Science advances 2 4, e1501870 (2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' [19] X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Wang, Proposal for a New Class of Materials: Spin Gapless Semiconductors, Physical Review Letters 100 15, 156404 (2008).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' [20] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Ishizuka and Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Motome, Dirac Half-Metal in a Triangular Ferrimagnet, Physical Review Letters 109 23, 237207 (2012).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' [21] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content='-W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Zhang, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Zhang, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content='-C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Liu, and Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Yao, Nodal Line Spin-Gapless Semimetals and High- Quality Candidate Materials, Physical Review Letters 124 1, 016402 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' [22] X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content='-L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Wang, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Dou, and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Zhang, Zero-gap materials for future spintronics, electronics and optics, NPG Asia Materials 2 1, 31 (2010).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' [23] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Li, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' West, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Huang, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Li, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Zhang, and W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Duan, Theory of the Dirac half metal and quantum anomalous Hall effect in Mn-intercalated epitaxial graphene, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' B 92 20, 201403 (2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' [24] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content='-Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' You, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Chen, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Zhang, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content='-L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Sheng, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Yang, and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Su, Two-dimensional Weyl half- semimetal and tunable quantum anomalous Hall effect, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' B 100 6, 064408 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' [25] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content='-S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Wang, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content='-M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Yu, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Liu, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Jiao, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Guan, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content='-L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Sheng, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Yang, Two-dimensional nodal-loop half-metal in monolayer MnN, Physical Review Materials 3 8, 084201 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' [26] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Jin, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Zhang, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Liu, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Dai, and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Liu, Theoretical realization of two-dimensional half- metallicity and fully spin-polarized multiple nodal-line fermions in monolayer PrOBr, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' B 105 7, 075414 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' [27] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Jin, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Zhang, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Liu, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Dai, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Wang, and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Liu, Fully spin-polarized double-Weyl fermions with type-III dispersion in the quasi-one-dimensional materials X2RhF6 (X=K, Rb, Cs), Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' B 102 19, 195104 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' [28] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' He, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Liu, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Tian, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Zhang, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Meng, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Dai, and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Liu, Coexistence of fully spin-polarized Weyl nodal loop, nodal surface, and Dirac point in a family of quasi-one-dimensional half-metals, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' B 103 8, 085135 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' [29] X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Zhou, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content='-W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Zhang, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Yang, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content='-P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Li, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Feng, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Mokrousov, and Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Yao, Disorder- and Topology-Enhanced Fully Spin-Polarized Currents in Nodal Chain Spin-Gapless Semimetals, Physical Review Letters 129 9, 097201 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' [30] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content='-W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Zhang, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Zhou, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Zhang, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content='-S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Ma, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content='-M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Yu, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Feng, and Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Yao, Weyl Monoloop Semi-Half-Metal and Tunable Anomalous Hall Effect, Nano Letters 21 20, 8749 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' [31] X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content='-L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Wang, Dirac spin-gapless semiconductors: promising platforms for massless and dissipationless spintronics and new (quantum) anomalous spin Hall effects, National Science Review 4 2, 252 (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' [32] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Nakajima, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Hu, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Kirshenbaum, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Hughes, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Syers, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Wang, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Wang, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Wang, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Saha, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Pratt, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Lynn, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Paglione, Topological RPdBi half-Heusler semimetals: A new family of noncentrosymmetric magnetic superconductors, Science Advances 1 5, e1500242 (2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' [33] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Onoda, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Sugimoto, and N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Nagaosa, Intrinsic Versus Extrinsic Anomalous Hall Effect in Ferromagnets, Physical Review Letters 97 12, 126602 (2006).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' [34] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Miyasato, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Abe, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Fujii, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Asamitsu, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Onoda, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Onose, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Nagaosa, and Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Tokura, Crossover Behavior of the Anomalous Hall Effect and Anomalous Nernst Effect in Itinerant Ferromagnets, Physical Review Letters 99 8, 086602 (2007).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' [35] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Neubauer, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Pfleiderer, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Binz, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Rosch, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Ritz, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Niklowitz, and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Böni, Topological Hall Effect in the A Phase of MnSi, Physical Review Letters 102 18, 186602 (2009).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' [36] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Lee, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Kang, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Onose, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Tokura, and N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Ong, Unusual Hall Effect Anomaly in MnSi under Pressure, Physical Review Letters 102 18, 186601 (2009).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' [37] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Xiao, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Hu, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Liu, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Zhu, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Li, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Mu, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Su, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Li, and Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Mao, Superconductivity in the half-Heusler compound TbPdBi, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' B 97 22, 224511 (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' [38] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Hirschberger, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Kushwaha, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Wang, Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Gibson, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Liang, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Belvin, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Bernevig, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Cava, and N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Ong, The chiral anomaly and thermopower of Weyl fermions in the half-Heusler GdPtBi, Nature materials 15 11, 1161 (2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' 20 [39] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Zhang, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Zhu, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Qiu, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Tian, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Cao, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Mao, and X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Ke, Field-induced magnetic phase transitions and the resultant giant anomalous Hall effect in the antiferromagnetic half-Heusler compound DyPtBi, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' B 102 9 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' [40] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Hu, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Rosenbaum, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Betts, Current Jets, Disorder, and Linear Magnetoresistance in the Silver Chalcogenides, Physical Review Letters 95 18, 186603 (2005).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' [41] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Xu, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Ma, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Sultanov, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content='-L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Xiao, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content='-L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Wang, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Jin, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content='-Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Lyu, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Zhang, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Pfeiffer, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' West, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Baldwin, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Shayegan, and W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content='-K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Kwok, Negative longitudinal magnetoresistance in gallium arsenide quantum wells, Nature Communications 10 1, 287 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' [42] O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Breunig, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Wang, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Taskin, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Lux, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Rosch, and Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Ando, Gigantic negative magnetoresistance in the bulk of a disordered topological insulator, Nature Communications 8 1, 15545 (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' [43] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Zhu, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Peng, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Zou, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Prokes, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Mahanti, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Hong, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Mao, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Liu, and X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Ke, Colossal Magnetoresistance in a Mott Insulator via Magnetic Field-Driven Insulator-Metal Transition, Physical Review Letters 116 21, 216401 (2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' [44] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Yi, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Yang, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Yang, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Wang, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Matsushita, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Miao, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Jiao, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Cheng, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Li, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Yamaura, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Shi, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Luo, Large negative magnetoresistance of a nearly Dirac material: Layered antimonide EuMnSb2, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' B 96 20, 205103 (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' [45] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Shen, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Gao, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Yi, Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Zeng, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Zhang, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Yang, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Zhang, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Wang, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Cong, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Shi, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Xu, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Wang, and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Liu, Dynamic Band-Folding Induced Giant Unconventional Anomalous Hall Effect in Magnetic Weyl Semimetal EuB6, arXiv:2106.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content='02904 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' [46] O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Pavlosiuk, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Fabreges, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Gukasov, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Meven, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Kaczorowski, and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Wiśniewski, Magnetic structures of REPdBi half-Heusler bismuthides (RE = Gd, Tb, Dy, Ho, Er), Physica B: Condensed Matter 536, 56 (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' [47] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Le, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Felser, and Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Sun, Design strong anomalous Hall effect via spin canting in antiferromagnetic nodal line materials, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' B 104 12, 125145 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' [48] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Nie, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Sun, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Prinz, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Wang, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Weng, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Fang, and X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Dai, Magnetic Semimetals and Quantized Anomalous Hall Effect in EuB6, Physical Review Letters 124 7, 076403 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' [49] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Canfield, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Thompson, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Beyermann, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Lacerda, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Hundley, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Peterson, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Fisk, and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Ott, Magnetism and heavy fermion‐like behavior in the RBiPt series, Journal of Applied Physics 70 10, 5800 (1991).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' [50] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Hohenberg and W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Kohn, Inhomogeneous Electron Gas, Physical Review 136 3B, B864 (1964).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' [51] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Kresse and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' B 54 16, 11169 (1996).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' [52] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Kresse and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' B 59 3, 1758 (1999).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' [53] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Perdew, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Burke, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Ernzerhof, Generalized Gradient Approximation Made Simple, Physical Review Letters 77 18, 3865 (1996).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' [54] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Marzari and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Vanderbilt, Maximally localized generalized Wannier functions for composite energy bands, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' B 56 20, 12847 (1997).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' [55] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Ye, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Kang, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Liu, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' von Cube, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Wicker, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Suzuki, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Jozwiak, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Bostwick, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Rotenberg, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Bell, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Fu, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Comin, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Checkelsky, Massive Dirac fermions in a ferromagnetic kagome metal, Nature 555 7698, 638 (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' [56] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Manyala, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Sidis, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' DiTusa, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Aeppli, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Young, and Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Fisk, Large anomalous Hall effect in a silicon-based magnetic semiconductor, Nature Materials 3 4, 255 (2004).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' [57] X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Cao, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content='-X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Yu, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Leng, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Yi, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Chen, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Yang, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Liu, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Kong, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Li, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Dong, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Shi, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Bibes, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Peng, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Zang, and F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Xiu, Giant nonlinear anomalous Hall effect induced by spin-dependent band structure evolution, Physical Review Research 4 2, 023100 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' 21 Acknowledgment The experimental part of this work is based upon research conducted at The Pennsylvania State University Two-Dimensional Crystal Consortium–Materials Innovation Platform (2DCC- MIP), which is supported by NSF Cooperative Agreement No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' DMR-2039351.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content='Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content='M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' also acknowledges the support from NSF under Grant No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' DMR 2211327.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=" The work at Northeastern University was supported by the Air Force Office of Scientific Research under award number FA9550-20-1-0322 and benefited from the computational resources of Northeastern University's Advanced Scientific Computation Center (ASCC) and the Discovery Cluster." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' The work at the National High Magnetic Field Laboratory is supported by the NSF Cooperative Agreement No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content='DMR-1644779 and No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' DMR-1157490 and the State of Florida.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' The work at TIFR Mumbai is supported by the Department of Atomic Energy of the Government of India under Project No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' 12- R&D-TFR-5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content='10-0100.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Author contributions The crystal growth and transport measurements were carried out and analyzed by Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content='L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content='Z, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content='W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=', & Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content='Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content='M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' The high magnetic field measurements were carried out by Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content='L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content='Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=', D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content='G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content='H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content='L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=', L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content='J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content='M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=', J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content='C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content='P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' & J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' The theoretical work was done by C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content='Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content='H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=', H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content='L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=', B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' & A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content='B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' This work is supervised by Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content='Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content='M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' (experiment) and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content='B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' (theory).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' 22 Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' (a) Hall resistivity of TbPdBi as a function of the magnetic field B up to 31T at various temperatures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' The Hall data have been anti-symmetrized to remove the minor component of 𝜌𝑥𝑥.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Inset: the schematic of the experimental setup for Hall measurements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' (b) Left axis: longitudinal resistivity 𝜌𝑥𝑥 and Hall resistivity 𝜌𝑥𝑦 at 4K for TbPdBi (marked as hollow circles).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Right axis: magnetization measured at various temperatures (solid line).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' (c) The tanΘ𝐻 of TbPdBi as a function of magnetic field B at 4K (below Neel temperature),7K and 10K (above Neel temperature).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' (d) The comparison of 𝜎𝑦𝑥 𝐴𝐻 and tan Θ𝐻 between TbPdBi and other magnetic conductors [4,6,8,9,12,14,17,18,39,45,55-57].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' (a) 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content='2 (b) 10 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content='7K TbPdBi M(0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content='57K) 4K 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content='8 7K 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content='6 T= 4K 8 cm 10K 5K 15K u) 20K ( u)d 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content='2 20K 6 (HB) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content='0 TbPtBi TbPdBi 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content='7K 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content='8 4 /f.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content='u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=') 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content='4 B Pxy 2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content='8 (100) 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content='0 30 20 10 0 10 20 30 0 5 10 15 20 25 30 35 B (T) B (T) 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content='0 (d) (c) 4K 1500 4 DyPtBi TbPdBi 7K ★ 1200 Co,MnAl 10K Fe,Sn Co,Sn,S EuB Co,MnGa 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content='5 r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content='0) 006 ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' TbPtBi 600 Mn,Ge TbPdBi 300 MnSi GdPtBi EuCd,As, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content='0 oMn,Sn 0 10 20 30 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content='5 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content='0 B (T) tan@?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content='23 Figure 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Magnetoresistivity (MR) of TbPdBi: (a-b) Transverse (a) and longitudinal (b) MR = Δρ /ρ0 = [ρ(B)–ρ(B = 0)]/ρ(B = 0) at 4K (below Neel temperature), 10K and 20K (above Neel temperature).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' The MR at 4K and 10K were measured up to31T, while the MR for 20K was measured up to 18T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' The Insets show the schematic of the experimental setup for transverse and longitudinal MR measurements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' (c) Longitudinal MR versus magnetic field measured in PPMS at various temperatures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' a) b TbPdBi B I I 300 K B 20 20 0 200 K TbPdBi TbPdBi 40 (100) (100) 30 MR 20K MR 20K MR 60 60 100 K 10K 10K 60 50 K 80 4K 80 4K 4 K 90 100 100 10 K 30 20 10 0 10 20 30 30 -20 -10 10 20 30 10 5 0 5 10 B (T) B (T) B (T)24 Figure 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' (a) Crystal structure of half-Heusler TbPdBi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' [111] and [100] vectors denote the principal magnetic axes for AFM and FM states, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Spin structures of (b) [100] FM and (c) [111] AFM magnetic structure in FM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Spins are aligned ferromagnetically in a (111) plane and antiferromagnetically between the (111) planes in the AFM state shown in (c).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' (d) Calculated spin- resolved bulk band structure of FM TbPdBi without SOC considering the primitive unit cell.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' (e) Spin-polarized band structure with SOC in (e) FM and (f) AFM states.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Trigonal supercells are considered in (e) and (f).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Insets in (d)-(e) show the first Brillouin zones associated with the unit cells employed in the calculations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' (a) (b) (c) [111] Tb Pd Bi [100] (d) (e) (f) S(111] 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content='2 60 60 (%) I 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content='6 Spin-polarization 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content='6 e 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content='0 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content='0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' 0 E 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content='6 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content='2 60 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content='21 60 M L r X M K Z F L r Z F L25 Figure 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' Berry curvature Ωyz distribution of TbPdBi band structures for (a) x = 0 (AFM), (b) x = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content='1 (spin canted states) and (c) x =1 (FM) along selected high-symmetry directions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' (d) Calculated anomalous Hall conductivity σyz as function of energy for varying x = 0 (dark blue curve) to x = 1 (red curve).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' (e) Anomalous Hall conductivity as a function of x with Δn = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content='0085/f.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content='u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' See the text for more details.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content=' (a) (b) (c) σyz(Ω-1cm-1) E-EFM/AFM (eV) x = 0 x = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content='1 x = 1 Ωyz(nm2) E-EFM\\AFM (eV) Z Γ F Z Γ F E-EF,AFM (eV) Ωyz(nm2) Ωyz(nm2) E-EF,AFM (eV) Z Γ F x = 0 (AFM) x = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content='1 (canted state) x = 1 (FM) (d) (e) x σxy σyz σzx σ (Ω-1cm-1) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content='2 100 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content='1 50 0 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content='1 50 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content='2 1000.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content='2 100 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content='1 50 11 0 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content='1 50 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content='2 1000.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content='2 100 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content='1 50 0 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content='1 50 11 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content='2 100100 50 50 100 150 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content='5-0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content='4-0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content='3-0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content='2-0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content='1 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content='5120 100 80 60 40 20 0 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content='15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} +page_content='2' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/RtAzT4oBgHgl3EQfJPsM/content/2301.01074v1.pdf'} diff --git a/StE4T4oBgHgl3EQflw2y/content/tmp_files/2301.05163v1.pdf.txt b/StE4T4oBgHgl3EQflw2y/content/tmp_files/2301.05163v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..fe77c63f21b796c43a0eaf16ae1f96e0190f19a4 --- /dev/null +++ b/StE4T4oBgHgl3EQflw2y/content/tmp_files/2301.05163v1.pdf.txt @@ -0,0 +1,1281 @@ +Signed Directed Graph Contrastive Learning with Structure +and Laplacian Augmentation +Taewook Ko +taewook.ko@snu.ac.kr +Seoul National University +Republic of Korea +Yoonhyuk Choi +younhyuk95@snu.ac.kr +Seoul National University +Republic of Korea +Chong-Kwon Kim +ckim@kentech.ac.kr +Korea Institute of Energy Technology +Republic of Korea +ABSTRACT +Graph contrastive learning has become a powerful technique for +several graph mining tasks. It learns discriminative representation +from different perspectives of augmented graphs. Ubiquitous in our +daily life, singed-directed graphs are the most complex and tricky +to analyze among various graph types. That is why singed-directed +graph contrastive learning has not been studied much yet, while there +are many contrastive studies for unsigned and undirected. Thus, this +paper proposes a novel signed-directed graph contrastive learning, +SDGCL. It makes two different structurally perturbed graph views +and gets node representations via magnetic Laplacian perturbation. +We use a node-level contrastive loss to maximize the mutual infor- +mation between the two graph views. The model is jointly learned +with contrastive and supervised objectives. The graph encoder of +SDGCL does not depend on social theories or predefined assump- +tions. Therefore it does not require finding triads or selecting neigh- +bors to aggregate. It leverages only the edge signs and directions +via magnetic Laplacian. To the best of our knowledge, it is the first +to introduce magnetic Laplacian perturbation and signed spectral +graph contrastive learning. The superiority of the proposed model +is demonstrated through exhaustive experiments on four real-world +datasets. SDGCL shows better performance than other state-of-the- +art on four evaluation metrics. +KEYWORDS +graph contrastive learning, magnetic Laplacian, signed directed +graph, link sign prediction +1 +INTRODUCTION +Various types of online social graphs are developing as the use of +the internet increases. Social graph research attracts attention from +researchers with its usefulness for various downstream tasks such +as prediction, classification, and recommendation[9, 11, 17, 53]. +Signed-directed graphs, which express the relationship between +users as like/dislike or trust/distrust, have the most information and +are the most valuable among several graph types. However, it has +difficulties to analyze them caused of severe noise and complexity. +Many network embedding and graph convolution studies for signed- +directed graphs have been proposed based on the two well-known +social theories, balance and status.[18, 19] Balance theory is the +concept that "A friend of my friend is my friend, and an enemy of +my friend is my enemy." Furthermore, status theory sets the relative +user ranks with the relation of positive and negative edges. The ideas +of most existing studies, including SiNE[47], SGCN[8], SNEA[31], +and SDGNN[21], are derived from the two social theories. Recently, +some studies that do not use them have been proposed. ROSE[45] +proposed a user-role-based methodology by transforming a graph +into an unsigned bipartite. SDGCN[26] proposed a spectral convolu- +tion via a signed magnetic Laplacian matrix. +Contrastive learning[1, 16] is a successful learning mechanism in +computer vision research with fewer labels or a self-supervised envi- +ronment. It learns discriminative representations through contrastive +loss from the data itself. They maximize the mutual information of +representations of augmented images. Recently, many graph stud- +ies utilizing contrastive learning have been suggested. Graph con- +trastive learning models generate graph views in their own ways, +such as edge or node deletion[51], addition[52], random-walk[38], +or attribute masking[56]. JOAO[50] and AD-GCL[43] learn optimal +perturbing distribution according to the dataset and SimGRACE[49] +adds gaussian noise on the trained parameters for encoder perturba- +tion. They define contrastive loss with the augmented representations +of nodes or graphs. Graph contrastive learning also aims to maxi- +mize the mutual information of different graph views. However, not +much research has been conducted on signed-directed graphs. +SGCL[39] is the first study to apply contrastive learning on signed- +directed. They make two graph views by giving random perturba- +tions on edge signs and directions. Then the views are divided into +positive graph views and negative graph views. The positive graph +view is constructed with only the positive edges of a graph view, and +the same for the negative graph view. Then run graph convolution +on the different graph views to get augmented node representations. +Though SGCL is innovative, there are some limitations. First, it +loses the context of the original graph if we separate the edges into +different graphs by the edge types. The mutual influence between +edge types cannot be trained. For example, valuable patterns like the +balance theory cannot be reflected. Second, most real-world signed +graphs have a nearly 90% of positive edge ratio[27]. Therefore, the +negative views are unsuitable for graph convolutions due to the +sparsity issue. In this study, we propose a Signed Directed Graph +Contrastive Learning(SDGCL), which improves these limitations. +SDGCL utilizes two levels of perturbation. We apply random edge +perturbation similar to SGCN. It changes edge signs and direc- +tions to generate augmented graph views. Then we introduce mag- +netic Laplacian perturbation. It changes a phase parameter 𝑞 of the +magnetic Laplacian matrix. 𝑞 controls the phase angle between the +real- and imaginary axis[26]. Magnetic Laplacian was studied in +the field of quantum physics[5, 35, 40]. Thanks to its Hermitian +properties, it has been used in graph convolutions for directed and +signed-directed[41, 54]. Signed magnetic Laplacian encodes graph +sturucture, including edge signs and directions. It reflects the graph +information and allows the model to learn the patterns of nodes and +edges. We define a spectral convolution layer with the perturbed +Laplacian by the idea of graph signal processing[7, 15, 25]. SDGCL +gets the two augmented node representations with the graph encoder +arXiv:2301.05163v1 [cs.LG] 12 Jan 2023 + +Taewook Ko, et al. +Figure 1: Example of a signed-directed graph and its structure +perturbation. Dashed edges indicate perturbed edges. +and defines node-level contrast loss[39, 56] for contrastive learning. +The performance of the proposed model was evaluated with the link +sign prediction task, which is widely selected to evaluate the signed- +directed graph embedding. It was tested with four real-world graphs +and showed excellent performance compared to various baselines +for signed-directed graph embedding and graph contrast learning. +The followings are the contributions of this paper +• This paper proposes a novel signed-directed graph contrastive +learning model, SDGCL. +• It augments node representations via two stages, graph struc- +ture perturbation and magnetic Laplacian perturbation. +• To the best of our knowledge, it is the first to introduce mag- +netic Laplacian perturbation and is the first spectral signed +graph contrastive model. +• The proposed model has the best link sign prediction perfor- +mance in real-world graph experiments. +2 +RELATED WORKS +2.1 +Signed-Directed Graph Embedding +Most signed-directed graph studies utilize sociological stories.[18, +19] SiNE[47] is an undirected model that uses balance theory, defin- +ing an objective function: friend nodes increase their similarity. +BESIDE[3] focused on the bridge edges to overcome the limitation +of triads and utilized both social theories. SGCN[8] defined a novel +balanced and unbalanced path for neighbor aggregation. SNEA[31] +and SiGAT[20] used attention mechanism. SDGNN defined four +different weight matrices to distinguish the edge signs and directions. +And they proposed triad loss based on the theories. Balance and sta- +tus theories are developed with the patterns of the user triads. About +60-70% of triads on real-world graphs satisfy the theories[24, 29]. +Though the theories are crucial paradigms in signed-directed graph +research, not all the triads satisfy them. Moreover, it is not a rule +that all users should follow. Models that depend on the theories are +not working well with users with little or no triads. On top of that, +such models require much computational cost to find triads or paths. +Recently, ROSE[23] proposed a methodology using user-role by +transforming graphs into unsigned bipartite. SDGCN[26] proposed +a spectral convolution model by proving the positive semidefinite of +signed magnetic Laplacian. +2.2 +Magnetic Laplacian +Magnetic Laplacian was first introduced in the field of quan- +tum mechanics to analyze the charged particle under magnetic +flux.[5, 32, 35, 40] But thanks to its Hermitian properties, the mag- +netic Laplacian has been utilized in directed graph studies.[14, 34] +Some application studies such as graph clustering[4, 6] node[54] +and graph representation learning[12] are delivered. MagNet[54] +proved the positive semidefinite property of the magnetic Laplacian +and proposed a spectral graph convolution. Recently, some studies +extended the magnetic Laplacian to the signed graph. SDGCN[26] +and SigMagNet[10] define signed magnetic Laplacian. The signed +magnetic Laplacian matrix uniquely encodes edge types of signed- +directed graphs with real- and imaginary numbers. They proposed +spectral graph convolution with the signed magnetic Laplacian. +2.3 +Graph Contrastive Learning +SimCLR[1] and MoCo[16] proposed contrastive learning and +achieved great success in image classification. Many follow-up stud- +ies were proposed thanks to the increasing learning efficiency via +self-supervised. DGI[46], GMI[37] adopted the contrastive learning +to graph studies. They measure mutual information of input and node +representations. InfoGraph[42] proposed patch-level representation. +GCC employed random-walk sampling to make positive and nega- +tive samples. Since then, several graph augmentations[51, 52, 56] +and graph encoders[39, 49] have been proposed for contrastive learn- +ing. There are contrastive studies for graph clustering[36, 55], node +embedding[56], DDI prediction[30, 48], and recommendation[33]. +However, signed-directed graph contrastive studies are not discussed +much. To the best of our knowledge, SGCL[39] is the only one. +SGCL makes graph views by randomly perturbing the edges. Then +they construct positive- and negative-graph views by separating +edges by the edge type. However, the edges of signed-directed graphs +have meaningful relationships with each other. Therefore, the con- +text of the data cannot be properly interpreted when we arbitrarily +separate graph views by edge types. Moreover, they are inefficient +in that they need to find positively or negatively linked nodes for +every aggregation stage. To overcomes these limitations, this study +proposes a novel graph contrastive learning model. +3 +PROBLEM FORMULATION +Let G = (𝑉, E+, E−) be a signed-directed graph where 𝑉 is a set +of nodes like users in social graphs. E+ ⊆ 𝑉 × 𝑉 indicates positive +edge matrix, and E− ⊆ 𝑉 × 𝑉 is of negative edges. Positive and +negative edges represent user relationships, such as like/dislike or +trust/distrust. For example E+𝑢,𝑣 equals 1 if there is a positive edge +from node 𝑢 to node 𝑣; otherwise, 0. Similarly, if there is a negative +edge from node 𝑣 to 𝑢, E−𝑣,𝑢 equals 1. Note that E+ ∩ E− = ∅. +Because we do not accept users having two different edges to the +other user simultaneously, such as "John loves Jane and also hates +her." A user may be connected to other users by one of the three +relations(none, positive, negative). Thus, there are nine-edge types +between a user pair. The goal of this paper is to map the nodes 𝑢 ∈ 𝑉 +into the low-dimensional embedding vectors 𝑧𝑢 ∈ R𝑑 with a given +graph G as: +𝑓 (G) = 𝑍, +𝑓 is a transformation function and 𝑍 ∈ R|𝑉 |×𝑑 is an embedding ma- +trix. Each row of 𝑍 represents the node embedding with dimension +size 𝑑. + +edge +perturbation +original graph +augmented graph viewSigned Directed Graph Contrastive Learning with Structure and Laplacian Augmentation +4 +MODEL FRAMEWORK +4.1 +Graph Augmentation +4.1.1 +Structure Perturbation. There are two methods for struc- +ture perturbation, edge sign perturbing and edge direction perturbing. +In edge sign perturbing, we change the edge signs randomly from +the given graph. For example, we sample 𝑝% of positive edges and +change their signs to negative. And the same for the negative edges. +Similarly, we sample 𝑟% of edges and change their directions to in- +verse. If an edge is bidirectional, we change it to directional arbitrary. +With this random edge perturbation, we get structurally perturbed +graph views, �G = (𝑉, ˜E+, ˜E+). Figure 1 shows an example of struc- +ture perturbation. As already known by balance and status theories, +there is important information in the edge sign and directions. We +may harm the vital triad patterns via random perturbation. However, +we expect some amount of perturbation would be helpful to learn +robust representations from noisy real-world data. Moreover, the +perturbing can discover and exploit some relationships that might ex- +ist. The model can improve the generalization performance through +random perturbations. +4.1.2 +Signed-Directed Magnetic Laplacian. Before introduc- +ing Laplacian Perturbation, we define the signed-directed magnetic +Laplacian. Graph Laplacian is useful to encode graph sturucture +with degree and adjacency matrices, L = D − A. They are not only +positive semidefinite but also have non-negative eigenvalues and as- +sociate orthonormal eigenvectors. With that properties, [25] and [15] +proposed the idea of spectral graph convolution. However, graph +Laplacian is asymmetric when a graph is directed or signed-directed. +They have complex eigenvalues and do not satisfy the properties +for spectral convolution. Thus, [10, 26, 41] proposed a novel mag- +netic Laplacian matrix representing the structure of signed-directed +graphs and satisfying positive semidefinite. First of all, we define a +complex Hermitian adjacency matrix as follow, +H𝑞 = A𝑠 ⊙ P𝑞. +A𝑠 := 1 +2 (A + A⊺) ⊆ 𝑉 × 𝑉 is a symmetrized adjacency matrix, +and P𝑞 ⊆ 𝑉 × 𝑉 is a phase matrix with complex numbers. ⊙ is an +element-wise multiplication operation. The definition of the phase +matrix is, +P𝑞(𝑢, 𝑣) := +exp(𝑖Θ𝑞 +𝑢𝑣)A𝑢𝑣 + exp(𝑖Θ𝑞 +𝑢𝑣)A𝑣𝑢 +|exp(𝑖Θ𝑞 +𝑢𝑣)A𝑢𝑣 + exp(𝑖Θ𝑞 +𝑢𝑣)A𝑣𝑢| + 𝜖 +. +Θ𝑞 +𝑢𝑣 = 𝑞E+𝑢𝑣 +(𝜋 +𝑞)E−𝑢𝑣 and Θ𝑢𝑣 +𝑞 = −𝑞E+𝑣𝑢 +(𝜋 −𝑞)E−𝑣𝑢 Be careful +with the subscripts orders. 𝑞 is a hyperparameter lies in [0,𝜋/2]. The +symmetrized adjacency matrix encodes the node connectivity, and +the phase matrix encodes link directions and signs with different +phase values. Figure 2(b) shows the edge encodings of the defined +Hermitian adjacency matrix H𝑞. They uniquely encode the nine- +edge types of signed-directed graphs. It tells node connections and +edge types as well. We can see that H𝑞 is a complex numbered skew- +symmetric form, a complex Hermitian matrix. Then, we define the +signed-directed magnetic Laplacians with this Hermitian adjacency +by, +L𝑞 +𝑈 := D𝑠 − H𝑞 = D𝑠 − A𝑠 ⊙ P𝑞 +L𝑞 +𝑁 := I − (D− 1 +2 +𝑠 +A𝑠D− 1 +2 +𝑠 +) ⊙ P𝑞, +Figure 2: Edge encoding and meaning of 𝑞. It shows edge encod- +ing values of a complex Hermitian adjacency matrix. 𝑞 controls +the phase angle. +D𝑠 is a symmetric degree matrix, similar to A𝑠. L𝑞 +𝑈 and L𝑞 +𝑁 are un- +normalized and normalized signed-directed magnetic Laplacians. It +is well known that the skew-symmetric, complex Hermitian matrix +is positive semidefinite[10, 26, 41]. Thus, the Laplacians are posi- +tive semidefinite and diagonalizable by spectral decomposition. For +example, the normalized Laplacian is diagonalized by, +L𝑞 +𝑁 = UΛU†. +Each column of U is eigenvector u𝑘 and U† is a conjugate transpose +of U. Λ is a diagonal matrix where the elements are 𝑘-th eigenvalues +Λ𝑘,𝑘 = 𝜆𝑘. The eigenvalues and eigenvectors contain the structural +information of the signed-directed graph. We leverage this matrix to +define spectral graph convolution. +4.1.3 +Laplacian Perturbation. Figure 2(a) describes the meaning +of 𝑞 in magnetic Laplacian. 𝑞 controls the phase angle of encoded +values between the real- and imaginary axes. If 𝑞 is small, the Lapla- +cian puts less attention on directional information. It becomes an +undirected model when the 𝑞 is 0. However, the high 𝑞 value also +harms the encoding validity. 𝑞 influences the encoding effectiveness +of the signed-directed magnetic Laplacian. In this subsection, we +introduce Laplacian perturbation via 𝑞 variation. We randomly se- +lect 𝑞 value from 0 to 0.4𝜋. The Laplacian matrix varies according +to the 𝑞 variations, though the meaning of the graph structure that +the Laplacian represents is still the same. This kind of Laplacian +perturbation is a useful technique that makes graph augmentation +without distortion of the original data[44]. +In short, we make two structurally perturbed graph views �G1 and +�G2, through random edge changes. Then we get perturbed signed- +directed magnetic Laplacian �L +𝑞1 and �L +𝑞2 from the graph views with +randomly chosen 𝑞 values. With these Laplacian matrices, we define +graph encoders. +4.2 +Graph Encoder +4.2.1 +Spectral Convolution via Magnetic Laplacian. The +signed-directed magnetic Laplacian L, is diagonalizable with eigen- +vector matrix U, and diagonal eigenvalues Λ. Several graph convolu- +tion studies [7, 15] utilize the eigenvectors as discrete Fourier modes + +Edge type +H (u,) +imag-axis +u→v +(cosq + isinq) +u←v +uv +(cosq - isinq) +u←v +(cosq - ising) +u←v +u-→v +u→v + (cosq + isinq) +uv +uv +uv +real-axis +cosq +u-→v +u←v +uv +-cosq +uv +u与v +isinq +u乌v +-isinq +u +V +0 +(a) +(b)Taewook Ko, et al. +Figure 3: Model overview +of graph signal processing. The graph signals are transformed into +the Fourier domain through graph Fourier transform x : 𝑉 → C by +ˆx = U†x. The inverse Fourier transform formula is defined as follow +thanks to the unitarity of U, +x = Uˆx = +𝑁 +∑︁ +𝑘=1 +ˆx(𝑘)u𝑘. +The spectral convolution operation of graph signal processing is +described as +g𝜃 ∗ x = Ug𝜃U†x, +where g𝜃 = 𝑑𝑖𝑎𝑔(𝜃) is a trainable filter. For efficient calculation, +[15] proposed a truncated Chebyshev polynomial expansion of the +filter by, +g𝜃′(Λ) ≈ +𝐾 +∑︁ +𝑘=0 +𝜃 ′ +𝑘𝑇𝑘 ( ˜Λ). +𝑇0(𝑥) = 1,𝑇1(𝑥) = 𝑥, and 𝑇𝑘 = 2𝑥𝑇𝑘−1(𝑥) +𝑇𝑘−2(𝑥) for 𝑘 ≥ 2. 𝑘 is +an expansion order. ˜Λ = +2 +𝜆𝑚𝑎𝑥 Λ−I is a normalized eigenvalue matrix, +and 𝜆𝑚𝑎𝑥 is the largest eigenvalue. 𝜃 ′ +𝑘 are Chebyshev coefficients. +We have a simplified form of spectral graph convolution by, +g𝜃′ ∗ x = +𝐾 +∑︁ +𝑘=0 +𝜃 ′ +𝑘𝑇𝑘 ( ˜L)𝑥, +where ˜L = +2 +𝜆𝑚𝑎𝑥 L − I analogous to ˜Λ. +4.2.2 +Spectral Convolution Layer. We define the spectral con- +volution layer with the approximated signed-directed spectral convo- +lution operation. We set 𝑘 as 1, the maximum polynomial order, and +𝜆𝑚𝑎𝑥 is assumed 2 to make it practical. Similar to GCN[25], we set +𝜃 = 𝜃 ′ +0 = −𝜃 ′ +1. Then we have +g𝜃′ ∗ x ≈ 𝜃 (I + (D− 1 +2 +𝑠 +A𝑠D− 1 +2 +𝑠 +) ⊙ P𝑞)x. +The spectral convolution layer is defined as +H = ( ˜D− 1 +2 +𝑠 +˜A𝑠 ˜D− 1 +2 +𝑠 +⊙ P𝑞)XW. +H ∈ R𝑁 ×𝐹 is the convoluted graph signals or representations. X ∈ +R𝑁 ×𝐶 is the input signal.𝐶 and 𝐹 are the numbers of input and output +channels. W ∈ R𝐶×𝐹 is a learnable matrix. It is a renormalization +trick that I + (D− 1 +2 +𝑠 +A𝑠D− 1 +2 +𝑠 +) ⊙ P𝑞 → ˜D− 1 +2 +𝑠 +˜A𝑠 ˜D− 1 +2 +𝑠 +⊙ P𝑞 where ˜As = +A𝑠 + I and ˜Ds(𝑖,𝑖) = � +𝑗 ˜As(𝑖, 𝑗). It prevents gradient vanishing and +exploding problems. +4.2.3 +Signed-Directed Graph Encoder. The graph encoder +stacks 𝐿 layers of proposed spectral convolution layer. The 𝑙-th +layer feature vector x(𝑙) is defined as, +x(𝑙) +𝑗 += 𝜎( +𝐹𝑙−1 +∑︁ +𝑖=1 +Y(𝑙) +𝑖𝑗 x(𝑙−1) +𝑖 ++ b(𝑙) +𝑗 ). +We use a novel activation function for the complex elements. The +activation function 𝜎 is an complex version of ReLU, 𝜎(𝑧) = 𝑧, if +−𝜋/2 ≤ arg(𝑧) ≤ 𝜋/2, otherwise, 𝜎(𝑧) = 0. The feature matrix X(𝐿) +has both real and imaginary values. Here we introduce unwinding +operation. It converts real and imaginary features into the same +domain. +X(𝐿) +unwind = [real(X(𝐿))||imag(X(𝐿)) ⊗ (−𝑖)]. +We add a fully connected layer after unwinding to get the node +representation. +Z = 𝜎(X(𝐿) +unwindW𝐿+1 + B(𝐿+1)) +Z ∈ R𝑁 ×𝐷 is the output node representation. The augmented two +graph views are fed into the spectral graph encoder and makes the +augmented node representations. + +Structure Perturb +Laplacian Perturb +Projection & +graph view +I graph encoder +Contrastive Objectives +inter-negative +iCGN with L +: Projection +Embedding +Representation 1 +intra-negative +CGN with L + Projection +q2 +inter-positive +Embedding 2: +Representation 2Signed Directed Graph Contrastive Learning with Structure and Laplacian Augmentation +4.3 +Contrastive Objective +There are two graph views after perturbations, and the graph encoder +makes node representations of them Z1 and Z2. The goal of the +contrastive objective is that the embeddings of the same nodes agree +with each other. At the same time, they distinguish from the other +nodes. We apply a MLP projection layer to improve the discrimina- +tive power.[2, 22] We define the contrastive losses with the projected +representation M. +4.3.1 +Inter-view Loss. It is considered that the two identical +nodes from different views are inter-positive pairs. On the other +hand, the rest of the nodes are considered inter-negative pairs. For +example, a node 𝑢 from graph view 1 and another node 𝑢 from graph +view 2 are inter-positive pairs. And others nodes 𝑣 ∈ V and 𝑣 ≠ 𝑢 +from graph view 2 are inter-negative pairs with a node 𝑢 from graph +view 1. Even though the augmented representations from different +graph views are different, they represent the same nodes. We want +to maximize the agreement of the positive pair representations m𝑣1 +𝑢 +and m𝑣2 +𝑢 . While minimize the agreements of the negative pairs m𝑣1 +𝑢 +and m𝑣2𝑣 . The goal of the inter-view objective is to maximize the +similarity of positive pairs and minimize the negative pairs. +L𝑖𝑛𝑡𝑒𝑟 = − 1 +𝑁 +𝑁 +∑︁ +𝑖=𝑖 +log +exp(𝑠𝑖𝑚(m𝑣1 +𝑖 , m𝑣2 +𝑖 )/𝜏) +�𝑁 +𝑗=1,𝑗≠𝑖 exp(𝑠𝑖𝑚(m𝑣1 +𝑖 , m𝑣2 +𝑗 )/𝜏) +𝑠𝑖𝑚 is a cosine similarity operation, and 𝜏 is a temperature parameter. +4.3.2 +Intra-view Loss. We define intra-view loss as similar to +inter-view loss. The inter-view loss compares the projected node +representations between the two different graph views. In contrast, +inter-view loss calculates the discriminative loss within a graph +view. Each node in a graph view is a unique user. All nodes have +their representations, and we need to distinguish them from others. +Therefore, we define inter-view loss as, +L𝑖𝑛𝑡𝑟𝑎 = − 1 +𝑁 +𝑁 +∑︁ +𝑖=𝑖 +log +1 +�𝑁 +𝑗=1,𝑗≠𝑖 exp(𝑠𝑖𝑚(m𝑣 +𝑖 , m𝑣 +𝑗 )/𝜏) +. +4.3.3 +Contrastive Loss. The whole contrastive loss is the sum of +the inter- and intra-view loss functions. The goal of the contrastive +loss is to let the model learn discriminative power from the projected +node representations and maximize the positive agreements/mutual +information. +L𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡𝑖𝑣𝑒 = L𝑖𝑛𝑡𝑒𝑟 + L𝑖𝑛𝑡𝑟𝑎 +4.4 +Prediction and Label Loss +For model training, we not only use contrastive loss but also uti- +lize label loss. The augmented two graph views are inputs of graph +encoder and makes two node representations Z1 and Z2. The rep- +resentations are concatenated and fed into output layer. The output +layer makes the final node representation. +R = 𝜎([Z1 ∥ Z2]W𝑜𝑢𝑡 + B𝑜𝑢𝑡) +R ⊆ 𝑉 ×𝑑 and W𝑜𝑢𝑡 ⊆ 2𝑑 ×𝑑 where 𝑑 is embedding dimension. We +make prediction results with this output node representation. The +prediction layer is defined as, +ˆ𝑦𝑢,𝑣 = 𝜎([r1 +𝑢||r2 +𝑣]W𝑝𝑟𝑒𝑑 + B𝑝𝑟𝑒𝑑) +Prediction value estimates the link sign when there is an edge from +node 𝑢 to 𝑣. We define the label loss with the prediction error. +L𝑙𝑎𝑏𝑒𝑙 = − +|E+ | +∑︁ +𝑢,𝑣∈E+ +𝑦𝑢,𝑣logˆ𝑦𝑢,𝑣 − +|E− | +∑︁ +𝑢,𝑣∈E− +(1 − 𝑦𝑢,𝑣)log(1 − ˆ𝑦𝑢,𝑣) +SDGCL is trained with the following objective function, +L = 𝛼 × L𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡𝑖𝑣𝑒 + L𝑙𝑎𝑏𝑒𝑙. +𝛼 is weight of contrastive loss. Note that, unlike other graph con- +trastive studies, it leverages supervised labels. +5 +EXPERIMENTS +5.1 +Datasets and Metrics +We evaluate the model with four real-world signed directed graph +datasets widely used in the link sign prediction task. Bitcoin-Alpha1 +and Bitcoin-OTC2[27] are extracted from Bitcoin trading platforms. +Nodes are users, and edges are user relationships. Users can score +the others on a scale of -10 to +10. Edges higher than 0 are treated +as positive edges, otherwise negative edges. Epinions3[13] is a who- +trust-whom network crawled from a consumer review site. Users +can notate trust or distrust to reviews of other users. Slashdot4[28] is +a social network of user community site. Especially they share new +information. Users tag others as friends or foes, and we can construct +positive and negative edges with this information. Moreover, we +adopt four metrics, AUC, macro-F1, micro-F1, and binary-F1, for +unbiased evaluation. +Dataset +# nodes +# pos links +# neg links +positive ratio +Bitcoin-Alpha +3,783 +22,650 +1,536 +0.937 +Bitcoin-OTC +5,881 +32,029 +3,563 +0.900 +Epinions +131,828 +717,667 +123,705 +0.853 +Slashdot +82,144 +425,072 +124,130 +0.774 +Table 1: Dataset statistics. +Table 1 shows the statistics of the datasets. BitCoin datasets have +relatively small size of nodes and edges. The positive and negative +ratios are highly imbalanced. Three of the datasets have nearly 90% +of positives among the edges. Otherwise, Slashdot has a 23% share +of negative edges. The four datasets have various graph sizes and +positive ratios. It is suitable for unbiased evaluation. +5.2 +Baselines +We implemented seven baselines to compare the model performance. +There are three signed graph convolutions, three constative learnings, +and one signed graph contrastive model. +• SGCN[8] defines (un)balanced path based on the balanced +theory for neighbor aggregation. It is the first signed convolu- +tion model but does not consider the edge directions. +1http://www.btc-alpha.com +2http://www.bitcoin-otc.com +3http://www.epinions.com +4http://www.slashdot.com + +Taewook Ko, et al. +Signed Convolution +Contrastive Learning +Signed Contrastive Learning +Dataset +Metric +SGCN +SDGNN +SDGCN +GraphCL +GCA +SimGRACE +SGCL +SDGCL-s +SDGCL-l +SDGCL +Bitcoin-Alpha +AUC +0.782 +0.835 +0.858 +0.814 +0.838 +0.823 +0.849 +0.896 +0.883 +0.886 +Macro-F1 +0.668 +0.683 +0.723 +0.653 +0.671 +0.657 +0.712 +0.740 +0.744 +0.754 +Micro-F1 +0.899 +0.909 +0.923 +0.907 +0.913 +0.919 +0.923 +0.947 +0.942 +0.949 +Binary-F1 +0.941 +0.947 +0.958 +0.950 +0.953 +0.957 +0.959 +0.973 +0.969 +0.971 +Bitcoin-OTC +AUC +0.832 +0.879 +0.887 +0.852 +0.868 +0.859 +0.893 +0.914 +0.902 +0.910 +Macro-F1 +0.710 +0.751 +0.773 +0.725 +0.743 +0.725 +0.781 +0.803 +0.796 +0.802 +Micro-F1 +0.886 +0.902 +0.911 +0.904 +0.907 +0.906 +0.920 +0.935 +0.930 +0.937 +Binary-F1 +0.924 +0.938 +0.950 +0.948 +0.948 +0.948 +0.956 +0.964 +0.962 +0.965 +Epinions +AUC +0.848 +0.914 +0.939 +0.839 +0.911 +0.913 +0.876 +0.941 +0.943 +0.942 +Macro-F1 +0.741 +0.831 +0.850 +0.726 +0.814 +0.812 +0.798 +0.861 +0.865 +0.863 +Micro-F1 +0.893 +0.912 +0.925 +0.887 +0.913 +0.915 +0.909 +0.934 +0.936 +0.936 +Binary-F1 +0.937 +0.944 +0.956 +0.936 +0.950 +0.951 +0.948 +0.962 +0.963 +0.963 +Slashdot +AUC +0.740 +0.849 +0.886 +0.813 +0.870 +0.865 +0.783 +0.900 +0.891 +0.902 +Macro-F1 +0.688 +0.729 +0.780 +0.667 +0.750 +0.745 +0.683 +0.792 +0.785 +0.789 +Micro-F1 +0.786 +0.823 +0.855 +0.813 +0.842 +0.833 +0.811 +0.864 +0.859 +0.863 +Binary-F1 +0.869 +0.889 +0.908 +0.887 +0.902 +0.895 +0.884 +0.915 +0.911 +0.914 +Table 2: Link sign prediction performance. Bold and underline indicate the best and the second performance respectively. The per- +formances are the average score of 10 experiments with different seed sets. +• SDGNN[21] proposed four weight matrices to aggregate the +neighbor features according to the edge types adaptively. +• SDGCN[26] is the first spectral convolution for signed- +directed graphs. They proposed a signed magnetic Laplacian +to overcome the disadvantage of traditional graph Laplacian. +• GraphCL[51] is a graph contrastive model with node and +edge augmentations. They randomly perturbed graph struc- +tures by dropping or adding edges and nodes. +• GCA[56] proposed score-based graph augmentation methods +and introduced novel node-level contrastive objectives. +• SimGRACE[49] tried to overcome the cumbersome augmen- +tation search. They introduced a novel graph encoder pertur- +bation rather than graph augmentation. +• SGCL[39] is a graph contrastive model for signed-directed +graphs. It perturbs the edge sign and directions to get positive +and negative graph views. Each view makes node representa- +tions and defines a node-level contrastive loss. +For a fair comparison, all the baselines were implemented under the +same environments, such as embedding dimension, learning epochs, +and convolution layers. Though the graph contrastive baselines are +designed for self-supervised learning, we train them with the same +supervised loss. Moreover, we removed the read-out process of +GraphCL and SimGRACE, which are designed for graph embedding. +5.3 +Implementation Details +We follow the hyperparameter settings of the original papers of +each model. The node embedding dimension is set to 64 for all the +baselines to make the same learning capacity. The edges are split +into 60:20:20 for training, validation, and test sets. However, we did +not use all the positive edges as training instances during the training +stage. We sampled positive edges at the ratio of 3:1. It is because +the ratio of the positive edge is too high. If we use all positive +edges for training, the model would be easy to make positives only. +Nevertheless, we utilize all edge instances for the validation and test +phase. The structure perturbing ratio 𝑝 and 𝑟 are set to 0.1 for all +datasets. And the magnetic Laplacian phase 𝑞 is randomly selected +from [0, 0.1𝜋, 0.2𝜋, 0.3𝜋, 0.4𝜋] for every iterations. The influence +of the perturbing ratio and 𝑞 variation is analyzed in Figure 5. The +contrastive loss weight 𝛼 is set to 0.2. Graph encoder stacks two +signed-directed spectral convolution layers. We use Adam optimizer +with learning rate = 0.001, weight decay = 0.001. All experiments +are run 10 times with different seed sets to avoid randomness and get +the average score. The experiments are conducted on Xeon E5-2660 +v4 and accelerated via Nvidia Titan XP 12G GPU. The software is +implemented via Ubuntu v16.4 with python v3.6 and Pytorch v1.8.0. +6 +RESULTS +6.1 +Link Sign Prediction +We summarize the prediction results in Table 2. There are three +proposed models. SDGCL-s is a model only with structure aug- +mentation, and SDGCL-l is a model with Laplacian augmentation. +SDGCL is the one that adopts both augmentations. Consequently, the +proposed SDGCL and its variants always show the best performance +in all datasets and all metrics. For Bitcoin-Alpha, Bitcoin-OTC, and +Slashdot datasets, SDGCL-composite and SDGCL-structure have +the highest score alternatively. SDGCL-composite and SDGCL- +Laplacian get the highest score in the Epinions dataset. +SGCL or SDGCN shows the best performance among the baselines. +SDGCN could achieve better performance than others thanks to the +signed-directed spectral convolution. They could fully enjoy the sign +and direction information. SGCL is the only model for signed graph +contrastive. They could improve the performance via a contrastive +learning mechanism than other baselines. However, SGCL shows +poor performance on Epinions and Slashdot. We think there are +two reasons. First, the advantage of contrastive learning is maxi- +mized with scarce labeled datasets. That is why the model can learn +more from the contrastive loss. However, if the label is rich enough, + +Signed Directed Graph Contrastive Learning with Structure and Laplacian Augmentation +Figure 4: Structure perturbing analysis. x-axis indicates perturbing ratio. +Figure 5: Laplacian perturbing analysis. x-axis indicates noise variance. +the utility of contrastive learning is lessened. Second, we ruin the +original dataset context by random perturbation of SGCL. Epinions +and Slashdot have larger sizes of edges. The hidden patterns and +joint distributions of edges are far more complicated. We harm the +original data information by perturbing many edges and splitting +them into different graph views. Unlike SGCL, our proposed model +minimizes the structure perturbation by proposing Laplacian aug- +mentation. Furthermore, we do not split positive and negative edges +in different graph views. +6.2 +Perturbing Analysis +Here we analyze the effect of structure and Laplacian augmentation. +Figure 4 shows that the performance varies according to the edge +perturbing ratio. Laplacian perturbation is not adopted in this ex- +periment to get the effect of edge perturbing. When the perturbing +ratios are zero, AUC and Macro-F1 scores are low. We can see the +importance of structure perturbing. The performances go up with +a small perturbing ratio and go down with a large value. Figure 5 +shows the performances of magnetic Laplacian phase 𝑞 variation. +We set default 𝑞 as 0.1𝜋 and add some Gaussian noise with standard +deviation. At the same time, the edge perturbing ratios are set to +zeros. The x-axis shows the standard deviation values. We cap the +maximum value of 𝑞 to 0.5𝜋. Similar to structure perturbation, zero +standard deviations show low performances. Zero standard deviation +means there is no Laplacian perturbation. They have similar trends +that go up and go down. However, Laplacian perturbation is not as +sensitive as structure perturbation. Though graph augmentations are +compulsory in contrastive learning, much perturbation is detrimental +to training. Structure perturbation gives direct contrastive informa- +tion while it may lose the data context. Laplacian perturbation gives +indirect perturbation of graph data but is still effective. SDGCL +combines these two augmentations for better and more stable graph +augmentation. +6.3 +Ablation Study +Table 3 shows the AUC scores of ablation studies. We check the ef- +fects of SDGCL components. w/o Laplacian, w/o structure, and w/o +augmentation are the variation of graph augmentations. Especially, +w/o augmentation shows the lowest performance. As we expected, +the model leverages the advantage of contrastive learning. It shows +that augmentations are important in our model. w/o contrastive loss +is a model with 𝛼 = 0 and the model uses label loss only. Note +that it does not mean that the model does not utilize the benefits of +contrastive learning. Even though the contrastive loss weight is zero, +label loss is calculated with augmented representations of graph +views. Thus, the model is still leveraging the contrastive effects. w/o +projection is a model without a projection layer. It is well known that +the projection layer is useful for robust contrastive learning[2, 22]. +Bitcoin-Alpha +Bitcoin-OTC +Epinions +Slashdot +SDGCL +0.886 +0.910 +0.942 +0.902 +w/o structure aug +0.883 +0.902 +0.943 +0.891 +w/o Laplacian aug +0.896 +0.914 +0.941 +0.900 +w/o augmentation +0.846 +0.889 +0.936 +0.884 +w/o contrastive loss +0.878 +0.901 +0.941 +0.891 +w/o projection +0.872 +0.904 +0.939 +0.897 +Table 3: Ablation Study + +0.89 +AUC(left) +0.79 +0.82 +Macro F1(right) +0.83 +0.89 +0.94 +0.90 +0.77 +0.91 +0.87 +0.81 +0.87 +0.75 +0.90 +0.800.93 +0.79 +0.88 ++0.85 +0.85 +0.77 +0.89 +0.92 +0.78 +0.86 +0.75 +0.83 +0.71 +0.83 +0.05 0.075 0.1 +0.15 +0.2 +0 +0.05 0.075 0.1 +0.15 +0.2 +0.91 +0.0250.050.0750.1 +0.15 +0.0250.050.0750.1 +0.15 0.730.87 + 0.790 +AUC(left) +0.76 ++0.81 +0.89 +Macro F1(right) +0.90 +0.87 +0.86 +0.785 +0.940 +0.85 +0.88 +0.74 +0.88 +0.85 +0.780 +0.83 +0.935 +0.87 +0.72 +0.86 +LL0+ +0 +0.1 +0.2 +0.3 +0.4 +0.1 +0.2 +0.3 +0.4 +0 +0.1 +0.2 +0.3 +0.40.84 +0 +0.1 +0.2 +0.3 +0.4Taewook Ko, et al. +7 +CONCLUSION +This paper proposed SDGCL, a signed-directed graph contrastive +learning model. To make augmented node representations, we intro- +duced two levels of the perturbation process. Structure perturbation +randomly changes the signs and directions of edges. Even though +it may lose some vital information from the original graphs, we +check that it makes the model noise-robust. Laplacian perturbation +changes the phase parameter 𝑞 for every training iteration to give +perturbation. It does not directly influence the graph information +but perturbs the Laplacian matrix. Then we define the inter- and +intra-view contrastive objectives with the augmented node repre- +sentations. Unlike other signed graph studies, our model does not +depend on social theories or assumptions. Also, there are no arbitrary +graph-splitting processes. Our graph encoder is based on the Lapla- +cian matrix; it only enjoys the structural information. Therefore it +could reduce computational costs. We evaluate the proposed model +with four real-world datasets and seven baselines. The experimental +results show that our proposed model has superior performance to +others. SDGCL and their variants ranked at the top for every dataset +and metric. +REFERENCES +[1] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. 2020. A +simple framework for contrastive learning of visual representations. In Interna- +tional conference on machine learning. PMLR, 1597–1607. +[2] Ting Chen, Simon Kornblith, Kevin Swersky, Mohammad Norouzi, and Geoffrey E +Hinton. 2020. Big self-supervised models are strong semi-supervised learners. +Advances in neural information processing systems 33 (2020), 22243–22255. +[3] Yiqi Chen, Tieyun Qian, Huan Liu, and Ke Sun. 2018. " Bridge" Enhanced Signed +Directed Network Embedding. In Proceedings of the 27th acm international +conference on information and knowledge management. 773–782. +[4] Alexander Cloninger. 2017. A note on Markov normalized magnetic eigenmaps. +Applied and Computational Harmonic Analysis 43, 2 (2017), 370–380. +[5] Yves Colin de Verdière. 2013. Magnetic interpretation of the nodal defect on +graphs. Analysis & PDE 6, 5 (2013), 1235–1242. +[6] Mihai Cucuringu, Huan Li, He Sun, and Luca Zanetti. 2020. Hermitian ma- +trices for clustering directed graphs: insights and applications. In International +Conference on Artificial Intelligence and Statistics. PMLR, 983–992. +[7] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. 2016. Convolu- +tional neural networks on graphs with fast localized spectral filtering. Advances in +neural information processing systems 29 (2016). +[8] Tyler Derr, Yao Ma, and Jiliang Tang. 2018. Signed graph convolutional networks. +In 2018 IEEE International Conference on Data Mining (ICDM). IEEE, 929–934. +[9] Wenqi Fan, Yao Ma, Qing Li, Yuan He, Eric Zhao, Jiliang Tang, and Dawei Yin. +2019. Graph neural networks for social recommendation. In The world wide web +conference. 417–426. +[10] Stefano Fiorini, Stefano Coniglio, Michele Ciavotta, and Enza Messina. 2022. +SigMaNet: One Laplacian to Rule Them All. arXiv preprint arXiv:2205.13459 +(2022). +[11] Alex Fout, Jonathon Byrd, Basir Shariat, and Asa Ben-Hur. 2017. Protein interface +prediction using graph convolutional networks. Advances in neural information +processing systems 30 (2017). +[12] Satoshi Furutani, Toshiki Shibahara, Mitsuaki Akiyama, Kunio Hato, and Masaki +Aida. 2019. Graph signal processing for directed graphs based on the hermitian +laplacian. In Joint European Conference on Machine Learning and Knowledge +Discovery in Databases. Springer, 447–463. +[13] Ramanthan Guha, Ravi Kumar, Prabhakar Raghavan, and Andrew Tomkins. 2004. +Propagation of trust and distrust. In Proceedings of the 13th international confer- +ence on World Wide Web. 403–412. +[14] Krystal Guo and Bojan Mohar. 2017. Hermitian adjacency matrix of digraphs and +mixed graphs. Journal of Graph Theory 85, 1 (2017), 217–248. +[15] David K Hammond, Pierre Vandergheynst, and Rémi Gribonval. 2011. Wavelets +on graphs via spectral graph theory. +Applied and Computational Harmonic +Analysis 30, 2 (2011), 129–150. +[16] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. 2020. Mo- +mentum contrast for unsupervised visual representation learning. In Proceedings +of the IEEE/CVF conference on computer vision and pattern recognition. 9729– +9738. +[17] Xiangnan He, Kuan Deng, Xiang Wang, Yan Li, Yongdong Zhang, and Meng +Wang. 2020. Lightgcn: Simplifying and powering graph convolution network for +recommendation. In Proceedings of the 43rd International ACM SIGIR conference +on research and development in Information Retrieval. 639–648. +[18] Fritz Heider. 1946. Attitudes and cognitive organization. The Journal of psychol- +ogy 21, 1 (1946), 107–112. +[19] Paul W Holland and Samuel Leinhardt. 1971. Transitivity in structural models of +small groups. Comparative group studies 2, 2 (1971), 107–124. +[20] Junjie Huang, Huawei Shen, Liang Hou, and Xueqi Cheng. 2019. Signed graph +attention networks. In International Conference on Artificial Neural Networks. +Springer, 566–577. +[21] Junjie Huang, Huawei Shen, Liang Hou, and Xueqi Cheng. 2021. SDGNN: +Learning node representation for signed directed networks. In Proceedings of the +AAAI Conference on Artificial Intelligence, Vol. 35. 196–203. +[22] Alon Jacovi, Swabha Swayamdipta, Shauli Ravfogel, Yanai Elazar, Yejin Choi, +and Yoav Goldberg. 2021. Contrastive explanations for model interpretability. +arXiv preprint arXiv:2103.01378 (2021). +[23] Amin Javari, Tyler Derr, Pouya Esmailian, Jiliang Tang, and Kevin Chen-Chuan +Chang. 2020. Rose: Role-based signed network embedding. In Proceedings of +The Web Conference 2020. 2782–2788. +[24] Amin Javari, HongXiang Qiu, Elham Barzegaran, Mahdi Jalili, and Kevin Chen- +Chuan Chang. 2017. Statistical link label modeling for sign prediction: Smoothing +sparsity by joining local and global information. In 2017 IEEE International +Conference on Data Mining (ICDM). IEEE, 1039–1044. +[25] Thomas N Kipf and Max Welling. 2016. Semi-supervised classification with +graph convolutional networks. arXiv preprint arXiv:1609.02907 (2016). +[26] Taewook Ko. 2022. A Graph Convolution for Signed Directed Graphs. arXiv +preprint arXiv:2208.11511 (2022). +[27] Srijan Kumar, Francesca Spezzano, VS Subrahmanian, and Christos Faloutsos. +2016. Edge weight prediction in weighted signed networks. In 2016 IEEE 16th +International Conference on Data Mining (ICDM). IEEE, 221–230. +[28] Jérôme Kunegis, Andreas Lommatzsch, and Christian Bauckhage. 2009. The +slashdot zoo: mining a social network with negative edges. In Proceedings of the +18th international conference on World wide web. 741–750. +[29] Jure Leskovec, Daniel Huttenlocher, and Jon Kleinberg. 2010. Predicting pos- +itive and negative links in online social networks. In Proceedings of the 19th +international conference on World wide web. 641–650. +[30] Shuangli Li, Jingbo Zhou, Tong Xu, Dejing Dou, and Hui Xiong. 2022. Geomgcl: +geometric graph contrastive learning for molecular property prediction. In Pro- +ceedings of the AAAI Conference on Artificial Intelligence, Vol. 36. 4541–4549. +[31] Yu Li, Yuan Tian, Jiawei Zhang, and Yi Chang. 2020. Learning signed network em- +bedding via graph attention. In Proceedings of the AAAI Conference on Artificial +Intelligence, Vol. 34. 4772–4779. +[32] Elliott H Lieb and Michael Loss. 1993. Fluxes, Laplacians, and Kasteleyn’s +theorem. In Statistical Mechanics. Springer, 457–483. +[33] Zihan Lin, Changxin Tian, Yupeng Hou, and Wayne Xin Zhao. 2022. Improving +Graph Collaborative Filtering with Neighborhood-enriched Contrastive Learning. +In Proceedings of the ACM Web Conference 2022. 2320–2329. +[34] Jianxi Liu and Xueliang Li. 2015. Hermitian-adjacency matrices and Hermitian +energies of mixed graphs. Linear Algebra Appl. 466 (2015), 182–207. +[35] Alessandro Olgiati. 2017. Remarks on the derivation of Gross-Pitaevskii equation +with magnetic Laplacian. In Advances in Quantum Mechanics. Springer, 257–266. +[36] Erlin Pan and Zhao Kang. 2021. Multi-view contrastive graph clustering. Advances +in neural information processing systems 34 (2021), 2148–2159. +[37] Zhen Peng, Wenbing Huang, Minnan Luo, Qinghua Zheng, Yu Rong, Tingyang +Xu, and Junzhou Huang. 2020. Graph representation learning via graphical mutual +information maximization. In Proceedings of The Web Conference 2020. 259–270. +[38] Jiezhong Qiu, Qibin Chen, Yuxiao Dong, Jing Zhang, Hongxia Yang, Ming Ding, +Kuansan Wang, and Jie Tang. 2020. Gcc: Graph contrastive coding for graph neural +network pre-training. In Proceedings of the 26th ACM SIGKDD International +Conference on Knowledge Discovery & Data Mining. 1150–1160. +[39] Lin Shu, Erxin Du, Yaomin Chang, Chuan Chen, Zibin Zheng, Xingxing Xing, +and Shaofeng Shen. 2021. SGCL: Contrastive Representation Learning for Signed +Graphs. In Proceedings of the 30th ACM International Conference on Information +& Knowledge Management. 1671–1680. +[40] MA Shubin. 1994. Discrete magnetic laplacian. Communications in mathematical +physics 164, 2 (1994), 259–275. +[41] Rahul Singh and Yongxin Chen. 2022. Signed Graph Neural Networks: A Fre- +quency Perspective. arXiv preprint arXiv:2208.07323 (2022). +[42] Fan-Yun Sun, Jordan Hoffmann, Vikas Verma, and Jian Tang. 2019. Infograph: +Unsupervised and semi-supervised graph-level representation learning via mutual +information maximization. arXiv preprint arXiv:1908.01000 (2019). +[43] Susheel Suresh, Pan Li, Cong Hao, and Jennifer Neville. 2021. Adversarial +graph augmentation to improve graph contrastive learning. Advances in Neural +Information Processing Systems 34 (2021), 15920–15933. +[44] Zekun Tong, Yuxuan Liang, Changsheng Sun, Xinke Li, David Rosenblum, and +Andrew Lim. 2020. Digraph inception convolutional networks. Advances in +neural information processing systems 33 (2020), 17907–17918. + +Signed Directed Graph Contrastive Learning with Structure and Laplacian Augmentation +[45] Zekun Tong, Yuxuan Liang, Changsheng Sun, David S Rosenblum, and An- +drew Lim. 2020. +Directed graph convolutional network. +arXiv preprint +arXiv:2004.13970 (2020). +[46] Petar Velickovic, William Fedus, William L Hamilton, Pietro Liò, Yoshua Bengio, +and R Devon Hjelm. 2019. Deep Graph Infomax. ICLR (Poster) 2, 3 (2019), 4. +[47] Suhang Wang, Jiliang Tang, Charu Aggarwal, Yi Chang, and Huan Liu. 2017. +Signed network embedding in social media. In Proceedings of the 2017 SIAM +international conference on data mining. SIAM, 327–335. +[48] Yingheng Wang, Yaosen Min, Xin Chen, and Ji Wu. 2021. Multi-view graph +contrastive representation learning for drug-drug interaction prediction. In Pro- +ceedings of the Web Conference 2021. 2921–2933. +[49] Jun Xia, Lirong Wu, Jintao Chen, Bozhen Hu, and Stan Z Li. 2022. SimGRACE: +A Simple Framework for Graph Contrastive Learning without Data Augmentation. +In Proceedings of the ACM Web Conference 2022. 1070–1079. +[50] Yuning You, Tianlong Chen, Yang Shen, and Zhangyang Wang. 2021. Graph +contrastive learning automated. In International Conference on Machine Learning. +PMLR, 12121–12132. +[51] Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, and +Yang Shen. 2020. Graph contrastive learning with augmentations. Advances in +Neural Information Processing Systems 33 (2020), 5812–5823. +[52] Jiaqi Zeng and Pengtao Xie. 2021. Contrastive self-supervised learning for graph +classification. In Proceedings of the AAAI Conference on Artificial Intelligence, +Vol. 35. 10824–10832. +[53] Muhan Zhang, Zhicheng Cui, Marion Neumann, and Yixin Chen. 2018. An end- +to-end deep learning architecture for graph classification. In Proceedings of the +AAAI conference on artificial intelligence, Vol. 32. +[54] Xitong Zhang, Yixuan He, Nathan Brugnone, Michael Perlmutter, and Matthew +Hirn. 2021. Magnet: A neural network for directed graphs. Advances in Neural +Information Processing Systems 34 (2021), 27003–27015. +[55] Huasong Zhong, Jianlong Wu, Chong Chen, Jianqiang Huang, Minghua Deng, +Liqiang Nie, Zhouchen Lin, and Xian-Sheng Hua. 2021. Graph contrastive clus- +tering. In Proceedings of the IEEE/CVF International Conference on Computer +Vision. 9224–9233. +[56] Yanqiao Zhu, Yichen Xu, Feng Yu, Qiang Liu, Shu Wu, and Liang Wang. 2021. +Graph contrastive learning with adaptive augmentation. In Proceedings of the Web +Conference 2021. 2069–2080. + diff --git a/StE4T4oBgHgl3EQflw2y/content/tmp_files/load_file.txt b/StE4T4oBgHgl3EQflw2y/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..54b0ffb00a86937fb6131428f2ee8e1525cb9f64 --- /dev/null +++ b/StE4T4oBgHgl3EQflw2y/content/tmp_files/load_file.txt @@ -0,0 +1,991 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf,len=990 +page_content='Signed Directed Graph Contrastive Learning with Structure and Laplacian Augmentation Taewook Ko taewook.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='ko@snu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='ac.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='kr Seoul National University Republic of Korea Yoonhyuk Choi younhyuk95@snu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='ac.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='kr Seoul National University Republic of Korea Chong-Kwon Kim ckim@kentech.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='ac.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='kr Korea Institute of Energy Technology Republic of Korea ABSTRACT Graph contrastive learning has become a powerful technique for several graph mining tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' It learns discriminative representation from different perspectives of augmented graphs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' Ubiquitous in our daily life, singed-directed graphs are the most complex and tricky to analyze among various graph types.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' That is why singed-directed graph contrastive learning has not been studied much yet, while there are many contrastive studies for unsigned and undirected.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' Thus, this paper proposes a novel signed-directed graph contrastive learning, SDGCL.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' It makes two different structurally perturbed graph views and gets node representations via magnetic Laplacian perturbation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' We use a node-level contrastive loss to maximize the mutual infor- mation between the two graph views.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' The model is jointly learned with contrastive and supervised objectives.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' The graph encoder of SDGCL does not depend on social theories or predefined assump- tions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' Therefore it does not require finding triads or selecting neigh- bors to aggregate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' It leverages only the edge signs and directions via magnetic Laplacian.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' To the best of our knowledge, it is the first to introduce magnetic Laplacian perturbation and signed spectral graph contrastive learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' The superiority of the proposed model is demonstrated through exhaustive experiments on four real-world datasets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' SDGCL shows better performance than other state-of-the- art on four evaluation metrics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' KEYWORDS graph contrastive learning, magnetic Laplacian, signed directed graph, link sign prediction 1 INTRODUCTION Various types of online social graphs are developing as the use of the internet increases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' Social graph research attracts attention from researchers with its usefulness for various downstream tasks such as prediction, classification, and recommendation[9, 11, 17, 53].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' Signed-directed graphs, which express the relationship between users as like/dislike or trust/distrust, have the most information and are the most valuable among several graph types.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' However, it has difficulties to analyze them caused of severe noise and complexity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' Many network embedding and graph convolution studies for signed- directed graphs have been proposed based on the two well-known social theories, balance and status.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' [18, 19] Balance theory is the concept that "A friend of my friend is my friend, and an enemy of my friend is my enemy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='" Furthermore, status theory sets the relative user ranks with the relation of positive and negative edges.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' The ideas of most existing studies, including SiNE[47], SGCN[8], SNEA[31], and SDGNN[21], are derived from the two social theories.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' Recently, some studies that do not use them have been proposed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' ROSE[45] proposed a user-role-based methodology by transforming a graph into an unsigned bipartite.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' SDGCN[26] proposed a spectral convolu- tion via a signed magnetic Laplacian matrix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' Contrastive learning[1, 16] is a successful learning mechanism in computer vision research with fewer labels or a self-supervised envi- ronment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' It learns discriminative representations through contrastive loss from the data itself.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' They maximize the mutual information of representations of augmented images.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' Recently, many graph stud- ies utilizing contrastive learning have been suggested.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' Graph con- trastive learning models generate graph views in their own ways, such as edge or node deletion[51], addition[52], random-walk[38], or attribute masking[56].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' JOAO[50] and AD-GCL[43] learn optimal perturbing distribution according to the dataset and SimGRACE[49] adds gaussian noise on the trained parameters for encoder perturba- tion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' They define contrastive loss with the augmented representations of nodes or graphs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' Graph contrastive learning also aims to maxi- mize the mutual information of different graph views.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' However, not much research has been conducted on signed-directed graphs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' SGCL[39] is the first study to apply contrastive learning on signed- directed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' They make two graph views by giving random perturba- tions on edge signs and directions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' Then the views are divided into positive graph views and negative graph views.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' The positive graph view is constructed with only the positive edges of a graph view, and the same for the negative graph view.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' Then run graph convolution on the different graph views to get augmented node representations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' Though SGCL is innovative, there are some limitations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' First, it loses the context of the original graph if we separate the edges into different graphs by the edge types.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' The mutual influence between edge types cannot be trained.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' For example, valuable patterns like the balance theory cannot be reflected.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' Second, most real-world signed graphs have a nearly 90% of positive edge ratio[27].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' Therefore, the negative views are unsuitable for graph convolutions due to the sparsity issue.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' In this study, we propose a Signed Directed Graph Contrastive Learning(SDGCL), which improves these limitations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' SDGCL utilizes two levels of perturbation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' We apply random edge perturbation similar to SGCN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' It changes edge signs and direc- tions to generate augmented graph views.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' Then we introduce mag- netic Laplacian perturbation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' It changes a phase parameter 𝑞 of the magnetic Laplacian matrix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' 𝑞 controls the phase angle between the real- and imaginary axis[26].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' Magnetic Laplacian was studied in the field of quantum physics[5, 35, 40].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' Thanks to its Hermitian properties, it has been used in graph convolutions for directed and signed-directed[41, 54].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' Signed magnetic Laplacian encodes graph sturucture, including edge signs and directions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' It reflects the graph information and allows the model to learn the patterns of nodes and edges.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' We define a spectral convolution layer with the perturbed Laplacian by the idea of graph signal processing[7, 15, 25].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' SDGCL gets the two augmented node representations with the graph encoder arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='05163v1 [cs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='LG] 12 Jan 2023 Taewook Ko, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' Figure 1: Example of a signed-directed graph and its structure perturbation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' Dashed edges indicate perturbed edges.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' and defines node-level contrast loss[39, 56] for contrastive learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' The performance of the proposed model was evaluated with the link sign prediction task, which is widely selected to evaluate the signed- directed graph embedding.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' It was tested with four real-world graphs and showed excellent performance compared to various baselines for signed-directed graph embedding and graph contrast learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' The followings are the contributions of this paper This paper proposes a novel signed-directed graph contrastive learning model, SDGCL.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' It augments node representations via two stages, graph struc- ture perturbation and magnetic Laplacian perturbation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' To the best of our knowledge, it is the first to introduce mag- netic Laplacian perturbation and is the first spectral signed graph contrastive model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' The proposed model has the best link sign prediction perfor- mance in real-world graph experiments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' 2 RELATED WORKS 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='1 Signed-Directed Graph Embedding Most signed-directed graph studies utilize sociological stories.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' [18, 19] SiNE[47] is an undirected model that uses balance theory, defin- ing an objective function: friend nodes increase their similarity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' BESIDE[3] focused on the bridge edges to overcome the limitation of triads and utilized both social theories.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' SGCN[8] defined a novel balanced and unbalanced path for neighbor aggregation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' SNEA[31] and SiGAT[20] used attention mechanism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' SDGNN defined four different weight matrices to distinguish the edge signs and directions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' And they proposed triad loss based on the theories.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' Balance and sta- tus theories are developed with the patterns of the user triads.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' About 60-70% of triads on real-world graphs satisfy the theories[24, 29].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' Though the theories are crucial paradigms in signed-directed graph research, not all the triads satisfy them.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' Moreover, it is not a rule that all users should follow.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' Models that depend on the theories are not working well with users with little or no triads.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' On top of that, such models require much computational cost to find triads or paths.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' Recently, ROSE[23] proposed a methodology using user-role by transforming graphs into unsigned bipartite.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' SDGCN[26] proposed a spectral convolution model by proving the positive semidefinite of signed magnetic Laplacian.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='2 Magnetic Laplacian Magnetic Laplacian was first introduced in the field of quan- tum mechanics to analyze the charged particle under magnetic flux.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' [5, 32, 35, 40] But thanks to its Hermitian properties, the mag- netic Laplacian has been utilized in directed graph studies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' [14, 34] Some application studies such as graph clustering[4, 6] node[54] and graph representation learning[12] are delivered.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' MagNet[54] proved the positive semidefinite property of the magnetic Laplacian and proposed a spectral graph convolution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' Recently, some studies extended the magnetic Laplacian to the signed graph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' SDGCN[26] and SigMagNet[10] define signed magnetic Laplacian.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' The signed magnetic Laplacian matrix uniquely encodes edge types of signed- directed graphs with real- and imaginary numbers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' They proposed spectral graph convolution with the signed magnetic Laplacian.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='3 Graph Contrastive Learning SimCLR[1] and MoCo[16] proposed contrastive learning and achieved great success in image classification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' Many follow-up stud- ies were proposed thanks to the increasing learning efficiency via self-supervised.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' DGI[46], GMI[37] adopted the contrastive learning to graph studies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' They measure mutual information of input and node representations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' InfoGraph[42] proposed patch-level representation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' GCC employed random-walk sampling to make positive and nega- tive samples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' Since then, several graph augmentations[51, 52, 56] and graph encoders[39, 49] have been proposed for contrastive learn- ing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' There are contrastive studies for graph clustering[36, 55], node embedding[56], DDI prediction[30, 48], and recommendation[33].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' However, signed-directed graph contrastive studies are not discussed much.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' To the best of our knowledge, SGCL[39] is the only one.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' SGCL makes graph views by randomly perturbing the edges.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' Then they construct positive- and negative-graph views by separating edges by the edge type.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' However, the edges of signed-directed graphs have meaningful relationships with each other.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' Therefore, the con- text of the data cannot be properly interpreted when we arbitrarily separate graph views by edge types.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' Moreover, they are inefficient in that they need to find positively or negatively linked nodes for every aggregation stage.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' To overcomes these limitations, this study proposes a novel graph contrastive learning model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' 3 PROBLEM FORMULATION Let G = (𝑉, E+, E−) be a signed-directed graph where 𝑉 is a set of nodes like users in social graphs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' E+ ⊆ 𝑉 × 𝑉 indicates positive edge matrix, and E− ⊆ 𝑉 × 𝑉 is of negative edges.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' Positive and negative edges represent user relationships, such as like/dislike or trust/distrust.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' For example E+𝑢,𝑣 equals 1 if there is a positive edge from node 𝑢 to node 𝑣;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' otherwise, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' Similarly, if there is a negative edge from node 𝑣 to 𝑢, E−𝑣,𝑢 equals 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' Note that E+ ∩ E− = ∅.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' Because we do not accept users having two different edges to the other user simultaneously, such as "John loves Jane and also hates her.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='" A user may be connected to other users by one of the three relations(none, positive, negative).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' Thus, there are nine-edge types between a user pair.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' The goal of this paper is to map the nodes 𝑢 ∈ 𝑉 into the low-dimensional embedding vectors 𝑧𝑢 ∈ R𝑑 with a given graph G as: 𝑓 (G) = 𝑍, 𝑓 is a transformation function and 𝑍 ∈ R|𝑉 |×𝑑 is an embedding ma- trix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' Each row of 𝑍 represents the node embedding with dimension size 𝑑.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' edge perturbation original graph augmented graph viewSigned Directed Graph Contrastive Learning with Structure and Laplacian Augmentation 4 MODEL FRAMEWORK 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='1 Graph Augmentation 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='1 Structure Perturbation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' There are two methods for struc- ture perturbation, edge sign perturbing and edge direction perturbing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' In edge sign perturbing, we change the edge signs randomly from the given graph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' For example, we sample 𝑝% of positive edges and change their signs to negative.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' And the same for the negative edges.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' Similarly, we sample 𝑟% of edges and change their directions to in- verse.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' If an edge is bidirectional, we change it to directional arbitrary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' With this random edge perturbation, we get structurally perturbed graph views, �G = (𝑉, ˜E+, ˜E+).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' Figure 1 shows an example of struc- ture perturbation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' As already known by balance and status theories, there is important information in the edge sign and directions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' We may harm the vital triad patterns via random perturbation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' However, we expect some amount of perturbation would be helpful to learn robust representations from noisy real-world data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' Moreover, the perturbing can discover and exploit some relationships that might ex- ist.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' The model can improve the generalization performance through random perturbations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='2 Signed-Directed Magnetic Laplacian.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' Before introduc- ing Laplacian Perturbation, we define the signed-directed magnetic Laplacian.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' Graph Laplacian is useful to encode graph sturucture with degree and adjacency matrices, L = D − A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' They are not only positive semidefinite but also have non-negative eigenvalues and as- sociate orthonormal eigenvectors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' With that properties, [25] and [15] proposed the idea of spectral graph convolution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' However, graph Laplacian is asymmetric when a graph is directed or signed-directed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' They have complex eigenvalues and do not satisfy the properties for spectral convolution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' Thus, [10, 26, 41] proposed a novel mag- netic Laplacian matrix representing the structure of signed-directed graphs and satisfying positive semidefinite.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' First of all, we define a complex Hermitian adjacency matrix as follow, H𝑞 = A𝑠 ⊙ P𝑞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' A𝑠 := 1 2 (A + A⊺) ⊆ 𝑉 × 𝑉 is a symmetrized adjacency matrix, and P𝑞 ⊆ 𝑉 × 𝑉 is a phase matrix with complex numbers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' ⊙ is an element-wise multiplication operation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' The definition of the phase matrix is, P𝑞(𝑢, 𝑣) := exp(𝑖Θ𝑞 𝑢𝑣)A𝑢𝑣 + exp(𝑖Θ𝑞 𝑢𝑣)A𝑣𝑢 |exp(𝑖Θ𝑞 𝑢𝑣)A𝑢𝑣 + exp(𝑖Θ𝑞 𝑢𝑣)A𝑣𝑢| + 𝜖 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' Θ𝑞 𝑢𝑣 = 𝑞E+𝑢𝑣 +(𝜋 +𝑞)E−𝑢𝑣 and Θ𝑢𝑣 𝑞 = −𝑞E+𝑣𝑢 +(𝜋 −𝑞)E−𝑣𝑢 Be careful with the subscripts orders.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' 𝑞 is a hyperparameter lies in [0,𝜋/2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' The symmetrized adjacency matrix encodes the node connectivity, and the phase matrix encodes link directions and signs with different phase values.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' Figure 2(b) shows the edge encodings of the defined Hermitian adjacency matrix H𝑞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' They uniquely encode the nine- edge types of signed-directed graphs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' It tells node connections and edge types as well.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' We can see that H𝑞 is a complex numbered skew- symmetric form, a complex Hermitian matrix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' Then, we define the signed-directed magnetic Laplacians with this Hermitian adjacency by, L𝑞 𝑈 := D𝑠 − H𝑞 = D𝑠 − A𝑠 ⊙ P𝑞 L𝑞 𝑁 := I − (D− 1 2 𝑠 A𝑠D− 1 2 𝑠 ) ⊙ P𝑞, Figure 2: Edge encoding and meaning of 𝑞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' It shows edge encod- ing values of a complex Hermitian adjacency matrix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' 𝑞 controls the phase angle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' D𝑠 is a symmetric degree matrix, similar to A𝑠.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' L𝑞 𝑈 and L𝑞 𝑁 are un- normalized and normalized signed-directed magnetic Laplacians.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' It is well known that the skew-symmetric, complex Hermitian matrix is positive semidefinite[10, 26, 41].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' Thus, the Laplacians are posi- tive semidefinite and diagonalizable by spectral decomposition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' For example, the normalized Laplacian is diagonalized by, L𝑞 𝑁 = UΛU†.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' Each column of U is eigenvector u𝑘 and U† is a conjugate transpose of U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' Λ is a diagonal matrix where the elements are 𝑘-th eigenvalues Λ𝑘,𝑘 = 𝜆𝑘.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' The eigenvalues and eigenvectors contain the structural information of the signed-directed graph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' We leverage this matrix to define spectral graph convolution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='3 Laplacian Perturbation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' Figure 2(a) describes the meaning of 𝑞 in magnetic Laplacian.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' 𝑞 controls the phase angle of encoded values between the real- and imaginary axes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' If 𝑞 is small, the Lapla- cian puts less attention on directional information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' It becomes an undirected model when the 𝑞 is 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' However, the high 𝑞 value also harms the encoding validity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' 𝑞 influences the encoding effectiveness of the signed-directed magnetic Laplacian.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' In this subsection, we introduce Laplacian perturbation via 𝑞 variation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' We randomly se- lect 𝑞 value from 0 to 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='4𝜋.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' The Laplacian matrix varies according to the 𝑞 variations, though the meaning of the graph structure that the Laplacian represents is still the same.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' This kind of Laplacian perturbation is a useful technique that makes graph augmentation without distortion of the original data[44].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' In short, we make two structurally perturbed graph views �G1 and �G2, through random edge changes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' Then we get perturbed signed- directed magnetic Laplacian �L 𝑞1 and �L 𝑞2 from the graph views with randomly chosen 𝑞 values.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' With these Laplacian matrices, we define graph encoders.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='2 Graph Encoder 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='1 Spectral Convolution via Magnetic Laplacian.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' The signed-directed magnetic Laplacian L, is diagonalizable with eigen- vector matrix U, and diagonal eigenvalues Λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' Several graph convolu- tion studies [7, 15] utilize the eigenvectors as discrete Fourier modes Edge type H (u,) imag-axis u→v (cosq + isinq) u←v uv (cosq - isinq) u←v (cosq - ising) u←v u-→v u→v (cosq + isinq) uv uv uv real-axis cosq u-→v u←v uv cosq uv u与v isinq u乌v isinq u V 0 (a) (b)Taewook Ko, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' Figure 3: Model overview of graph signal processing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' The graph signals are transformed into the Fourier domain through graph Fourier transform x : 𝑉 → C by ˆx = U†x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' The inverse Fourier transform formula is defined as follow thanks to the unitarity of U, x = Uˆx = 𝑁 ∑︁ 𝑘=1 ˆx(𝑘)u𝑘.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' The spectral convolution operation of graph signal processing is described as g𝜃 ∗ x = Ug𝜃U†x, where g𝜃 = 𝑑𝑖𝑎𝑔(𝜃) is a trainable filter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' For efficient calculation, [15] proposed a truncated Chebyshev polynomial expansion of the filter by, g𝜃′(Λ) ≈ 𝐾 ∑︁ 𝑘=0 𝜃 ′ 𝑘𝑇𝑘 ( ˜Λ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' 𝑇0(𝑥) = 1,𝑇1(𝑥) = 𝑥, and 𝑇𝑘 = 2𝑥𝑇𝑘−1(𝑥) +𝑇𝑘−2(𝑥) for 𝑘 ≥ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' 𝑘 is an expansion order.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' ˜Λ = 2 𝜆𝑚𝑎𝑥 Λ−I is a normalized eigenvalue matrix, and 𝜆𝑚𝑎𝑥 is the largest eigenvalue.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' 𝜃 ′ 𝑘 are Chebyshev coefficients.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' We have a simplified form of spectral graph convolution by, g𝜃′ ∗ x = 𝐾 ∑︁ 𝑘=0 𝜃 ′ 𝑘𝑇𝑘 ( ˜L)𝑥, where ˜L = 2 𝜆𝑚𝑎𝑥 L − I analogous to ˜Λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='2 Spectral Convolution Layer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' We define the spectral con- volution layer with the approximated signed-directed spectral convo- lution operation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' We set 𝑘 as 1, the maximum polynomial order, and 𝜆𝑚𝑎𝑥 is assumed 2 to make it practical.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' Similar to GCN[25], we set 𝜃 = 𝜃 ′ 0 = −𝜃 ′ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' Then we have g𝜃′ ∗ x ≈ 𝜃 (I + (D− 1 2 𝑠 A𝑠D− 1 2 𝑠 ) ⊙ P𝑞)x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' The spectral convolution layer is defined as H = ( ˜D− 1 2 𝑠 ˜A𝑠 ˜D− 1 2 𝑠 ⊙ P𝑞)XW.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' H ∈ R𝑁 ×𝐹 is the convoluted graph signals or representations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' X ∈ R𝑁 ×𝐶 is the input signal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='𝐶 and 𝐹 are the numbers of input and output channels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' W ∈ R𝐶×𝐹 is a learnable matrix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' It is a renormalization trick that I + (D− 1 2 𝑠 A𝑠D− 1 2 𝑠 ) ⊙ P𝑞 → ˜D− 1 2 𝑠 ˜A𝑠 ˜D− 1 2 𝑠 ⊙ P𝑞 where ˜As = A𝑠 + I and ˜Ds(𝑖,𝑖) = � 𝑗 ˜As(𝑖, 𝑗).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' It prevents gradient vanishing and exploding problems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='3 Signed-Directed Graph Encoder.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' The graph encoder stacks 𝐿 layers of proposed spectral convolution layer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' The 𝑙-th layer feature vector x(𝑙) is defined as, x(𝑙) 𝑗 = 𝜎( 𝐹𝑙−1 ∑︁ 𝑖=1 Y(𝑙) 𝑖𝑗 x(𝑙−1) 𝑖 + b(𝑙) 𝑗 ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' We use a novel activation function for the complex elements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' The activation function 𝜎 is an complex version of ReLU, 𝜎(𝑧) = 𝑧, if −𝜋/2 ≤ arg(𝑧) ≤ 𝜋/2, otherwise, 𝜎(𝑧) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' The feature matrix X(𝐿) has both real and imaginary values.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' Here we introduce unwinding operation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' It converts real and imaginary features into the same domain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' X(𝐿) unwind = [real(X(𝐿))||imag(X(𝐿)) ⊗ (−𝑖)].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' We add a fully connected layer after unwinding to get the node representation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' Z = 𝜎(X(𝐿) unwindW𝐿+1 + B(𝐿+1)) Z ∈ R𝑁 ×𝐷 is the output node representation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' The augmented two graph views are fed into the spectral graph encoder and makes the augmented node representations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' Structure Perturb Laplacian Perturb Projection & graph view I graph encoder Contrastive Objectives inter-negative iCGN with L : Projection Embedding Representation 1 intra-negative CGN with L Projection q2 inter-positive Embedding 2: Representation 2Signed Directed Graph Contrastive Learning with Structure and Laplacian Augmentation 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='3 Contrastive Objective There are two graph views after perturbations, and the graph encoder makes node representations of them Z1 and Z2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' The goal of the contrastive objective is that the embeddings of the same nodes agree with each other.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' At the same time, they distinguish from the other nodes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' We apply a MLP projection layer to improve the discrimina- tive power.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' [2, 22] We define the contrastive losses with the projected representation M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='1 Inter-view Loss.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' It is considered that the two identical nodes from different views are inter-positive pairs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' On the other hand, the rest of the nodes are considered inter-negative pairs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' For example, a node 𝑢 from graph view 1 and another node 𝑢 from graph view 2 are inter-positive pairs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' And others nodes 𝑣 ∈ V and 𝑣 ≠ 𝑢 from graph view 2 are inter-negative pairs with a node 𝑢 from graph view 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' Even though the augmented representations from different graph views are different, they represent the same nodes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' We want to maximize the agreement of the positive pair representations m𝑣1 𝑢 and m𝑣2 𝑢 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' While minimize the agreements of the negative pairs m𝑣1 𝑢 and m𝑣2𝑣 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' The goal of the inter-view objective is to maximize the similarity of positive pairs and minimize the negative pairs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' L𝑖𝑛𝑡𝑒𝑟 = − 1 𝑁 𝑁 ∑︁ 𝑖=𝑖 log exp(𝑠𝑖𝑚(m𝑣1 𝑖 , m𝑣2 𝑖 )/𝜏) �𝑁 𝑗=1,𝑗≠𝑖 exp(𝑠𝑖𝑚(m𝑣1 𝑖 , m𝑣2 𝑗 )/𝜏) 𝑠𝑖𝑚 is a cosine similarity operation, and 𝜏 is a temperature parameter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='2 Intra-view Loss.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' We define intra-view loss as similar to inter-view loss.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' The inter-view loss compares the projected node representations between the two different graph views.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' In contrast, inter-view loss calculates the discriminative loss within a graph view.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' Each node in a graph view is a unique user.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' All nodes have their representations, and we need to distinguish them from others.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' Therefore, we define inter-view loss as, L𝑖𝑛𝑡𝑟𝑎 = − 1 𝑁 𝑁 ∑︁ 𝑖=𝑖 log 1 �𝑁 𝑗=1,𝑗≠𝑖 exp(𝑠𝑖𝑚(m𝑣 𝑖 , m𝑣 𝑗 )/𝜏) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='3 Contrastive Loss.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' The whole contrastive loss is the sum of the inter- and intra-view loss functions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' The goal of the contrastive loss is to let the model learn discriminative power from the projected node representations and maximize the positive agreements/mutual information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' L𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡𝑖𝑣𝑒 = L𝑖𝑛𝑡𝑒𝑟 + L𝑖𝑛𝑡𝑟𝑎 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='4 Prediction and Label Loss For model training, we not only use contrastive loss but also uti- lize label loss.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' The augmented two graph views are inputs of graph encoder and makes two node representations Z1 and Z2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' The rep- resentations are concatenated and fed into output layer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' The output layer makes the final node representation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' R = 𝜎([Z1 ∥ Z2]W𝑜𝑢𝑡 + B𝑜𝑢𝑡) R ⊆ 𝑉 ×𝑑 and W𝑜𝑢𝑡 ⊆ 2𝑑 ×𝑑 where 𝑑 is embedding dimension.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' We make prediction results with this output node representation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' The prediction layer is defined as, ˆ𝑦𝑢,𝑣 = 𝜎([r1 𝑢||r2 𝑣]W𝑝𝑟𝑒𝑑 + B𝑝𝑟𝑒𝑑) Prediction value estimates the link sign when there is an edge from node 𝑢 to 𝑣.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' We define the label loss with the prediction error.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' L𝑙𝑎𝑏𝑒𝑙 = − |E+ | ∑︁ 𝑢,𝑣∈E+ 𝑦𝑢,𝑣logˆ𝑦𝑢,𝑣 − |E− | ∑︁ 𝑢,𝑣∈E− (1 − 𝑦𝑢,𝑣)log(1 − ˆ𝑦𝑢,𝑣) SDGCL is trained with the following objective function, L = 𝛼 × L𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡𝑖𝑣𝑒 + L𝑙𝑎𝑏𝑒𝑙.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' 𝛼 is weight of contrastive loss.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' Note that, unlike other graph con- trastive studies, it leverages supervised labels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' 5 EXPERIMENTS 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='1 Datasets and Metrics We evaluate the model with four real-world signed directed graph datasets widely used in the link sign prediction task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' Bitcoin-Alpha1 and Bitcoin-OTC2[27] are extracted from Bitcoin trading platforms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' Nodes are users, and edges are user relationships.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' Users can score the others on a scale of -10 to +10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' Edges higher than 0 are treated as positive edges, otherwise negative edges.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' Epinions3[13] is a who- trust-whom network crawled from a consumer review site.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' Users can notate trust or distrust to reviews of other users.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' Slashdot4[28] is a social network of user community site.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' Especially they share new information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' Users tag others as friends or foes, and we can construct positive and negative edges with this information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' Moreover, we adopt four metrics, AUC, macro-F1, micro-F1, and binary-F1, for unbiased evaluation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' Dataset # nodes # pos links # neg links positive ratio Bitcoin-Alpha 3,783 22,650 1,536 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='937 Bitcoin-OTC 5,881 32,029 3,563 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='900 Epinions 131,828 717,667 123,705 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='853 Slashdot 82,144 425,072 124,130 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='774 Table 1: Dataset statistics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' Table 1 shows the statistics of the datasets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' BitCoin datasets have relatively small size of nodes and edges.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' The positive and negative ratios are highly imbalanced.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' Three of the datasets have nearly 90% of positives among the edges.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' Otherwise, Slashdot has a 23% share of negative edges.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' The four datasets have various graph sizes and positive ratios.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' It is suitable for unbiased evaluation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='2 Baselines We implemented seven baselines to compare the model performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' There are three signed graph convolutions, three constative learnings, and one signed graph contrastive model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' SGCN[8] defines (un)balanced path based on the balanced theory for neighbor aggregation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' It is the first signed convolu- tion model but does not consider the edge directions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' 1http://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='btc-alpha.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='com 2http://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='bitcoin-otc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='com 3http://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='epinions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='com 4http://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='slashdot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='com Taewook Ko, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' Signed Convolution Contrastive Learning Signed Contrastive Learning Dataset Metric SGCN SDGNN SDGCN GraphCL GCA SimGRACE SGCL SDGCL-s SDGCL-l SDGCL Bitcoin-Alpha AUC 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='782 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='835 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='858 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='814 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='838 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='823 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='849 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='896 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='883 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='886 Macro-F1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='668 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='683 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='723 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='653 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='671 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='657 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='712 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='740 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='744 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='754 Micro-F1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='899 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='909 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='923 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='907 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='913 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='919 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='923 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='947 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='942 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='949 Binary-F1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='941 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='947 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='958 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='950 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='953 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='957 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='959 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='973 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='969 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='971 Bitcoin-OTC AUC 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='832 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='879 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='887 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='852 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='868 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='859 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='893 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='914 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='902 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='910 Macro-F1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='710 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='751 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='773 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='725 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='743 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='725 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='781 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='803 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='796 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='802 Micro-F1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='886 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='902 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='911 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='904 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='907 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='906 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='920 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='935 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='930 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='937 Binary-F1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='924 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='938 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='950 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='948 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='948 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='948 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='956 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='964 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='962 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='965 Epinions AUC 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='848 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='914 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='939 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='839 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='911 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='913 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='876 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='941 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='943 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='942 Macro-F1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='741 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='831 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='850 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='726 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='814 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='812 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='798 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='861 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='865 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='863 Micro-F1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='893 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='912 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='925 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='887 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='913 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='915 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='909 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='934 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='936 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='936 Binary-F1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='937 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='944 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='956 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='936 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='950 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='951 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='948 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='962 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='963 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='963 Slashdot AUC 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='740 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='849 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='886 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='813 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='870 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='865 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='783 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='900 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='891 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='902 Macro-F1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='688 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='729 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='780 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='667 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='750 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='745 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='683 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='792 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='785 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='789 Micro-F1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='786 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='823 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='855 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='813 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='842 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='833 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='811 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='864 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='859 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='863 Binary-F1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='869 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='889 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='908 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='887 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='902 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='895 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='884 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='915 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='911 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='914 Table 2: Link sign prediction performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' Bold and underline indicate the best and the second performance respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' The per- formances are the average score of 10 experiments with different seed sets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' SDGNN[21] proposed four weight matrices to aggregate the neighbor features according to the edge types adaptively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' SDGCN[26] is the first spectral convolution for signed- directed graphs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' They proposed a signed magnetic Laplacian to overcome the disadvantage of traditional graph Laplacian.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' GraphCL[51] is a graph contrastive model with node and edge augmentations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' They randomly perturbed graph struc- tures by dropping or adding edges and nodes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' GCA[56] proposed score-based graph augmentation methods and introduced novel node-level contrastive objectives.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' SimGRACE[49] tried to overcome the cumbersome augmen- tation search.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' They introduced a novel graph encoder pertur- bation rather than graph augmentation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' SGCL[39] is a graph contrastive model for signed-directed graphs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' It perturbs the edge sign and directions to get positive and negative graph views.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' Each view makes node representa- tions and defines a node-level contrastive loss.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' For a fair comparison, all the baselines were implemented under the same environments, such as embedding dimension, learning epochs, and convolution layers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' Though the graph contrastive baselines are designed for self-supervised learning, we train them with the same supervised loss.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' Moreover, we removed the read-out process of GraphCL and SimGRACE, which are designed for graph embedding.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='3 Implementation Details We follow the hyperparameter settings of the original papers of each model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' The node embedding dimension is set to 64 for all the baselines to make the same learning capacity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' The edges are split into 60:20:20 for training, validation, and test sets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' However, we did not use all the positive edges as training instances during the training stage.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' We sampled positive edges at the ratio of 3:1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' It is because the ratio of the positive edge is too high.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' If we use all positive edges for training, the model would be easy to make positives only.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' Nevertheless, we utilize all edge instances for the validation and test phase.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' The structure perturbing ratio 𝑝 and 𝑟 are set to 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='1 for all datasets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' And the magnetic Laplacian phase 𝑞 is randomly selected from [0, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='1𝜋, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='2𝜋, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='3𝜋, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='4𝜋] for every iterations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' The influence of the perturbing ratio and 𝑞 variation is analyzed in Figure 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' The contrastive loss weight 𝛼 is set to 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' Graph encoder stacks two signed-directed spectral convolution layers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' We use Adam optimizer with learning rate = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='001, weight decay = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='001.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' All experiments are run 10 times with different seed sets to avoid randomness and get the average score.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' The experiments are conducted on Xeon E5-2660 v4 and accelerated via Nvidia Titan XP 12G GPU.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' The software is implemented via Ubuntu v16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='4 with python v3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='6 and Pytorch v1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' 6 RESULTS 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='1 Link Sign Prediction We summarize the prediction results in Table 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' There are three proposed models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' SDGCL-s is a model only with structure aug- mentation, and SDGCL-l is a model with Laplacian augmentation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' SDGCL is the one that adopts both augmentations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' Consequently, the proposed SDGCL and its variants always show the best performance in all datasets and all metrics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' For Bitcoin-Alpha, Bitcoin-OTC, and Slashdot datasets, SDGCL-composite and SDGCL-structure have the highest score alternatively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' SDGCL-composite and SDGCL- Laplacian get the highest score in the Epinions dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' SGCL or SDGCN shows the best performance among the baselines.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' SDGCN could achieve better performance than others thanks to the signed-directed spectral convolution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' They could fully enjoy the sign and direction information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' SGCL is the only model for signed graph contrastive.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' They could improve the performance via a contrastive learning mechanism than other baselines.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' However, SGCL shows poor performance on Epinions and Slashdot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' We think there are two reasons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' First, the advantage of contrastive learning is maxi- mized with scarce labeled datasets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' That is why the model can learn more from the contrastive loss.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' However, if the label is rich enough, Signed Directed Graph Contrastive Learning with Structure and Laplacian Augmentation Figure 4: Structure perturbing analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' x-axis indicates perturbing ratio.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' Figure 5: Laplacian perturbing analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' x-axis indicates noise variance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' the utility of contrastive learning is lessened.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' Second, we ruin the original dataset context by random perturbation of SGCL.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' Epinions and Slashdot have larger sizes of edges.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' The hidden patterns and joint distributions of edges are far more complicated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' We harm the original data information by perturbing many edges and splitting them into different graph views.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' Unlike SGCL, our proposed model minimizes the structure perturbation by proposing Laplacian aug- mentation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' Furthermore, we do not split positive and negative edges in different graph views.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='2 Perturbing Analysis Here we analyze the effect of structure and Laplacian augmentation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' Figure 4 shows that the performance varies according to the edge perturbing ratio.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' Laplacian perturbation is not adopted in this ex- periment to get the effect of edge perturbing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' When the perturbing ratios are zero, AUC and Macro-F1 scores are low.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' We can see the importance of structure perturbing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' The performances go up with a small perturbing ratio and go down with a large value.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' Figure 5 shows the performances of magnetic Laplacian phase 𝑞 variation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' We set default 𝑞 as 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='1𝜋 and add some Gaussian noise with standard deviation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' At the same time, the edge perturbing ratios are set to zeros.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' The x-axis shows the standard deviation values.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' We cap the maximum value of 𝑞 to 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='5𝜋.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' Similar to structure perturbation, zero standard deviations show low performances.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' Zero standard deviation means there is no Laplacian perturbation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' They have similar trends that go up and go down.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' However, Laplacian perturbation is not as sensitive as structure perturbation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' Though graph augmentations are compulsory in contrastive learning, much perturbation is detrimental to training.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' Structure perturbation gives direct contrastive informa- tion while it may lose the data context.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' Laplacian perturbation gives indirect perturbation of graph data but is still effective.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' SDGCL combines these two augmentations for better and more stable graph augmentation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='3 Ablation Study Table 3 shows the AUC scores of ablation studies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' We check the ef- fects of SDGCL components.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' w/o Laplacian, w/o structure, and w/o augmentation are the variation of graph augmentations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' Especially, w/o augmentation shows the lowest performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' As we expected, the model leverages the advantage of contrastive learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' It shows that augmentations are important in our model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' w/o contrastive loss is a model with 𝛼 = 0 and the model uses label loss only.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' Note that it does not mean that the model does not utilize the benefits of contrastive learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' Even though the contrastive loss weight is zero, label loss is calculated with augmented representations of graph views.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' Thus, the model is still leveraging the contrastive effects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' w/o projection is a model without a projection layer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' It is well known that the projection layer is useful for robust contrastive learning[2, 22].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' Bitcoin-Alpha Bitcoin-OTC Epinions Slashdot SDGCL 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='886 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='910 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='942 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='902 w/o structure aug 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='883 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='902 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='943 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='891 w/o Laplacian aug 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='896 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='914 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='941 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='900 w/o augmentation 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='846 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='889 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='936 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='884 w/o contrastive loss 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='878 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='901 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='941 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='891 w/o projection 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='872 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='904 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='939 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='897 Table 3: Ablation Study 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='89 AUC(left) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='79 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='82 Macro F1(right) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='83 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='89 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='94 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='90 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='77 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='91 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='87 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='81 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='87 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='75 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='90 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='800.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='93 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='79 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='88 +0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='85 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='85 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='77 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='89 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='92 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='78 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='86 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='75 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='83 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='71 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='83 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='075 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='2 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='075 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='91 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='0250.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='050.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='0750.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='0250.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='050.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='0750.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='730.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='87 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='790 AUC(left) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='76 +0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='81 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='89 Macro F1(right) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='90 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='87 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='86 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='785 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='940 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='85 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='88 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='74 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='88 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='85 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='780 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='83 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='935 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='87 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='72 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='86 LL0+ 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='4 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='84 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='4Taewook Ko, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' 7 CONCLUSION This paper proposed SDGCL, a signed-directed graph contrastive learning model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' To make augmented node representations, we intro- duced two levels of the perturbation process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' Structure perturbation randomly changes the signs and directions of edges.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' Even though it may lose some vital information from the original graphs, we check that it makes the model noise-robust.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' Laplacian perturbation changes the phase parameter 𝑞 for every training iteration to give perturbation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' It does not directly influence the graph information but perturbs the Laplacian matrix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' Then we define the inter- and intra-view contrastive objectives with the augmented node repre- sentations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' Unlike other signed graph studies, our model does not depend on social theories or assumptions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' Also, there are no arbitrary graph-splitting processes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' Our graph encoder is based on the Lapla- cian matrix;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' it only enjoys the structural information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' Therefore it could reduce computational costs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' We evaluate the proposed model with four real-world datasets and seven baselines.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' The experimental results show that our proposed model has superior performance to others.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' SDGCL and their variants ranked at the top for every dataset and metric.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' REFERENCES [1] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' A simple framework for contrastive learning of visual representations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' In Interna- tional conference on machine learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' PMLR, 1597–1607.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' [2] Ting Chen, Simon Kornblith, Kevin Swersky, Mohammad Norouzi, and Geoffrey E Hinton.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' Big self-supervised models are strong semi-supervised learners.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' Advances in neural information processing systems 33 (2020), 22243–22255.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' [3] Yiqi Chen, Tieyun Qian, Huan Liu, and Ke Sun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' " Bridge" Enhanced Signed Directed Network Embedding.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' In Proceedings of the 27th acm international conference on information and knowledge management.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' 773–782.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' [4] Alexander Cloninger.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' A note on Markov normalized magnetic eigenmaps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' Applied and Computational Harmonic Analysis 43, 2 (2017), 370–380.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' [5] Yves Colin de Verdière.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' Magnetic interpretation of the nodal defect on graphs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' Analysis & PDE 6, 5 (2013), 1235–1242.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' [6] Mihai Cucuringu, Huan Li, He Sun, and Luca Zanetti.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' Hermitian ma- trices for clustering directed graphs: insights and applications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' In International Conference on Artificial Intelligence and Statistics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' PMLR, 983–992.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' [7] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' Convolu- tional neural networks on graphs with fast localized spectral filtering.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' Advances in neural information processing systems 29 (2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' [8] Tyler Derr, Yao Ma, and Jiliang Tang.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' Signed graph convolutional networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' In 2018 IEEE International Conference on Data Mining (ICDM).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' IEEE, 929–934.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' [9] Wenqi Fan, Yao Ma, Qing Li, Yuan He, Eric Zhao, Jiliang Tang, and Dawei Yin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' Graph neural networks for social recommendation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' In The world wide web conference.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' 417–426.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' [10] Stefano Fiorini, Stefano Coniglio, Michele Ciavotta, and Enza Messina.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' SigMaNet: One Laplacian to Rule Them All.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' arXiv preprint arXiv:2205.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='13459 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' [11] Alex Fout, Jonathon Byrd, Basir Shariat, and Asa Ben-Hur.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' Protein interface prediction using graph convolutional networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' Advances in neural information processing systems 30 (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' [12] Satoshi Furutani, Toshiki Shibahara, Mitsuaki Akiyama, Kunio Hato, and Masaki Aida.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' Graph signal processing for directed graphs based on the hermitian laplacian.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' In Joint European Conference on Machine Learning and Knowledge Discovery in Databases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' Springer, 447–463.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' [13] Ramanthan Guha, Ravi Kumar, Prabhakar Raghavan, and Andrew Tomkins.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' 2004.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' Propagation of trust and distrust.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' In Proceedings of the 13th international confer- ence on World Wide Web.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' 403–412.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' [14] Krystal Guo and Bojan Mohar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' Hermitian adjacency matrix of digraphs and mixed graphs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' Journal of Graph Theory 85, 1 (2017), 217–248.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' [15] David K Hammond, Pierre Vandergheynst, and Rémi Gribonval.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' 2011.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' Wavelets on graphs via spectral graph theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' Applied and Computational Harmonic Analysis 30, 2 (2011), 129–150.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' [16] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' Mo- mentum contrast for unsupervised visual representation learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' 9729– 9738.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' [17] Xiangnan He, Kuan Deng, Xiang Wang, Yan Li, Yongdong Zhang, and Meng Wang.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' Lightgcn: Simplifying and powering graph convolution network for recommendation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' In Proceedings of the 43rd International ACM SIGIR conference on research and development in Information Retrieval.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' 639–648.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' [18] Fritz Heider.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' 1946.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' Attitudes and cognitive organization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' The Journal of psychol- ogy 21, 1 (1946), 107–112.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' [19] Paul W Holland and Samuel Leinhardt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' 1971.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' Transitivity in structural models of small groups.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' Comparative group studies 2, 2 (1971), 107–124.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' [20] Junjie Huang, Huawei Shen, Liang Hou, and Xueqi Cheng.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' Signed graph attention networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' In International Conference on Artificial Neural Networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' Springer, 566–577.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' [21] Junjie Huang, Huawei Shen, Liang Hou, and Xueqi Cheng.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' SDGNN: Learning node representation for signed directed networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' In Proceedings of the AAAI Conference on Artificial Intelligence, Vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' 196–203.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' [22] Alon Jacovi, Swabha Swayamdipta, Shauli Ravfogel, Yanai Elazar, Yejin Choi, and Yoav Goldberg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' Contrastive explanations for model interpretability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' arXiv preprint arXiv:2103.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='01378 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' [23] Amin Javari, Tyler Derr, Pouya Esmailian, Jiliang Tang, and Kevin Chen-Chuan Chang.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' Rose: Role-based signed network embedding.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' In Proceedings of The Web Conference 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' 2782–2788.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' [24] Amin Javari, HongXiang Qiu, Elham Barzegaran, Mahdi Jalili, and Kevin Chen- Chuan Chang.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' Statistical link label modeling for sign prediction: Smoothing sparsity by joining local and global information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' In 2017 IEEE International Conference on Data Mining (ICDM).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' IEEE, 1039–1044.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' [25] Thomas N Kipf and Max Welling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' Semi-supervised classification with graph convolutional networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' arXiv preprint arXiv:1609.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='02907 (2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' [26] Taewook Ko.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' A Graph Convolution for Signed Directed Graphs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' arXiv preprint arXiv:2208.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='11511 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' [27] Srijan Kumar, Francesca Spezzano, VS Subrahmanian, and Christos Faloutsos.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' Edge weight prediction in weighted signed networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' In 2016 IEEE 16th International Conference on Data Mining (ICDM).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' IEEE, 221–230.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' [28] Jérôme Kunegis, Andreas Lommatzsch, and Christian Bauckhage.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' 2009.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' The slashdot zoo: mining a social network with negative edges.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' In Proceedings of the 18th international conference on World wide web.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' 741–750.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' [29] Jure Leskovec, Daniel Huttenlocher, and Jon Kleinberg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' 2010.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' Predicting pos- itive and negative links in online social networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' In Proceedings of the 19th international conference on World wide web.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' 641–650.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' [30] Shuangli Li, Jingbo Zhou, Tong Xu, Dejing Dou, and Hui Xiong.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' Geomgcl: geometric graph contrastive learning for molecular property prediction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' In Pro- ceedings of the AAAI Conference on Artificial Intelligence, Vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' 36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' 4541–4549.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' [31] Yu Li, Yuan Tian, Jiawei Zhang, and Yi Chang.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' Learning signed network em- bedding via graph attention.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' In Proceedings of the AAAI Conference on Artificial Intelligence, Vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' 4772–4779.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' [32] Elliott H Lieb and Michael Loss.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' 1993.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' Fluxes, Laplacians, and Kasteleyn’s theorem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' In Statistical Mechanics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' Springer, 457–483.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' [33] Zihan Lin, Changxin Tian, Yupeng Hou, and Wayne Xin Zhao.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' Improving Graph Collaborative Filtering with Neighborhood-enriched Contrastive Learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' In Proceedings of the ACM Web Conference 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' 2320–2329.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' [34] Jianxi Liu and Xueliang Li.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' Hermitian-adjacency matrices and Hermitian energies of mixed graphs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' Linear Algebra Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' 466 (2015), 182–207.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' [35] Alessandro Olgiati.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' Remarks on the derivation of Gross-Pitaevskii equation with magnetic Laplacian.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' In Advances in Quantum Mechanics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' Springer, 257–266.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' [36] Erlin Pan and Zhao Kang.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' Multi-view contrastive graph clustering.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' Advances in neural information processing systems 34 (2021), 2148–2159.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' [37] Zhen Peng, Wenbing Huang, Minnan Luo, Qinghua Zheng, Yu Rong, Tingyang Xu, and Junzhou Huang.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' Graph representation learning via graphical mutual information maximization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' In Proceedings of The Web Conference 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' 259–270.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' [38] Jiezhong Qiu, Qibin Chen, Yuxiao Dong, Jing Zhang, Hongxia Yang, Ming Ding, Kuansan Wang, and Jie Tang.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' Gcc: Graph contrastive coding for graph neural network pre-training.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' 1150–1160.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' [39] Lin Shu, Erxin Du, Yaomin Chang, Chuan Chen, Zibin Zheng, Xingxing Xing, and Shaofeng Shen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' SGCL: Contrastive Representation Learning for Signed Graphs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' In Proceedings of the 30th ACM International Conference on Information & Knowledge Management.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' 1671–1680.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' [40] MA Shubin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' 1994.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' Discrete magnetic laplacian.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' Communications in mathematical physics 164, 2 (1994), 259–275.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' [41] Rahul Singh and Yongxin Chen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' Signed Graph Neural Networks: A Fre- quency Perspective.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' arXiv preprint arXiv:2208.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='07323 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' [42] Fan-Yun Sun, Jordan Hoffmann, Vikas Verma, and Jian Tang.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' Infograph: Unsupervised and semi-supervised graph-level representation learning via mutual information maximization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' arXiv preprint arXiv:1908.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='01000 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' [43] Susheel Suresh, Pan Li, Cong Hao, and Jennifer Neville.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' Adversarial graph augmentation to improve graph contrastive learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' Advances in Neural Information Processing Systems 34 (2021), 15920–15933.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' [44] Zekun Tong, Yuxuan Liang, Changsheng Sun, Xinke Li, David Rosenblum, and Andrew Lim.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' Digraph inception convolutional networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' Advances in neural information processing systems 33 (2020), 17907–17918.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' Signed Directed Graph Contrastive Learning with Structure and Laplacian Augmentation [45] Zekun Tong, Yuxuan Liang, Changsheng Sun, David S Rosenblum, and An- drew Lim.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' Directed graph convolutional network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' arXiv preprint arXiv:2004.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content='13970 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' [46] Petar Velickovic, William Fedus, William L Hamilton, Pietro Liò, Yoshua Bengio, and R Devon Hjelm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' Deep Graph Infomax.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' ICLR (Poster) 2, 3 (2019), 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' [47] Suhang Wang, Jiliang Tang, Charu Aggarwal, Yi Chang, and Huan Liu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' Signed network embedding in social media.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' In Proceedings of the 2017 SIAM international conference on data mining.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' SIAM, 327–335.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' [48] Yingheng Wang, Yaosen Min, Xin Chen, and Ji Wu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' Multi-view graph contrastive representation learning for drug-drug interaction prediction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' In Pro- ceedings of the Web Conference 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' 2921–2933.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' [49] Jun Xia, Lirong Wu, Jintao Chen, Bozhen Hu, and Stan Z Li.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' SimGRACE: A Simple Framework for Graph Contrastive Learning without Data Augmentation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' In Proceedings of the ACM Web Conference 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' 1070–1079.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' [50] Yuning You, Tianlong Chen, Yang Shen, and Zhangyang Wang.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' Graph contrastive learning automated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' In International Conference on Machine Learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' PMLR, 12121–12132.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' [51] Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, and Yang Shen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' Graph contrastive learning with augmentations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' Advances in Neural Information Processing Systems 33 (2020), 5812–5823.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' [52] Jiaqi Zeng and Pengtao Xie.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' Contrastive self-supervised learning for graph classification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' In Proceedings of the AAAI Conference on Artificial Intelligence, Vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' 10824–10832.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' [53] Muhan Zhang, Zhicheng Cui, Marion Neumann, and Yixin Chen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' An end- to-end deep learning architecture for graph classification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' In Proceedings of the AAAI conference on artificial intelligence, Vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' [54] Xitong Zhang, Yixuan He, Nathan Brugnone, Michael Perlmutter, and Matthew Hirn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' Magnet: A neural network for directed graphs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' Advances in Neural Information Processing Systems 34 (2021), 27003–27015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' [55] Huasong Zhong, Jianlong Wu, Chong Chen, Jianqiang Huang, Minghua Deng, Liqiang Nie, Zhouchen Lin, and Xian-Sheng Hua.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' Graph contrastive clus- tering.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' In Proceedings of the IEEE/CVF International Conference on Computer Vision.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' 9224–9233.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' [56] Yanqiao Zhu, Yichen Xu, Feng Yu, Qiang Liu, Shu Wu, and Liang Wang.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' Graph contrastive learning with adaptive augmentation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' In Proceedings of the Web Conference 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} +page_content=' 2069–2080.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/StE4T4oBgHgl3EQflw2y/content/2301.05163v1.pdf'} diff --git a/TdE5T4oBgHgl3EQfaw-V/content/tmp_files/2301.05591v1.pdf.txt b/TdE5T4oBgHgl3EQfaw-V/content/tmp_files/2301.05591v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..497d056806897ef03db81cf4df75608be57106b5 --- /dev/null +++ b/TdE5T4oBgHgl3EQfaw-V/content/tmp_files/2301.05591v1.pdf.txt @@ -0,0 +1,2104 @@ +Draft version January 16, 2023 +Typeset using LATEX twocolumn style in AASTeX631 +Exploring magnetic loops and serpentine fields in the quiet Sun with the GRIS-IFU +Ryan J. Campbell +,1 Ricardo Gafeira +,2, 3 Mihalis Mathioudakis +,1 Carlos Quintero Noda +,4, 5 and +Manuel Collados +4, 5 +1Astrophysics Research Centre, Queen’s University of Belfast, Northern Ireland, BT7 1NN, UK +2Instituto de Astrof´ısica de Andaluc´ıa, Apartado de Correos 3004, 18080 Granada, Spain +3Instituto de Astrof´ısica e Ciˆencias do Espa¸co, Departamento de F´ısica da Universidade de Coimbra, +Rua do Observat´orio s/n, 3040-004 Coimbra, Portuga +4Instituto de Astrof´ısica de Canarias, V´ıa L´actea s/n, E-38205 La Laguna, Tenerife, Spain +5Departamento de Astrof´ısica, Universidad de La Laguna, E-38206 La Laguna, Tenerife, Spain +ABSTRACT +Synthetic observations produced from radiative magnetohydronamic simulations have predicted that higher +polarization fractions in the quiet solar photosphere would be revealed by increasing the total integration time +of observations at GREGOR resolutions. We present recently acquired disk centre observations of the Fe I +15648.5 ˚A line obtained with the GREGOR telescope equipped with the GRIS-IFU during excellent seeing +conditions, showing exceptionally high polarization fractions. Our observation reveal an internetwork region +with a majority (> 60%) of magnetised pixels displaying a clear transverse component of the magnetic field. +This result is in stark contrast to previous disk-centre GRIS-IFU observations in this spectral line, which had +predominantly vertical magnetic fields in the deep photosphere. At the same time, the median magnetic field +strength is weaker than previous GRIS-IFU observations, indicating that the larger fraction of polarization +signals cannot be explained by a more active target. We use the Stokes Inversion based on Response functions +(SIR) code to analyse the data, performing over 45 million inversions, and interrogate the impact of two +conflicting approaches to the treatment of noise on the retrieval of the magnetic inclination and azimuth. +We present several case studies of the zoo of magnetic features present in these data, including small-scale +magnetic loops that seem to be embedded in a sea of magnetism, and serpentine fields, focusing on regions +where full-vector spectropolarimetry has been achieved. We also present a new open-source Python 3 analysis +tool, SIR Explorer (SIRE), that we use to examine the dynamics of these small-scale magnetic features. +Keywords: Sun: photosphere — Sun: magnetic fields — Sun: infrared — Sun: granulation +1. INTRODUCTION +Lites et al. (2008) revealed the quiet Sun (QS) inter- +network (IN) as dominated by horizontal (i.e. transverse +with respect to the solar normal) magnetic fields at an +effective spatial resolution of 0.3′′. However, this result +is not undisputed and remains subject to contradiction +by other studies, as reviewed by Steiner & Rezaei (2012). +For instance, the lack of variation in the degree of linear +and circular polarisation recorded in near infrared (NIR) +observations by Mart´ınez Gonz´alez et al. (2008) at 0.8′′ +as a function of different heliocentric angles points to +a QS magnetic field which has no preferential bias in +orientation. If the distribution of magnetic field incli- +nations is isotropic, its probability density function is +given as, +P(γ) = sin γ +2 +, +(1) +where γ is the magnetic inclination angle, defined as +the angle between the magnetic vector and solar nor- +mal, such that P(γ) has a maximum at 90◦. It is per- +haps counter-intuitive, but this would mean most of the +fields are transverse, because for the magnetic field to be +aligned along the line-of-sight (LOS) it has to point in +one of two possible directions, but to be transverse there +are many more possible directions (S´anchez Almeida & +Mart´ınez Gonz´alez 2011). +The greatest difficulty in constraining the γ from in- +versions of IN observations in a consistent way results +from the differing treatments of varying levels of noise. +In the weak field regime, a vertical field produces a larger +amplitude circular polarization profile than the ampli- +tude of a linear polarization profile produced by a hori- +zontal field of equal strength at disk centre. This creates +an intrinsic bias against being able to confidently detect +arXiv:2301.05591v1 [astro-ph.SR] 13 Jan 2023 + +ID2 +Campbell et al. +0 +3.3 +6.6 +9.9 +X [arcsec] +0 +3.75 +7.5 +Y [arcsec] +Stokes I +0.9 +1.0 +1.1 +[Ic] +0 +3.3 +6.6 +9.9 +X [arcsec] +0 +3.75 +7.5 +Y [arcsec] +Stokes Q +−0.005 +0.000 +0.005 +[Ic] +0 +3.3 +6.6 +9.9 +X [arcsec] +0 +3.75 +7.5 +Y [arcsec] +Stokes U +−0.005 +0.000 +0.005 +[Ic] +0 +3.3 +6.6 +9.9 +X [arcsec] +0 +3.75 +7.5 +Y [arcsec] +Stokes V +−0.01 +0.00 +0.01 +[Ic] +0 +3.3 +6.6 +9.9 +X [arcsec] +0 +3.75 +7.5 +Y [arcsec] +T +7000 +7500 +8000 +[K] +0 +3.3 +6.6 +9.9 +X [arcsec] +0 +3.75 +7.5 +Y [arcsec] +vLOS +−2 +0 +2 +[km/s] +0 +3.3 +6.6 +9.9 +X [arcsec] +0 +3.75 +7.5 +Y [arcsec] +γ +0 +90 +180 +[∘] +0 +3.3 +6.6 +9.9 +X [arcsec] +0 +3.75 +7.5 +Y [arcsec] +αmB +0 +25 +50 +[G] +Figure 1. Sample frame from a GRIS-IFU scan of a quiet Sun region on the 24 August 2021 (scan D) showing in the left +column from top to bottom the continuum-normalized Stokes I, Q, U, and V , and in the right column from top to bottom +the T, vLOS, αmB, and γ as derived from SIR inversions (scenario 3). Stokes I is shown at a wavelength of 15650.59 ˚A in the +continuum and the polarization profiles are shown at 15648.36 ˚A in the blue lobes of the geff = 3 line. Any pixel which does +not have a Stokes Q, U, or V profile with maximum unsigned amplitude across the 15648.5 ˚A line below the 5σn threshold has +been set to zero and masked from the plots of Stokes Q, Stokes U, Stokes V , αmB, and γ. T is shown at logτ5000˚ +A = 0.5, while +the other model parameters are shown at constant in depth. +horizontal fields at disk centre when a given noise thresh- +old is equally applied to Stokes Q, U, and V . By pro- +ducing models with deliberately purely vertical fields, +synthesizing the Stokes vector, and adding noise before +inverting again, Borrero & Kobel (2011) show that an +inversion code will return an overabundance of horizon- +tal inclinations. As a result, even when one inverts only +those pixels with at least one Stokes Q, U, or V pro- +file above a noise threshold, and most of the pixels have +only Stokes V above the threshold, this arguably results +in a possible bias in favour of horizontal fields as the in- +version code interprets noise in Stokes Q and U as real +signals. +The deepest Hinode/SP integrations show circular +and linear polarisation in 88% and 53% of the field of +view (FOV), respectively, but this comes at the expense +of spatio-temporal resolution which distorts the polar- +ization signals (Bellot Rubio & Orozco Su´arez 2012). +Most recently, observations of the IN with visible lines +at the ground-based Swedish Solar Telescope (SST; + +Exploring magnetic loops and serpentine fields in the quiet Sun with the GRIS-IFU +3 +Goˇsi´c et al. (2021, 2022); Ledvina et al. (2022)) and +balloon-borne Sunrise experiment (Danilovic et al. 2010; +Mart´ınez Gonz´alez et al. 2012; Kianfar et al. 2018) have +provided good statistics in terms of the longitudinal field +and even of cancellations, but visible photospheric lines +still struggle to confidently detect the horizontal fields +that should be present in magnetic loops along the polar- +ity inversion line (PIL) without significant spatial, spec- +tral, or temporal binning. Observations with the NIR +line pair at GREGOR with the GREGOR Infrared Spec- +trograph (GRIS; Lagg et al. (2016); Mart´ınez Gonz´alez +et al. (2016)) have demonstrated higher efficacy at mea- +suring linear polarization at similar spatial resolutions. +This is despite the fact that modelling with simulations +by Steiner et al. (2008) shows the vertical field being +prominent in the deep photosphere, where the NIR line +pair is sensitive (Quintero Noda et al. 2021), with the +horizontal component of the magnetic field becoming +increasingly important in the upper photosphere, where +the visible line pair is sensitive, with convective over- +shooting responsible for expelling horizontal fields to +greater heights. Campbell et al. (2021a) have used the +Integral Field Unit (IFU) mode of GRIS to examine +the dynamics of small-scale magnetic features, including +magnetic loops. Two-dimensional spectrographs like the +GRIS-IFU are uniquely capable of providing time-series +imaging with high polarimetric sensitivity and spectral +resolution simultaneously, with the size of the FOV and +cadence acting as competing factors. +Campbell et al. (2021b) have predicted, using syn- +thetic observations produced from MURaM simulations +(V¨ogler et al. 2005) degraded to GREGOR/GRIS-IFU +resolutions, that increasing the total integration time +of the observations will yield higher fractions of polar- +ization and allow the magnetic inclination to be better +constrained in a larger fraction of the FOV. We report +observations calibrated based on these predictions. +2. OBSERVATIONS +Repeated observations of disk centre QS regions +were taken in late August 2021 using the GRIS-IFU +(Dominguez-Tagle et al. 2022) at GREGOR (Schmidt +et al. 2012; Kleint et al. 2020). The GRIS-IFU was op- +erated in double sampling mode, with a 3 (vertical) by +2 (horizontal) mosaic pattern, with an exposure time of +60 ms per polarimetric state, and 20 accumulations (for +a total integration time per pixel of 4.8 seconds). This +resulted in a cadence of 103 seconds between frames. +Compared to similar 2019 scans, the exposure time and +accumulations were increased to target a higher S/N, +but the number of steps in the mosaic pattern was re- +duced to constrain the cadence between frames. +The +FOV of the scans is therefore 12.15′′ by 9.024′′ with +a spatial sampling of 0.135′′ by 0.188′′ in the x- and +y−directions, respectively. +The GRIS-IFU observed a 40 ˚A spectral window that +includes the highly magnetically sensitive photospheric +Fe I line at 15648.5 ˚A. The spectral dispersion was de- +termined to be 39.83 m˚A/pixel by comparison with a +degraded Fourier Transform Spectrometer (FTS) atlas +(Livingston & Wallace 1991). +During the observing campaign we benefitted from +very good seeing conditions. Table 1 lists five datasets +which are candidates for analysis as they were taken +with good to excellent seeing, as quantified by the lo- +cally measured Fried parameter, r0, and the root-mean- +square continuum intensity contrast, δIrms. The GRIS +reduction pipeline (Collados et al. 2012) was employed +for dark current removal, flat fielding, polarimetric cal- +ibration, and cross-talk corrections. +3. RESULTS +3.1. Polarization analysis +In order to quantify the fraction of pixels exhibiting +a polarization profile confidently above the noise level +in the datasets listed in Table 1, we adopt the method +used by Lagg et al. (2016); Campbell et al. (2021a). The +purpose of this analysis is to enable a comparison be- +tween the new GRIS-IFU datasets, previous GRIS-IFU +datasets, and datasets from other facilities. For a given +Stokes parameter, we determine the noise level, σn, by +calculating the standard deviation in the continuum in +each frame. The explicit assumption is made that the +continuum is unpolarized and the primary type of noise +is photon noise. We then determine whether a pixel has +a Stokes Q, U, or V profile with maximum amplitude +greater than a threshold set at 5σn across the 15648.5 ˚A +line. If a given pixel has a maximum amplitude in Stokes +V greater than the threshold, the pixel is said to have a +confidently measured circular polarization (CP) signal. +Similarly, if a given pixel has a maximum amplitude in +Stokes Q or U greater than the threshold, the pixel is +said to have a confidently measured linear polarization +(LP) signal. If a Stokes vector has neither LP or CP, it +is said to have no polarization (NP). +Table 1 shows the time-averaged results of this anal- +ysis. +The exceptionally high polarization fractions of +scans D and E stand out as being much larger than +scans A, B, and C. Figure 1 shows a sample frame from +scan D. This frame had a δIrms of 3.4%, a maximal r0 +of 22 cm, and shows an abundance of polarization. In +terms of understanding why the polarization fractions of +scan D and E are higher than the other scans, the first +factor to consider is that the GRIS-IFU FOV is very + +4 +Campbell et al. +Table 1. Time-averaged percentage of linear (LP) and cir- +cular (CP) polarization profiles with maximum amplitudes +above 5σn for level 1 GRIS-IFU/GREGOR data. The per- +centages are calculated relative to the full FOV. The 1σn +noise level is determined by the calculation of the standard +deviation in the relevant Stokes parameter at continuum +wavelengths in each frame. All scans were taken in August +2021 and the times are given in universal time. +Label +Day, time +%LP +%CP +%LP & CP +%NP +A +19, 08:14 +12.7 +43.4 +8.6 +52.5 +B +20, 08:56 +12.4 +42.2 +7.4 +52.8 +C +23, 08:00 +6.7 +28.7 +3.7 +68.2 +D +24, 07:50 +29.3 +64.7 +22.7 +28.6 +E +24, 08:55 +30.7 +66.5 +24.6 +27.4 +Table 2. +As for Table 1, but for the PCA-RVM recon- +structed GRIS-IFU data. The noise threshold is set at 5σn +as measured in the continuum of the original level 1 data. +Label +%LP +%CP +%LP & CP +%NP +D +22.0 +59.0 +16.2 +35.3 +E +23.2 +60.7 +17.6 +33.8 +small. There is therefore always a risk when observing +with the GRIS-IFU that one could point to a so-called +‘void’, where there is little detectable magnetic flux, or +indeed the opposite. The second factor to consider is +the quality and stability of the seeing conditions. From +the r0 and δIrms values for each of the scans, it is clear +that the seeing conditions for scans D and E were supe- +rior in both quality and stability. For instance, scan A +had a peak δIrms of only 3% and a low of 1.8%, while +scan D had a peak of 3.4% and low of 2.7%. This is im- +portant as atmospheric stability is essential to achieve a +maximal effective spatial resolution, and impacts heavily +on the polarization fractions recorded because opposite +polarity profiles cancel out within the spatio-temporal +resolution element with insufficient spatial resolution. +Principal component analysis (PCA) with 15 retained +eigenvectors is applied to scans D and E for the purpose +of removing noise. As eludicated by Borrero & Kobel +(2011), while the probability of photon noise producing +a signal greater than 3σn is only 0.3%, the probabil- +ity increases dramatically when more and more wave- +length points are considered. By applying PCA to re- +move noise and using a stringent 5σn noise threshold, +we are reducing the probability that a false signal will +survive and enter the analysis. As interference fringes +are present in the wavelength domain of the polariza- +tion profiles in some pixels, a relevance vector machine +(RVM) is employed to remove these defects and produce +0.000 +0.002 +0.004 +0.006 +0.008 +0.010 +Amplitude [Ic] +0 +10 +20 +30 +40 +50 +60 +N [%] +LP +CP +Scan D +Scan E +6 May 19 +Figure 2. Area occupied by pixels with a LP (red lines) +or CP (blue lines) signal for scan D (dotted lines), scan E +(dashed lines), and the scan taken on the 6 May 2019 (solid +lines) for given amplitudes. The data has undergone PCA- +RVM reconstruction and had any Stokes profiles with maxi- +mum unsigned amplitude across the 15648.5 ˚A line below the +5σn threshold in the 2021 data, and 3σn in the 2019 data, +set to zero. +apparently noiseless polarization profiles. The full re- +construction process is the same as employed by Camp- +bell et al. (2021a) on GRIS-IFU/GREGOR data and is +described in detail therein. By applying the PCA-RVM +reconstruction process to scans D and E, this enables a +comparison with the PCA-RVM reconstructed statistics +reported by Campbell et al. (2021a). For this purpose +in this paper we will use the scan taken on 6 May 2019, +henceforth referenced simply as the 2019 data. +Table 2 shows the time-averaged polarization fractions +for scan D and E after application of the PCA-RVM re- +construction process. Figure 2 shows the time-averaged +polarization fractions of scans D and E as a function of +amplitude alongside the scan taken on 6 May 2019. In +this case, any Stokes profile whose maximum unsigned +amplitude across the 15648.5 ˚A line does not exceed the +5σn threshold for the two 2021 datasets, and 3σn for the +2019 dataset, has been set to zero. From Fig. 2 it is clear +that the 5σn threshold is on average at a slightly lower +amplitude in scans D and E than the 3σn threshold in +the 2019 scan. Seeing-induced cross-talk becomes more +likely with longer exposures, as with the longer total in- +tegration time it is more likely that the modulations of +the Stokes parameters will not be conducted fast enough +for Earth’s atmosphere to be considered ‘frozen’ during +measurements (Collados 1999). We choose a stringent +5σn threshold for the August 2021 data that still al- +lows us to access weaker polarization signals than in the +2019 data, because the former has a lower noise level +than the latter, but is sufficiently large to allow us to +assume any seeing-induced cross-talk produced is un- +likely to have an amplitude of this magnitude. There is + +Exploring magnetic loops and serpentine fields in the quiet Sun with the GRIS-IFU +5 +a significantly higher fraction of CP and LP in the new +scans than the old scans. Perhaps the most significant +difference between the old and new scans is the much +higher percentage of the FOV which has both LP and +CP. Previously, between 3 − 5% of the FOV had both +LP and CP, but in the new scans this number has signif- +icantly increased to 16−18% at 5σn. This means that γ +should be retrievable from inversions in a much higher +fraction of the FOV and it would also be anticipated +that a larger fraction of pixels would harbour fields with +an intermediate (as opposed to highly vertical or highly +inclined) inclination. +3.2. Inversion strategies +We use the Stokes Inversion based on Response func- +tions (SIR) (Ruiz Cobo & del Toro Iniesta 1992) code to +invert scans D and E. We adapt the parallelized wrap- +per to SIR written by Gafeira et al. (2021) to enable +the kinematic and magnetic parameters of the input +model(s) to be randomized within physically sensible +upper and lower boundaries at every iteration. +This +is an essential step to maximise the statistical chances +of achieving the global χ2 minimum solution for each +Stokes vector. +For the inversion, we adopt the same +scheme as tested on real observations of the NIR line +pair by Mart´ınez Gonz´alez et al. (2016); Campbell et al. +(2021a) and on synthetic observations by Campbell et al. +(2021b). +This is a two-component inversion with one +non-magnetic (i.e. the magnetic field strength, B, was +set to zero and was not allowed to vary) and one mag- +netic model, which are combined by SIR in accordance +to their respective filling factors, α, which is another free +parameter. For clarity, we refer to the filling factor of the +magnetic model as αm. SIR allows the user to determine +the optical depths at which perturbations will be made +between iterations by selecting a number of nodes in +each variable parameter, with the full parameter strati- +fication in optical depth given by cubic splines or linear +interpolation. Apart from temperature, T, for which 4 +nodes were selected, each parameter, including B, was +forced to be constant in optical depth. The macrotur- +bulent velocity, vmac, was included as a free parameter +in the non-magnetic model and forced to be the same +in the magnetic model. The T was also determined by +the non-magnetic model and forced to be the same in +the magnetic model. The line of sight velocity, vLOS, +and microturbulent velocity, vmic, were free parameters +in both models. Full PCA-RVM reconstruction was ap- +plied to the datasets before inversion. We used the em- +pirically determined atomic parameters made available +by Trelles Arjona et al. (2021) and abundances from +Asplund et al. (2009). Included in the inversion were +seven spectral lines, including five Fe I lines with rest +wavelengths of 15645.02 ˚A, 15645.303 ˚A, 15648.514 ˚A, +15652.873 ˚A, 15662.017 ˚A, 15665.241 ˚A, one blended +Fe II line with rest wavelength 15648.514 ˚A, and one +blended O I line with rest wavelength 15665.098 ˚A. +We interrogate the impact of noise on the retrieval of +B, γ, and αm statistically by taking more than one ap- +proach to data treatment. In order to accurately deter- +mine γ, one must measure both linear polarization and +circular polarization confidently above the noise level. +However, it can be argued that the noise level itself +places limits on the amplitude of the weakest polariza- +tion profiles. We divide the approaches into three sce- +narios. In the first scenario (S1), the full datasets were +inverted with all Stokes parameters provided to SIR for +each pixel without any consideration for signal ampli- +tudes relative to the σn level. In scenario 2 (S2), any +individual Stokes Q, U, or V profile in a given pixel +whose maximum amplitude across the 15648.5 ˚A line +does not reach the 5σn threshold was set to zero before +inversion. In scenario 3 (S3), any individual Stokes Q, +U, or V profile that does not reach the 5σn threshold was +set to zero before inversion as in S2, with the exception +that if one linear polarization parameter was confidently +measured then the weaker linear polarization parameter +was not set to zero despite being below the threshold. +This third scenario is included to investigate whether +only one linear polarization parameter (i.e. cases where +Stokes Q is > 5σn but Stokes U is not, or vice versa) is +sufficient to constrain γ and if there are any impacts on +other magnetic parameters when the weaker linear po- +larization parameter is set to zero and the stronger one is +not. Each inversion was repeated 50 times with random- +ized initial models, resulting in over 45 million inversions +in total for all three scenarios and both datasets. +3.3. Magnetic filling factors and field strengths +Figure 3 shows the distributions of B, γ, αmB, αm, +and |cos φ|, where φ is the azimuthal angle of the mag- +netic field vector in the plane perpendicular to the ob- +server’s LOS, for each scenario and scans D and E. First, +the αm distribution looks very similar in all scenarios. +However, the B distribution is significantly different be- +tween S1 on the one hand and S2 and S3 on the other +hand below 600 G for both scans. In S1, the B distri- +bution peaks at around 100 G, but for S2 and S3 there +is a much larger number of pixels with B values below +100 G. Since B is determined by the longitudinal and +transverse components, setting linear and circular polar- +ization signals to zero naturally results in lower values +of B overall. As a consequence, the αmB distributions +for S1 on one hand and S2 and S3 on the other hand + +6 +Campbell et al. +0 +20 +40 +60 +80 +100 120 140 160 180 +γ [deg] +0.0% +1.0% +2.0% +3.0% +4.0% +5.0% +6.0% +N [%] +0 +200 +400 +600 +800 +1000 1200 1400 +B [G] +0.0% +2.0% +4.0% +6.0% +8.0% +10.0% +12.0% +14.0% +16.0% +N [%] +Scenario 3 +Scenario 2 +Scenario 1 +0 +20 +40 +60 +80 +100 +120 +αmB [G] +0.0% +2.0% +4.0% +6.0% +8.0% +10.0% +12.0% +14.0% +N [%] +0.0 +0.2 +0.4 +0.6 +0.8 +1.0 +αm [G] +0.0% +2.0% +4.0% +6.0% +8.0% +10.0% +12.0% +14.0% +N [%] +0.0 +0.2 +0.4 +0.6 +0.8 +1.0 +|cos ϕ| [deg] +0.0% +2.0% +4.0% +6.0% +8.0% +10.0% +N [%] +0 +20 +40 +60 +80 +100 120 140 160 180 +γ [deg] +0.0% +1.0% +2.0% +3.0% +4.0% +5.0% +6.0% +7.0% +N [%] +0 +200 +400 +600 +800 +1000 1200 1400 +B [G] +0.0% +2.5% +5.0% +7.5% +10.0% +12.5% +15.0% +17.5% +N [%] +Scenario 3 +Scenario 2 +Scenario 1 +0 +20 +40 +60 +80 +100 +120 +αmB [G] +0.0% +2.0% +4.0% +6.0% +8.0% +10.0% +12.0% +14.0% +N [%] +0.0 +0.2 +0.4 +0.6 +0.8 +1.0 +αm [G] +0.0% +2.5% +5.0% +7.5% +10.0% +12.5% +15.0% +17.5% +N [%] +0.0 +0.2 +0.4 +0.6 +0.8 +1.0 +|cos ϕ| [deg] +0.0% +2.0% +4.0% +6.0% +8.0% +N [%] +Figure 3. Histograms of B (top row), γ (second row), αmB (third row), αm (fourth row), and |cos φ| (bottom row) returned +from the inversions. The histograms are shown for three inversion scenarios (S1, S2, and S3) as described in the text. The left +and right columns show the distributions for scan D and E, respectively. Histograms are weighted with respect to the total +number of pixels, i.e. including those with no polarization. Pixels which had no measured polarization in any Stokes parameter +are excluded from the histogram (i.e. only pixels with maximum absolute amplitude across the 15648.5 ˚A line greater than the +5σn threshold in at least one Stokes parameter are included). + +Exploring magnetic loops and serpentine fields in the quiet Sun with the GRIS-IFU +7 +also differ in a similar way. +Tables 3 and 4 show for +scans D and E, respectively, the median αmB and B for +each scenario. In addition, the median transverse and +longitudinal components, B⊥ and B∥, as well as αmB⊥, +and αmB∥, are also shown. First of all, the median B, +B⊥, and B∥ values under S2 are all significantly lower +than the equivalent values reported by Campbell et al. +(2021a). These weak average values underline that the +target region is IN in nature. Further, as these fields can +be understood as firmly in the weak field regime, where +the circular polarization amplitudes are proportional to +B (and linear polarization amplitudes are proportional +to B2), recording lower median values in these parame- +ters is sensible on the inclusion of weaker Stokes profiles +that are accessed in the approximate range 2−2.4×10−3 +Ic that could not be confidently measured in 2019. The +median αm values are very small, typically at 0.04. How- +ever, this is a consequence of the shape of the distribu- +tion - the mean value is an order of magnitude bigger +typically at 0.4 − 0.5. The ratio B⊥/B∥ has been re- +ported in other studies (Orozco Su´arez & Bellot Rubio +2012; Campbell et al. 2021a) and is in fact slightly larger +than 2019, indicating that as we increase the S/N, and +access weaker fields, the magnetic field is getting more +horizontal on average. Since the ratio B⊥/B∥ would be +π/2 for an isotropic distribution, this also indicates that +accessing weaker fields has returned a distribution that +is further from the isotropic case. There is also a clear +difference between scans D and E, with stronger B, B∥, +and B⊥ values returned by SIR in all scenarios in scan +E relative to scan D. It is also clear from the ratios that +scan E is slightly more longitudinal on average than scan +D. Finally, there is a clear difference between S2 and S3 +for both scans, with the median B values being about +20 G stronger when the weakest linear polarization pa- +rameters are not eliminated. Further, the B⊥/B∥ ratio +is slightly larger in S3 compared to S2 in both scans, +and the median αm values are unchanged. +3.4. Inclinations and azimuths +The γ distributions in Fig. 3 differ significantly be- +tween S1 on one hand and S2 and S3 on the other. The +shape of the γ distribution in S1 resembles the distri- +butions derived from semi-empirical models produced +by Borrero & Kobel (2011) with large noise thresholds +(> 4.5σn) specifically in terms of the small dip at 90◦. +As the authors explain, this dip is a consequence of as- +serting a large noise threshold in the weak field regime. +Thus, by setting the threshold at 5σn, the dip in the γ +distribution is created by excluding the weakest fields. +This dip is also observed in the distribution from MU- +RaM simulations by Campbell et al. (2021b). For S2 +Table 3. Unsigned median magnetic field strengths and flux +densities, and its horizontal (transverse) and vertical (longi- +tudinal) components, for scan D. The median B is measured +across all pixels with at least one polarization parameter with +maximum amplitude > 5σn across the 15648.5 ˚A line, but +when computing the corresponding B⊥ and B∥ component +only profiles that had Stokes Q or U > 5σn in the former +case, and Stokes V > 5σn in the latter case, are included. +Scenario 1 +Scenario 2 +Scenario 3 +B +206.4 G +119.3 G +140.6 G +B∥ +92.6 G +71.4 G +77.9 G +B⊥ +200.9 G +153.2 G +188.4 G +αm +0.04 +0.04 +0.04 +αmB +7.3 G +4.7 G +5.6 G +αmB∥ +3.3 G +2.8 G +3.1 G +αmB⊥ +7.1 G +6.0 G +7.5 G +B⊥/B∥ +2.2 +2.1 +2.4 +Table 4. As in Table 3, but for scan E. +Scenario 1 +Scenario 2 +Scenario 3 +B +233.3 G +163.6 G +182.8 G +B∥ +107.5 G +98.2 G +101.8 G +B⊥ +221.1 G +182.3 G +220.1 G +αm +0.04 +0.04 +0.04 +αmB +9.7 G +6.0 G +8.2 G +αmB∥ +4.5 G +3.6 G +4.6 G +αmB⊥ +9.2 G +6.7 G +9.9 G +B⊥/B∥ +2.1 +1.9 +2.2 +Table 5. +Percentage of pixels with inclinations in given +ranges as determined by SIR under the three scenarios for +scan D. The percentages are computed relative to the total +number of pixels with at least one Stokes profile with maxi- +mum amplitude > 5σn across the 15648.5 ˚A line. +Scenario +classification +range [◦] +1 [%] +2 [%] +3 [%] +highly vertical +γ < 16 +3.9 +16.6 +16.0 +highly vertical +γ > 164 +4.5 +17.5 +17.2 +intermediate +15 < γ < 75 +33.5 +25.1 +24.6 +intermediate +105 < γ < 165 +35.7 +25.2 +25.5 +highly inclined +74 < γ < 106 +22.4 +15.6 +16.7 +and S3, the distribution is similar to Campbell et al. +(2021a) in that large peaks are recorded at 0, 90, and +180◦, which is a consequence of setting noisy Stokes Q, +U, and V profiles to zero. For instance, a Stokes vec- +tor with only Stokes Q above the noise threshold and +Stokes V set to zero would be expected to return a γ + +8 +Campbell et al. +Table 6. As in Table 6, but for scan E. +Scenario +classification +range [◦] +1 [%] +2 [%] +3 [%] +highly vertical +γ < 16 +5.0 +19.0 +18.3 +highly vertical +γ > 164 +5.3 +19.5 +19.2 +intermediate +15 < γ < 75 +33.9 +23.1 +23.0 +intermediate +105 < γ < 165 +35.7 +24.2 +24.0 +highly inclined +74 < γ < 106 +20.2 +14.1 +15.5 +value close to 90◦ by SIR when a good fit is achieved, +which is the reason for the central peak in the γ distri- +bution. However, if this profile had a noisy Stokes V +included when inverted, the γ would be more likely to +show a more intermediate inclination. +Tables 5 and 6 classify the inclinations in terms of +highly vertical, highly inclined, and intermediately in- +clined fields. The difference compared to 2019 is in the +intermediately inclined fields, which have a much higher +population. Campbell et al. (2021a) report over 70% of +pixels had a highly vertical classification, with a minor- +ity of pixels having a significant transverse component +(i.e. classified as either intermediate or highly inclined). +In scans D and E, remarkably, the situation is reversed - +only 34.1% in scan D and 38.5% in scan E under S2 have +a highly vertical classification, with the majority having +a significant transverse component. The explanation for +this has already been discussed in Sect. 3.1: there are a +much larger number of pixels with both LP and CP in +scans D and E. The very close similarity between S2 and +S3 indicates that eliminating the weaker linear polariza- +tion parameter does not result in an altered distribution +of γ values, i.e. only the stronger linear polarization pa- +rameter is necessary to retrieve γ (in addition to Stokes +V , if a value that differs from close to 90◦ is to be re- +turned). Of course, there is a difference in φ. The reality +is that regardless of the scenario, since both Stokes Q +and U must be measured confidently to constrain φ, and +so few pixels have both, retrieving φ (even without dis- +ambiguation) in a statistical sense is not feasible in this +data. Nevertheless, the peaks in the | cos φ| distribution +at 0.7 and 1 is a consequence of setting one of Stokes Q +or U to zero while the other exceeds the 5σ threshold, +forcing φ to be such that cos φ is returned as −1, −0.7, +0.7, or 1 for φ values of 0, 45, 135, or 180◦ (or indeed +these values shifted by 180◦ due to a lack of disambigua- +tion). Finally, the clear difference between scans D and +E is elucidated again, with slightly larger numbers of +highly vertical classifications in scan E relative to scan +D, and indeed slightly larger numbers of intermediate +and highly inclined classifications in scan D relative to +scan E. +3.5. Case studies +A key strength of the GRIS-IFU lies in its ability +to image the dynamics of small-scale magnetic fea- +tures with high S/N, spatial resolution, and spectral +resolution simultaneously. +We now present two case +studies and in order to make the analysis more effi- +cient, we have developed an open-source application, +SIR Explorer (SIRE), that enables users to navigate the +multi-dimensional input and output files of SIR inver- +sions. This tool is described in Appendix A and is used +throughout this section. Figure 4 shows a magnetic loop +visible in scan D. Figure 5 shows a close-up of the po- +larization in the boxed region in Fig. 4. Here we define +the total linear polarization as, +Ltot = +� λr +λb [Q2(λ) + U 2(λ)] +1 +2 dλ +Ic +� λr +λb dλ +. +(2) +Figure 4 shows a magnetic feature whose structure re- +sembles a magnetic loop. There is a large patch of linear +polarization, which bridges two patches (or foot-points) +of opposite polarity vertical fields. +As seen from the +Dopplergram, the linear polarization appears at the cen- +tre of the granule while the circular polarization is lo- +cated in the intergranular lanes (IGLs). Over time, the +circular polarization remains cemented in the lanes as +the granule evolves. As the linear polarization vanishes +below our detection capabilities, the two patches of cir- +cular polarization no longer appear to be in close con- +tact. This magnetic feature has a lifetime of less than 10 +minutes. This shows how the evolution of the magnetic +loop is influenced by the granular evolution. There are +many pixels in this structure which have all three polar- +ization profiles above the 5σn threshold. Figure 6 shows +three example Stokes vectors, whose spatio-temporal lo- +cations are outlined in Fig. 5, across the PIL of the mag- +netic loop. The upper-most vector, vector 1.a, has a pos- +itive polarity but the field is highly inclined (γ = 95◦) +and stronger than the median (B = 330 G, αmB = 198 +G). The middle vector, vector 1.b, has no confidently +measured Stokes V profile. The pixel is located in the +PIL and thus the physical reason for the lack of a circu- +lar polarization profile could be either due to mixing of +opposite polarities within the spatio-temporal resolution +element or the magnetic vector could be purely transver- +sal. The field is still strong (B = 381 G), but the fill- +ing factor is halved compared to profile 1.a (αm = 0.3) +and thus the αmB is significantly lower (αmB = 114 +G). Due to the lack of a confidently measured Stokes +V signal, we cannot access the longitudinal component + +Exploring magnetic loops and serpentine fields in the quiet Sun with the GRIS-IFU +9 +0 +20 +40 +αmB [G] +0 +3.75 +7.5 +Y [arcsec] +8:33:24 UT +0.0000 +0.0005 +0.0010 +0.0015 +0.0020 +Ltot [Ic] +−0.004 +−0.002 +0.000 +0.002 +0.004 +Stokes V [Ic] +−2 +−1 +0 +1 +2 +vLOS [km/s] +0 +90 +180 +γ [∘] +0 +3.75 +7.5 +Y [arcsec] +8:36:51 UT +0 +3.75 +7.5 +Y [arcsec] +8:38:34 UT +0 +3.75 +7.5 +Y [arcsec] +8:40:17 UT +0 +3.3 +6.6 +X [arcsec] +0 +3.3 +6.6 +X [arcsec] +0 +3.75 +7.5 +Y [arcsec] +8:43:44 UT +0 +3.3 +6.6 +X [arcsec] +0 +3.3 +6.6 +X [arcsec] +0 +3.3 +6.6 +X [arcsec] +Figure 4. Case study of a magnetic loop in scan D. Shown from left to right is the Ltot, Stokes V at 15648.36 ˚A in the blue +lobes of the geff = 3 line, vLOS, γ, and αmB. The last three parameters are derived from SIR inversions under S2. The rows +show subsequent frames with the time-stamp in the upper-right corner of the left-most plot. The box (solid line) highlights the +spatio-temporal location of the distinct magnetic loop. +8:36:51 UT +Ltot [Ic] +1.a +1.b +1.c +Stokes V [Ic] +Figure 5. Close-up of the polarization in the boxed region +in Fig. 4, showing a distinct magnetic loop. The total linear +polarization is shown in the left panel and Stokes V is shown +in the right panel. The full Stokes vectors of the three out- +lined pixels are shown in Fig. 6. The pixels are separated by +0.188′′ each. +of the field, and thus the αmB is likely under-estimated +in vector 1.b. Finally, in the pixel below the PIL, vec- +tor 1.c, the polarity of the field is negative but the field +is still strong (B = 397 G, αmB = 159 G) and highly +inclined (γ = 83◦). All three Stokes vectors have very +strong Stokes Q and U signals, and thus there is infor- +mation about φ available in each profile. The φ values +are very consistent, differing by only 1 − 2◦. Of course, +the ambiguity in the φ remains, so although φ values of +123 − 124◦ are returned by SIR, values of 303 − 304◦ +would also be equally acceptable solutions. Of course, +as all three pixels are located in the granule their vLOS +values are consistently negative. +Figure 7 shows the second case study of a series of +magnetic loops present in scan E. In this region, several +magnetic loops, whose locations are highlighted with +boxes in Fig. 7, are present and appear to form a contin- +uous “serpentine” structure. Alternatively, these could +be independent loops formed by the action of a small- + +10 +Campbell et al. +0.6 +0.7 +0.8 +0.9 +1.0 +1.1 +Stokes I/Ic +SIR +Observed profile +−0.004 +−0.002 +0.000 +0.002 +0.004 +Stokes Q/Ic +15647.4 +15651.4 +15655.4 +15659.4 +15663.3 +wavelength [Å] +−0.015 +−0.010 +−0.005 +0.000 +0.005 +0.010 +Stokes U/Ic +15647.4 +15651.4 +15655.4 +15659.4 +15663.3 +wavelength [Å] +−0.004 +−0.002 +0.000 +0.002 +0.004 +0.006 +Stokes V/Ic +VECTOR 1.a - B = 330.0 [G], α = 0.6, γ = 94.7 [ ∘ ], ϕ = 123.9 [ ∘ ], vLOS = -1.2 [km/s] +0.6 +0.7 +0.8 +0.9 +1.0 +1.1 +Stokes I/Ic +SIR +Observed profile +−0.006 +−0.004 +−0.002 +0.000 +0.002 +0.004 +0.006 +Stokes Q/Ic +15647.4 +15651.4 +15655.4 +15659.4 +15663.3 +wavelength [Å] +−0.015 +−0.010 +−0.005 +0.000 +0.005 +0.010 +0.015 +Stokes U/Ic +15647.4 +15651.4 +15655.4 +15659.4 +15663.3 +wavelength [Å] +−0.002 +−0.001 +0.000 +0.001 +0.002 +Stokes V/Ic +VECTOR 1.b - B = 381.3 [G], α = 0.3, γ = 90.1 [ ∘ ], ϕ = 124.0 [ ∘ ], vLOS = -1.1 [km/s] +0.7 +0.8 +0.9 +1.0 +1.1 +Stokes I/Ic +SIR +Observed profile +−0.004 +−0.002 +0.000 +0.002 +0.004 +0.006 +0.008 +Stokes Q/Ic +15647.4 +15651.4 +15655.4 +15659.4 +15663.3 +wavelength [Å] +−0.015 +−0.010 +−0.005 +0.000 +0.005 +0.010 +0.015 +0.020 +Stokes U/Ic +15647.4 +15651.4 +15655.4 +15659.4 +15663.3 +wavelength [Å] +−0.006 +−0.004 +−0.002 +0.000 +0.002 +0.004 +0.006 +Stokes V/Ic +VECTOR 1.c - B = 397.3 [G], α = 0.4, γ = 82.9 [ ∘ ], ϕ = 122.7 [ ∘ ], vLOS = -1.4 [km/s] +Figure 6. Full observed Stokes vectors 1.a, 1.b, and 1.c (black, dashed lines), along with the corresponding synthetic vectors +derived from SIR inversions (red, solid lines). Stokes Q, U, and V have been PCA-RVM reconstructed. The horizontal (dot- +dashed) lines show the 5σn noise thresholds. The locations of vectors 1.a, 1.b, and 1.c are shown in Fig. 5. +scale dynamo. Most of the magnetic flux is located in +IGLs, with linear polarization present in the PIL which +is most commonly located at the granule-IGL boundary +or in the granule. A close-up of the magnetic loop high- +lighted by the solid box in Fig. 7 is shown in Fig. 8 for +two frames. Since opposite polarity Stokes V profiles +cancel in the PIL, the most common location to find +pixels with all three polarization parameters above the +noise threshold is one pixel adjacent to the PIL. For in- +stance, vectors 2.a and 2.b, shown in Fig. 9 with their +spatio-temporal location shown in Fig 8, are located on +either side of the PIL and thus have opposing polarities +(γ = 83◦ versus γ = 102◦). The B and αmB values +of profile 2.a are smaller (B = 243 G, αmB = 97 G) +than profile 2.b (B = 311 G, αmB = 155 G) as the +magnetic loop increases in strength as it emerges in the +frame from which profile 2.a is selected and reaches its +peak in the frame from which profile 2.b is found. Both +of these pixels are located in granular upflows. +Considering the wider context of the second case +study, the series of magnetic loops are connected to a +much stronger longitudinal magnetic element shown in + +Exploring magnetic loops and serpentine fields in the quiet Sun with the GRIS-IFU +11 +0 +20 +40 +αmB [G] +3.75 +7.5 +Y [arcsec] +9:22:44 UT +0.0000 +0.0005 +0.0010 +0.0015 +0.0020 +Ltot [Ic] +−0.004 +−0.002 +0.000 +0.002 +0.004 +Stokes V [Ic] +−2 +−1 +0 +1 +2 +vLOS [km/s] +0 +90 +180 +γ [∘] +3.75 +7.5 +Y [arcsec] +9:24:27 UT +3.75 +7.5 +Y [arcsec] +9:26:11 UT +3.3 +6.6 +9.9 +X [arcsec] +3.3 +6.6 +9.9 +X [arcsec] +3.75 +7.5 +Y [arcsec] +9:27:54 UT +3.3 +6.6 +9.9 +X [arcsec] +3.3 +6.6 +9.9 +X [arcsec] +3.3 +6.6 +9.9 +X [arcsec] +Figure 7. Case study of a series of magnetic loops in scan E. The plots follow the same layout as in Fig. 4. The solid, dashed, +dotted and dot-dashed red boxes highlight the locations of magnetic loops. The solid, magenta ellipse highlights the location of +a strong longitudinal patch of magnetic flux. +the bottom-right of Fig. 7 in the ellipse. The tempo- +ral evolution of this patch of longitudinal flux can be +traced throughout the full 1 hour time series and there- +fore persists even as the much shorter-lived magnetic +loops appear and disappear. This magnetic element is +first visible at the start of the time series further to the +right, and is migrated and coalesced by granular evolu- +tion until it covers a smaller surface area by the end of +the scan. The presence of this strong longitudinal flux +element is reminiscent of the magnetic loop reported by +Campbell et al. (2021a), which was also located next to +a strong longitudinal magnetic element. For normal Zee- +man triplets, with an effective Land´e g-factor, geff, char- +acterized by two split σ components and an unshifted π +component, the two σ components are separated from +the rest wavelength, λ0, by +∆λ = ± +e +4πmecλ2 +0geffB ≈ ±4.67 × 10−13λ2 +0geffB, +(3) +where ∆λ and λ0 are in units of ˚A and B is in units of G, +c is the speed of light, me is the mass of an electron, and +e is the electron charge. In what is known as the strong +field approximation (SFA), by measuring ∆λ it is there- +fore possible to measure B directly from the splitting of +the lobes of Stokes V when the field is strong enough +(Khomenko et al. 2003; Nelson et al. 2021). SIRE pro- +vides a simple calculator which allows users to quickly +calculate an estimate of B based on the separation of +the lobes, which can also be measured using the wave- +length slider. Figure 10 shows a sample Stokes V profile +from the structure. The Stokes V profile is asymmetric, +particularly in the red σ lobe, but SIR can still produce +an estimate of B even without introducing the gradients +in vLOS or B that would be necessary to better fit this +profile. The pixel had no linear polarization. The val- +ues returned from SIR were: B = 854 G, αm = 0.14, +γ = 0◦, vLOS = 2.2 km/s. The SFA estimate is returned +as BSFA = 812 G. The wavelength positions from which +this estimate was measured is indicated in Fig. 10. SIR +must determine B such that a good fit is found for all +lines, and as such it is not abnormal that there is a small +difference in the measurements, especially given that the +wavelength position of the synthetic and observed blue +σ lobe differ very slightly. In any case, a shift of a single +increment in wavelength is equivalent to 58 G, and so the +values are within an acceptable uncertainty interval of +each other, and serves as a sanity check demonstrating +that the inversions are well calibrated. +4. DISCUSSION +The quest to reveal higher fractions of the FOV as +displaying confidently measured Zeeman-induced polar- +ization signal continues. The fact that 65−67% of the IN +FOV has confidently measured polarization in at least + +12 +Campbell et al. +9:22:44 UT +Ltot [Ic] +2.a +Stokes V [Ic] +9:24:27 UT +2.b +Figure 8. As in Fig 5, but for a magnetic loop outlined by +the solid box in Fig. 7. The full Stokes vectors of the two +outlined pixels are shown in Fig. 9. +one polarization parameter is a remarkable feat for the +GREGOR/GRIS-IFU, however linear and circular po- +larization is only confidently detected simultaneously in +16 − 18%. The increase in δIrms could be the result of +having achieved closer to diffraction limited resolution. +Indeed, the exceptional seeing conditions during scans D +and E could be responsible for this. However, it is cer- +tainly the case that these observations have not achieved +the diffraction limited spatial resolution that GREGOR +is capable of, because the spatial sampling of the GRIS- +IFU in the y−direction, even in double sampling mode, +is insufficient. The increase in δIrms could also be the +result of a small reduction in stray light. Another possi- +bility for the large polarization fractions recorded is that +we were lucky with the target, and these explanations +are not mutually exclusive. +Lites et al. (2008) report a mean vertical apparent +flux density of 11 G. This value, determined from Hin- +ode/SP observations of the Fe I 6301/2 ˚A line pair, was +found assuming αm = 1. However, the authors them- +selves recommend that this value should be reduced by +30% to 7.7 G, before comparison with other works, as +the assumption that αm = 1 is almost certainly un- +true. The very large fraction of the FOV in scans D and +E which have a CP signal makes a comparison worth- +while. The corresponding average value from this work +is the median αmB⊥, listed in Table 3 and +4 as be- +tween 2.8 G and 4.6 G. As their mean is calculated over +the full FOV of the Hinode/SP scan, and their FOV is +much larger and includes network patches, it is sensible +that the value for the GREGOR/GRIS-IFU is smaller. +Further as the NIR Fe I line pair is more magnetically +sensitive than the visible line pair, it is expected that we +record a smaller average value in our maps. However, +the value is a function of the effective spatial resolu- +tion and S/N - indeed, in deep mode observations Lites +et al. (2008) return a distribution for the vertical appar- +ent longitudinal flux density that peaks at a much lower +value of 1.2 G. Our value therefore rests comfortably +between these two values. Aside from a comparison, it +must be emphasised that all of these values could be +under-estimates if there remains a substantial amount +of unresolved mixed-polarities. +The much larger number of pixels which have a LP +signal in scans D and E, relative to 2019, allowed us +to infer the inclination angle in a larger fraction of the +FOV. Using SIR, we were then able to determine that a +large majority (> 60%) of the pixels which had at least +one Stokes parameter with a maximum signal greater +than 5σn across the 15648.5 ˚A line were classifiable as ei- +ther highly inclined or intermediately inclined. In other +words, a majority of magnetised pixels displayed a sig- +nificant transverse magnetic component of the magnetic +field. This is because the number of intermediately in- +clined fields outnumbers both the highly inclined and +highly vertical populations. The ratio B⊥/B∥ is larger +than 2019, which indicates that as the S/N increased, +and thus we were able to access weaker fields, the mag- +netic field is revealed as more transverse on average. +Determining this ratio from observations is important +because it is useful for optimisation of the initial and +boundary conditions of radiative magnetohydrodynamic +simulations (Steiner et al. 2008). The question which +naturally follows is whether this is an uncommon quirk +of the specific observational target in scans D and E, or +whether this is a glimpse of what we can expect to see +when larger aperture telescopes like the Daniel K. In- +ouye Solar Telescope (DKIST: Rimmele et al. (2020)) +and European Solar Telescope (EST: Quintero Noda +et al. (2022)) take similar observations in the NIR lines +with significantly higher effective spatial resolution. Im- +portantly, this result was obtained even with a very con- +servative approach to noise tolerance that favours longi- +tudinal inclinations. In scenario 2 (and 3), we set Stokes +profiles which did not satisfy the 5σn threshold to zero, +which means in many pixels the γ is likely to be either +0◦, 90◦, or 180◦, and this is reflected in the large peaks at +these values in the γ distributions in Fig. 3. Of course, +Stokes Q and U are set to zero in a much larger number +of pixels than Stokes V . While our approach favours +longitudinal inclinations, that does not mean our deter- +mination of B⊥/B∥ is biased in favour of B∥. It must +be stressed that the opposite is true - our determina- + +Exploring magnetic loops and serpentine fields in the quiet Sun with the GRIS-IFU +13 +0.6 +0.7 +0.8 +0.9 +1.0 +Stokes I/Ic +SIR +Observed profile +−0.006 +−0.004 +−0.002 +0.000 +0.002 +0.004 +Stokes Q/Ic +15647.4 +15651.4 +15655.4 +15659.4 +15663.3 +wavelength [Å] +−0.004 +−0.002 +0.000 +0.002 +0.004 +Stokes U/Ic +15647.4 +15651.4 +15655.4 +15659.4 +15663.3 +wavelength [Å] +−0.006 +−0.004 +−0.002 +0.000 +0.002 +0.004 +0.006 +Stokes V/Ic +VECTOR 2.a - B = 243.2 [G], α = 0.4, γ = 83.1 [ ∘ ], ϕ = 112.5 [ ∘ ], vLOS = -1.0 [km/s] +0.6 +0.7 +0.8 +0.9 +1.0 +Stokes I/Ic +SIR +Observed profile +−0.008 +−0.006 +−0.004 +−0.002 +0.000 +0.002 +0.004 +Stokes Q/Ic +15647.4 +15651.4 +15655.4 +15659.4 +15663.3 +wavelength [Å] +−0.015 +−0.010 +−0.005 +0.000 +0.005 +0.010 +Stokes U/Ic +15647.4 +15651.4 +15655.4 +15659.4 +15663.3 +wavelength [Å] +−0.010 +−0.005 +0.000 +0.005 +0.010 +Stokes V/Ic +VECTOR 2.b - B = 310.6 [G], α = 0.5, γ = 102.2 [ ∘ ], ϕ = -33.8 [ ∘ ], vLOS = -1.3 [km/s] +Figure 9. As in Fig. 6, but for vectors 2.a and 2.b. The spatio-temporal locations of the pixels are shown in Fig. 8. +15647.32 +15648.52 +15649.71 +wavelength [Å] +−0.010 +−0.005 +0.000 +0.005 +0.010 +0.015 +Stokes V [Ic] +2Δλ +Observed profile +SIR +Figure 10. Sample Stokes V profile for a pixel located in +the strong magnetic element in case study 2. The dotted, +blue lines show the wavelength positions of the blue and red +lobes for the most magnetically sensitive line, from which +the strong field approximation is used to estimate B∥ = 812 +G. The synthetic profile from SIR is also shown, which has +model parameters of B = 854 G, αm = 0.14, γ = 0◦, vLOS = +2.2 km/s. +tion of B⊥/B∥ is biased in favour of horizontal fields +because B⊥ is determined over a much smaller popula- +tion of pixels with significantly stronger fields (Steiner +& Rezaei 2012). +To determine an unbiased value for +B⊥/B∥ it may be necessary to approach this problem +by applying a threshold to each Stokes parameter sep- +arately whose amplitude is determined by the magnetic +field strength, rather than applying the same threshold +to Stokes Q, U, and V as determined purely noise (i.e. +by the amplitude of the 5σn threshold). +The magnetic loops shown in both case studies are +clear demonstrations of how the photospheric magnetic +field is organized in the QS IN. Of particular signifi- +cance is the apparently serpentine nature of this mag- +netism. +In terms of magnetic loops in the IN, there +are a large number of statistical studies that report on +the phenomenon, especially from the Imaging Magne- +tograph (IMaX)/Sunrise experiment (Danilovic et al. +2010; Mart´ınez Gonz´alez et al. 2012) and the SST (Goˇsi´c +et al. 2021, 2022; Ledvina et al. 2022). Most of these +studies focus on analysing bi-polar patches of circular +polarization where cancellation could take place and +where horizontal fields are expected to be found along +the PIL. For instance, the SST observations by Ledvina +et al. (2022) with the Fe I 5576 ˚A and 6301 ˚A lines, and +with a FOV 30 times greater by area than the GRIS- +IFU scans in this paper, found 38 magnetic loops in a + +14 +Campbell et al. +42.5 minute time series, but find no evidence of hori- +zontal fields at the PIL in any of them. +In terms of +serpentine magnetism, Harra et al. (2010) reported on +observations of a serpentine magnetic field between two +large bi-polar patches of magnetic flux in an emerging +flux region. +However, their target was not an IN re- +gion. We have revealed a serpentine structure in the QS +IN for the first time with unambiguous linear polariza- +tion along the PIL. However, there is still a clear need +for higher resolution observations. If one examines the +circular polarization at the PIL, the mixing of opposite +polarity signals within the spatio-temporal resolution el- +ement means full-vector spectropolarimetry remains elu- +sive (see vector 1.b in Fig. 6). Nevertheless, full-vector +spectropolarimetry is achieved just one pixel adjacent in +both case scenarios examined. Further there is a need +for multi-wavelength facilities with spectral diagnostics +sensitive to the upper photosphere and lower chromo- +sphere, such as will be available at the DKIST (Rast +et al. 2021), the EST (Quintero Noda et al. 2022), and +also the Sunrise III balloon experiment when launched, +which will allow us to assess whether these small-scale +cancellation sites, which could be pervasive across the +quiet solar surface, are capable of contributing to the +heating of the lower chromosphere. +APPENDIX +A. SIR EXPLORER +As spectropolarimetric solar datasets become ever larger and more complex, the multi-dimensional data cubes +produced from observatories become increasingly non-trivial to analyse. Inversions of this multi-dimensional data +increase in complexity too as the number of spectral lines that are inverted continues to increase irrespective of the +data volume. To meet the challenge of inverting such large data cubes, the parallelized Python wrapper (Gafeira +et al. 2021) to both the SIR (Ruiz Cobo & del Toro Iniesta 1992) and the Departure coefficient aided Stokes Inversion +based on Response functions (DeSIRe; Ruiz Cobo et al. (2022)) codes enables users to easily spread the computational +problem across many CPU nodes on high performance computing facilities. However, even when the data is inverted, +the data products still need to be analysed and browsing the data products of inversions, of which there are many, +becomes increasingly cumbersome. SIR Explorer (SIRE), is a Python 3.9 graphical user interface (GUI) application +that aims to make the analysis and exploration of inversion inputs and outputs associated with SIR/DeSIRe a little +faster and a little easier (Campbell 2023). +Figure 11 shows the S2 inversions of scan D loaded into SIRE. The user interface (UI) of SIRE is split into three +main regions: +1. The control panel, located on the left of the main window, which allows the user to load datasets, +2. The three canvases, upon which datasets are displayed, and +3. The widget bar, underneath the canvases, which has three sliders to control the frame (FR), wavelength (WL), +and optical depth (OD) indices. +SIRE is designed to pick up where the parallelized Python wrapper to SIR/DeSIRe leaves off. SIRE’s required input +file structure, detailed in Table 7, is therefore dictated by the output file structure of the wrapper. There are three +mandatory files that are always required. The first mandatory file is the primary models output by SIR/DeSIRe, +which are an array of the one-dimensional atmospheric files with a user-defined number of optical depth points, n(τ). +The other two mandatory files are the observed profiles, which are the input Stokes vectors provided to SIR/DeSIRe, +and the synthetic profiles, which are the final output Stokes vectors produced by SIR/DeSIRe when solving radiative +transfer, which must both have the same number of wavelength points, n(λ). +The observed profiles do not need +to be real observations. If inverting synthetic vectors produced from simulation snapshots, these may synthetic in +origin. There are a number of optional files that can be provided. These include: secondary models, if SIR/DeSIRe is +employed with two models, primary (and secondary) macroturbulence files which contains the macroturbulence of the +model and also the α and stray light fraction values, and binary map(s), which are a user-defined array that may be +provided to remove selected pixels from the maps of the magnetic parameters. +There are three canvas objects: the maps where images of the Stokes profiles and model parameters may be displayed, +the plots on the upper right of the interface of the observed and synthetic Stokes profiles for the selected pixel, and +the plots on the bottom right of the interface of the model parameters as a function of optical depth for the selected + +Exploring magnetic loops and serpentine fields in the quiet Sun with the GRIS-IFU +15 +Figure 11. Main window of SIRE with scan D loaded into the application. +Table 7. +SIRE’s input files and the required array structure. +The ⋆ symbol indicates that the file is mandatory in all +circumstances. The ⋄ symbol indicates that the file is mandatory when two models are provided. +Input file +Array shape (t = 1) +Array shape (t > 1) +Primary models ⋆ ⋄ +[11, n(τ), y, x] +[t, 11, n(τ), y, x] +Observed profiles ⋆ ⋄ +[4, n(λ), y, x] +[t, 4, n(λ), y, x] +Synthetic profiles ⋆ ⋄ +[4, n(λ), y, x] +[t, 4, n(λ), y, x] +Secondary models ⋄ +[11, n(τ), y, x] +[t, 11, n(τ), y, x] +Primary macroturbulence files ⋄ +[3, y, x] +[t, 3, y, x] +Secondary macroturbulence files +[3, y, x] +[t, 3, y, x] +Binary map(s) +[y, x] +[t, y, x] +pixel. Each of the canvases may be resized in proportion to one another, and each of them may be collapsed entirely. +The control panel provides the user with the ability to determine exactly which parameters should be shown in each +canvas. For instance, in Fig 11 only maps of Stokes V , αmB, vLOS, and γ are selected and shown. +The most important functionality of SIRE concerns the way in which the user is able to navigate the dataset. The +controls have been designed to be as simple and fast as possible. When a dataset is first loaded, the pixel with zeroth +co-ordinates in each dimension (t = 0, n(λ) = 0, y = 0, x = 0, n(τ) = 0) will be plot by default. The user can left-click +any of the maps and the synthetic Stokes vector, observed Stokes vector, and model parameters for the corresponding +pixel co-ordinates will be plotted. In addition, the user may adjust the selected pixel by using key-pressing the ‘UP’, +‘DOWN’, ‘LEFT’, and ‘RIGHT’ arrow keys on their keyboard. The location of the selected pixel is denoted by vertical +and horizontal lines on the maps. The sliders in the widget bar allow the user to adjust the frame (FR), wavelength +(WL), and optical depth (OD) indices at which the data is retrieved from the appropriate files. The user can left-click +and drag the sliders. The code that updates the maps and plots will not be executed until the slider is released. The + +Files| +Maps +Information +Stokes V[lc] +Stokes / [lc] +Update profiles axes +1.00 +0.004 +V +V +Obs +7.52 +0.75 +V +Syn +Update models axes + 0.002 +5.64 +15643.42 +15647.4 +15651.39 +15655.37 +15659.35 +15663.34 +15667.32 + 0.000 + Show Stokes I +wavelength [A] +3.76 + Show Stokes Q +-0.002 +Stokes Q [lc] + Show Stokes U +0.004 +0.005 - +0.0 +0.000 + Show Stokes V +0.0 +2.7 +5.4 +8.1 +10.8 +15643.42 +15647.4 +15651.39 +15655.37 +15659.35 +15663.34 +WL min:0 +WL max:600 +X [arcsec.] +15667.32 +wavelength [A] +α B [G] +Set wavelength range +40 +Stokes U [lc] +0.01 - +7.52 +Reset wavelength range +0.00 +30 +V +W +-0.01 - +15643.42 +15647.4 +15651.39 +15655.37 +15659.35 +15663.34 +15667.32 +√ Show temperature +20 +3.76 +wavelength [A] + Show magnetic field strength/flux + Show velocity +1.88 +Stokes V [lc] + Show inclination +0.01 +0.0 + Show azimuth +0.0 +2.7 +5.4 +8.1 +10.8 +-0.01 +:V +X [arcsec.] +15643.42 +15647.4 +15651.39 +15655.37 +15659.35 +15663.34 +15667.32 +OD min:0 +OD max:54 +wavelength [A] +VLos [km/s] +Set optical depth range +7.52 +Reset optical depth range +T [K] +B [G] +F 0 +SFA calculator +3.76 +mod 1 +400 +mod 2 +Change wavelength scale +.88 +6000 +200 - +0.0 +2.7 +5.4 +8.1 +10.8 +4000 +X [arcsec.] +-3 +y[deg.] +log(T500nm) +log(T500nm) +005 +7.52 +VLos [km/s] +Y[°] +60 +100 +3.76 +-1 : +40 +20 - +F 0 +0.0 +Display +0.0 +2.7 +5.4 +8.1 +10.8 +-2 +-3 +-2 +X [arcsec.] +log(T50onm) +log(T50onm) +Reload +Global Preferences +FR: 27 +WL: 121 +OD: 1016 +Campbell et al. +user can also key-press ‘Q’ and ‘E’ to decrease or increase, respectively, the frame index by 1. Similarly, the user can +key-press ‘A’ and ‘D’ for wavelength, or ‘Z’ and ‘C’ for optical depth. +The authors would like to thank the anonymous referee whose feedback helped to significantly improve this manuscript. +We express our appreciation also to Carlos Dominguez-Tagle, whose work with the GRIS-IFU made these observations +possible, and to all the engineering, operating, and technical staff at GREGOR for their assistance during the observing +campaign, including Miguel Esteves Perez, Saida Milena D´ıaz Castillo, Karin Gerber, and Oliver Wiloth. Gratitude +is extended to Juan Manuel Borrero and Lucia Kleint for their advice and insightful discussions. RJC thanks Robert +Ryans for IT support and assistance in utilizing QUB’s high performance computing (HPC) facilities. We thank Carsten +Denker and Christoph Kuckein for assistance with operating the High-resolution Fast Imager (HiFI) instrument and +associated data reduction. +This research has received financial support from the European Union’s Horizon 2020 +research and innovation program under grant agreement No. +824135 (SOLARNET). RJC acknowledges support +from the Northern Ireland Department for the Economy (DfE) for the award of a PhD studentship. RJC and MM +acknowledge support from the Science and Technology Facilities Council (STFC) under grant No. ST/P000304/1 & +ST/T00021X/1. The 1.5−meter GREGOR solar telescope was built by a German consortium under the leadership +of the Leibniz-Institute for Solar Physics (KIS) in Freiburg with the Leibniz Institute for Astrophysics Potsdam, +the Institute for Astrophysics G¨ottingen, and the Max Planck Institute for Solar System Research in G¨ottingen as +partners, and with contributions by the Instituto de Astrof´ısica de Canarias and the Astronomical Institute of the +Academy of Sciences of the Czech Republic. The redesign of the GREGOR AO and instrument distribution optics +was carried out by KIS whose technical staff is gratefully acknowledged. Helioseismic and Magnetic Imager (HMI) +magnetograms, courtesy of NASA/SDO and the AIA, EVE, and HMI science teams, were used during observations +for target selection. This work was supported by Funda¸c˜ao para a Ciˆencia e a Tecnologia (FCT) through the research +grants UIDB/04434/2020 and UIDP/04434/2020. +Facilities: GREGOR solar telescope (Schmidt et al. 2012; Kleint et al. 2020). +Software: SIR explorer, (Campbell 2023), Astropy (Astropy Collaboration et al. 2022), Matplotlib (Hunter 2007), +Numpy (Harris et al. 2020). +REFERENCES +Asplund, M., Grevesse, N., Sauval, A. J., & Scott, P. 2009, +ARA&A, 47, 481, +doi: 10.1146/annurev.astro.46.060407.145222 +Astropy Collaboration, Price-Whelan, A. M., Lim, P. L., +et al. 2022, ApJ, 935, 167, doi: 10.3847/1538-4357/ac7c74 +Bellot Rubio, L. R., & Orozco Su´arez, D. 2012, ApJ, 757, +19, doi: 10.1088/0004-637X/757/1/19 +Borrero, J. M., & Kobel, P. 2011, A&A, 527, A29, +doi: 10.1051/0004-6361/201015634 +Campbell, R. J. 2023, SIR Explorer: a Python 3 +visualisation tool for exploring SIR/DeSIRe inversions., +1.0, Zenodo, doi: 10.5281/zenodo.7529086 +Campbell, R. J., Mathioudakis, M., Collados, M., et al. +2021a, A&A, 647, A182, +doi: 10.1051/0004-6361/202040028 +Campbell, R. J., Shelyag, S., Quintero Noda, C., et al. +2021b, A&A, 654, A11, +doi: 10.1051/0004-6361/202141421 +Collados, M. 1999, in Astronomical Society of the Pacific +Conference Series, Vol. 184, Third Advances in Solar +Physics Euroconference: Magnetic Fields and +Oscillations, ed. B. Schmieder, A. Hofmann, & J. Staude, +3–22 +Collados, M., L´opez, R., P´aez, E., et al. 2012, +Astronomische Nachrichten, 333, 872, +doi: 10.1002/asna.201211738 +Danilovic, S., Beeck, B., Pietarila, A., et al. 2010, ApJL, +723, L149, doi: 10.1088/2041-8205/723/2/L149 +Dominguez-Tagle, C., Collados, M., Lopez, R., et al. 2022, +Journal of Astronomical Instrumentation, +doi: 10.1142/s2251171722500143 +Gafeira, R., Orozco Su´arez, D., Mili´c, I., et al. 2021, A&A, +651, A31, doi: 10.1051/0004-6361/201936910 +Goˇsi´c, M., Bellot Rubio, L. R., Cheung, M. C. M., et al. +2022, ApJ, 925, 188, doi: 10.3847/1538-4357/ac37be +Goˇsi´c, M., De Pontieu, B., Bellot Rubio, L. R., Sainz +Dalda, A., & Pozuelo, S. E. 2021, ApJ, 911, 41, +doi: 10.3847/1538-4357/abe7e0 + +Exploring magnetic loops and serpentine fields in the quiet Sun with the GRIS-IFU +17 +Harra, L. K., Magara, T., Hara, H., et al. 2010, SoPh, 263, +105, doi: 10.1007/s11207-010-9548-x +Harris, C. R., Millman, K. J., van der Walt, S. J., et al. +2020, Nature, 585, 357, doi: 10.1038/s41586-020-2649-2 +Hunter, J. D. 2007, Computing in Science and Engineering, +9, 90, doi: 10.1109/MCSE.2007.55 +Khomenko, E. V., Collados, M., Solanki, S. K., Lagg, A., & +Trujillo Bueno, J. 2003, A&A, 408, 1115, +doi: 10.1051/0004-6361:20030604 +Kianfar, S., Jafarzadeh, S., Mirtorabi, M. T., & +Riethm¨uller, T. L. 2018, SoPh, 293, 123, +doi: 10.1007/s11207-018-1341-2 +Kleint, L., Berkefeld, T., Esteves, M., et al. 2020, A&A, +641, A27, doi: 10.1051/0004-6361/202038208 +Lagg, A., Solanki, S. K., Doerr, H. P., et al. 2016, A&A, +596, A6, doi: 10.1051/0004-6361/201628489 +Ledvina, V. E., Kazachenko, M. D., Criscuoli, S., et al. +2022, ApJ, 934, 38, doi: 10.3847/1538-4357/ac7785 +Lites, B. W., Kubo, M., Socas-Navarro, H., et al. 2008, +ApJ, 672, 1237, doi: 10.1086/522922 +Livingston, W., & Wallace, L. 1991, An atlas of the solar +spectrum in the infrared from 1850 to 9000 cm-1 (1.1 to +5.4 micrometer) +Mart´ınez Gonz´alez, M. J., Asensio Ramos, A., L´opez +Ariste, A., & Manso Sainz, R. 2008, A&A, 479, 229, +doi: 10.1051/0004-6361:20078500 +Mart´ınez Gonz´alez, M. J., Manso Sainz, R., Asensio +Ramos, A., & Hijano, E. 2012, ApJ, 755, 175, +doi: 10.1088/0004-637X/755/2/175 +Mart´ınez Gonz´alez, M. J., Pastor Yabar, A., Lagg, A., et al. +2016, A&A, 596, A5, doi: 10.1051/0004-6361/201628449 +Nelson, C. J., Campbell, R. J., & Mathioudakis, M. 2021, +A&A, 654, A50, doi: 10.1051/0004-6361/202141368 +Orozco Su´arez, D., & Bellot Rubio, L. R. 2012, ApJ, 751, 2, +doi: 10.1088/0004-637X/751/1/2 +Quintero Noda, C., Barklem, P. S., Gafeira, R., et al. 2021, +A&A, 652, A161, doi: 10.1051/0004-6361/202037735 +Quintero Noda, C., Schlichenmaier, R., Bellot Rubio, L. R., +et al. 2022, A&A, 666, A21, +doi: 10.1051/0004-6361/202243867 +Rast, M. P., Bello Gonz´alez, N., Bellot Rubio, L., et al. +2021, SoPh, 296, 70, doi: 10.1007/s11207-021-01789-2 +Rimmele, T. R., Warner, M., Keil, S. L., et al. 2020, SoPh, +295, 172, doi: 10.1007/s11207-020-01736-7 +Ruiz Cobo, B., & del Toro Iniesta, J. C. 1992, ApJ, 398, +375, doi: 10.1086/171862 +Ruiz Cobo, B., Quintero Noda, C., Gafeira, R., et al. 2022, +A&A, 660, A37, doi: 10.1051/0004-6361/202140877 +S´anchez Almeida, J., & Mart´ınez Gonz´alez, M. 2011, in +Astronomical Society of the Pacific Conference Series, +Vol. 437, Solar Polarization 6, ed. J. R. Kuhn, D. M. +Harrington, H. Lin, S. V. Berdyugina, J. Trujillo-Bueno, +S. L. Keil, & T. Rimmele, 451. +https://arxiv.org/abs/1105.0387 +Schmidt, W., von der L¨uhe, O., Volkmer, R., et al. 2012, +Astronomische Nachrichten, 333, 796, +doi: 10.1002/asna.201211725 +Steiner, O., & Rezaei, R. 2012, in Astronomical Society of +the Pacific Conference Series, Vol. 456, Fifth Hinode +Science Meeting, ed. L. Golub, I. De Moortel, & +T. Shimizu, 3. https://arxiv.org/abs/1202.4040 +Steiner, O., Rezaei, R., Schaffenberger, W., & +Wedemeyer-B¨ohm, S. 2008, ApJL, 680, L85, +doi: 10.1086/589740 +Trelles Arjona, J. C., Ruiz Cobo, B., & Mart´ınez Gonz´alez, +M. J. 2021, A&A, 648, A68, +doi: 10.1051/0004-6361/202038941 +V¨ogler, A., Shelyag, S., Sch¨ussler, M., et al. 2005, A&A, +429, 335, doi: 10.1051/0004-6361:20041507 + diff --git a/TdE5T4oBgHgl3EQfaw-V/content/tmp_files/load_file.txt b/TdE5T4oBgHgl3EQfaw-V/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..3e446bcef49108e4195a84666249c5d004d928fb --- /dev/null +++ b/TdE5T4oBgHgl3EQfaw-V/content/tmp_files/load_file.txt @@ -0,0 +1,1466 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf,len=1465 +page_content='Draft version January 16, 2023 Typeset using LATEX twocolumn style in AASTeX631 Exploring magnetic loops and serpentine fields in the quiet Sun with the GRIS-IFU Ryan J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' Campbell ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='1 Ricardo Gafeira ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' 3 Mihalis Mathioudakis ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='1 Carlos Quintero Noda ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='4,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' 5 and Manuel Collados 4,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' 5 1Astrophysics Research Centre,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' Queen’s University of Belfast,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' Northern Ireland,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' BT7 1NN,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' UK 2Instituto de Astrof´ısica de Andaluc´ıa,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' Apartado de Correos 3004,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' 18080 Granada,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' Spain 3Instituto de Astrof´ısica e Ciˆencias do Espa¸co,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' Departamento de F´ısica da Universidade de Coimbra,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' Rua do Observat´orio s/n,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' 3040-004 Coimbra,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' Portuga 4Instituto de Astrof´ısica de Canarias,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' V´ıa L´actea s/n,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' E-38205 La Laguna,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' Tenerife,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' Spain 5Departamento de Astrof´ısica,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' Universidad de La Laguna,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' E-38206 La Laguna,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' Tenerife,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' Spain ABSTRACT Synthetic observations produced from radiative magnetohydronamic simulations have predicted that higher polarization fractions in the quiet solar photosphere would be revealed by increasing the total integration time of observations at GREGOR resolutions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' We present recently acquired disk centre observations of the Fe I 15648.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='5 ˚A line obtained with the GREGOR telescope equipped with the GRIS-IFU during excellent seeing conditions, showing exceptionally high polarization fractions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' Our observation reveal an internetwork region with a majority (> 60%) of magnetised pixels displaying a clear transverse component of the magnetic field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' This result is in stark contrast to previous disk-centre GRIS-IFU observations in this spectral line, which had predominantly vertical magnetic fields in the deep photosphere.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' At the same time, the median magnetic field strength is weaker than previous GRIS-IFU observations, indicating that the larger fraction of polarization signals cannot be explained by a more active target.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' We use the Stokes Inversion based on Response functions (SIR) code to analyse the data, performing over 45 million inversions, and interrogate the impact of two conflicting approaches to the treatment of noise on the retrieval of the magnetic inclination and azimuth.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' We present several case studies of the zoo of magnetic features present in these data, including small-scale magnetic loops that seem to be embedded in a sea of magnetism, and serpentine fields, focusing on regions where full-vector spectropolarimetry has been achieved.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' We also present a new open-source Python 3 analysis tool, SIR Explorer (SIRE), that we use to examine the dynamics of these small-scale magnetic features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' Keywords: Sun: photosphere — Sun: magnetic fields — Sun: infrared — Sun: granulation 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' INTRODUCTION Lites et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' (2008) revealed the quiet Sun (QS) inter- network (IN) as dominated by horizontal (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' transverse with respect to the solar normal) magnetic fields at an effective spatial resolution of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='3′′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' However, this result is not undisputed and remains subject to contradiction by other studies, as reviewed by Steiner & Rezaei (2012).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' For instance, the lack of variation in the degree of linear and circular polarisation recorded in near infrared (NIR) observations by Mart´ınez Gonz´alez et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' (2008) at 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='8′′ as a function of different heliocentric angles points to a QS magnetic field which has no preferential bias in orientation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' If the distribution of magnetic field incli- nations is isotropic, its probability density function is given as, P(γ) = sin γ 2 , (1) where γ is the magnetic inclination angle, defined as the angle between the magnetic vector and solar nor- mal, such that P(γ) has a maximum at 90◦.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' It is per- haps counter-intuitive, but this would mean most of the fields are transverse, because for the magnetic field to be aligned along the line-of-sight (LOS) it has to point in one of two possible directions, but to be transverse there are many more possible directions (S´anchez Almeida & Mart´ınez Gonz´alez 2011).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' The greatest difficulty in constraining the γ from in- versions of IN observations in a consistent way results from the differing treatments of varying levels of noise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' In the weak field regime, a vertical field produces a larger amplitude circular polarization profile than the ampli- tude of a linear polarization profile produced by a hori- zontal field of equal strength at disk centre.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' This creates an intrinsic bias against being able to confidently detect arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='05591v1 [astro-ph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='SR] 13 Jan 2023 ID2 Campbell et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' 0 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='3 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='6 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='9 X [arcsec] 0 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='75 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='5 Y [arcsec] Stokes I 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='9 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='1 [Ic] 0 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='3 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='6 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='9 X [arcsec] 0 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='75 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='5 Y [arcsec] Stokes Q −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='005 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='005 [Ic] 0 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='3 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='6 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='9 X [arcsec] 0 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='75 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='5 Y [arcsec] Stokes U −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='005 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='005 [Ic] 0 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='3 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='6 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='9 X [arcsec] 0 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='75 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='5 Y [arcsec] Stokes V −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='01 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='01 [Ic] 0 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='3 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='6 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='9 X [arcsec] 0 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='75 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='5 Y [arcsec] T 7000 7500 8000 [K] 0 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='3 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='6 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='9 X [arcsec] 0 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='75 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='5 Y [arcsec] vLOS −2 0 2 [km/s] 0 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='3 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='6 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='9 X [arcsec] 0 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='75 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='5 Y [arcsec] γ 0 90 180 [∘] 0 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='3 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='6 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='9 X [arcsec] 0 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='75 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='5 Y [arcsec] αmB 0 25 50 [G] Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' Sample frame from a GRIS-IFU scan of a quiet Sun region on the 24 August 2021 (scan D) showing in the left column from top to bottom the continuum-normalized Stokes I, Q, U, and V , and in the right column from top to bottom the T, vLOS, αmB, and γ as derived from SIR inversions (scenario 3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' Stokes I is shown at a wavelength of 15650.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='59 ˚A in the continuum and the polarization profiles are shown at 15648.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='36 ˚A in the blue lobes of the geff = 3 line.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' Any pixel which does not have a Stokes Q, U, or V profile with maximum unsigned amplitude across the 15648.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='5 ˚A line below the 5σn threshold has been set to zero and masked from the plots of Stokes Q, Stokes U, Stokes V , αmB, and γ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' T is shown at logτ5000˚ A = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='5, while the other model parameters are shown at constant in depth.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' horizontal fields at disk centre when a given noise thresh- old is equally applied to Stokes Q, U, and V .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' By pro- ducing models with deliberately purely vertical fields, synthesizing the Stokes vector, and adding noise before inverting again, Borrero & Kobel (2011) show that an inversion code will return an overabundance of horizon- tal inclinations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' As a result, even when one inverts only those pixels with at least one Stokes Q, U, or V pro- file above a noise threshold, and most of the pixels have only Stokes V above the threshold, this arguably results in a possible bias in favour of horizontal fields as the in- version code interprets noise in Stokes Q and U as real signals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' The deepest Hinode/SP integrations show circular and linear polarisation in 88% and 53% of the field of view (FOV), respectively, but this comes at the expense of spatio-temporal resolution which distorts the polar- ization signals (Bellot Rubio & Orozco Su´arez 2012).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' Most recently, observations of the IN with visible lines at the ground-based Swedish Solar Telescope (SST;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' Exploring magnetic loops and serpentine fields in the quiet Sun with the GRIS-IFU 3 Goˇsi´c et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' (2021, 2022);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' Ledvina et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' (2022)) and balloon-borne Sunrise experiment (Danilovic et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' 2010;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' Mart´ınez Gonz´alez et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' 2012;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' Kianfar et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' 2018) have provided good statistics in terms of the longitudinal field and even of cancellations, but visible photospheric lines still struggle to confidently detect the horizontal fields that should be present in magnetic loops along the polar- ity inversion line (PIL) without significant spatial, spec- tral, or temporal binning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' Observations with the NIR line pair at GREGOR with the GREGOR Infrared Spec- trograph (GRIS;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' Lagg et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' (2016);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' Mart´ınez Gonz´alez et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' (2016)) have demonstrated higher efficacy at mea- suring linear polarization at similar spatial resolutions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' This is despite the fact that modelling with simulations by Steiner et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' (2008) shows the vertical field being prominent in the deep photosphere, where the NIR line pair is sensitive (Quintero Noda et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' 2021), with the horizontal component of the magnetic field becoming increasingly important in the upper photosphere, where the visible line pair is sensitive, with convective over- shooting responsible for expelling horizontal fields to greater heights.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' Campbell et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' (2021a) have used the Integral Field Unit (IFU) mode of GRIS to examine the dynamics of small-scale magnetic features, including magnetic loops.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' Two-dimensional spectrographs like the GRIS-IFU are uniquely capable of providing time-series imaging with high polarimetric sensitivity and spectral resolution simultaneously, with the size of the FOV and cadence acting as competing factors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' Campbell et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' (2021b) have predicted, using syn- thetic observations produced from MURaM simulations (V¨ogler et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' 2005) degraded to GREGOR/GRIS-IFU resolutions, that increasing the total integration time of the observations will yield higher fractions of polar- ization and allow the magnetic inclination to be better constrained in a larger fraction of the FOV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' We report observations calibrated based on these predictions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' OBSERVATIONS Repeated observations of disk centre QS regions were taken in late August 2021 using the GRIS-IFU (Dominguez-Tagle et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' 2022) at GREGOR (Schmidt et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' 2012;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' Kleint et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' 2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' The GRIS-IFU was op- erated in double sampling mode, with a 3 (vertical) by 2 (horizontal) mosaic pattern, with an exposure time of 60 ms per polarimetric state, and 20 accumulations (for a total integration time per pixel of 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='8 seconds).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' This resulted in a cadence of 103 seconds between frames.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' Compared to similar 2019 scans, the exposure time and accumulations were increased to target a higher S/N, but the number of steps in the mosaic pattern was re- duced to constrain the cadence between frames.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' The FOV of the scans is therefore 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='15′′ by 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='024′′ with a spatial sampling of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='135′′ by 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='188′′ in the x- and y−directions, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' The GRIS-IFU observed a 40 ˚A spectral window that includes the highly magnetically sensitive photospheric Fe I line at 15648.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='5 ˚A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' The spectral dispersion was de- termined to be 39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='83 m˚A/pixel by comparison with a degraded Fourier Transform Spectrometer (FTS) atlas (Livingston & Wallace 1991).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' During the observing campaign we benefitted from very good seeing conditions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' Table 1 lists five datasets which are candidates for analysis as they were taken with good to excellent seeing, as quantified by the lo- cally measured Fried parameter, r0, and the root-mean- square continuum intensity contrast, δIrms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' The GRIS reduction pipeline (Collados et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' 2012) was employed for dark current removal, flat fielding, polarimetric cal- ibration, and cross-talk corrections.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' RESULTS 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' Polarization analysis In order to quantify the fraction of pixels exhibiting a polarization profile confidently above the noise level in the datasets listed in Table 1, we adopt the method used by Lagg et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' (2016);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' Campbell et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' (2021a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' The purpose of this analysis is to enable a comparison be- tween the new GRIS-IFU datasets, previous GRIS-IFU datasets, and datasets from other facilities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' For a given Stokes parameter, we determine the noise level, σn, by calculating the standard deviation in the continuum in each frame.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' The explicit assumption is made that the continuum is unpolarized and the primary type of noise is photon noise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' We then determine whether a pixel has a Stokes Q, U, or V profile with maximum amplitude greater than a threshold set at 5σn across the 15648.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='5 ˚A line.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' If a given pixel has a maximum amplitude in Stokes V greater than the threshold, the pixel is said to have a confidently measured circular polarization (CP) signal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' Similarly, if a given pixel has a maximum amplitude in Stokes Q or U greater than the threshold, the pixel is said to have a confidently measured linear polarization (LP) signal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' If a Stokes vector has neither LP or CP, it is said to have no polarization (NP).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' Table 1 shows the time-averaged results of this anal- ysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' The exceptionally high polarization fractions of scans D and E stand out as being much larger than scans A, B, and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' Figure 1 shows a sample frame from scan D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' This frame had a δIrms of 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='4%, a maximal r0 of 22 cm, and shows an abundance of polarization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' In terms of understanding why the polarization fractions of scan D and E are higher than the other scans, the first factor to consider is that the GRIS-IFU FOV is very 4 Campbell et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' Table 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' Time-averaged percentage of linear (LP) and cir- cular (CP) polarization profiles with maximum amplitudes above 5σn for level 1 GRIS-IFU/GREGOR data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' The per- centages are calculated relative to the full FOV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' The 1σn noise level is determined by the calculation of the standard deviation in the relevant Stokes parameter at continuum wavelengths in each frame.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' All scans were taken in August 2021 and the times are given in universal time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' Label Day, time %LP %CP %LP & CP %NP A 19, 08:14 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='7 43.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='4 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='6 52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='5 B 20, 08:56 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='4 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='2 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='4 52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='8 C 23, 08:00 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='7 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='7 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='7 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='2 D 24, 07:50 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='3 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='7 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='7 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='6 E 24, 08:55 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='7 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='5 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='6 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='4 Table 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' As for Table 1, but for the PCA-RVM recon- structed GRIS-IFU data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' The noise threshold is set at 5σn as measured in the continuum of the original level 1 data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' Label %LP %CP %LP & CP %NP D 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='0 59.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='0 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='2 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='3 E 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='2 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='7 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='6 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='8 small.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' There is therefore always a risk when observing with the GRIS-IFU that one could point to a so-called ‘void’, where there is little detectable magnetic flux, or indeed the opposite.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' The second factor to consider is the quality and stability of the seeing conditions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' From the r0 and δIrms values for each of the scans, it is clear that the seeing conditions for scans D and E were supe- rior in both quality and stability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' For instance, scan A had a peak δIrms of only 3% and a low of 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='8%, while scan D had a peak of 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='4% and low of 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='7%.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' This is im- portant as atmospheric stability is essential to achieve a maximal effective spatial resolution, and impacts heavily on the polarization fractions recorded because opposite polarity profiles cancel out within the spatio-temporal resolution element with insufficient spatial resolution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' Principal component analysis (PCA) with 15 retained eigenvectors is applied to scans D and E for the purpose of removing noise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' As eludicated by Borrero & Kobel (2011), while the probability of photon noise producing a signal greater than 3σn is only 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='3%, the probabil- ity increases dramatically when more and more wave- length points are considered.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' By applying PCA to re- move noise and using a stringent 5σn noise threshold, we are reducing the probability that a false signal will survive and enter the analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' As interference fringes are present in the wavelength domain of the polariza- tion profiles in some pixels, a relevance vector machine (RVM) is employed to remove these defects and produce 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='002 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='004 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='006 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='008 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='010 Amplitude [Ic] 0 10 20 30 40 50 60 N [%] LP CP Scan D Scan E 6 May 19 Figure 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' Area occupied by pixels with a LP (red lines) or CP (blue lines) signal for scan D (dotted lines), scan E (dashed lines), and the scan taken on the 6 May 2019 (solid lines) for given amplitudes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' The data has undergone PCA- RVM reconstruction and had any Stokes profiles with maxi- mum unsigned amplitude across the 15648.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='5 ˚A line below the 5σn threshold in the 2021 data, and 3σn in the 2019 data, set to zero.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' apparently noiseless polarization profiles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' The full re- construction process is the same as employed by Camp- bell et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' (2021a) on GRIS-IFU/GREGOR data and is described in detail therein.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' By applying the PCA-RVM reconstruction process to scans D and E, this enables a comparison with the PCA-RVM reconstructed statistics reported by Campbell et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' (2021a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' For this purpose in this paper we will use the scan taken on 6 May 2019, henceforth referenced simply as the 2019 data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' Table 2 shows the time-averaged polarization fractions for scan D and E after application of the PCA-RVM re- construction process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' Figure 2 shows the time-averaged polarization fractions of scans D and E as a function of amplitude alongside the scan taken on 6 May 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' In this case, any Stokes profile whose maximum unsigned amplitude across the 15648.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='5 ˚A line does not exceed the 5σn threshold for the two 2021 datasets, and 3σn for the 2019 dataset, has been set to zero.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' From Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' 2 it is clear that the 5σn threshold is on average at a slightly lower amplitude in scans D and E than the 3σn threshold in the 2019 scan.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' Seeing-induced cross-talk becomes more likely with longer exposures, as with the longer total in- tegration time it is more likely that the modulations of the Stokes parameters will not be conducted fast enough for Earth’s atmosphere to be considered ‘frozen’ during measurements (Collados 1999).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' We choose a stringent 5σn threshold for the August 2021 data that still al- lows us to access weaker polarization signals than in the 2019 data, because the former has a lower noise level than the latter, but is sufficiently large to allow us to assume any seeing-induced cross-talk produced is un- likely to have an amplitude of this magnitude.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' There is Exploring magnetic loops and serpentine fields in the quiet Sun with the GRIS-IFU 5 a significantly higher fraction of CP and LP in the new scans than the old scans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' Perhaps the most significant difference between the old and new scans is the much higher percentage of the FOV which has both LP and CP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' Previously, between 3 − 5% of the FOV had both LP and CP, but in the new scans this number has signif- icantly increased to 16−18% at 5σn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' This means that γ should be retrievable from inversions in a much higher fraction of the FOV and it would also be anticipated that a larger fraction of pixels would harbour fields with an intermediate (as opposed to highly vertical or highly inclined) inclination.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' Inversion strategies We use the Stokes Inversion based on Response func- tions (SIR) (Ruiz Cobo & del Toro Iniesta 1992) code to invert scans D and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' We adapt the parallelized wrap- per to SIR written by Gafeira et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' (2021) to enable the kinematic and magnetic parameters of the input model(s) to be randomized within physically sensible upper and lower boundaries at every iteration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' This is an essential step to maximise the statistical chances of achieving the global χ2 minimum solution for each Stokes vector.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' For the inversion, we adopt the same scheme as tested on real observations of the NIR line pair by Mart´ınez Gonz´alez et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' (2016);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' Campbell et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' (2021a) and on synthetic observations by Campbell et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' (2021b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' This is a two-component inversion with one non-magnetic (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' the magnetic field strength, B, was set to zero and was not allowed to vary) and one mag- netic model, which are combined by SIR in accordance to their respective filling factors, α, which is another free parameter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' For clarity, we refer to the filling factor of the magnetic model as αm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' SIR allows the user to determine the optical depths at which perturbations will be made between iterations by selecting a number of nodes in each variable parameter, with the full parameter strati- fication in optical depth given by cubic splines or linear interpolation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' Apart from temperature, T, for which 4 nodes were selected, each parameter, including B, was forced to be constant in optical depth.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' The macrotur- bulent velocity, vmac, was included as a free parameter in the non-magnetic model and forced to be the same in the magnetic model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' The T was also determined by the non-magnetic model and forced to be the same in the magnetic model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' The line of sight velocity, vLOS, and microturbulent velocity, vmic, were free parameters in both models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' Full PCA-RVM reconstruction was ap- plied to the datasets before inversion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' We used the em- pirically determined atomic parameters made available by Trelles Arjona et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' (2021) and abundances from Asplund et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' (2009).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' Included in the inversion were seven spectral lines, including five Fe I lines with rest wavelengths of 15645.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='02 ˚A, 15645.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='303 ˚A, 15648.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='514 ˚A, 15652.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='873 ˚A, 15662.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='017 ˚A, 15665.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='241 ˚A, one blended Fe II line with rest wavelength 15648.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='514 ˚A, and one blended O I line with rest wavelength 15665.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='098 ˚A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' We interrogate the impact of noise on the retrieval of B, γ, and αm statistically by taking more than one ap- proach to data treatment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' In order to accurately deter- mine γ, one must measure both linear polarization and circular polarization confidently above the noise level.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' However, it can be argued that the noise level itself places limits on the amplitude of the weakest polariza- tion profiles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' We divide the approaches into three sce- narios.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' In the first scenario (S1), the full datasets were inverted with all Stokes parameters provided to SIR for each pixel without any consideration for signal ampli- tudes relative to the σn level.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' In scenario 2 (S2), any individual Stokes Q, U, or V profile in a given pixel whose maximum amplitude across the 15648.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='5 ˚A line does not reach the 5σn threshold was set to zero before inversion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' In scenario 3 (S3), any individual Stokes Q, U, or V profile that does not reach the 5σn threshold was set to zero before inversion as in S2, with the exception that if one linear polarization parameter was confidently measured then the weaker linear polarization parameter was not set to zero despite being below the threshold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' This third scenario is included to investigate whether only one linear polarization parameter (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' cases where Stokes Q is > 5σn but Stokes U is not, or vice versa) is sufficient to constrain γ and if there are any impacts on other magnetic parameters when the weaker linear po- larization parameter is set to zero and the stronger one is not.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' Each inversion was repeated 50 times with random- ized initial models, resulting in over 45 million inversions in total for all three scenarios and both datasets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' Magnetic filling factors and field strengths Figure 3 shows the distributions of B, γ, αmB, αm, and |cos φ|, where φ is the azimuthal angle of the mag- netic field vector in the plane perpendicular to the ob- server’s LOS, for each scenario and scans D and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' First, the αm distribution looks very similar in all scenarios.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' However, the B distribution is significantly different be- tween S1 on the one hand and S2 and S3 on the other hand below 600 G for both scans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' In S1, the B distri- bution peaks at around 100 G, but for S2 and S3 there is a much larger number of pixels with B values below 100 G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' Since B is determined by the longitudinal and transverse components, setting linear and circular polar- ization signals to zero naturally results in lower values of B overall.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' As a consequence, the αmB distributions for S1 on one hand and S2 and S3 on the other hand 6 Campbell et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' 0 20 40 60 80 100 120 140 160 180 γ [deg] 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='0% 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='0% 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='0% 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='0% 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='0% 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='0% 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='0% N [%] 0 200 400 600 800 1000 1200 1400 B [G] 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='0% 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='0% 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='0% 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='0% 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='0% 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='0% 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='0% 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='0% 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='0% N [%] Scenario 3 Scenario 2 Scenario 1 0 20 40 60 80 100 120 αmB [G] 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='0% 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='0% 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='0% 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='0% 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='0% 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='0% 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='0% 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='0% N [%] 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='0 αm [G] 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='0% 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='0% 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='0% 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='0% 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='0% 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='0% 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='0% 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='0% N [%] 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='0 |cos ϕ| [deg] 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='0% 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='0% 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='0% 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='0% 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='0% 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='0% N [%] 0 20 40 60 80 100 120 140 160 180 γ [deg] 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='0% 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='0% 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='0% 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='0% 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='0% 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='0% 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='0% 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='0% N [%] 0 200 400 600 800 1000 1200 1400 B [G] 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='0% 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='5% 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='0% 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='5% 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='0% 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='5% 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='0% 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='5% N [%] Scenario 3 Scenario 2 Scenario 1 0 20 40 60 80 100 120 αmB [G] 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='0% 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='0% 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='0% 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='0% 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='0% 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='0% 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='0% 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='0% N [%] 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='0 αm [G] 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='0% 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='5% 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='0% 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='5% 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='0% 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='5% 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='0% 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='5% N [%] 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='0 |cos ϕ| [deg] 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='0% 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='0% 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='0% 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='0% 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='0% N [%] Figure 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' Histograms of B (top row), γ (second row), αmB (third row), αm (fourth row), and |cos φ| (bottom row) returned from the inversions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' The histograms are shown for three inversion scenarios (S1, S2, and S3) as described in the text.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' The left and right columns show the distributions for scan D and E, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' Histograms are weighted with respect to the total number of pixels, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' including those with no polarization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' Pixels which had no measured polarization in any Stokes parameter are excluded from the histogram (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' only pixels with maximum absolute amplitude across the 15648.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='5 ˚A line greater than the 5σn threshold in at least one Stokes parameter are included).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' Exploring magnetic loops and serpentine fields in the quiet Sun with the GRIS-IFU 7 also differ in a similar way.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' Tables 3 and 4 show for scans D and E, respectively, the median αmB and B for each scenario.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' In addition, the median transverse and longitudinal components, B⊥ and B∥, as well as αmB⊥, and αmB∥, are also shown.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' First of all, the median B, B⊥, and B∥ values under S2 are all significantly lower than the equivalent values reported by Campbell et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' (2021a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' These weak average values underline that the target region is IN in nature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' Further, as these fields can be understood as firmly in the weak field regime, where the circular polarization amplitudes are proportional to B (and linear polarization amplitudes are proportional to B2), recording lower median values in these parame- ters is sensible on the inclusion of weaker Stokes profiles that are accessed in the approximate range 2−2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='4×10−3 Ic that could not be confidently measured in 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' The median αm values are very small, typically at 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='04.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' How- ever, this is a consequence of the shape of the distribu- tion - the mean value is an order of magnitude bigger typically at 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='4 − 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' The ratio B⊥/B∥ has been re- ported in other studies (Orozco Su´arez & Bellot Rubio 2012;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' Campbell et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' 2021a) and is in fact slightly larger than 2019, indicating that as we increase the S/N, and access weaker fields, the magnetic field is getting more horizontal on average.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' Since the ratio B⊥/B∥ would be π/2 for an isotropic distribution, this also indicates that accessing weaker fields has returned a distribution that is further from the isotropic case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' There is also a clear difference between scans D and E, with stronger B, B∥, and B⊥ values returned by SIR in all scenarios in scan E relative to scan D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' It is also clear from the ratios that scan E is slightly more longitudinal on average than scan D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' Finally, there is a clear difference between S2 and S3 for both scans, with the median B values being about 20 G stronger when the weakest linear polarization pa- rameters are not eliminated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' Further, the B⊥/B∥ ratio is slightly larger in S3 compared to S2 in both scans, and the median αm values are unchanged.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' Inclinations and azimuths The γ distributions in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' 3 differ significantly be- tween S1 on one hand and S2 and S3 on the other.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' The shape of the γ distribution in S1 resembles the distri- butions derived from semi-empirical models produced by Borrero & Kobel (2011) with large noise thresholds (> 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='5σn) specifically in terms of the small dip at 90◦.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' As the authors explain, this dip is a consequence of as- serting a large noise threshold in the weak field regime.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' Thus, by setting the threshold at 5σn, the dip in the γ distribution is created by excluding the weakest fields.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' This dip is also observed in the distribution from MU- RaM simulations by Campbell et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' (2021b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' For S2 Table 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' Unsigned median magnetic field strengths and flux densities, and its horizontal (transverse) and vertical (longi- tudinal) components, for scan D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' The median B is measured across all pixels with at least one polarization parameter with maximum amplitude > 5σn across the 15648.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='5 ˚A line, but when computing the corresponding B⊥ and B∥ component only profiles that had Stokes Q or U > 5σn in the former case, and Stokes V > 5σn in the latter case, are included.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' Scenario 1 Scenario 2 Scenario 3 B 206.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='4 G 119.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='3 G 140.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='6 G B∥ 92.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='6 G 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='4 G 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='9 G B⊥ 200.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='9 G 153.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='2 G 188.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='4 G αm 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='04 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='04 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='04 αmB 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='3 G 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='7 G 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='6 G αmB∥ 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='3 G 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='8 G 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='1 G αmB⊥ 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='1 G 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='0 G 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='5 G B⊥/B∥ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='2 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='1 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='4 Table 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' As in Table 3, but for scan E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' Scenario 1 Scenario 2 Scenario 3 B 233.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='3 G 163.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='6 G 182.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='8 G B∥ 107.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='5 G 98.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='2 G 101.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='8 G B⊥ 221.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='1 G 182.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='3 G 220.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='1 G αm 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='04 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='04 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='04 αmB 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='7 G 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='0 G 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='2 G αmB∥ 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='5 G 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='6 G 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='6 G αmB⊥ 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='2 G 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='7 G 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='9 G B⊥/B∥ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='9 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='2 Table 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' Percentage of pixels with inclinations in given ranges as determined by SIR under the three scenarios for scan D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' The percentages are computed relative to the total number of pixels with at least one Stokes profile with maxi- mum amplitude > 5σn across the 15648.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='5 ˚A line.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' Scenario classification range [◦] 1 [%] 2 [%] 3 [%] highly vertical γ < 16 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='9 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='6 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='0 highly vertical γ > 164 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='5 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='5 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='2 intermediate 15 < γ < 75 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='5 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='1 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='6 intermediate 105 < γ < 165 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='7 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='2 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='5 highly inclined 74 < γ < 106 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='4 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='6 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='7 and S3, the distribution is similar to Campbell et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' (2021a) in that large peaks are recorded at 0, 90, and 180◦, which is a consequence of setting noisy Stokes Q, U, and V profiles to zero.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' For instance, a Stokes vec- tor with only Stokes Q above the noise threshold and Stokes V set to zero would be expected to return a γ 8 Campbell et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' Table 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' As in Table 6, but for scan E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' Scenario classification range [◦] 1 [%] 2 [%] 3 [%] highly vertical γ < 16 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='0 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='0 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='3 highly vertical γ > 164 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='3 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='5 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='2 intermediate 15 < γ < 75 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='9 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='1 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='0 intermediate 105 < γ < 165 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='7 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='2 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='0 highly inclined 74 < γ < 106 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='2 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='1 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='5 value close to 90◦ by SIR when a good fit is achieved, which is the reason for the central peak in the γ distri- bution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' However, if this profile had a noisy Stokes V included when inverted, the γ would be more likely to show a more intermediate inclination.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' Tables 5 and 6 classify the inclinations in terms of highly vertical, highly inclined, and intermediately in- clined fields.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' The difference compared to 2019 is in the intermediately inclined fields, which have a much higher population.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' Campbell et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' (2021a) report over 70% of pixels had a highly vertical classification, with a minor- ity of pixels having a significant transverse component (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' classified as either intermediate or highly inclined).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' In scans D and E, remarkably, the situation is reversed - only 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='1% in scan D and 38.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='5% in scan E under S2 have a highly vertical classification, with the majority having a significant transverse component.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' The explanation for this has already been discussed in Sect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='1: there are a much larger number of pixels with both LP and CP in scans D and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' The very close similarity between S2 and S3 indicates that eliminating the weaker linear polariza- tion parameter does not result in an altered distribution of γ values, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' only the stronger linear polarization pa- rameter is necessary to retrieve γ (in addition to Stokes V , if a value that differs from close to 90◦ is to be re- turned).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' Of course, there is a difference in φ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' The reality is that regardless of the scenario, since both Stokes Q and U must be measured confidently to constrain φ, and so few pixels have both, retrieving φ (even without dis- ambiguation) in a statistical sense is not feasible in this data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' Nevertheless, the peaks in the | cos φ| distribution at 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='7 and 1 is a consequence of setting one of Stokes Q or U to zero while the other exceeds the 5σ threshold, forcing φ to be such that cos φ is returned as −1, −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='7, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='7, or 1 for φ values of 0, 45, 135, or 180◦ (or indeed these values shifted by 180◦ due to a lack of disambigua- tion).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' Finally, the clear difference between scans D and E is elucidated again, with slightly larger numbers of highly vertical classifications in scan E relative to scan D, and indeed slightly larger numbers of intermediate and highly inclined classifications in scan D relative to scan E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' Case studies A key strength of the GRIS-IFU lies in its ability to image the dynamics of small-scale magnetic fea- tures with high S/N, spatial resolution, and spectral resolution simultaneously.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' We now present two case studies and in order to make the analysis more effi- cient, we have developed an open-source application, SIR Explorer (SIRE), that enables users to navigate the multi-dimensional input and output files of SIR inver- sions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' This tool is described in Appendix A and is used throughout this section.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' Figure 4 shows a magnetic loop visible in scan D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' Figure 5 shows a close-up of the po- larization in the boxed region in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' Here we define the total linear polarization as, Ltot = � λr λb [Q2(λ) + U 2(λ)] 1 2 dλ Ic � λr λb dλ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' (2) Figure 4 shows a magnetic feature whose structure re- sembles a magnetic loop.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' There is a large patch of linear polarization, which bridges two patches (or foot-points) of opposite polarity vertical fields.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' As seen from the Dopplergram, the linear polarization appears at the cen- tre of the granule while the circular polarization is lo- cated in the intergranular lanes (IGLs).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' Over time, the circular polarization remains cemented in the lanes as the granule evolves.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' As the linear polarization vanishes below our detection capabilities, the two patches of cir- cular polarization no longer appear to be in close con- tact.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' This magnetic feature has a lifetime of less than 10 minutes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' This shows how the evolution of the magnetic loop is influenced by the granular evolution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' There are many pixels in this structure which have all three polar- ization profiles above the 5σn threshold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' Figure 6 shows three example Stokes vectors, whose spatio-temporal lo- cations are outlined in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' 5, across the PIL of the mag- netic loop.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' The upper-most vector, vector 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='a, has a pos- itive polarity but the field is highly inclined (γ = 95◦) and stronger than the median (B = 330 G, αmB = 198 G).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' The middle vector, vector 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='b, has no confidently measured Stokes V profile.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' The pixel is located in the PIL and thus the physical reason for the lack of a circu- lar polarization profile could be either due to mixing of opposite polarities within the spatio-temporal resolution element or the magnetic vector could be purely transver- sal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' The field is still strong (B = 381 G), but the fill- ing factor is halved compared to profile 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='a (αm = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='3) and thus the αmB is significantly lower (αmB = 114 G).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' Due to the lack of a confidently measured Stokes V signal, we cannot access the longitudinal component Exploring magnetic loops and serpentine fields in the quiet Sun with the GRIS-IFU 9 0 20 40 αmB [G] 0 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='75 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='5 Y [arcsec] 8:33:24 UT 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='0000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='0005 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='0010 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='0015 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='0020 Ltot [Ic] −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='004 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='002 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='002 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='004 Stokes V [Ic] −2 −1 0 1 2 vLOS [km/s] 0 90 180 γ [∘] 0 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='75 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='5 Y [arcsec] 8:36:51 UT 0 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='75 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='5 Y [arcsec] 8:38:34 UT 0 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='75 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='5 Y [arcsec] 8:40:17 UT 0 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='3 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='6 X [arcsec] 0 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='3 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='6 X [arcsec] 0 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='75 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='5 Y [arcsec] 8:43:44 UT 0 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='3 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='6 X [arcsec] 0 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='3 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='6 X [arcsec] 0 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='3 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='6 X [arcsec] Figure 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' Case study of a magnetic loop in scan D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' Shown from left to right is the Ltot, Stokes V at 15648.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='36 ˚A in the blue lobes of the geff = 3 line, vLOS, γ, and αmB.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' The last three parameters are derived from SIR inversions under S2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' The rows show subsequent frames with the time-stamp in the upper-right corner of the left-most plot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' The box (solid line) highlights the spatio-temporal location of the distinct magnetic loop.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' 8:36:51 UT Ltot [Ic] 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='a 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='b 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='c Stokes V [Ic] Figure 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' Close-up of the polarization in the boxed region in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' 4, showing a distinct magnetic loop.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' The total linear polarization is shown in the left panel and Stokes V is shown in the right panel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' The full Stokes vectors of the three out- lined pixels are shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' The pixels are separated by 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='188′′ each.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' of the field, and thus the αmB is likely under-estimated in vector 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' Finally, in the pixel below the PIL, vec- tor 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='c, the polarity of the field is negative but the field is still strong (B = 397 G, αmB = 159 G) and highly inclined (γ = 83◦).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' All three Stokes vectors have very strong Stokes Q and U signals, and thus there is infor- mation about φ available in each profile.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' The φ values are very consistent, differing by only 1 − 2◦.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' Of course, the ambiguity in the φ remains, so although φ values of 123 − 124◦ are returned by SIR, values of 303 − 304◦ would also be equally acceptable solutions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' Of course, as all three pixels are located in the granule their vLOS values are consistently negative.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' Figure 7 shows the second case study of a series of magnetic loops present in scan E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' In this region, several magnetic loops, whose locations are highlighted with boxes in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' 7, are present and appear to form a contin- uous “serpentine” structure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' Alternatively, these could be independent loops formed by the action of a small- 10 Campbell et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='9 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='1 Stokes I/Ic SIR Observed profile −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='004 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='002 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='002 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='004 Stokes Q/Ic 15647.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='4 15651.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='4 15655.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='4 15659.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='4 15663.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='3 wavelength [Å] −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='015 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='010 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='005 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='005 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='010 Stokes U/Ic 15647.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='4 15651.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='4 15655.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='4 15659.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='4 15663.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='3 wavelength [Å] −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='004 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='002 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='002 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='004 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='006 Stokes V/Ic VECTOR 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='a - B = 330.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='0 [G], α = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='6, γ = 94.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='7 [ ∘ ], ϕ = 123.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='9 [ ∘ ], vLOS = -1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='2 [km/s] 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='9 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='1 Stokes I/Ic SIR Observed profile −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='006 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='004 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='002 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='002 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='004 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='006 Stokes Q/Ic 15647.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='4 15651.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='4 15655.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='4 15659.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='4 15663.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='3 wavelength [Å] −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='015 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='010 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='005 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='005 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='010 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='015 Stokes U/Ic 15647.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='4 15651.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='4 15655.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='4 15659.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='4 15663.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='3 wavelength [Å] −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='002 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='001 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='001 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='002 Stokes V/Ic VECTOR 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='b - B = 381.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='3 [G], α = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='3, γ = 90.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='1 [ ∘ ], ϕ = 124.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='0 [ ∘ ], vLOS = -1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='1 [km/s] 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='9 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='1 Stokes I/Ic SIR Observed profile −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='004 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='002 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='002 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='004 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='006 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='008 Stokes Q/Ic 15647.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='4 15651.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='4 15655.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='4 15659.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='4 15663.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='3 wavelength [Å] −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='015 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='010 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='005 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='005 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='010 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='015 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='020 Stokes U/Ic 15647.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='4 15651.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='4 15655.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='4 15659.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='4 15663.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='3 wavelength [Å] −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='006 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='004 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='002 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='002 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='004 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='006 Stokes V/Ic VECTOR 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='c - B = 397.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='3 [G], α = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='4, γ = 82.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='9 [ ∘ ], ϕ = 122.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='7 [ ∘ ], vLOS = -1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='4 [km/s] Figure 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' Full observed Stokes vectors 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='a, 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='b, and 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='c (black, dashed lines), along with the corresponding synthetic vectors derived from SIR inversions (red, solid lines).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' Stokes Q, U, and V have been PCA-RVM reconstructed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' The horizontal (dot- dashed) lines show the 5σn noise thresholds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' The locations of vectors 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='a, 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='b, and 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='c are shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' scale dynamo.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' Most of the magnetic flux is located in IGLs, with linear polarization present in the PIL which is most commonly located at the granule-IGL boundary or in the granule.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' A close-up of the magnetic loop high- lighted by the solid box in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' 7 is shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' 8 for two frames.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' Since opposite polarity Stokes V profiles cancel in the PIL, the most common location to find pixels with all three polarization parameters above the noise threshold is one pixel adjacent to the PIL.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' For in- stance, vectors 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='a and 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='b, shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' 9 with their spatio-temporal location shown in Fig 8, are located on either side of the PIL and thus have opposing polarities (γ = 83◦ versus γ = 102◦).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' The B and αmB values of profile 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='a are smaller (B = 243 G, αmB = 97 G) than profile 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='b (B = 311 G, αmB = 155 G) as the magnetic loop increases in strength as it emerges in the frame from which profile 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='a is selected and reaches its peak in the frame from which profile 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='b is found.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' Both of these pixels are located in granular upflows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' Considering the wider context of the second case study, the series of magnetic loops are connected to a much stronger longitudinal magnetic element shown in Exploring magnetic loops and serpentine fields in the quiet Sun with the GRIS-IFU 11 0 20 40 αmB [G] 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='75 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='5 Y [arcsec] 9:22:44 UT 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='0000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='0005 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='0010 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='0015 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='0020 Ltot [Ic] −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='004 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='002 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='002 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='004 Stokes V [Ic] −2 −1 0 1 2 vLOS [km/s] 0 90 180 γ [∘] 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='75 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='5 Y [arcsec] 9:24:27 UT 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='75 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='5 Y [arcsec] 9:26:11 UT 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='3 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='6 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='9 X [arcsec] 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='3 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='6 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='9 X [arcsec] 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='75 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='5 Y [arcsec] 9:27:54 UT 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='3 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='6 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='9 X [arcsec] 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='3 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='6 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='9 X [arcsec] 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='3 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='6 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='9 X [arcsec] Figure 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' Case study of a series of magnetic loops in scan E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' The plots follow the same layout as in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' The solid, dashed, dotted and dot-dashed red boxes highlight the locations of magnetic loops.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' The solid, magenta ellipse highlights the location of a strong longitudinal patch of magnetic flux.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' the bottom-right of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' 7 in the ellipse.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' The tempo- ral evolution of this patch of longitudinal flux can be traced throughout the full 1 hour time series and there- fore persists even as the much shorter-lived magnetic loops appear and disappear.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' This magnetic element is first visible at the start of the time series further to the right, and is migrated and coalesced by granular evolu- tion until it covers a smaller surface area by the end of the scan.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' The presence of this strong longitudinal flux element is reminiscent of the magnetic loop reported by Campbell et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' (2021a), which was also located next to a strong longitudinal magnetic element.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' For normal Zee- man triplets, with an effective Land´e g-factor, geff, char- acterized by two split σ components and an unshifted π component, the two σ components are separated from the rest wavelength, λ0, by ∆λ = ± e 4πmecλ2 0geffB ≈ ±4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='67 × 10−13λ2 0geffB, (3) where ∆λ and λ0 are in units of ˚A and B is in units of G, c is the speed of light, me is the mass of an electron, and e is the electron charge.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' In what is known as the strong field approximation (SFA), by measuring ∆λ it is there- fore possible to measure B directly from the splitting of the lobes of Stokes V when the field is strong enough (Khomenko et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' 2003;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' Nelson et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' SIRE pro- vides a simple calculator which allows users to quickly calculate an estimate of B based on the separation of the lobes, which can also be measured using the wave- length slider.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' Figure 10 shows a sample Stokes V profile from the structure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' The Stokes V profile is asymmetric, particularly in the red σ lobe, but SIR can still produce an estimate of B even without introducing the gradients in vLOS or B that would be necessary to better fit this profile.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' The pixel had no linear polarization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' The val- ues returned from SIR were: B = 854 G, αm = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='14, γ = 0◦, vLOS = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='2 km/s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' The SFA estimate is returned as BSFA = 812 G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' The wavelength positions from which this estimate was measured is indicated in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' SIR must determine B such that a good fit is found for all lines, and as such it is not abnormal that there is a small difference in the measurements, especially given that the wavelength position of the synthetic and observed blue σ lobe differ very slightly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' In any case, a shift of a single increment in wavelength is equivalent to 58 G, and so the values are within an acceptable uncertainty interval of each other, and serves as a sanity check demonstrating that the inversions are well calibrated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' DISCUSSION The quest to reveal higher fractions of the FOV as displaying confidently measured Zeeman-induced polar- ization signal continues.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' The fact that 65−67% of the IN FOV has confidently measured polarization in at least 12 Campbell et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' 9:22:44 UT Ltot [Ic] 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='a Stokes V [Ic] 9:24:27 UT 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='b Figure 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' As in Fig 5, but for a magnetic loop outlined by the solid box in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' The full Stokes vectors of the two outlined pixels are shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' one polarization parameter is a remarkable feat for the GREGOR/GRIS-IFU, however linear and circular po- larization is only confidently detected simultaneously in 16 − 18%.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' The increase in δIrms could be the result of having achieved closer to diffraction limited resolution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' Indeed, the exceptional seeing conditions during scans D and E could be responsible for this.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' However, it is cer- tainly the case that these observations have not achieved the diffraction limited spatial resolution that GREGOR is capable of, because the spatial sampling of the GRIS- IFU in the y−direction, even in double sampling mode, is insufficient.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' The increase in δIrms could also be the result of a small reduction in stray light.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' Another possi- bility for the large polarization fractions recorded is that we were lucky with the target, and these explanations are not mutually exclusive.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' Lites et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' (2008) report a mean vertical apparent flux density of 11 G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' This value, determined from Hin- ode/SP observations of the Fe I 6301/2 ˚A line pair, was found assuming αm = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' However, the authors them- selves recommend that this value should be reduced by 30% to 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='7 G, before comparison with other works, as the assumption that αm = 1 is almost certainly un- true.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' The very large fraction of the FOV in scans D and E which have a CP signal makes a comparison worth- while.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' The corresponding average value from this work is the median αmB⊥, listed in Table 3 and 4 as be- tween 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='8 G and 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='6 G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' As their mean is calculated over the full FOV of the Hinode/SP scan, and their FOV is much larger and includes network patches, it is sensible that the value for the GREGOR/GRIS-IFU is smaller.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' Further as the NIR Fe I line pair is more magnetically sensitive than the visible line pair, it is expected that we record a smaller average value in our maps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' However, the value is a function of the effective spatial resolu- tion and S/N - indeed, in deep mode observations Lites et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' (2008) return a distribution for the vertical appar- ent longitudinal flux density that peaks at a much lower value of 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='2 G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' Our value therefore rests comfortably between these two values.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' Aside from a comparison, it must be emphasised that all of these values could be under-estimates if there remains a substantial amount of unresolved mixed-polarities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' The much larger number of pixels which have a LP signal in scans D and E, relative to 2019, allowed us to infer the inclination angle in a larger fraction of the FOV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' Using SIR, we were then able to determine that a large majority (> 60%) of the pixels which had at least one Stokes parameter with a maximum signal greater than 5σn across the 15648.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='5 ˚A line were classifiable as ei- ther highly inclined or intermediately inclined.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' In other words, a majority of magnetised pixels displayed a sig- nificant transverse magnetic component of the magnetic field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' This is because the number of intermediately in- clined fields outnumbers both the highly inclined and highly vertical populations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' The ratio B⊥/B∥ is larger than 2019, which indicates that as the S/N increased, and thus we were able to access weaker fields, the mag- netic field is revealed as more transverse on average.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' Determining this ratio from observations is important because it is useful for optimisation of the initial and boundary conditions of radiative magnetohydrodynamic simulations (Steiner et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' 2008).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' The question which naturally follows is whether this is an uncommon quirk of the specific observational target in scans D and E, or whether this is a glimpse of what we can expect to see when larger aperture telescopes like the Daniel K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' In- ouye Solar Telescope (DKIST: Rimmele et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' (2020)) and European Solar Telescope (EST: Quintero Noda et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' (2022)) take similar observations in the NIR lines with significantly higher effective spatial resolution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' Im- portantly, this result was obtained even with a very con- servative approach to noise tolerance that favours longi- tudinal inclinations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' In scenario 2 (and 3), we set Stokes profiles which did not satisfy the 5σn threshold to zero, which means in many pixels the γ is likely to be either 0◦, 90◦, or 180◦, and this is reflected in the large peaks at these values in the γ distributions in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' Of course, Stokes Q and U are set to zero in a much larger number of pixels than Stokes V .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' While our approach favours longitudinal inclinations, that does not mean our deter- mination of B⊥/B∥ is biased in favour of B∥.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' It must be stressed that the opposite is true - our determina- Exploring magnetic loops and serpentine fields in the quiet Sun with the GRIS-IFU 13 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='9 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='0 Stokes I/Ic SIR Observed profile −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='006 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='004 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='002 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='002 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='004 Stokes Q/Ic 15647.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='4 15651.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='4 15655.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='4 15659.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='4 15663.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='3 wavelength [Å] −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='004 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='002 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='002 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='004 Stokes U/Ic 15647.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='4 15651.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='4 15655.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='4 15659.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='4 15663.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='3 wavelength [Å] −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='006 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='004 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='002 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='002 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='004 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='006 Stokes V/Ic VECTOR 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='a - B = 243.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='2 [G], α = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='4, γ = 83.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='1 [ ∘ ], ϕ = 112.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='5 [ ∘ ], vLOS = -1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='0 [km/s] 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='9 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='0 Stokes I/Ic SIR Observed profile −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='008 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='006 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='004 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='002 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='002 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='004 Stokes Q/Ic 15647.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='4 15651.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='4 15655.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='4 15659.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='4 15663.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='3 wavelength [Å] −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='015 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='010 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='005 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='005 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='010 Stokes U/Ic 15647.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='4 15651.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='4 15655.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='4 15659.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='4 15663.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='3 wavelength [Å] −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='010 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='005 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='005 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='010 Stokes V/Ic VECTOR 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='b - B = 310.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='6 [G], α = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='5, γ = 102.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='2 [ ∘ ], ϕ = -33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='8 [ ∘ ], vLOS = -1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='3 [km/s] Figure 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' As in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' 6, but for vectors 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='a and 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' The spatio-temporal locations of the pixels are shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' 15647.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='32 15648.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='52 15649.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='71 wavelength [Å] −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='010 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='005 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='005 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='010 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='015 Stokes V [Ic] 2Δλ Observed profile SIR Figure 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' Sample Stokes V profile for a pixel located in the strong magnetic element in case study 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' The dotted, blue lines show the wavelength positions of the blue and red lobes for the most magnetically sensitive line, from which the strong field approximation is used to estimate B∥ = 812 G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' The synthetic profile from SIR is also shown, which has model parameters of B = 854 G, αm = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='14, γ = 0◦, vLOS = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='2 km/s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' tion of B⊥/B∥ is biased in favour of horizontal fields because B⊥ is determined over a much smaller popula- tion of pixels with significantly stronger fields (Steiner & Rezaei 2012).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' To determine an unbiased value for B⊥/B∥ it may be necessary to approach this problem by applying a threshold to each Stokes parameter sep- arately whose amplitude is determined by the magnetic field strength, rather than applying the same threshold to Stokes Q, U, and V as determined purely noise (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' by the amplitude of the 5σn threshold).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' The magnetic loops shown in both case studies are clear demonstrations of how the photospheric magnetic field is organized in the QS IN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' Of particular signifi- cance is the apparently serpentine nature of this mag- netism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' In terms of magnetic loops in the IN, there are a large number of statistical studies that report on the phenomenon, especially from the Imaging Magne- tograph (IMaX)/Sunrise experiment (Danilovic et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' 2010;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' Mart´ınez Gonz´alez et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' 2012) and the SST (Goˇsi´c et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' 2021, 2022;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' Ledvina et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' Most of these studies focus on analysing bi-polar patches of circular polarization where cancellation could take place and where horizontal fields are expected to be found along the PIL.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' For instance, the SST observations by Ledvina et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' (2022) with the Fe I 5576 ˚A and 6301 ˚A lines, and with a FOV 30 times greater by area than the GRIS- IFU scans in this paper, found 38 magnetic loops in a 14 Campbell et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='5 minute time series, but find no evidence of hori- zontal fields at the PIL in any of them.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' In terms of serpentine magnetism, Harra et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' (2010) reported on observations of a serpentine magnetic field between two large bi-polar patches of magnetic flux in an emerging flux region.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' However, their target was not an IN re- gion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' We have revealed a serpentine structure in the QS IN for the first time with unambiguous linear polariza- tion along the PIL.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' However, there is still a clear need for higher resolution observations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' If one examines the circular polarization at the PIL, the mixing of opposite polarity signals within the spatio-temporal resolution el- ement means full-vector spectropolarimetry remains elu- sive (see vector 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='b in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' 6).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' Nevertheless, full-vector spectropolarimetry is achieved just one pixel adjacent in both case scenarios examined.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' Further there is a need for multi-wavelength facilities with spectral diagnostics sensitive to the upper photosphere and lower chromo- sphere, such as will be available at the DKIST (Rast et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' 2021), the EST (Quintero Noda et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' 2022), and also the Sunrise III balloon experiment when launched, which will allow us to assess whether these small-scale cancellation sites, which could be pervasive across the quiet solar surface, are capable of contributing to the heating of the lower chromosphere.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' APPENDIX A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' SIR EXPLORER As spectropolarimetric solar datasets become ever larger and more complex, the multi-dimensional data cubes produced from observatories become increasingly non-trivial to analyse.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' Inversions of this multi-dimensional data increase in complexity too as the number of spectral lines that are inverted continues to increase irrespective of the data volume.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' To meet the challenge of inverting such large data cubes, the parallelized Python wrapper (Gafeira et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' 2021) to both the SIR (Ruiz Cobo & del Toro Iniesta 1992) and the Departure coefficient aided Stokes Inversion based on Response functions (DeSIRe;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' Ruiz Cobo et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' (2022)) codes enables users to easily spread the computational problem across many CPU nodes on high performance computing facilities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' However, even when the data is inverted, the data products still need to be analysed and browsing the data products of inversions, of which there are many, becomes increasingly cumbersome.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' SIR Explorer (SIRE), is a Python 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='9 graphical user interface (GUI) application that aims to make the analysis and exploration of inversion inputs and outputs associated with SIR/DeSIRe a little faster and a little easier (Campbell 2023).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' Figure 11 shows the S2 inversions of scan D loaded into SIRE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' The user interface (UI) of SIRE is split into three main regions: 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' The control panel, located on the left of the main window, which allows the user to load datasets, 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' The three canvases, upon which datasets are displayed, and 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' The widget bar, underneath the canvases, which has three sliders to control the frame (FR), wavelength (WL), and optical depth (OD) indices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' SIRE is designed to pick up where the parallelized Python wrapper to SIR/DeSIRe leaves off.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' SIRE’s required input file structure, detailed in Table 7, is therefore dictated by the output file structure of the wrapper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' There are three mandatory files that are always required.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' The first mandatory file is the primary models output by SIR/DeSIRe, which are an array of the one-dimensional atmospheric files with a user-defined number of optical depth points, n(τ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' The other two mandatory files are the observed profiles, which are the input Stokes vectors provided to SIR/DeSIRe, and the synthetic profiles, which are the final output Stokes vectors produced by SIR/DeSIRe when solving radiative transfer, which must both have the same number of wavelength points, n(λ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' The observed profiles do not need to be real observations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' If inverting synthetic vectors produced from simulation snapshots, these may synthetic in origin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' There are a number of optional files that can be provided.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' These include: secondary models, if SIR/DeSIRe is employed with two models, primary (and secondary) macroturbulence files which contains the macroturbulence of the model and also the α and stray light fraction values, and binary map(s), which are a user-defined array that may be provided to remove selected pixels from the maps of the magnetic parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' There are three canvas objects: the maps where images of the Stokes profiles and model parameters may be displayed, the plots on the upper right of the interface of the observed and synthetic Stokes profiles for the selected pixel, and the plots on the bottom right of the interface of the model parameters as a function of optical depth for the selected Exploring magnetic loops and serpentine fields in the quiet Sun with the GRIS-IFU 15 Figure 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' Main window of SIRE with scan D loaded into the application.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' Table 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' SIRE’s input files and the required array structure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' The ⋆ symbol indicates that the file is mandatory in all circumstances.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' The ⋄ symbol indicates that the file is mandatory when two models are provided.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' Input file Array shape (t = 1) Array shape (t > 1) Primary models ⋆ ⋄ [11, n(τ), y, x] [t, 11, n(τ), y, x] Observed profiles ⋆ ⋄ [4, n(λ), y, x] [t, 4, n(λ), y, x] Synthetic profiles ⋆ ⋄ [4, n(λ), y, x] [t, 4, n(λ), y, x] Secondary models ⋄ [11, n(τ), y, x] [t, 11, n(τ), y, x] Primary macroturbulence files ⋄ [3, y, x] [t, 3, y, x] Secondary macroturbulence files [3, y, x] [t, 3, y, x] Binary map(s) [y, x] [t, y, x] pixel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' Each of the canvases may be resized in proportion to one another, and each of them may be collapsed entirely.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' The control panel provides the user with the ability to determine exactly which parameters should be shown in each canvas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' For instance, in Fig 11 only maps of Stokes V , αmB, vLOS, and γ are selected and shown.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' The most important functionality of SIRE concerns the way in which the user is able to navigate the dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' The controls have been designed to be as simple and fast as possible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' When a dataset is first loaded, the pixel with zeroth co-ordinates in each dimension (t = 0, n(λ) = 0, y = 0, x = 0, n(τ) = 0) will be plot by default.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' The user can left-click any of the maps and the synthetic Stokes vector, observed Stokes vector, and model parameters for the corresponding pixel co-ordinates will be plotted.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' In addition, the user may adjust the selected pixel by using key-pressing the ‘UP’, ‘DOWN’, ‘LEFT’, and ‘RIGHT’ arrow keys on their keyboard.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' The location of the selected pixel is denoted by vertical and horizontal lines on the maps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' The sliders in the widget bar allow the user to adjust the frame (FR), wavelength (WL), and optical depth (OD) indices at which the data is retrieved from the appropriate files.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' The user can left-click and drag the sliders.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' The code that updates the maps and plots will not be executed until the slider is released.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' The Files| Maps Information Stokes V[lc] Stokes / [lc] Update profiles axes 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='004 V V Obs 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='52 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='75 V Syn Update models axes 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='002 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='64 15643.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='42 15647.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='4 15651.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='39 15655.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='37 15659.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='35 15663.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='34 15667.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='32 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='000 Show Stokes I wavelength [A] 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='76 Show Stokes Q 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='002 Stokes Q [lc] Show Stokes U 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='004 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='005 - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='000 Show Stokes V 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='7 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='4 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='1 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='8 15643.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='42 15647.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='4 15651.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='39 15655.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='37 15659.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='35 15663.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='34 WL min:0 WL max:600 X [arcsec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='] 15667.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='32 wavelength [A] α B [G] Set wavelength range 40 Stokes U [lc] 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='01 - 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='52 Reset wavelength range 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='00 30 V W 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='01 - 15643.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='42 15647.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='4 15651.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='39 15655.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='37 15659.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='35 15663.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='34 15667.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='32 √ Show temperature 20 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='76 wavelength [A] Show magnetic field strength/flux Show velocity 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='88 Stokes V [lc] Show inclination 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='01 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='0 Show azimuth 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='7 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='4 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='1 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='01 :V X [arcsec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='] 15643.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='42 15647.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='4 15651.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='39 15655.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='37 15659.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='35 15663.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='34 15667.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='32 OD min:0 OD max:54 wavelength [A] VLos [km/s] Set optical depth range 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='52 Reset optical depth range T [K] B [G] F 0 SFA calculator 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='76 mod 1 400 mod 2 Change wavelength scale .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='88 6000 200 - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='7 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='4 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='1 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='8 4000 X [arcsec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='] 3 y[deg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='] log(T500nm) log(T500nm) 005 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='52 VLos [km/s] Y[°] 60 100 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='76 1 : 40 20 - F 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='0 Display 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='7 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='4 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='1 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='8 2 3 2 X [arcsec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='] log(T50onm) log(T50onm) Reload Global Preferences FR: 27 WL: 121 OD: 1016 Campbell et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' user can also key-press ‘Q’ and ‘E’ to decrease or increase, respectively, the frame index by 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' Similarly, the user can key-press ‘A’ and ‘D’ for wavelength, or ‘Z’ and ‘C’ for optical depth.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' The authors would like to thank the anonymous referee whose feedback helped to significantly improve this manuscript.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' We express our appreciation also to Carlos Dominguez-Tagle, whose work with the GRIS-IFU made these observations possible, and to all the engineering, operating, and technical staff at GREGOR for their assistance during the observing campaign, including Miguel Esteves Perez, Saida Milena D´ıaz Castillo, Karin Gerber, and Oliver Wiloth.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' Gratitude is extended to Juan Manuel Borrero and Lucia Kleint for their advice and insightful discussions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' RJC thanks Robert Ryans for IT support and assistance in utilizing QUB’s high performance computing (HPC) facilities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' We thank Carsten Denker and Christoph Kuckein for assistance with operating the High-resolution Fast Imager (HiFI) instrument and associated data reduction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' This research has received financial support from the European Union’s Horizon 2020 research and innovation program under grant agreement No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' 824135 (SOLARNET).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' RJC acknowledges support from the Northern Ireland Department for the Economy (DfE) for the award of a PhD studentship.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' RJC and MM acknowledge support from the Science and Technology Facilities Council (STFC) under grant No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' ST/P000304/1 & ST/T00021X/1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' The 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='5−meter GREGOR solar telescope was built by a German consortium under the leadership of the Leibniz-Institute for Solar Physics (KIS) in Freiburg with the Leibniz Institute for Astrophysics Potsdam, the Institute for Astrophysics G¨ottingen, and the Max Planck Institute for Solar System Research in G¨ottingen as partners, and with contributions by the Instituto de Astrof´ısica de Canarias and the Astronomical Institute of the Academy of Sciences of the Czech Republic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' The redesign of the GREGOR AO and instrument distribution optics was carried out by KIS whose technical staff is gratefully acknowledged.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' Helioseismic and Magnetic Imager (HMI) magnetograms, courtesy of NASA/SDO and the AIA, EVE, and HMI science teams, were used during observations for target selection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' This work was supported by Funda¸c˜ao para a Ciˆencia e a Tecnologia (FCT) through the research grants UIDB/04434/2020 and UIDP/04434/2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' Facilities: GREGOR solar telescope (Schmidt et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' 2012;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' Kleint et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' 2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' Software: SIR explorer, (Campbell 2023), Astropy (Astropy Collaboration et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' 2022), Matplotlib (Hunter 2007), Numpy (Harris et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' 2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' REFERENCES Asplund, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=', Grevesse, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=', Sauval, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=', & Scott, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' 2009, ARA&A, 47, 481, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='1146/annurev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='astro.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='060407.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='145222 Astropy Collaboration, Price-Whelan, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=', Lim, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' 2022, ApJ, 935, 167, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='3847/1538-4357/ac7c74 Bellot Rubio, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=', & Orozco Su´arez, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' 2012, ApJ, 757, 19, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='1088/0004-637X/757/1/19 Borrero, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=', & Kobel, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' 2011, A&A, 527, A29, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='1051/0004-6361/201015634 Campbell, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' 2023, SIR Explorer: a Python 3 visualisation tool for exploring SIR/DeSIRe inversions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=', 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='0, Zenodo, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='5281/zenodo.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='7529086 Campbell, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=', Mathioudakis, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=', Collados, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' 2021a, A&A, 647, A182, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='1051/0004-6361/202040028 Campbell, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=', Shelyag, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=', Quintero Noda, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' 2021b, A&A, 654, A11, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='1051/0004-6361/202141421 Collados, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' 1999, in Astronomical Society of the Pacific Conference Series, Vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' 184, Third Advances in Solar Physics Euroconference: Magnetic Fields and Oscillations, ed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' Schmieder, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' Hofmann, & J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' Staude, 3–22 Collados, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=', L´opez, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=', P´aez, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' 2012, Astronomische Nachrichten, 333, 872, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='1002/asna.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='201211738 Danilovic, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=', Beeck, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=', Pietarila, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' 2010, ApJL, 723, L149, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='1088/2041-8205/723/2/L149 Dominguez-Tagle, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=', Collados, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=', Lopez, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' 2022, Journal of Astronomical Instrumentation, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='1142/s2251171722500143 Gafeira, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=', Orozco Su´arez, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=', Mili´c, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' 2021, A&A, 651, A31, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='1051/0004-6361/201936910 Goˇsi´c, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=', Bellot Rubio, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=', Cheung, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' 2022, ApJ, 925, 188, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='3847/1538-4357/ac37be Goˇsi´c, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=', De Pontieu, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=', Bellot Rubio, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=', Sainz Dalda, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=', & Pozuelo, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' 2021, ApJ, 911, 41, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='3847/1538-4357/abe7e0 Exploring magnetic loops and serpentine fields in the quiet Sun with the GRIS-IFU 17 Harra, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=', Magara, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=', Hara, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' 2010, SoPh, 263, 105, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='1007/s11207-010-9548-x Harris, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=', Millman, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=', van der Walt, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' 2020, Nature, 585, 357, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='1038/s41586-020-2649-2 Hunter, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' 2007, Computing in Science and Engineering, 9, 90, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='1109/MCSE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='2007.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='55 Khomenko, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=', Collados, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=', Solanki, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=', Lagg, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=', & Trujillo Bueno, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' 2003, A&A, 408, 1115, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='1051/0004-6361:20030604 Kianfar, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=', Jafarzadeh, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=', Mirtorabi, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=', & Riethm¨uller, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' 2018, SoPh, 293, 123, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='1007/s11207-018-1341-2 Kleint, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=', Berkefeld, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=', Esteves, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' 2020, A&A, 641, A27, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='1051/0004-6361/202038208 Lagg, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=', Solanki, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=', Doerr, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' 2016, A&A, 596, A6, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='1051/0004-6361/201628489 Ledvina, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=', Kazachenko, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=', Criscuoli, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' 2022, ApJ, 934, 38, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='3847/1538-4357/ac7785 Lites, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=', Kubo, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=', Socas-Navarro, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' 2008, ApJ, 672, 1237, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='1086/522922 Livingston, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=', & Wallace, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' 1991, An atlas of the solar spectrum in the infrared from 1850 to 9000 cm-1 (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='1 to 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='4 micrometer) Mart´ınez Gonz´alez, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=', Asensio Ramos, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=', L´opez Ariste, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=', & Manso Sainz, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' 2008, A&A, 479, 229, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='1051/0004-6361:20078500 Mart´ınez Gonz´alez, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=', Manso Sainz, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=', Asensio Ramos, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=', & Hijano, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' 2012, ApJ, 755, 175, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='1088/0004-637X/755/2/175 Mart´ınez Gonz´alez, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=', Pastor Yabar, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=', Lagg, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' 2016, A&A, 596, A5, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='1051/0004-6361/201628449 Nelson, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=', Campbell, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=', & Mathioudakis, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' 2021, A&A, 654, A50, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='1051/0004-6361/202141368 Orozco Su´arez, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=', & Bellot Rubio, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' 2012, ApJ, 751, 2, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='1088/0004-637X/751/1/2 Quintero Noda, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=', Barklem, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=', Gafeira, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' 2021, A&A, 652, A161, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='1051/0004-6361/202037735 Quintero Noda, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=', Schlichenmaier, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=', Bellot Rubio, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' 2022, A&A, 666, A21, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='1051/0004-6361/202243867 Rast, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=', Bello Gonz´alez, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=', Bellot Rubio, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' 2021, SoPh, 296, 70, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='1007/s11207-021-01789-2 Rimmele, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=', Warner, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=', Keil, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' 2020, SoPh, 295, 172, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='1007/s11207-020-01736-7 Ruiz Cobo, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=', & del Toro Iniesta, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' 1992, ApJ, 398, 375, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='1086/171862 Ruiz Cobo, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=', Quintero Noda, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=', Gafeira, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' 2022, A&A, 660, A37, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='1051/0004-6361/202140877 S´anchez Almeida, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=', & Mart´ınez Gonz´alez, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' 2011, in Astronomical Society of the Pacific Conference Series, Vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' 437, Solar Polarization 6, ed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' Kuhn, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' Harrington, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' Lin, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' Berdyugina, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' Trujillo-Bueno, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' Keil, & T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' Rimmele, 451.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' https://arxiv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='org/abs/1105.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='0387 Schmidt, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=', von der L¨uhe, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=', Volkmer, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' 2012, Astronomische Nachrichten, 333, 796, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='1002/asna.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='201211725 Steiner, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=', & Rezaei, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' 2012, in Astronomical Society of the Pacific Conference Series, Vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' 456, Fifth Hinode Science Meeting, ed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' Golub, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' De Moortel, & T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' Shimizu, 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' https://arxiv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='org/abs/1202.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='4040 Steiner, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=', Rezaei, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=', Schaffenberger, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=', & Wedemeyer-B¨ohm, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' 2008, ApJL, 680, L85, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='1086/589740 Trelles Arjona, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=', Ruiz Cobo, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=', & Mart´ınez Gonz´alez, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' 2021, A&A, 648, A68, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='1051/0004-6361/202038941 V¨ogler, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=', Shelyag, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=', Sch¨ussler, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content=' 2005, A&A, 429, 335, doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} +page_content='1051/0004-6361:20041507' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TdE5T4oBgHgl3EQfaw-V/content/2301.05591v1.pdf'} diff --git a/TtE5T4oBgHgl3EQfAg5m/content/tmp_files/2301.05379v1.pdf.txt b/TtE5T4oBgHgl3EQfAg5m/content/tmp_files/2301.05379v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..a2896c77205da549525b93a0c6b7558b557746d3 --- /dev/null +++ b/TtE5T4oBgHgl3EQfAg5m/content/tmp_files/2301.05379v1.pdf.txt @@ -0,0 +1,1218 @@ +Benefits and Limitations of Remote Work to +LGBTQIA+ Software Professionals +Ronnie E. de Souza Santos +Cape Breton University +Sydney, NS, Canada +Email: ronnie desouza@cbu.ca +Cleyton V. C. de Magalh˜aes +CESAR School +Recife, Brazil +Email: cvcm@cesar.school +Paul Ralph +Dalhousie University +Halifax, Canada +Email: paulralph@dal.ca +Abstract—Background. The mass transition to remote work +amid the COVID-19 pandemic profoundly affected software +professionals, who abruptly shifted into ostensibly temporary +home offices. The effects of this transition on these professionals +are complex, depending on the particularities of the context and +individuals. Recent studies advocate for remote structures to +create opportunities for many equity-deserving groups; however, +remote work can also be challenging for some individuals, such +as women and individuals with disabilities. As the discussions on +equity, diversity, and inclusion increase in software engineering, it +is important to explore the realities and perspectives of different +equity-deserving groups to develop strategies that can support +them post-pandemic. Objective. This study aims to investigate the +effects of remote work on LGBTQIA+ software professionals. +Method. A grounded theory approach was applied, based on +information collected from two main sources: a survey question- +naire with a sample of 57 LGBTQIA+ software professionals and +nine follow-up interviews with individuals from this sample. This +sample included professionals of different genders, ethnicities, +sexual orientations, and levels of experience. Consistent with +grounded theory methodology, the process of data collection +and analysis was conducted iteratively using three stages of +coding: line-by-line, focused, and theoretical. Member checking +was used to validate the findings obtained from interpreting the +experiences commented on by LGBTQIA+ software profession- +als. Findings. Our findings demonstrate that (1) remote work +benefits LGBTQIA+ people by increasing security and visibil- +ity; (2) remote work harms LGBTQIA+ software professionals +through isolation and invisibility; (3) the benefits outweigh the +drawbacks; (4) the drawbacks can be mitigated by supportive +measures developed by software companies. Conclusion. This +paper investigated how remote work can affect LGBTQIA+ +software professionals and presented a set of recommendations on +how software companies can address the benefits and limitations +associated with this work model. In summary, we concluded +that remote work has a crucial role in increasing diversity and +inclusion in the software industry. +Abstract—General Abstract. Remote work is here to stay. There +is no denying it, as some software professionals would rather +quit their jobs than return to the office full-time. Therefore, +software companies want to understand how the remote working +model can be successfully used without causing major issues. +The problem is that the effects of remote work are complex +because they depend on individual and group characteristics that +require careful evaluation. In this scenario, one thing has been +extremely positive: remote work is helping to increase diversity in +software engineering by fostering new opportunities and better +work conditions for individuals from equity-deserving groups, +for instance, LGBTQIA+ software professionals. The software +industry is overly homogeneous, most of the professionals who +work in this area are heterosexual men (a reflection of the uni- +versity courses on computer science and software engineering), +but diversity can only be good for an area that strongly depends +on creativity and innovation. What better way to innovate than +putting several individuals from different backgrounds and with +various experiences to work together? Remote work plays an +important role in improving equity, diversity, and inclusion in +the software industry. In this paper, we discuss how remote +work is affecting software professionals from the LGBTQIA+ +community and provide a list of recommendations to support +software companies in dealing with this work model. +Index Terms—EDI, equity, diversity, inclusion, software pro- +fessionals, LGBTQIA+. +I. INTRODUCTION +Equity, diversity, and inclusion (EDI) are central topics +being discussed in society nowadays. EDI is a complex +phenomenon centered on developing approaches for providing +equal opportunity for individuals (equity) while recognizing +their personal, social, and cultural differences (diversity) and +encouraging them to participate in environments and debates +(inclusion) [1], [2]. Discussions on EDI are gradually increas- +ing in Computer Science as well [3]. Since technology has +a direct impact on our society, and our society is plural, the +lack of diversity among those who develop software creates +limitations in the use of technologies as software solutions +might exclude groups of individuals [4]–[6]. +Diversity is essential in developing technologies to sup- +port our multifaceted society (Albusays, 2021). However, +the software industry is experiencing a diversity crisis, as +software teams are mainly composed of heterosexual men [4]. +Currently, there is a lack of knowledge on how EDI should +be addressed and integrated into software engineering [6]–[8]. +The main consensus among researchers is that diversity needs +to be addressed from the academy to the software industry +by increasing opportunities, improving debates, and fostering +safe spaces for equity-deserving groups. +Recently, the COVID-19 pandemic intensified discussions +about EDI in software engineering. As the lockdowns forced +software professionals to work from home, remote work struc- +tures created better work-life balance, more flexibility, and +less commuting, which resulted in new opportunities for many +underrepresented groups in the software industry: caregivers +(especially mothers), LGBTQIA+ individuals (especially trans +people), and people with disabilities [4], [9], [10]. Now, +arXiv:2301.05379v1 [cs.SE] 13 Jan 2023 + +as the pandemic seems to be under control, many software +companies are permanently transitioning to remote and hybrid +work allowing software professionals to decide where they will +work, i.e., in the office or any other place [11], [12]. Thus, the +post-pandemic scenario tends to keep increasing diversity and +inclusion in the software industry as more job opportunities +will be available for professionals that cannot afford to work +in an office every day. +Since remote work fosters new job opportunities, we need +to understand the impacts of remote work arrangements on +individuals from equity-deserving groups because (1) EDI +groups experience remote work differently, as reported in +previous studies [9], [13], and (2) EDI is essential for having +a more just and inclusive society. In the context of software +engineering, understanding the impacts of remote work on +software professionals from EDI groups is an important step +toward sharpening practices, strategies, and tools required +to improve equity, diversity, and inclusion in the software +industry. In this study, we explore the impacts of remote work +on LGBTQIA+ software professionals aiming to answer the +following research question: +Research +Question: How does remote work affect +LGBTQIA+ software professionals? +In particular, we explore the experience of software profes- +sionals from the LGBTQIA+ community because the research +on EDI in software engineering that focuses on LGBTQIA+ +software professionals is very scarce [3], [5]. From this +introduction, the rest of this study is organized as follows. +In Section II, we discuss existing studies on EDI in software +engineering. In Section III, we present the method applied in +this study. In Section IV, we present our findings which are +discussed in Section V. Finally, we summarize the contribu- +tions of this study and opportunities for future research. +II. BACKGROUND +Remote work has received attention from researchers from +several areas since this is expected to be the norm in many +industries across the globe [14]. In software engineering, +studies are being developed on remote work for at least +two reasons. First, software professionals are more likely to +continue working remotely since they are already used to +this type of work structure (e.g., global software development +and distributed teams) [15]. Second, software professionals +are responsible for creating and adapting technologies to +support employees from other industries, which might also +face adaptations in the post-pandemic [16]. +Considering the first reason, as software engineering follows +the world’s transformations and their impacts on society, +understanding the long-term implications of the post-pandemic +in the software industry and practitioners is crucial. Over +the past two years, studies revealed that remote work can +produce several benefits and positively affect those who work +in software development. However, some limitations have also +been observed in the same period [17]. Remote work was +demonstrated to benefit software professionals by providing +them with more flexibility, better work-life balance, and in- +creased satisfaction [9], [10]. On the other hand, remote work +can foster problems at the team level, creating communication +issues, increasing coordination challenges, and reducing team +cohesion [18], [19]. +The main challenge associated with remote work is the +fact that its effects are intimately dependent on individual +characteristics and in the particularities of some groups of +professionals [9]. For instance, remote work can be worse +for women and caregivers (e.g., parents), as they might have +to deal with many distractions while performing software +development activities that demand problem-solving skills +and high levels of concentration [9]. Remote work might +promote more opportunities for people with disabilities [20]; +however, it can also force this group of individuals to deal +with poor ergonomics [9]. Remote structures allow transgender +software developers to have control over their identities [13]; +however, in other fields, researchers are concerned that remote +interactions can undermine diversity [21]. +III. METHOD +Aiming to address the above-cited problem and the lack of +discussions on the impacts of remote work in some equity- +deserving groups, we developed a qualitative study using con- +structivist grounded theory [22]. Grounded Theory is a family +of methods for inductively generating theories based on the +data collected from real-life contexts to identify and describe +concepts, behaviors, and experiences [23]. It is widely applied +in social sciences and is well-suited for exploring social, +cultural, and human aspects of software development [24]. +Grounded theory is appropriate for this study because it +helped us understand the research problem using the experi- +ence of a small group of individuals [25]. in this process, due +to the characteristics of our targeted population, we could not +expect reaching a significant number of professionals to partic- +ipate in the study. Therefore, the grounded theory effectively +supported us in constructing concepts that can be transferred +to other contexts through theoretical generalization [26]. +Thus, following the guidelines to conduct grounded theory, +we used well-defined rounds of data collection and analysis, +including inductive coding, memoing, constant comparison, +and theoretical sampling. This process allowed us to identify +concepts emerging from the field rather than fitting data into +preconceived theories [23]. +A. Participants +The participants of this study are individuals from a very +specific population: LGBTQIA+ software professionals, e.g., +developers, QAs, analysts, designers, and managers, among +others directly participating in the software development pro- +cess. These professionals belong to a hidden population— +a population that cannot be easily defined or enumerated +based on existing knowledge—which makes selecting indi- +viduals to participate in studies a challenging activity [27]. +In this study, we followed guidelines that suggest treating +software professionals as a hidden population [28]. Moreover, +2 + +individuals from the LGBTQIA+ community are commonly +treated as a hidden population in studies from other fields, in +particular, because many of its members are not comfortable +with discussing aspects of their sexuality due to the risk of +being exposed to structural and social discrimination [29]. +B. Instrumentation +We applied two approaches to data collection, aiming to +reach as many individuals as possible and carefully access the +experience of LGBTQIA+ professionals without having them +reveal their identities. The approaches applied were a survey +questionnaire and semi-structured interviews. Due to the hid- +den nature of the population targeted in this study, we could +not expect a statistically significant number of respondents +in a survey (e.g., 1000 LGBTQIA+ software professionals) +at the same time that a significant number of volunteers for +interviews was also challenging to reach. Therefore, we used +the best data collection methods (survey and interviews) to +obtain data and the best of the grounded theory method to +work with a small sample of participants. +We designed the questionnaire so that we could anony- +mously obtain basic information about the participants. The +questionnaire was mostly open-ended as we were targeting +to collect qualitative data about the professionals’ experience. +We started by asking individuals to provide their age, gender, +sexual orientation, ethnicity, and country. Then, we added +questions about their work and their company, including their +level of education, level of experience working in the software +industry, role (e.g., developer, tester, designer, manager, etc.), +and the number of employees working in their company. Fi- +nally, we asked the following questions about their experience +working remotely: +• Would +you +say +that +remote/hybrid +work +benefits +LGBTQIA+ individuals working in the software indus- +try? Please, describe in what ways. +• Would you say that remote/hybrid work creates chal- +lenges for LGBTQIA+ individuals in the software indus- +try? In what ways? +• Do you know any software professionals from the +LGBTQIA+ community that benefited from working +from home on a regular basis? Tell us a bit about this. +• Do you know any professional from the LGBTQIA+ +community that faced disadvantages caused by working +from home on a regular basis? Tell us a bit about this. +• Is remote work more inclusive for LGBTQIA+ software +professionals? In which ways? +• Does +remote/work +create +more +opportunities +for +LGBTQIA+ software professionals? How? +All questions were optional, so individuals would be free to +answer only the ones that they wanted to answer. At the end +of the questionnaire, we asked those who would be interested +in discussing more aspects of remote work and how it affects +the software professionals from the LGBTQIA+ community to +provide their email to be contacted for a 30-minute interview. +The questionnaire was developed in two languages English +and Portuguese. +C. Data Collection +We started the data collection with the questionnaire, which +was applied using the following sampling approaches [28]: +• Convenience sampling: We invited participants based on +their availability. The first author was a member of the +target population (i.e., an LGBTQIA+ professional who +worked with software development for six years) and +invited members of the population from his contacts list. +• Purposive sampling: We used the communication chan- +nels of a large software company in South America to +advertise our questionnaire to over 1,000 software pro- +fessionals and expected that individuals from the targeted +population would participate in the study. This company +was founded in 1996, specialized in on-demand software +development, and creates technologies for clients from +various sectors, including finance, telecommunication, +manufacturing, and services. In addition to this company, +we advertised the questionnaire in online communities +from social media websites. +• Snowballing sampling: We requested that individuals +from the convenience and the purposive sampling invite +other LGBTQIA+ software professionals to participate in +the study. +We started with the questionnaire because individuals from +hidden populations usually avoid outsiders [30]. However, +members of such populations often know each other [28]. +Therefore, by applying the questionnaire first, we were able to +apply sampling techniques commonly used in surveys. Once +we reached the population, we could identify individuals to be +interviewed, providing us with additional details beyond those +collected with the open-ended questions in the survey. +Data collection using the questionnaire happened between +June 10th and July 20th, 2022. Following the nature of the +grounded theory method and the approach to collecting and +analyzing data in rounds, we considered the application of the +questionnaire as the first round of the study. Next, we invited +the participants who volunteered for interviews and conducted +three rounds of interviews. These interviews were conducted +online with nine participants (three per round) using Google +Meet. In these three rounds, we focused on obtaining more +details about the answers already provided in the question- +naire. In addition, as the rounds evolved, participants were +asked about the role of diversity on software teams and the +effects of remote work on software teams. The nine interviews +ranged from 20 to 43 minutes. This produced four hours and +18 minutes of audio and 97 pages of transcripts. +D. Data Analysis +We started data analysis by applying descriptive statistics +[31] to summarize the information about our sample of +participants. Descriptive statistics allowed us to present the +distribution of participants’ answers regarding their personal +and professional profiles. +Following this, we analyzed the answers to open-ended +questions in the questionnaire (first round). Then, we contin- +ued using qualitative data analysis in the interviews (following +3 + +three rounds). Qualitative analysis was conducted based on +three coding stages: line-by-line coding was focused on iden- +tifying initial codes and building concepts within our data; +focused coding supported the establishment of connection +among the concepts and the definition of high-level categories +of concepts; theoretical coding was used to emphasize the core +category and explain the main story arising from the data [23], +[25]. +In this process, we began with line-by-line open coding, +which allowed us to identify and refine emerging concepts +from the answers to the open-ended questions in the survey +[23]. We repeated this strategy in the first round of interviews +through a systematic process supported by audio recordings, +which helped identify the properties of codes and their mean- +ing. Following the second round of interviews, we started cat- +egorizing these codes and establishing connections using fo- +cused coding. Focused coding was performed through repeated +analyses and comparisons among emerging categories [25]. +This process continued during the third and final round of +interviews. When these transcripts were integrated into the +analysis, we used theoretical coding [25] to rearrange the +categories and highlight a central story about the experience +of our participants. +E. Ethics +Before answering questions about their background and +their experience with remote work in the questionnaire, each +professional read about the goal of the research and the +study’s relevance to the software industry. Also, they needed +to explicitly agree to provide data to the study by selecting +the option at the beginning of the questionnaire. Following +this, volunteers agreed to be interviewed by providing their +email address and then again, orally, at the beginning of their +interview. Before each interview, the interviewer explained +the goal of the research one more time and the need to +collect more data in addition to the questionnaire. Participants +were guaranteed data confidentiality and de-identification of +their quotes. They were also informed about the voluntary +nature of their participation and the right to stop the interview +and withdraw from the research at any time. No participants +withdrew. A university research ethics board approved this +research. +IV. FINDINGS +This section presents the demographics of our sample, +followed by the categories that emerged from the analysis, +which are the benefits and limitations of remote work for +LGBTQIA+ software professionals. Our findings are illus- +trated with quotations extracted from the questionnaire and the +interviews. Some quotations have been translated into English +and may read awkwardly as we have transcribed and translated +them as accurately as possible. +A. Demographics +Our survey reached 81 individuals. However, some partici- +pants were excluded from the survey for not being part of the +targeted population: +• one woman and one man identified themselves as het- +erosexual, despite stating that they were software profes- +sionals from the LGBTQIA+ community in the screening +questions. +• 22 individuals only completed the screening questions; +they answered neither demographic nor open-ended ques- +tions. +However, our sample of 57 individuals varies as not all +participants answered the entire questionnaire. For instance: +• 57 (100%) individuals provided their level of education. +• 56 (98%) individuals provided their role in the software +team. +• 53 (93%) individuals provided their age, gender, and +ethnicity. +• 52 (91%) individuals provided their country and their +level of experience. +• 45 (79%) individuals provided information about the +number of employees in their companies. +• 25 (44%) individuals answered the question about their +sexual orientation. +• 13 (23%) individuals answered at least one question +about how remote work affects LGBTQIA+ software +professionals. +• 10 (17%) individuals provided us with an email for an +interview. +Participants’ ages varied from 21 to 50 years old. Partic- +ipants had an average of 5.7 years of work experience in +software development; the most experienced professional in +the sample has worked in the software industry for 25 years, +and the least for one year. Table I presents more details +about our sample and its variations. Finally, we were able +to interview 16% of the survey (9/57), who provided more +details on the topics addressed in the research. +B. Benefits of Remote Work to LGBTQIA+ Software Profes- +sionals +Participants pointed out benefits that were observed in the +general professional context (e.g., the increase in job oppor- +tunities for the community) as well as benefits observed at +the individual and team level when professionals are working +in the software industry. Table II summarizes the benefits +identified in this study and the evidence obtained from par- +ticipants’ experiences. These benefits are Job Opportunities, +Engagement, Identity Disclosure Control, Physical Safety, +and Toxicity Avoidance. All of these benefits are extremely +valuable for LGBTQIA+ software professionals because the +software industry is still an area dominated by heterosexual +men. +Remote work increases access to job opportunities in the +software industry, and this benefits LGBTQIA+ individuals +greatly. In general, this could be seen as a simple cor- +relation; that is, more remote jobs available means more +jobs available for LGBTQIA+ professionals. However, for +LGBTQIA+ individuals, this aspect goes beyond the increase +in the number of positions. These are professionals that have +4 + +TABLE I +DEMOGRAPHICS +Gender +Men +34 +Women +14 +Non-binary +3 +Not informed +4 +Ethnicity +White +34 +Mixed ethnic +13 +Black +2 +Arab +2 +Asian +1 +Latino +1 +Not informed +4 +Sexual Orientation +Gay +13 +Bisexual +7 +Lesbian +3 +Pansexual +1 +Asexual +1 +Not informed +32 +Education +High-School +8 +Bachelor +30 +Post-baccalaureate +12 +Master +6 +Ph.D. +1 +Roles and Activitiesa +Testing +28 +Programming +25 +Requirements +17 +Design +14 +Architecture +10 +Management +3 +Not informed +1 +Location +Brazil +44 +Canada +2 +Portugal +2 +Sweden +2 +Netherlands +1 +US +1 +Not informed +5 +Company Size +0 - 9 employees +1 +10 - 99 employees +3 +100 - 999 employees +5 +1,000 - 9,999 employees +35 +More than 10,000 employees +1 +Not informed +12 +Notes: asome professionals reported performing multiple activities or having +more than one roles in the team +suffered discrimination for years. Our participants explained +that online recruitment tends to be slightly less biased by +physical characteristics. Moreover, LGBTQIA+ professionals +can apply for jobs that before were primarily available to those +living in major urban centers. This means that they can choose +to work where they always lived instead of adapting to new +places or having to move away to unfriendly locales. +For many LGBTQIA+ individuals, disclosing their identity +is never easy, especially when entering a new environment. +Trans people and non-binary are apprehensive about precon- +ceived judgments about their physical appearances. Gender- +affirming care (e.g., medical treatments and therapy) is an +additional concern for software professionals who are trans- +gender. Other individuals from the community who do not +fit into the gender binary (e.g., male or female stereotype) +suffer from fear and uncertainty in relation to how they will +be seen and treated by co-workers. Remote environments +established a place where LGBTQIA+ software professionals +feel comfortable as they can control their identity disclosure, +for instance, by deciding when they want to use their cameras. +Remote work structure allows LGBTQIA+ software pro- +fessionals to regulate the level of interaction and contact +with their teammates to the point that they feel comfortable +around them. Our participants revealed that their engagement +with other team members increased while working remotely +because they could gradually get used to their co-workers +and engage accordingly. Joining a software team before (i.e., +in person) was challenging for LGBTQIA+ professionals +because they were worried about acceptance in the software +industry work environment since it is essentially heterosexual. +In contrast, in remote environments, they will first become +comfortable with their team, then engage, and once they feel +included by the team, they can finally interact in person. This is +a know me before you judge me effect that cannot be afforded +in primarily in-person environments. +Many LGBTQIA+ individuals still feel unsafe and afraid +of physical attacks. This reality is not different from those +working in the software industry. Transgender professionals +who participated in this study reported the risks that they are +exposed to every day, in particular, those who live in what, +according to them, is the country where more trans women are +killed in the world. Working from home reduces the exposure +of these professionals to unsafe environments, such as public +transportation during peak hours in countries that are more +dangerous to them. By not having to go to the office daily, +these professionals can use safer alternative commuting, such +as taxis and private rides, whenever they need to be in the +office. +Office environments can be extremely uncomfortable for +LGBTQIA+ professionals who are exposed to coworkers’ +negative comments, attitudes, and actions. These toxic behav- +iors vary from the act of being constantly observed to being +a target for constant commentaries in the office. Although +this is not an act of physical violence, such conduct affects +individuals’ well-being and their sense of belonging in relation +to the company. Hybrid work allows LGBTQIA+ software +professionals to decide the best moment to be in the office +and avoid toxicity from others when necessary. +The +above-cited +benefits +are +extremely +valuable +for +LGBTQIA+ software professionals because the software in- +dustry is still an area dominated by heterosexual males, which +ends up undermining the inclusion of other groups of individ- +uals, even indirectly. Remote work and its benefits, therefore, +create more opportunities for diversity in software engineering +while also helping software teams to be more inclusive. +C. Limitations of Remote Work to LGBTQIA+ Software Pro- +fessionals +Although remote work produced benefits that improve the +experience of LGBTQIA+ individuals working in the software +industry, there are also observable limitations reported by our +5 + +TABLE II +BENEFITS OF REMOTE WORK FOR LGBTQIA+ SOFTWARE PROFESSIONALS +Construct +Definition +Example Evidence +Job +Opportunities +The availability of +employment that +LGBTQIA+ software +professionals can easily +access. +“it gives professionals the chance to work in more inclusive companies that are distant from their +cities.” (P10) +“my girlfriend is from another state, and now I am living with her and working remotely.” (P15) +“software companies are in need of talented professionals and this [remote work] can be a good opportunity +for people from the LGBTQIA+ community.” (P16) +Engagement +The level of interaction +of LGBTQIA+ software +professionals with their +teammates. +“it increased the engagement of those who were afraid of participating before [in-person]” (P12) +“remote work allowed me to engage with new people, cultures, experiences and different realities [in the +team].” (P16) +Identity +Disclosure +Control +The individual decision +of concealing or +communicating and +expressing their gender +and sexual orientation. +“virtual tools allow people to communicate without having to expose themselves either for fear or as an +option.” (P12) +“I can choose how I show up on camera, to exclude gender identifiers that make me dysphoric or +communicate a gender that is incorrect.” (P07) +“relying on slack has allowed our tabs/NB colleagues to state their pronouns in their bio for easy +reference.” (P11) +Physical Safety +The individual perception +of being safe and +protected from any risk +to their physical integrity. +“we don’t have to be exposed to public transportation and streets where trans people are killed as if this +was a sport.” (P03) +“For those who don’t belong in the heteronormative context, working from home is safer.” (P07) +Toxicity +Avoidance +The sentiment of being +distant from other +people’s negative +comments, attitudes, and +actions. +“Small types of violence that can happen in-person [such as comments and staring] are less common in +virtual environments on Slack or email.” (P03) +“Remote or hybrid work reduces situations where people keep staring at you or making you feel +uncomfortable.” (P04) +“In my experience, it reduces the chance of me suffering discrimination because everything is recorded +(videos, screenshots, etc.)“ (P10) +TABLE III +LIMITATIONS OF REMOTE WORK FOR LGBTQIA+ SOFTWARE PROFESSIONALS +Construct +Definition +Example Evidence +Self-isolation +The strategy of increasing +isolation seeking to feel +safe from external +attacks. +“it is not all positive as it allows us [by option] to reduce our contact with people from other eth- +nicities, sexual orientation, social classes, therefore, reducing our adaptation capability.” (P01) +“if you are working from home because in-person you need to hide any of your characteristics, +then, I don’t see it as inclusion.” (P04) +Invisibility +Feeling +The impression of being +alone, with little or no +contact with other +members of the +LGBTQIA+ community +in the company. +“it reduces our ability to adapt (. . . ) and experience beyond the ‘bubble’ that we live in.” (P01) +“sometimes it feels very lonely and difficult to be just around a family that is not very +supportive.” (P08) +“workplaces to talk about these themes are scarce and talking about it in remote environments +is even rarer.” (P12) +participants that cannot be overlooked. Most of the benefits +described above are related to LGBTQIA+ software profes- +sionals distancing themselves from their coworkers and orga- +nizations for their protection. This aspect creates limitations +that need to be managed at the team and organizational levels, +namely, feelings of invisibility and self-isolation. +By self-isolating, individuals might shield themselves from +unsafe and uncomfortable situations. However, one participant +reported this could be experienced as a fake protection because +the elements of violence against LGBTQIA+ software profes- +sionals will not disappear; they would just be obscured. There- +fore, it is essential that software companies design strategies +to increase inclusion so that professionals will feel welcome +in the workspace; such that remote work is a choice, not an +escape. +In addition, not all LGBTQIA+ software professionals have +supportive families. Some of them encounter, in their com- +panies and their teams, people that they can rely on. Remote +structures create barriers for LGBTQIA+ software developers +to meet with other members of the community that also work +in software development, which creates the feeling of invisi- +bility. Again, individuals reported that software companies and +not themselves should be responsible for designing strategies +to increase the visibility of this group. +6 + +D. How does remote work affect LGBTQIA+ software profes- +sionals? +Working from home affects LGBTQIA+ software profes- +sionals in different ways. Primarily, our data reveals these +professionals can benefit greatly from the flexibility provided +by this work structure, and the opportunity of choosing where +to work supports these individuals in dealing with several +struggles faced for years by the community in general. How- +ever, remote work also can be associated with advantages +that can be observed at the individual level and that require +organizational actions to smooth such problems. +In general, remote work increased the access of LGBTQIA+ +software professionals to work opportunities. In particular, +those who live in suburban areas and had difficulty joining +the software industry before are now finding jobs in software +companies without leaving the safety of their communities. +In addition, remote work has allowed LGBTQIA+ software +professionals to avoid acts of violence, both physical and +emotional, resulting from discrimination in the workspace and +the commuting between home and work. These are advantages +of remote work that organizations might explore to develop +strategies that will increase diversity in the software industry +by bringing talented LGBTQIA+ professionals to work in the +area. +Only facilitating the access of LGBTQIA+ professionals +to jobs in the software industry is not enough to guarantee +fairness in this environment that for years has been extremely +non-diverse and even unfriendly to equity-deserving groups. +Considering this aspect, remote work turned out to be more +inclusive as it facilitates LGBTQIA+ individuals to control +their identities and regulate their interaction with their teams +based on how accepted they feel. However, inclusion in the +software industry depends on the organizations’ attitudes to +create strategies that reinforce the importance of embracing +diversity in the workspace. Such strategies should prioritize +communication and networking, allowing LGBTQIA+ soft- +ware professionals to develop connections within the organi- +zation, therefore, avoiding isolation. +Two out of the three EDI principles were observed in this +research, namely, diversity and inclusion. Although no aspects +of equity were revealed in this study, our findings suggest +that diversity and inclusion are critical elements to increasing +LGBTQIA+ visibility in the software industry, which is funda- +mental to ensuring fair treatment and opportunities despite of +professionals’ gender and sexuality. Visibility is an essential +aspect of reducing intolerance, unfairness, and inequity against +LGBTQIA+ people, especially in environments predominantly +heterosexual, such as the software industry. Remote work plays +a vital role in this matter. +V. DISCUSSIONS +Our investigation demonstrated that remote work could +benefit LGBTQIA+ software professionals greatly. In general, +remote work supports a structure that improves LGBTQIA+ +visibility in the software industry through increasing diversity +and inclusion, supported by the benefits observed in this study +as summarized in Fig 1. and discussed below. +A. Enfolding the Literature +Diversity and inclusion are crucial factors for organizations +[32]. Diversity is a core element for developing new ideas, +which is the key to innovation [33], while inclusion supports +productivity, talent retention, and engagement [34]. +Diversity is fundamental for innovative environments as +innovation is the enabler of business transformation in an ever- +changing world where technology (e.g., products, processes, +or services) is constantly evolving [35]. Diverse teams improve +innovation because they are more creative, more effective, and +better coordinated [5], [36]. Remote work creates opportu- +nities for software teams to be more diverse by adding to +their portfolio the experiences of LGBTQIA+ professionals. +LGBTQIA+ individuals are reported to be more creative and +cope with high levels of autonomy, which are two essential +aspects of software development nowadays, in particular in +agile environments [37]. +Remote work supports the inclusion of LGBTQIA+ profes- +sionals in software teams, as these professionals can slowly +adjust to their team (e.g., controlling the camera, engaging via +chat or call, etc.) to the point that they feel comfortable enough +to interact regularly, different from in-person interaction which +allows no adjustments. Inclusion is important to software +companies because it enhances organizational commitment, +consequently increasing productivity, job satisfaction, and re- +taining talented professionals in software teams. Although in +this study, we are explicitly discussing inclusion from the +perspective of LGBTQIA+ software professionals, perceived +inclusion is a factor that can affect all individuals in an +organization [38]. +As +remote +work +fosters +diversity +and +inclusion +of +LGBTQIA+ +software +professionals, +we +expect +that +LGBTQIA+ visibility will grow gradually in the software +industry. +On +the +one +hand, +visibility +is +essential +in +strengthening the sense of individual belonging and security +for LGBTQ+ people, therefore improving several aspects +of software development, such as teamwork and team +resilience [39]. On the other hand, this visibility is expected +to +transcend +the +boundaries +of +software +development +environments and become more frequent in the software +products and technologies that nowadays impact several +aspects of our society (e.g., work, education, and leisure +[4]), producing diverse and inclusive solutions achieving +individuals from a variety of profiles. +B. Implications +Our findings have implications for academia and research. +Studies focused on LGBTQIA+ software professionals are ex- +tremely rare. We contribute to the theme with a comprehensive +investigation focused on the effects of remote work on these +professionals by exploring the experience of several groups of +individuals that compose this community. To the best of our +7 + +Fig. 1. The effects of remote work on LGBTQIA+ software professionals +knowledge, this is the first study to have such a diverse popula- +tion of LGBTQIA+ individuals in software engineering since +we were able to reach lesbians, gays, bisexuals, transgenders, +asexuals, and pansexuals, among others. +Our study calls the attention of researchers to the need for +developing studies regarding equity in software engineering +for LGBTQIA+ professionals. Recently, studies have been +addressing equity in the context of others underrepresented +groups. We highlight the importance of increasing research +efforts on addressing equity to reach the LGBTQIA+ com- +munity, while our findings are expected to initiate further +discussion on this theme in academia. +From a methodological perspective, our study is an applied +example of how to deal with hidden populations in software +engineering, in particular when addressing a group of individ- +uals who are sensitive in relation to data collection strategies. +Our data collection strategy can be used to guide other studies +that deal with complex hidden populations. +As for industrial practice, our findings demonstrate several +aspects of the work the software organizations can conduct +to improve the experience of LGBTQIA+ software profes- +sionals. Software companies can benefit significantly from +using remote work to compose highly diverse teams that +reflect our multifaceted society. Our findings also highlight +the importance of actions to improve inclusion in the software +industry. +Based on our findings and regarding LGBTQIA+ software +professionals, we recommend that software companies: +• Apply unbiased recruitment and hiring process to avoid +discrimination. +• Create inclusive onboarding processes, including EDI +training for software teams. +• Develop democratic remote work structures, allowing +professionals to choose their workspace, which will help +LGBTQIA+ software professionals to better deal with +violence, toxicity, and other problems related to in-person +work. +• Understand the specific needs of LGBTQIA+ profession- +als and provide them with the appropriate support, e.g., +regarding cameras and video calls, and gender-affirming +care, among others. +• Foster a culture of diversity and inclusion that embraces +and welcomes LGBTQIA+ professionals. +• Support the creation of channels and committees to help +LGBTQIA+ professionals within the company to connect +among themselves and others, thus, avoiding isolation. +• Celebrate diversity and inclusion, improving the visibility +of LGBTQIA+ professionals in the company. +• Acknowledge the role of diversity in developing innova- +tive technologies in modern society, thus, increasing the +interest of equity-deserving groups in software engineer- +ing, e.g., students. +We understand that most of these recommendations only +apply to organizations that are already LGBTQIA+ friendly +and many software companies still discriminate against +LGBTQIA+ individuals. We expect that the findings presented +in this research, in particular, the discussions on how diversity +is essential to the development of software for our modern +8 + +Job +Opportunities +Diversity in +Physical +Safety +Software +Engineering +Toxicity +LGBTQIA+ Visibility +Avoidance +in Software +Engineering ++ +Engagement +Remote Work +Inclusion in +Software +Identity +Engineering +Disclosure +Control +Self-distance +Isolation +EDI Organizational +Strategiessociety help policymakers to build strategies to change this +reality. +C. Limitations +The main limitation of this study is the number of partici- +pants from whom we were able to collect data. Investigating +a very particular hidden population, such as LGBTQIA+ soft- +ware professionals, is challenging because many individuals +avoid exposure, mainly because software engineering is a +predominantly heterosexual environment. This limitation was +demonstrated when 22 individuals quit the study right after +completing the screening part of our questionnaire. We tried +to work around this limitation by following the all is data +principle of grounded theory [23], opening our minds to collect +data both completely anonymously using a questionnaire and +subsequently interviewing those who provided their contact +for further discussions. This allowed us to have a sample of +57 individuals; however, we acknowledge that our findings +are based on the experience of a limited number of software +professionals. +Another limitation is related to regional aspects. As 77% +of our sample comprises participants from Brazil, a great +deal of the experience of these participants is associated with +their local context. Although software teams usually apply +similar processes across the globe, and even though most of +our participants have international clients, which brings them +close to other cultures, several aspects of equity, diversity, and +inclusion are particularly linked to organizational behaviors +that are more influenced by regional factors and less influ- +enced by software development processes. Therefore, the local +context (e.g., the participants’ country) remains a limitation +when EDI in the software industry is under investigation. +We tried to work around this limitation by having a version +of the questionnaire built in English and advertised across +social media and international forums of software profession- +als. However, the participation of individuals from multiple +countries remained low. +Finally, regarding the quality aspects of our method and +to avoid threats to the study’s validity in terms of credibility, +originality, resonance, and usefulness, we followed Charmaz’s +[25] criteria to evaluate grounded theory studies. To support +the quality and credibility of our findings, we provided direct +quotations from questionnaires and interviews to illustrate +the interpretation of our participants’ experiences. This inter- +pretation was accessed by conducting member-checking with +three interviewees who agreed to participate by commenting +about the obtained categories after a brief presentation and +explanation of the findings. +D. Future Work +Equity, diversity, and inclusion in software engineering +are topics with many opportunities for investigation. There +are many gaps about this theme in the software industry. +Additionally, it also requires investigations in the academic +context, especially on how to increase diversity and inclusion +in software engineering courses. +Regarding our findings, the immediate future works related +to them are: +• Conduct an in-depth investigation of the factors revealed +in this study and their effects on several aspects of +software development, e.g., the relation of diversity and +team conflicts, how diversity could improve team re- +silience, and the relationship among diversity, inclusion, +and software practices, among others. +• Work on the generalization of the theory by conducting +quantitative studies based on a worldwide survey. +• Develop investigations on the perspective of heterosex- +ual professionals about EDI and its impacts on soft- +ware development since people who are not part of the +LGBTQIA+ community demonstrated interest in partici- +pating in the present research. +• Investigate strategies to improve equity in the software +industry aiming to increase the access of LGBTQIA+ +professionals to job opportunities in the area. +Finally, we are interested in exploring EDI strategies that +are being successfully applied in other industries to determine +how they can be transferred to software companies by applying +transformative research methods (i.e., action research and +design science [40]). +VI. CONCLUSION +The present study investigated the effects of remote work +structures on LGBTQIA+ software professionals. Using a +grounded theory approach, we explored the experience of +57 individuals from different groups within the community, +e.g., lesbians, gays, bisexuals, and asexuals, including both +cisgender and transgender people. +In summary, we concluded that remote work has a crucial +role in increasing diversity and inclusion in the software indus- +try. Remote work allows LGBTQIA+ software professionals to +access a variety of job opportunities. Remote work also allows +these professionals to have more control over their identities +and their interaction with other professionals. +Regarding limitations, remote work might create barriers for +LGBTQIA+ software professionals, as it can increase isolation +and self-distancing among these individuals. Practices devel- +oped by software companies to increase LGBTQIA+ visibility +among employees are essential to reduce these problems. +No aspect related to equity was observed in this study, +which indicates a gap that requires immediate investigation. +However, we generally concluded that remote work is positive +for LGBTQIA+ software professionals. Our analysis also +demonstrates that software development can benefit signifi- +cantly from more diverse teams, including the improvement +of aspects related to innovation, problem-solving, teamwork, +and team resilience. +DATA AVAILABILITY +Supplementary material is available on Figshare: https: +//figshare.com/account/home#/projects/157305 +9 + +ACKNOWLEDGMENTS +The authors would like to thank all of the participants who +participated in this study, and for all LGBTQIA+ software +professionals out there, we would like to say that we see you. +You are not alone! +REFERENCES +[1] JIBC. (2022) Equity, diversity, inclusion. [Online]. Available: https: +//www.jibc.ca/teaching-learning/equity-diversity-inclusion-edi +[2] N. Suzuki, “Interview with dr. ayesha khan: Exploring equity, diversity +and inclusion in education,” Sciential-McMaster Undergraduate Science +Journal, no. 7, pp. 18–20, 2021. +[3] K. K. Silveira and R. Prikladnicki, “A systematic mapping study +of diversity in software engineering: a perspective from the agile +methodologies,” in 2019 IEEE/ACM 12th International Workshop on +Cooperative and Human Aspects of Software Engineering (CHASE). +IEEE, 2019, pp. 7–10. +[4] K. Albusays, P. Bjorn, L. Dabbish, D. Ford, E. Murphy-Hill, A. Sere- +brenik, and M.-A. Storey, “The diversity crisis in software development,” +IEEE Software, vol. 38, no. 2, pp. 19–25, 2021. +[5] G. Rodr´ıguez-P´erez, R. Nadri, and M. Nagappan, “Perceived diversity in +software engineering: a systematic literature review,” Empirical Software +Engineering, vol. 26, no. 5, pp. 1–38, 2021. +[6] E. Zolduoarrati and S. A. Licorish, “On the value of encouraging gen- +der tolerance and inclusiveness in software engineering communities,” +Information and Software Technology, vol. 139, p. 106667, 2021. +[7] D. S. Janzen, S. Bahrami, B. C. da Silva, and D. Falessi, “A reflection +on diversity and inclusivity efforts in a software engineering program,” +in 2018 IEEE Frontiers in Education Conference (FIE). +IEEE, 2018, +pp. 1–9. +[8] +´A. Menezes and R. Prikladnicki, “Diversity in software engineering,” +in Proceedings of the 11th International workshop on cooperative and +human aspects of software engineering, 2018, pp. 45–48. +[9] P. Ralph, S. Baltes, G. Adisaputri, R. Torkar, V. Kovalenko, M. Kali- +nowski, N. Novielli, S. Yoo, X. Devroey, X. Tan et al., “Pandemic +programming,” Empirical Software Engineering, vol. 25, no. 6, pp. +4927–4961, 2020. +[10] D. Ford, M.-A. Storey, T. Zimmermann, C. Bird, S. Jaffe, C. Maddila, +J. L. Butler, B. Houck, and N. Nagappan, “A tale of two cities: +Software developers working from home during the covid-19 pandemic,” +ACM Transactions on Software Engineering and Methodology (TOSEM), +vol. 31, no. 2, pp. 1–37, 2021. +[11] J. M. Barrero, N. Bloom, and S. J. Davis, “Let me work from home, or i +will find another job,” University of Chicago, Becker Friedman Institute +for Economics Working Paper, no. 2021-87, 2021. +[12] A. Melin and M. Egkolfopoulou, “Employees are quitting instead of +giving up working from home,” Bloomberg. Com, vol. 1, 2021. +[13] D. Ford, R. Milewicz, and A. Serebrenik, “How remote work can +foster a more inclusive environment for transgender developers,” in 2019 +IEEE/ACM 2nd International Workshop on Gender Equality in Software +Engineering (GE). +IEEE, 2019, pp. 9–12. +[14] M. Haag, “Remote work is here to stay. manhattan may never be the +same,” The New York Times, 2021. +[15] G. +Chavez-Dreyfuss. +(2020) +Permanently +remote +workers +seen +doubling +in +2021 +due +to +pandemic +productiv- +ity: +survey. +[Online]. +Available: +https://www.reuters.com/article/ +us-health-coronavirus-technology-idUSKBN2772P0 +[16] L. Wang, R. Li, J. Zhu, G. Bai, and H. Wang, “When the open source +community meets covid-19: Characterizing covid-19 themed github +repositories,” arXiv preprint arXiv:2010.12218, 2020. +[17] D. Russo, P. H. Hanel, S. Altnickel, and N. Van Berkel, “The daily +life of software engineers during the covid-19 pandemic,” in 2021 +IEEE/ACM 43rd International Conference on Software Engineering: +Software Engineering in Practice (ICSE-SEIP). +IEEE, 2021, pp. 364– +373. +[18] R. E. de Souza Santos and P. Ralph, “Practices to improve teamwork in +software development during the covid-19 pandemic: An ethnographic +study,” in Proceedings of the 15th International Conference on Coop- +erative and Human Aspects of Software Engineering, ser. CHASE ’22, +2022, p. 81–85. +[19] R. E. Santos and P. Ralph, “A grounded theory of coordination in remote- +first and hybrid software teams,” in 44th IEEE/ACM International +Conference on Software Engineering (ICSE 2022), 2022, pp. 25–35. +[20] L. A. Schur, M. Ameri, and D. Kruse, “Telework after covid: a +“silver lining” for workers with disabilities?” Journal of occupational +rehabilitation, vol. 30, no. 4, pp. 521–536, 2020. +[21] K. Greenwood and J. Anas, “It’sa new era for mental health at work,” +Harvard Business Review, 2021. +[22] K. Charmaz, Constructing Grounded Theory, 2nd ed. +London, UK: +Sage, 2014. +[23] B. G. Glaser, Theoretical sensitivity. +University of California,, 1978. +[24] K.-J. Stol, P. Ralph, and B. Fitzgerald, “Grounded theory in software +engineering research: a critical review and guidelines,” in Proceedings +of the 38th International conference on software engineering, 2016, pp. +120–131. +[25] K. Charmaz, Constructing grounded theory. +sage, 2014. +[26] L. Carminati, “Generalizability in qualitative research: A tale of two +traditions,” Qualitative health research, vol. 28, no. 13, pp. 2094–2101, +2018. +[27] D. D. Heckathorn, “Respondent-driven sampling: a new approach to +the study of hidden populations,” Social problems, vol. 44, no. 2, pp. +174–199, 1997. +[28] S. Baltes and P. Ralph, “Sampling in software engineering research: A +critical review and guidelines,” Empirical Software Engineering, vol. 27, +no. 4, pp. 1–31, 2022. +[29] P. Hughes, C. Harless, and K. Leach, “Methods and strategies for +effectively surveying the lgbtq+ population,” Research in Social and +Administrative Pharmacy, vol. 17, no. 5, pp. 997–1003, 2021. +[30] C. Wejnert and D. D. Heckathorn, “Web-based network sampling: effi- +ciency and efficacy of respondent-driven sampling for online research,” +Sociological Methods & Research, vol. 37, no. 1, pp. 105–134, 2008. +[31] D. George and P. Mallery, “Descriptive statistics,” in IBM SPSS Statistics +25 Step by Step. +Routledge, 2018, pp. 126–134. +[32] B. M. Ferdman and B. Deane, Eds., Diversity at Work: The Practice of +Inclusion. +San Francisco, USA: Wiley, 2014. +[33] P. Singh, “Lgbt diversity and inclusion at workplace–an analysis of +changing demographics,” Resource, vol. 9, no. 2, pp. 22–25, 2018. +[34] D. Schawbel, “How companies can benefit from inclusion,” 2012. +[35] R. F. Ciriello, A. Richter, and G. Schwabe, “Digital innovation,” Busi- +ness & Information Systems Engineering, vol. 60, no. 6, pp. 563–569, +2018. +[36] H. Karen and M. Nicola, Retaining Women in Tech: Shifting the +Paradigm. +Springer Nature, 2022. +[37] C. Ross, “Imagined communities: initiatives around lgbtq ageing in +italy,” Modern Italy, vol. 17, no. 4, pp. 449–464, 2012. +[38] C. Chen and N. Tang, “Does perceived inclusion matter in the work- +place?” Journal of Managerial Psychology, 2018. +[39] M. C. Sinton, K. N. Baines, K. A. Thornalley, V. Ilangovan, and M. Kurt, +“Increasing the visibility of lgbtq+ researchers in stem,” The Lancet, vol. +397, no. 10269, pp. 77–79, 2021. +[40] C. Wohlin and P. Runeson, “Guiding the selection of research method- +ology in industry–academia collaboration in software engineering,” +Information and Software Technology, vol. 140, p. 106678, 2021. +10 + diff --git a/TtE5T4oBgHgl3EQfAg5m/content/tmp_files/load_file.txt b/TtE5T4oBgHgl3EQfAg5m/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..2412e5b3d625171a0e36dca5fdc1705f76182223 --- /dev/null +++ b/TtE5T4oBgHgl3EQfAg5m/content/tmp_files/load_file.txt @@ -0,0 +1,645 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf,len=644 +page_content='Benefits and Limitations of Remote Work to LGBTQIA+ Software Professionals Ronnie E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' de Souza Santos Cape Breton University Sydney, NS, Canada Email: ronnie desouza@cbu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content='ca Cleyton V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' de Magalh˜aes CESAR School Recife, Brazil Email: cvcm@cesar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content='school Paul Ralph Dalhousie University Halifax, Canada Email: paulralph@dal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content='ca Abstract—Background.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' The mass transition to remote work amid the COVID-19 pandemic profoundly affected software professionals, who abruptly shifted into ostensibly temporary home offices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' The effects of this transition on these professionals are complex, depending on the particularities of the context and individuals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Recent studies advocate for remote structures to create opportunities for many equity-deserving groups;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' however, remote work can also be challenging for some individuals, such as women and individuals with disabilities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' As the discussions on equity, diversity, and inclusion increase in software engineering, it is important to explore the realities and perspectives of different equity-deserving groups to develop strategies that can support them post-pandemic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Objective.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' This study aims to investigate the effects of remote work on LGBTQIA+ software professionals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' A grounded theory approach was applied, based on information collected from two main sources: a survey question- naire with a sample of 57 LGBTQIA+ software professionals and nine follow-up interviews with individuals from this sample.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' This sample included professionals of different genders, ethnicities, sexual orientations, and levels of experience.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Consistent with grounded theory methodology, the process of data collection and analysis was conducted iteratively using three stages of coding: line-by-line, focused, and theoretical.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Member checking was used to validate the findings obtained from interpreting the experiences commented on by LGBTQIA+ software profession- als.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Findings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Our findings demonstrate that (1) remote work benefits LGBTQIA+ people by increasing security and visibil- ity;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' (2) remote work harms LGBTQIA+ software professionals through isolation and invisibility;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' (3) the benefits outweigh the drawbacks;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' (4) the drawbacks can be mitigated by supportive measures developed by software companies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Conclusion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' This paper investigated how remote work can affect LGBTQIA+ software professionals and presented a set of recommendations on how software companies can address the benefits and limitations associated with this work model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' In summary, we concluded that remote work has a crucial role in increasing diversity and inclusion in the software industry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Abstract—General Abstract.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Remote work is here to stay.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' There is no denying it, as some software professionals would rather quit their jobs than return to the office full-time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Therefore, software companies want to understand how the remote working model can be successfully used without causing major issues.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' The problem is that the effects of remote work are complex because they depend on individual and group characteristics that require careful evaluation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' In this scenario, one thing has been extremely positive: remote work is helping to increase diversity in software engineering by fostering new opportunities and better work conditions for individuals from equity-deserving groups, for instance, LGBTQIA+ software professionals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' The software industry is overly homogeneous, most of the professionals who work in this area are heterosexual men (a reflection of the uni- versity courses on computer science and software engineering), but diversity can only be good for an area that strongly depends on creativity and innovation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' What better way to innovate than putting several individuals from different backgrounds and with various experiences to work together?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Remote work plays an important role in improving equity, diversity, and inclusion in the software industry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' In this paper, we discuss how remote work is affecting software professionals from the LGBTQIA+ community and provide a list of recommendations to support software companies in dealing with this work model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Index Terms—EDI, equity, diversity, inclusion, software pro- fessionals, LGBTQIA+.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' INTRODUCTION Equity, diversity, and inclusion (EDI) are central topics being discussed in society nowadays.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' EDI is a complex phenomenon centered on developing approaches for providing equal opportunity for individuals (equity) while recognizing their personal, social, and cultural differences (diversity) and encouraging them to participate in environments and debates (inclusion) [1], [2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Discussions on EDI are gradually increas- ing in Computer Science as well [3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Since technology has a direct impact on our society, and our society is plural, the lack of diversity among those who develop software creates limitations in the use of technologies as software solutions might exclude groups of individuals [4]–[6].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Diversity is essential in developing technologies to sup- port our multifaceted society (Albusays, 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' However, the software industry is experiencing a diversity crisis, as software teams are mainly composed of heterosexual men [4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Currently, there is a lack of knowledge on how EDI should be addressed and integrated into software engineering [6]–[8].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' The main consensus among researchers is that diversity needs to be addressed from the academy to the software industry by increasing opportunities, improving debates, and fostering safe spaces for equity-deserving groups.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Recently, the COVID-19 pandemic intensified discussions about EDI in software engineering.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' As the lockdowns forced software professionals to work from home, remote work struc- tures created better work-life balance, more flexibility, and less commuting, which resulted in new opportunities for many underrepresented groups in the software industry: caregivers (especially mothers), LGBTQIA+ individuals (especially trans people), and people with disabilities [4], [9], [10].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Now, arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content='05379v1 [cs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content='SE] 13 Jan 2023 as the pandemic seems to be under control, many software companies are permanently transitioning to remote and hybrid work allowing software professionals to decide where they will work, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=', in the office or any other place [11], [12].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Thus, the post-pandemic scenario tends to keep increasing diversity and inclusion in the software industry as more job opportunities will be available for professionals that cannot afford to work in an office every day.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Since remote work fosters new job opportunities, we need to understand the impacts of remote work arrangements on individuals from equity-deserving groups because (1) EDI groups experience remote work differently, as reported in previous studies [9], [13], and (2) EDI is essential for having a more just and inclusive society.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' In the context of software engineering, understanding the impacts of remote work on software professionals from EDI groups is an important step toward sharpening practices, strategies, and tools required to improve equity, diversity, and inclusion in the software industry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' In this study, we explore the impacts of remote work on LGBTQIA+ software professionals aiming to answer the following research question: Research Question: How does remote work affect LGBTQIA+ software professionals?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' In particular, we explore the experience of software profes- sionals from the LGBTQIA+ community because the research on EDI in software engineering that focuses on LGBTQIA+ software professionals is very scarce [3], [5].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' From this introduction, the rest of this study is organized as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' In Section II, we discuss existing studies on EDI in software engineering.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' In Section III, we present the method applied in this study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' In Section IV, we present our findings which are discussed in Section V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Finally, we summarize the contribu- tions of this study and opportunities for future research.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' BACKGROUND Remote work has received attention from researchers from several areas since this is expected to be the norm in many industries across the globe [14].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' In software engineering, studies are being developed on remote work for at least two reasons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' First, software professionals are more likely to continue working remotely since they are already used to this type of work structure (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=', global software development and distributed teams) [15].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Second, software professionals are responsible for creating and adapting technologies to support employees from other industries, which might also face adaptations in the post-pandemic [16].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Considering the first reason, as software engineering follows the world’s transformations and their impacts on society, understanding the long-term implications of the post-pandemic in the software industry and practitioners is crucial.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Over the past two years, studies revealed that remote work can produce several benefits and positively affect those who work in software development.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' However, some limitations have also been observed in the same period [17].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Remote work was demonstrated to benefit software professionals by providing them with more flexibility, better work-life balance, and in- creased satisfaction [9], [10].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' On the other hand, remote work can foster problems at the team level, creating communication issues, increasing coordination challenges, and reducing team cohesion [18], [19].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' The main challenge associated with remote work is the fact that its effects are intimately dependent on individual characteristics and in the particularities of some groups of professionals [9].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' For instance, remote work can be worse for women and caregivers (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=', parents), as they might have to deal with many distractions while performing software development activities that demand problem-solving skills and high levels of concentration [9].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Remote work might promote more opportunities for people with disabilities [20];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' however, it can also force this group of individuals to deal with poor ergonomics [9].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Remote structures allow transgender software developers to have control over their identities [13];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' however, in other fields, researchers are concerned that remote interactions can undermine diversity [21].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' METHOD Aiming to address the above-cited problem and the lack of discussions on the impacts of remote work in some equity- deserving groups, we developed a qualitative study using con- structivist grounded theory [22].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Grounded Theory is a family of methods for inductively generating theories based on the data collected from real-life contexts to identify and describe concepts, behaviors, and experiences [23].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' It is widely applied in social sciences and is well-suited for exploring social, cultural, and human aspects of software development [24].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Grounded theory is appropriate for this study because it helped us understand the research problem using the experi- ence of a small group of individuals [25].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' in this process, due to the characteristics of our targeted population, we could not expect reaching a significant number of professionals to partic- ipate in the study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Therefore, the grounded theory effectively supported us in constructing concepts that can be transferred to other contexts through theoretical generalization [26].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Thus, following the guidelines to conduct grounded theory, we used well-defined rounds of data collection and analysis, including inductive coding, memoing, constant comparison, and theoretical sampling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' This process allowed us to identify concepts emerging from the field rather than fitting data into preconceived theories [23].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Participants The participants of this study are individuals from a very specific population: LGBTQIA+ software professionals, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=', developers, QAs, analysts, designers, and managers, among others directly participating in the software development pro- cess.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' These professionals belong to a hidden population— a population that cannot be easily defined or enumerated based on existing knowledge—which makes selecting indi- viduals to participate in studies a challenging activity [27].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' In this study, we followed guidelines that suggest treating software professionals as a hidden population [28].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Moreover, 2 individuals from the LGBTQIA+ community are commonly treated as a hidden population in studies from other fields, in particular, because many of its members are not comfortable with discussing aspects of their sexuality due to the risk of being exposed to structural and social discrimination [29].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Instrumentation We applied two approaches to data collection, aiming to reach as many individuals as possible and carefully access the experience of LGBTQIA+ professionals without having them reveal their identities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' The approaches applied were a survey questionnaire and semi-structured interviews.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Due to the hid- den nature of the population targeted in this study, we could not expect a statistically significant number of respondents in a survey (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=', 1000 LGBTQIA+ software professionals) at the same time that a significant number of volunteers for interviews was also challenging to reach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Therefore, we used the best data collection methods (survey and interviews) to obtain data and the best of the grounded theory method to work with a small sample of participants.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' We designed the questionnaire so that we could anony- mously obtain basic information about the participants.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' The questionnaire was mostly open-ended as we were targeting to collect qualitative data about the professionals’ experience.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' We started by asking individuals to provide their age, gender, sexual orientation, ethnicity, and country.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Then, we added questions about their work and their company, including their level of education, level of experience working in the software industry, role (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=', developer, tester, designer, manager, etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' ), and the number of employees working in their company.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Fi- nally, we asked the following questions about their experience working remotely: Would you say that remote/hybrid work benefits LGBTQIA+ individuals working in the software indus- try?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Please, describe in what ways.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Would you say that remote/hybrid work creates chal- lenges for LGBTQIA+ individuals in the software indus- try?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' In what ways?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Do you know any software professionals from the LGBTQIA+ community that benefited from working from home on a regular basis?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Tell us a bit about this.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Do you know any professional from the LGBTQIA+ community that faced disadvantages caused by working from home on a regular basis?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Tell us a bit about this.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Is remote work more inclusive for LGBTQIA+ software professionals?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' In which ways?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Does remote/work create more opportunities for LGBTQIA+ software professionals?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' How?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' All questions were optional, so individuals would be free to answer only the ones that they wanted to answer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' At the end of the questionnaire, we asked those who would be interested in discussing more aspects of remote work and how it affects the software professionals from the LGBTQIA+ community to provide their email to be contacted for a 30-minute interview.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' The questionnaire was developed in two languages English and Portuguese.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Data Collection We started the data collection with the questionnaire, which was applied using the following sampling approaches [28]: Convenience sampling: We invited participants based on their availability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' The first author was a member of the target population (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=', an LGBTQIA+ professional who worked with software development for six years) and invited members of the population from his contacts list.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Purposive sampling: We used the communication chan- nels of a large software company in South America to advertise our questionnaire to over 1,000 software pro- fessionals and expected that individuals from the targeted population would participate in the study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' This company was founded in 1996, specialized in on-demand software development, and creates technologies for clients from various sectors, including finance, telecommunication, manufacturing, and services.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' In addition to this company, we advertised the questionnaire in online communities from social media websites.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Snowballing sampling: We requested that individuals from the convenience and the purposive sampling invite other LGBTQIA+ software professionals to participate in the study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' We started with the questionnaire because individuals from hidden populations usually avoid outsiders [30].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' However, members of such populations often know each other [28].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Therefore, by applying the questionnaire first, we were able to apply sampling techniques commonly used in surveys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Once we reached the population, we could identify individuals to be interviewed, providing us with additional details beyond those collected with the open-ended questions in the survey.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Data collection using the questionnaire happened between June 10th and July 20th, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Following the nature of the grounded theory method and the approach to collecting and analyzing data in rounds, we considered the application of the questionnaire as the first round of the study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Next, we invited the participants who volunteered for interviews and conducted three rounds of interviews.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' These interviews were conducted online with nine participants (three per round) using Google Meet.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' In these three rounds, we focused on obtaining more details about the answers already provided in the question- naire.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' In addition, as the rounds evolved, participants were asked about the role of diversity on software teams and the effects of remote work on software teams.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' The nine interviews ranged from 20 to 43 minutes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' This produced four hours and 18 minutes of audio and 97 pages of transcripts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Data Analysis We started data analysis by applying descriptive statistics [31] to summarize the information about our sample of participants.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Descriptive statistics allowed us to present the distribution of participants’ answers regarding their personal and professional profiles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Following this, we analyzed the answers to open-ended questions in the questionnaire (first round).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Then, we contin- ued using qualitative data analysis in the interviews (following 3 three rounds).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Qualitative analysis was conducted based on three coding stages: line-by-line coding was focused on iden- tifying initial codes and building concepts within our data;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' focused coding supported the establishment of connection among the concepts and the definition of high-level categories of concepts;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' theoretical coding was used to emphasize the core category and explain the main story arising from the data [23], [25].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' In this process, we began with line-by-line open coding, which allowed us to identify and refine emerging concepts from the answers to the open-ended questions in the survey [23].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' We repeated this strategy in the first round of interviews through a systematic process supported by audio recordings, which helped identify the properties of codes and their mean- ing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Following the second round of interviews, we started cat- egorizing these codes and establishing connections using fo- cused coding.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Focused coding was performed through repeated analyses and comparisons among emerging categories [25].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' This process continued during the third and final round of interviews.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' When these transcripts were integrated into the analysis, we used theoretical coding [25] to rearrange the categories and highlight a central story about the experience of our participants.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Ethics Before answering questions about their background and their experience with remote work in the questionnaire, each professional read about the goal of the research and the study’s relevance to the software industry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Also, they needed to explicitly agree to provide data to the study by selecting the option at the beginning of the questionnaire.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Following this, volunteers agreed to be interviewed by providing their email address and then again, orally, at the beginning of their interview.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Before each interview, the interviewer explained the goal of the research one more time and the need to collect more data in addition to the questionnaire.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Participants were guaranteed data confidentiality and de-identification of their quotes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' They were also informed about the voluntary nature of their participation and the right to stop the interview and withdraw from the research at any time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' No participants withdrew.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' A university research ethics board approved this research.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' FINDINGS This section presents the demographics of our sample, followed by the categories that emerged from the analysis, which are the benefits and limitations of remote work for LGBTQIA+ software professionals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Our findings are illus- trated with quotations extracted from the questionnaire and the interviews.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Some quotations have been translated into English and may read awkwardly as we have transcribed and translated them as accurately as possible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Demographics Our survey reached 81 individuals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' However, some partici- pants were excluded from the survey for not being part of the targeted population: one woman and one man identified themselves as het- erosexual, despite stating that they were software profes- sionals from the LGBTQIA+ community in the screening questions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' 22 individuals only completed the screening questions;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' they answered neither demographic nor open-ended ques- tions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' However, our sample of 57 individuals varies as not all participants answered the entire questionnaire.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' For instance: 57 (100%) individuals provided their level of education.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' 56 (98%) individuals provided their role in the software team.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' 53 (93%) individuals provided their age, gender, and ethnicity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' 52 (91%) individuals provided their country and their level of experience.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' 45 (79%) individuals provided information about the number of employees in their companies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' 25 (44%) individuals answered the question about their sexual orientation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' 13 (23%) individuals answered at least one question about how remote work affects LGBTQIA+ software professionals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' 10 (17%) individuals provided us with an email for an interview.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Participants’ ages varied from 21 to 50 years old.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Partic- ipants had an average of 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content='7 years of work experience in software development;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' the most experienced professional in the sample has worked in the software industry for 25 years, and the least for one year.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Table I presents more details about our sample and its variations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Finally, we were able to interview 16% of the survey (9/57), who provided more details on the topics addressed in the research.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Benefits of Remote Work to LGBTQIA+ Software Profes- sionals Participants pointed out benefits that were observed in the general professional context (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=', the increase in job oppor- tunities for the community) as well as benefits observed at the individual and team level when professionals are working in the software industry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Table II summarizes the benefits identified in this study and the evidence obtained from par- ticipants’ experiences.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' These benefits are Job Opportunities, Engagement, Identity Disclosure Control, Physical Safety, and Toxicity Avoidance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' All of these benefits are extremely valuable for LGBTQIA+ software professionals because the software industry is still an area dominated by heterosexual men.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Remote work increases access to job opportunities in the software industry, and this benefits LGBTQIA+ individuals greatly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' In general, this could be seen as a simple cor- relation;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' that is, more remote jobs available means more jobs available for LGBTQIA+ professionals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' However, for LGBTQIA+ individuals, this aspect goes beyond the increase in the number of positions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' These are professionals that have 4 TABLE I DEMOGRAPHICS Gender Men 34 Women 14 Non-binary 3 Not informed 4 Ethnicity White 34 Mixed ethnic 13 Black 2 Arab 2 Asian 1 Latino 1 Not informed 4 Sexual Orientation Gay 13 Bisexual 7 Lesbian 3 Pansexual 1 Asexual 1 Not informed 32 Education High-School 8 Bachelor 30 Post-baccalaureate 12 Master 6 Ph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content='D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' 1 Roles and Activitiesa Testing 28 Programming 25 Requirements 17 Design 14 Architecture 10 Management 3 Not informed 1 Location Brazil 44 Canada 2 Portugal 2 Sweden 2 Netherlands 1 US 1 Not informed 5 Company Size 0 - 9 employees 1 10 - 99 employees 3 100 - 999 employees 5 1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content='000 - 9,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content='999 employees 35 More than 10,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content='000 employees 1 Not informed 12 Notes: asome professionals reported performing multiple activities or having more than one roles in the team suffered discrimination for years.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Our participants explained that online recruitment tends to be slightly less biased by physical characteristics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Moreover, LGBTQIA+ professionals can apply for jobs that before were primarily available to those living in major urban centers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' This means that they can choose to work where they always lived instead of adapting to new places or having to move away to unfriendly locales.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' For many LGBTQIA+ individuals, disclosing their identity is never easy, especially when entering a new environment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Trans people and non-binary are apprehensive about precon- ceived judgments about their physical appearances.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Gender- affirming care (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=', medical treatments and therapy) is an additional concern for software professionals who are trans- gender.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Other individuals from the community who do not fit into the gender binary (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=', male or female stereotype) suffer from fear and uncertainty in relation to how they will be seen and treated by co-workers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Remote environments established a place where LGBTQIA+ software professionals feel comfortable as they can control their identity disclosure, for instance, by deciding when they want to use their cameras.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Remote work structure allows LGBTQIA+ software pro- fessionals to regulate the level of interaction and contact with their teammates to the point that they feel comfortable around them.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Our participants revealed that their engagement with other team members increased while working remotely because they could gradually get used to their co-workers and engage accordingly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Joining a software team before (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=', in person) was challenging for LGBTQIA+ professionals because they were worried about acceptance in the software industry work environment since it is essentially heterosexual.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' In contrast, in remote environments, they will first become comfortable with their team, then engage, and once they feel included by the team, they can finally interact in person.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' This is a know me before you judge me effect that cannot be afforded in primarily in-person environments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Many LGBTQIA+ individuals still feel unsafe and afraid of physical attacks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' This reality is not different from those working in the software industry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Transgender professionals who participated in this study reported the risks that they are exposed to every day, in particular, those who live in what, according to them, is the country where more trans women are killed in the world.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Working from home reduces the exposure of these professionals to unsafe environments, such as public transportation during peak hours in countries that are more dangerous to them.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' By not having to go to the office daily, these professionals can use safer alternative commuting, such as taxis and private rides, whenever they need to be in the office.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Office environments can be extremely uncomfortable for LGBTQIA+ professionals who are exposed to coworkers’ negative comments, attitudes, and actions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' These toxic behav- iors vary from the act of being constantly observed to being a target for constant commentaries in the office.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Although this is not an act of physical violence, such conduct affects individuals’ well-being and their sense of belonging in relation to the company.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Hybrid work allows LGBTQIA+ software professionals to decide the best moment to be in the office and avoid toxicity from others when necessary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' The above-cited benefits are extremely valuable for LGBTQIA+ software professionals because the software in- dustry is still an area dominated by heterosexual males, which ends up undermining the inclusion of other groups of individ- uals, even indirectly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Remote work and its benefits, therefore, create more opportunities for diversity in software engineering while also helping software teams to be more inclusive.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Limitations of Remote Work to LGBTQIA+ Software Pro- fessionals Although remote work produced benefits that improve the experience of LGBTQIA+ individuals working in the software industry, there are also observable limitations reported by our 5 TABLE II BENEFITS OF REMOTE WORK FOR LGBTQIA+ SOFTWARE PROFESSIONALS Construct Definition Example Evidence Job Opportunities The availability of employment that LGBTQIA+ software professionals can easily access.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' “it gives professionals the chance to work in more inclusive companies that are distant from their cities.” (P10) “my girlfriend is from another state, and now I am living with her and working remotely.” (P15) “software companies are in need of talented professionals and this [remote work] can be a good opportunity for people from the LGBTQIA+ community.” (P16) Engagement The level of interaction of LGBTQIA+ software professionals with their teammates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' “it increased the engagement of those who were afraid of participating before [in-person]” (P12) “remote work allowed me to engage with new people, cultures, experiences and different realities [in the team].” (P16) Identity Disclosure Control The individual decision of concealing or communicating and expressing their gender and sexual orientation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' “virtual tools allow people to communicate without having to expose themselves either for fear or as an option.”' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' (P12) “I can choose how I show up on camera,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' to exclude gender identifiers that make me dysphoric or communicate a gender that is incorrect.”' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' (P07) “relying on slack has allowed our tabs/NB colleagues to state their pronouns in their bio for easy reference.”' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' (P11) Physical Safety The individual perception of being safe and protected from any risk to their physical integrity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' “we don’t have to be exposed to public transportation and streets where trans people are killed as if this was a sport.” (P03) “For those who don’t belong in the heteronormative context, working from home is safer.” (P07) Toxicity Avoidance The sentiment of being distant from other people’s negative comments, attitudes, and actions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' “Small types of violence that can happen in-person [such as comments and staring] are less common in virtual environments on Slack or email.” (P03) “Remote or hybrid work reduces situations where people keep staring at you or making you feel uncomfortable.” (P04) “In my experience, it reduces the chance of me suffering discrimination because everything is recorded (videos, screenshots, etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' )“ (P10) TABLE III LIMITATIONS OF REMOTE WORK FOR LGBTQIA+ SOFTWARE PROFESSIONALS Construct Definition Example Evidence Self-isolation The strategy of increasing isolation seeking to feel safe from external attacks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' “it is not all positive as it allows us [by option] to reduce our contact with people from other eth- nicities, sexual orientation, social classes, therefore, reducing our adaptation capability.” (P01) “if you are working from home because in-person you need to hide any of your characteristics, then, I don’t see it as inclusion.” (P04) Invisibility Feeling The impression of being alone, with little or no contact with other members of the LGBTQIA+ community in the company.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' “it reduces our ability to adapt (.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' ) and experience beyond the ‘bubble’ that we live in.” (P01) “sometimes it feels very lonely and difficult to be just around a family that is not very supportive.” (P08) “workplaces to talk about these themes are scarce and talking about it in remote environments is even rarer.” (P12) participants that cannot be overlooked.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Most of the benefits described above are related to LGBTQIA+ software profes- sionals distancing themselves from their coworkers and orga- nizations for their protection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' This aspect creates limitations that need to be managed at the team and organizational levels, namely, feelings of invisibility and self-isolation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' By self-isolating, individuals might shield themselves from unsafe and uncomfortable situations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' However, one participant reported this could be experienced as a fake protection because the elements of violence against LGBTQIA+ software profes- sionals will not disappear;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' they would just be obscured.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' There- fore, it is essential that software companies design strategies to increase inclusion so that professionals will feel welcome in the workspace;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' such that remote work is a choice, not an escape.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' In addition, not all LGBTQIA+ software professionals have supportive families.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Some of them encounter, in their com- panies and their teams, people that they can rely on.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Remote structures create barriers for LGBTQIA+ software developers to meet with other members of the community that also work in software development, which creates the feeling of invisi- bility.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Again, individuals reported that software companies and not themselves should be responsible for designing strategies to increase the visibility of this group.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' 6 D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' How does remote work affect LGBTQIA+ software profes- sionals?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Working from home affects LGBTQIA+ software profes- sionals in different ways.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Primarily, our data reveals these professionals can benefit greatly from the flexibility provided by this work structure, and the opportunity of choosing where to work supports these individuals in dealing with several struggles faced for years by the community in general.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' How- ever, remote work also can be associated with advantages that can be observed at the individual level and that require organizational actions to smooth such problems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' In general, remote work increased the access of LGBTQIA+ software professionals to work opportunities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' In particular, those who live in suburban areas and had difficulty joining the software industry before are now finding jobs in software companies without leaving the safety of their communities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' In addition, remote work has allowed LGBTQIA+ software professionals to avoid acts of violence, both physical and emotional, resulting from discrimination in the workspace and the commuting between home and work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' These are advantages of remote work that organizations might explore to develop strategies that will increase diversity in the software industry by bringing talented LGBTQIA+ professionals to work in the area.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Only facilitating the access of LGBTQIA+ professionals to jobs in the software industry is not enough to guarantee fairness in this environment that for years has been extremely non-diverse and even unfriendly to equity-deserving groups.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Considering this aspect, remote work turned out to be more inclusive as it facilitates LGBTQIA+ individuals to control their identities and regulate their interaction with their teams based on how accepted they feel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' However, inclusion in the software industry depends on the organizations’ attitudes to create strategies that reinforce the importance of embracing diversity in the workspace.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Such strategies should prioritize communication and networking, allowing LGBTQIA+ soft- ware professionals to develop connections within the organi- zation, therefore, avoiding isolation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Two out of the three EDI principles were observed in this research, namely, diversity and inclusion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Although no aspects of equity were revealed in this study, our findings suggest that diversity and inclusion are critical elements to increasing LGBTQIA+ visibility in the software industry, which is funda- mental to ensuring fair treatment and opportunities despite of professionals’ gender and sexuality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Visibility is an essential aspect of reducing intolerance, unfairness, and inequity against LGBTQIA+ people, especially in environments predominantly heterosexual, such as the software industry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Remote work plays a vital role in this matter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' DISCUSSIONS Our investigation demonstrated that remote work could benefit LGBTQIA+ software professionals greatly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' In general, remote work supports a structure that improves LGBTQIA+ visibility in the software industry through increasing diversity and inclusion, supported by the benefits observed in this study as summarized in Fig 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' and discussed below.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Enfolding the Literature Diversity and inclusion are crucial factors for organizations [32].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Diversity is a core element for developing new ideas, which is the key to innovation [33], while inclusion supports productivity, talent retention, and engagement [34].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Diversity is fundamental for innovative environments as innovation is the enabler of business transformation in an ever- changing world where technology (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=', products, processes, or services) is constantly evolving [35].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Diverse teams improve innovation because they are more creative, more effective, and better coordinated [5], [36].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Remote work creates opportu- nities for software teams to be more diverse by adding to their portfolio the experiences of LGBTQIA+ professionals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' LGBTQIA+ individuals are reported to be more creative and cope with high levels of autonomy, which are two essential aspects of software development nowadays, in particular in agile environments [37].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Remote work supports the inclusion of LGBTQIA+ profes- sionals in software teams, as these professionals can slowly adjust to their team (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=', controlling the camera, engaging via chat or call, etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=') to the point that they feel comfortable enough to interact regularly, different from in-person interaction which allows no adjustments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Inclusion is important to software companies because it enhances organizational commitment, consequently increasing productivity, job satisfaction, and re- taining talented professionals in software teams.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Although in this study, we are explicitly discussing inclusion from the perspective of LGBTQIA+ software professionals, perceived inclusion is a factor that can affect all individuals in an organization [38].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' As remote work fosters diversity and inclusion of LGBTQIA+ software professionals, we expect that LGBTQIA+ visibility will grow gradually in the software industry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' On the one hand, visibility is essential in strengthening the sense of individual belonging and security for LGBTQ+ people, therefore improving several aspects of software development, such as teamwork and team resilience [39].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' On the other hand, this visibility is expected to transcend the boundaries of software development environments and become more frequent in the software products and technologies that nowadays impact several aspects of our society (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=', work, education, and leisure [4]), producing diverse and inclusive solutions achieving individuals from a variety of profiles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Implications Our findings have implications for academia and research.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Studies focused on LGBTQIA+ software professionals are ex- tremely rare.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' We contribute to the theme with a comprehensive investigation focused on the effects of remote work on these professionals by exploring the experience of several groups of individuals that compose this community.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' To the best of our 7 Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' The effects of remote work on LGBTQIA+ software professionals knowledge, this is the first study to have such a diverse popula- tion of LGBTQIA+ individuals in software engineering since we were able to reach lesbians, gays, bisexuals, transgenders, asexuals, and pansexuals, among others.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Our study calls the attention of researchers to the need for developing studies regarding equity in software engineering for LGBTQIA+ professionals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Recently, studies have been addressing equity in the context of others underrepresented groups.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' We highlight the importance of increasing research efforts on addressing equity to reach the LGBTQIA+ com- munity, while our findings are expected to initiate further discussion on this theme in academia.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' From a methodological perspective, our study is an applied example of how to deal with hidden populations in software engineering, in particular when addressing a group of individ- uals who are sensitive in relation to data collection strategies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Our data collection strategy can be used to guide other studies that deal with complex hidden populations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' As for industrial practice, our findings demonstrate several aspects of the work the software organizations can conduct to improve the experience of LGBTQIA+ software profes- sionals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Software companies can benefit significantly from using remote work to compose highly diverse teams that reflect our multifaceted society.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Our findings also highlight the importance of actions to improve inclusion in the software industry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Based on our findings and regarding LGBTQIA+ software professionals, we recommend that software companies: Apply unbiased recruitment and hiring process to avoid discrimination.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Create inclusive onboarding processes, including EDI training for software teams.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Develop democratic remote work structures, allowing professionals to choose their workspace, which will help LGBTQIA+ software professionals to better deal with violence, toxicity, and other problems related to in-person work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Understand the specific needs of LGBTQIA+ profession- als and provide them with the appropriate support, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=', regarding cameras and video calls, and gender-affirming care, among others.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Foster a culture of diversity and inclusion that embraces and welcomes LGBTQIA+ professionals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Support the creation of channels and committees to help LGBTQIA+ professionals within the company to connect among themselves and others, thus, avoiding isolation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Celebrate diversity and inclusion, improving the visibility of LGBTQIA+ professionals in the company.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Acknowledge the role of diversity in developing innova- tive technologies in modern society, thus, increasing the interest of equity-deserving groups in software engineer- ing, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=', students.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' We understand that most of these recommendations only apply to organizations that are already LGBTQIA+ friendly and many software companies still discriminate against LGBTQIA+ individuals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' We expect that the findings presented in this research,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' in particular,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' the discussions on how diversity is essential to the development of software for our modern 8 Job Opportunities Diversity in Physical Safety Software Engineering Toxicity LGBTQIA+ Visibility Avoidance in Software Engineering + Engagement Remote Work Inclusion in Software Identity Engineering Disclosure Control Self-distance Isolation EDI Organizational Strategiessociety help policymakers to build strategies to change this reality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Limitations The main limitation of this study is the number of partici- pants from whom we were able to collect data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Investigating a very particular hidden population, such as LGBTQIA+ soft- ware professionals, is challenging because many individuals avoid exposure, mainly because software engineering is a predominantly heterosexual environment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' This limitation was demonstrated when 22 individuals quit the study right after completing the screening part of our questionnaire.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' We tried to work around this limitation by following the all is data principle of grounded theory [23], opening our minds to collect data both completely anonymously using a questionnaire and subsequently interviewing those who provided their contact for further discussions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' This allowed us to have a sample of 57 individuals;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' however, we acknowledge that our findings are based on the experience of a limited number of software professionals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Another limitation is related to regional aspects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' As 77% of our sample comprises participants from Brazil, a great deal of the experience of these participants is associated with their local context.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Although software teams usually apply similar processes across the globe, and even though most of our participants have international clients, which brings them close to other cultures, several aspects of equity, diversity, and inclusion are particularly linked to organizational behaviors that are more influenced by regional factors and less influ- enced by software development processes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Therefore, the local context (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=', the participants’ country) remains a limitation when EDI in the software industry is under investigation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' We tried to work around this limitation by having a version of the questionnaire built in English and advertised across social media and international forums of software profession- als.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' However, the participation of individuals from multiple countries remained low.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Finally, regarding the quality aspects of our method and to avoid threats to the study’s validity in terms of credibility, originality, resonance, and usefulness, we followed Charmaz’s [25] criteria to evaluate grounded theory studies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' To support the quality and credibility of our findings, we provided direct quotations from questionnaires and interviews to illustrate the interpretation of our participants’ experiences.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' This inter- pretation was accessed by conducting member-checking with three interviewees who agreed to participate by commenting about the obtained categories after a brief presentation and explanation of the findings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Future Work Equity, diversity, and inclusion in software engineering are topics with many opportunities for investigation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' There are many gaps about this theme in the software industry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Additionally, it also requires investigations in the academic context, especially on how to increase diversity and inclusion in software engineering courses.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Regarding our findings, the immediate future works related to them are: Conduct an in-depth investigation of the factors revealed in this study and their effects on several aspects of software development, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=', the relation of diversity and team conflicts, how diversity could improve team re- silience, and the relationship among diversity, inclusion, and software practices, among others.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Work on the generalization of the theory by conducting quantitative studies based on a worldwide survey.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Develop investigations on the perspective of heterosex- ual professionals about EDI and its impacts on soft- ware development since people who are not part of the LGBTQIA+ community demonstrated interest in partici- pating in the present research.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Investigate strategies to improve equity in the software industry aiming to increase the access of LGBTQIA+ professionals to job opportunities in the area.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Finally, we are interested in exploring EDI strategies that are being successfully applied in other industries to determine how they can be transferred to software companies by applying transformative research methods (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=', action research and design science [40]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' VI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' CONCLUSION The present study investigated the effects of remote work structures on LGBTQIA+ software professionals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Using a grounded theory approach, we explored the experience of 57 individuals from different groups within the community, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=', lesbians, gays, bisexuals, and asexuals, including both cisgender and transgender people.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' In summary, we concluded that remote work has a crucial role in increasing diversity and inclusion in the software indus- try.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Remote work allows LGBTQIA+ software professionals to access a variety of job opportunities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Remote work also allows these professionals to have more control over their identities and their interaction with other professionals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Regarding limitations, remote work might create barriers for LGBTQIA+ software professionals, as it can increase isolation and self-distancing among these individuals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Practices devel- oped by software companies to increase LGBTQIA+ visibility among employees are essential to reduce these problems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' No aspect related to equity was observed in this study, which indicates a gap that requires immediate investigation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' However, we generally concluded that remote work is positive for LGBTQIA+ software professionals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Our analysis also demonstrates that software development can benefit signifi- cantly from more diverse teams, including the improvement of aspects related to innovation, problem-solving, teamwork, and team resilience.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' DATA AVAILABILITY Supplementary material is available on Figshare: https: //figshare.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content='com/account/home#/projects/157305 9 ACKNOWLEDGMENTS The authors would like to thank all of the participants who participated in this study, and for all LGBTQIA+ software professionals out there, we would like to say that we see you.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' You are not alone!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' REFERENCES [1] JIBC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' (2022) Equity, diversity, inclusion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' [Online].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Available: https: //www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content='jibc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content='ca/teaching-learning/equity-diversity-inclusion-edi [2] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Suzuki, “Interview with dr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' ayesha khan: Exploring equity, diversity and inclusion in education,” Sciential-McMaster Undergraduate Science Journal, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' 7, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' 18–20, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' [3] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Silveira and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Prikladnicki, “A systematic mapping study of diversity in software engineering: a perspective from the agile methodologies,” in 2019 IEEE/ACM 12th International Workshop on Cooperative and Human Aspects of Software Engineering (CHASE).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' IEEE, 2019, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' 7–10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' [4] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Albusays, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Bjorn, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Dabbish, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Ford, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Murphy-Hill, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Sere- brenik, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content='-A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Storey, “The diversity crisis in software development,” IEEE Software, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' 38, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' 2, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' 19–25, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' [5] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Rodr´ıguez-P´erez, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Nadri, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Nagappan, “Perceived diversity in software engineering: a systematic literature review,” Empirical Software Engineering, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' 26, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' 5, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' 1–38, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' [6] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Zolduoarrati and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Licorish, “On the value of encouraging gen- der tolerance and inclusiveness in software engineering communities,” Information and Software Technology, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' 139, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' 106667, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' [7] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Janzen, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Bahrami, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' da Silva, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Falessi, “A reflection on diversity and inclusivity efforts in a software engineering program,” in 2018 IEEE Frontiers in Education Conference (FIE).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' IEEE, 2018, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' 1–9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' [8] ´A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Menezes and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Prikladnicki, “Diversity in software engineering,” in Proceedings of the 11th International workshop on cooperative and human aspects of software engineering, 2018, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' 45–48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' [9] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Ralph, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Baltes, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Adisaputri, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Torkar, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Kovalenko, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Kali- nowski, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Novielli, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Yoo, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Devroey, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Tan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=', “Pandemic programming,” Empirical Software Engineering, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' 25, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' 6, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' 4927–4961, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' [10] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Ford, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content='-A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Storey, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Zimmermann, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Bird, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Jaffe, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Maddila, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Butler, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Houck, and N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Nagappan, “A tale of two cities: Software developers working from home during the covid-19 pandemic,” ACM Transactions on Software Engineering and Methodology (TOSEM), vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' 31, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' 2, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' 1–37, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' [11] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Barrero, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Bloom, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Davis, “Let me work from home, or i will find another job,” University of Chicago, Becker Friedman Institute for Economics Working Paper, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' 2021-87, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' [12] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Melin and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Egkolfopoulou, “Employees are quitting instead of giving up working from home,” Bloomberg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Com, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' 1, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' [13] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Ford, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Milewicz, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Serebrenik, “How remote work can foster a more inclusive environment for transgender developers,” in 2019 IEEE/ACM 2nd International Workshop on Gender Equality in Software Engineering (GE).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' IEEE, 2019, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' 9–12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' [14] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Haag, “Remote work is here to stay.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' manhattan may never be the same,” The New York Times, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' [15] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Chavez-Dreyfuss.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' (2020) Permanently remote workers seen doubling in 2021 due to pandemic productiv- ity: survey.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' [Online].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Available: https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content='reuters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content='com/article/ us-health-coronavirus-technology-idUSKBN2772P0 [16] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Wang, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Li, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Zhu, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Bai, and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Wang, “When the open source community meets covid-19: Characterizing covid-19 themed github repositories,” arXiv preprint arXiv:2010.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content='12218, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' [17] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Russo, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Hanel, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Altnickel, and N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Van Berkel, “The daily life of software engineers during the covid-19 pandemic,” in 2021 IEEE/ACM 43rd International Conference on Software Engineering: Software Engineering in Practice (ICSE-SEIP).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' IEEE, 2021, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' 364– 373.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' [18] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' de Souza Santos and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Ralph, “Practices to improve teamwork in software development during the covid-19 pandemic: An ethnographic study,” in Proceedings of the 15th International Conference on Coop- erative and Human Aspects of Software Engineering, ser.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' CHASE ’22, 2022, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' 81–85.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' [19] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Santos and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Ralph, “A grounded theory of coordination in remote- first and hybrid software teams,” in 44th IEEE/ACM International Conference on Software Engineering (ICSE 2022), 2022, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' 25–35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' [20] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Schur, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Ameri, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Kruse, “Telework after covid: a “silver lining” for workers with disabilities?”' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Journal of occupational rehabilitation, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' 30, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' 4, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' 521–536, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' [21] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Greenwood and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Anas, “It’sa new era for mental health at work,” Harvard Business Review, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' [22] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Charmaz, Constructing Grounded Theory, 2nd ed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' London, UK: Sage, 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' [23] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Glaser, Theoretical sensitivity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' University of California,, 1978.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' [24] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content='-J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Stol, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Ralph, and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Fitzgerald, “Grounded theory in software engineering research: a critical review and guidelines,” in Proceedings of the 38th International conference on software engineering, 2016, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' 120–131.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' [25] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Charmaz, Constructing grounded theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' sage, 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' [26] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Carminati, “Generalizability in qualitative research: A tale of two traditions,” Qualitative health research, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' 28, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' 13, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' 2094–2101, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' [27] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Heckathorn, “Respondent-driven sampling: a new approach to the study of hidden populations,” Social problems, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' 44, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' 2, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' 174–199, 1997.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' [28] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Baltes and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Ralph, “Sampling in software engineering research: A critical review and guidelines,” Empirical Software Engineering, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' 27, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' 4, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' 1–31, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' [29] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Hughes, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Harless, and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Leach, “Methods and strategies for effectively surveying the lgbtq+ population,” Research in Social and Administrative Pharmacy, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' 17, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' 5, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' 997–1003, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' [30] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Wejnert and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Heckathorn, “Web-based network sampling: effi- ciency and efficacy of respondent-driven sampling for online research,” Sociological Methods & Research, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' 37, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' 1, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' 105–134, 2008.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' [31] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' George and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Mallery, “Descriptive statistics,” in IBM SPSS Statistics 25 Step by Step.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Routledge, 2018, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' 126–134.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' [32] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Ferdman and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Deane, Eds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=', Diversity at Work: The Practice of Inclusion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' San Francisco, USA: Wiley, 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' [33] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Singh, “Lgbt diversity and inclusion at workplace–an analysis of changing demographics,” Resource, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' 9, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' 2, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' 22–25, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' [34] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Schawbel, “How companies can benefit from inclusion,” 2012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' [35] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Ciriello, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Richter, and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Schwabe, “Digital innovation,” Busi- ness & Information Systems Engineering, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' 60, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' 6, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' 563–569, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' [36] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Karen and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Nicola, Retaining Women in Tech: Shifting the Paradigm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Springer Nature, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' [37] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Ross, “Imagined communities: initiatives around lgbtq ageing in italy,” Modern Italy, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' 17, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' 4, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' 449–464, 2012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' [38] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Chen and N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Tang, “Does perceived inclusion matter in the work- place?”' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Journal of Managerial Psychology, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' [39] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Sinton, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Baines, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Thornalley, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Ilangovan, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Kurt, “Increasing the visibility of lgbtq+ researchers in stem,” The Lancet, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' 397, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' 10269, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' 77–79, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' [40] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Wohlin and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' Runeson, “Guiding the selection of research method- ology in industry–academia collaboration in software engineering,” Information and Software Technology, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' 140, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' 106678, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} +page_content=' 10' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/TtE5T4oBgHgl3EQfAg5m/content/2301.05379v1.pdf'} diff --git a/VtFJT4oBgHgl3EQf3y2A/content/tmp_files/2301.11663v1.pdf.txt b/VtFJT4oBgHgl3EQf3y2A/content/tmp_files/2301.11663v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..b2de88cc33e195810ad08ffe6647aa68a9e54c28 --- /dev/null +++ b/VtFJT4oBgHgl3EQf3y2A/content/tmp_files/2301.11663v1.pdf.txt @@ -0,0 +1,944 @@ +DEEP RESIDUAL COMPENSATION CONVOLUTIONAL NETWORK +WITHOUT BACKPROPAGATION +A PREPRINT +Mubarakah M. Alotaibi +Department of Computer Science +University of York, Taif University +York, UK, Taif, Saudi Arabia +mmma512@york.ac.uk +Richard C. Wilson +Department of Computer Science +University of York +York, UK +richard.wilson@york.ac.uk +January 30, 2023 +ABSTRACT +PCANet and its variants provided good accuracy results for classification tasks. However, despite the +importance of network depth in achieving good classification accuracy, these networks were trained +with a maximum of nine layers. In this paper, we introduce a residual compensation convolutional +network, which is the first PCANet-like network trained with hundreds of layers while improving +classification accuracy. The design of the proposed network consists of several convolutional +layers, each followed by post-processing steps and a classifier. To correct the classification errors +and significantly increase the network’s depth, we train each layer with new labels derived from +the residual information of all its preceding layers. This learning mechanism is accomplished +by traversing the network’s layers in a single forward pass without backpropagation or gradient +computations. Our experiments on four distinct classification benchmarks (MNIST, CIFAR-10, +CIFAR-100, and TinyImageNet) show that our deep network outperforms all existing PCANet-like +networks and is competitive with several traditional gradient-based models. +Keywords PCANet · DCTNet · DCCNet · CCANet · OSNet · LDANet · Multi-layer PCANet · classification +1 +INTRODUCTION +1.1 +Background and Related Works +Deep learning is a non-task-specific learning technique that uses hierarchical structures to automatically learn represen- +tations from raw data [1]. Since Alexnet [14] won the 2012 ImageNet challenge, convolutional neural networks (CNNs) +have been widely used for image classification with great success. VGG [19], ResNet [10] and Network in network +[16] are a few examples of standard CNNs. Despite their success, CNNs are usually trained with a large number of +parameters, requiring intensive parameter updates and a lot of data for training, which might increase the computational +cost even with GPU-equipped computing resources [8]. +Chan et al. [3] presented PCANet as an alternative to deep CNNs for classification tasks on small datasets. The network +structure comprises two cascaded principal component analysis (PCA) layers followed by binary hashing, block-wise +histogram and a classifier. Unlike CNNs, PCANet learns its filter bank in a non-iterative layer-by-layer fashion through +PCA applied to image-based patches. This training mechanism provides a faster training time advantage to PCANet +over conventional CNNs. With its simple architecture, PCANet has achieved state-of-the-art performance across several +datasets, including MNIST, extended Yale B, AR and FERET. +The success of PCANet has inspired a family of related strategies. Generally speaking, PCANet-related research has +fallen into one of two categories: those focusing on improving the features representation process or those attempting to +increase network depth. The work in this paper fits within the second category. +arXiv:2301.11663v1 [cs.CV] 27 Jan 2023 + +arXiv Template +A PREPRINT +In an effort to enhance PCANet’s feature representation, several articles studied networks that maintained PCANet’s +fundamental structure while producing different features using different convolutional filters. DCTNet [18], CCANet +[20] and ICANet [22] are examples of PCANet-like networks that create their filter banks using unsupervised approaches. +The LDANet [3], DCCNet [6] and OSNet [7] are a few examples of those that use supervised approaches to produce +their filter banks. DFSNet [8] is a good example of a network that uses semi-supervised filters. +In order to increase the network depth, several studies have attempted to address PCANet’s primary issue, the features +explosion problem, which limits its depth to only two layers. The block-wise histogram is one factor that contributes to +this problem, as the number of bins required to calculate the histogram features grows exponentially with the number of +filters in the second stage. Fan et al. [5] significantly reduced PCANet’s features by replacing the histogram pooling +with second-order pooling. The per-channel convolution mechanism is another factor that contributes to the increasing +dimensionality problem in PCANet. PCANet+ [17] provided an alternative solution to this issue by proposing a filter +ensemble mechanism that aggregates the feature maps over all channels, similar to CNNs. By adopting CNN-like +filters, as in [17], replacing PCANet’s binarisation step with the z-score method and using second-order pooling and late +fusion, Alotaibi and Wilson [2] were able to expand PCANet depth to nine layers and outperform the original design. +In contrast to prior studies that aimed to increase network depth by tackling the dimensionality issue, our objective is to +explore the design of a hundreds-layer PCANet-like network by optimising the classification process at each layer. +1.2 +Proposed Network +In this article, we present a residual compensation convolutional learning framework to achieve accuracy from a +considerably increased depth while simultaneously correcting network errors as we traverse it. The proposed network +inherits the simplicity of PCANet-like networks and is trained in a single forward-pass without gradient computations +or backpropagation. A comprehensive description of the network architecture, along with its training procedures, is +described in Section 2. The experimental section (3) consists of three subsections. In Section 3.2, we evaluate the +performance of the proposed network on MNIST, CIFAR-10, CIFAR-100 and TinyImageNet against gradient-based +and non-gradient architectures without data augmentation. Section 3.3 examines the influence of several network +parameters, such as the number of filters (3.3.1) and the learning rate (3.3.2), on the accuracy of the proposed model. +The final subsection (Section 3.4) addresses the use of data augmentation to improve the model’s accuracy. Finally, the +conclusions and future works are discussed in Section 4. +2 +NETWORK ARCHITECTURE +2.1 +Problem Formulation +Consider a classification problem with N training images X(1) ∈ Rm×n×d×N, where m and n are the images’ spatial +dimensions, and d ∈ {1, 3} is the number of channels for greyscale or colour images. Let T represent the C classes to +which the images originally belonged. The objective of our deep residual compensation convolution network (ResCNet) +is to construct a PCANet-like network that achieves high accuracy from a considerable network depth and is trained +without using gradient descent or backpropagation. Precisely, the network structure should be structured hierarchically +such that, as network depth increases, succeeding layers compensate for the classification errors of previous layers. By +combining the predicted probabilities of the network layers, the model should obtain a high accuracy. +2.2 +Design Overview +The network architecture, as shown in Figure 1, consists of multiple convolutional layers, each followed by post- +processing steps and a linear discriminant analysis (LDA) classifier. Each convolutional layer, except the first layer, +receives as input the concatenation of its previous layer’s outputs and the original features. After post-processing the +feature maps of the first layer, an LDA classifier is trained to categorise the extracted features using the original classes. +By contrast, the LDA classifiers of the subsequent layers, referred to as compensation layers, are trained using new +classes learnt from the residual information of the preceding layers. In fact, each layer produces two outputs ( ˜Y (i) and +T (i+1) in Figure 1, where i represents the ith layer). The first provides the predicted probabilities of the network at +that layer, whereas the second represents the new classes produced for training the subsequent layer. To produce the +network’s outputs in each layer ( ˜Y (i) in Figure 1), the predicted probabilities of that layer are added to or subtracted +from those of its preceding layers. This combination mechanism maintains the network’s predicted probabilities of +being in the range of between 0 and 1 and reduces the error of preceding layers. Section 2.3 describes in detail the +network’s components, including the convolutional layers (Section 2.3.1), post-processing procedures (Section 2.3.2) +and residual mechanism (Section 2.3.3). +2 + +arXiv Template +A PREPRINT +filters +filters ++ +filters ++ +Post-processing +Residual +mechanism +Post-processing +Post-processing +Residual +mechanism +Residual +mechanism +Figure 1: The deep residual compensation convolutional network architecture. T (1) represents the original classes. +2.3 +Network Components +2.3.1 +Convolutional Layers +Let X(1) ∈ Rm×n×d×N represent N training images, T is their C classes, and O(i) ∈ Rm×n×di×N represents the +feature maps produced by the ith layer. The i + 1 layer receives as input the output of the ith layer concatenated with +the original features; this input is represented as X(i+1) ∈ Rm×n×(d+di)×N. We then divide the input images (X(i+1)) +into patches of k × k size and a stride of 1 pixel, where k is the filter size and is a user-predefined parameter. The +resulting matrix is P ∈ Rk2(di+d)× ˜m˜nN, where ˜m = (m − k) + 1, ˜n = (n − k) + 1 and m and n are the width and +the height of the images, respectively. The filter learning process relies on applying any non-gradient-based method to +the extracted local patches P and collecting their weights to represent the filters used in the i + 1 layer. The PCA filter +bank by Low et al. [17] is an example of such filters. The authors first centralised the extracted patches to their mean to +obtain ¯P ∈ Rk2(di+d)× ˜m˜nN. They then applied PCA to the centralised patches, where the principal components of +¯P ¯P T can be computed by solving the following optimisation problem: +min +V ∈R(k2)×(di+d) || ¯P − V V T ¯P||2 +F , +s.t. V T V = I, +(1) +where I represents the identity matrix. The convolutional output of the i + 1 layer can then be expressed as follows: +O(i+1) = Xi+1 ∗ W (i) ∈ Rm×n×di+1, +(2) +where di+1 represents the number of filters in layer i + 1, X(i+1) is the input images that are zero padded to obtain the +same image size outputs, ∗ represents the convolution operation, and W (i) denotes the PCA filters expressed as follows: +W (i) = +mat +k×k×(di+d)qs, s = 1, 2, . . . , di+1, +(3) +where qs is the sth principal eigenvector of ¯P ¯P T . +The stacked-LDA filter bank is another example of filters generated without relying on gradient descent or backpropaga- +tion. Appendix A discusses these filters in detail. These filters are computed using an iterative process that involves +selecting a subset of the localised patches P and then applying an LDA classifier to train the selected patches with +their classes. The algorithm searches for patches with separable classes and accumulates their weights, which are +subsequently used as stacked-LDA filters. +This article focuses mainly on the network architecture rather than investigating the filter type used. In our experiments +(Section 3), we use semi-supervised stacked-LDA filters created by combining 50% of the supervised stacked-LDA +filters with 50% of the unsupervised PCA filters. However, different filter types can be employed, such as those used by +Ng and Teoh [18], Yang et al. [20] and Gatto et al. [8]. +3 + +arXiv Template +A PREPRINT +2.3.2 +Post-processing Steps +The feature maps of each convolutional layer are post-processed using a ReLU non-linear activation function, followed +by second-order pooling and a multi-level spatial pyramid pooling. The ReLU function is applied to the feature maps +of each layer but not between the layers. The feature maps are then pooled locally using the second-order pooling +mechanism described by Alotaibi and Wilson [2]. Let X(i) +j +∈ Rm×n×di denote the jth activations map in the ith +layer, where m and n are the spatial dimensions of the images, and di represents the number of filters in layer i. The +calculation of the second-order pooling starts by dividing the tensors of X(i) +j +into patches of the same size, which could +be overlapped, e.g. (r × c). Each of these patches is then normalised using the z-score method, defined as z = x−µ +σ , +where µ and σ represent the mean and the standard deviation of the data. Next, the channel-wise covariance matrix of +each patch, after reshaping each of them to rc × di, is computed. Because of the symmetry property of the covariance +matrix, the number of second-order features is calculated as the number of patches×( di×di +2 ++ di +2 ). The multi-level +spatial pooling is then used to pool the second-order features. The multi-level spatial pyramid pooling calculation is +identical to that implemented by Chan et al. [3]. Again, different post-processing procedures can be utilised; however, in +our experiments (Section 3), we found these steps to be the most effective for achieving high accuracy in the databases +we used. +2.3.3 +Residual Mechanism +This mechanism is non-iterative; we add layers sequentially. Each layer is trained in a single pass with new labels learnt +from the residual information of all its previous layers. The first layer’s features are classified using an LDA classifier +trained with the original classes. To produce the first layer’s posteriors ( ˜Y (1) in Figure 1), we use the following sigmoid +function on the output of the LDA classifier: +S(x) = +1 +1 + e−x/σ , +(4) +where σ is the sigmoid scale parameter. To identify the new labels required to train the second layer (T (2) in Figure 1), +we first find the residual errors between the current layer’s predicted outputs ( ˜Y (1)) and the original classes (Y ∈ RN×C) +in one-hot encoding, as follows: +R(1) = λY − ˜Y (1), +(5) +where 0 ≤ λ ≤ 1 controls the maximum likelihood a class may attain. T (2) can then be defined as the classes with the +maximum absolute residual errors, as follows: +T (2) +i += class(|R(1) +ij |, ∀j) +i = [1, . . . , N], +(6) +where class(x) denotes the name of the class whose value has the largest residual error magnitude. Since our network +is developed primarily for classification tasks, it concentrates on labelling rather than regressing the correction of +posteriors. +The second layer, as shown in Figure 1, receives an input X(2) ∈ Rm×n×(d+d1)×N that is a concatenation of the first +layer’s feature maps and the original images. After finding the second layer’s features, our objective is to learn a +correction term based on the second layer classification results, which is then added to the posteriors of the first layer +( ˜Y (1)) to provide more accurate predictions ( ˜Y (2)). The correction term can either be positive or negative to maintain +the network probabilities at the second layer ( ˜Y (2)) to have values in the range of 0 to λ (Equation 5). In other words, +after training the second layer’s LDA classifier using the new classes (T (2)), the posteriors acquired can be added to or +subtracted from the first layer’s posteriors to correct them. The indicator variable (s(2)) indicates whether to add to or +subtract from the first layer’s posteriors and is defined as the signum function of the maximum absolute residual errors +of the previous layers, as follows: +s(2) +i += sign(R(1) +i∗ ), +i∗ = argmaxi |R(1) +i |. +(7) +When the indicator values are positive, it indicates that the probabilities of the first and second layers are added, +and when they are negative, the probabilities of the second layer are subtracted from those of the first. Consider a +classification task of three classes A, B and C. Assume that, given a single image whose actual class is A, the predicted +probabilities of the first layer using this image are 0.4, 0.6 and 0 for the three classes A, B and C, respectively. To add a +second layer, the residual error using λ = 0.8 (Equation 5) is computed as 0.4, −0.6 and 0 for each of the three classes. +Hence, the new label to train the second layer for this image is B, as it has the largest magnitude, and the indicator +is −1 because the maximum absolute residual error has a negative sign. Assume that the second layer’s features are +trained using class B and provided perfect prediction with probabilities of 0, 1 and 0 for the three classes. Because +4 + +arXiv Template +A PREPRINT +the indicator value is negative, we subtract them from the predicted outputs of the first layer, resulting in 0.4, −0.4 +and 0 for the three classes. Consequently, we reduce the error, and the predicted class of the second layer is A, which +corresponds to the actual class of the image. To implement that and generalise it for the test set, as we do not know the +classes, we divide the database into positive and negative samples based on their indicator variable values. The positive +samples have positive indicator values, whereas the negative samples have negative indicator values. We then train two +LDA classifiers for each layer; one is trained on the negative samples using {T (2) +n +⊂ T (2) : s(2) = −1}, and the other +is trained with the positive samples and their classes {T (2) +p +⊂ T (2) : s(2) = 1}. The negative classifier is trained by +assuming that each class in the positive samples is a negative class (its class is zero). Similarly, during the training of +the positive classifier, each class in the negative samples is treated as a negative class. Thus, both classifiers have access +to all training data. The network’s outputs at the second layer ( ˜Y (2)) can then be expressed as follows: +˜Y (2) = ˜Y (1) + α[np +N +˜Yp +(2) − nn +N +˜ +Yn +(2)], +(8) +where ˜ +Yn +(2) and ˜Yp +(2) are the N predictions made by the classifiers trained on negative and positive samples, nn and +np denote the number of negative and positive examples, respectively, N is the total number of training samples and α +is a learning rate. The learning rate, similar to that used in neural networks, is introduced to reduce oscillations and +provide faster convergence. However, the learning rate in our network also acts as a weight to integrate the probabilities +of multiple layers, similar to weighted sum techniques. +To add more layers, we repeat the steps used to add the second one. Algorithm 1 summarises the procedures of the +network’s training with L layers, assuming that the second-order features are known. To add layer i, the new labels T (i) +and indicator variable (s(i)) are computed based on the previous layer’s residual error R(i−1), as shown in Equation 10. +The network’s output at that layer can then be defined using Equation 11. In general, for deeper residual compensation +layers, the new classes (T (L)) learnt from the residual errors of the previous layers can be defined as follows: +T (L) = class(|R(L−1)|) += class(|Y − ˜Y (L−1)|) += class(|Y − [ ˜Y L−2 + α +N (n(L−2) +p +˜Y (L−2) +p +− n(L−2) +n +˜Y (L−2) +n +)]) += ... += class(|Y − [ ˜Y (1) + α +N +L−1 +� +i=2 +(ni +p ˜Y i +p − ni +n ˜Y i +n)]), +(9) +where class(x) is the name of the class whose value has the largest residual error magnitude, Y is the original classes in +one-hot encoding, ni +p and ni +n are the number of positive and negative samples in layer i, respectively, and N denotes +the total number of samples in the database. +3 +EXPERIMENTS +3.1 +Databases +We used four standard benchmarks in our experiments: CIFAR-10 [13], CIFAR-100 [13], MNIST [4] and TinyImageNet +[15]. The MNIST database comprises 60,000 training examples and 10,000 test images of size 28 × 28, drawn from the +same distribution, normalised and centred in a fixed-size image. The CIFAR-10 database consists of 10 classes with +50,000 images for training and 10,000 test images. The images of size 32 × 32 × 3 have a low resolution with different +poses and angles. CIFAR-100 is similar to CIFAR-10 but with 100 classes. The TinyImageNet database consists of +100,000 training images of size 64 × 64 × 3. The images are divided into 200 categories, with 500 images each. The +validation and the test sets contain 10,000 images each, with 50 images per class. The test set is not labelled, and our +experiments’ performance is reported on the validation set. +3.2 +Image Classification without Data Augmentation +In this section, we evaluate the proposed network on the MNIST, CIFAR-10, CIFAR-100 and TinyImageNet databases +(Section 3.1) without data augmentation. To determine the network parameters, we examine a variety of configurations, +each of which has different parameters, and report the results of the configuration that works the best. +5 + +arXiv Template +A PREPRINT +Algorithm 1 Deep Residual Compensation Convolutional Network Training +Input: Second-order features: {F (i), i = [1, 2, . . . , L]}, L number of layers, C classes T (1) ∈ RN×1, learning rate: +α and λ to determine the highest probability a class can reach. +Output: Model’s accuracy: accuracy +1: Generate Y ∈ RN×C, the one-hot encoding of T (1). +2: i ← 1 and ˜Y (0) ← 0. +3: s(i) = 1N×1 {fill the first layer’s indicator variable with 1. } +4: while i < L do +5: +if i > 1 then +6: +Find the residual errors, new classes and indicator variable, as follows: +R(i−1) = λY − ˜Y (i−1). +T (i) +j += class(|R(i−1) +jk +|, ∀k), +s(i) +j += sign(R(i−1) +j∗ +), j∗ = argmaxj |R(i−1) +j +|, +j = [1, 2, . . . , N]. +(10) +7: +end if +8: +Find F (i) +n +⊂ F (i) and T (i) +n +⊂ T (i), for which their indicator values are negative. +9: +Find F (i) +p +⊂ F (i) and T (i) +p +⊂ T (i), for which their indicator values are positive. +10: +if T (i) +p +̸= ∅ then +11: +L1 = LDA(F (i) +p , T (i) +p ). +12: +˜Y (i) +p += prediction(L1, F (i)). +13: +else +14: +˜Y (i) +p +← 0. +15: +end if +16: +if T (i) +n +̸= ∅ then +17: +L2 = LDA(F (i) +n , T (i) +n ). +18: +˜Y (i) +n += prediction(L2, F (i)). +19: +else +20: +˜Y (i) +n +← 0. +21: +end if +22: +Compute the current’s layer output ˜Y (i), as +˜Y (i) = ˜Y (i−1) + α[np +N +˜Yp +(i) − nn +N +˜ +Yn +(i)], +(11) +where np and nn represent the number of positive and negative samples, respectively. +23: +i ← i + 1 +24: end while +25: Compute the model’s accuracy at layer L using ˜Y (L). +3.2.1 +Parameter Settings +The optimal settings identified for the MNIST, CIFAR-10, CIFAR-100 and TinyImageNet databases are listed in Table 1. +All architectures, except the MNIST database, used 3 × 3-pixel filters created by combining PCA [17] and stacked-LDA +filters (Appendix A) at a 50% ratio. The MNIST database used 13 × 13 PCA filters in its first layer and 3 × 3 PCA +filters in its residual layers. In this section and throughout the rest of this article, we used the same number of filters for +all layers and stopped adding layers when the training error rate approached 0%. Therefore, the number of filters per +layer is 60 in the MNIST’s architecture, 50 in the CIFAR’s architectures and 40 in TinyImageNet’s architecture. The +number of layers beyond which an accuracy gain was no longer observed was 937 for the CIFAR-10 database, 436 for +the CIFAR-100 database, 231 for the MNIST database and 512 for the TinyImageNet database. We utilised 7 × 7-block +second-order pooling for MNIST with a stride of four pixels, 16 × 16 for CIFAR-100 with a four-pixel stride, 16 × 16 +for CIFAR-10 with a one-pixel stride, and 32 × 32 for TinyImageNet with an eight-pixel stride. In all architectures, we +pooled the second-order features using three-level spatial pyramid pooling of 4 × 4, 2 × 2 and 1 × 1 subregions. The +only data preprocessing was min-max normalisation applied to the input of each convolutional layer, and probabilities +were retrieved from all datasets except MNIST using the sigmoid function with a scale value of 16 (Equation 4). In the +6 + +arXiv Template +A PREPRINT +MNIST database, we used the following softmax function to generate the probabilities in each layer: +softmax(yi) = +exp(βyi) +�C +j=1 exp(βyj) +, +(12) +where β is assigned to 0.001, C denotes the number of classes, and y represents the outputs of the LDA classifier. +During the training phase, λ (Equation 5) was set to 0.8, and the learning rate was fixed at α = 1 for the MNIST +database and α = 0.4 for the CIFAR-10 database. The remaining databases used an initial learning rate of 1, which was +dropped by 10% every 10 layers as follows: +α = α − 10 +100α. +(13) +We stopped reducing the learning rate when it reached 0.387 and 0.478 for CIFAR-100 and TinyImageNet databases, +respectively. +Table 1: Network architectures using the MNIST, CIFAR-10, CIFAR-100 and TinyImageNet databases +The MNIST database: 28 × 28 × 1 +Filter size +SOP +Output size +13 × 13 × 1 × 60 +7 × 7, Stride = 4 +28 × 28 × 60 +[3 × 3 × 60 × 60] × 230 +7 × 7, Stride = 4 +28 × 28 × 60 +The CIFAR-10 database: 32 × 32 × 3 +Filter size +SOP +Output size +3 × 3 × 3 × 50 +16 × 16, Stride = 1 +32 × 32 × 50 +[3 × 3 × 50 × 50] × 936 +16 × 16, Stride = 1 +32 × 32 × 50 +The CIFAR-100 database: 32 × 32 × 3 +Filter size +SOP +Output size +3 × 3 × 3 × 50 +16 × 16, Stride = 4 +32 × 32 × 50 +[3 × 3 × 50 × 50] × 435 +16 × 16, Stride = 4 +32 × 32 × 50 +The TinyImageNet database: 64 × 64 × 3 +Filter size +SOP +Output size +3 × 3 × 3 × 40 +32 × 32, Stride = 8 +64 × 64 × 40 +[3 × 3 × 40 × 40] × 511 +32 × 32, Stride = 8 +64 × 64 × 40 +3.2.2 +Performance Analysis +Table 2 reports the accuracy of ResCNet compared with some gradient-based and non-gradient-based networks on the +MNIST, CIFAR-10, CIFAR-100 and TinyImageNet databases without data augmentation. The non-gradient-based +models reported in Table 2 are the best-performing PCANet-like models from the perspective of the datasets we +considered. Such networks include PCANet [3], LDANet [3], DFSNet [8] and Multi-layer PCANet [2]. To show where +our network fits in the literature of commonly used networks, we compared the performance achieved by our network +to those obtained by standard gradient-based convolutional networks. Maxout [9], Network in network [16], stochastic +pooling [21] and ResNet [10] are the gradient-based networks listed in the table. The accuracy of 164-ResNet with +pre-activation was reported by Huang et al. [11], while the results of ResNet-18 and ResNet-34 were reported by Jeevan +[12]. +According to Table 2, for the MNIST database, our model with 231 layers achieved an accuracy of 99.52%, making it +superior to all non-gradient-based models, such as PCANet, Multi-Layer PCANet and LDANet, in terms of accuracy. It +improved on the best results of the non-gradient-based networks by roughly 0.12%. In addition, the findings presented +in the table demonstrated that our network produced results comparable with standard gradient-based networks, such as +the Maxout network, Network in network and stochastic pooling. +As shown in Table 2, for the CIFAR-100 database, the accuracy attained by our proposed network was the highest +among all the networks. The accuracy of 64.91% was around 8% higher than that of Multi-Layer PCANet and stochastic +pooling, more than 9% higher than that of ResNet-110 and ResNet-32, 14% higher than the original PCANet and +more than 2% higher than that of Maxout and ResNet with stochastic depth. Moreover, the results achieved by our +network were roughly equivalent to those obtained by ResNet with 164 layers and Network in network using the +dropout technique. +For TinyImageNet, as shown in Table 2, our network achieved the highest accuracy among all the networks without any +data augmentation. This performance was around 2% higher than that of the ResNet-34 model and 1% better than that +of the ResNet-18 model. +7 + +arXiv Template +A PREPRINT +According to the results shown in Table 2 for the CIFAR-10 database, our model outperformed PCANet and all of its +variants, in terms of accuracy. The accuracy of the proposed network was around 10% better than the performance +achieved by the original PCANet and 6% higher than that of Multi-Layer PCANet. Although ResCNet’s accuracy +was around 1% lower than that of the Maxout network and 2% worse than that of Network in network, our model +achieved accuracy comparable with that of ResNet-32, 1% higher than ResNet-18 and ResNet-110, and 3% greater than +stochastic pooling. In general, ResCNet with more than 900 layers showed an excellent performance of 87.54% on the +CIFAR-10 database with no data augmentation, making it the first PCANet-like network to reach such a number of +layers and such a performance. +In general, Table 2 demonstrates that ResCNet outperformed all PCANet-like networks in terms of accuracy and the +number of layers required for training. It also shows that our model, which is trained without complicated non-linear +functions or regularisation techniques, achieves accuracy similar to that of standard convolutional networks such as +Network-in-Network, Maxout, stochastic pooling, and several residual networks. Even though the number of layers in +our network is relatively large, these layers are added sequentially, one after the other, without iterations or intensive +parameter updates. In addition, we used a small number of filters in each layer for all of our architectures, with no +configuration exceeding 60 filters per layer. To the best of our knowledge, ResCNet is the first non-gradient-based +propagation-free network to be trained with hundreds of layers. +Table 2: Accuracy (%) of ResCNet compared with different methods on the CIFAR-10 (C10), CIFAR-100 (C100), +MNIST and TinyImageNet (T200) databases without data augmentation +Non-gradient-based networks +Method +C10 +C100 +MNIST +T200 +PCANet-2 +77.14 +51.62 +99.34 +30 +LDANet +78.33 +– +99.38 +– +DFSNet-3 +81.06 +– +– +– +Multi-Layer PCANet +81.72 +57.86 +99.40 +40.87 +ResCNet (ours) +87.54 +64.9 +99.52 +44.37 +Gradient-based networks +Method +C10 +C100 +MNIST +T200 +Stochastic pooling +84.87 +57.49 +99.53 +– +Maxout network, with dropout +88.32 +61.43 +99.55 +– +Network in network, with dropout +89.59 +64.32 +99.53 +– +Network in network, without dropout +85.49 +– +– +– +110 ResNet +86.82 +55.26 +– +– +ResNet stochastic depth +- +62.20 +– +– +164-ResNet (pre-activation) +- +64.42 +– +– +ResNet-18 +86.29 +59.15 +– +43.02 +ResNet-32 +87.97 +56.05 +– +42.65 +3.3 +Network Parameters +This section explains how to configure ResCNet’s parameters by analysing their impact on the model’s accuracy using +the CIFAR-10 database. The experiments in this section are divided into two subsections, as follows: +• Experiment 1: Testing the effect of the number of filters on the accuracy of ResCNet +• Experiment 2: Studying the impact of learning rate on the model’s performance +3.3.1 +Number of Filters +This experiment aimed to determine how changing the number of filters affects the accuracy of ResCNet. For this, we +designed two networks with the same settings but different numbers of filters. The first, referred to as ResCNet-30, +used 30 filters in each of its layers, while the second (ResCNet-50) used 50 filters in all of its layers. The two networks +followed the same parameters settings as those described in Section 3.2 for the CIFAR-10 database. However, we used +an 8x8 second-order pooling block size. +Figure 2 shows the accuracy of training and testing ResCNet-30 and ResCNet-50 on the CIFAR-10 database without +data augmentation. According to the figure, both networks achieved the same level of accuracy, although ResCNet-30 +required more layers. ResCNet-50 obtained a training accuracy of 100% at layer 127, while ResCNet-30 achieved +8 + +arXiv Template +A PREPRINT +100% at layer 781. The testing accuracy for both 127- and 781-layer networks was around 86.28%. The best testing +accuracy of 86.33% was obtained with 100-layer ResCNet-50 and 500-layer ResCNet-30. The findings in this section +suggested that, unlike previous PCANet-like networks in which the number of filters in each layer should be determined +in advance, we could obtain the same performance by employing any number of filters based on the available resources. +However, we needed more filters in each layer to achieve the desired performance faster. The results in this section also +showed that the second-order pooling block size affected the accuracy of ResCNet. For instance, the highest accuracy +reached for the CIFAR-10 database (87.54% in Section 3.2) was around 1% better than that achieved in this section +(86.33%), with the only difference between the models being the modification of the second-order pooling block size. +0 +200 +400 +600 +800 +Layers +75 +80 +85 +90 +95 +100 +Accuracy (%) +ResCNet-30 +Training +Testing +0 +50 +100 +Layers +75 +80 +85 +90 +95 +100 +Accuracy (%) +ResCNet-50 +Training +Testing +Figure 2: The accuracy (%) of ResCNet-30 and ResCNet-50 on the training and testing sets of the CIFAR-10 database +with no data augmentation. +3.3.2 +Learning Rate +This experiment aimed to show the impact of the learning rate (α in Equation 9) on ResCNet’s accuracy. Similar to +neural networks, the learning rate is introduced to prevent oscillations and promote faster convergence. We designed +two networks with the same parameters but different learning rates and evaluated them on the CIFAR-10 database. Both +networks used 50 filters in all of their layers. The first network (ResCNet-50–1) was trained with a learning rate of +α = 1, whereas the second (ResCNet-50-0.4) was trained using α = 0.4. The other network’s parameters were the +same as those described in Section 3.2 for the CIFAR-10 database. +Table 3 compares the accuracy of ResCNet-50–1 with that of ResCNet-50–0.4 using a different number of layers on the +CIFAR-10 database. The training accuracy of ResCNet-50–1 reached 100% at layer 384, with a testing accuracy of +86.91%. On the other hand, ResCNet-50–0.4 obtained a 100% training accuracy at layer 970, with a testing accuracy +of 87.41%. The optimal testing accuracy of ResCNet-50–1 was achieved at layer 208, with 87.2% testing accuracy, +while ResCNet-50–0.4 obtained its best performance of 87.54% at layer 937. The results achieved in this section +demonstrated that the learning rate α = 0.4 was small, as we needed more than 600 layers for the network to reach its +convergence. If the training error rate oscillates, which is not the case in CIFAR-10, the learning rate must be decreased +to avoid oscillations. +3.4 +Image Classification with Data Augmentation +This section aims to enhance the classification accuracy of ResCNet using data augmentation on three databases, namely, +CIFAR-10, CIFAR-100 and TinyImageNet. The ResCNet architectures in this section shared the same design and +parameters as those in Section 3.2 but had 490, 507 and 480 layers for the CIFAR-10, CIFAR-100 and TinyImageNet +9 + +arXiv Template +A PREPRINT +Table 3: Accuracy (%) on the CIFAR-10 database test set using ResCNet-50–1 and ResCNet-50–0.4 +Network +# Layers +Accuracy (%) +ResCNet-50–1 +348 +86.91 +ResCNet-50–1 +208 +87.02 +ResCNet-50–0.4 +970 +87.41 +ResCNet-50–0.4 +937 +87.54 +ResCNet-50–0.4 +600 +87.09 +databases, respectively. For CIFAR-10, we modified the pooling stride to four pixels and re-implemented a 193-layer +ResCNet without data augmentation for adequate comparison. +Table 4 compares the accuracy of ResCNet with and without data augmentation on the CIFAR-10, CIFAR-100 and +TinyImageNet databases. With horizontal flipping being the only data augmentation used, the accuracy of ResCNet was +enhanced across all three databases. This improvement was around 1% for the TinyImageNet database, 2% for the +CIFAR-10 database and 3% for the CIFAR-100 database. For the CIFAR-10 database, the accuracy achieved with data +augmentation was also 1% higher than the best result (87.54%) reported in Section 3.2. +This section’s results showed the importance of data augmentation for improving the model’s generalisation and +accuracy. Incorporating other data augmentation types are needed to increase the model’s accuracy further. Since +ResCNet is not currently being trained in a batch-based manner, adding more data augmentation types is challenging as +they need to be computed in advance. In future works, we will investigate the possibility of converting the current work +into a batch-based system as in gradient-based models. +Table 4: Accuracy (%) of ResCNet on the CIFAR-10, CIFAR-100 and TinyImageNet databases +Data augmentation +CIFAR-10 +CIFAR-100 +TinyImageNet + +86.82 +64.9 +44.37 + +88.35 +67.8 +45.91 +4 +CONCLUSIONS +In this article, we proposed ResCNet, a PCANet-like network that trains each layer with new labels derived from the +residual data of all preceding layers. Our proposed network increased the network depth to more than 950 layers, making +it the first non-gradient-based propagation-free network to achieve this number. Moreover, ResCNet’s performance was +comparable to that of standard gradient-based models and superior to PCANet and all of its variants. Increasing the size +of the databases by one type of data augmentation resulted in a considerable improvement in accuracy, particularly in +CIFAR-100, where it reached 3%. However, increasing the number of samples leads to higher computational costs. To +overcome this issue and in future work, we will investigate the possibility of transforming the current network into a +batch-based system, similar to the neural network. In addition, the network may be developed further by modifying the +filter types or by using other metrics to define the residual errors and, thus, the new classes. +References +[1] M. Z. Alom, T. M. Taha, C. Yakopcic, S. Westberg, P. Sidike, M. S. Nasrin, B. C. Van Esesn, A. A. S. Awwal, +and V. K. Asari. The history began from alexnet: A comprehensive survey on deep learning approaches. arXiv +Preprint arXiv:1803.01164, 2018. +[2] M. Alotaibi and R. C. Wilson. Multi-layer pca network for image classification. In Joint IAPR International +Workshops on Statistical Techniques in Pattern Recognition (SPR) and Structural and Syntactic Pattern Recognition +(SSPR), pages 292–301. Springer, 2021. +[3] T.-H. Chan, K. Jia, S. Gao, J. Lu, Z. Zeng, and Y. Ma. Pcanet: A simple deep learning baseline for image +classification? IEEE Transactions on Image Processing, 24(12):5017–5032, 2015. +[4] L. Deng. The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE +Signal Processing Magazine, 29(6):141–142, 2012. +[5] C. Fan, X. Hong, L. Tian, Y. Ming, M. Pietikäinen, and G. Zhao. Pcanet-ii: When pcanet meets the second order +pooling. IEICE Transactions on Information and Systems, 101(8):2159–2162, 2018. +10 + +arXiv Template +A PREPRINT +[6] B. B. Gatto and E. M. dos Santos. Discriminative canonical correlation analysis network for image classification. +In 2017 IEEE International Conference on Image Processing (ICIP), pages 4487–4491. IEEE, 2017. +[7] B. B. Gatto, E. M. dos Santos, and K. Fukui. Subspace-based convolutional network for handwritten character +recognition. In 2017 14th IAPR international conference on document analysis and recognition (ICDAR), volume 1, +pages 1044–1049. IEEE, 2017. +[8] B. B. Gatto, L. S. Souza, E. M. dos Santos, K. Fukui, W. S. S Júnior, and K. V. dos Santos. A semi-supervised +convolutional neural network based on subspace representation for image classification. EURASIP Journal on +Image and Video Processing, 2020(1):1–21, 2020. +[9] I. Goodfellow, D. Warde-Farley, M. Mirza, A. Courville, and Y. Bengio. Maxout networks. In International +Conference on Machine Learning, pages 1319–1327. PMLR, 2013. +[10] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In Proceedings of the IEEE +Conference on Computer Vision and Pattern Recognition, pages 770–778, 2016. +[11] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger. Densely connected convolutional networks. In +Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 4700–4708, 2017. +[12] P. Jeevan. Convolutional xformers for vision. arXiv Preprint arXiv:2201.10271, 2022. +[13] A. Krizhevsky, G. Hinton, et al. Learning multiple layers of features from tiny images. 2009, 2009. +[14] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. +Communications of the ACM, 60(6):84–90, 2017. +[15] Y. Le and X. Yang. Tiny imagenet visual recognition challenge. CS 231N, 7(7):3, 2015. +[16] M. Lin, Q. Chen, and S. Yan. Network in network. arXiv preprint arXiv:1312.4400, 2013. +[17] C.-Y. Low, A. B.-J. Teoh, and K.-A. Toh. Stacking pcanet+: An overly simplified convnets baseline for face +recognition. IEEE Signal Processing Letters, 24(11):1581–1585, 2017. +[18] C. J. Ng and A. B. J. Teoh. Dctnet: A simple learning-free approach for face recognition. In 2015 Asia-Pacific +Signal and Information Processing Association Annual Summit and Conference (APSIPA), pages 761–768. IEEE, +2015. +[19] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. arXiv +Preprint arXiv:1409.1556, 2014. +[20] X. Yang, W. Liu, D. Tao, and J. Cheng. Canonical correlation analysis networks for two-view image recognition. +Information Sciences, 385:338–352, 2017. +[21] M. D. Zeiler and R. Fergus. Stochastic pooling for regularization of deep convolutional neural networks. arXiv +preprint arXiv:1301.3557, 2013. +[22] Y. Zhang, T. Geng, X. Wu, J. Zhou, and D. Gao. Icanet: A simple cascade linear convolution network for face +recognition. EURASIP Journal on Image and Video Processing, 2018(1):1–7, 2018. +11 + +arXiv Template +A PREPRINT +A +STACKED-LDA +In this appendix, we introduce the stacked-LDA method, a model that stacks two Linear discriminant analysis layers. +The first layer of the model is trained using new labels that are produced by clustering similar instances of a certain class. +The second layer, on the other hand, is trained using the original classes. This general concept of the stacked-LDA +model is described in Section A.1. We propose an iterative method to create clusters of similar groups. The description +of our method is explained in Section A.2. In addition, Section A.3 discusses the procedures for using the stacked-LDA +algorithm as convolution filters. Finally, the parameter settings we used in our experiments in the main paper were +described in Section A.4. +A.1 +General Concept +The stacked-LDA algorithm relies on stacking two linear discriminant analysis (LDA) layers. The first LDA layer is +trained using labels created from the original classes, while the second LDA layer is trained using the actual labels. +To generate the classes of the first layer, similar samples from a given class are grouped to create a new class. For +example, a class A with s instances can be subdivided into c new classes, each with a different number of instances. The +minimum number of samples needed to represent a class is one. Suppose the first LDA can differentiate between the +new classes ideally. In that case, the second LDA will receive the posteriors of the first LDA and be able to differentiate +between the actual classes. For instance, if class A is subdivided into A1 and A2, the subsequent LDA will identify that +both A1 and A2 are members of class A. +A.2 +Stacked-LDA Algorithm +Let X ∈ RN×M represent N training samples, each with M dimensions, and Target ∈ RN×1 represent their original +classes. Algorithm 2 describes the procedures for applying the stacked-LDA to the training set. The algorithm starts by +picking a random class c from the actual classes. We then choose Npositive random instances that belong to class c +and Nnegative random examples that are not in class c, where Npositive and Nnegative are the number of positive and +negative samples and are user-predefined parameters. Next, an LDA classifier discriminates between the positive and +the negative samples. After that, we check if our chosen random samples are linearly separable, which can be done by +comparing the error rate of the LDA classifier with a small value of nearly zero called tolerance (tol) and is chosen by +the user. If the LDA’s error rate is lower than the tolerance, we consider the positive class to be a new class and collect +the weights of the LDA. On the other hand, if the LDA’s error rate is greater than the tolerance, the chosen samples +are not similar and cannot be grouped. Therefore, the algorithm proceeds to find other classes that separate the data +accurately in the same way until reaching the required number of classes (N_classes). When algorithm 2 terminates, +we can use the generated LDA’s weights to find the output of the first LDA. Another LDA can then be applied to the +output of the first LDA to classify them back using the original classes. +A.3 +Stacked-LDA Filters +For N training samples X: {Xi ∈ Rm×n×c} with actual classes Target ∈ RN×1, where m and n are the spatial +dimensions of the image and c is the number of channels, we compute the stacked-LDA filters as follows: +1. Given a single image Xi ∈ Rm×n×c and a filter size kL × kL, we extract and vectorise all overlapping +patches of size kL × kL × c each. The resulting matrix is Pi ∈ R(k2 +L×c)× ˜m˜n, where ˜m = (m − kL) + 1, +˜n = (n − kL) + 1 and m and n are the spatial dimensions of the image, respectively; +2. We repeat the previous step for all images in the dataset to obtain P ∈ R(k2 +L×c)× ˜m˜nN; +3. We create a vector T ∈ R1× ˜m˜nN that contains the class labels of the patches. A single patch is assigned a +label equivalent to the class of its full image; +4. Using random samples and specific tolerance, we apply Algorithm 2 on P and T to obtain the stacked-LDA +filters’ weights W L +s and bias BL +s ; +5. We can express the Stacked-LDA filters as follows: +W L +s = +mat +kL×kL×cqs, s = 1, 2, . . . , dL, +BL +s = mat +1×1×cqs, s = 1, 2, . . . , dL, +(14) +where dL is the number of filters chosen by the user, which is equivalent to the number of classes in Algorithm +2; +12 + +arXiv Template +A PREPRINT +Algorithm 2 Stacked-LDA Algorithm +Input: Training set: X ∈ RN×M, where {xN +i , xi ∈ RM}, original classes: Target ∈ RN×1, number of classes user +wants to generate: N_classes, number of positive samples: Npositives, number of negative samples: Nnegatives +and tolerance of performance user can afford: tol +Output: LDA’s weights: weights ∈ RN×N_classes and LDA’s bias or constant: bias ∈ RN_classes +1: weights ← [ ]. +2: bias ← [ ]. +3: i ← 1. +4: while i < N_classes do +5: +Pick a random class c from the Target. +6: +Pick random Npositives samples from class c (Spositives). +7: +Choose Nnegatives samples that are not in class c (Snegatives) randomly. +8: +Combine the negative and positive samples: S ← [Spositives, Snegatives]. +9: +T ← [ones(Npositives), zeros(Nnegatives)]. +10: +Find the linear discriminant analysis (LDA) between S and T: L = LDA(S, T). +11: +Find the perfromance (ErrorRate) of S using L. +12: +if ErrorRate < tol then +13: +weights ← [weights, LDA′sweights]. +14: +bias ← [bias, LDA′sbias]. +15: +i ← i + 1. +16: +end if +17: end while +6. We convolve the original images with the filters as follows: +XL +i = XL−1 +i +∗ W L +s + BL +s ∈ Rm×n×dL, +(15) +where s = 1, 2, . . . , dL and XL−1 +i +is zero-padded to obtain the same image size; +A.4 +Parameter Settings +To compute the stacked-LDA filters in our experiments in the main paper, we set the number of positive samples +(Npositives) to 2, while the number of negative samples (Nnegatives) was 32. The tolerance (tol) in Algorithm 2 was +set to zero. We used the LDA classifier with the one-versus-all decomposition method. +13 + diff --git a/VtFJT4oBgHgl3EQf3y2A/content/tmp_files/load_file.txt b/VtFJT4oBgHgl3EQf3y2A/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..37c5e26f6ef9a7311bfdb0363b19524b24ff18a6 --- /dev/null +++ b/VtFJT4oBgHgl3EQf3y2A/content/tmp_files/load_file.txt @@ -0,0 +1,652 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf,len=651 +page_content='DEEP RESIDUAL COMPENSATION CONVOLUTIONAL NETWORK WITHOUT BACKPROPAGATION A PREPRINT Mubarakah M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' Alotaibi Department of Computer Science University of York, Taif University York, UK, Taif, Saudi Arabia mmma512@york.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content='ac.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content='uk Richard C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' Wilson Department of Computer Science University of York York, UK richard.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content='wilson@york.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content='ac.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content='uk January 30, 2023 ABSTRACT PCANet and its variants provided good accuracy results for classification tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' However, despite the importance of network depth in achieving good classification accuracy, these networks were trained with a maximum of nine layers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' In this paper, we introduce a residual compensation convolutional network, which is the first PCANet-like network trained with hundreds of layers while improving classification accuracy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' The design of the proposed network consists of several convolutional layers, each followed by post-processing steps and a classifier.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' To correct the classification errors and significantly increase the network’s depth, we train each layer with new labels derived from the residual information of all its preceding layers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' This learning mechanism is accomplished by traversing the network’s layers in a single forward pass without backpropagation or gradient computations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' Our experiments on four distinct classification benchmarks (MNIST, CIFAR-10, CIFAR-100, and TinyImageNet) show that our deep network outperforms all existing PCANet-like networks and is competitive with several traditional gradient-based models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' Keywords PCANet · DCTNet · DCCNet · CCANet · OSNet · LDANet · Multi-layer PCANet · classification 1 INTRODUCTION 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content='1 Background and Related Works Deep learning is a non-task-specific learning technique that uses hierarchical structures to automatically learn represen- tations from raw data [1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' Since Alexnet [14] won the 2012 ImageNet challenge, convolutional neural networks (CNNs) have been widely used for image classification with great success.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' VGG [19], ResNet [10] and Network in network [16] are a few examples of standard CNNs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' Despite their success, CNNs are usually trained with a large number of parameters, requiring intensive parameter updates and a lot of data for training, which might increase the computational cost even with GPU-equipped computing resources [8].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' Chan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' [3] presented PCANet as an alternative to deep CNNs for classification tasks on small datasets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' The network structure comprises two cascaded principal component analysis (PCA) layers followed by binary hashing, block-wise histogram and a classifier.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' Unlike CNNs, PCANet learns its filter bank in a non-iterative layer-by-layer fashion through PCA applied to image-based patches.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' This training mechanism provides a faster training time advantage to PCANet over conventional CNNs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' With its simple architecture, PCANet has achieved state-of-the-art performance across several datasets, including MNIST, extended Yale B, AR and FERET.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' The success of PCANet has inspired a family of related strategies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' Generally speaking, PCANet-related research has fallen into one of two categories: those focusing on improving the features representation process or those attempting to increase network depth.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' The work in this paper fits within the second category.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content='11663v1 [cs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content='CV] 27 Jan 2023 arXiv Template A PREPRINT In an effort to enhance PCANet’s feature representation, several articles studied networks that maintained PCANet’s fundamental structure while producing different features using different convolutional filters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' DCTNet [18], CCANet [20] and ICANet [22] are examples of PCANet-like networks that create their filter banks using unsupervised approaches.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' The LDANet [3], DCCNet [6] and OSNet [7] are a few examples of those that use supervised approaches to produce their filter banks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' DFSNet [8] is a good example of a network that uses semi-supervised filters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' In order to increase the network depth, several studies have attempted to address PCANet’s primary issue, the features explosion problem, which limits its depth to only two layers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' The block-wise histogram is one factor that contributes to this problem, as the number of bins required to calculate the histogram features grows exponentially with the number of filters in the second stage.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' Fan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' [5] significantly reduced PCANet’s features by replacing the histogram pooling with second-order pooling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' The per-channel convolution mechanism is another factor that contributes to the increasing dimensionality problem in PCANet.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' PCANet+ [17] provided an alternative solution to this issue by proposing a filter ensemble mechanism that aggregates the feature maps over all channels, similar to CNNs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' By adopting CNN-like filters, as in [17], replacing PCANet’s binarisation step with the z-score method and using second-order pooling and late fusion, Alotaibi and Wilson [2] were able to expand PCANet depth to nine layers and outperform the original design.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' In contrast to prior studies that aimed to increase network depth by tackling the dimensionality issue, our objective is to explore the design of a hundreds-layer PCANet-like network by optimising the classification process at each layer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content='2 Proposed Network In this article, we present a residual compensation convolutional learning framework to achieve accuracy from a considerably increased depth while simultaneously correcting network errors as we traverse it.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' The proposed network inherits the simplicity of PCANet-like networks and is trained in a single forward-pass without gradient computations or backpropagation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' A comprehensive description of the network architecture, along with its training procedures, is described in Section 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' The experimental section (3) consists of three subsections.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' In Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content='2, we evaluate the performance of the proposed network on MNIST, CIFAR-10, CIFAR-100 and TinyImageNet against gradient-based and non-gradient architectures without data augmentation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content='3 examines the influence of several network parameters, such as the number of filters (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content='1) and the learning rate (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content='2), on the accuracy of the proposed model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' The final subsection (Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content='4) addresses the use of data augmentation to improve the model’s accuracy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' Finally, the conclusions and future works are discussed in Section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' 2 NETWORK ARCHITECTURE 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content='1 Problem Formulation Consider a classification problem with N training images X(1) ∈ Rm×n×d×N, where m and n are the images’ spatial dimensions, and d ∈ {1, 3} is the number of channels for greyscale or colour images.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' Let T represent the C classes to which the images originally belonged.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' The objective of our deep residual compensation convolution network (ResCNet) is to construct a PCANet-like network that achieves high accuracy from a considerable network depth and is trained without using gradient descent or backpropagation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' Precisely, the network structure should be structured hierarchically such that, as network depth increases, succeeding layers compensate for the classification errors of previous layers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' By combining the predicted probabilities of the network layers, the model should obtain a high accuracy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content='2 Design Overview The network architecture, as shown in Figure 1, consists of multiple convolutional layers, each followed by post- processing steps and a linear discriminant analysis (LDA) classifier.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' Each convolutional layer, except the first layer, receives as input the concatenation of its previous layer’s outputs and the original features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' After post-processing the feature maps of the first layer, an LDA classifier is trained to categorise the extracted features using the original classes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' By contrast, the LDA classifiers of the subsequent layers, referred to as compensation layers, are trained using new classes learnt from the residual information of the preceding layers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' In fact, each layer produces two outputs ( ˜Y (i) and T (i+1) in Figure 1, where i represents the ith layer).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' The first provides the predicted probabilities of the network at that layer, whereas the second represents the new classes produced for training the subsequent layer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' To produce the network’s outputs in each layer ( ˜Y (i) in Figure 1), the predicted probabilities of that layer are added to or subtracted from those of its preceding layers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' This combination mechanism maintains the network’s predicted probabilities of being in the range of between 0 and 1 and reduces the error of preceding layers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' Section 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content='3 describes in detail the network’s components, including the convolutional layers (Section 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content='1), post-processing procedures (Section 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content='2) and residual mechanism (Section 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content='3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' 2 arXiv Template A PREPRINT filters filters + filters + Post-processing Residual mechanism Post-processing Post-processing Residual mechanism Residual mechanism Figure 1: The deep residual compensation convolutional network architecture.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' T (1) represents the original classes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content='3 Network Components 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content='1 Convolutional Layers Let X(1) ∈ Rm×n×d×N represent N training images, T is their C classes, and O(i) ∈ Rm×n×di×N represents the feature maps produced by the ith layer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' The i + 1 layer receives as input the output of the ith layer concatenated with the original features;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' this input is represented as X(i+1) ∈ Rm×n×(d+di)×N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' We then divide the input images (X(i+1)) into patches of k × k size and a stride of 1 pixel, where k is the filter size and is a user-predefined parameter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' The resulting matrix is P ∈ Rk2(di+d)× ˜m˜nN, where ˜m = (m − k) + 1, ˜n = (n − k) + 1 and m and n are the width and the height of the images, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' The filter learning process relies on applying any non-gradient-based method to the extracted local patches P and collecting their weights to represent the filters used in the i + 1 layer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' The PCA filter bank by Low et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' [17] is an example of such filters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' The authors first centralised the extracted patches to their mean to obtain ¯P ∈ Rk2(di+d)× ˜m˜nN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' They then applied PCA to the centralised patches, where the principal components of ¯P ¯P T can be computed by solving the following optimisation problem: min V ∈R(k2)×(di+d) || ¯P − V V T ¯P||2 F , s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' V T V = I, (1) where I represents the identity matrix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' The convolutional output of the i + 1 layer can then be expressed as follows: O(i+1) = Xi+1 ∗ W (i) ∈ Rm×n×di+1, (2) where di+1 represents the number of filters in layer i + 1, X(i+1) is the input images that are zero padded to obtain the same image size outputs, ∗ represents the convolution operation, and W (i) denotes the PCA filters expressed as follows: W (i) = mat k×k×(di+d)qs, s = 1, 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' , di+1, (3) where qs is the sth principal eigenvector of ¯P ¯P T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' The stacked-LDA filter bank is another example of filters generated without relying on gradient descent or backpropaga- tion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' Appendix A discusses these filters in detail.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' These filters are computed using an iterative process that involves selecting a subset of the localised patches P and then applying an LDA classifier to train the selected patches with their classes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' The algorithm searches for patches with separable classes and accumulates their weights, which are subsequently used as stacked-LDA filters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' This article focuses mainly on the network architecture rather than investigating the filter type used.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' In our experiments (Section 3), we use semi-supervised stacked-LDA filters created by combining 50% of the supervised stacked-LDA filters with 50% of the unsupervised PCA filters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' However, different filter types can be employed, such as those used by Ng and Teoh [18], Yang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' [20] and Gatto et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' [8].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' 3 arXiv Template A PREPRINT 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content='2 Post-processing Steps The feature maps of each convolutional layer are post-processed using a ReLU non-linear activation function, followed by second-order pooling and a multi-level spatial pyramid pooling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' The ReLU function is applied to the feature maps of each layer but not between the layers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' The feature maps are then pooled locally using the second-order pooling mechanism described by Alotaibi and Wilson [2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' Let X(i) j ∈ Rm×n×di denote the jth activations map in the ith layer, where m and n are the spatial dimensions of the images, and di represents the number of filters in layer i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' The calculation of the second-order pooling starts by dividing the tensors of X(i) j into patches of the same size, which could be overlapped, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' (r × c).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' Each of these patches is then normalised using the z-score method, defined as z = x−µ σ , where µ and σ represent the mean and the standard deviation of the data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' Next, the channel-wise covariance matrix of each patch, after reshaping each of them to rc × di, is computed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' Because of the symmetry property of the covariance matrix, the number of second-order features is calculated as the number of patches×( di×di 2 + di 2 ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' The multi-level spatial pooling is then used to pool the second-order features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' The multi-level spatial pyramid pooling calculation is identical to that implemented by Chan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' [3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' Again, different post-processing procedures can be utilised;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' however, in our experiments (Section 3), we found these steps to be the most effective for achieving high accuracy in the databases we used.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content='3 Residual Mechanism This mechanism is non-iterative;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' we add layers sequentially.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' Each layer is trained in a single pass with new labels learnt from the residual information of all its previous layers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' The first layer’s features are classified using an LDA classifier trained with the original classes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' To produce the first layer’s posteriors ( ˜Y (1) in Figure 1), we use the following sigmoid function on the output of the LDA classifier: S(x) = 1 1 + e−x/σ , (4) where σ is the sigmoid scale parameter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' To identify the new labels required to train the second layer (T (2) in Figure 1), we first find the residual errors between the current layer’s predicted outputs ( ˜Y (1)) and the original classes (Y ∈ RN×C) in one-hot encoding, as follows: R(1) = λY − ˜Y (1), (5) where 0 ≤ λ ≤ 1 controls the maximum likelihood a class may attain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' T (2) can then be defined as the classes with the maximum absolute residual errors, as follows: T (2) i = class(|R(1) ij |, ∀j) i = [1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' , N], (6) where class(x) denotes the name of the class whose value has the largest residual error magnitude.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' Since our network is developed primarily for classification tasks, it concentrates on labelling rather than regressing the correction of posteriors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' The second layer, as shown in Figure 1, receives an input X(2) ∈ Rm×n×(d+d1)×N that is a concatenation of the first layer’s feature maps and the original images.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' After finding the second layer’s features, our objective is to learn a correction term based on the second layer classification results, which is then added to the posteriors of the first layer ( ˜Y (1)) to provide more accurate predictions ( ˜Y (2)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' The correction term can either be positive or negative to maintain the network probabilities at the second layer ( ˜Y (2)) to have values in the range of 0 to λ (Equation 5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' In other words, after training the second layer’s LDA classifier using the new classes (T (2)), the posteriors acquired can be added to or subtracted from the first layer’s posteriors to correct them.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' The indicator variable (s(2)) indicates whether to add to or subtract from the first layer’s posteriors and is defined as the signum function of the maximum absolute residual errors of the previous layers, as follows: s(2) i = sign(R(1) i∗ ), i∗ = argmaxi |R(1) i |.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' (7) When the indicator values are positive, it indicates that the probabilities of the first and second layers are added, and when they are negative, the probabilities of the second layer are subtracted from those of the first.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' Consider a classification task of three classes A, B and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' Assume that, given a single image whose actual class is A, the predicted probabilities of the first layer using this image are 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content='4, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content='6 and 0 for the three classes A, B and C, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' To add a second layer, the residual error using λ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content='8 (Equation 5) is computed as 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content='4, −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content='6 and 0 for each of the three classes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' Hence, the new label to train the second layer for this image is B, as it has the largest magnitude, and the indicator is −1 because the maximum absolute residual error has a negative sign.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' Assume that the second layer’s features are trained using class B and provided perfect prediction with probabilities of 0, 1 and 0 for the three classes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' Because 4 arXiv Template A PREPRINT the indicator value is negative, we subtract them from the predicted outputs of the first layer, resulting in 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content='4, −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content='4 and 0 for the three classes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' Consequently, we reduce the error, and the predicted class of the second layer is A, which corresponds to the actual class of the image.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' To implement that and generalise it for the test set, as we do not know the classes, we divide the database into positive and negative samples based on their indicator variable values.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' The positive samples have positive indicator values, whereas the negative samples have negative indicator values.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' We then train two LDA classifiers for each layer;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' one is trained on the negative samples using {T (2) n ⊂ T (2) : s(2) = −1}, and the other is trained with the positive samples and their classes {T (2) p ⊂ T (2) : s(2) = 1}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' The negative classifier is trained by assuming that each class in the positive samples is a negative class (its class is zero).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' Similarly, during the training of the positive classifier, each class in the negative samples is treated as a negative class.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' Thus, both classifiers have access to all training data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' The network’s outputs at the second layer ( ˜Y (2)) can then be expressed as follows: ˜Y (2) = ˜Y (1) + α[np N ˜Yp (2) − nn N ˜ Yn (2)], (8) where ˜ Yn (2) and ˜Yp (2) are the N predictions made by the classifiers trained on negative and positive samples, nn and np denote the number of negative and positive examples, respectively, N is the total number of training samples and α is a learning rate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' The learning rate, similar to that used in neural networks, is introduced to reduce oscillations and provide faster convergence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' However, the learning rate in our network also acts as a weight to integrate the probabilities of multiple layers, similar to weighted sum techniques.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' To add more layers, we repeat the steps used to add the second one.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' Algorithm 1 summarises the procedures of the network’s training with L layers, assuming that the second-order features are known.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' To add layer i, the new labels T (i) and indicator variable (s(i)) are computed based on the previous layer’s residual error R(i−1), as shown in Equation 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' The network’s output at that layer can then be defined using Equation 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' In general, for deeper residual compensation layers, the new classes (T (L)) learnt from the residual errors of the previous layers can be defined as follows: T (L) = class(|R(L−1)|) = class(|Y − ˜Y (L−1)|) = class(|Y − [ ˜Y L−2 + α N (n(L−2) p ˜Y (L−2) p − n(L−2) n ˜Y (L−2) n )]) = .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' = class(|Y − [ ˜Y (1) + α N L−1 � i=2 (ni p ˜Y i p − ni n ˜Y i n)]), (9) where class(x) is the name of the class whose value has the largest residual error magnitude, Y is the original classes in one-hot encoding, ni p and ni n are the number of positive and negative samples in layer i, respectively, and N denotes the total number of samples in the database.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' 3 EXPERIMENTS 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content='1 Databases We used four standard benchmarks in our experiments: CIFAR-10 [13], CIFAR-100 [13], MNIST [4] and TinyImageNet [15].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' The MNIST database comprises 60,000 training examples and 10,000 test images of size 28 × 28, drawn from the same distribution, normalised and centred in a fixed-size image.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' The CIFAR-10 database consists of 10 classes with 50,000 images for training and 10,000 test images.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' The images of size 32 × 32 × 3 have a low resolution with different poses and angles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' CIFAR-100 is similar to CIFAR-10 but with 100 classes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' The TinyImageNet database consists of 100,000 training images of size 64 × 64 × 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' The images are divided into 200 categories, with 500 images each.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' The validation and the test sets contain 10,000 images each, with 50 images per class.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' The test set is not labelled, and our experiments’ performance is reported on the validation set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content='2 Image Classification without Data Augmentation In this section, we evaluate the proposed network on the MNIST, CIFAR-10, CIFAR-100 and TinyImageNet databases (Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content='1) without data augmentation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' To determine the network parameters, we examine a variety of configurations, each of which has different parameters, and report the results of the configuration that works the best.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' 5 arXiv Template A PREPRINT Algorithm 1 Deep Residual Compensation Convolutional Network Training Input: Second-order features: {F (i), i = [1, 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' , L]}, L number of layers, C classes T (1) ∈ RN×1, learning rate: α and λ to determine the highest probability a class can reach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' Output: Model’s accuracy: accuracy 1: Generate Y ∈ RN×C, the one-hot encoding of T (1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' 2: i ← 1 and ˜Y (0) ← 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' 3: s(i) = 1N×1 {fill the first layer’s indicator variable with 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' } 4: while i < L do 5: if i > 1 then 6: Find the residual errors, new classes and indicator variable, as follows: R(i−1) = λY − ˜Y (i−1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' T (i) j = class(|R(i−1) jk |, ∀k), s(i) j = sign(R(i−1) j∗ ), j∗ = argmaxj |R(i−1) j |, j = [1, 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' , N].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' (10) 7: end if 8: Find F (i) n ⊂ F (i) and T (i) n ⊂ T (i), for which their indicator values are negative.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' 9: Find F (i) p ⊂ F (i) and T (i) p ⊂ T (i), for which their indicator values are positive.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' 10: if T (i) p ̸= ∅ then 11: L1 = LDA(F (i) p , T (i) p ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' 12: ˜Y (i) p = prediction(L1, F (i)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' 13: else 14: ˜Y (i) p ← 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' 15: end if 16: if T (i) n ̸= ∅ then 17: L2 = LDA(F (i) n , T (i) n ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' 18: ˜Y (i) n = prediction(L2, F (i)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' 19: else 20: ˜Y (i) n ← 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' 21: end if 22: Compute the current’s layer output ˜Y (i), as ˜Y (i) = ˜Y (i−1) + α[np N ˜Yp (i) − nn N ˜ Yn (i)], (11) where np and nn represent the number of positive and negative samples, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' 23: i ← i + 1 24: end while 25: Compute the model’s accuracy at layer L using ˜Y (L).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content='1 Parameter Settings The optimal settings identified for the MNIST, CIFAR-10, CIFAR-100 and TinyImageNet databases are listed in Table 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' All architectures, except the MNIST database, used 3 × 3-pixel filters created by combining PCA [17] and stacked-LDA filters (Appendix A) at a 50% ratio.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' The MNIST database used 13 × 13 PCA filters in its first layer and 3 × 3 PCA filters in its residual layers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' In this section and throughout the rest of this article, we used the same number of filters for all layers and stopped adding layers when the training error rate approached 0%.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' Therefore, the number of filters per layer is 60 in the MNIST’s architecture, 50 in the CIFAR’s architectures and 40 in TinyImageNet’s architecture.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' The number of layers beyond which an accuracy gain was no longer observed was 937 for the CIFAR-10 database, 436 for the CIFAR-100 database, 231 for the MNIST database and 512 for the TinyImageNet database.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' We utilised 7 × 7-block second-order pooling for MNIST with a stride of four pixels, 16 × 16 for CIFAR-100 with a four-pixel stride, 16 × 16 for CIFAR-10 with a one-pixel stride, and 32 × 32 for TinyImageNet with an eight-pixel stride.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' In all architectures, we pooled the second-order features using three-level spatial pyramid pooling of 4 × 4, 2 × 2 and 1 × 1 subregions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' The only data preprocessing was min-max normalisation applied to the input of each convolutional layer, and probabilities were retrieved from all datasets except MNIST using the sigmoid function with a scale value of 16 (Equation 4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' In the 6 arXiv Template A PREPRINT MNIST database, we used the following softmax function to generate the probabilities in each layer: softmax(yi) = exp(βyi) �C j=1 exp(βyj) , (12) where β is assigned to 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content='001, C denotes the number of classes, and y represents the outputs of the LDA classifier.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' During the training phase, λ (Equation 5) was set to 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content='8, and the learning rate was fixed at α = 1 for the MNIST database and α = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content='4 for the CIFAR-10 database.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' The remaining databases used an initial learning rate of 1, which was dropped by 10% every 10 layers as follows: α = α − 10 100α.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' (13) We stopped reducing the learning rate when it reached 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content='387 and 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content='478 for CIFAR-100 and TinyImageNet databases, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' Table 1: Network architectures using the MNIST,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' CIFAR-10,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' CIFAR-100 and TinyImageNet databases The MNIST database: 28 × 28 × 1 Filter size SOP Output size 13 × 13 × 1 × 60 7 × 7,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' Stride = 4 28 × 28 × 60 [3 × 3 × 60 × 60] × 230 7 × 7,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' Stride = 4 28 × 28 × 60 The CIFAR-10 database: 32 × 32 × 3 Filter size SOP Output size 3 × 3 × 3 × 50 16 × 16,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' Stride = 1 32 × 32 × 50 [3 × 3 × 50 × 50] × 936 16 × 16,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' Stride = 1 32 × 32 × 50 The CIFAR-100 database: 32 × 32 × 3 Filter size SOP Output size 3 × 3 × 3 × 50 16 × 16,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' Stride = 4 32 × 32 × 50 [3 × 3 × 50 × 50] × 435 16 × 16,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' Stride = 4 32 × 32 × 50 The TinyImageNet database: 64 × 64 × 3 Filter size SOP Output size 3 × 3 × 3 × 40 32 × 32,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' Stride = 8 64 × 64 × 40 [3 × 3 × 40 × 40] × 511 32 × 32,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' Stride = 8 64 × 64 × 40 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content='2 Performance Analysis Table 2 reports the accuracy of ResCNet compared with some gradient-based and non-gradient-based networks on the MNIST, CIFAR-10, CIFAR-100 and TinyImageNet databases without data augmentation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' The non-gradient-based models reported in Table 2 are the best-performing PCANet-like models from the perspective of the datasets we considered.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' Such networks include PCANet [3], LDANet [3], DFSNet [8] and Multi-layer PCANet [2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' To show where our network fits in the literature of commonly used networks, we compared the performance achieved by our network to those obtained by standard gradient-based convolutional networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' Maxout [9], Network in network [16], stochastic pooling [21] and ResNet [10] are the gradient-based networks listed in the table.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' The accuracy of 164-ResNet with pre-activation was reported by Huang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' [11], while the results of ResNet-18 and ResNet-34 were reported by Jeevan [12].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' According to Table 2, for the MNIST database, our model with 231 layers achieved an accuracy of 99.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content='52%, making it superior to all non-gradient-based models, such as PCANet, Multi-Layer PCANet and LDANet, in terms of accuracy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' It improved on the best results of the non-gradient-based networks by roughly 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content='12%.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' In addition, the findings presented in the table demonstrated that our network produced results comparable with standard gradient-based networks, such as the Maxout network, Network in network and stochastic pooling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' As shown in Table 2, for the CIFAR-100 database, the accuracy attained by our proposed network was the highest among all the networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' The accuracy of 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content='91% was around 8% higher than that of Multi-Layer PCANet and stochastic pooling, more than 9% higher than that of ResNet-110 and ResNet-32, 14% higher than the original PCANet and more than 2% higher than that of Maxout and ResNet with stochastic depth.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' Moreover, the results achieved by our network were roughly equivalent to those obtained by ResNet with 164 layers and Network in network using the dropout technique.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' For TinyImageNet, as shown in Table 2, our network achieved the highest accuracy among all the networks without any data augmentation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' This performance was around 2% higher than that of the ResNet-34 model and 1% better than that of the ResNet-18 model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' 7 arXiv Template A PREPRINT According to the results shown in Table 2 for the CIFAR-10 database, our model outperformed PCANet and all of its variants, in terms of accuracy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' The accuracy of the proposed network was around 10% better than the performance achieved by the original PCANet and 6% higher than that of Multi-Layer PCANet.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' Although ResCNet’s accuracy was around 1% lower than that of the Maxout network and 2% worse than that of Network in network, our model achieved accuracy comparable with that of ResNet-32, 1% higher than ResNet-18 and ResNet-110, and 3% greater than stochastic pooling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' In general, ResCNet with more than 900 layers showed an excellent performance of 87.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content='54% on the CIFAR-10 database with no data augmentation, making it the first PCANet-like network to reach such a number of layers and such a performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' In general, Table 2 demonstrates that ResCNet outperformed all PCANet-like networks in terms of accuracy and the number of layers required for training.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' It also shows that our model, which is trained without complicated non-linear functions or regularisation techniques, achieves accuracy similar to that of standard convolutional networks such as Network-in-Network, Maxout, stochastic pooling, and several residual networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' Even though the number of layers in our network is relatively large, these layers are added sequentially, one after the other, without iterations or intensive parameter updates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' In addition, we used a small number of filters in each layer for all of our architectures, with no configuration exceeding 60 filters per layer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' To the best of our knowledge, ResCNet is the first non-gradient-based propagation-free network to be trained with hundreds of layers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' Table 2: Accuracy (%) of ResCNet compared with different methods on the CIFAR-10 (C10), CIFAR-100 (C100), MNIST and TinyImageNet (T200) databases without data augmentation Non-gradient-based networks Method C10 C100 MNIST T200 PCANet-2 77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content='14 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content='62 99.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content='34 30 LDANet 78.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content='33 – 99.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content='38 – DFSNet-3 81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content='06 – – – Multi-Layer PCANet 81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content='72 57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content='86 99.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content='40 40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content='87 ResCNet (ours) 87.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content='54 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content='9 99.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content='52 44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content='37 Gradient-based networks Method C10 C100 MNIST T200 Stochastic pooling 84.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content='87 57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content='49 99.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content='53 – Maxout network, with dropout 88.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content='32 61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content='43 99.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content='55 – Network in network, with dropout 89.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content='59 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content='32 99.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content='53 – Network in network, without dropout 85.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content='49 – – – 110 ResNet 86.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content='82 55.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content='26 – – ResNet stochastic depth 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content='20 – – 164-ResNet (pre-activation) 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content='42 – – ResNet-18 86.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content='29 59.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content='15 – 43.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content='02 ResNet-32 87.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content='97 56.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content='05 – 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content='65 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content='3 Network Parameters This section explains how to configure ResCNet’s parameters by analysing their impact on the model’s accuracy using the CIFAR-10 database.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' The experiments in this section are divided into two subsections, as follows: Experiment 1: Testing the effect of the number of filters on the accuracy of ResCNet Experiment 2: Studying the impact of learning rate on the model’s performance 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content='1 Number of Filters This experiment aimed to determine how changing the number of filters affects the accuracy of ResCNet.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' For this, we designed two networks with the same settings but different numbers of filters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' The first, referred to as ResCNet-30, used 30 filters in each of its layers, while the second (ResCNet-50) used 50 filters in all of its layers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' The two networks followed the same parameters settings as those described in Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content='2 for the CIFAR-10 database.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' However, we used an 8x8 second-order pooling block size.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' Figure 2 shows the accuracy of training and testing ResCNet-30 and ResCNet-50 on the CIFAR-10 database without data augmentation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' According to the figure, both networks achieved the same level of accuracy, although ResCNet-30 required more layers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' ResCNet-50 obtained a training accuracy of 100% at layer 127, while ResCNet-30 achieved 8 arXiv Template A PREPRINT 100% at layer 781.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' The testing accuracy for both 127- and 781-layer networks was around 86.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content='28%.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' The best testing accuracy of 86.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content='33% was obtained with 100-layer ResCNet-50 and 500-layer ResCNet-30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' The findings in this section suggested that, unlike previous PCANet-like networks in which the number of filters in each layer should be determined in advance, we could obtain the same performance by employing any number of filters based on the available resources.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' However, we needed more filters in each layer to achieve the desired performance faster.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' The results in this section also showed that the second-order pooling block size affected the accuracy of ResCNet.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' For instance, the highest accuracy reached for the CIFAR-10 database (87.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content='54% in Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content='2) was around 1% better than that achieved in this section (86.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content='33%), with the only difference between the models being the modification of the second-order pooling block size.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' 0 200 400 600 800 Layers 75 80 85 90 95 100 Accuracy (%) ResCNet-30 Training Testing 0 50 100 Layers 75 80 85 90 95 100 Accuracy (%) ResCNet-50 Training Testing Figure 2: The accuracy (%) of ResCNet-30 and ResCNet-50 on the training and testing sets of the CIFAR-10 database with no data augmentation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content='2 Learning Rate This experiment aimed to show the impact of the learning rate (α in Equation 9) on ResCNet’s accuracy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' Similar to neural networks, the learning rate is introduced to prevent oscillations and promote faster convergence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' We designed two networks with the same parameters but different learning rates and evaluated them on the CIFAR-10 database.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' Both networks used 50 filters in all of their layers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' The first network (ResCNet-50–1) was trained with a learning rate of α = 1, whereas the second (ResCNet-50-0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content='4) was trained using α = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' The other network’s parameters were the same as those described in Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content='2 for the CIFAR-10 database.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' Table 3 compares the accuracy of ResCNet-50–1 with that of ResCNet-50–0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content='4 using a different number of layers on the CIFAR-10 database.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' The training accuracy of ResCNet-50–1 reached 100% at layer 384, with a testing accuracy of 86.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content='91%.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' On the other hand, ResCNet-50–0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content='4 obtained a 100% training accuracy at layer 970, with a testing accuracy of 87.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content='41%.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' The optimal testing accuracy of ResCNet-50–1 was achieved at layer 208, with 87.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content='2% testing accuracy, while ResCNet-50–0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content='4 obtained its best performance of 87.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content='54% at layer 937.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' The results achieved in this section demonstrated that the learning rate α = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content='4 was small, as we needed more than 600 layers for the network to reach its convergence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' If the training error rate oscillates, which is not the case in CIFAR-10, the learning rate must be decreased to avoid oscillations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content='4 Image Classification with Data Augmentation This section aims to enhance the classification accuracy of ResCNet using data augmentation on three databases, namely, CIFAR-10, CIFAR-100 and TinyImageNet.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' The ResCNet architectures in this section shared the same design and parameters as those in Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content='2 but had 490, 507 and 480 layers for the CIFAR-10, CIFAR-100 and TinyImageNet 9 arXiv Template A PREPRINT Table 3: Accuracy (%) on the CIFAR-10 database test set using ResCNet-50–1 and ResCNet-50–0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content='4 Network # Layers Accuracy (%) ResCNet-50–1 348 86.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content='91 ResCNet-50–1 208 87.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content='02 ResCNet-50–0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content='4 970 87.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content='41 ResCNet-50–0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content='4 937 87.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content='54 ResCNet-50–0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content='4 600 87.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content='09 databases, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' For CIFAR-10, we modified the pooling stride to four pixels and re-implemented a 193-layer ResCNet without data augmentation for adequate comparison.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' Table 4 compares the accuracy of ResCNet with and without data augmentation on the CIFAR-10, CIFAR-100 and TinyImageNet databases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' With horizontal flipping being the only data augmentation used, the accuracy of ResCNet was enhanced across all three databases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' This improvement was around 1% for the TinyImageNet database, 2% for the CIFAR-10 database and 3% for the CIFAR-100 database.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' For the CIFAR-10 database, the accuracy achieved with data augmentation was also 1% higher than the best result (87.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content='54%) reported in Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' This section’s results showed the importance of data augmentation for improving the model’s generalisation and accuracy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' Incorporating other data augmentation types are needed to increase the model’s accuracy further.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' Since ResCNet is not currently being trained in a batch-based manner, adding more data augmentation types is challenging as they need to be computed in advance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' In future works, we will investigate the possibility of converting the current work into a batch-based system as in gradient-based models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' Table 4: Accuracy (%) of ResCNet on the CIFAR-10, CIFAR-100 and TinyImageNet databases Data augmentation CIFAR-10 CIFAR-100 TinyImageNet \x17 86.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content='82 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content='9 44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content='37 \x13 88.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content='35 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content='8 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content='91 4 CONCLUSIONS In this article, we proposed ResCNet, a PCANet-like network that trains each layer with new labels derived from the residual data of all preceding layers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' Our proposed network increased the network depth to more than 950 layers, making it the first non-gradient-based propagation-free network to achieve this number.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' Moreover, ResCNet’s performance was comparable to that of standard gradient-based models and superior to PCANet and all of its variants.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' Increasing the size of the databases by one type of data augmentation resulted in a considerable improvement in accuracy, particularly in CIFAR-100, where it reached 3%.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' However, increasing the number of samples leads to higher computational costs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' To overcome this issue and in future work, we will investigate the possibility of transforming the current network into a batch-based system, similar to the neural network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' In addition, the network may be developed further by modifying the filter types or by using other metrics to define the residual errors and, thus, the new classes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' References [1] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' Alom, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' Taha, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' Yakopcic, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' Westberg, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' Sidike, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' Nasrin, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' Van Esesn, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' Awwal, and V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' Asari.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' The history began from alexnet: A comprehensive survey on deep learning approaches.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' arXiv Preprint arXiv:1803.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content='01164, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' [2] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' Alotaibi and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' Wilson.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' Multi-layer pca network for image classification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' In Joint IAPR International Workshops on Statistical Techniques in Pattern Recognition (SPR) and Structural and Syntactic Pattern Recognition (SSPR), pages 292–301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' Springer, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' [3] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content='-H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' Chan, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' Jia, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' Gao, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' Lu, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' Zeng, and Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' Ma.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' Pcanet: A simple deep learning baseline for image classification?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' IEEE Transactions on Image Processing, 24(12):5017–5032, 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' [4] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' Deng.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' The mnist database of handwritten digit images for machine learning research [best of the web].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' IEEE Signal Processing Magazine, 29(6):141–142, 2012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' [5] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' Fan, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' Hong, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' Tian, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' Ming, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' Pietikäinen, and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' Zhao.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' Pcanet-ii: When pcanet meets the second order pooling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' IEICE Transactions on Information and Systems, 101(8):2159–2162, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' 10 arXiv Template A PREPRINT [6] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' Gatto and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' dos Santos.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' Discriminative canonical correlation analysis network for image classification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' In 2017 IEEE International Conference on Image Processing (ICIP), pages 4487–4491.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' IEEE, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' [7] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' Gatto, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' dos Santos, and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' Fukui.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' Subspace-based convolutional network for handwritten character recognition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' In 2017 14th IAPR international conference on document analysis and recognition (ICDAR), volume 1, pages 1044–1049.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' IEEE, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' [8] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' Gatto, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' Souza, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' dos Santos, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' Fukui, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' S Júnior, and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' dos Santos.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' A semi-supervised convolutional neural network based on subspace representation for image classification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' EURASIP Journal on Image and Video Processing, 2020(1):1–21, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' [9] I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' Goodfellow, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' Warde-Farley, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' Mirza, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' Courville, and Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' Bengio.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' Maxout networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' In International Conference on Machine Learning, pages 1319–1327.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' PMLR, 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' [10] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' He, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' Zhang, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' Ren, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' Sun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' Deep residual learning for image recognition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 770–778, 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' [11] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' Huang, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' Liu, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' Van Der Maaten, and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' Weinberger.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' Densely connected convolutional networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 4700–4708, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' [12] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' Jeevan.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' Convolutional xformers for vision.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' arXiv Preprint arXiv:2201.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content='10271, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' [13] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' Krizhevsky, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' Hinton, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' Learning multiple layers of features from tiny images.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' 2009, 2009.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' [14] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' Krizhevsky, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' Sutskever, and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' Hinton.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' Imagenet classification with deep convolutional neural networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' Communications of the ACM, 60(6):84–90, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' [15] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' Le and X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' Yang.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' Tiny imagenet visual recognition challenge.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' CS 231N, 7(7):3, 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' [16] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' Lin, Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' Chen, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' Yan.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' Network in network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' arXiv preprint arXiv:1312.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content='4400, 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' [17] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content='-Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' Low, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content='-J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' Teoh, and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content='-A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' Toh.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' Stacking pcanet+: An overly simplified convnets baseline for face recognition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' IEEE Signal Processing Letters, 24(11):1581–1585, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' [18] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' Ng and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' Teoh.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' Dctnet: A simple learning-free approach for face recognition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' In 2015 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA), pages 761–768.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' IEEE, 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' [19] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' Simonyan and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' Zisserman.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' Very deep convolutional networks for large-scale image recognition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' arXiv Preprint arXiv:1409.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content='1556, 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' [20] X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' Yang, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' Liu, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' Tao, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' Cheng.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' Canonical correlation analysis networks for two-view image recognition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' Information Sciences, 385:338–352, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' [21] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' Zeiler and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' Fergus.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' Stochastic pooling for regularization of deep convolutional neural networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' arXiv preprint arXiv:1301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content='3557, 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' [22] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' Zhang, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' Geng, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' Wu, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' Zhou, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' Gao.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' Icanet: A simple cascade linear convolution network for face recognition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' EURASIP Journal on Image and Video Processing, 2018(1):1–7, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' 11 arXiv Template A PREPRINT A STACKED-LDA In this appendix, we introduce the stacked-LDA method, a model that stacks two Linear discriminant analysis layers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' The first layer of the model is trained using new labels that are produced by clustering similar instances of a certain class.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' The second layer, on the other hand, is trained using the original classes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' This general concept of the stacked-LDA model is described in Section A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' We propose an iterative method to create clusters of similar groups.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' The description of our method is explained in Section A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' In addition, Section A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content='3 discusses the procedures for using the stacked-LDA algorithm as convolution filters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' Finally, the parameter settings we used in our experiments in the main paper were described in Section A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content='1 General Concept The stacked-LDA algorithm relies on stacking two linear discriminant analysis (LDA) layers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' The first LDA layer is trained using labels created from the original classes, while the second LDA layer is trained using the actual labels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' To generate the classes of the first layer, similar samples from a given class are grouped to create a new class.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' For example, a class A with s instances can be subdivided into c new classes, each with a different number of instances.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' The minimum number of samples needed to represent a class is one.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' Suppose the first LDA can differentiate between the new classes ideally.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' In that case, the second LDA will receive the posteriors of the first LDA and be able to differentiate between the actual classes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' For instance, if class A is subdivided into A1 and A2, the subsequent LDA will identify that both A1 and A2 are members of class A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content='2 Stacked-LDA Algorithm Let X ∈ RN×M represent N training samples, each with M dimensions, and Target ∈ RN×1 represent their original classes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' Algorithm 2 describes the procedures for applying the stacked-LDA to the training set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' The algorithm starts by picking a random class c from the actual classes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' We then choose Npositive random instances that belong to class c and Nnegative random examples that are not in class c, where Npositive and Nnegative are the number of positive and negative samples and are user-predefined parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' Next, an LDA classifier discriminates between the positive and the negative samples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' After that, we check if our chosen random samples are linearly separable, which can be done by comparing the error rate of the LDA classifier with a small value of nearly zero called tolerance (tol) and is chosen by the user.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' If the LDA’s error rate is lower than the tolerance, we consider the positive class to be a new class and collect the weights of the LDA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' On the other hand, if the LDA’s error rate is greater than the tolerance, the chosen samples are not similar and cannot be grouped.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' Therefore, the algorithm proceeds to find other classes that separate the data accurately in the same way until reaching the required number of classes (N_classes).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' When algorithm 2 terminates, we can use the generated LDA’s weights to find the output of the first LDA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' Another LDA can then be applied to the output of the first LDA to classify them back using the original classes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content='3 Stacked-LDA Filters For N training samples X: {Xi ∈ Rm×n×c} with actual classes Target ∈ RN×1, where m and n are the spatial dimensions of the image and c is the number of channels, we compute the stacked-LDA filters as follows: 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' Given a single image Xi ∈ Rm×n×c and a filter size kL × kL, we extract and vectorise all overlapping patches of size kL × kL × c each.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' The resulting matrix is Pi ∈ R(k2 L×c)× ˜m˜n, where ˜m = (m − kL) + 1, ˜n = (n − kL) + 1 and m and n are the spatial dimensions of the image, respectively;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' We repeat the previous step for all images in the dataset to obtain P ∈ R(k2 L×c)× ˜m˜nN;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' We create a vector T ∈ R1× ˜m˜nN that contains the class labels of the patches.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' A single patch is assigned a label equivalent to the class of its full image;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' Using random samples and specific tolerance, we apply Algorithm 2 on P and T to obtain the stacked-LDA filters’ weights W L s and bias BL s ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' We can express the Stacked-LDA filters as follows: W L s = mat kL×kL×cqs, s = 1, 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' , dL, BL s = mat 1×1×cqs, s = 1, 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' , dL, (14) where dL is the number of filters chosen by the user, which is equivalent to the number of classes in Algorithm 2;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' 12 arXiv Template A PREPRINT Algorithm 2 Stacked-LDA Algorithm Input: Training set: X ∈ RN×M, where {xN i , xi ∈ RM}, original classes: Target ∈ RN×1, number of classes user wants to generate: N_classes, number of positive samples: Npositives, number of negative samples: Nnegatives and tolerance of performance user can afford: tol Output: LDA’s weights: weights ∈ RN×N_classes and LDA’s bias or constant: bias ∈ RN_classes 1: weights ← [ ].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' 2: bias ← [ ].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' 3: i ← 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' 4: while i < N_classes do 5: Pick a random class c from the Target.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' 6: Pick random Npositives samples from class c (Spositives).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' 7: Choose Nnegatives samples that are not in class c (Snegatives) randomly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' 8: Combine the negative and positive samples: S ← [Spositives, Snegatives].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' 9: T ← [ones(Npositives), zeros(Nnegatives)].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' 10: Find the linear discriminant analysis (LDA) between S and T: L = LDA(S, T).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' 11: Find the perfromance (ErrorRate) of S using L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' 12: if ErrorRate < tol then 13: weights ← [weights, LDA′sweights].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' 14: bias ← [bias, LDA′sbias].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' 15: i ← i + 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' 16: end if 17: end while 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' We convolve the original images with the filters as follows: XL i = XL−1 i ∗ W L s + BL s ∈ Rm×n×dL, (15) where s = 1, 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' , dL and XL−1 i is zero-padded to obtain the same image size;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content='4 Parameter Settings To compute the stacked-LDA filters in our experiments in the main paper, we set the number of positive samples (Npositives) to 2, while the number of negative samples (Nnegatives) was 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' The tolerance (tol) in Algorithm 2 was set to zero.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' We used the LDA classifier with the one-versus-all decomposition method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} +page_content=' 13' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/VtFJT4oBgHgl3EQf3y2A/content/2301.11663v1.pdf'} diff --git a/WdE2T4oBgHgl3EQfDgZf/content/tmp_files/2301.03625v1.pdf.txt b/WdE2T4oBgHgl3EQfDgZf/content/tmp_files/2301.03625v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..41fa10ef5324f568b6974252695b2d4fbc99a97b --- /dev/null +++ b/WdE2T4oBgHgl3EQfDgZf/content/tmp_files/2301.03625v1.pdf.txt @@ -0,0 +1,1269 @@ +N3AS-23-001 +Celestial Objects as Strongly-Interacting Asymmetric Dark Matter Detectors +Anupam Ray +ID +1, 2, a +1Department of Physics, University of California Berkeley, Berkeley, California 94720, USA +2School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455, USA +(Dated: January 11, 2023) +Non-annihilating dark matter particles, owing to their interactions with ordinary baryonic matter, +can efficiently accumulate inside celestial objects. For heavy mass, they gravitate toward the core of +the celestial objects, thermalize in a small core region, and eventually form tiny black holes via core +collapse, resulting destruction of the host objects. We demonstrate that the existence of a variety of +celestial objects provides stringent constraints on strongly-interacting heavy dark matter, a blind- +spot for the terrestrial dark matter detectors as well as for the cosmological probes. Celestial objects +with larger sizes and lower core temperatures, such as Jupiter, are the most optimal detectors to +probe the strongly-interacting heavy asymmetric dark matter. +I. +INTRODUCTION +The existence of dark matter (DM) has been firmly es- +tablished through its gravitational interactions with the +ordinary baryonic matter [1]. However, its identity still +remains a mystery. The ongoing terrestrial and cosmo- +logical searches are trying to pinpoint its mass and hy- +pothesized non-gravitational interactions with the bary- +onic matter [2, 3]. While some DM parameters have been +excluded by these searches, many well-motivated candi- +dates are yet to be explored. Strongly-interacting heavy +asymmetric DM is one such regime that remains largely +untested. +In this work, we demonstrate that celestial objects are +excellent laboratories to search for strongly-interacting +heavy asymmetric DM. More specifically, we point out +that the continued existence of a variety of stellar ob- +jects provides stringent exclusions on asymmetric DM +interactions over a wide mass range. We mainly answer +two basic questions: why celestial objects are superior to +search for strongly-interacting heavy asymmetric DM as +compared to the terrestrial detectors, and which celestial +objects are the most optimal targets? +Traditional direct detection experiments are not well- +suited for heavy DM searches. The flux of Galactic DM +at terrestrial detectors falls off linearly with higher DM +mass, and the constraints weaken accordingly. Whereas, +because of the enormous sizes of astrophysical objects +and their long lifetimes, the effective exposure time (∼ +M⊙ Gyr) is orders of magnitude larger than human-made +direct detection experiments (∼ kT yr), naturally provid- +ing sensitivity to the tiny flux of heavy DM. +Strongly-interacting DM is yet another blind-spot for +typical direct detection experiments. If DM particles in- +teract too strongly with baryonic matter, they lose a sig- +nificant fraction of their energies via interactions with the +material in the atmosphere as well as in the Earth-cover +above the underground detectors. +As a consequence, +a anupam.ray@berkeley.edu +they slow down significantly and can not deposit suffi- +cient amounts of energy for detection. Whereas, stellar +objects are ideal probes for strongly-interacting DM as +almost all the DM particles that transit through the stel- +lar objects get trapped, leading to a maximal sensitivity. +Accumulation of particle DM in celestial objects is a +novel astrophysical probe of non-gravitational interac- +tions of DM with the ordinary baryonic matter. +DM +particles from the galactic halo, owing to their inter- +actions with the stellar constituents, can down-scatter +to energies below the local escape energy, and become +gravitationally bound to the stellar objects [4–6]. These +bound DM particles lose more energy via repeated scat- +terings with the stellar constituents and eventually ther- +malize inside the stellar volume. Such bound thermalized +DM particles can become abundant inside the stellar vol- +ume if they have sufficiently strong interactions with the +baryonic matter, and possess intriguing phenomenologi- +cal signatures. +For non-annihilating DM, such bound DM particles +gradually accumulate, and for heavy DM masses, they +settle in a small region around the stellar core. +Be- +cause of their prodigious abundance in a tiny core vol- +ume, their number density within the stellar core be- +comes quite large, allowing dark core collapse and sub- +sequent black hole (BH) formation. This nascent BH, if +not too light, can rapidly swallow the host, and the exis- +tence of stellar objects provides stringent constraints on +non-annihilating DM interactions. +This scenario has been extensively studied in the con- +text of old neutron stars [7–27] primarily because of their +enormously large baryonic density as well as high com- +pactness. More specifically, neutron stars can capture a +significant number of DM particles from the Galactic halo +even for the low DM-nucleon scattering cross-sections as +the single-collision capture rate scales linearly with the +compactness (∼ M/R). Quantitatively, for a solar mass +neutron star with a typical radius of 10 km, the capture +rate is O(105) times larger than the Sun for low DM in- +teractions. Apart from that, because of their large bary- +onic density (∼ M/R3), the accumulated DM particles +thermalize in a tiny region around the core, implying a +arXiv:2301.03625v1 [hep-ph] 9 Jan 2023 + +2 +huge core-density favorable for transmutation. This indi- +cates neutron stars are the most optimal targets to probe +weakly interacting heavy asymmetric DM, and the exis- +tence of old neutron stars in the solar neighborhood ex- +cludes mχ = 106 GeV and σχn = 10−48 cm2, the leading +constraints on non-annihilating DM interactions [11, 20]. +However, in the optically thick (large DM-nucleon scat- +tering cross-section) regime, non-compact objects such +as the Sun, Jupiter, and Earth are more suitable detec- +tors to probe non-annihilating DM interactions. This is +simply because in the optically thick regime, almost all +of the DM particles that transit through a stellar ob- +ject get trapped, and therefore, the accumulation rate +increases with the larger size. Since the non-compact ob- +jects possess much larger radii, the accumulation rate +for non-compact objects becomes comparable or even +larger than the neutron stars in the strongly-interacting +regime. +Quantitatively, for mχ = 106 GeV, and suffi- +ciently high σχn, the transit (accumulation) rate for a +typical neutron star is 1019 s−1, comparable to the Earth, +and 10−2 (10−5) smaller than the Jupiter (Sun). +This +naturally motivates us to explore the potential of non- +compact stellar objects as strongly-interacting asymmet- +ric DM detectors. +We found that stellar objects with +relatively large radii and low core-temperature (such as +Jupiter), are the most optimal detectors. This is simply +because the total number of accumulated DM particles +increases with a larger radius, and the BH formation be- +comes easier with a lower core-temperature, implying the +most favorable transmutation criterion. Prior works [28– +30], more particularly Ref. [30] has recently explored the +transmutation scenario for the Earth and the Sun. We +systematically revisit the issue to gain more insight on the +constraints, and we show that stellar objects with larger +sizes and small core temperatures (such as Jupiter) pro- +vide the leading constraints on strongly-interacting heavy +asymmetric DM. +The rest of the paper is organized as follows. In Sec- +tion II, we discuss different stages of DM-induced collapse +of the celestial objects. In Section III, we present our +exclusion limits from the existence of several stellar ob- +jects, demonstrating that the constraints obtained in this +analysis cover new parts of the DM parameter space and +bridge the gap between the cosmological probes [31–34], +and the terrestrial detectors [35–39]. Finally, we summa- +rize and conclude in Section IV. +II. +DARK MATTER INDUCED COLLAPSE OF +STELLAR OBJECTS +Non-annihilating DM particles can accumulate effi- +ciently inside the stellar volume if they possess suffi- +ciently strong interactions with the stellar nuclei. +For +heavy DM mass, they gravitate towards the stellar core +and settle in a tiny core-region. Because of their prodi- +gious abundance, and tiny core volume, their number +density within the stellar core becomes tantalizingly +larger, eventually resulting in a BH formation inside the +stellar core. +This nascent BH, if not sufficiently light, +can rapidly swallow the host, transmuting them to com- +parable mass BHs. In the following, we discuss different +stages of DM-induced collapse of stellar objects, and a +schematic diagram for this process is depicted in Fig. 1. +A. +Dark Matter Accumulation +We first estimate the total number of captured DM +particles inside the stellar volume. +For clarity, we de- +fine the maximal capture rate as saturation capture rate +(Csat), and it occurs when all of the DM particles that +transit through the stellar objects get trapped. +For a +particular velocity distribution of the incoming DM par- +ticles, the saturation capture rate is [6] +Csat = ρχ +mχ +πR2 +� f(u)du +u +(u2 + v2 +esc) , +(1) +where ρχ = 0.4 GeV/cm3 is the Galactic DM density, +mχ is the DM mass, and R is the radius of the stellar +object. f(u) denotes the velocity distribution of the in- +coming DM particles, with vesc being the escape velocity +of the stellar objects. For a Maxwell-Boltzmann velocity +distribution, Csat simplifies to +Csat = ρχ +mχ +πR2 +� +8 +3π ¯v +� +1 + 3v2 +esc +2¯v2 +� +, +(2) +where ¯v = 270 km/s denotes the average velocity of the +DM particles in the Galactic halo. +A certain fraction of the DM particles will be cap- +tured by interacting with the stellar constituents, and +we aim to estimate this capture fraction (fc). Since we +are mostly interested in the optically thick regime (large +DM-nucleon scattering cross-section), fc behaves differ- +ently for heavier and lighter DM. For heavier DM, i.e., +when the DM mass (mχ) is larger than the target mass +(mA), scatterings do not alter the direction of the in- +coming DM particles. As a consequence, the trajectories +of the incoming DM particles are not randomized, and +they follow almost a linear trajectory that ends inside +the stellar interior when the final velocity falls below the +escape velocity. In this case, in the limit of multiple col- +lisions, the DM particles are essentially guaranteed to be +captured, resulting fc = 1 [40]. Whereas, in the opposite +regime (mχ < mA), the direction of the DM particles gets +randomized after each collision, and as a result, a certain +fraction of the DM particles can always escape from the +stellar volume via reflection. This implies that for lighter +DM, even for arbitrarily large cross-sections, the capture +rate never reaches its saturation value (fc < 1) [40]. +For this analysis, we are interested in heavy DM cap- +ture inside stellar objects, and hence, we take fc = 1. +It implies that in the optically thick regime, we take the +capture rate to its saturation value, and it does not de- +pend on the DM-nucleon scattering cross-section. +For + +3 +light DM capture in celestial objects, fc can be deter- +mined by the recent MCMC results [40], or from analyt- +ical estimates [41], both of which agree reasonably well. +In the optically thin regime (small DM-nucleon scat- +tering cross-section), capture occurs via single scatter- +ing. This is simply because for smaller values of DM- +nucleon scattering cross-sections, the mean free path of +the incoming DM particles becomes larger and becomes +comparable to the size of the stellar objects, and as a re- +sult, they scatter once while transiting through the host. +For this regime, we use the single-collision capture treat- +ment [6], and fc becomes substantially smaller. +B. +Spatial Distribution of Dark Matter inside +Stellar Objects +Captured DM particles rapidly thermalize inside the +celestial objects for sufficiently high DM-nuclei scatter- +ing cross-sections [11–13, 20, 30, 42], and the spatial dis- +tribution of the thermalized DM particles inside the stel- +lar volume depends on the effects of diffusion and grav- +ity [43–45]. By considering the effects of diffusion and +gravity in a self-consistent manner, the spatial distribu- +tion of the thermalized DM particles is [45] +∇nχ(r) +nχ(r) + (κ + 1) ∇T(r) +T(r) + mχg(r) +T(r) += +Φ +nχ(r)Dχn(r) +R2 +⊕ +r2 , +(3) +where nχ(r) denotes the number density of the thermal- +ized DM particles within the stellar volume. T(r) denotes +the temperature profile of the celestial objects, and Φ = +C/πR2 +⊕ is the incoming flux of the DM particles, with C +denotes the capture rate. κ ∼ −1/ +� +2(1 + mχ/mA)3/2� +and Dχn ∼ λvth are the diffusion coefficients, where λ +denotes the mean free path of the DM particles and vth +denotes their thermal velocity. +It is evident that, for +very heavy DM mass, the diffusion co-efficient (κ) be- +comes smaller as it scales as m−3/2 +χ +, and gravity (scales +proportional to mχ) dominates over the diffusion pro- +cesses. +Therefore, heavy DM tends to settle down to- +wards the core of the stellar objects. Quantitatively, by +solving Eq. (3) for nχ(r) with the boundary condition +that the volume integral of nχ(r) provides the total num- +ber of captured DM particles, one can demonstrate that +the captured DM particles mostly concentrate around the +stellar core if they are heavy [45]. +Concentration of heavy DM around the stellar core +can also be explained from the radius of the thermaliza- +tion sphere +� +rth = +� +9kBT/ (4πGρmχ) +� +, which results +from the balance between the thermal pressure and the +gravitational potential [11, 12]. Since, the radius of the +thermalization sphere scales as m−1/2 +χ +, for heavy DM, +rth becomes smaller, indicating the concentration of the +captured DM particles primarily occurs around the core. +C. +Dark Core Collapse & Black Hole Formation +For non-annihilating DM, accumulation grows linearly +in time. As a consequence, the number density of the +captured DM particles inside the thermalization volume +becomes tantalizingly large. Quantitatively, for DM mass +of 106 GeV, and sufficiently high DM-nuclei scattering +cross-section (say 10−28 cm2), O(1036) number of DM +particles thermalize inside the Earth within a radius of +∼ 6 km, indicating a number density of ∼ 2×1018 cm−3. +This corresponds to a core density of ∼ 2 × 1024 GeV +cm−3, around 25 orders of magnitude higher than the lo- +cal Galactic DM density, and it further increases as m3/2 +χ +for heavier DM masses. Once the core-density exceeds +its critical threshold value, it undergoes a gravitational +collapse, and eventually results in a BH formation inside +the stellar core [7–24, 30]. In the following, we quantify +the critical core-density for the stellar objects. +The BH formation criterion via dark core collapse has +been extensively discussed in the literature for compact +stars [7–27, 30], and is essentially determined by two con- +ditions. The first one is within the stable thermal ra- +dius, the DM density has to exceed the corresponding +baryonic density (ρb). It leads to a self-gravitational col- +lapse of the thermalized DM particles and is determined +by [11, 13, 20] +mχN self +χ +4 +3πr3 +th +≥ ρb , +(4) +where N self +χ +denotes the critical number of DM particles +for ensuing self-gravitating collapse1. It is independent +of the spin of the DM particles and only depends on the +DM mass as well as properties of the stellar objects such +as core-density and core-temperature. For Earth, it cor- +responds to +N self +χ +∼ 7×1036 +� +ρcore +13 g/cm3 +� � Tcore +5800 K +�3/2 �107 GeV +mχ +�5/2 +, +(5) +where, ρcore denotes the core density, and Tcore denotes +the core temperature. +The second condition is deter- +mined by the maximum number of DM particles that can +be stabilized by the degeneracy pressure and is commonly +known as Chandrasekhar limit (N cha +χ +). Chandrasekhar +limit depends on the spin-statistics of the DM particles as +degeneracy pressure for bosonic DM stems from the Un- +certainty principle, whereas, for fermionic DM, it arises +from the Pauli exclusion principle. N cha +χ +solely depends +on the DM mass, and quantitatively, it corresponds to +M 2 +pl/m2 +χ (M 3 +pl/m3 +χ), where Mpl = 1.22 × 1019 GeV de- +notes the Planck mass [11, 13, 20]. To summarize, for +1 This self-gravitating criterion is essentially equivalent to the +Jeans instability criterion in Ref. [30] up to O(1) factors. + +4 +Dark Matter Accumulation +Dark Core Collapse +Transmutation +FIG. 1. Transmutation of stellar objects via gradual accumulation of non-annihilating DM. Heavy DM gravitate towards the +core of the stellar objects and form tiny black holes via dark core collapse. These nascent BHs rapidly transmute the hosts by +swallowing them, resulting in comparable low mass BHs. +dark core collapse, the total number of captured DM par- +ticles inside a stellar object within its lifetime (tage) has +to satisfy the following [11, 13, 20, 24] +Nχ|tage = C × tage ≥ max +� +N self +χ +, N cha +χ +� +. +(6) +Note that, for stellar objects with high core temperature +(such as Sun), the dark core collapse is essentially de- +termined by N self +χ +for bosonic as well as fermionic DM, +leading to identical exclusion limits for bosonic/fermionic +DM. Whereas, for stellar objects with low core tempera- +ture, the dark core collapse is determined by N self +χ +(N cha +χ +) +for bosonic (fermionic) DM, leading to distinct exclusion +limits for bosonic/fermionic DM. +D. +Growth and Evaporation of Nascent Black +Holes +It is important to stress that dark core collapse does +not ensure the successful transmutation of the hosts. +If the nascent BH is sufficiently light, transmutation +can cease for two different reasons. Firstly, lighter BH +takes a much longer time to swallow the hosts, and +the swallow time (τswallow) can even be larger than the +lifetime of the hosts. Secondly, and more importantly, +Hawking radiation becomes significant for lighter BH +masses (∼ 1/M 2 +BH), causing a rapid evaporation of the +nascent BH. Since the mass of the nascent BH becomes +smaller for heavier DM mass, this provides an upper +limit on DM mass that can be probed via transmuta- +tion [11, 13, 20, 24]. We quantify the upper limits of mχ +for several stellar objects in the following, and it ranges +around O(1010) GeV for the stellar objects under consid- +eration. +For the time-evolution of the nascent BH, we conser- +vatively consider the baryonic matter accretion from the +host (ignoring the possible DM accretion by the nascent +BH) [11, 13, 46] +dMBH +dt += 4πρcoreG2M 2 +BH +c3s +− P (MBH) +G2M 2 +BH +, +(7) +where cs = +� +Tcore/mn denotes the sound speed at +the core of the stellar object, and P (MBH) denotes the +Page factor [47, 48]. Page factor properly accounts into +gray-body corrections of the Hawking evaporation spec- +trum, as well as the number of Standard Model (SM) +species emission from an evaporating BH. In the classi- +cal black-body radiation limit, the Page factor evaluates +to 1/ (15360π), and is commonly used in the literature. +Considering the gray-body corrections, the Page factor +can be written as 2.8 × 10−4f(MBH) where f(MBH) en- +codes the number of SM species emission from an evapo- +rating BH [48]. For MBH ≥ 1017 g (which only emit mass- +less particles, such as photons and neutrinos), f(MBH) is +normalized to unity [48], and therefore, Page factor eval- +uates to 1/(1135π), an order of magnitude larger than +the classical black-body limit. For MBH ≤ 1017 g, the +number of SM species emission from an evaporating BH +crucially depends on its temperature (mass), and hence, +f(MBH) varies with BH mass. We use the semi-analytic +form of f(MBH) from Ref. [48] to estimate the Page fac- +tor in this regime. +Quantitatively, for light BHs, i.e., +MBH ≤ 1010 g, which can emit all SM species, f(MBH) +evaluates to 15.35, and for 1015 g ≤ MBH ≤ 1017 g (which +can emit electrons, positrons, photons, and neutrinos), +f(MBH) evaluates to 1.569. To summarize, depending on +BH mass, f(MBH) ranges from (1 − 15.35), implying the +range of Page factor from 1/(1135π) to 1/(74π). We ver- +ify that the Page factor obtained from the semi-analytic +form of f(MBH) from Ref. [48] is in excellent agreement +with the publicly available BlackHawk package [49]. +Since, the accretion term scales as M 2 +BH, and the evap- + +5 +oration term scales as 1/M 2 +BH, for low BH masses, evap- +oration dominates over the accretion process. Quantita- +tively, for Sun, Jupiter, Earth, and Moon, Hawking evap- +oration dominates over the Bondi-Hoyle accretion for +mχ ≥ +� +� +� +� +� +� +� +� +� +7.1 × 1011 GeV +6.2 × 109 GeV +2.4 (5.3) × 109 GeV +1.0 (6.0) × 109 GeV +(8) +for non-annihilating bosonic (fermionic) DM. On the +other hand, by requiring that the τswallow has to be less +than 1 Gyr, we obtain +mχ ≥ +� +� +� +� +� +� +� +� +� +2.1 × 1010 GeV +1.1 × 1010 GeV +0.9 (1.5) × 1010 GeV +0.8 (3.1) × 1010 GeV +(9) +for non-annihilating bosonic (fermionic) DM. We note +that, for stellar objects with high core-temperature, +τswallow essentially determines the wash-out of the trans- +mutation, whereas, for stellar objects with low core- +temperature, it is determined by the efficient Hawking +evaporation. This can simply be explained by the fol- +lowing. +For high core-temperature stellar objects, the +nascent BH becomes relatively larger (MBH,init ∼ T 3/2), +and therefore, the effects of Hawking evaporation become +relatively sub-dominant, implying accretion determines +the termination of the transmutation. +E. +Drift time and Maximal Possible Scattering +Cross-section +Transmutation of stellar objects also ceases at very +high DM-nucleon scattering cross-sections. This is sim- +ply because, at very high DM-nucleon cross-sections, DM +particles lose a significant amount of energy in the outer +shells of these stellar objects, and might not reach the +stellar core to form a micro BH. In other words, the +viscous drag force that drives the DM particles toward +the core results in a long drift time, and therefore, pro- +hibits transmutation. We estimate the drift time by us- +ing the stellar density, temperature, and compositional +profiles [8, 30, 50] +tdrift = +1 +Gmχ +� +j +σχj +� R +0 +nj(r) +� +3AjT(r) +� r +0 d3r′ρj(r′) +dr , +(10) +where σχj +denotes the DM-nuclei scattering cross- +section, and it is related to the DM-nucleon scattering +cross-section via σχj = σχn A2 +j +� +µχAj/µχn +�2 with Aj is +the mass number of the j-th nuclei, and µχn is the re- +duced mass of the DM-nucleon system. We determine the +ceilings of our results by demanding that tdrift ≤ 1 Gyr. +Quantitatively, for (Sun) Earth, it corresponds to +σχn ≤ (10−17) 10−21 cm2 � +mχ +107 GeV +� +, +(11) +and is same for bosonic/fermionic DM. +F. +Properties of Stellar Objects +We accurately estimate the capture rate and the trans- +mutation criterion for these stellar objects by utilizing +stellar object properties, such as density profiles, tem- +perature profiles, and detailed chemical compositions. In +the following, we provide the inputs that have been con- +sidered for this analysis. The density and temperature +profiles for Sun, Earth, and Jupiter which have been used +in this analysis have also complied in Ref. [45]. +• Sun: We use the solar density and temperature +profiles from [51]. For the chemical composition, we +assume that the Sun is entirely made up of 1H [45]. +• Jupiter: We use the Jupiter density and tempera- +ture profiles from the Jovian model J11-4a [52]. For +the chemical composition, we assume that Jupiter +is entirely made up of 1H [45]. +• Earth: We use the Preliminary Reference Earth +Model from [53] for the density profile, and we +take the temperature profile from [54] under the +assumption of a hydro-static equilibrium. For the +chemical composition, we use the tabulated val- +ues from Ref. [50] with the core-mantle bound- +ary at 3480 km, and the mantle-crust boundary at +6346 km. The core is dominantly made up of 56Fe, +whereas, the mantle and the crust are dominantly +made up of 16O. +• Moon: We use the MAX model for density and the +chemical compositions of the Moon [55]. We take +the lunar core-mantle boundary at 450 km, and the +mantle-crust boundary at 1650 km. The lunar core +is dominantly made up of 56Fe, whereas, the mantle +and the crust is dominantly made up of 16O. For +the temperature profile, we consider the Moon as +an isothermal sphere with T = 1700 K [55]. +III. +RESULTS +We consider a variety of stellar objects, such as the +Sun, Jupiter, Earth, and Moon, and demonstrate their +potential as asymmetric DM detectors. +These choices +are well-motivated by the fact that each of these stel- +lar objects is an optimal detector in a different regime. +More specifically, they cover a wide range of size, den- +sity, and temperature, making them sensitive to different +parts of the DM parameter space. Sun has the largest +size, and the highest core temperature, and as a con- +sequence, the total number of captured DM particles +as well as the threshold for transmutation both become +higher. Jupiter has a somewhat larger size, but possesses + +6 +CMB +Bosonic / Fermionic DM +Skylab +Chicago +MW Satellites +Terrestrial +detectors +Sun +(This analysis) +105 +106 +107 +108 +109 +1010 +10-14 +10-16 +10-18 +10-20 +10-22 +10-24 +10-26 +10-28 +10-30 +10-32 +10-34 +mχ [GeV] +σχn [cm2] +CMB +Bosonic DM +Fermionic DM +Skylab +Chicago +MW Satellites +Terrestrial +detectors +Jupiter +(This analysis) +105 +106 +107 +108 +109 +1010 +10-14 +10-16 +10-18 +10-20 +10-22 +10-24 +10-26 +10-28 +10-30 +10-32 +10-34 +mχ [GeV] +σχn [cm2] +CMB +Bosonic DM +Fermionic DM +Skylab +Chicago +MW Satellites +Terrestrial +detectors +Earth +(This analysis) +105 +106 +107 +108 +109 +1010 +10-14 +10-16 +10-18 +10-20 +10-22 +10-24 +10-26 +10-28 +10-30 +10-32 +10-34 +mχ [GeV] +σχn [cm2] +CMB +Bosonic DM +Fermionic DM +Skylab +Chicago +MW Satellites +Terrestrial +detectors +Moon +(This analysis) +105 +106 +107 +108 +109 +1010 +10-14 +10-16 +10-18 +10-20 +10-22 +10-24 +10-26 +10-28 +10-30 +10-32 +10-34 +mχ [GeV] +σχn [cm2] +FIG. 2. Exclusion limits on spin-independent DM-nucleon scattering cross-sections from the existence of several stellar objects. +The regions shaded by the solid red lines correspond to non-annihilating bosonic DM, whereas, the regions shaded by dashed +red lines correspond to non-annihilating fermionic DM. The top left (right) panel corresponds to the Sun (Jupiter), whereas, +the bottom left (right) panel corresponds to the Earth (Moon). The existence of the stellar objects provides unprecedented +sensitivity to strongly-interacting heavy asymmetric DM. We show the existing exclusion limits (gray shaded regions) from +terrestrial searches [35–38] (collected in [39, 56]), Skylab space station [57, 58], a recent shallow-depth experiment carried out +at University of Chicago [59], and cosmological measurements [31, 33] for comparison. The existing constraints (gray-shaded +regions) apply to both non-annihilating and annihilating DM, whereas, the constraints obtained from this analysis (red-shaded +regions) apply solely to non-annihilating/very feebly annihilating DM. +a much lower core temperature, implying a higher cap- +ture rate but a lower threshold for transmutation. Earth +and Moon have relatively smaller sizes and much lower +core-temperatures, and hence, the capture rate as well as +the threshold for transmutation both becomes smaller. +We show our main results in Fig. 2 for non-annihilating +bosonic and fermionic DM (spin-independent interac- +tions). +The top left (right) panel corresponds to Sun +(Jupiter) as a DM detector, whereas, the bottom left +(right) panel corresponds to Earth (Moon) as a DM de- +tector. For stellar objects with low core temperatures, +such as Moon, Earth, and Jupiter, the exclusion limit +for bosonic DM is significantly stringent as compared +to the fermionic DM. This is simply because for non- +annihilating bosonic DM, the dark core collapse crite- +rion is essentially determined by N self +χ +, whereas, for non- +annihilating fermionic DM, it is determined by N cha +χ +, +which is much higher than the self-gravitating criterion, +i.e, N cha +χ, fermion ≫ N self +χ +. This implies that transmutation +for low core-temperature stellar objects is much harder +to attain for non-annihilating fermionic DM, explaining +the weaker exclusions. However, for stellar objects with +higher core temperature, such as the Sun, the dark core +collapse criterion for bosonic as well as fermionic DM is + +7 +set by N self +χ +(as it scales as T 3/2 +core), explaining identical +exclusion limits for bosonic and fermionic DM. +The exclusion limits in Fig. 2 can be explained quali- +tatively from the following. For non-annihilating bosonic +(fermionic) DM, the total number of captured DM par- +ticles linearly increases with lighter mχ, whereas, the +threshold for transmutation increases as m5/2 +χ +(m3 +χ), and +hence, for light DM masses, transmutation can not be +achieved. This explains the sharp vertical cut-offs in the +low mχ regime. For heavier DM masses, the mass of the +nascent BH becomes smaller, resulting in two distinct +effects. +Firstly, the nascent BH takes a substantially +longer time to consume the host, and secondly, Hawk- +ing evaporation becomes crucial. Because of these two +effects, transmutation ceases, providing the vertical cut- +offs around mχ = 1010 GeV in Fig. 2. +For the exact +numerical values, see Section II D. +Next, we discuss the σχn dependence of the exclu- +sion limits in Fig. 2. +For low DM-nucleon scattering +cross-sections, the total number of captured DM par- +ticles within the stellar objects decreases, and eventu- +ally falls below the threshold for transmutation, indi- +cating that low σχn can not be probed via transmuta- +tion. Quantitatively, for non-annihilating bosonic DM, +σχn ≤ 10−33 cm2 (σχn ≤ 10−28 cm2) can not be probed +by the existence of the Sun (Moon). +Very high DM- +nucleon scattering cross-sections are also inaccessible via +transmutations. +This is simply because for very high +σχn, the drift time of the DM particles becomes much +longer, and they can not reach the stellar core for large +interactions. In Fig. 2, we show the ceilings of our re- +sults by demanding that tdrift ≤ 1 Gyr. For the Sun, it +corresponds to σχn ≤ 10−17 cm2 for mχ = 107 GeV, and +linearly increases with heavier DM mass. +A. +Comparison with the Existing Constraints +In Fig. 2, we show the existing constraints on DM- +nucleon scattering cross-section (gray-shaded regions) for +comparison. +The existing constraints can be classified +into three broad categories: astrophysical, cosmological, +and terrestrial. Constraints obtained from the terrestrial +direct detection experiments (labeled as Terrestrial de- +tectors) [35–38] are primarily based on non-observation +of any anomalous scattering signature in the under- +ground as well as in the surface detectors. +We take +these constraints from the summary plots in [39, 56]. +Cosmological constraints, such as Planck measurements +of temperature and polarization anisotropy of the cos- +mic microwave background (labeled as CMB) [31, 32], +and Milky Way satellite observations (labeled as MW +satellites) [33, 34] are also shown for comparison. +As- +trophysical constraints, such as disk stability [28], inter- +stellar gas cooling [60], and Galactic Center gas-cloud +heating [61, 62] are typically weaker than the constraints +obtained from the Milky Way satellite observations, and +therefore, are not shown for clarity. +Very recently, a +shallow-depth experiment carried out at the University +of Chicago (labeled as Chicago) [59] provides a novel +constraint on strongly-interacting heavy DM, and we +show it in Fig. 2. Large panels of etched plastic, situ- +ated aboard the Skylab Space Station also provide strin- +gent exclusion limits on DM-nucleon interactions (labeled +as Skylab) [28, 57, 58]. +Rocket-based X-ray Quantum +Calorimetry (XQC) experiment [63], and searches for +DM tracks in ancient underground mica [64, 65] probe +strongly-interacting heavy DM. However, the XQC limit +and the mica limit mostly apply for mχ ≤ 105 GeV and +mχ ≥ 1010 GeV, respectively, and hence, are not shown. +Finally, constraints obtained from cosmic ray silicon de- +tector satellite (IMP7/8), and balloon-borne experiment +(IMAX) [66] are not based on detailed analyses in peer- +reviewed papers, and therefore, are not shown in Fig. 2. +Comparing with the existing exclusion limits, it is ev- +ident that the existence of a variety of stellar objects +provides novel constraints on strongly-interacting heavy +asymmetric DM. It provides unprecedented sensitivity to +some regions in the parameter space as compared to the +existing searches. Quantitatively, existence of the stel- +lar objects exclude σχn = 10−24 cm2 for mχ = 107 GeV, +not ruled by any other probes. +This leading sensitiv- +ity simply stems from the fact that stellar objects, ow- +ing to their gigantic size and long lifetime, can capture +a copious amount of Galactic DM particles for suffi- +ciently high σχn, eventually causing an implosion. We +note that, stellar objects with relatively larger sizes with +much lower core temperatures, such as Jupiter, are the +optimal targets to probe transmutation. +This is sim- +ply because the total number of accumulated DM par- +ticles quadratically increases with a larger radius, and +the threshold for transmutation falls off with lower core- +temperature, implying the most favorable transmutation +criterion. It is also important to stress that the existing +constraints from cosmological and terrestrial searches ap- +ply for both non-annihilating and annihilating DM inter- +actions, as they are solely based on scatterings. Whereas, +the constraints obtained in this analysis apply only to +non-annihilating/very-feebly annihilating DM particles. +We also note that, the exclusions obtained in Ref. [30] +for Earth are weaker than our analysis, however for Sun, +the constraints are similar. +This can be explained in +the following. Ref. [30] derived their results for bosonic +DM with non-negligible quartic self-interactions (repul- +sive). Because of the repulsive self-interactions among +the DM particles, the effective Chandrasekhar limit sub- +stantially increases [14], and it essentially determines the +dark core collapse criterion for Earth. Whereas, in our +analysis, we consider non-annihilating bosonic DM, and +the dark core collapse criterion for Earth is determined by +N self +χ +, explaining the difference between the two analyses. +For Sun, because of its much larger core-temperature, +N self +χ +(∼ T 3/2 +core) always exceeds over the Chandrasekhar +limit, and sets the dark core collapse criterion, resulting +in a similar exclusion in both the analyses. + +8 +B. +Anomalous Heating Signatures +Non-annihilating DM can also heat up the stellar ob- +jects via successive scatterings with the stellar nuclei +while getting captured. Such anomalous heating, com- +monly known as dark kinetic heating, can be observed +in neutron stars with very low surface temperatures [67]. +Cold neutron stars (TNS = O(1000) K) are ideal targets +to search for dark kinetic heating as they have much +higher escape velocities. Because of the large escape ve- +locities, the velocity of the incoming DM particles gets +significantly enhanced while falling into the steep gravita- +tional potential of the neutron stars, and hence, they can +transfer their kinetic energy to the stellar nuclei via col- +lisions, heating up the cold neutron stars. We estimate +the same for non-compact objects, concluding that be- +cause of their sufficiently low escape velocity, and larger +size, such anomalous heating signatures are too low to +observe. +IV. +SUMMARY & CONCLUSION +Celestial objects, owing to their enormous size and +long lifetime, naturally act as novel DM detectors. We +demonstrate that the continued existence of the Sun, +Jupiter, Earth, and Moon provides stringent constraints +on strongly-interacting asymmetric DM interactions over +a wide mass range. These choices are well-motivated by +the fact that each of these stellar objects is an optimal de- +tector in a different regime as they cover a different range +of size, density, and temperatures. We probe regions in +the DM parameter space, which are entirely inaccessible +to the existing DM searches, demonstrating the novelty +of our analysis. +Our proposal is simply based on the +fact that non-annihilating DM particles from the Galactic +halo get captured inside the stellar objects if they interact +sufficiently with the nucleons. For heavy DM, these cap- +tured DM particles rapidly thermalize within a very small +region around the stellar core, resulting in a tantalizingly +large core-density. Once the core-density exceeds its crit- +ical threshold value, nascent BH forms inside the stellar +core, eventually destroying the hosts. Mere existence of +these stellar objects excludes such DM mass and cross- +sections which predict the successful destruction of the +hosts. We consider several stellar objects to demonstrate +their potential as DM detectors and conclude that stel- +lar objects with relatively larger sizes and low core tem- +peratures, such as Jupiter, can probe the maximal DM +mass window. Heavier DM masses are the most optimal +for transmutation. However, as the nascent BH becomes +smaller with an increase in DM mass, accretion becomes +inefficient, and the Hawking evaporation becomes crucial, +ceasing the transmutation for heavy DM masses. Overall, +given these stringent exclusion limits, our work naturally +inspires similar analysis for other celestial objects, such +as Brown Dwarfs, Red Giants, and Exoplanets, once we +have a better understanding of their density, tempera- +ture, and compositional properties. Finally, we point out +an intriguing direction that the transmutation of celestial +objects can lead to planetary mass BHs, possibly explain- +ing the six ultrashort microlensing events observed in the +OGLE data [68], NANOGrav detection of stochastic GW +background [69], as well as the BH hypothesis of Planet- +9 [70]. Since, planet mass primordial BHs provide the +viable solutions to this anomalies [68–70], it would be +interesting to explore the alternative solutions via trans- +mutation. +V. +ACKNOWLEDGMENTS +It is my pleasure to thank Basudeb Dasgupta for help- +ful discussions and useful comments on the manuscript. +I also thank Sulagna Bhattacharya and Maxim Pospelov +for helpful exchanges. +AR acknowledges support from +the National Science Foundation (Grant No. +PHY- +2020275), and to the Heising-Simons Foundation (Grant +2017-228). +[1] Planck collaboration, N. Aghanim et al., Planck 2018 +results. VI. Cosmological parameters, Astron. +Astrophys. 641 (2020) A6 [1807.06209]. +[2] J. Cooley et al., Report of the Topical Group on Particle +Dark Matter for Snowmass 2021, 2209.07426. +[3] K. K. Boddy et al., Snowmass2021 theory frontier white +paper: Astrophysical and cosmological probes of dark +matter, JHEAp 35 (2022) 112 [2203.06380]. +[4] W. H. Press and D. N. Spergel, Capture by the sun of a +galactic population of weakly interacting, massive +particles, Astrophysical Journal 296 (1985) 679. +[5] A. Gould, WIMP Distribution in and Evaporation From +the Sun, Astrophys. J. 321 (1987) 560. +[6] A. Gould, Resonant Enhancements in WIMP Capture +by the Earth, Astrophys. J. 321 (1987) 571. +[7] I. Goldman and S. Nussinov, Weakly Interacting +Massive Particles and Neutron Stars, Phys. Rev. D 40 +(1989) 3221. +[8] A. Gould, B. T. Draine, R. W. Romani and +S. Nussinov, Neutron Stars: Graveyard of Charged Dark +Matter, Phys. Lett. B 238 (1990) 337. +[9] G. Bertone and M. Fairbairn, Compact Stars as Dark +Matter Probes, Phys. Rev. D 77 (2008) 043515 +[0709.1485]. +[10] A. de Lavallaz and M. Fairbairn, Neutron Stars as Dark +Matter Probes, Phys. Rev. D 81 (2010) 123521 +[1004.0629]. +[11] S. D. McDermott, H.-B. Yu and K. M. Zurek, +Constraints on Scalar Asymmetric Dark Matter from +Black Hole Formation in Neutron Stars, Phys. Rev. D + +9 +85 (2012) 023519 [1103.5472]. +[12] C. Kouvaris and P. Tinyakov, Constraining Asymmetric +Dark Matter through observations of compact stars, +Phys. Rev. D 83 (2011) 083512 [1012.2039]. +[13] C. Kouvaris and P. Tinyakov, Excluding Light +Asymmetric Bosonic Dark Matter, Phys. Rev. Lett. 107 +(2011) 091301 [1104.0382]. +[14] N. F. Bell, A. Melatos and K. Petraki, Realistic neutron +star constraints on bosonic asymmetric dark matter, +Phys. Rev. D 87 (2013) 123507 [1301.6811]. +[15] T. G¨uver, A. E. Erkoca, M. Hall Reno and I. Sarcevic, +On the capture of dark matter by neutron stars, JCAP +05 (2014) 013 [1201.2400]. +[16] J. Bramante, K. Fukushima and J. Kumar, Constraints +on bosonic dark matter from observation of old neutron +stars, Phys. Rev. D 87 (2013) 055012 [1301.0036]. +[17] J. Bramante, K. Fukushima, J. Kumar and +E. Stopnitzky, Bounds on self-interacting fermion dark +matter from observations of old neutron stars, Phys. +Rev. D 89 (2014) 015010 [1310.3509]. +[18] C. Kouvaris and P. Tinyakov, Growth of Black Holes in +the interior of Rotating Neutron Stars, Phys. Rev. D 90 +(2014) 043512 [1312.3764]. +[19] J. Bramante and T. Linden, Detecting Dark Matter with +Imploding Pulsars in the Galactic Center, Phys. Rev. +Lett. 113 (2014) 191301 [1405.1031]. +[20] R. Garani, Y. Genolini and T. Hambye, New Analysis +of Neutron Star Constraints on Asymmetric Dark +Matter, JCAP 05 (2019) 035 [1812.08773]. +[21] C. Kouvaris, P. Tinyakov and M. H. G. Tytgat, +NonPrimordial Solar Mass Black Holes, Phys. Rev. +Lett. 121 (2018) 221102 [1804.06740]. +[22] B. Dasgupta, A. Gupta and A. Ray, Dark matter +capture in celestial objects: light mediators, +self-interactions, and complementarity with direct +detection, JCAP 10 (2020) 023 [2006.10773]. +[23] G.-L. Lin and Y.-H. Lin, Analysis on the black hole +formations inside old neutron stars by isospin-violating +dark matter with self-interaction, JCAP 08 (2020) 022 +[2004.05312]. +[24] B. Dasgupta, R. Laha and A. Ray, Low Mass Black +Holes from Dark Core Collapse, Phys. Rev. Lett. 126 +(2021) 141105 [2009.01825]. +[25] R. Garani, D. Levkov and P. Tinyakov, Solar mass +black holes from neutron stars and bosonic dark matter, +Phys. Rev. D 105 (2022) 063019 [2112.09716]. +[26] H. Steigerwald, V. Marra and S. Profumo, Revisiting +constraints on asymmetric dark matter from collapse in +white dwarf stars, Phys. Rev. D 105 (2022) 083507 +[2203.09054]. +[27] D. Singh, A. Gupta, E. Berti, S. Reddy and B. S. +Sathyaprakash, Constraining properties of asymmetric +dark matter candidates from gravitational-wave +observations, 2210.15739. +[28] G. D. Starkman, A. Gould, R. Esmailzadeh and +S. Dimopoulos, Opening the Window on Strongly +Interacting Dark Matter, Phys. Rev. D 41 (1990) 3594. +[29] Y. Kurita and H. Nakano, Gravitational waves from +dark matter collapse in a star, Phys. Rev. D 93 (2016) +023508 [1510.00893]. +[30] J. F. Acevedo, J. Bramante, A. Goodman, J. Kopp and +T. Opferkuch, Dark Matter, Destroyer of Worlds: +Neutrino, Thermal, and Existential Signatures from +Black Holes in the Sun and Earth, JCAP 04 (2021) 026 +[2012.09176]. +[31] V. Gluscevic and K. K. Boddy, Constraints on +Scattering of keV–TeV Dark Matter with Protons in the +Early Universe, Phys. Rev. Lett. 121 (2018) 081301 +[1712.07133]. +[32] K. K. Boddy, V. Gluscevic, V. Poulin, E. D. Kovetz, +M. Kamionkowski and R. Barkana, Critical assessment +of CMB limits on dark matter-baryon scattering: New +treatment of the relative bulk velocity, Phys. Rev. D 98 +(2018) 123506 [1808.00001]. +[33] DES collaboration, E. O. Nadler et al., Milky Way +Satellite Census. III. Constraints on Dark Matter +Properties from Observations of Milky Way Satellite +Galaxies, Phys. Rev. Lett. 126 (2021) 091101 +[2008.00022]. +[34] E. O. Nadler, V. Gluscevic, K. K. Boddy and R. H. +Wechsler, Constraints on Dark Matter Microphysics +from the Milky Way Satellite Population, Astrophys. J. +Lett. 878 (2019) 32 [1904.10000]. +[35] XENON collaboration, E. Aprile et al., First Dark +Matter Search Results from the XENON1T Experiment, +Phys. Rev. Lett. 119 (2017) 181301 [1705.06655]. +[36] CRESST collaboration, G. Angloher et al., Results on +MeV-scale dark matter from a gram-scale cryogenic +calorimeter operated above ground, Eur. Phys. J. C 77 +(2017) 637 [1707.06749]. +[37] CRESST collaboration, A. H. Abdelhameed et al., First +results from the CRESST-III low-mass dark matter +program, Phys. Rev. D 100 (2019) 102002 [1904.00498]. +[38] CDMS collaboration, D. Abrams et al., Exclusion +Limits on the WIMP Nucleon Cross-Section from the +Cryogenic Dark Matter Search, Phys. Rev. D 66 (2002) +122003 [astro-ph/0203500]. +[39] B. J. Kavanagh, Earth scattering of superheavy dark +matter: Updated constraints from detectors old and new, +Phys. Rev. D 97 (2018) 123013 [1712.04901]. +[40] J. Bramante, J. Kumar, G. Mohlabeng, N. Raj and +N. Song, Light Dark Matter Accumulating in Terrestrial +Planets: Nuclear Scattering, 2210.01812. +[41] D. A. Neufeld, G. R. Farrar and C. F. McKee, Dark +Matter that Interacts with Baryons: Density +Distribution within the Earth and New Constraints on +the Interaction Cross-section, Astrophys. J. 866 (2018) +111 [1805.08794]. +[42] B. Bertoni, A. E. Nelson and S. Reddy, Dark Matter +Thermalization in Neutron Stars, Phys. Rev. D 88 +(2013) 123505 [1309.1721]. +[43] A. Gould and G. Raffelt, Thermal Conduction of +Massive Particles, Astrophys. J. 352 (1990) 654. +[44] H. Banks, S. Ansari, A. C. Vincent and P. Scott, +Simulation of energy transport by dark matter scattering +in stars, JCAP 04 (2022) 002 [2111.06895]. +[45] R. K. Leane and J. Smirnov, Floating Dark Matter in +Celestial Bodies, 2209.09834. +[46] R. Garani and S. Palomares-Ruiz, Dark matter in the +Sun: scattering off electrons vs nucleons, JCAP 05 +(2017) 007 [1702.02768]. +[47] D. N. Page, Particle Emission Rates from a Black Hole: +Massless Particles from an Uncharged, Nonrotating +Hole, Phys. Rev. D 13 (1976) 198. +[48] J. H. MacGibbon, Quark and gluon jet emission from +primordial black holes. 2. The Lifetime emission, Phys. +Rev. D 44 (1991) 376. + +10 +[49] A. Arbey and J. Auffinger, Physics Beyond the +Standard Model with BlackHawk v2.0, Eur. Phys. J. C +81 (2021) 910 [2108.02737]. +[50] J. Bramante, A. Buchanan, A. Goodman and E. Lodhi, +Terrestrial and Martian Heat Flow Limits on Dark +Matter, Phys. Rev. D 101 (2020) 043001 [1909.11683]. +[51] J. Christensen-Dalsgaard, W. Dappen, S. V. Ajukov, +E. R. Anderson, H. M. Antia, S. Basu et al., The +Current State of Solar Modeling, Science 272 (1996) +1286. +[52] M. French, A. Becker, W. Lorenzen, N. Nettelmann, +M. Bethkenhagen, J. Wicht et al., Ab Initio Simulations +for Material Properties along the Jupiter Adiabat, The +Astrophysical Journal Supplement Series 202 (2012) 5. +[53] A. M. Dziewonski and D. L. Anderson, Preliminary +reference earth model, Phys. Earth Planet. Interiors 25 +(1981) 297. +[54] Y. Zhang, J.-F. Lin, H. He, F. Liu, M. Zhang, T. Sato +et al., Shock compression and melting of an fe-ni-si +alloy: Implications for the temperature profile of the +earth’s core and the heat flux across the core-mantle +boundary, Journal of Geophysical Research: Solid Earth +123 (2018) . +[55] R. Garani and P. Tinyakov, Constraints on Dark Matter +from the Moon, Phys. Lett. B 804 (2020) 135403 +[1912.00443]. +[56] M. C. Digman, C. V. Cappiello, J. F. Beacom, C. M. +Hirata and A. H. G. Peter, Not as big as a barn: Upper +bounds on dark matter-nucleus cross sections, Phys. +Rev. D 100 (2019) 063013 [1907.10618]. +[57] P. C. McGuire, Low-background balloon-borne direct +search for ionizing massive particles as a component of +the dark galactic halo matter, Ph.D. thesis, University +of Arizona, Jan., 1994. +[58] A. Bhoonah, J. Bramante, B. Courtman and N. Song, +Etched plastic searches for dark matter, Phys. Rev. D +103 (2021) 103001 [2012.13406]. +[59] C. V. Cappiello, J. I. Collar and J. F. Beacom, New +experimental constraints in a new landscape for +composite dark matter, Phys. Rev. D 103 (2021) 023019 +[2008.10646]. +[60] R. S. Chivukula, A. G. Cohen, S. Dimopoulos and T. P. +Walker, Bounds on Halo Particle Interactions From +Interstellar Calorimetry, Phys. Rev. Lett. 65 (1990) 957. +[61] A. Bhoonah, J. Bramante, F. Elahi and S. Schon, +Calorimetric Dark Matter Detection With Galactic +Center Gas Clouds, Phys. Rev. Lett. 121 (2018) 131101 +[1806.06857]. +[62] A. Bhoonah, J. Bramante, S. Schon and N. Song, +Detecting composite dark matter with long-range and +contact interactions in gas clouds, Phys. Rev. D 103 +(2021) 123026 [2010.07240]. +[63] A. L. Erickcek, P. J. Steinhardt, D. McCammon and +P. C. McGuire, Constraints on the Interactions between +Dark Matter and Baryons from the X-ray Quantum +Calorimetry Experiment, Phys. Rev. D 76 (2007) +042007 [0704.0794]. +[64] P. B. Price and M. H. Salamon, Search for +Supermassive Magnetic Monopoles Using Mica Crystals, +Phys. Rev. Lett. 56 (1986) 1226. +[65] J. Bramante, B. Broerman, J. Kumar, R. F. Lang, +M. Pospelov and N. Raj, Foraging for dark matter in +large volume liquid scintillator neutrino detectors with +multiscatter events, Phys. Rev. D 99 (2019) 083010 +[1812.09325]. +[66] B. D. Wandelt, R. Dave, G. R. Farrar, P. C. McGuire, +D. N. Spergel and P. J. Steinhardt, Selfinteracting dark +matter, in 4th International Symposium on Sources and +Detection of Dark Matter in the Universe (DM 2000), +pp. 263–274, 6, 2000, astro-ph/0006344. +[67] M. Baryakhtar, J. Bramante, S. W. Li, T. Linden and +N. Raj, Dark Kinetic Heating of Neutron Stars and An +Infrared Window On WIMPs, SIMPs, and Pure +Higgsinos, Phys. Rev. Lett. 119 (2017) 131801 +[1704.01577]. +[68] H. Niikura, M. Takada, S. Yokoyama, T. Sumi and +S. Masaki, Constraints on Earth-mass primordial black +holes from OGLE 5-year microlensing events, Phys. +Rev. D 99 (2019) 083503 [1901.07120]. +[69] G. Dom`enech and S. Pi, NANOGrav hints on +planet-mass primordial black holes, Sci. China Phys. +Mech. Astron. 65 (2022) 230411 [2010.03976]. +[70] J. Scholtz and J. Unwin, What if Planet 9 is a +Primordial Black Hole?, Phys. Rev. Lett. 125 (2020) +051103 [1909.11090]. + diff --git a/WdE2T4oBgHgl3EQfDgZf/content/tmp_files/load_file.txt b/WdE2T4oBgHgl3EQfDgZf/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..2938c08c8a018740194e8abdcd49156bc47441ff --- /dev/null +++ b/WdE2T4oBgHgl3EQfDgZf/content/tmp_files/load_file.txt @@ -0,0 +1,934 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf,len=933 +page_content='N3AS-23-001 Celestial Objects as Strongly-Interacting Asymmetric Dark Matter Detectors Anupam Ray ID 1, 2, a 1Department of Physics, University of California Berkeley, Berkeley, California 94720, USA 2School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455, USA (Dated: January 11, 2023) Non-annihilating dark matter particles, owing to their interactions with ordinary baryonic matter, can efficiently accumulate inside celestial objects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' For heavy mass, they gravitate toward the core of the celestial objects, thermalize in a small core region, and eventually form tiny black holes via core collapse, resulting destruction of the host objects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' We demonstrate that the existence of a variety of celestial objects provides stringent constraints on strongly-interacting heavy dark matter, a blind- spot for the terrestrial dark matter detectors as well as for the cosmological probes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Celestial objects with larger sizes and lower core temperatures, such as Jupiter, are the most optimal detectors to probe the strongly-interacting heavy asymmetric dark matter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' INTRODUCTION The existence of dark matter (DM) has been firmly es- tablished through its gravitational interactions with the ordinary baryonic matter [1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' However, its identity still remains a mystery.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' The ongoing terrestrial and cosmo- logical searches are trying to pinpoint its mass and hy- pothesized non-gravitational interactions with the bary- onic matter [2, 3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' While some DM parameters have been excluded by these searches, many well-motivated candi- dates are yet to be explored.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Strongly-interacting heavy asymmetric DM is one such regime that remains largely untested.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' In this work, we demonstrate that celestial objects are excellent laboratories to search for strongly-interacting heavy asymmetric DM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' More specifically, we point out that the continued existence of a variety of stellar ob- jects provides stringent exclusions on asymmetric DM interactions over a wide mass range.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' We mainly answer two basic questions: why celestial objects are superior to search for strongly-interacting heavy asymmetric DM as compared to the terrestrial detectors, and which celestial objects are the most optimal targets?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Traditional direct detection experiments are not well- suited for heavy DM searches.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' The flux of Galactic DM at terrestrial detectors falls off linearly with higher DM mass, and the constraints weaken accordingly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Whereas, because of the enormous sizes of astrophysical objects and their long lifetimes, the effective exposure time (∼ M⊙ Gyr) is orders of magnitude larger than human-made direct detection experiments (∼ kT yr), naturally provid- ing sensitivity to the tiny flux of heavy DM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Strongly-interacting DM is yet another blind-spot for typical direct detection experiments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' If DM particles in- teract too strongly with baryonic matter, they lose a sig- nificant fraction of their energies via interactions with the material in the atmosphere as well as in the Earth-cover above the underground detectors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' As a consequence, a anupam.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='ray@berkeley.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='edu they slow down significantly and can not deposit suffi- cient amounts of energy for detection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Whereas, stellar objects are ideal probes for strongly-interacting DM as almost all the DM particles that transit through the stel- lar objects get trapped, leading to a maximal sensitivity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Accumulation of particle DM in celestial objects is a novel astrophysical probe of non-gravitational interac- tions of DM with the ordinary baryonic matter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' DM particles from the galactic halo, owing to their inter- actions with the stellar constituents, can down-scatter to energies below the local escape energy, and become gravitationally bound to the stellar objects [4–6].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' These bound DM particles lose more energy via repeated scat- terings with the stellar constituents and eventually ther- malize inside the stellar volume.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Such bound thermalized DM particles can become abundant inside the stellar vol- ume if they have sufficiently strong interactions with the baryonic matter, and possess intriguing phenomenologi- cal signatures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' For non-annihilating DM, such bound DM particles gradually accumulate, and for heavy DM masses, they settle in a small region around the stellar core.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Be- cause of their prodigious abundance in a tiny core vol- ume, their number density within the stellar core be- comes quite large, allowing dark core collapse and sub- sequent black hole (BH) formation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' This nascent BH, if not too light, can rapidly swallow the host, and the exis- tence of stellar objects provides stringent constraints on non-annihilating DM interactions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' This scenario has been extensively studied in the con- text of old neutron stars [7–27] primarily because of their enormously large baryonic density as well as high com- pactness.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' More specifically, neutron stars can capture a significant number of DM particles from the Galactic halo even for the low DM-nucleon scattering cross-sections as the single-collision capture rate scales linearly with the compactness (∼ M/R).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Quantitatively, for a solar mass neutron star with a typical radius of 10 km, the capture rate is O(105) times larger than the Sun for low DM in- teractions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Apart from that, because of their large bary- onic density (∼ M/R3), the accumulated DM particles thermalize in a tiny region around the core, implying a arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='03625v1 [hep-ph] 9 Jan 2023 2 huge core-density favorable for transmutation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' This indi- cates neutron stars are the most optimal targets to probe weakly interacting heavy asymmetric DM, and the exis- tence of old neutron stars in the solar neighborhood ex- cludes mχ = 106 GeV and σχn = 10−48 cm2, the leading constraints on non-annihilating DM interactions [11, 20].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' However, in the optically thick (large DM-nucleon scat- tering cross-section) regime, non-compact objects such as the Sun, Jupiter, and Earth are more suitable detec- tors to probe non-annihilating DM interactions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' This is simply because in the optically thick regime, almost all of the DM particles that transit through a stellar ob- ject get trapped, and therefore, the accumulation rate increases with the larger size.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Since the non-compact ob- jects possess much larger radii, the accumulation rate for non-compact objects becomes comparable or even larger than the neutron stars in the strongly-interacting regime.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Quantitatively, for mχ = 106 GeV, and suffi- ciently high σχn, the transit (accumulation) rate for a typical neutron star is 1019 s−1, comparable to the Earth, and 10−2 (10−5) smaller than the Jupiter (Sun).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' This naturally motivates us to explore the potential of non- compact stellar objects as strongly-interacting asymmet- ric DM detectors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' We found that stellar objects with relatively large radii and low core-temperature (such as Jupiter), are the most optimal detectors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' This is simply because the total number of accumulated DM particles increases with a larger radius, and the BH formation be- comes easier with a lower core-temperature, implying the most favorable transmutation criterion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Prior works [28– 30], more particularly Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' [30] has recently explored the transmutation scenario for the Earth and the Sun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' We systematically revisit the issue to gain more insight on the constraints, and we show that stellar objects with larger sizes and small core temperatures (such as Jupiter) pro- vide the leading constraints on strongly-interacting heavy asymmetric DM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' The rest of the paper is organized as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' In Sec- tion II, we discuss different stages of DM-induced collapse of the celestial objects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' In Section III, we present our exclusion limits from the existence of several stellar ob- jects, demonstrating that the constraints obtained in this analysis cover new parts of the DM parameter space and bridge the gap between the cosmological probes [31–34], and the terrestrial detectors [35–39].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Finally, we summa- rize and conclude in Section IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' DARK MATTER INDUCED COLLAPSE OF STELLAR OBJECTS Non-annihilating DM particles can accumulate effi- ciently inside the stellar volume if they possess suffi- ciently strong interactions with the stellar nuclei.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' For heavy DM mass, they gravitate towards the stellar core and settle in a tiny core-region.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Because of their prodi- gious abundance, and tiny core volume, their number density within the stellar core becomes tantalizingly larger, eventually resulting in a BH formation inside the stellar core.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' This nascent BH, if not sufficiently light, can rapidly swallow the host, transmuting them to com- parable mass BHs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' In the following, we discuss different stages of DM-induced collapse of stellar objects, and a schematic diagram for this process is depicted in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Dark Matter Accumulation We first estimate the total number of captured DM particles inside the stellar volume.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' For clarity, we de- fine the maximal capture rate as saturation capture rate (Csat), and it occurs when all of the DM particles that transit through the stellar objects get trapped.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' For a particular velocity distribution of the incoming DM par- ticles, the saturation capture rate is [6] Csat = ρχ mχ πR2 � f(u)du u (u2 + v2 esc) , (1) where ρχ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='4 GeV/cm3 is the Galactic DM density, mχ is the DM mass, and R is the radius of the stellar object.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' f(u) denotes the velocity distribution of the in- coming DM particles, with vesc being the escape velocity of the stellar objects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' For a Maxwell-Boltzmann velocity distribution, Csat simplifies to Csat = ρχ mχ πR2 � 8 3π ¯v � 1 + 3v2 esc 2¯v2 � , (2) where ¯v = 270 km/s denotes the average velocity of the DM particles in the Galactic halo.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' A certain fraction of the DM particles will be cap- tured by interacting with the stellar constituents, and we aim to estimate this capture fraction (fc).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Since we are mostly interested in the optically thick regime (large DM-nucleon scattering cross-section), fc behaves differ- ently for heavier and lighter DM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' For heavier DM, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=', when the DM mass (mχ) is larger than the target mass (mA), scatterings do not alter the direction of the in- coming DM particles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' As a consequence, the trajectories of the incoming DM particles are not randomized, and they follow almost a linear trajectory that ends inside the stellar interior when the final velocity falls below the escape velocity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' In this case, in the limit of multiple col- lisions, the DM particles are essentially guaranteed to be captured, resulting fc = 1 [40].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Whereas, in the opposite regime (mχ < mA), the direction of the DM particles gets randomized after each collision, and as a result, a certain fraction of the DM particles can always escape from the stellar volume via reflection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' This implies that for lighter DM, even for arbitrarily large cross-sections, the capture rate never reaches its saturation value (fc < 1) [40].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' For this analysis, we are interested in heavy DM cap- ture inside stellar objects, and hence, we take fc = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' It implies that in the optically thick regime, we take the capture rate to its saturation value, and it does not de- pend on the DM-nucleon scattering cross-section.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' For 3 light DM capture in celestial objects, fc can be deter- mined by the recent MCMC results [40], or from analyt- ical estimates [41], both of which agree reasonably well.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' In the optically thin regime (small DM-nucleon scat- tering cross-section), capture occurs via single scatter- ing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' This is simply because for smaller values of DM- nucleon scattering cross-sections, the mean free path of the incoming DM particles becomes larger and becomes comparable to the size of the stellar objects, and as a re- sult, they scatter once while transiting through the host.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' For this regime, we use the single-collision capture treat- ment [6], and fc becomes substantially smaller.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Spatial Distribution of Dark Matter inside Stellar Objects Captured DM particles rapidly thermalize inside the celestial objects for sufficiently high DM-nuclei scatter- ing cross-sections [11–13, 20, 30, 42], and the spatial dis- tribution of the thermalized DM particles inside the stel- lar volume depends on the effects of diffusion and grav- ity [43–45].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' By considering the effects of diffusion and gravity in a self-consistent manner, the spatial distribu- tion of the thermalized DM particles is [45] ∇nχ(r) nχ(r) + (κ + 1) ∇T(r) T(r) + mχg(r) T(r) = Φ nχ(r)Dχn(r) R2 ⊕ r2 , (3) where nχ(r) denotes the number density of the thermal- ized DM particles within the stellar volume.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' T(r) denotes the temperature profile of the celestial objects, and Φ = C/πR2 ⊕ is the incoming flux of the DM particles, with C denotes the capture rate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' κ ∼ −1/ � 2(1 + mχ/mA)3/2� and Dχn ∼ λvth are the diffusion coefficients, where λ denotes the mean free path of the DM particles and vth denotes their thermal velocity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' It is evident that, for very heavy DM mass, the diffusion co-efficient (κ) be- comes smaller as it scales as m−3/2 χ , and gravity (scales proportional to mχ) dominates over the diffusion pro- cesses.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Therefore, heavy DM tends to settle down to- wards the core of the stellar objects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Quantitatively, by solving Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' (3) for nχ(r) with the boundary condition that the volume integral of nχ(r) provides the total num- ber of captured DM particles, one can demonstrate that the captured DM particles mostly concentrate around the stellar core if they are heavy [45].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Concentration of heavy DM around the stellar core can also be explained from the radius of the thermaliza- tion sphere � rth = � 9kBT/ (4πGρmχ) � , which results from the balance between the thermal pressure and the gravitational potential [11, 12].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Since, the radius of the thermalization sphere scales as m−1/2 χ , for heavy DM, rth becomes smaller, indicating the concentration of the captured DM particles primarily occurs around the core.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Dark Core Collapse & Black Hole Formation For non-annihilating DM, accumulation grows linearly in time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' As a consequence, the number density of the captured DM particles inside the thermalization volume becomes tantalizingly large.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Quantitatively, for DM mass of 106 GeV, and sufficiently high DM-nuclei scattering cross-section (say 10−28 cm2), O(1036) number of DM particles thermalize inside the Earth within a radius of ∼ 6 km, indicating a number density of ∼ 2×1018 cm−3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' This corresponds to a core density of ∼ 2 × 1024 GeV cm−3, around 25 orders of magnitude higher than the lo- cal Galactic DM density, and it further increases as m3/2 χ for heavier DM masses.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Once the core-density exceeds its critical threshold value, it undergoes a gravitational collapse, and eventually results in a BH formation inside the stellar core [7–24, 30].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' In the following, we quantify the critical core-density for the stellar objects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' The BH formation criterion via dark core collapse has been extensively discussed in the literature for compact stars [7–27, 30], and is essentially determined by two con- ditions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' The first one is within the stable thermal ra- dius, the DM density has to exceed the corresponding baryonic density (ρb).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' It leads to a self-gravitational col- lapse of the thermalized DM particles and is determined by [11, 13, 20] mχN self χ 4 3πr3 th ≥ ρb , (4) where N self χ denotes the critical number of DM particles for ensuing self-gravitating collapse1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' It is independent of the spin of the DM particles and only depends on the DM mass as well as properties of the stellar objects such as core-density and core-temperature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' For Earth, it cor- responds to N self χ ∼ 7×1036 � ρcore 13 g/cm3 � � Tcore 5800 K �3/2 �107 GeV mχ �5/2 , (5) where, ρcore denotes the core density, and Tcore denotes the core temperature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' The second condition is deter- mined by the maximum number of DM particles that can be stabilized by the degeneracy pressure and is commonly known as Chandrasekhar limit (N cha χ ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Chandrasekhar limit depends on the spin-statistics of the DM particles as degeneracy pressure for bosonic DM stems from the Un- certainty principle, whereas, for fermionic DM, it arises from the Pauli exclusion principle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' N cha χ solely depends on the DM mass, and quantitatively, it corresponds to M 2 pl/m2 χ (M 3 pl/m3 χ), where Mpl = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='22 × 1019 GeV de- notes the Planck mass [11, 13, 20].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' To summarize, for 1 This self-gravitating criterion is essentially equivalent to the Jeans instability criterion in Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' [30] up to O(1) factors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' 4 Dark Matter Accumulation Dark Core Collapse Transmutation FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Transmutation of stellar objects via gradual accumulation of non-annihilating DM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Heavy DM gravitate towards the core of the stellar objects and form tiny black holes via dark core collapse.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' These nascent BHs rapidly transmute the hosts by swallowing them, resulting in comparable low mass BHs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' dark core collapse, the total number of captured DM par- ticles inside a stellar object within its lifetime (tage) has to satisfy the following [11, 13, 20, 24] Nχ|tage = C × tage ≥ max � N self χ , N cha χ � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' (6) Note that, for stellar objects with high core temperature (such as Sun), the dark core collapse is essentially de- termined by N self χ for bosonic as well as fermionic DM, leading to identical exclusion limits for bosonic/fermionic DM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Whereas, for stellar objects with low core tempera- ture, the dark core collapse is determined by N self χ (N cha χ ) for bosonic (fermionic) DM, leading to distinct exclusion limits for bosonic/fermionic DM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Growth and Evaporation of Nascent Black Holes It is important to stress that dark core collapse does not ensure the successful transmutation of the hosts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' If the nascent BH is sufficiently light, transmutation can cease for two different reasons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Firstly, lighter BH takes a much longer time to swallow the hosts, and the swallow time (τswallow) can even be larger than the lifetime of the hosts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Secondly, and more importantly, Hawking radiation becomes significant for lighter BH masses (∼ 1/M 2 BH), causing a rapid evaporation of the nascent BH.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Since the mass of the nascent BH becomes smaller for heavier DM mass, this provides an upper limit on DM mass that can be probed via transmuta- tion [11, 13, 20, 24].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' We quantify the upper limits of mχ for several stellar objects in the following, and it ranges around O(1010) GeV for the stellar objects under consid- eration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' For the time-evolution of the nascent BH, we conser- vatively consider the baryonic matter accretion from the host (ignoring the possible DM accretion by the nascent BH) [11, 13, 46] dMBH dt = 4πρcoreG2M 2 BH c3s − P (MBH) G2M 2 BH , (7) where cs = � Tcore/mn denotes the sound speed at the core of the stellar object, and P (MBH) denotes the Page factor [47, 48].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Page factor properly accounts into gray-body corrections of the Hawking evaporation spec- trum, as well as the number of Standard Model (SM) species emission from an evaporating BH.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' In the classi- cal black-body radiation limit, the Page factor evaluates to 1/ (15360π), and is commonly used in the literature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Considering the gray-body corrections, the Page factor can be written as 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='8 × 10−4f(MBH) where f(MBH) en- codes the number of SM species emission from an evapo- rating BH [48].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' For MBH ≥ 1017 g (which only emit mass- less particles, such as photons and neutrinos), f(MBH) is normalized to unity [48], and therefore, Page factor eval- uates to 1/(1135π), an order of magnitude larger than the classical black-body limit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' For MBH ≤ 1017 g, the number of SM species emission from an evaporating BH crucially depends on its temperature (mass), and hence, f(MBH) varies with BH mass.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' We use the semi-analytic form of f(MBH) from Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' [48] to estimate the Page fac- tor in this regime.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Quantitatively, for light BHs, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=', MBH ≤ 1010 g, which can emit all SM species, f(MBH) evaluates to 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='35, and for 1015 g ≤ MBH ≤ 1017 g (which can emit electrons, positrons, photons, and neutrinos), f(MBH) evaluates to 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='569.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' To summarize, depending on BH mass, f(MBH) ranges from (1 − 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='35), implying the range of Page factor from 1/(1135π) to 1/(74π).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' We ver- ify that the Page factor obtained from the semi-analytic form of f(MBH) from Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' [48] is in excellent agreement with the publicly available BlackHawk package [49].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Since, the accretion term scales as M 2 BH, and the evap- 5 oration term scales as 1/M 2 BH, for low BH masses, evap- oration dominates over the accretion process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Quantita- tively, for Sun, Jupiter, Earth, and Moon, Hawking evap- oration dominates over the Bondi-Hoyle accretion for mχ ≥ � � � � � � � � � 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='1 × 1011 GeV 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='2 × 109 GeV 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='4 (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='3) × 109 GeV 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='0 (6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='0) × 109 GeV (8) for non-annihilating bosonic (fermionic) DM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' On the other hand, by requiring that the τswallow has to be less than 1 Gyr, we obtain mχ ≥ � � � � � � � � � 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='1 × 1010 GeV 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='1 × 1010 GeV 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='9 (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='5) × 1010 GeV 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='8 (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='1) × 1010 GeV (9) for non-annihilating bosonic (fermionic) DM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' We note that, for stellar objects with high core-temperature, τswallow essentially determines the wash-out of the trans- mutation, whereas, for stellar objects with low core- temperature, it is determined by the efficient Hawking evaporation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' This can simply be explained by the fol- lowing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' For high core-temperature stellar objects, the nascent BH becomes relatively larger (MBH,init ∼ T 3/2), and therefore, the effects of Hawking evaporation become relatively sub-dominant, implying accretion determines the termination of the transmutation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Drift time and Maximal Possible Scattering Cross-section Transmutation of stellar objects also ceases at very high DM-nucleon scattering cross-sections.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' This is sim- ply because, at very high DM-nucleon cross-sections, DM particles lose a significant amount of energy in the outer shells of these stellar objects, and might not reach the stellar core to form a micro BH.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' In other words, the viscous drag force that drives the DM particles toward the core results in a long drift time, and therefore, pro- hibits transmutation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' We estimate the drift time by us- ing the stellar density, temperature, and compositional profiles [8, 30, 50] tdrift = 1 Gmχ � j σχj � R 0 nj(r) � 3AjT(r) � r 0 d3r′ρj(r′) dr , (10) where σχj denotes the DM-nuclei scattering cross- section, and it is related to the DM-nucleon scattering cross-section via σχj = σχn A2 j � µχAj/µχn �2 with Aj is the mass number of the j-th nuclei, and µχn is the re- duced mass of the DM-nucleon system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' We determine the ceilings of our results by demanding that tdrift ≤ 1 Gyr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Quantitatively, for (Sun) Earth, it corresponds to σχn ≤ (10−17) 10−21 cm2 � mχ 107 GeV � , (11) and is same for bosonic/fermionic DM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Properties of Stellar Objects We accurately estimate the capture rate and the trans- mutation criterion for these stellar objects by utilizing stellar object properties, such as density profiles, tem- perature profiles, and detailed chemical compositions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' In the following, we provide the inputs that have been con- sidered for this analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' The density and temperature profiles for Sun, Earth, and Jupiter which have been used in this analysis have also complied in Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' [45].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Sun: We use the solar density and temperature profiles from [51].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' For the chemical composition, we assume that the Sun is entirely made up of 1H [45].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Jupiter: We use the Jupiter density and tempera- ture profiles from the Jovian model J11-4a [52].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' For the chemical composition, we assume that Jupiter is entirely made up of 1H [45].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Earth: We use the Preliminary Reference Earth Model from [53] for the density profile, and we take the temperature profile from [54] under the assumption of a hydro-static equilibrium.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' For the chemical composition, we use the tabulated val- ues from Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' [50] with the core-mantle bound- ary at 3480 km, and the mantle-crust boundary at 6346 km.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' The core is dominantly made up of 56Fe, whereas, the mantle and the crust are dominantly made up of 16O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Moon: We use the MAX model for density and the chemical compositions of the Moon [55].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' We take the lunar core-mantle boundary at 450 km, and the mantle-crust boundary at 1650 km.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' The lunar core is dominantly made up of 56Fe, whereas, the mantle and the crust is dominantly made up of 16O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' For the temperature profile, we consider the Moon as an isothermal sphere with T = 1700 K [55].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' RESULTS We consider a variety of stellar objects, such as the Sun, Jupiter, Earth, and Moon, and demonstrate their potential as asymmetric DM detectors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' These choices are well-motivated by the fact that each of these stel- lar objects is an optimal detector in a different regime.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' More specifically, they cover a wide range of size, den- sity, and temperature, making them sensitive to different parts of the DM parameter space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Sun has the largest size, and the highest core temperature, and as a con- sequence, the total number of captured DM particles as well as the threshold for transmutation both become higher.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Jupiter has a somewhat larger size,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' but possesses ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='6 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='CMB ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='Bosonic / Fermionic DM ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='Skylab ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='Chicago ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='MW Satellites ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='Terrestrial ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='detectors ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='Sun ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='(This analysis) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='105 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='106 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='107 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='108 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='109 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='1010 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='10-14 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='10-16 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='10-18 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='10-20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='10-22 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='10-24 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='10-26 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='10-28 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='10-30 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='10-32 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='10-34 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='mχ [GeV] ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='σχn [cm2] ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='CMB ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='Bosonic DM ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='Fermionic DM ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='Skylab ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='Chicago ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='MW Satellites ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='Terrestrial ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='detectors ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='Jupiter ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='(This analysis) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='105 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='106 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='107 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='108 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='109 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='1010 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='10-14 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='10-16 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='10-18 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='10-20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='10-22 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='10-24 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='10-26 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='10-28 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='10-30 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='10-32 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='10-34 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='mχ [GeV] ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='σχn [cm2] ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='CMB ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='Bosonic DM ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='Fermionic DM ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='Skylab ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='Chicago ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='MW Satellites ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='Terrestrial ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='detectors ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='Earth ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='(This analysis) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='105 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='106 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='107 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='108 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='109 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='1010 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='10-14 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='10-16 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='10-18 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='10-20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='10-22 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='10-24 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='10-26 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='10-28 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='10-30 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='10-32 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='10-34 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='mχ [GeV] ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='σχn [cm2] ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='CMB ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='Bosonic DM ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='Fermionic DM ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='Skylab ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='Chicago ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='MW Satellites ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='Terrestrial ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='detectors ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='Moon ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='(This analysis) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='105 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='106 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='107 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='108 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='109 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='1010 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='10-14 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='10-16 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='10-18 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='10-20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='10-22 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='10-24 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='10-26 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='10-28 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='10-30 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='10-32 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='10-34 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='mχ [GeV] ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='σχn [cm2] ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Exclusion limits on spin-independent DM-nucleon scattering cross-sections from the existence of several stellar objects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' The regions shaded by the solid red lines correspond to non-annihilating bosonic DM, whereas, the regions shaded by dashed red lines correspond to non-annihilating fermionic DM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' The top left (right) panel corresponds to the Sun (Jupiter), whereas, the bottom left (right) panel corresponds to the Earth (Moon).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' The existence of the stellar objects provides unprecedented sensitivity to strongly-interacting heavy asymmetric DM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' We show the existing exclusion limits (gray shaded regions) from terrestrial searches [35–38] (collected in [39, 56]), Skylab space station [57, 58], a recent shallow-depth experiment carried out at University of Chicago [59], and cosmological measurements [31, 33] for comparison.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' The existing constraints (gray-shaded regions) apply to both non-annihilating and annihilating DM, whereas, the constraints obtained from this analysis (red-shaded regions) apply solely to non-annihilating/very feebly annihilating DM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' a much lower core temperature, implying a higher cap- ture rate but a lower threshold for transmutation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Earth and Moon have relatively smaller sizes and much lower core-temperatures, and hence, the capture rate as well as the threshold for transmutation both becomes smaller.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' We show our main results in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' 2 for non-annihilating bosonic and fermionic DM (spin-independent interac- tions).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' The top left (right) panel corresponds to Sun (Jupiter) as a DM detector, whereas, the bottom left (right) panel corresponds to Earth (Moon) as a DM de- tector.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' For stellar objects with low core temperatures, such as Moon, Earth, and Jupiter, the exclusion limit for bosonic DM is significantly stringent as compared to the fermionic DM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' This is simply because for non- annihilating bosonic DM, the dark core collapse crite- rion is essentially determined by N self χ , whereas, for non- annihilating fermionic DM, it is determined by N cha χ , which is much higher than the self-gravitating criterion, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='e, N cha χ, fermion ≫ N self χ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' This implies that transmutation for low core-temperature stellar objects is much harder to attain for non-annihilating fermionic DM, explaining the weaker exclusions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' However, for stellar objects with higher core temperature, such as the Sun, the dark core collapse criterion for bosonic as well as fermionic DM is 7 set by N self χ (as it scales as T 3/2 core), explaining identical exclusion limits for bosonic and fermionic DM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' The exclusion limits in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' 2 can be explained quali- tatively from the following.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' For non-annihilating bosonic (fermionic) DM, the total number of captured DM par- ticles linearly increases with lighter mχ, whereas, the threshold for transmutation increases as m5/2 χ (m3 χ), and hence, for light DM masses, transmutation can not be achieved.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' This explains the sharp vertical cut-offs in the low mχ regime.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' For heavier DM masses, the mass of the nascent BH becomes smaller, resulting in two distinct effects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Firstly, the nascent BH takes a substantially longer time to consume the host, and secondly, Hawk- ing evaporation becomes crucial.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Because of these two effects, transmutation ceases, providing the vertical cut- offs around mχ = 1010 GeV in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' For the exact numerical values, see Section II D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Next, we discuss the σχn dependence of the exclu- sion limits in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' For low DM-nucleon scattering cross-sections, the total number of captured DM par- ticles within the stellar objects decreases, and eventu- ally falls below the threshold for transmutation, indi- cating that low σχn can not be probed via transmuta- tion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Quantitatively, for non-annihilating bosonic DM, σχn ≤ 10−33 cm2 (σχn ≤ 10−28 cm2) can not be probed by the existence of the Sun (Moon).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Very high DM- nucleon scattering cross-sections are also inaccessible via transmutations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' This is simply because for very high σχn, the drift time of the DM particles becomes much longer, and they can not reach the stellar core for large interactions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' In Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' 2, we show the ceilings of our re- sults by demanding that tdrift ≤ 1 Gyr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' For the Sun, it corresponds to σχn ≤ 10−17 cm2 for mχ = 107 GeV, and linearly increases with heavier DM mass.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Comparison with the Existing Constraints In Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' 2, we show the existing constraints on DM- nucleon scattering cross-section (gray-shaded regions) for comparison.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' The existing constraints can be classified into three broad categories: astrophysical, cosmological, and terrestrial.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Constraints obtained from the terrestrial direct detection experiments (labeled as Terrestrial de- tectors) [35–38] are primarily based on non-observation of any anomalous scattering signature in the under- ground as well as in the surface detectors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' We take these constraints from the summary plots in [39, 56].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Cosmological constraints, such as Planck measurements of temperature and polarization anisotropy of the cos- mic microwave background (labeled as CMB) [31, 32], and Milky Way satellite observations (labeled as MW satellites) [33, 34] are also shown for comparison.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' As- trophysical constraints, such as disk stability [28], inter- stellar gas cooling [60], and Galactic Center gas-cloud heating [61, 62] are typically weaker than the constraints obtained from the Milky Way satellite observations, and therefore, are not shown for clarity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Very recently, a shallow-depth experiment carried out at the University of Chicago (labeled as Chicago) [59] provides a novel constraint on strongly-interacting heavy DM, and we show it in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Large panels of etched plastic, situ- ated aboard the Skylab Space Station also provide strin- gent exclusion limits on DM-nucleon interactions (labeled as Skylab) [28, 57, 58].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Rocket-based X-ray Quantum Calorimetry (XQC) experiment [63], and searches for DM tracks in ancient underground mica [64, 65] probe strongly-interacting heavy DM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' However, the XQC limit and the mica limit mostly apply for mχ ≤ 105 GeV and mχ ≥ 1010 GeV, respectively, and hence, are not shown.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Finally, constraints obtained from cosmic ray silicon de- tector satellite (IMP7/8), and balloon-borne experiment (IMAX) [66] are not based on detailed analyses in peer- reviewed papers, and therefore, are not shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Comparing with the existing exclusion limits, it is ev- ident that the existence of a variety of stellar objects provides novel constraints on strongly-interacting heavy asymmetric DM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' It provides unprecedented sensitivity to some regions in the parameter space as compared to the existing searches.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Quantitatively, existence of the stel- lar objects exclude σχn = 10−24 cm2 for mχ = 107 GeV, not ruled by any other probes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' This leading sensitiv- ity simply stems from the fact that stellar objects, ow- ing to their gigantic size and long lifetime, can capture a copious amount of Galactic DM particles for suffi- ciently high σχn, eventually causing an implosion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' We note that, stellar objects with relatively larger sizes with much lower core temperatures, such as Jupiter, are the optimal targets to probe transmutation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' This is sim- ply because the total number of accumulated DM par- ticles quadratically increases with a larger radius, and the threshold for transmutation falls off with lower core- temperature, implying the most favorable transmutation criterion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' It is also important to stress that the existing constraints from cosmological and terrestrial searches ap- ply for both non-annihilating and annihilating DM inter- actions, as they are solely based on scatterings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Whereas, the constraints obtained in this analysis apply only to non-annihilating/very-feebly annihilating DM particles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' We also note that, the exclusions obtained in Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' [30] for Earth are weaker than our analysis, however for Sun, the constraints are similar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' This can be explained in the following.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' [30] derived their results for bosonic DM with non-negligible quartic self-interactions (repul- sive).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Because of the repulsive self-interactions among the DM particles, the effective Chandrasekhar limit sub- stantially increases [14], and it essentially determines the dark core collapse criterion for Earth.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Whereas, in our analysis, we consider non-annihilating bosonic DM, and the dark core collapse criterion for Earth is determined by N self χ , explaining the difference between the two analyses.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' For Sun, because of its much larger core-temperature, N self χ (∼ T 3/2 core) always exceeds over the Chandrasekhar limit, and sets the dark core collapse criterion, resulting in a similar exclusion in both the analyses.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' 8 B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Anomalous Heating Signatures Non-annihilating DM can also heat up the stellar ob- jects via successive scatterings with the stellar nuclei while getting captured.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Such anomalous heating, com- monly known as dark kinetic heating, can be observed in neutron stars with very low surface temperatures [67].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Cold neutron stars (TNS = O(1000) K) are ideal targets to search for dark kinetic heating as they have much higher escape velocities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Because of the large escape ve- locities, the velocity of the incoming DM particles gets significantly enhanced while falling into the steep gravita- tional potential of the neutron stars, and hence, they can transfer their kinetic energy to the stellar nuclei via col- lisions, heating up the cold neutron stars.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' We estimate the same for non-compact objects, concluding that be- cause of their sufficiently low escape velocity, and larger size, such anomalous heating signatures are too low to observe.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' SUMMARY & CONCLUSION Celestial objects, owing to their enormous size and long lifetime, naturally act as novel DM detectors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' We demonstrate that the continued existence of the Sun, Jupiter, Earth, and Moon provides stringent constraints on strongly-interacting asymmetric DM interactions over a wide mass range.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' These choices are well-motivated by the fact that each of these stellar objects is an optimal de- tector in a different regime as they cover a different range of size, density, and temperatures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' We probe regions in the DM parameter space, which are entirely inaccessible to the existing DM searches, demonstrating the novelty of our analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Our proposal is simply based on the fact that non-annihilating DM particles from the Galactic halo get captured inside the stellar objects if they interact sufficiently with the nucleons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' For heavy DM, these cap- tured DM particles rapidly thermalize within a very small region around the stellar core, resulting in a tantalizingly large core-density.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Once the core-density exceeds its crit- ical threshold value, nascent BH forms inside the stellar core, eventually destroying the hosts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Mere existence of these stellar objects excludes such DM mass and cross- sections which predict the successful destruction of the hosts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' We consider several stellar objects to demonstrate their potential as DM detectors and conclude that stel- lar objects with relatively larger sizes and low core tem- peratures, such as Jupiter, can probe the maximal DM mass window.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Heavier DM masses are the most optimal for transmutation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' However, as the nascent BH becomes smaller with an increase in DM mass, accretion becomes inefficient, and the Hawking evaporation becomes crucial, ceasing the transmutation for heavy DM masses.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Overall, given these stringent exclusion limits, our work naturally inspires similar analysis for other celestial objects, such as Brown Dwarfs, Red Giants, and Exoplanets, once we have a better understanding of their density, tempera- ture, and compositional properties.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Finally, we point out an intriguing direction that the transmutation of celestial objects can lead to planetary mass BHs, possibly explain- ing the six ultrashort microlensing events observed in the OGLE data [68], NANOGrav detection of stochastic GW background [69], as well as the BH hypothesis of Planet- 9 [70].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Since, planet mass primordial BHs provide the viable solutions to this anomalies [68–70], it would be interesting to explore the alternative solutions via trans- mutation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' ACKNOWLEDGMENTS It is my pleasure to thank Basudeb Dasgupta for help- ful discussions and useful comments on the manuscript.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' I also thank Sulagna Bhattacharya and Maxim Pospelov for helpful exchanges.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' AR acknowledges support from the National Science Foundation (Grant No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' PHY- 2020275), and to the Heising-Simons Foundation (Grant 2017-228).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' [1] Planck collaboration, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Aghanim et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=', Planck 2018 results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' VI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Cosmological parameters, Astron.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Astrophys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' 641 (2020) A6 [1807.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='06209].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' [2] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Cooley et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=', Report of the Topical Group on Particle Dark Matter for Snowmass 2021, 2209.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='07426.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' [3] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Boddy et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=', Snowmass2021 theory frontier white paper: Astrophysical and cosmological probes of dark matter, JHEAp 35 (2022) 112 [2203.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='06380].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' [4] W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Press and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Spergel, Capture by the sun of a galactic population of weakly interacting, massive particles, Astrophysical Journal 296 (1985) 679.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' [5] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Gould, WIMP Distribution in and Evaporation From the Sun, Astrophys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' 321 (1987) 560.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' [6] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Gould, Resonant Enhancements in WIMP Capture by the Earth, Astrophys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' 321 (1987) 571.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' [7] I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Goldman and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Nussinov, Weakly Interacting Massive Particles and Neutron Stars, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' D 40 (1989) 3221.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' [8] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Gould, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Draine, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Romani and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Nussinov, Neutron Stars: Graveyard of Charged Dark Matter, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' B 238 (1990) 337.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' [9] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Bertone and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Fairbairn, Compact Stars as Dark Matter Probes, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' D 77 (2008) 043515 [0709.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='1485].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' [10] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' de Lavallaz and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Fairbairn, Neutron Stars as Dark Matter Probes, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' D 81 (2010) 123521 [1004.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='0629].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' [11] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' McDermott, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='-B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Yu and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Zurek, Constraints on Scalar Asymmetric Dark Matter from Black Hole Formation in Neutron Stars, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' D 9 85 (2012) 023519 [1103.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='5472].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' [12] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Kouvaris and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Tinyakov, Constraining Asymmetric Dark Matter through observations of compact stars, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' D 83 (2011) 083512 [1012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='2039].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' [13] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Kouvaris and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Tinyakov, Excluding Light Asymmetric Bosonic Dark Matter, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' 107 (2011) 091301 [1104.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='0382].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' [14] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Bell, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Melatos and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Petraki, Realistic neutron star constraints on bosonic asymmetric dark matter, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' D 87 (2013) 123507 [1301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='6811].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' [15] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' G¨uver, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Erkoca, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Hall Reno and I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Sarcevic, On the capture of dark matter by neutron stars, JCAP 05 (2014) 013 [1201.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='2400].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' [16] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Bramante, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Fukushima and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Kumar, Constraints on bosonic dark matter from observation of old neutron stars, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' D 87 (2013) 055012 [1301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='0036].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' [17] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Bramante, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Fukushima, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Kumar and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Stopnitzky, Bounds on self-interacting fermion dark matter from observations of old neutron stars, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' D 89 (2014) 015010 [1310.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='3509].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' [18] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Kouvaris and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Tinyakov, Growth of Black Holes in the interior of Rotating Neutron Stars, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' D 90 (2014) 043512 [1312.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='3764].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' [19] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Bramante and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Linden, Detecting Dark Matter with Imploding Pulsars in the Galactic Center, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' 113 (2014) 191301 [1405.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='1031].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' [20] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Garani, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Genolini and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Hambye, New Analysis of Neutron Star Constraints on Asymmetric Dark Matter, JCAP 05 (2019) 035 [1812.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='08773].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' [21] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Kouvaris, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Tinyakov and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Tytgat, NonPrimordial Solar Mass Black Holes, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' 121 (2018) 221102 [1804.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='06740].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' [22] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Dasgupta, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Gupta and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Ray, Dark matter capture in celestial objects: light mediators, self-interactions, and complementarity with direct detection, JCAP 10 (2020) 023 [2006.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='10773].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' [23] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='-L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Lin and Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='-H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Lin, Analysis on the black hole formations inside old neutron stars by isospin-violating dark matter with self-interaction, JCAP 08 (2020) 022 [2004.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='05312].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' [24] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Dasgupta, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Laha and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Ray, Low Mass Black Holes from Dark Core Collapse, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' 126 (2021) 141105 [2009.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='01825].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' [25] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Garani, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Levkov and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Tinyakov, Solar mass black holes from neutron stars and bosonic dark matter, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' D 105 (2022) 063019 [2112.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='09716].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' [26] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Steigerwald, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Marra and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Profumo, Revisiting constraints on asymmetric dark matter from collapse in white dwarf stars, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' D 105 (2022) 083507 [2203.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='09054].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' [27] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Singh, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Gupta, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Berti, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Reddy and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Sathyaprakash, Constraining properties of asymmetric dark matter candidates from gravitational-wave observations, 2210.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='15739.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' [28] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Starkman, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Gould, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Esmailzadeh and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Dimopoulos, Opening the Window on Strongly Interacting Dark Matter, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' D 41 (1990) 3594.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' [29] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Kurita and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Nakano, Gravitational waves from dark matter collapse in a star, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' D 93 (2016) 023508 [1510.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='00893].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' [30] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Acevedo, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Bramante, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Goodman, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Kopp and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Opferkuch, Dark Matter, Destroyer of Worlds: Neutrino, Thermal, and Existential Signatures from Black Holes in the Sun and Earth, JCAP 04 (2021) 026 [2012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='09176].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' [31] V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Gluscevic and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Boddy, Constraints on Scattering of keV–TeV Dark Matter with Protons in the Early Universe, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' 121 (2018) 081301 [1712.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='07133].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' [32] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Boddy, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Gluscevic, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Poulin, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Kovetz, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Kamionkowski and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Barkana, Critical assessment of CMB limits on dark matter-baryon scattering: New treatment of the relative bulk velocity, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' D 98 (2018) 123506 [1808.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='00001].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' [33] DES collaboration, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Nadler et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=', Milky Way Satellite Census.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Constraints on Dark Matter Properties from Observations of Milky Way Satellite Galaxies, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' 126 (2021) 091101 [2008.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='00022].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' [34] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Nadler, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Gluscevic, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Boddy and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Wechsler, Constraints on Dark Matter Microphysics from the Milky Way Satellite Population, Astrophys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' 878 (2019) 32 [1904.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='10000].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' [35] XENON collaboration, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Aprile et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=', First Dark Matter Search Results from the XENON1T Experiment, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' 119 (2017) 181301 [1705.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='06655].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' [36] CRESST collaboration, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Angloher et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=', Results on MeV-scale dark matter from a gram-scale cryogenic calorimeter operated above ground, Eur.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' C 77 (2017) 637 [1707.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='06749].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' [37] CRESST collaboration, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Abdelhameed et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=', First results from the CRESST-III low-mass dark matter program, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' D 100 (2019) 102002 [1904.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='00498].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' [38] CDMS collaboration, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Abrams et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=', Exclusion Limits on the WIMP Nucleon Cross-Section from the Cryogenic Dark Matter Search, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' D 66 (2002) 122003 [astro-ph/0203500].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' [39] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Kavanagh, Earth scattering of superheavy dark matter: Updated constraints from detectors old and new, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' D 97 (2018) 123013 [1712.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='04901].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' [40] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Bramante, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Kumar, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Mohlabeng, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Raj and N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Song, Light Dark Matter Accumulating in Terrestrial Planets: Nuclear Scattering, 2210.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='01812.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' [41] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Neufeld, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Farrar and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' McKee, Dark Matter that Interacts with Baryons: Density Distribution within the Earth and New Constraints on the Interaction Cross-section, Astrophys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' 866 (2018) 111 [1805.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='08794].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' [42] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Bertoni, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Nelson and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Reddy, Dark Matter Thermalization in Neutron Stars, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' D 88 (2013) 123505 [1309.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='1721].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' [43] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Gould and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Raffelt, Thermal Conduction of Massive Particles, Astrophys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' 352 (1990) 654.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' [44] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Banks, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Ansari, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Vincent and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Scott, Simulation of energy transport by dark matter scattering in stars, JCAP 04 (2022) 002 [2111.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='06895].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' [45] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Leane and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Smirnov, Floating Dark Matter in Celestial Bodies, 2209.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='09834.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' [46] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Garani and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Palomares-Ruiz, Dark matter in the Sun: scattering off electrons vs nucleons, JCAP 05 (2017) 007 [1702.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='02768].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' [47] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Page, Particle Emission Rates from a Black Hole: Massless Particles from an Uncharged, Nonrotating Hole, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' D 13 (1976) 198.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' [48] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' MacGibbon, Quark and gluon jet emission from primordial black holes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' The Lifetime emission, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' D 44 (1991) 376.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' 10 [49] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Arbey and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Auffinger, Physics Beyond the Standard Model with BlackHawk v2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='0, Eur.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' C 81 (2021) 910 [2108.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='02737].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' [50] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Bramante, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Buchanan, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Goodman and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Lodhi, Terrestrial and Martian Heat Flow Limits on Dark Matter, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' D 101 (2020) 043001 [1909.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='11683].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' [51] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Christensen-Dalsgaard, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Dappen, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Ajukov, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Anderson, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Antia, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Basu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=', The Current State of Solar Modeling, Science 272 (1996) 1286.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' [52] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' French, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Becker, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Lorenzen, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Nettelmann, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Bethkenhagen, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Wicht et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=', Ab Initio Simulations for Material Properties along the Jupiter Adiabat, The Astrophysical Journal Supplement Series 202 (2012) 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' [53] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Dziewonski and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Anderson, Preliminary reference earth model, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Earth Planet.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Interiors 25 (1981) 297.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' [54] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Zhang, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='-F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Lin, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' He, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Liu, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Zhang, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Sato et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=', Shock compression and melting of an fe-ni-si alloy: Implications for the temperature profile of the earth’s core and the heat flux across the core-mantle boundary, Journal of Geophysical Research: Solid Earth 123 (2018) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' [55] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Garani and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Tinyakov, Constraints on Dark Matter from the Moon, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' B 804 (2020) 135403 [1912.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='00443].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' [56] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Digman, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Cappiello, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Beacom, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Hirata and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Peter, Not as big as a barn: Upper bounds on dark matter-nucleus cross sections, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' D 100 (2019) 063013 [1907.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='10618].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' [57] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' McGuire, Low-background balloon-borne direct search for ionizing massive particles as a component of the dark galactic halo matter, Ph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' thesis, University of Arizona, Jan.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=', 1994.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' [58] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Bhoonah, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Bramante, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Courtman and N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Song, Etched plastic searches for dark matter, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' D 103 (2021) 103001 [2012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='13406].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' [59] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Cappiello, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Collar and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Beacom, New experimental constraints in a new landscape for composite dark matter, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' D 103 (2021) 023019 [2008.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='10646].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' [60] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Chivukula, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Cohen, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Dimopoulos and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Walker, Bounds on Halo Particle Interactions From Interstellar Calorimetry, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' 65 (1990) 957.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' [61] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Bhoonah, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Bramante, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Elahi and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Schon, Calorimetric Dark Matter Detection With Galactic Center Gas Clouds, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' 121 (2018) 131101 [1806.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='06857].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' [62] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Bhoonah, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Bramante, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Schon and N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Song, Detecting composite dark matter with long-range and contact interactions in gas clouds, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' D 103 (2021) 123026 [2010.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='07240].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' [63] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Erickcek, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Steinhardt, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' McCammon and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' McGuire, Constraints on the Interactions between Dark Matter and Baryons from the X-ray Quantum Calorimetry Experiment, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' D 76 (2007) 042007 [0704.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='0794].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' [64] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Price and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Salamon, Search for Supermassive Magnetic Monopoles Using Mica Crystals, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' 56 (1986) 1226.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' [65] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Bramante, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Broerman, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Kumar, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Lang, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Pospelov and N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Raj, Foraging for dark matter in large volume liquid scintillator neutrino detectors with multiscatter events, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' D 99 (2019) 083010 [1812.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='09325].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' [66] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Wandelt, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Dave, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Farrar, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' McGuire, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Spergel and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Steinhardt, Selfinteracting dark matter, in 4th International Symposium on Sources and Detection of Dark Matter in the Universe (DM 2000), pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' 263–274, 6, 2000, astro-ph/0006344.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' [67] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Baryakhtar, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Bramante, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Li, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Linden and N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Raj, Dark Kinetic Heating of Neutron Stars and An Infrared Window On WIMPs, SIMPs, and Pure Higgsinos, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' 119 (2017) 131801 [1704.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='01577].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' [68] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Niikura, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Takada, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Yokoyama, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Sumi and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Masaki, Constraints on Earth-mass primordial black holes from OGLE 5-year microlensing events, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' D 99 (2019) 083503 [1901.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='07120].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' [69] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Dom`enech and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Pi, NANOGrav hints on planet-mass primordial black holes, Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' China Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Mech.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Astron.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' 65 (2022) 230411 [2010.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='03976].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' [70] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Scholtz and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Unwin, What if Planet 9 is a Primordial Black Hole?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=', Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content=' 125 (2020) 051103 [1909.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} +page_content='11090].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/WdE2T4oBgHgl3EQfDgZf/content/2301.03625v1.pdf'} diff --git a/X9E1T4oBgHgl3EQfcARq/vector_store/index.pkl b/X9E1T4oBgHgl3EQfcARq/vector_store/index.pkl new file mode 100644 index 0000000000000000000000000000000000000000..ef88bf7ea2adf2450fda0e54b8760629d0a9556b --- /dev/null +++ b/X9E1T4oBgHgl3EQfcARq/vector_store/index.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:1409d5bd86a77d7ceb6441c60de05a9bdcb6a735ed157b6f0dd7c28786a53a3d +size 114820 diff --git a/XNFJT4oBgHgl3EQfQCwC/content/2301.11488v1.pdf b/XNFJT4oBgHgl3EQfQCwC/content/2301.11488v1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..02423f77416636a1b7adba4f5df6cf6fe9836ba9 --- /dev/null +++ b/XNFJT4oBgHgl3EQfQCwC/content/2301.11488v1.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:4afd89e8ed55e1dd431e1781c44fbbba3f4efc032f5f2b2c32ef1d076c1dee0a +size 6672013 diff --git a/XdFJT4oBgHgl3EQfQCyF/vector_store/index.faiss b/XdFJT4oBgHgl3EQfQCyF/vector_store/index.faiss new file mode 100644 index 0000000000000000000000000000000000000000..7edc5acc302aeece6647e890935c813fb0e4dcd2 --- /dev/null +++ b/XdFJT4oBgHgl3EQfQCyF/vector_store/index.faiss @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:e14505e9a9bf7b655cf69b8f05018974b928c125e2f9aedfc8636040ee4ce9d6 +size 4849709 diff --git a/Z9E4T4oBgHgl3EQfOgzR/content/tmp_files/2301.04966v1.pdf.txt b/Z9E4T4oBgHgl3EQfOgzR/content/tmp_files/2301.04966v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..e008f757f4cbcc5cb36410e5a8ef7bd54f86f69c --- /dev/null +++ b/Z9E4T4oBgHgl3EQfOgzR/content/tmp_files/2301.04966v1.pdf.txt @@ -0,0 +1,2733 @@ +1 +Aerial Base Station Placement via +Propagation Radio Maps +Daniel Romero, Pham Q. Viet, and Raju Shrestha +Abstract—The technology of base stations on board unmanned +aerial vehicles, also known as aerial base stations (ABSs), +promises to deliver cellular connectivity in areas where the +terrestrial infrastructure is overloaded, damaged, or inexistent. +A central problem in this context is to determine the locations +where these ABSs must be deployed to serve a set of users on +the ground given the positions of the latter. However, existing +schemes assume that the channel gain depends only on the +length and (possibly) the elevation of the link. To alleviate this +limitation, this paper proposes a scheme that accommodates +arbitrary channel gains by means of a propagation radio map of +the air-to-ground channel. The algorithm finds the locations of +an approximately minimal number of ABSs to serve all ground +terminals with a target rate while meeting the given constraints +on the capacity of the backhaul links and respecting no-fly +regions. A convex-relaxation formulation ensures convergence +and the alternating-direction method of multipliers is utilized +to derive an implementation whose complexity is linear in the +number of ground terminals. Numerical results with tomographic +as well as ray-tracing channel models corroborate the strengths +of the proposed scheme. +Index Terms—Aerial base stations, radio maps, spectrum +cartography, radio tomography, aerial base station placement, +ray tracing. +I. INTRODUCTION +Aerial base stations (ABSs), namely unmanned aerial ve- +hicles (UAVs) equipped with on-board base stations, were +conceived as a means to deliver cellular connectivity in areas +where the terrestrial infrastructure is absent, overloaded, or +damaged [2]. This may occur for example in remote areas, +in the vicinity of a crowded event, or after a natural disaster, +such as a wildfire or a flood. Users on the ground, here referred +to as ground terminals (GTs), are served by ABSs, which in +turn connect to the terrestrial infrastructure through backhaul +links, possibly in multiple hops through other UAVs that act +as relays. Deploying ABSs involves addressing the problem +of ABS placement, where one is given the locations of the +GTs and must decide on a suitable set of spatial positions +for the ABSs to effectively serve the GTs [3]. This task is +typically hindered by several challenges, remarkably (C1) the +uncertainty in the gain of the propagation channel between +the GTs and the potential ABS locations, (C2) the limited +The authors are with the Dept. of Information and Communication Technol- +ogy, University of Agder, Jon Lilletunsvei 9, 4879 Grimstad, Norway. Email +{daniel.romero,viet.q.pham, raju.shrestha}@uia.no. +This work was supported by the Research Council of Norway through the +IKTPLUSS Grant 311994. +The present paper extends its conference precursor [1] to accommodate +constraints in the backhaul and more general propagation radio maps. It also +includes a much more comprehensive simulation study where, among others, +simulations using ray-tracing software are carried out. +capacity of the backhaul links, and (C3) constraints on the +positions that the ABSs may adopt, often due to no-fly zones +such as airports, embassies, or prisons. +The problem of placing a single ABS has been extensively +investigated in the literature; see e.g. [4]–[8]. However, in +general, the number of ABSs required in a practical scenario +need not equal one. For this reason, a large number of works, +including the present one, focus on placing multiple ABSs. +A usual approach is to regard the height of the ABSs as +given and address the problem of 2D placement, where the +ABSs must be placed on a horizontal plane of the given +height; see e.g. [9]–[16]. Nevertheless, since the heights of +the ABSs are useful degrees of freedom to optimize the target +communication metric, the focus here is on 3D placement. +Existing algorithms for 3D placement of multiple ABSs can +be classified according to how they handle uncertainty in the +air-to-ground channel. The first category comprises schemes +that do not explicitly model the channel. For example, in +[17], each ground user associates with the ABS from which +it receives the strongest beacons, but nothing is known or +assumed about the channel gain from the GT locations to a +given location until an ABS is physically there. This means +that every iteration of the placement algorithm involves placing +the ABSs in a particular set of locations, which drastically +limits convergence speed. The second class includes works that +assume free-space propagation and, therefore, the coverage +area of each ABS is a circle; see e.g. [18]. Unfortunately, this +assumption is too inaccurate in practice. The third category is +made up of works that rely on the empirical model from [19], +[20]; see e.g. [21]–[25]. These works use the mean provided +by such a model as the predictor of the channel gain, which +is equivalent to assuming that the gain of a link depends +only on its length and elevation. Again, this assumption is +not very realistic since two links with the same length and +elevation may exhibit totally different gains depending on +whether there are obstructions such as buildings between the +transmitter and the receiver. The fourth category, which can +be termed channel-aware, is composed of works that rely +on gain predictions that do depend on the locations of the +endpoints of the link. To the best of our knowledge, only +[26], [27] fall in this category. Unfortunately, these schemes +entail prohibitive complexity, assume an unlimited backhaul +connection between the ABSs and the terrestrial infrastructure, +and cannot guarantee a minimum service to the GTs. +The main contribution of this paper is a scheme that relies +on radio propagation maps [28] to solve the problem of +channel-aware 3D placement of multiple ABSs. Recall that +a propagation map is a special kind of radio map [28]–[32] +arXiv:2301.04966v1 [math.OC] 12 Jan 2023 + +2 +that provides a channel metric of interest for every pair of +transmitter and receiver locations. In this paper, this metric is +the channel gain, which can be used to predict the capacity of +the communication link between each candidate ABS location +and every GT without deploying an ABS at that location to +measure the channel. Two classes of propagation maps with +complementary strengths will be considered, namely those +obtained via ray-tracing and those that rely on the radio +tomographic model [33], [34]. The former are more suitable to +frequency bands where the dominating propagation phenom- +ena beyond free-space loss are reflection and diffraction. The +latter are suitable to bands where the dominating propagation +phenomenon is the absorption introduced by obstacles such +as buildings. In this context, a secondary contribution of this +paper is to adapt existing radio tomographic techniques to air- +to-ground channels. +To the best of our knowledge, the proposed scheme is the +first for channel-aware ABS placement that can guarantee a +minimum rate for all GTs. Formally, the algorithm can find +a feasible placement if it exists, where a feasible placement +is an assignment of ABSs to spatial locations that ensures a +target rate for all GTs according to the given propagation map. +Besides, unlike the vast majority of works in the literature, +constraints in the backhaul link between the ABSs and the ter- +restrial infrastructure as well as no-fly zones can be enforced. +With these constraints, the proposed algorithm approximately +minimizes the number of ABSs required to serve all GTs. +Note that this is of special interest in emergency scenarios, +which is one of the main use cases of ABSs. The algorithm +relies on a sparse optimization formulation that naturally +arises from a discretization of the space of candidate ABS +positions, as required to be able to utilize propagation maps +in a tractable fashion. To counteract the high-dimensionality +of the 3D placement problem, a linear-complexity and highly +parallelizable algorithm is developed based on the alternating- +direction method of multipliers (ADMM) [35]. +Experiments with tomographic and ray-tracing models +showcase a great reduction in the number of required ABSs +as compared to existing algorithms. To complement this +manuscript, an open-source simulator was released to allow +developing and testing algorithms for ABS placement. This +simulator and the code needed to reproduce all experiments +is available at https://github.com/uiano/ABS placement via +propagation maps. +Paper structure. The rest of the paper is organized as +follows. Sec. II presents the model and formulates the problem. +Two approaches for predicting the capacity of a link between +arbitrary pairs of endpoints of the air-to-ground channel are +then described in Sec. III. The problem of ABS placement +and rate allocation is then addressed in Sec. IV and a solver +with linear complexity is developed in Sec. V. Finally, Secs. VI +and VII respectively present numerical results and conclusions. +Notation. R+ is set of non-negative real numbers and R++ +is the set of positive real numbers. Boldface uppercase (lower- +case) letters denote matrices (column vectors). a[i] represents +the i-th entry of vector a. Notation 0 (respectively 1) refers to +the matrix of the appropriate dimensions with all zeros (ones). +∥A∥F denotes the Frobenius norm of matrix A, whereas ∥a∥p +Fig. 1: Example of ABS placement in an urban environment. +GTs are represented by markers on the ground, flight grid +points by blue dots, and ABS positions by green circles. +denotes the ℓp-norm of vector a. With no subscript, ∥a∥ stands +for the ℓ2-norm. Inequalities between vectors or matrices must +be understood entrywise. The Kronecker product is denoted by +⊗. If a and b are vectors of the same dimension, then a ⊙ b +is the entrywise product of a and b, whereas a ÷ b is the +entrywise quotient of a and b. +II. MODEL AND PROBLEM FORMULATION +Consider M users located at positions {xGT +1 , . . . , xGT +M } ⊂ +X ⊂ R3, where the region X represents an arbitrary set of +spatial locations, including for example points on the street, +inside buildings, inside vehicles, and so on. The proposed +scheme carries over unaltered to the scenario where X includes +points in the airspace and some or all users are airborne, +which can be of interest e.g. to deploy auxiliary ABSs as +picocells. However, to simplify the exposition, this possibility +is neglected and the users will be referred to throughout as +ground terminals (GTs). +To provide connectivity to these GTs, N ABSs are deployed +at locations {xABS +1 +, . . . , xABS +N } ⊂ F ⊂ R3, where F comprises +all spatial positions where a UAV is allowed to fly. This +excludes no-fly zones, airspace occupied by buildings, and +altitudes out of legal limits. +For the sake of specificity, it will be assumed that data +packets originated in a remote location are sent from the +terrestrial infrastructure to the ABSs through a backhaul link +and the ABSs forward these packets to their intended users +through the downlink of the radio access network. However, +the entire discussion applies also to the uplink, i.e., when the +data packets are originated at the GTs and sent through the +ABSs to the terrestrial infrastructure. +Ignoring frequency-selective effects for simplicity, the ca- +pacity of the communication link between an ABS at position +xABS ∈ X and the m-th GT is given by +Cm(xABS) = W log2 +� +1 + PTX10γm(xABS)/10 +σ2 +� +, +(1) +where W denotes bandwidth, PTX the transmit power spectral +density (PSD), σ2 the noise PSD, and γm(xABS) the channel +gain, which is described in Sec. III. +Unlike most schemes in the literature of ABS placement, the +present work can accommodate constraints in the backhaul. + +3 +To formalize such constraints, let CBH(xABS) denote the max- +imum rate of the link between the terrestrial ground station(s) +that serve(s) an ABS at xABS and the ABS at xABS. An +equation like (1) can also be established to express CBH(xABS) +in terms of the gain of the relevant channel(s). Note that, as +the notation suggests, in general CBH(xABS) depends on the +ABS position xABS – typically, the greater the distance from +xABS to the terrestrial ground stations, the lower CBH(xABS). +With Rm(xABS) denoting the downlink rate that an ABS at +xABS allocates to the m-th GT, the backhaul rate constraint +imposes that � +m Rm(xABS) ≤ CBH(xABS). +The problem is to find a minimal number of ABS locations +that guarantee that every user receives a rate of at least +Rmin. This criterion arises naturally in some of the main use +cases of UAV-assisted networks such as emergency response +or disaster management. Motivated by this scenario and to +enhance flexibility in the deployment, each GT may be served +by multiple ABSs. This means that the rate that the m-th user +receives is � +n Rm(xABS +n +), where xABS +n +denotes the location +of the n-th ABS. +To summarize, the problem can be formulated as follows: +minimize +N,{xABS +n +}N +n=1,{rm[n]}M,N +m=1,n=1 +N +(2a) +s.t. +� +m +rm[n] ≤ CBH(xABS +n +), +(2b) +� +n +rm[n] ≥ Rmin, +(2c) +0 ≤ rm[n] ≤ Cm(xABS +n +), +(2d) +xABS +n +∈ F, +(2e) +where the constraints need to hold for all m and n and the +earlier notation Rm(xABS +n +) has been replaced with rm[n] := +Rm(xABS +n +) to emphasize that it refers to optimization vari- +ables, not to functions. Observe that Problem (2) constitutes a +joint placement and rate-allocation problem. Note also that the +same minimum rate Rmin is imposed for all GTs, but different +rates can be set up to straightforward modifications. +From a practical perspective, solving (2) involves two chal- +lenges. First, Cm(xABS +n +) and CBH(xABS +n +) depend on the chan- +nel gain of the corresponding downlink and backhaul links, +which is generally unknown. This issue will be addressed in +Sec. III. Second, given Cm(xABS +n +) and CBH(xABS +n +), one needs +to find the positions of the ABSs and the rate allocations that +solve (2). This will be the subject of Sec. IV. +III. CAPACITY PREDICTION VIA PROPAGATION RADIO +MAPS +As described in Sec. I, nearly all existing schemes for ABS +placement assume that Cm(xABS +n +) depends on xGT +m and xABS +n +only through the length and (possibly) the elevation angle of +the line segment between these two points. However, one can +expect that this simplification entails a significant performance +degradation since channel gain in reality is heavily affected by +the environment: two links with the same length and elevation +may experience very different channel gain depending on the +position, shape, and material of the surrounding obstacles and +scatterers. The same observation applies to CBH(xABS +n +). +For this reason, this section proposes the utilization of radio +propagation maps to obtain Cm(xABS +n +) and CBH(xABS +n +). A +radio propagation map is a function of two spatial locations +that provides a certain metric of interest, in this case the +gain, for the channel between those spatial locations [28]. +Without loss of generality, the rest of this section focuses on +Cm(xABS +n +), but the same approaches and considerations apply +to CBH(xABS +n +). +A. Ray-tracing Models +Ray-tracing +techniques +[36] +can +be +used +to +predict +γm(xABS +n +) for arbitrary pairs (xGT +m , xABS +n +) given a 3D model of +the propagation environment, which includes buildings, terrain +elements, and other objects. The idea is to geometrically obtain +the relevant propagation paths between the transmitter and the +receiver and subsequently calculate the attenuation and delay +or phase change of each path. +Ray-tracing models are especially attuned to high-frequency +bands, where the dominating propagation phenomena are re- +flection and diffraction. The limitation is that, to track changes +in the channel, one needs to track changes in the 3D model, +which may not be viable. Thus, in the case of ABS placement, +it makes sense to use ray-tracing to precompute the values of +γm(xABS +n +) (cf. Sec. VI-B) for the given scenario and ignore the +effects of changes in the channel. If the impact of the changes +(e.g. moving vehicles) is not too large, using a ray-tracing +propagation map would still yield better placement solutions +than adopting the approaches in the literature, which either +assume free space or assume that the gain is a function of just +the distance and elevation of the link. +B. Radio Tomographic Models +As opposed to ray-tracing models, which account for reflec- +tion and diffraction effects, the radio tomographic model [33] +(see also [37] and the references therein) focuses on the +absorption undergone by radio waves on the straight path +between the transmitter and the receiver. This model is best +suited to traditional cellular communication frequencies, where +radio waves readily penetrate structures such as buildings. +However, the existing works in this context focus on ground- +to-ground channels. To the best of our knowledge, this is the +first work to apply radio tomography to air-to-ground channels. +This entails special challenges due to the high dimensionality +of the underlying space, which render existing techniques +unsuitable. After describing the radio tomographic model, this +section proposes an algorithm to bypass these difficulties. +The radio tomographic model dictates that the channel gain +between xGT +m and xABS can be decomposed into a free-space +loss component and a shadowing component as1 +γm(xABS) = 20 log10 +� +λ +4π∥xGT +m − xABS∥ +� +− ξ(xGT +m , xABS), +(3) +1Expression (3) assumes that small-scale fading has been averaged out. +Otherwise, a random term can be added to the right-hand side. + +4 +where λ is the wavelength associated with the carrier fre- +quency and the shadowing function ξ is given by [33] +ξ(x1, x2) = +1 +∥x1 − x2∥1/2 +2 +� x2 +x1 +l(x)dx. +(4) +The non-negative function l inside the line integral is termed +spatial loss field (SLF) and quantifies the local attenuation +(absorption) that a signal suffers at each position. +Two tasks are of interest: (T1) evaluate γm(xABS) for +a pair of locations (xGT +m , xABS), which involves evaluat- +ing the integral in (4) and substituting the result into (3); +(T2) estimate l given a set of measurements of the form +(xABS, xGT +m , γm(xABS)) collected beforehand. +In both tasks, l needs to be discretized, which can be +accomplished by storing its values l(x ¯ +X +1 ), . . . , l(x ¯ +X +Q) on a +regular grid of Q points ¯ +X := {x ¯ +X +1 , . . . , x ¯ +X +Q}. The rest of +this section explains how ξ(x1, x2) can be expressed in terms +of these values. This addresses (T1) and enables (T2) in +combination with standard estimators; see e.g. [37]–[39] +The conventional approach approximates the right-hand side +of (4) as the weighted sum [40] +ξ(x1, x2) ≈ +� +q +w(x1, x2, x +¯ +X +q )l(x +¯ +X +q ), +(5) +where the weight function w(x1, x2, x ¯ +X ) aims at assigning +a non-zero weight only to those grid points x ¯ +X lying close +to the line segment between x1 and x2. Although there are +some variations, the functions w adopted in the literature are +non-zero only when x ¯ +X lies inside an ellipsoid with foci at +x1 and x2 [37], [40], [41]; see the ellipses in Fig. 2 for a +depiction in 2D. +Such an approximation suffers from several limitations that +render it impractical for the application at hand. First, since +existing choices of w(x1, x2, x ¯ +X ) are discontinuous functions, +the resulting approximations of ξ(x1, x2) are also discon- +tinuous, which may lead to erratic behavior. For example, +it may well happen that � +q w(x1, x2, x ¯ +X +q )l(x ¯ +X +q ) = 0 even +when x1 ̸= x2 and l(x ¯ +X +q ) ̸= 0 ∀q. This happens when x1 +and x2 are such that no grid point falls inside the elliptical +support of w(x1, x2, x ¯ +X ); see the upper ellipse in Fig. 2. +Since w is typically chosen so that its support coincides with +the first Fresnel ellipsoid, the length of its minor axis is +roughly proportional to +√ +λ. If the carrier frequency is low, +the ellipsoid is large and, therefore, likely to contain a large +number of grid points, which somehow mitigates the effects of +the discontinuity. Conversely, if the carrier frequency is high, +one could think of creating a sufficiently dense grid so that the +distance between grid points is small relative to λ. However, +it is easy to see that this may entail a prohibitively high Q. +For example, if one wishes to set the grid points, say, 5 cm +apart and the region of interest is 1 km × 1 km × 100 m, +then the total number of grid points is 1011, which is obvi- +ously impractical. Another critical limitation is computational +complexity. Observe that (5) generally requires evaluating +w(x1, x2, x ¯ +X +q ) and the product w(x1, x2, x ¯ +X +q )l(x ¯ +X +q ) for each +grid point. Thus, if the grid is Q0 × Q0 × Q0, the complexity +of approximating ξ(x1, x2) is O(Q3 +0). This is computationally +Algorithm 1: Tomographic Integral Approximation +1 +1: Input: x1, x2, grid spacing vector δ ¯ +X ∈ R3, +SLF tensor L ∈ RQx×Qy×Qz. +2: Initialize ∆x = x2 − x1, binc = sign(∆x), +I = 0, t = 0. +3: Set zero entries of ∆x to 1 # To avoid dividing by 0 +4: Set icurrent = round(x1 ÷ δ ¯ +X ) # Current voxel indices +5: while t < 1 do +6: +Set tcand = (δ ¯ +X ⊙ (icurrent + binc/2) − x1) ÷ ∆x +7: +Set inext = arg mini tcand[i] s.t. binc[i] ̸= 0 +8: +Set tnext = min(1, tcand[inext]) +9: +Set I = I + (tnext − t)L[icurrent] +10: +Set t = tnext +11: +Set icurrent[inext] = icurrent[inext] + binc[inext] +12: end while +13: return ∥x2 − x1∥1/2I +problematic for the application at hand since ξ(x1, x2) must +be approximated at a large number of locations to solve (2). +To remedy these issues, this paper advocates approximating +the integral in (4) as a line integral of a piecewise constant +approximation of l. The resulting approximation is continuous, +can be used with large grid point spacing, and can be computed +with complexity only O(Q0) for a Q0 × Q0 × Q0 grid. This +technique, commonly used in other disciplines (see references +in [42]), involves splitting the 3D space into voxels centered +at the grid points ¯ +X := {x ¯ +X +1 , . . . , x ¯ +X +Q} and approximating l +by a function that takes the value l(x ¯ +X +q ) at all points of the q- +th voxel. The resulting piecewise constant approximation of l +can be integrated by determining the positions of the crossings +between the voxel boundaries and the line segment between +x1 and x2; see Fig. 2. +Algorithm 1, derived in Appendix C, is our implementation +of this approach. This algorithm solves the limitations of the +conventional approximation outlined earlier. First, Algorithm 1 +yields an approximation of ξ(x1, x2) that is a continuous +function of x1 and x2 since the line integral of a piecewise +constant function is a continuous function of the endpoints. +Besides, the algorithm does not suffer from the issue of +the approximation becoming zero when the elliptical support +of the weight function in (5) misses all grid points. For +this reason, the voxels can now be kept large regardless of +the wavelength and, therefore, the total number of voxels +can be kept low enough to be handled given the available +computational resources. Finally, as indicated in Sec. III, the +computational complexity of Algorithm 1 is much smaller +than the one of the conventional approximation. Specifically, +one can observe in Algorithm 1 that a constant number of +products and additions is required for each crossing. The total +number of crossings is at most Qz + Qy + Qz, which means +that, if Qx = Qy = Qz = Q0, then the total complexity of +Algorithm 1 is O(Q0), whereas the complexity of the standard +approximation is O(Q3 +0). +IV. PLACEMENT WITH MIN-RATE GUARANTEES +The approaches in Sec. III make it possible to predict the + +5 +Weight-function +approximations +Piecewise linear +approximation +Voxel +Centroid +Fig. 2: 2D illustration of the conventional weight-function +approximation of the tomographic integral (4) (orange ellipses) +and the approximation adopted here (colored line segment). +Observe that the upper ellipse contains no centroid and, there- +fore, the approximation will yield zero attenuation regardless +of the values of the SLF. +channel gain γm(xABS +n +) for all required pairs of user location +xm and ABS location xABS +n +. These predictions can then be +substituted into (1) to obtain the capacity values Cm(xABS +n +) +that appear in the constraint (2d). A similar observation +applies to CBH(xABS +n +) in (2b). Unfortunately, solving (2) is +challenging: even if N were known and one just needed to find +feasible {xABS +n +}N +n=1, the problem would still be non-convex +since the right-hand sides of (2b) and (2d) are, in general, +non-concave functions of xABS +n +. To bypass this difficulty, +the flight region F will be discretized into a flight grid +¯F := {x ¯ +F +1 , . . . , x ¯ +F +G} ⊂ F ⊂ R3; see Fig. 1. +Replacing xABS +n +∈ F in (2e) with xABS +n +∈ +¯F means +that optimizing with respect to N and the ABS positions +{xABS +n +}N +n=1 is equivalent to choosing the smallest subset of +points in ¯F for which there exists a feasible rate allocation, +i.e., for which there exist {rm[n]}M,N +m=1,n=1 satisfying the +constraints in (2). Equivalently, one can consider all grid points +by setting each xABS +n +to be one of the grid points and then +“disable” those xABS +n +where no ABS is going to be present. +To this end, let αg be 1 if there is an ABS at x ¯ +F +g and 0 +otherwise, in which case the rates from that location need to +be zero. By following this approach, Problem (2) becomes +minimize +{αg}G +g=1,{rg[m]}M,G +m=1,g=1 +G +� +g=1 +αg +(6a) +s.t. +� +m +rg[m] ≤ CBH(x +¯ +F +g ), +(6b) +� +g +rg[m] ≥ Rmin, +(6c) +0 ≤ rg[m] ≤ αgCm(x +¯ +F +g ), +(6d) +αg ∈ {0, 1}, +(6e) +where now the constraints need to hold for all m and g. Note +the presence of αg in the right-hand side of (6d), which forces +the rate to be 0 at grid points without an actual ABS. +To simplify notation, it is convenient to express Prob- +lem (6) in terms of rg +:= +[rg[1], . . . , rg[M]]⊤, R +:= +[r1, . . . , rG], cBH := [CBH(x ¯ +F +1 ), . . . , CBH(x ¯ +F +G)]⊤, and cg := +[C1(x ¯ +F +g ), . . . , CM(x ¯ +F +g )]⊤ as +minimize +{αg}G +g=1,R +G +� +g=1 +αg +(7a) +s.t. R⊤1 ≤ cBH +(7b) +R1 ≥ Rmin1 +(7c) +0 ≤ rg ≤ αgcg +(7d) +αg ∈ {0, 1}. +(7e) +Observe that, if {αg}G +g=1 were given, then Problem (7) +would be a convex feasibility problem in R. However, since +one needs to optimize over {αg}G +g=1 as well, Problem (7) +becomes combinatorial. In fact, the following result establishes +the NP-hardness of (7). +Theorem 1: Problem (7) is NP-hard unless P=NP. +Proof: See Appendix E. +It is useful to reduce Problem (7) to the optimization with +respect to R alone. To this end, one can note that, for an +arbitrary R, the corresponding optimal {αg}G +g=1 satisfy that +αg = 0 if rg = 0 and αg = 1 otherwise. This means that (7) +can be written as +minimize +R +G +� +g=1 +I[rg ̸= 0] +(8a) +s.t. R⊤1 ≤ cBH +(8b) +R1 ≥ Rmin1 +(8c) +0 ≤ rg ≤ cg, +(8d) +where I[·] equals 1 if the condition inside brackets is true and +0 otherwise. +The objective �G +g=1 I[rg ̸= 0] can be equivalently ex- +pressed as �G +g=1 I[∥rg∥∞ ̸= 0], where the ℓ∞-norm ∥v∥∞ +equals the largest absolute value of the entries of vector v. +Clearly, �G +g=1 I[∥rg∥∞ ̸= 0] = ∥[∥r1∥∞, . . . , ∥rG∥∞]⊤∥0, +which suggests the relaxation ∥[∥r1∥∞, . . . , ∥rG∥∞]⊤∥1 = +� +g ∥rg∥∞, or its reweighted version � +g wg∥rg∥∞, where +{wg}g are non-negative constants set as in [43]. The problem +thereby becomes +minimize +R +� +g +wg∥rg∥∞ +(9a) +s.t. R⊤1 ≤ cBH +(9b) +R1 ≥ Rmin1 +(9c) +0 ≤ R ≤ C, +(9d) +where the (m, g)-th entry of C := [c1, . . . , cG] ∈ RM×G ++ +is given by cm,g := Cm(x ¯ +F +g ), i.e., the capacity of the link +between the m-th user and the g-th grid point. The (m, g)-th +entry of R therefore satisfies 0 ≤ rm,g ≤ cm,g, which means +that it can be interpreted as the rate at which a virtual ABS [14] +placed at grid point x ¯ +F +g communicates with the m-th user. In +case that rm,g = 0 for all m, then no actual ABS needs to +be deployed at x ¯ +F +g . In other words, the virtual ABS at x ¯ +F +g +corresponds to an actual ABS if and only if rm,g ̸= 0 for +some m. + +6 +V. NUMERICAL SOLVER +Observe that (9) is a convex optimization problem and +therefore it can be numerically solved in polynomial time. +In view of the inequality constraints, the first possibility one +may consider is to apply an interior-point solver, as described +in Appendix A. +Unfortunately, such an approach is only +suitable for relatively small values of M and G given the +poor scalability of interior-point methods with the number of +variables and constraints [44]. Indeed, in this application, G +can be in the order of tens of thousands, which would render +the (at least cubic; cf. Appendix A) complexity of interior- +point methods prohibitive. In contrast, the rest of this section +presents a solver whose complexity is linear in G and M by +building upon the so-called alternating-direction method of +multipliers (ADMM) [35] and exploiting the special structure +of the problem. +A. ADMM Decomposition +As outlined below, ADMM alternately solves two opti- +mization subproblems in the primal variables and performs +a gradient step along the dual variables [35]. But before +decomposing (9) into such subproblems, a few manipulations +are in order. +The first is to replace the inequality constraint (9c) with +an equality constraint. To this end, let ¯rm denote the m-th +column of R⊤ and suppose that R is feasible. Then, it follows +from (9c) that ¯r⊤ +m1 ≥ Rmin. If one replaces ¯rm with ¯r′ +m := +(Rmin/(¯r⊤ +m1))¯rm, the entries of ¯r′ +m are non-negative and not +greater than the entries of ¯rm since 0 ≤ (Rmin/(¯r⊤ +m1)) ≤ 1. +Hence, the resulting R still satisfies all other constraints and +the m-th constraint in (9c) now holds with equality. Besides, +the resulting objective will not be greater. Therefore, if R is +optimal, scaling any of its rows in this way yields another +optimal R. Applying this reasoning to all rows (i.e., for all +m) shows that (9c) can be replaced with an equality constraint +without loss of optimality. +Second, due to (9d), the entries of rg are non-negative and, +thus, ∥rg∥∞ equals the largest entry of rg. This means that +the objective can be replaced with � +g wgsg upon introducing +the auxiliary variables sg and constraints rg ≤ sg1 for each +g. This gives rise to +minimize +R,s +w⊤s +(10a) +s.t. R⊤1 ≤ cBH +(10b) +R1 = Rmin1 +(10c) +0 ≤ R ≤ C +(10d) +R ≤ 1s⊤, +(10e) +where w := [w1, . . . , wG]⊤ and s := [s1, . . . , sG]⊤. +The next step is to express (10) in a form amenable to +application of ADMM. Specifically, (10) will be expressed in +the homogeneous form +minimize +X,Z +f(X) + h(Z) +(11a) +s.t. +A1XA2 + B1ZB2 = 0, +(11b) +for which the ADMM iteration becomes [35, Sec. 3.1.1] +Xk+1 = arg min +X +f(X) + ρ +2∥A1XA2 + B1ZkB2 + U k∥2 +F +(12a) +Zk+1 = arg min +Z +h(Z) + ρ +2∥A1Xk+1A2 + B1ZB2 + U k∥2 +F +(12b) +U k+1 = U k + A1Xk+1A2 + B1Zk+1B2 +(12c) +for k = 1, 2 . . .. Here, Xk and Zk collect the primal variables, +U k is a matrix of scaled dual variables, and ρ > 0 is the step- +size parameter. +Each possible correspondence that one may establish be- +tween the variables, constants, and functions of (11) and those +of (10) results in a different ADMM algorithm. Finding a +good correspondence is typically the most critical step and +takes multiple attempts since, unless properly accomplished, +the complexity of the subproblems (12a) and (12b) will be +comparable to the complexity of the original problem. For the +problem at hand, the following assignment was found to yield +subproblems that separate along the rows and columns of R: +X → [R⊤, s]⊤ +(13a) +Z → R +(13b) +f(X) → w⊤s + +� +g +I[rg ≤ sg1] ++ +� +g +I[1⊤rg ≤ cBH +g ] +(13c) +h(Z) → I[R1 = Rmin1] + I[0 ≤ R ≤ C] +(13d) +A1 → [IM, 0], A2 → IG, +(13e) +B1 → −IM, B2 → IG. +(13f) +Here, cBH := [cBH +1 , . . . , cBH +G ]⊤ and I[·] is a function that takes +the value 0 when the condition inside brackets holds and ∞ +otherwise. Note that, given (13), it follows that A1XA2 + +B1ZB2 = R−Z and, therefore, (11b) imposes that R = Z. +Thus, intuitively speaking, each subproblem (12a) and (12b) +tries to find values for their respective variables that satisfy the +structure promoted by the first terms in (12a) and (12b) while, +at the same, the second terms in these expressions as well +as (12c) push towards an agreement between the solutions of +both subproblems. +The next two subsections will be respectively concerned +with finding the solutions of (12a) and (12b). Afterwards, both +solutions are put together in Sec. V-D to obtain the desired +algorithm. +B. The X-subproblem +This section decomposes the X-update (12a) into G smaller +problems. The latter can be efficiently solved by finding a root +of a scalar equation through the bisection algorithm. + +7 +In view of (13), (12a) can be expressed as +(Rk+1, sk+1) = arg min +R,s w⊤s + +� +g +I[rg ≤ sg1] +(14a) ++ +� +g +I[1⊤rg ≤ cBH +g ] + ρ +2∥R − Zk + U k∥2 +F += arg min +R,s +� +g +� +wgsg + I[rg ≤ sg1] +(14b) ++I[1⊤rg ≤ cBH +g ] + ρ +2∥rg − zk +g + uk +g∥2 +2 +� +, +where zk +g and uk +g respectively denote the g-th column of Zk +and U k. This problem clearly separates into G problems of +the form +(rk+1 +g +, sk+1 +g +) = arg min +rg,sg wgsg + ρ +2∥rg − zk +g + uk +g∥2 +2 (15a) +s.t. +rg ≤ sg1 +(15b) +1⊤rg ≤ cBH +g . +(15c) +There are two cases: C1) constraint (15c) is active (i.e. +it holds with equality) at the optimal solution; C2) (15c) is +inactive (i.e. it holds with strict inequality) at the optimal +solution. Thus, to solve (15), one can apply the following +strategy. First, solve the problem that results from removing +(15c): +(rk+1 +g +, sk+1 +g +) = arg min +rg,sg wgsg + ρ +2∥rg − zk +g + uk +g∥2 +2 (16a) +s.t. +rg ≤ sg1. +(16b) +If the solution to (16) satisfies (15c), then it is also the optimal +solution of (15). Else, due to the convexity of the problem, +(15c) must necessarily be active at the optimum. In this case, +the optimal solution of (15) can be found by replacing (15c) +with an equality constraint. Thus, let us start by solving (16). +Proposition 1: Let rk+1 +g +and sk+1 +g +be given by (16). It holds +that +rk+1 +g += min(zk +g − uk +g, sk+1 +g +1) +(17a) +1⊤ max(zk +g − uk +g − sk+1 +g +1, 0) = wg +ρ , +(17b) +where min and max operate entrywise. +Proof: See Appendix F +Observe that (17a) can be used to obtain rk+1 +g +if sk+1 +g +is +given, whereas (17b) does not depend on rk+1 +g +. Therefore, a +solution to (17) can be found by first solving (17b) for sk+1 +g +and then substituting the result into (17a) to recover rk+1 +g +. To +this end, we have the following: +Proposition 2: Equation (17b) has a unique root. This root +lies in the interval [ˇsk +g, ˆsk +g], where +ˇsk +g := min +m +� +zk +g[m] − uk +g[m] +� +− wg +Mρ +(18a) +ˆsk +g := max +m +� +zk +g[m] − uk +g[m] +� +− wg +Mρ. +(18b) +Proof: See Appendix G. +Observe that Proposition 2 essentially provides the bounds +that are required to find the unique root of (17b) via the well- +known bisection algorithm. Recall that the latter is a very +efficient algorithm as it geometrically reduces the uncertainty +at every iteration. +In accordance with the strategy mentioned earlier, one also +necessitates a means to solve (15) when (15c) is replaced with +an equality constraint: +(rk+1 +g +, sk+1 +g +) = arg min +rg,sg wgsg + ρ +2∥rg − zk +g + uk +g∥2 +2 (19a) +s.t. +rg ≤ sg1 +(19b) +1⊤rg = cBH +g . +(19c) +Proposition 3: Let rk+1 +g +and sk+1 +g +be given by (19). Then, +it holds that +rk+1 +g += min(zk +g − uk +g − (µ/ρ)1, sk+1 +g +1) +(20a) +1⊤ max(µ1, ρ(zk +g − uk +g − sk+1 +g +1)) = wg + µM +(20b) +where +µ := −ρcBH +g ++ ρ1⊤(zk +g − uk +g) − wg +M +. +(21) +Proof: See Appendix H. +Observe that (20a) and (21) can be used to obtain rk+1 +g +if sk+1 +g +is given, whereas (20b) does not depend on rk+1 +g +. +Therefore, a solution to (19) can be found by first solving +(20b) for sk+1 +g +and then substituting the result into (20a) to +recover rk+1 +g +. To this end, we have the following: +Proposition 4: Equation (20b) has a unique root. This root +lies in the interval [ˇsk +g, ˆsk +g], where +ˇsk +g := min +m +� +zk +g[m] − uk +g[m] +� +− wg +Mρ − µ +ρ +(22a) +ˆsk +g := max +m +� +zk +g[m] − uk +g[m] +� +− wg +Mρ − µ +ρ . +(22b) +Proof: See Appendix I. +To sum up, (14) can be solved separately for each column +of R and entry of s. Each of these G problems can be solved +by first solving (16) and checking whether (15c) holds for +the obtained solution. If it does not hold, one must solve +(19). Proposition 1 and Proposition 3 respectively establish +that a solution can be found for each of these problems just +by solving a scalar equation. Proposition 2 and Proposition 4 +prove uniqueness of the solutions of these two equations +and provide an interval where they can be sought using the +bisection algorithm. +C. The Z-subproblem +This section describes how a solution to (12b) can be found +by solving a bisection problem per row of Z. To this end, start +by noting that it follows from (12b) and (13) that +Zk+1 = arg min +Z +� +I[Z1 = Rmin1] + I[0 ≤ Z ≤ C] ++ ρ +2∥Rk+1 − Z + U k∥2 +F +� +(23a) += arg min +Z +� +m +� +I[¯z⊤ +m1 = Rmin] + I[0 ≤ ¯zm ≤ ¯cm] ++ ρ +2∥¯rk+1 +m +− ¯zm + ¯uk +m∥2 +F +� +, +(23b) + +8 +Algorithm +2: Group-sparse Placement Algorithm +(GSPA). +1 Input: C ∈ RM×G ++ +, Rmin ∈ R+, +{wg}g ⊂ R+,{cBH +g }g ⊂ R+, ρ > 0 +2 Initialize U 1 ∈ RM×G and Z1 ∈ RM×G ++ +3 for k = 1, 2, . . . do +4 +for g = 1, 2, . . . , G do +5 +Bisection: find sk+1 +g +s.t. +1⊤ max(0, ρ(zk +g − uk +g − sk+1 +g +1)) = wg +6 +Set rk+1 +g += min(zk +g − uk +g, sk+1 +g +1) +7 +if 1⊤rk+1 +g +> cBH +g +then +8 +Set +µ = (−ρcBH +g ++ ρ1⊤(zk +g − uk +g) − wg)/M +9 +Bisection: find sk+1 +g +s.t. +1⊤ max(µ1, ρ(zk +g − uk +g − sk+1 +g +1)) = wg + µM +10 +Set rk+1 +g += min(zk +g − uk +g − (µ/ρ)1, sk+1 +g +1) +11 +for m = 1, 2, . . . , M do +12 +Bisection: find λ s.t. +1⊤ max(0, min(¯cm, ¯rk+1 +m ++ ¯uk +m − λ1)) = Rmin +13 +Set ¯zk+1 +m += max(0, min(¯cm, ¯rk+1 +m ++ ¯uk +m − λ1)) +14 +Set U k+1 = U k + Rk+1 − Zk+1 +15 +If convergence( ) then return Rk+1 +10 +20 +30 +40 +50 +60 +70 +80 +90 +Number of GTs (M) +5 +10 +15 +20 +25 +30 +35 +40 +45 +Mean number of ABSs +Lower bound +K-means Alg. (Galkin et al.) +Space rate Alg. (Hammouti et al.) +Genetic Alg. (Shehzad et al.) +GSPA (proposed) +Fig. 3: Mean number of ABSs vs. number of GTs (Rmin = 20 +Mbps, cBH = 99 Mbps). +where ¯zm, ¯cm, and ¯uk +m respectively denote the m-th column +of Z⊤, C⊤, and (U k)⊤. Clearly, this separates into M +problems of the form +¯zk+1 +m += arg min +¯zm +1 +2∥¯rk+1 +m +− ¯zm + ¯uk +m∥2 +F +(24a) +s.t. +1⊤¯zm = Rmin, +0 ≤ ¯zm ≤ ¯cm. +(24b) +Proposition 5: If 1⊤¯cm < Rmin, then (24) is infeasible. If +1⊤¯cm ≥ Rmin, the solution to (24) is given by +¯zk+1 +m += max(0, min(¯cm, ¯rk+1 +m ++ ¯uk +m − λ1)), +(25) +where λ satisfies +1⊤ max(0, min(¯cm, ¯rk+1 +m ++ ¯uk +m − λ1)) = Rmin. +(26) +Proof: See Appendix J. +Thus, as in Sec. V-B, one needs to solve the scalar equation +(26). The following result is the counterpart of Proposition 2 +for the Z-subprblem. +Proposition 6: If 1⊤¯cm < Rmin, then equation (26) has no +roots. If 1⊤¯cm ≥ Rmin, then (26) has a unique root. This root +lies in the interval [ˇλ +k +m, ˆλ +k +m], where +ˇλ +k +m = min +g [¯rk+1 +m [g] + ¯uk +m[g] − ¯cm[g]] +(27a) +ˆλ +k +m = max{¯rk+1 +m [g] + ¯uk +m[g] : g ∈ {g : ¯cm[g] > Rmin +G }} +− Rmin +G +(27b) +Proof: See Appendix K. +Proposition 6 establishes uniqueness and provides the +bounds needed to solve (26), and therefore (24), via the +bisection algorithm. +D. The Proposed Solver +Having addressed both X- and Z- subproblems, it remains +only to obtain the U-update in (12c), which for the assign- +ments in (13) becomes +U k+1 = U k + Rk+1 − Zk+1. +(28) +This completes the derivation of the proposed scheme, +summarized as Algorithm 2 and referred to as the group- +sparse placement algorithm (GSPA) since it promotes group +sparsity [45] in the columns of R, that is, only a few columns +of the matrix Rk+1 returned by the algorithm are expected to +be non-zero. Recall that the non-zero columns indicate which +grid points will be occupied by an ABSs. +In the notation used in Algorithm 2, if A is a matrix, then +am is its m-th column and ¯a⊤ +n its n-th row. Furthermore, +superscripts indicate the iteration index, ρ > 0 is the step +size, and the min and max operators act entrywise. The +criterion on line 15, which determines whether the algorithm +has converged, is detailed in Appendix D. +Observe that the main strategy in the previous two subsec- +tions was to exploit the structure of Problem (9) to decompose +it into one subproblem per row and column of R. Each of +these subproblems involves solving a bisection task of a 1D +monotonically decreasing function and therefore can be solved +with O(1) evaluations. The total complexity is O(GM), much +smaller than the O(G3M 3) complexity per inner iteration of +interior-point methods; cf. Appendix A. +VI. NUMERICAL EXPERIMENTS +This section empirically validates the performance of the +proposed algorithm by means of numerical experiments +with channel data generated using the tomographic model +(Sec. VI-A) and ray-tracing software (Sec. VI-B). The code +and data necessary to reproduce the experiments is available +at https://github.com/uiano/ABS placement via propagation +maps. + +9 +39 +49 +59 +69 +79 +89 +99 +Total rate of each ABS [Mbps] +10 +20 +30 +40 +50 +60 +70 +Mean number of ABSs +Lower bound +K-means Alg. (Galkin et al.) +Space rate Alg. (Hammouti et al.) +Genetic Alg. (Shehzad et al.) +GSPA (proposed) +Fig. 5: Mean number of ABSs vs. the capacity cBH of the +backhaul link (Rmin = 20 Mbps). +10 +15 +20 +25 +30 +35 +40 +45 +Minimum GT rate [Mbps] +10 +20 +30 +40 +50 +60 +70 +Mean number of ABSs +Lower bound +K-means Alg. (Galkin et al.) +Space rate Alg. (Hammouti et al.) +Genetic Alg. (Shehzad et al.) +GSPA (proposed) +Fig. 4: Mean number of ABSs vs. Rmin (cBH = 100 Mbps). +The channel gain, obtained from the aforementioned models +when the carrier frequency is 2.4 GHz, is substituted into (1) +with W = 20 MHz, PTX = 20 dBm/Hz, and σ2 = −96 +dBm/Hz to form the capacity matrix C. For simplicity, the +backhaul capacity is set to a common value cBH +1 += . . . = +cBH +G = cBH. +The proposed placement algorithm is compared with three +benchmarks: i) the K-means placement algorithm by Galkin +et al. [11], ii) the iterative space rate K-means placement +algorithm by Hammouti et al. [22], and iii) the genetic +placement algorithm by Shehzad et al. [25] with 50 solutions +per generation. Since we did not manage to obtain the code +used by the authors of these works, we implemented their algo- +rithms ourselves. The resulting implementations are available +in the repository mentioned earlier. The first two algorithms are +unable to enforce no-fly zones, which results in ABSs placed +inside buildings. To avoid this behavior, the ABS locations +provided by these algorithms are projected onto the same flight +grid as the rest of algorithms. The proposed GSPA algorithm +utilizes, unless otherwise stated, a step size of ρ = 10−7 +and stopping criterion parameters ϵabs = ϵrel = 10−4; cf. +Appendix D. +To quantify performance, the number of ABSs required +by each algorithm to guarantee a rate Rmin for every GT is +considered as a performance metric. This metric is averaged +using Monte Carlo simulation across realizations of the GT +locations. As a reference, figures will also include a lower +bound on this metric; cf. Appendix B. +A. Experiments with the Tomographic Model +In the experiments of this section, the channel gain is +generated using Algorithm 1 in an environment like the one +in Fig. 1. The SLF takes a constant value, termed building ab- +sorption, inside the buildings and 0 outside. Unless otherwise +stated, the simulation parameters in this section are as follows. +Area size: 500 m × 400 m × 150 m; dimensions of the SLF +grid: 50 × 40 × 15; dimensions of the flight grid: 9 × 9 × +5; minimum flight height: 50 m; height of the buildings: 63 +m; building absorption: 1 dB/m; number of GTs: M = 70. +Fig. 3 investigates the influence of the number of GTs +(M) on the performance of the compared algorithms. Several +observations are in order. +First, the mean number of ABSs +is seen to increase roughly proportionally to M for all the +algorithms. Second, the proposed GSPA algorithm not only +yields a lower mean number of ABSs than the competing +algorithms, but its slope is smaller, which means that the +margin by which GSPA outperforms the benchmarks increases +with M. Third, GSPA asymptotically approaches the lower +bound (cf. Appendix B), which means that its efficiency, +quantified as the number of GTs per ABS, increases with M. +In contrast, the opposite is true for the other algorithms. +To investigate the influence of the GT requirements on +performance, Fig. 4 depicts the mean number of ABSs vs. +Rmin when cBH = 100 Mbps. As in Fig. 3, the mean number +of ABSs seems to increase roughly linearly. However, in Fig. 4 +a saturation phenomenon arises: the mean number of ABSs +cannot be greater than the number of GTs M = 70 since +one ABS placed approximately above each GT suffices to +serve all GTs. It is also observed that the performance of +the genetic placement algorithm degrades faster than the rest +of algorithms for high Rmin. The reason may be that this +algorithm essentially tests multiple placements and the number +of placements increases drastically with the number of ABSs, +which is larger when Rmin is larger. +Fig. 5 plots the mean number of ABSs vs. the backhaul +capacity cBH when Rmin = 20 Mbps. The values of cBH on the +horizontal axis are selected so that each cBH is not an integer +multiple of Rmin. This gives rise to a “staircase” behavior for +the benchmarks, which do not exploit the fact that a GT can be +served by multiple ABSs. In contrast, GSPA exploits this fact, +as corroborated by the smoothness of its curve. It is also seen +that the mean number of ABSs required by GSPA is roughly +half the one of the best competing alternative. +To study the influence of the channel, Fig. 6 shows the +mean number of ABSs vs. the absorption undergone by the + +10 +30 +40 +50 +60 +70 +80 +90 +100 +Number of GTs (M) +20 +40 +60 +80 +100 +Mean number of ABSs +Lower bound +K-means Alg. (Galkin et al.) +Space rate Alg. (Hammouti et al.) +Genetic Alg. (Shehzad et al.) +GSPA (proposed) +Fig. 7: Mean number of ABSs vs. number of GTs (Rmin = 20 +Mbps, cBH = 74 Mbps). +11 +15 +19 +23 +27 +31 +35 +40 +45 +Minimum GT rate [Mbps] +10 +20 +30 +40 +50 +Mean number of ABSs +Lower bound +K-means Alg. (Galkin et al.) +Space rate Alg. (Hammouti et al.) +Genetic Alg. (Shehzad et al.) +GSPA (proposed) +Fig. 8: Mean number of ABSs vs. minimum GT rate Rmin +(M = 50 GTs, cBH = 100 Mbps). +0.00 +0.25 +0.50 +0.75 +1.00 +1.25 +1.50 +1.75 +2.00 +2.25 +Building absorption [dB/m] +10 +15 +20 +25 +30 +35 +40 +45 +50 +55 +Mean number of ABSs +Lower bound +K-means Alg. (Galkin et al.) +Space rate Alg. (Hammouti et al.) +Genetic Alg. (Shehzad et al.) +GSPA (proposed) +Fig. 6: Mean number of ABSs vs. building absorption (Rmin = +17 Mbps, cBH = 84 Mbps). +communication signals when propagating through the build- +ings. When the absorption is zero, the propagation conditions +are those of free space. In this case, the proposed algorithm +outperforms the rest only because of a better ability to perform +the rate allocation. As the absorption increases, the benchmark +algorithms are dramatically affected, which suggests that these +algorithms are not well suited to scenarios without line-of- +sight. In contrast, the proposed algorithm remains unaffected +since there are always sufficiently good flight grid points +regardless of the building absorption considered in the figure. +Informally speaking, matrix R in (9) is upper bounded by cBH +and C. When the former constraint is tighter than the latter, +the resulting number of ABSs will not depend on C. This +phenomenon is investigated further in Fig. 9. +Additional experiments with the tomographic channel model +are presented in Appendix L. +B. Experiments with the Ray-Tracing Model +This section corroborates the main findings of Sec. VI-A +when the channel is obtained via the ray-tracing model, which +is more accurate than the tomographic channel model for +higher carrier frequencies. +To this end, a data set was generated using the X3D ray- +tracing software Wireless Insite with six reflections and one +diffraction in a 400 × 600 m2 area of the city of Ottawa. The +data set is also published in our repository. The channel was +computed between all points of the flight grid and all points +of a GT grid. The former comprises 35 points at each of the +heights of 40, 60, and 80 m. The latter is a 2D regular grid of +2501 GT locations at a height of 2 m spaced uniformly with a +distance of 10 m on each axis. Points inside the buildings are +removed. At each Monte Carlo realization, the GT locations +are generated by drawing M points uniformly at random +without replacement from the GT grid. +Figs. 7 and 8 are the counterparts of Figs. 3 and 4 for ray- +tracing channel data. It is observed that the mean number of +ABSs is also an approximately linear function of M for all +algorithms and that GSPA roughly attains the lower bound. +However, here the differences among benchmarks are greater. +The fact that the K-means algorithm outperforms the space +rate algorithm suggests that the channel changes rapidly with +respect to the GT location, since the latter algorithm relies on +clustering vectors of channel gains. Despite this fact, GSPA +performs almost optimally. +Fig. 9 further investigates the phenomenon already dis- +cussed regarding Fig. 6. Observe that the tightness of the +bounds in Fig. 9 increases (i) for larger Rmin and (ii) for +smaller cBH. Those are precisely the situations where the +backhaul limitations become stricter. Indeed, it can be easily +seen that the bound in Appendix B can be attained with +equality when the entries of C approach infinity. +Finally, the experiment in Fig. 5 is performed with ray- +tracing channel data in Fig. 10. The proposed algorithm still +outperforms the other three benchmarks by a wide margin, +requiring roughly 50% of ABSs. However, relative to Fig. 5, + +11 +3 +5 +7 +9 +11 +Minimum GT rate [Mbps] +2.5 +5.0 +7.5 +10.0 +12.5 +15.0 +17.5 +20.0 +22.5 +Mean number of ABSs +cBH=34 Mbps +Lower bound for cBH=34 Mbps +cBH=44 Mbps +Lower bound for cBH=44 Mbps +cBH=54 Mbps +Lower bound for cBH=54 Mbps +cBH=64 Mbps +Lower bound for cBH=64 Mbps +Fig. 9: Mean number of ABSs vs. minimum GT rate Rmin for +GSPA (M = 50 GTs). +34 +44 +54 +64 +74 +80 +90 +100 +Total rate of each ABS [Mbps] +5 +10 +15 +20 +25 +Mean number of ABSs +Lower bound +K-means Alg. (Galkin et al.) +Space rate Alg. (Hammouti et al.) +Genetic Alg. (Shehzad et al.) +GSPA (proposed) +Fig. 10: Mean number of ABSs vs. backhaul link capacity cBH +(Rmin = 7 Mbps, M = 50 GTs). +one can observe that the benchmark algorithms saturate for +large cBH, which indicates that C imposes a more stringent +constraint than cBH in the scenario of Fig. 10. When it comes +to GSPA, the greater tightness of the bound for small cBH is +a manifestation of the same effect, as discussed earlier. +VII. CONCLUSIONS +Whereas existing algorithms for ABS placement assume +that the channel gain depends only on the length and (possibly) +elevation of each link, this paper presents a scheme that can +accommodate an arbitrary dependence of the gain on the posi- +tion of the ABSs and GTs. This enables the utilization of radio +maps for ABS placement. The proposed algorithm determines +a set of ABS locations that approximately minimizes the num- +ber of ABSs required to guarantee a minimum rate to all GTs. +Relative to most existing schemes, the proposed algorithm has +a low complexity, accounts for a limited backhaul capacity, +and can accommodate flight restrictions such as no-fly zones +or airspace occupied by buildings. A solver whose complexity +is linear in the number of users was derived based on the +alternating-direction method of multipliers and the problem of +evaluating tomographic integrals was revisited and extended +to air-to-ground channels. An extensive set of simulations +demonstrate that the proposed GSPA algorithm outperforms +competing algorithms by a wide margin both in tomographic +and ray-tracing channels. Remarkably, it was observed in the +numerical experiments that the proposed algorithm is the only +one among the compared schemes whose efficiency, measured +in terms of number of GTs served per ABS, increases with the +number of GTs. This fundamental distinction renders GSPA +especially suitable for scenarios with a large number of users. +Future directions include approaches for tracking air-to- +ground propagation maps, possibly based on online kernel +methods [46], [47], and algorithms that can adapt to changes +in the GT locations. +VIII. ACKNOWLEDGEMENTS +The authors would like to thank Prof. Geert Leus for +insightful discussions. +APPENDIX A +INTERIOR-POINT SOLVER +The present section illustrates how (10) can be solved +using an interior-point algorithm. Although such a solver is +not utilized in this paper, the ensuing derivation provides +its computational complexity, which motivates the ADMM +algorithm from Sec. V. +It is convenient to start by expressing (10) in a canonical +form with only non-negativity constraints and linear equality +constraints. To this end, introduce the slack variables δ1, ∆2, +and ∆3 to write (10) as +minimize +R,s,δ1,∆2,∆3 w⊤s +(29a) +s.t. R⊤1 + δ1 = cBH +(29b) +R1 = Rmin1 +(29c) +R + ∆2 = C +(29d) +R + ∆3 = 1s⊤ +(29e) +R ≥ 0, δ1 ≥ 0, ∆2 ≥ 0, ∆3 ≥ 0. +(29f) +With this formulation, it is easy to see that (29) is equivalent +to +minimize +˜x +˜w⊤˜x +(30a) +s.t. ˜A˜x = ˜b +(30b) +˜x[G + 1 : end] ≥ 0, +(30c) +where +˜x +:= +[s⊤, r⊤, δ⊤ +1 , vec⊤(∆2), vec⊤(∆3)]⊤, +r += +vec(R), +˜w +:= +[w1, . . . , wG, 0, . . . , 0]⊤, +˜x[G + 1 +: +end] +:= +[r⊤, δ⊤ +1 , vec⊤(∆2), vec⊤(∆3)]⊤, +˜b := [(cBH)⊤, Rmin1⊤, vec⊤(C), 0⊤]⊤, and +˜A := +� +��� +0 +IG ⊗ 1⊤ +IG +0 +0 +0 +1⊤ ⊗ IM +0 +0 +0 +0 +IGM +0 +IGM +0 +−IG ⊗ 1 +IGM +0 +0 +IGM +� +��� . (31) + +12 +Problem (30) can be solved by means of a standard interior- +point algorithm. To derive a lower bound for its computational +complexity, note that each inner iteration of the algorithm will +involve solving a system of equations where the number of +unknowns equals the number of variables of the optimization +problem plus the number of linear constraints [48, Ch. 10 +and 11]. For (30), the former equals 2G + 3GM whereas +the latter is given by G + M + 2GM. Solving this system +of equations without any tailor-made approach that exploits +the specific structure of ˜A in this problem therefore involves +O(G3M 3) arithmetic operations. +It is worth remarking that this complexity is prohibitive in +practice: if, for example, G = M = 100, then 1012 operations +would be required per inner iteration. +APPENDIX B +LOWER BOUND FOR THE NUMBER OF ABSS +This appendix presents a lower bound for the number of +ABSs and, therefore, also for the mean number of ABSs, +which is the performance metric adopted in Sec. VI. This +bound constitutes a fundamental limit for the problem of ABS +placement and, hence, it applies regardless of the adopted +algorithm. +Let N denote the smallest number of ABSs required to +serve all M users with rate at least Rmin. This means that the +total backhaul rate available to all ABSs together, which is +not greater than N maxg cBH +g , cannot be less than the total rate +MRmin demanded by the users. It follows that N maxg cBH +g +≥ +MRmin and, therefore, N ≥ ⌈MRmin/ maxg cBH +g ⌉, where ⌈z⌉ +denotes the smallest integer greater than or equal to z. +APPENDIX C +DERIVATION OF ALGORITHM 1 +Algorithm 1, which can be classified as a parametric, +floating point, and zeroth-order algorithm according to the +terminology of [42, Sec. I-B-1], is our approach (yet others are +possible) to approximate the tomographic integral by comput- +ing exactly the integral of a piecewise constant approximation +of the SLF. The idea is to parameterize the line segment +between x1 and x2 as x(t) = x1 + t(x2 − x1), where +t ∈ [0, 1], and identify the values t1 < t2 < . . . < tT for +which the boundary between two adjacent voxels is crossed. +Since ∥x(ti) − x(ti−1)∥ = (ti − ti−1)∥x2 − x1∥ whenever +ti > ti−1, the approximation is then +ξ(x1, x2) ≈ +�T +i=2(ti − ti−1)∥x2 − x1∥l(x ¯ +X +qi) +∥x2 − x1∥1/2 +(32a) += ∥x2 − x1∥1/2 +T +� +i=2 +(ti − ti−1)l(x +¯ +X +qi), +(32b) +where qi is the index of the voxel that contains the i-th segment +{x(t) +: +t ∈ (ti−1, ti)}. Since ¯ +X is a 3D grid, each point +in {x ¯ +X +1 , . . . , x ¯ +X +Q} can also be indexed by a vector i of 3 +indices that lies in the set I := {1, . . . , Qx} × {1, . . . , Qy} × +{1, . . . , Qz}. The values of the SLF can also be collected in a +tensor L ∈ RQx×Qy×Qz, whose entry L[i] is the value of l at +the i-th grid point. If δ ¯ +X ∈ R3 +++ denotes a vector whose j-th +entry δ ¯ +X [j] represents the spacing between grid points along +the j-th axis, the coordinates of the i-th grid point are clearly +i ⊙ δ ¯ +X , where ⊙ denotes entrywise product. Similarly, the +boundaries between adjacent voxels along the j-th axis occur +at values of the j-th coordinate given by δ ¯ +X [j](i±1/2), where +i is an integer. It is then clear that steps 6-8 in Algorithm 1 +simply find the next value of t for which the segment crosses a +voxel boundary along one of the axes by solving the equation +x1[j] + t(x2[j] − x1[j]) = δ ¯ +X [j](icurrent[j] ± 1/2) +(33) +for t along each axis j and taking the minimum across axes. +The ± becomes a plus sign for the j-th axis if the segment +is increasing along this axis (i.e. x1[j] ≤ x2[j]) and a minus +sign otherwise. +An alternative implementation of the same integral approx- +imation with smaller computational complexity but greater +memory complexity could be obtained by creating 3 lists +corresponding to the values of t for which the line segment +between x1 and x2 intersects each axis and then merging those +lists into a list with non-decreasing values of t. +APPENDIX D +STOPPING CRITERION +The stopping criterion of Algorithm 2 follows the frame- +work in [35]. Particularly, given the absolute and relative +tolerance parameters ϵabs and ϵrel, let ϵk+1 +pri +and ϵk+1 +dual be +ϵk+1 +pri +:= +√ +MGϵabs +(34a) ++ ϵrel max{∥A1Xk+1A2∥F, ∥B1Zk+1B2∥F}, +ϵk+1 +dual := +√ +MGϵabs + ϵrel∥ρA⊤ +1 U k+1A⊤ +2 ∥F. +(34b) +Algorithm 2 stops when both conditions +∥Qk+1∥2 +F ⩽ ϵk+1 +pri +and ∥P k+1∥2 +F ⩽ ϵk+1 +dual +(35a) +are satisfied, where +Qk+1 := A1Xk+1A2 + B1Zk+1B2 +(36a) +P k+1 := ρA⊤ +1 B1(Zk+1 − Zk)B2A⊤ +2 +(36b) +are the so-called primal and dual residuals. +APPENDIX E +PROOF OF THEOREM 1 +The idea is to establish that a special case of (7) is a +multidimensional knapsack problem. To this end, let the g- +th entry of cBH be at least as large as 1⊤cg and note that, +due to (7d), constraint (7b) holds regardless of the choice of +{αg}G +g=1 and R, meaning that (7b) can be removed. +Next, note that if {αg}G +g=1 and R are feasible, then replac- +ing any rg with αgcg yields another feasible point that attains +the same cost. This is because none of the entries of the left- +hand side of (7c) decreases after modifying rg in this way. +The left-hand side of (7c) can then be written as R1 = +� +g rg = � +g αgcg, which yields the following problem +minimize +{αg}G +g=1 +� +g +αg +(37a) +s.t. +� +g +αgcg ≥ Rmin1 +(37b) +αg ∈ {0, 1}. +(37c) + +13 +Finally, applying the change of variables βg ← 1 − αg, the +objective becomes G − � +g βg and the left-hand side of (37b) +becomes � +g(1 − βg)cg = � +g cg − � +g βgcg, which implies +that (37) reads as +maximize +{βg}G +g=1 +� +g +βg +(38a) +s.t. +� +g +βgcg ≤ +� +g +cg − Rmin1 +(38b) +βg ∈ {0, 1}. +(38c) +This problem is an instance of the so-called multidimensional +knapsack problem, which has been shown to be NP-hard +unless P=NP [49]. +APPENDIX F +PROOF OF PROPOSITION 1 +Since Problem (16) is convex differentiable and Slater’s con- +ditions are satisfied, it follows that the Karush-Kuhn-Tucker +(KKT) conditions are sufficient and necessary [48, Sec. 5.5.3]. +To obtain these conditions, observe that the Lagrangian of (16) +is given by +L(rg, sg; ν) = wgsg + ρ +2∥rg − zk +g + uk +g∥2 +2 + ν⊤(rg − sg1) +(39) +and note that the KKT conditions can be stated as +∇rgL(rg, sg; ν) = ρ(rg − zk +g + uk +g) + ν = 0 +(40a) +∇sgL(rg, sg; ν) = wg − 1⊤ν = 0 +(40b) +rg ≤ sg1 +(40c) +ν ≥ 0, +ν[m](rg[m] − sg) = 0 ∀m. +(40d) +From (40a) and the inequality in (40d), it follows that +ν = −ρ(rg − zk +g + uk +g) ≥ 0. +(41) +This implies that rg ≤ zk +g − uk +g. Combining this inequality +with (40c) yields +rg ≤ min(zk +g − uk +g, sg1). +(42) +On the other hand, from the equality in (41) and the equality +in (40d), one finds that +−ρ(rg[m] − zk +g[m] + uk +g[m])(rg[m] − sg) = 0 ∀m. +(43) +This holds if and only if either rg[m] = zk +g[m] − uk +g[m] or +rg[m] = sg. Therefore, it follows from (42) that +rg = min(zk +g − uk +g, sg1), +(44) +which establishes (17a). Finally, combine this expression with +(40b) and (41) to arrive at +wg = −ρ1⊤(rg − zk +g + uk +g) +(45a) += −ρ1⊤(min(zk +g − uk +g, sg1) − zk +g + uk +g) +(45b) += −ρ1⊤ min(0, sg1 − zk +g + uk +g) +(45c) += ρ1⊤ max(0, zk +g − uk +g − sg1), +(45d) +thereby recovering (17b). The proof is complete by noting that +(40) holds if and only if (44) and (45d) hold. +APPENDIX G +PROOF OF PROPOSITION 2 +Consider the function F(s) := 1⊤ max(zk +g −uk +g −s1, 0) = +� +m max(zk +g[m] − uk +g[m] − s, 0). Since F is the sum of non- +increasing piecewise linear functions, so is F. Since F(s) → +∞ as s → −∞ and F(s) = 0 for a sufficiently large s, it +follows that (17b) has at least one root. Uniqueness of the +root follows readily by noting that F is strictly decreasing +whenever F(s) > 0. +It remains to be shown that F(ˇsk +g) ≥ wg/(Mρ) whereas +F(ˆsk +g) ≤ wg/(Mρ). For the first of these inequalities, observe +that ˇsk +g ≤ zk +g[m] − uk +g[m] − wg/(Mρ) for all m, which in +turn implies that zk +g[m] − uk +g[m] − ˇsk +g ≥ wg/(Mρ). Thus, +max(zk +g[m] − uk +g[m] − ˇsk +g, 0) = zk +g[m] − uk +g[m] − ˇsk +g ≥ +wg/(Mρ), which yields F(ˇsk +g) ≥ � +m wg/(Mρ) = wg/ρ. +For the second inequality, note similarly that zk +g[m]−uk +g[m]− +ˆsk +g +≤ +wg/(Mρ) for all m. This means that F(ˆsk +g) +≤ +� +m max(wg/(Mρ), 0) = wg/ρ. +APPENDIX H +PROOF OF PROPOSITION 3 +Again, the KKT conditions are sufficient and necessary. +Since the Lagrangian is +L(rg, sg; ν) = wgsg + ρ +2∥rg − zk +g + uk +g∥2 +2 ++ ν⊤(rg − sg1) + µ(1⊤rg − cBH +g ), +(46) +the KKT conditions read as +∇rgL(rg, sg; ν) = ρ(rg − zk +g + uk +g) + ν + µ1 = 0 +(47a) +∇sgL(rg, sg; ν) = wg − 1⊤ν = 0 +(47b) +rg ≤ sg1 +(47c) +ν ≥ 0, +ν[m](rg[m] − sg) = 0 ∀m +(47d) +1⊤rg = cBH +g . +(47e) +From (47a) and the inequality in (47d), it follows that +ν = −ρ(rg − zk +g + uk +g) − µ1 ≥ 0. +(48) +This implies that rg ≤ zk +g − uk +g − (µ/ρ)1. Combining this +inequality with (47c) yields +rg ≤ min(zk +g − uk +g − (µ/ρ)1, sg1). +(49) +On the other hand, from the equality in (48) and the equality +in (47d), one finds that +[−ρ(rg[m] − zk +g[m] + uk +g[m]) − µ](rg[m] − sg) = 0 ∀m. +(50) +This holds if and only if either rg[m] = zk +g[m]−uk +g[m]−µ/ρ +or rg[m] = sg. Therefore, it follows that +rg = min(zk +g − uk +g − (µ/ρ)1, sg1), +(51) +which establishes (20a). +To find µ, substitute the equality in (48) into (47b) to obtain +1⊤[−ρ(rg − zk +g + uk +g) − µ1] = wg. +(52) + +14 +Solving for µ yields +µ = −ρ1⊤rg + ρ1⊤(zk +g − uk +g) − wg +M +(53) +and using (47e) results in (21). +Finally, substitute (51) into (52) to arrive at +wg = 1⊤ max(µ1, ρ(zk +g − uk +g − sg1)) − µM, +(54) +thereby recovering (20b). The proof is complete by noting that +(47) holds if and only if (20a) and (20b) hold. +APPENDIX I +PROOF OF PROPOSITION 4 +Consider the function F(s) := 1⊤ max(µ1, ρ(zk +g − uk +g − +s1)) = � +m max(µ, ρ(zk +g[m] − uk +g[m] − s)). Due to the same +argument as in the proof of Proposition 2, this function has a +unique root. +To show that F(ˇsk +g) ≥ wg + µM, observe that +F(ˇsk +g) ≥ +� +m +ρ(zk +g[m] − uk +g[m] − ˇsk +g) +(55a) +≥ M min +m [ρ(zk +g[m] − uk +g[m] − ˇsk +g)] +(55b) += Mρ +� wg +Mρ + µ +ρ +� +(55c) += wg + µM. +(55d) +To show that F(ˆsk +g) ≤ wg + µM, observe that +F(ˆsk +g) ≤ M max +m [max(µ, ρ(zk +g[m] − uk +g[m] − ˆsk +g))] +(56a) += M max(µ, ρ(max +m [zk +g[m] − uk +g[m]] − ˆsk +g)) +(56b) += M max +� +µ, ρ +� wg +Mρ + µ +ρ +�� +(56c) +≤ wg + µM. +(56d) +APPENDIX J +PROOF OF PROPOSITION 5 +The fact that 1⊤¯cm < Rmin implies that (24) is infeasible +is trivial and, therefore, the rest of the proof focuses on the +case where 1⊤¯cm ≥ Rmin. +As before, the KKT conditions are sufficient and necessary +in this case. Noting that the Lagrangian is given by +L(¯zm; λ, ν, µ) = 1 +2∥¯rk+1 +m +− ¯zm + ¯uk +m∥2 +F ++ λ(1⊤¯zm − Rmin) − ν⊤¯zm + µ⊤(¯zm − ¯cm) +(57) +yields the KKT conditions +∇¯zmL(¯zm; λ, ν, µ) = +− (¯rk+1 +m +− ¯zm + ¯uk +m) + λ1 − ν + µ = 0, +(58a) +1⊤¯zm = Rmin, +(58b) +¯zm ≥ 0, ν ≥ 0, ν[g]¯zm[g] = 0 ∀g, +(58c) +¯zm ≤ ¯cm, µ ≥ 0, µ[g](¯zm[g] − ¯cm[g]) = 0 ∀g. +(58d) +From (58a) and the second inequality in (58d), it follows that +µ = ¯rk+1 +m +− ¯zm + ¯uk +m − λ1 + ν ≥ 0, +(59) +which in turn implies that +¯zm ≤ ¯rk+1 +m ++ ¯uk +m − λ1 + ν. +(60) +Combining this expression with the first inequality in (58d) +yields +¯zm ≤ min(¯cm, ¯rk+1 +m ++ ¯uk +m − λ1 + ν). +(61) +To show that this expression holds with equality, substitute +(59) into the equality of (58d) to obtain +(¯rk+1 +m [g] − ¯zm[g] + ¯uk +m[g] − λ + ν[g])(¯zm[g] − ¯cm[g]) = 0, +(62) +which implies that either ¯zm[g] = ¯rk+1 +m [g] + ¯uk +m[g] − λ + ν[g] +or ¯zm[g] = ¯cm[g]. Therefore, +¯zm = min(¯cm, ¯rk+1 +m ++ ¯uk +m − λ1 + ν). +(63) +To obtain an expression for ¯zm that does not depend on ν, +one may consider three cases for each g: +• C1: ¯rk+1 +m [g] + ¯uk +m[g] − λ < 0. In this case, if ν[g] = 0, +expression (63) would imply that ¯zm[g] < 0, which +would violate the first inequality in (58c). Therefore, +ν[g] > 0 and, due to the equality in (58c), ¯zm[g] = 0. +If ¯cm[g] > 0, it is then clear from (63) that ν[g] = +−(¯rk+1 +m [g]+ ¯uk +m[g]−λ). If ¯cm[g] = 0, then greater values +of ν[g] will also satisfy the KKT conditions but this is +not relevant since the only feasible ¯zm[g] in case C1 is +¯zm[g] = 0. +• C2: ¯rk+1 +m [g] + ¯uk +m[g] − λ = 0. In this case, (63) becomes +¯zm[g] = min(¯cm[g], ν[g]). Due to the equality in (58c), +it then follows that either ¯cm[g] = 0 and ν[g] ≥ 0, or +¯zm[g] = ν[g] = 0. +• C3: ¯rk+1 +m [g] + ¯uk +m[g] − λ > 0. If ¯cm[g] = 0, then +necessarily ¯zm[g] = 0 and any ν[g] ≥ 0 satisfies the +KKT conditions. On the other hand, if ¯cm[g] > 0, then +it is clear that ¯zm[g] > 0 and, due to the equality in +(58c), one has that ν[g] = 0, which in turn implies that +¯zm[g] = min(¯cm[g], ¯rk+1 +m [g] + ¯uk +m[g] − λ). +Combining C1-C3 yields +¯zm[g] = max(0, min(¯cm[g], ¯rk+1 +m [g] + ¯uk +m[g] − λ)), +(64) +which is just the scalar version of (25). Finally, to obtain λ, +one may substitute (64) into (58b), which produces (26). + +15 +10 +20 +30 +40 +50 +60 +70 +80 +90 +Minimum flight height [m] +10 +15 +20 +25 +30 +35 +40 +45 +50 +55 +Mean number of ABSs +Lower bound +K-means Alg. (Galkin et al.) +Space rate Alg. (Hammouti et al.) +Genetic Alg. (Shehzad et al.) +GSPA (proposed) +Fig. 12: Mean number of ABSs vs. minimum flight height +(Rmin = 17 Mbps, cBH = 84 Mbps). +0 +10 +20 +30 +40 +50 +Height of the buildings [m] +12 +14 +16 +18 +20 +22 +24 +26 +28 +30 +32 +Mean number of ABSs +Lower bound +K-means Alg. (Galkin et al.) +Space rate Alg. (Hammouti et al.) +Genetic Alg. (Shehzad et al.) +GSPA (proposed) +Fig. 13: Mean number of ABSs vs. height of the buildings +(Rmin = 17 Mbps, cBH = 84 Mbps). +5 +7 +9 +11 +13 +15 +17 +Minimum GT rate [Mbps] +0 +5 +10 +15 +20 +25 +30 +35 +40 +45 +Mean number of ABSs +cBH = 40 Mbps +Lower bound for cBH = 40 Mbps +cBH = 60 Mbps +Lower bound for cBH = 60 Mbps +cBH = 80 Mbps +Lower bound for cBH = 80 Mbps +cBH = 100 Mbps +Lower bound for cBH = 100 Mbps +Fig. 11: Mean number of ABSs vs. Rmin of the proposed GSPA +algorithm. +APPENDIX K +PROOF OF PROPOSITION 6 +Denote by G(λ) the left-hand side of (26), i.e., +G(λ) := +� +g +max(0, min(¯cm[g], ¯rk+1 +m [g] + ¯uk +m[g] − λ)). +(65) +This is a sum of non-increasing piecewise continuous func- +tions and therefore G is also non-increasing piecewise contin- +uous. The maximum value is attained for sufficiently small +λ and equals � +g ¯cm[g] = 1⊤¯cm. If 1⊤¯cm < Rmin, then +G(λ) < Rmin ∀λ and (26) admits no solution. Conversely, +if 1⊤¯cm > Rmin, then a solution can be found since G(λ) > +Rmin for sufficiently small λ and G(λ) = 0 for sufficiently +large λ. Uniqueness follows from the fact that G is strictly +decreasing except when G(λ) = 0 or G(λ) = 1⊤¯cm. +To show that G(ˇλ +k +m) ≥ Rmin just note from (27a) that +ˇλ +k +m ≤ ¯rk+1 +m [g] + ¯uk +m[g] − ¯cm[g] or, equivalently, ¯cm[g] ≤ +¯rk+1 +m [g] + ¯uk +m[g] − ˇλ +k +m, for all g. This clearly yields G(ˇλ +k +m) = +� +g max(0, ¯cm[g]) = � +g ¯cm[g], which is greater than or equal +to Rmin by assumption. +To show that G(ˆλ +k +m) ≤ Rmin, note from (27b) that ˆλ +k +m ≥ +¯rk+1 +m [g]+¯uk +m[g]−Rmin/G for all g such that ¯cm[g] > Rmin/G. +This clearly implies that ¯rk+1 +m [g] + ¯uk +m[g] − ˆλ +k +m ≤ Rmin/G +for all g such that ¯cm[g] > Rmin/G and, as a consequence, +min(¯cm[g], ¯rk+1 +m [g] + ¯uk +m[g] − ˆλ +k +m)) ≤ Rmin/G and the in- +equality G(ˆλ +k +m) ≤ Rmin follows. +APPENDIX L +ADDITIONAL EXPERIMENTS WITH THE TOMOGRAPHIC +MODEL +Fig. 11 is the counterpart of Fig. 9 for tomographic chan- +nels. The purpose of this simulation is to confirm that the +approximate linearity and proximity to the bound of GSPA +observed in Fig. 4 take place for a wide range of parameters. +Fig. 12 investigates the influence of the minimum flight +height on the performance of the considered algorithms. The +staircase behavior of the benchmarks can be explained by +noting that the flight grid initially comprises points with +heights 0, 30 m, 60 m, 90 m, etc. Then, the points inside +buildings and the points below the minimum flight height are +removed. Thus, the allowed flight points are the same e.g. +when the minimum flight height is 10 m as when it is 20 m. +As already observed in Sec. VI, the performance of GSPA +is not degraded for increasing flight height because the back- +haul capacity poses a more stringent constraint than the one +imposed by C even for the maximum flight height considered +in the figure. +Fig. 13 studies the impact of the height of the buildings. +To reduce the spatial quantization effect of the tomographic +integral approximation, the numbers of SLF grid points in the +x, y, and z axes were set to 50, 40, and 150, respectively. It is +observed that the K-means and space rate K-means algorithms + +16 +are negatively affected by the increased attenuation introduced +by higher buildings. In contrast, the genetic placement algo- +rithm and GSPA exhibit a milder dependence on the building +height. The reason is the greater capacity of these algorithms +to select ABS locations with favorable propagation conditions. +The backhaul capacity is again the limiting constraint, which +explains why the performance of GSPA is unaffected by a +greater building height. +REFERENCES +[1] D. Romero, P. Q. Viet, and G. Leus, “Aerial base station placement +leveraging radio tomographic maps,” +in IEEE Int. Conf. Acoustics +Speech Signal Process. Available at arXiv:2109.07372, Singapore, May +2022. +[2] Y. Zeng, Q. Wu, and R. Zhang, “Accessing from the sky: A tutorial on +uav communications for 5g and beyond,” Proceedings IEEE, vol. 107, +no. 12, pp. 2327–2375, 2019. +[3] P. Q. Viet and D. Romero, “Aerial base station placement: A tutorial +introduction,” IEEE Commun. Magazine., vol. 60, no. 5, May 2022. +[4] Z. Han, A. L. Swindlehurst, and K. J. R. Liu, “Optimization of manet +connectivity via smart deployment/movement of unmanned air vehicles,” +IEEE Trans. Veh. Technol., vol. 58, no. 7, pp. 3533–3546, 2009. +[5] D.-J. Lee, +“Autonomous unmanned flying robot control for recon- +figurable airborne wireless sensor networks using adaptive gradient +climbing algorithm,” J. Korea Robotics Society, vol. 6, no. 2, pp. 97–107, +May 2011. +[6] I. Bor-Yaliniz, A. El-Keyi, and H. Yanikomeroglu, +“Efficient 3-d +placement of an aerial base station in next generation cellular networks,” +in Proc. IEEE Int. Conf. Commun. IEEE, 2016, pp. 1–5. +[7] J. Chen and D. Gesbert, +“Optimal positioning of flying relays for +wireless networks: A LOS map approach,” in Proc. IEEE Int. Conf. +Commun., Paris, France, May 2017, pp. 1–6. +[8] Z. Wang, L. Duan, and R. Zhang, “Adaptive deployment for UAV-aided +communication networks,” IEEE Trans. Wireless Commun., vol. 18, no. +9, pp. 4531–4543, 2019. +[9] D.-J. Lee and R. Mark, +“Decentralized control of unmanned aerial +robots for wireless airborne communication networks,” Int. J. Advanced +Robotic Syst., vol. 7, no. 3, pp. 22, 2010. +[10] O. Andryeyev and A. Mitschele-Thiel, “Increasing the cellular network +capacity using self-organized aerial base stations,” in Proc. Workshop +Micro Aerial Veh. Netw., Syst., Appl. ACM, 2017, pp. 37–42. +[11] B. Galkin, J. Kibilda, and L.A. DaSilva, “Deployment of UAV-mounted +access points according to spatial user locations in two-tier cellular +networks,” in Wireless Days. IEEE, 2016, pp. 1–6. +[12] J. Lyu, Y. Zeng, R. Zhang, and T.J. Lim, “Placement optimization of +UAV-mounted mobile base stations,” IEEE Commun. Letters, vol. 21, +no. 3, pp. 604–607, 2017. +[13] D. Romero and G. Leus, “Non-cooperative aerial base station placement +via stochastic optimization,” in Proc. IEEE Mobile Ad-hoc Sensor Netw., +Shenzhen, China, Dec. 2019, pp. 131–136. +[14] M. Huang, L. Huang, S. Zhong, and P. Zhang, “UAV-mounted mobile +base station placement via sparse recovery,” IEEE Access, vol. 8, pp. +71775–71781, 2020. +[15] P. Mach, Z. Becvar, and M. Najla, “Power allocation, channel reuse, +and positioning of flying base stations with realistic backhaul,” IEEE +Internet Things J., pp. 1–1, 2021. +[16] S. Yin and F. R. Yu, “Resource allocation and trajectory design in uav- +aided cellular networks based on multi-agent reinforcement learning,” +IEEE Internet Things J., pp. 1–1, 2021. +[17] S. Park, K. Kim, H. Kim, and H. Kim, “Formation control algorithm of +multi-uav-based network infrastructure,” Applied Sciences, vol. 8, no. +10, pp. 1740, 2018. +[18] D.-Y. Kim and J.-W. Lee, “Integrated topology management in flying +ad hoc networks: Topology construction and adjustment,” IEEE Access, +vol. 6, pp. 61196–61211, 2018. +[19] A. Al-Hourani, S. Kandeepan, and A. Jamalipour, “Modeling air-to- +ground path loss for low altitude platforms in urban environments,” in +IEEE Global Commun. Conf., 2014, pp. 2898–2904. +[20] A. Al-Hourani, S. Kandeepan, and S. Lardner, “Optimal LAP altitude +for maximum coverage,” IEEE Wireless Commun. Lett., vol. 3, no. 6, +pp. 569–572, 2014. +[21] E. Kalantari, H. Yanikomeroglu, and A. Yongacoglu, “On the number +and 3D placement of drone base stations in wireless cellular networks,” +in IEEE Vehicular Tech. Conf., 2016, pp. 1–6. +[22] H. El Hammouti, M. Benjillali, B. Shihada, and M.-S. Alouini, +“A +distributed mechanism for joint 3D placement and user association +in UAV-assisted networks,” in IEEE Wireless Commun. Netw. Conf., +Marrakech, Morocco, Apr. 2019. +[23] B. Perabathini, K. Tummuri, A. Agrawal, and V.S. Varma, “Efficient 3D +placement of UAVs with QoS Assurance in Ad Hoc Wireless Networks,” +in Int. Conf. Comput. Commun. Netw., 2019, pp. 1–6. +[24] X. Liu, Y. Liu, and Y. Chen, “Reinforcement learning in multiple-UAV +networks: Deployment and movement design,” IEEE Trans. Veh. Tech., +vol. 68, no. 8, pp. 8036–8049, 2019. +[25] M.K. Shehzad, A. Ahmad, S.A. Hassan, and H. Jung, +“Backhaul- +aware intelligent positioning of UAVs and association of terrestrial base +stations for fronthaul connectivity,” IEEE Trans. Netw. Sci. Eng., pp. +1–1, 2021. +[26] J. Qiu, J. Lyu, and L. Fu, “Placement optimization of aerial base stations +with deep reinforcement learning,” in IEEE Int. Conf. Commun., 2020, +pp. 1–6. +[27] J. Sabzehali, V.K. Shah, H.S. Dhillon, and J.H. Reed, “3D placement +and orientation of mmWave-based UAVs for Guaranteed LoS Coverage,” +IEEE Wireless Commun. Letters, pp. 1–1, 2021. +[28] D. Romero and S.-J. Kim, +“Radio map estimation: A data-driven +approach to spectrum cartography,” IEEE Signal Process. Mag., Nov. +2022. +[29] A. Alaya-Feki, S. B. Jemaa, B. Sayrac, P. Houze, and E. Moulines, +“Informed spectrum usage in cognitive radio networks: Interference +cartography,” in Proc. IEEE Int. Symp. Personal, Indoor Mobile Radio +Commun., Cannes, France, Sep. 2008, pp. 1–5. +[30] R. Shrestha, D. Romero, and S. P. Chepuri, “Spectrum surveying: Active +radio map estimation with autonomous UAVs,” IEEE Trans. Wireless +Commun., Aug. 2022. +[31] Y. Teganya, D. Romero, L. M. Lopez-Ramos, and B. Beferull-Lozano, +“Location-free spectrum cartography,” IEEE Trans. Signal Process., vol. +67, no. 15, pp. 4013–4026, Aug. 2019. +[32] Y. Teganya and D. Romero, “Deep completion autoencoders for radio +map estimation,” IEEE Trans. Wireless Commun., 2021. +[33] N. Patwari and P. Agrawal, “NeSh: a joint shadowing model for links in +a multi-hop network,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal +Process., Las Vegas, NV, Mar. 2008, pp. 2873–2876. +[34] N. Patwari and P. Agrawal, “Effects of correlated shadowing: Connectiv- +ity, localization, and RF tomography,” in Proc. Int. Conf. Info. Process. +Sensor Networks, St. Louis, MO, Apr. 2008, pp. 82–93. +[35] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed +optimization and statistical learning via the alternating direction method +of multipliers,” Found. Trends Mach. Learn., vol. 3, no. 1, pp. 1–122, +Jan. 2011. +[36] T. Imai, “A survey of efficient ray-tracing techniques for mobile radio +propagation analysis,” IEICE Trans. Commun., vol. 100, no. 5, pp. 666– +679, 2017. +[37] D. Romero, D. Lee, and G. B. Giannakis, “Blind radio tomography,” +IEEE Trans. Signal Process., vol. 66, no. 8, pp. 2055–2069, Jan. 2018. +[38] J. Wilson, N. Patwari, and O. G. Vasquez, “Regularization methods for +radio tomographic imaging,” in Virginia Tech Symp. Wireless Personal +Commun., Blacksburg, VA, Jun. 2009. +[39] M. A. Kanso and M. G. Rabbat, +“Compressed RF tomography for +wireless sensor networks: Centralized and decentralized approaches,” in +Int. Conf. Distributed Comput. Sensor Syst., Marina del Rey, CA, 2009, +Springer, pp. 173–186. +[40] B. R. Hamilton, X. Ma, R. J. Baxley, and S. M. Matechik, “Propagation +modeling for radio frequency tomography in wireless networks,” IEEE +J. Sel. Topics Signal Process., vol. 8, no. 1, pp. 55–65, Feb. 2014. +[41] M. A. Gutierrez-Estevez, M. Kasparick, R. L. G. Cavalvante, and +S. Sta´nczak, “Hybrid model and data driven algorithm for online learn- +ing of any-to-any path loss maps,” arXiv preprint arXiv:2107.06677, +2021. +[42] J.R. Mitchell, P. Dickof, and A.G. Law, “A comparison of line integral +algorithms,” Comput. Physics, vol. 4, no. 2, pp. 166–172, 1990. +[43] E.J. Candes, M.B. Wakin, and S.P. Boyd, +“Enhancing sparsity by +reweighted ℓ1 minimization,” +J. Fourier Analysis App., vol. 14, no. +5, pp. 877–905, 2008. +[44] T. Lin, S. Ma, Y. Ye, and S. Zhang, “An ADMM-based interior-point +method for large-scale linear programming,” Optim. Methods Software, +vol. 36, no. 2-3, pp. 389–424, 2021. +[45] M. Yuan and Y. Lin, “Model selection and estimation in regression with +grouped variables,” J. Royal Statist. Soc.: Series B (Statist. Method.), +vol. 68, no. 1, pp. 49–67, 2006. + +17 +[46] D. Romero, S.-J. Kim, and G. B. Giannakis, “Stochastic semiparametric +regression for spectrum cartography,” +in Proc. IEEE Int. Workshop +Comput. Advan. Multi-Sensor Adapt. Process., Cancun, Mexico, Dec. +2015, pp. 513–516. +[47] D. Romero, S-J. Kim, G. B. Giannakis, and R. L´opez-Valcarce, “Learn- +ing power spectrum maps from quantized power measurements,” IEEE +Trans. Signal Process., vol. 65, no. 10, pp. 2547–2560, May 2017. +[48] S. Boyd and L. Vandenberghe, +Convex Optimization, +Cambridge +University Press, Cambridge, UK, 2004. +[49] G. Gens and E. Levner, “Complexity of approximation algorithms for +combinatorial problems: a survey,” ACM SIGACT News, vol. 12, no. 3, +pp. 52–65, 1980. + diff --git a/Z9E4T4oBgHgl3EQfOgzR/content/tmp_files/load_file.txt b/Z9E4T4oBgHgl3EQfOgzR/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..07004f0c4b1aa54ad2805202287d99fdbfe417cd --- /dev/null +++ b/Z9E4T4oBgHgl3EQfOgzR/content/tmp_files/load_file.txt @@ -0,0 +1,1280 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf,len=1279 +page_content='1 Aerial Base Station Placement via Propagation Radio Maps Daniel Romero, Pham Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Viet, and Raju Shrestha Abstract—The technology of base stations on board unmanned aerial vehicles, also known as aerial base stations (ABSs), promises to deliver cellular connectivity in areas where the terrestrial infrastructure is overloaded, damaged, or inexistent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' A central problem in this context is to determine the locations where these ABSs must be deployed to serve a set of users on the ground given the positions of the latter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' However, existing schemes assume that the channel gain depends only on the length and (possibly) the elevation of the link.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' To alleviate this limitation, this paper proposes a scheme that accommodates arbitrary channel gains by means of a propagation radio map of the air-to-ground channel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' The algorithm finds the locations of an approximately minimal number of ABSs to serve all ground terminals with a target rate while meeting the given constraints on the capacity of the backhaul links and respecting no-fly regions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' A convex-relaxation formulation ensures convergence and the alternating-direction method of multipliers is utilized to derive an implementation whose complexity is linear in the number of ground terminals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Numerical results with tomographic as well as ray-tracing channel models corroborate the strengths of the proposed scheme.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Index Terms—Aerial base stations, radio maps, spectrum cartography, radio tomography, aerial base station placement, ray tracing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' INTRODUCTION Aerial base stations (ABSs), namely unmanned aerial ve- hicles (UAVs) equipped with on-board base stations, were conceived as a means to deliver cellular connectivity in areas where the terrestrial infrastructure is absent, overloaded, or damaged [2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' This may occur for example in remote areas, in the vicinity of a crowded event, or after a natural disaster, such as a wildfire or a flood.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Users on the ground, here referred to as ground terminals (GTs), are served by ABSs, which in turn connect to the terrestrial infrastructure through backhaul links, possibly in multiple hops through other UAVs that act as relays.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Deploying ABSs involves addressing the problem of ABS placement, where one is given the locations of the GTs and must decide on a suitable set of spatial positions for the ABSs to effectively serve the GTs [3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' This task is typically hindered by several challenges, remarkably (C1) the uncertainty in the gain of the propagation channel between the GTs and the potential ABS locations, (C2) the limited The authors are with the Dept.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' of Information and Communication Technol- ogy, University of Agder, Jon Lilletunsvei 9, 4879 Grimstad, Norway.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Email {daniel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content='romero,viet.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content='q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content='pham, raju.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content='shrestha}@uia.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content='no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' This work was supported by the Research Council of Norway through the IKTPLUSS Grant 311994.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' The present paper extends its conference precursor [1] to accommodate constraints in the backhaul and more general propagation radio maps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' It also includes a much more comprehensive simulation study where, among others, simulations using ray-tracing software are carried out.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' capacity of the backhaul links, and (C3) constraints on the positions that the ABSs may adopt, often due to no-fly zones such as airports, embassies, or prisons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' The problem of placing a single ABS has been extensively investigated in the literature;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' see e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' [4]–[8].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' However, in general, the number of ABSs required in a practical scenario need not equal one.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' For this reason, a large number of works, including the present one, focus on placing multiple ABSs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' A usual approach is to regard the height of the ABSs as given and address the problem of 2D placement, where the ABSs must be placed on a horizontal plane of the given height;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' see e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' [9]–[16].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Nevertheless, since the heights of the ABSs are useful degrees of freedom to optimize the target communication metric, the focus here is on 3D placement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Existing algorithms for 3D placement of multiple ABSs can be classified according to how they handle uncertainty in the air-to-ground channel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' The first category comprises schemes that do not explicitly model the channel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' For example, in [17], each ground user associates with the ABS from which it receives the strongest beacons, but nothing is known or assumed about the channel gain from the GT locations to a given location until an ABS is physically there.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' This means that every iteration of the placement algorithm involves placing the ABSs in a particular set of locations, which drastically limits convergence speed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' The second class includes works that assume free-space propagation and, therefore, the coverage area of each ABS is a circle;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' see e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' [18].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Unfortunately, this assumption is too inaccurate in practice.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' The third category is made up of works that rely on the empirical model from [19], [20];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' see e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' [21]–[25].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' These works use the mean provided by such a model as the predictor of the channel gain, which is equivalent to assuming that the gain of a link depends only on its length and elevation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Again, this assumption is not very realistic since two links with the same length and elevation may exhibit totally different gains depending on whether there are obstructions such as buildings between the transmitter and the receiver.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' The fourth category, which can be termed channel-aware, is composed of works that rely on gain predictions that do depend on the locations of the endpoints of the link.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' To the best of our knowledge, only [26], [27] fall in this category.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Unfortunately, these schemes entail prohibitive complexity, assume an unlimited backhaul connection between the ABSs and the terrestrial infrastructure, and cannot guarantee a minimum service to the GTs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' The main contribution of this paper is a scheme that relies on radio propagation maps [28] to solve the problem of channel-aware 3D placement of multiple ABSs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Recall that a propagation map is a special kind of radio map [28]–[32] arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content='04966v1 [math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content='OC] 12 Jan 2023 2 that provides a channel metric of interest for every pair of transmitter and receiver locations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' In this paper, this metric is the channel gain, which can be used to predict the capacity of the communication link between each candidate ABS location and every GT without deploying an ABS at that location to measure the channel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Two classes of propagation maps with complementary strengths will be considered, namely those obtained via ray-tracing and those that rely on the radio tomographic model [33], [34].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' The former are more suitable to frequency bands where the dominating propagation phenom- ena beyond free-space loss are reflection and diffraction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' The latter are suitable to bands where the dominating propagation phenomenon is the absorption introduced by obstacles such as buildings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' In this context, a secondary contribution of this paper is to adapt existing radio tomographic techniques to air- to-ground channels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' To the best of our knowledge, the proposed scheme is the first for channel-aware ABS placement that can guarantee a minimum rate for all GTs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Formally, the algorithm can find a feasible placement if it exists, where a feasible placement is an assignment of ABSs to spatial locations that ensures a target rate for all GTs according to the given propagation map.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Besides, unlike the vast majority of works in the literature, constraints in the backhaul link between the ABSs and the ter- restrial infrastructure as well as no-fly zones can be enforced.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' With these constraints, the proposed algorithm approximately minimizes the number of ABSs required to serve all GTs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Note that this is of special interest in emergency scenarios, which is one of the main use cases of ABSs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' The algorithm relies on a sparse optimization formulation that naturally arises from a discretization of the space of candidate ABS positions, as required to be able to utilize propagation maps in a tractable fashion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' To counteract the high-dimensionality of the 3D placement problem, a linear-complexity and highly parallelizable algorithm is developed based on the alternating- direction method of multipliers (ADMM) [35].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Experiments with tomographic and ray-tracing models showcase a great reduction in the number of required ABSs as compared to existing algorithms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' To complement this manuscript, an open-source simulator was released to allow developing and testing algorithms for ABS placement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' This simulator and the code needed to reproduce all experiments is available at https://github.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content='com/uiano/ABS placement via propagation maps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Paper structure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' The rest of the paper is organized as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' II presents the model and formulates the problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Two approaches for predicting the capacity of a link between arbitrary pairs of endpoints of the air-to-ground channel are then described in Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' The problem of ABS placement and rate allocation is then addressed in Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' IV and a solver with linear complexity is developed in Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Finally, Secs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' VI and VII respectively present numerical results and conclusions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Notation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' R+ is set of non-negative real numbers and R++ is the set of positive real numbers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Boldface uppercase (lower- case) letters denote matrices (column vectors).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' a[i] represents the i-th entry of vector a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Notation 0 (respectively 1) refers to the matrix of the appropriate dimensions with all zeros (ones).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' ∥A∥F denotes the Frobenius norm of matrix A, whereas ∥a∥p Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' 1: Example of ABS placement in an urban environment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' GTs are represented by markers on the ground, flight grid points by blue dots, and ABS positions by green circles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' denotes the ℓp-norm of vector a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' With no subscript, ∥a∥ stands for the ℓ2-norm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Inequalities between vectors or matrices must be understood entrywise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' The Kronecker product is denoted by ⊗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' If a and b are vectors of the same dimension, then a ⊙ b is the entrywise product of a and b, whereas a ÷ b is the entrywise quotient of a and b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' MODEL AND PROBLEM FORMULATION Consider M users located at positions {xGT 1 , .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' , xGT M } ⊂ X ⊂ R3, where the region X represents an arbitrary set of spatial locations, including for example points on the street, inside buildings, inside vehicles, and so on.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' The proposed scheme carries over unaltered to the scenario where X includes points in the airspace and some or all users are airborne, which can be of interest e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' to deploy auxiliary ABSs as picocells.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' However, to simplify the exposition, this possibility is neglected and the users will be referred to throughout as ground terminals (GTs).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' To provide connectivity to these GTs, N ABSs are deployed at locations {xABS 1 , .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' , xABS N } ⊂ F ⊂ R3, where F comprises all spatial positions where a UAV is allowed to fly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' This excludes no-fly zones, airspace occupied by buildings, and altitudes out of legal limits.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' For the sake of specificity, it will be assumed that data packets originated in a remote location are sent from the terrestrial infrastructure to the ABSs through a backhaul link and the ABSs forward these packets to their intended users through the downlink of the radio access network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' However, the entire discussion applies also to the uplink, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=', when the data packets are originated at the GTs and sent through the ABSs to the terrestrial infrastructure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Ignoring frequency-selective effects for simplicity, the ca- pacity of the communication link between an ABS at position xABS ∈ X and the m-th GT is given by Cm(xABS) = W log2 � 1 + PTX10γm(xABS)/10 σ2 � , (1) where W denotes bandwidth, PTX the transmit power spectral density (PSD), σ2 the noise PSD, and γm(xABS) the channel gain, which is described in Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Unlike most schemes in the literature of ABS placement, the present work can accommodate constraints in the backhaul.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' 3 To formalize such constraints, let CBH(xABS) denote the max- imum rate of the link between the terrestrial ground station(s) that serve(s) an ABS at xABS and the ABS at xABS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' An equation like (1) can also be established to express CBH(xABS) in terms of the gain of the relevant channel(s).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Note that, as the notation suggests, in general CBH(xABS) depends on the ABS position xABS – typically, the greater the distance from xABS to the terrestrial ground stations, the lower CBH(xABS).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' With Rm(xABS) denoting the downlink rate that an ABS at xABS allocates to the m-th GT, the backhaul rate constraint imposes that � m Rm(xABS) ≤ CBH(xABS).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' The problem is to find a minimal number of ABS locations that guarantee that every user receives a rate of at least Rmin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' This criterion arises naturally in some of the main use cases of UAV-assisted networks such as emergency response or disaster management.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Motivated by this scenario and to enhance flexibility in the deployment, each GT may be served by multiple ABSs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' This means that the rate that the m-th user receives is � n Rm(xABS n ), where xABS n denotes the location of the n-th ABS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' To summarize, the problem can be formulated as follows: minimize N,{xABS n }N n=1,{rm[n]}M,N m=1,n=1 N (2a) s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' � m rm[n] ≤ CBH(xABS n ), (2b) � n rm[n] ≥ Rmin, (2c) 0 ≤ rm[n] ≤ Cm(xABS n ), (2d) xABS n ∈ F, (2e) where the constraints need to hold for all m and n and the earlier notation Rm(xABS n ) has been replaced with rm[n] := Rm(xABS n ) to emphasize that it refers to optimization vari- ables, not to functions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Observe that Problem (2) constitutes a joint placement and rate-allocation problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Note also that the same minimum rate Rmin is imposed for all GTs, but different rates can be set up to straightforward modifications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' From a practical perspective, solving (2) involves two chal- lenges.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' First, Cm(xABS n ) and CBH(xABS n ) depend on the chan- nel gain of the corresponding downlink and backhaul links, which is generally unknown.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' This issue will be addressed in Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Second, given Cm(xABS n ) and CBH(xABS n ), one needs to find the positions of the ABSs and the rate allocations that solve (2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' This will be the subject of Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' CAPACITY PREDICTION VIA PROPAGATION RADIO MAPS As described in Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' I, nearly all existing schemes for ABS placement assume that Cm(xABS n ) depends on xGT m and xABS n only through the length and (possibly) the elevation angle of the line segment between these two points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' However, one can expect that this simplification entails a significant performance degradation since channel gain in reality is heavily affected by the environment: two links with the same length and elevation may experience very different channel gain depending on the position, shape, and material of the surrounding obstacles and scatterers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' The same observation applies to CBH(xABS n ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' For this reason, this section proposes the utilization of radio propagation maps to obtain Cm(xABS n ) and CBH(xABS n ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' A radio propagation map is a function of two spatial locations that provides a certain metric of interest, in this case the gain, for the channel between those spatial locations [28].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Without loss of generality, the rest of this section focuses on Cm(xABS n ), but the same approaches and considerations apply to CBH(xABS n ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Ray-tracing Models Ray-tracing techniques [36] can be used to predict γm(xABS n ) for arbitrary pairs (xGT m , xABS n ) given a 3D model of the propagation environment, which includes buildings, terrain elements, and other objects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' The idea is to geometrically obtain the relevant propagation paths between the transmitter and the receiver and subsequently calculate the attenuation and delay or phase change of each path.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Ray-tracing models are especially attuned to high-frequency bands, where the dominating propagation phenomena are re- flection and diffraction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' The limitation is that, to track changes in the channel, one needs to track changes in the 3D model, which may not be viable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Thus, in the case of ABS placement, it makes sense to use ray-tracing to precompute the values of γm(xABS n ) (cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' VI-B) for the given scenario and ignore the effects of changes in the channel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' If the impact of the changes (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' moving vehicles) is not too large, using a ray-tracing propagation map would still yield better placement solutions than adopting the approaches in the literature, which either assume free space or assume that the gain is a function of just the distance and elevation of the link.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Radio Tomographic Models As opposed to ray-tracing models, which account for reflec- tion and diffraction effects, the radio tomographic model [33] (see also [37] and the references therein) focuses on the absorption undergone by radio waves on the straight path between the transmitter and the receiver.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' This model is best suited to traditional cellular communication frequencies, where radio waves readily penetrate structures such as buildings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' However, the existing works in this context focus on ground- to-ground channels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' To the best of our knowledge, this is the first work to apply radio tomography to air-to-ground channels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' This entails special challenges due to the high dimensionality of the underlying space, which render existing techniques unsuitable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' After describing the radio tomographic model, this section proposes an algorithm to bypass these difficulties.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' The radio tomographic model dictates that the channel gain between xGT m and xABS can be decomposed into a free-space loss component and a shadowing component as1 γm(xABS) = 20 log10 � λ 4π∥xGT m − xABS∥ � − ξ(xGT m , xABS), (3) 1Expression (3) assumes that small-scale fading has been averaged out.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Otherwise, a random term can be added to the right-hand side.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' 4 where λ is the wavelength associated with the carrier fre- quency and the shadowing function ξ is given by [33] ξ(x1, x2) = 1 ∥x1 − x2∥1/2 2 � x2 x1 l(x)dx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' (4) The non-negative function l inside the line integral is termed spatial loss field (SLF) and quantifies the local attenuation (absorption) that a signal suffers at each position.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Two tasks are of interest: (T1) evaluate γm(xABS) for a pair of locations (xGT m , xABS), which involves evaluat- ing the integral in (4) and substituting the result into (3);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' (T2) estimate l given a set of measurements of the form (xABS, xGT m , γm(xABS)) collected beforehand.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' In both tasks, l needs to be discretized, which can be accomplished by storing its values l(x ¯ X 1 ), .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' , l(x ¯ X Q) on a regular grid of Q points ¯ X := {x ¯ X 1 , .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' , x ¯ X Q}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' The rest of this section explains how ξ(x1, x2) can be expressed in terms of these values.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' This addresses (T1) and enables (T2) in combination with standard estimators;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' see e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' [37]–[39] The conventional approach approximates the right-hand side of (4) as the weighted sum [40] ξ(x1, x2) ≈ � q w(x1, x2, x ¯ X q )l(x ¯ X q ), (5) where the weight function w(x1, x2, x ¯ X ) aims at assigning a non-zero weight only to those grid points x ¯ X lying close to the line segment between x1 and x2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Although there are some variations, the functions w adopted in the literature are non-zero only when x ¯ X lies inside an ellipsoid with foci at x1 and x2 [37], [40], [41];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' see the ellipses in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' 2 for a depiction in 2D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Such an approximation suffers from several limitations that render it impractical for the application at hand.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' First, since existing choices of w(x1, x2, x ¯ X ) are discontinuous functions, the resulting approximations of ξ(x1, x2) are also discon- tinuous, which may lead to erratic behavior.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' For example, it may well happen that � q w(x1, x2, x ¯ X q )l(x ¯ X q ) = 0 even when x1 ̸= x2 and l(x ¯ X q ) ̸= 0 ∀q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' This happens when x1 and x2 are such that no grid point falls inside the elliptical support of w(x1, x2, x ¯ X );' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' see the upper ellipse in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Since w is typically chosen so that its support coincides with the first Fresnel ellipsoid, the length of its minor axis is roughly proportional to √ λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' If the carrier frequency is low, the ellipsoid is large and, therefore, likely to contain a large number of grid points, which somehow mitigates the effects of the discontinuity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Conversely, if the carrier frequency is high, one could think of creating a sufficiently dense grid so that the distance between grid points is small relative to λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' However, it is easy to see that this may entail a prohibitively high Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' For example, if one wishes to set the grid points, say, 5 cm apart and the region of interest is 1 km × 1 km × 100 m, then the total number of grid points is 1011, which is obvi- ously impractical.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Another critical limitation is computational complexity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Observe that (5) generally requires evaluating w(x1, x2, x ¯ X q ) and the product w(x1, x2, x ¯ X q )l(x ¯ X q ) for each grid point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Thus, if the grid is Q0 × Q0 × Q0, the complexity of approximating ξ(x1, x2) is O(Q3 0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' This is computationally Algorithm 1: Tomographic Integral Approximation 1 1: Input: x1, x2, grid spacing vector δ ¯ X ∈ R3, SLF tensor L ∈ RQx×Qy×Qz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' 2: Initialize ∆x = x2 − x1, binc = sign(∆x), I = 0, t = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' 3: Set zero entries of ∆x to 1 # To avoid dividing by 0 4: Set icurrent = round(x1 ÷ δ ¯ X ) # Current voxel indices 5: while t < 1 do 6: Set tcand = (δ ¯ X ⊙ (icurrent + binc/2) − x1) ÷ ∆x 7: Set inext = arg mini tcand[i] s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' binc[i] ̸= 0 8: Set tnext = min(1, tcand[inext]) 9: Set I = I + (tnext − t)L[icurrent] 10: Set t = tnext 11: Set icurrent[inext] = icurrent[inext] + binc[inext] 12: end while 13: return ∥x2 − x1∥1/2I problematic for the application at hand since ξ(x1, x2) must be approximated at a large number of locations to solve (2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' To remedy these issues, this paper advocates approximating the integral in (4) as a line integral of a piecewise constant approximation of l.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' The resulting approximation is continuous, can be used with large grid point spacing, and can be computed with complexity only O(Q0) for a Q0 × Q0 × Q0 grid.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' This technique, commonly used in other disciplines (see references in [42]), involves splitting the 3D space into voxels centered at the grid points ¯ X := {x ¯ X 1 , .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' , x ¯ X Q} and approximating l by a function that takes the value l(x ¯ X q ) at all points of the q- th voxel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' The resulting piecewise constant approximation of l can be integrated by determining the positions of the crossings between the voxel boundaries and the line segment between x1 and x2;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Algorithm 1, derived in Appendix C, is our implementation of this approach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' This algorithm solves the limitations of the conventional approximation outlined earlier.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' First, Algorithm 1 yields an approximation of ξ(x1, x2) that is a continuous function of x1 and x2 since the line integral of a piecewise constant function is a continuous function of the endpoints.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Besides, the algorithm does not suffer from the issue of the approximation becoming zero when the elliptical support of the weight function in (5) misses all grid points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' For this reason, the voxels can now be kept large regardless of the wavelength and, therefore, the total number of voxels can be kept low enough to be handled given the available computational resources.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Finally, as indicated in Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' III, the computational complexity of Algorithm 1 is much smaller than the one of the conventional approximation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Specifically, one can observe in Algorithm 1 that a constant number of products and additions is required for each crossing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' The total number of crossings is at most Qz + Qy + Qz, which means that, if Qx = Qy = Qz = Q0, then the total complexity of Algorithm 1 is O(Q0), whereas the complexity of the standard approximation is O(Q3 0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' PLACEMENT WITH MIN-RATE GUARANTEES The approaches in Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' III make it possible to predict the 5 Weight-function approximations Piecewise linear approximation Voxel Centroid Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' 2: 2D illustration of the conventional weight-function approximation of the tomographic integral (4) (orange ellipses) and the approximation adopted here (colored line segment).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Observe that the upper ellipse contains no centroid and, there- fore, the approximation will yield zero attenuation regardless of the values of the SLF.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' channel gain γm(xABS n ) for all required pairs of user location xm and ABS location xABS n .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' These predictions can then be substituted into (1) to obtain the capacity values Cm(xABS n ) that appear in the constraint (2d).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' A similar observation applies to CBH(xABS n ) in (2b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Unfortunately, solving (2) is challenging: even if N were known and one just needed to find feasible {xABS n }N n=1, the problem would still be non-convex since the right-hand sides of (2b) and (2d) are, in general, non-concave functions of xABS n .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' To bypass this difficulty, the flight region F will be discretized into a flight grid ¯F := {x ¯ F 1 , .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' , x ¯ F G} ⊂ F ⊂ R3;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Replacing xABS n ∈ F in (2e) with xABS n ∈ ¯F means that optimizing with respect to N and the ABS positions {xABS n }N n=1 is equivalent to choosing the smallest subset of points in ¯F for which there exists a feasible rate allocation, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=', for which there exist {rm[n]}M,N m=1,n=1 satisfying the constraints in (2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Equivalently, one can consider all grid points by setting each xABS n to be one of the grid points and then “disable” those xABS n where no ABS is going to be present.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' To this end, let αg be 1 if there is an ABS at x ¯ F g and 0 otherwise, in which case the rates from that location need to be zero.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' By following this approach, Problem (2) becomes minimize {αg}G g=1,{rg[m]}M,G m=1,g=1 G � g=1 αg (6a) s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' � m rg[m] ≤ CBH(x ¯ F g ), (6b) � g rg[m] ≥ Rmin, (6c) 0 ≤ rg[m] ≤ αgCm(x ¯ F g ), (6d) αg ∈ {0, 1}, (6e) where now the constraints need to hold for all m and g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Note the presence of αg in the right-hand side of (6d), which forces the rate to be 0 at grid points without an actual ABS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' To simplify notation, it is convenient to express Prob- lem (6) in terms of rg := [rg[1], .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' , rg[M]]⊤, R := [r1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' , rG], cBH := [CBH(x ¯ F 1 ), .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' , CBH(x ¯ F G)]⊤, and cg := [C1(x ¯ F g ), .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' , CM(x ¯ F g )]⊤ as minimize {αg}G g=1,R G � g=1 αg (7a) s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' R⊤1 ≤ cBH (7b) R1 ≥ Rmin1 (7c) 0 ≤ rg ≤ αgcg (7d) αg ∈ {0, 1}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' (7e) Observe that, if {αg}G g=1 were given, then Problem (7) would be a convex feasibility problem in R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' However, since one needs to optimize over {αg}G g=1 as well, Problem (7) becomes combinatorial.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' In fact, the following result establishes the NP-hardness of (7).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Theorem 1: Problem (7) is NP-hard unless P=NP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Proof: See Appendix E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' It is useful to reduce Problem (7) to the optimization with respect to R alone.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' To this end, one can note that, for an arbitrary R, the corresponding optimal {αg}G g=1 satisfy that αg = 0 if rg = 0 and αg = 1 otherwise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' This means that (7) can be written as minimize R G � g=1 I[rg ̸= 0] (8a) s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' R⊤1 ≤ cBH (8b) R1 ≥ Rmin1 (8c) 0 ≤ rg ≤ cg, (8d) where I[·] equals 1 if the condition inside brackets is true and 0 otherwise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' The objective �G g=1 I[rg ̸= 0] can be equivalently ex- pressed as �G g=1 I[∥rg∥∞ ̸= 0], where the ℓ∞-norm ∥v∥∞ equals the largest absolute value of the entries of vector v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Clearly, �G g=1 I[∥rg∥∞ ̸= 0] = ∥[∥r1∥∞, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' , ∥rG∥∞]⊤∥0, which suggests the relaxation ∥[∥r1∥∞, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' , ∥rG∥∞]⊤∥1 = � g ∥rg∥∞, or its reweighted version � g wg∥rg∥∞, where {wg}g are non-negative constants set as in [43].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' The problem thereby becomes minimize R � g wg∥rg∥∞ (9a) s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' R⊤1 ≤ cBH (9b) R1 ≥ Rmin1 (9c) 0 ≤ R ≤ C, (9d) where the (m, g)-th entry of C := [c1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' , cG] ∈ RM×G + is given by cm,g := Cm(x ¯ F g ), i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=', the capacity of the link between the m-th user and the g-th grid point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' The (m, g)-th entry of R therefore satisfies 0 ≤ rm,g ≤ cm,g, which means that it can be interpreted as the rate at which a virtual ABS [14] placed at grid point x ¯ F g communicates with the m-th user.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' In case that rm,g = 0 for all m, then no actual ABS needs to be deployed at x ¯ F g .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' In other words, the virtual ABS at x ¯ F g corresponds to an actual ABS if and only if rm,g ̸= 0 for some m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' 6 V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' NUMERICAL SOLVER Observe that (9) is a convex optimization problem and therefore it can be numerically solved in polynomial time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' In view of the inequality constraints, the first possibility one may consider is to apply an interior-point solver, as described in Appendix A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Unfortunately, such an approach is only suitable for relatively small values of M and G given the poor scalability of interior-point methods with the number of variables and constraints [44].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Indeed, in this application, G can be in the order of tens of thousands, which would render the (at least cubic;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Appendix A) complexity of interior- point methods prohibitive.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' In contrast, the rest of this section presents a solver whose complexity is linear in G and M by building upon the so-called alternating-direction method of multipliers (ADMM) [35] and exploiting the special structure of the problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' ADMM Decomposition As outlined below, ADMM alternately solves two opti- mization subproblems in the primal variables and performs a gradient step along the dual variables [35].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' But before decomposing (9) into such subproblems, a few manipulations are in order.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' The first is to replace the inequality constraint (9c) with an equality constraint.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' To this end, let ¯rm denote the m-th column of R⊤ and suppose that R is feasible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Then, it follows from (9c) that ¯r⊤ m1 ≥ Rmin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' If one replaces ¯rm with ¯r′ m := (Rmin/(¯r⊤ m1))¯rm, the entries of ¯r′ m are non-negative and not greater than the entries of ¯rm since 0 ≤ (Rmin/(¯r⊤ m1)) ≤ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Hence, the resulting R still satisfies all other constraints and the m-th constraint in (9c) now holds with equality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Besides, the resulting objective will not be greater.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Therefore, if R is optimal, scaling any of its rows in this way yields another optimal R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Applying this reasoning to all rows (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=', for all m) shows that (9c) can be replaced with an equality constraint without loss of optimality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Second, due to (9d), the entries of rg are non-negative and, thus, ∥rg∥∞ equals the largest entry of rg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' This means that the objective can be replaced with � g wgsg upon introducing the auxiliary variables sg and constraints rg ≤ sg1 for each g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' This gives rise to minimize R,s w⊤s (10a) s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' R⊤1 ≤ cBH (10b) R1 = Rmin1 (10c) 0 ≤ R ≤ C (10d) R ≤ 1s⊤, (10e) where w := [w1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' , wG]⊤ and s := [s1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' , sG]⊤.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' The next step is to express (10) in a form amenable to application of ADMM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Specifically, (10) will be expressed in the homogeneous form minimize X,Z f(X) + h(Z) (11a) s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' A1XA2 + B1ZB2 = 0, (11b) for which the ADMM iteration becomes [35, Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content='1] Xk+1 = arg min X f(X) + ρ 2∥A1XA2 + B1ZkB2 + U k∥2 F (12a) Zk+1 = arg min Z h(Z) + ρ 2∥A1Xk+1A2 + B1ZB2 + U k∥2 F (12b) U k+1 = U k + A1Xk+1A2 + B1Zk+1B2 (12c) for k = 1, 2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content='. Here, Xk and Zk collect the primal variables, U k is a matrix of scaled dual variables, and ρ > 0 is the step- size parameter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Each possible correspondence that one may establish be- tween the variables, constants, and functions of (11) and those of (10) results in a different ADMM algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Finding a good correspondence is typically the most critical step and takes multiple attempts since, unless properly accomplished, the complexity of the subproblems (12a) and (12b) will be comparable to the complexity of the original problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' For the problem at hand, the following assignment was found to yield subproblems that separate along the rows and columns of R: X → [R⊤, s]⊤ (13a) Z → R (13b) f(X) → w⊤s + � g I[rg ≤ sg1] + � g I[1⊤rg ≤ cBH g ] (13c) h(Z) → I[R1 = Rmin1] + I[0 ≤ R ≤ C] (13d) A1 → [IM, 0], A2 → IG, (13e) B1 → −IM, B2 → IG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' (13f) Here, cBH := [cBH 1 , .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' , cBH G ]⊤ and I[·] is a function that takes the value 0 when the condition inside brackets holds and ∞ otherwise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Note that, given (13), it follows that A1XA2 + B1ZB2 = R−Z and, therefore, (11b) imposes that R = Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Thus, intuitively speaking, each subproblem (12a) and (12b) tries to find values for their respective variables that satisfy the structure promoted by the first terms in (12a) and (12b) while, at the same, the second terms in these expressions as well as (12c) push towards an agreement between the solutions of both subproblems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' The next two subsections will be respectively concerned with finding the solutions of (12a) and (12b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Afterwards, both solutions are put together in Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' V-D to obtain the desired algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' The X-subproblem This section decomposes the X-update (12a) into G smaller problems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' The latter can be efficiently solved by finding a root of a scalar equation through the bisection algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' 7 In view of (13), (12a) can be expressed as (Rk+1, sk+1) = arg min R,s w⊤s + � g I[rg ≤ sg1] (14a) + � g I[1⊤rg ≤ cBH g ] + ρ 2∥R − Zk + U k∥2 F = arg min R,s � g � wgsg + I[rg ≤ sg1] (14b) +I[1⊤rg ≤ cBH g ] + ρ 2∥rg − zk g + uk g∥2 2 � , where zk g and uk g respectively denote the g-th column of Zk and U k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' This problem clearly separates into G problems of the form (rk+1 g , sk+1 g ) = arg min rg,sg wgsg + ρ 2∥rg − zk g + uk g∥2 2 (15a) s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' rg ≤ sg1 (15b) 1⊤rg ≤ cBH g .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' (15c) There are two cases: C1) constraint (15c) is active (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' it holds with equality) at the optimal solution;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' C2) (15c) is inactive (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' it holds with strict inequality) at the optimal solution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Thus, to solve (15), one can apply the following strategy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' First, solve the problem that results from removing (15c): (rk+1 g , sk+1 g ) = arg min rg,sg wgsg + ρ 2∥rg − zk g + uk g∥2 2 (16a) s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' rg ≤ sg1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' (16b) If the solution to (16) satisfies (15c), then it is also the optimal solution of (15).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Else, due to the convexity of the problem, (15c) must necessarily be active at the optimum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' In this case, the optimal solution of (15) can be found by replacing (15c) with an equality constraint.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Thus, let us start by solving (16).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Proposition 1: Let rk+1 g and sk+1 g be given by (16).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' It holds that rk+1 g = min(zk g − uk g, sk+1 g 1) (17a) 1⊤ max(zk g − uk g − sk+1 g 1, 0) = wg ρ , (17b) where min and max operate entrywise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Proof: See Appendix F Observe that (17a) can be used to obtain rk+1 g if sk+1 g is given, whereas (17b) does not depend on rk+1 g .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Therefore, a solution to (17) can be found by first solving (17b) for sk+1 g and then substituting the result into (17a) to recover rk+1 g .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' To this end, we have the following: Proposition 2: Equation (17b) has a unique root.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' This root lies in the interval [ˇsk g, ˆsk g], where ˇsk g := min m � zk g[m] − uk g[m] � − wg Mρ (18a) ˆsk g := max m � zk g[m] − uk g[m] � − wg Mρ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' (18b) Proof: See Appendix G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Observe that Proposition 2 essentially provides the bounds that are required to find the unique root of (17b) via the well- known bisection algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Recall that the latter is a very efficient algorithm as it geometrically reduces the uncertainty at every iteration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' In accordance with the strategy mentioned earlier, one also necessitates a means to solve (15) when (15c) is replaced with an equality constraint: (rk+1 g , sk+1 g ) = arg min rg,sg wgsg + ρ 2∥rg − zk g + uk g∥2 2 (19a) s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' rg ≤ sg1 (19b) 1⊤rg = cBH g .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' (19c) Proposition 3: Let rk+1 g and sk+1 g be given by (19).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Then, it holds that rk+1 g = min(zk g − uk g − (µ/ρ)1, sk+1 g 1) (20a) 1⊤ max(µ1, ρ(zk g − uk g − sk+1 g 1)) = wg + µM (20b) where µ := −ρcBH g + ρ1⊤(zk g − uk g) − wg M .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' (21) Proof: See Appendix H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Observe that (20a) and (21) can be used to obtain rk+1 g if sk+1 g is given, whereas (20b) does not depend on rk+1 g .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Therefore, a solution to (19) can be found by first solving (20b) for sk+1 g and then substituting the result into (20a) to recover rk+1 g .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' To this end, we have the following: Proposition 4: Equation (20b) has a unique root.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' This root lies in the interval [ˇsk g, ˆsk g], where ˇsk g := min m � zk g[m] − uk g[m] � − wg Mρ − µ ρ (22a) ˆsk g := max m � zk g[m] − uk g[m] � − wg Mρ − µ ρ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' (22b) Proof: See Appendix I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' To sum up, (14) can be solved separately for each column of R and entry of s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Each of these G problems can be solved by first solving (16) and checking whether (15c) holds for the obtained solution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' If it does not hold, one must solve (19).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Proposition 1 and Proposition 3 respectively establish that a solution can be found for each of these problems just by solving a scalar equation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Proposition 2 and Proposition 4 prove uniqueness of the solutions of these two equations and provide an interval where they can be sought using the bisection algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' The Z-subproblem This section describes how a solution to (12b) can be found by solving a bisection problem per row of Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' To this end, start by noting that it follows from (12b) and (13) that Zk+1 = arg min Z � I[Z1 = Rmin1] + I[0 ≤ Z ≤ C] + ρ 2∥Rk+1 − Z + U k∥2 F � (23a) = arg min Z � m � I[¯z⊤ m1 = Rmin] + I[0 ≤ ¯zm ≤ ¯cm] + ρ 2∥¯rk+1 m − ¯zm + ¯uk m∥2 F � , (23b) 8 Algorithm 2: Group-sparse Placement Algorithm (GSPA).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' 1 Input: C ∈ RM×G + , Rmin ∈ R+, {wg}g ⊂ R+,{cBH g }g ⊂ R+, ρ > 0 2 Initialize U 1 ∈ RM×G and Z1 ∈ RM×G + 3 for k = 1, 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' do 4 for g = 1, 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' , G do 5 Bisection: find sk+1 g s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' 1⊤ max(0, ρ(zk g − uk g − sk+1 g 1)) = wg 6 Set rk+1 g = min(zk g − uk g, sk+1 g 1) 7 if 1⊤rk+1 g > cBH g then 8 Set µ = (−ρcBH g + ρ1⊤(zk g − uk g) − wg)/M 9 Bisection: find sk+1 g s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' 1⊤ max(µ1, ρ(zk g − uk g − sk+1 g 1)) = wg + µM 10 Set rk+1 g = min(zk g − uk g − (µ/ρ)1, sk+1 g 1) 11 for m = 1, 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' , M do 12 Bisection: find λ s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' 1⊤ max(0, min(¯cm, ¯rk+1 m + ¯uk m − λ1)) = Rmin 13 Set ¯zk+1 m = max(0, min(¯cm, ¯rk+1 m + ¯uk m − λ1)) 14 Set U k+1 = U k + Rk+1 − Zk+1 15 If convergence( ) then return Rk+1 10 20 30 40 50 60 70 80 90 Number of GTs (M) 5 10 15 20 25 30 35 40 45 Mean number of ABSs Lower bound K-means Alg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' (Galkin et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=') Space rate Alg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' (Hammouti et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=') Genetic Alg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' (Shehzad et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=') GSPA (proposed) Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' 3: Mean number of ABSs vs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' number of GTs (Rmin = 20 Mbps, cBH = 99 Mbps).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' where ¯zm, ¯cm, and ¯uk m respectively denote the m-th column of Z⊤, C⊤, and (U k)⊤.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Clearly, this separates into M problems of the form ¯zk+1 m = arg min ¯zm 1 2∥¯rk+1 m − ¯zm + ¯uk m∥2 F (24a) s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' 1⊤¯zm = Rmin, 0 ≤ ¯zm ≤ ¯cm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' (24b) Proposition 5: If 1⊤¯cm < Rmin, then (24) is infeasible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' If 1⊤¯cm ≥ Rmin, the solution to (24) is given by ¯zk+1 m = max(0, min(¯cm, ¯rk+1 m + ¯uk m − λ1)), (25) where λ satisfies 1⊤ max(0, min(¯cm, ¯rk+1 m + ¯uk m − λ1)) = Rmin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' (26) Proof: See Appendix J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Thus, as in Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' V-B, one needs to solve the scalar equation (26).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' The following result is the counterpart of Proposition 2 for the Z-subprblem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Proposition 6: If 1⊤¯cm < Rmin, then equation (26) has no roots.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' If 1⊤¯cm ≥ Rmin, then (26) has a unique root.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' This root lies in the interval [ˇλ k m, ˆλ k m], where ˇλ k m = min g [¯rk+1 m [g] + ¯uk m[g] − ¯cm[g]] (27a) ˆλ k m = max{¯rk+1 m [g] + ¯uk m[g] : g ∈ {g : ¯cm[g] > Rmin G }} − Rmin G (27b) Proof: See Appendix K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Proposition 6 establishes uniqueness and provides the bounds needed to solve (26), and therefore (24), via the bisection algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' The Proposed Solver Having addressed both X- and Z- subproblems, it remains only to obtain the U-update in (12c), which for the assign- ments in (13) becomes U k+1 = U k + Rk+1 − Zk+1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' (28) This completes the derivation of the proposed scheme, summarized as Algorithm 2 and referred to as the group- sparse placement algorithm (GSPA) since it promotes group sparsity [45] in the columns of R, that is, only a few columns of the matrix Rk+1 returned by the algorithm are expected to be non-zero.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Recall that the non-zero columns indicate which grid points will be occupied by an ABSs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' In the notation used in Algorithm 2, if A is a matrix, then am is its m-th column and ¯a⊤ n its n-th row.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Furthermore, superscripts indicate the iteration index, ρ > 0 is the step size, and the min and max operators act entrywise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' The criterion on line 15, which determines whether the algorithm has converged, is detailed in Appendix D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Observe that the main strategy in the previous two subsec- tions was to exploit the structure of Problem (9) to decompose it into one subproblem per row and column of R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Each of these subproblems involves solving a bisection task of a 1D monotonically decreasing function and therefore can be solved with O(1) evaluations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' The total complexity is O(GM), much smaller than the O(G3M 3) complexity per inner iteration of interior-point methods;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Appendix A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' VI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' NUMERICAL EXPERIMENTS This section empirically validates the performance of the proposed algorithm by means of numerical experiments with channel data generated using the tomographic model (Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' VI-A) and ray-tracing software (Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' VI-B).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' The code and data necessary to reproduce the experiments is available at https://github.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content='com/uiano/ABS placement via propagation maps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' 9 39 49 59 69 79 89 99 Total rate of each ABS [Mbps] 10 20 30 40 50 60 70 Mean number of ABSs Lower bound K-means Alg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' (Galkin et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=') Space rate Alg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' (Hammouti et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=') Genetic Alg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' (Shehzad et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=') GSPA (proposed) Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' 5: Mean number of ABSs vs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' the capacity cBH of the backhaul link (Rmin = 20 Mbps).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' 10 15 20 25 30 35 40 45 Minimum GT rate [Mbps] 10 20 30 40 50 60 70 Mean number of ABSs Lower bound K-means Alg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' (Galkin et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=') Space rate Alg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' (Hammouti et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=') Genetic Alg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' (Shehzad et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=') GSPA (proposed) Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' 4: Mean number of ABSs vs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Rmin (cBH = 100 Mbps).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' The channel gain, obtained from the aforementioned models when the carrier frequency is 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content='4 GHz, is substituted into (1) with W = 20 MHz, PTX = 20 dBm/Hz, and σ2 = −96 dBm/Hz to form the capacity matrix C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' For simplicity, the backhaul capacity is set to a common value cBH 1 = .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' = cBH G = cBH.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' The proposed placement algorithm is compared with three benchmarks: i) the K-means placement algorithm by Galkin et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' [11], ii) the iterative space rate K-means placement algorithm by Hammouti et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' [22], and iii) the genetic placement algorithm by Shehzad et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' [25] with 50 solutions per generation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Since we did not manage to obtain the code used by the authors of these works, we implemented their algo- rithms ourselves.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' The resulting implementations are available in the repository mentioned earlier.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' The first two algorithms are unable to enforce no-fly zones, which results in ABSs placed inside buildings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' To avoid this behavior, the ABS locations provided by these algorithms are projected onto the same flight grid as the rest of algorithms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' The proposed GSPA algorithm utilizes, unless otherwise stated, a step size of ρ = 10−7 and stopping criterion parameters ϵabs = ϵrel = 10−4;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Appendix D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' To quantify performance, the number of ABSs required by each algorithm to guarantee a rate Rmin for every GT is considered as a performance metric.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' This metric is averaged using Monte Carlo simulation across realizations of the GT locations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' As a reference, figures will also include a lower bound on this metric;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Appendix B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Experiments with the Tomographic Model In the experiments of this section, the channel gain is generated using Algorithm 1 in an environment like the one in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' The SLF takes a constant value, termed building ab- sorption, inside the buildings and 0 outside.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Unless otherwise stated, the simulation parameters in this section are as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Area size: 500 m × 400 m × 150 m;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' dimensions of the SLF grid: 50 × 40 × 15;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' dimensions of the flight grid: 9 × 9 × 5;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' minimum flight height: 50 m;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' height of the buildings: 63 m;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' building absorption: 1 dB/m;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' number of GTs: M = 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' 3 investigates the influence of the number of GTs (M) on the performance of the compared algorithms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Several observations are in order.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' First, the mean number of ABSs is seen to increase roughly proportionally to M for all the algorithms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Second, the proposed GSPA algorithm not only yields a lower mean number of ABSs than the competing algorithms, but its slope is smaller, which means that the margin by which GSPA outperforms the benchmarks increases with M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Third, GSPA asymptotically approaches the lower bound (cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Appendix B), which means that its efficiency, quantified as the number of GTs per ABS, increases with M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' In contrast, the opposite is true for the other algorithms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' To investigate the influence of the GT requirements on performance, Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' 4 depicts the mean number of ABSs vs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Rmin when cBH = 100 Mbps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' As in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' 3, the mean number of ABSs seems to increase roughly linearly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' However, in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' 4 a saturation phenomenon arises: the mean number of ABSs cannot be greater than the number of GTs M = 70 since one ABS placed approximately above each GT suffices to serve all GTs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' It is also observed that the performance of the genetic placement algorithm degrades faster than the rest of algorithms for high Rmin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' The reason may be that this algorithm essentially tests multiple placements and the number of placements increases drastically with the number of ABSs, which is larger when Rmin is larger.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' 5 plots the mean number of ABSs vs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' the backhaul capacity cBH when Rmin = 20 Mbps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' The values of cBH on the horizontal axis are selected so that each cBH is not an integer multiple of Rmin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' This gives rise to a “staircase” behavior for the benchmarks, which do not exploit the fact that a GT can be served by multiple ABSs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' In contrast, GSPA exploits this fact, as corroborated by the smoothness of its curve.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' It is also seen that the mean number of ABSs required by GSPA is roughly half the one of the best competing alternative.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' To study the influence of the channel, Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' 6 shows the mean number of ABSs vs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' the absorption undergone by the 10 30 40 50 60 70 80 90 100 Number of GTs (M) 20 40 60 80 100 Mean number of ABSs Lower bound K-means Alg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' (Galkin et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=') Space rate Alg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' (Hammouti et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=') Genetic Alg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' (Shehzad et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=') GSPA (proposed) Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' 7: Mean number of ABSs vs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' number of GTs (Rmin = 20 Mbps, cBH = 74 Mbps).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' 11 15 19 23 27 31 35 40 45 Minimum GT rate [Mbps] 10 20 30 40 50 Mean number of ABSs Lower bound K-means Alg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' (Galkin et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=') Space rate Alg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' (Hammouti et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=') Genetic Alg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' (Shehzad et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=') GSPA (proposed) Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' 8: Mean number of ABSs vs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' minimum GT rate Rmin (M = 50 GTs, cBH = 100 Mbps).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content='25 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content='50 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content='75 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content='00 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content='25 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content='50 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content='75 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content='00 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content='25 Building absorption [dB/m] 10 15 20 25 30 35 40 45 50 55 Mean number of ABSs Lower bound K-means Alg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' (Galkin et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=') Space rate Alg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' (Hammouti et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=') Genetic Alg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' (Shehzad et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=') GSPA (proposed) Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' 6: Mean number of ABSs vs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' building absorption (Rmin = 17 Mbps, cBH = 84 Mbps).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' communication signals when propagating through the build- ings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' When the absorption is zero, the propagation conditions are those of free space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' In this case, the proposed algorithm outperforms the rest only because of a better ability to perform the rate allocation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' As the absorption increases, the benchmark algorithms are dramatically affected, which suggests that these algorithms are not well suited to scenarios without line-of- sight.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' In contrast, the proposed algorithm remains unaffected since there are always sufficiently good flight grid points regardless of the building absorption considered in the figure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Informally speaking, matrix R in (9) is upper bounded by cBH and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' When the former constraint is tighter than the latter, the resulting number of ABSs will not depend on C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' This phenomenon is investigated further in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Additional experiments with the tomographic channel model are presented in Appendix L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Experiments with the Ray-Tracing Model This section corroborates the main findings of Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' VI-A when the channel is obtained via the ray-tracing model, which is more accurate than the tomographic channel model for higher carrier frequencies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' To this end, a data set was generated using the X3D ray- tracing software Wireless Insite with six reflections and one diffraction in a 400 × 600 m2 area of the city of Ottawa.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' The data set is also published in our repository.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' The channel was computed between all points of the flight grid and all points of a GT grid.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' The former comprises 35 points at each of the heights of 40, 60, and 80 m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' The latter is a 2D regular grid of 2501 GT locations at a height of 2 m spaced uniformly with a distance of 10 m on each axis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Points inside the buildings are removed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' At each Monte Carlo realization, the GT locations are generated by drawing M points uniformly at random without replacement from the GT grid.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Figs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' 7 and 8 are the counterparts of Figs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' 3 and 4 for ray- tracing channel data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' It is observed that the mean number of ABSs is also an approximately linear function of M for all algorithms and that GSPA roughly attains the lower bound.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' However, here the differences among benchmarks are greater.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' The fact that the K-means algorithm outperforms the space rate algorithm suggests that the channel changes rapidly with respect to the GT location, since the latter algorithm relies on clustering vectors of channel gains.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Despite this fact, GSPA performs almost optimally.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' 9 further investigates the phenomenon already dis- cussed regarding Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Observe that the tightness of the bounds in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' 9 increases (i) for larger Rmin and (ii) for smaller cBH.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Those are precisely the situations where the backhaul limitations become stricter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Indeed, it can be easily seen that the bound in Appendix B can be attained with equality when the entries of C approach infinity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Finally, the experiment in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' 5 is performed with ray- tracing channel data in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' The proposed algorithm still outperforms the other three benchmarks by a wide margin, requiring roughly 50% of ABSs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' However, relative to Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' 5, 11 3 5 7 9 11 Minimum GT rate [Mbps] 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content='5 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content='0 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content='5 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content='0 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content='5 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content='0 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content='5 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content='0 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content='5 Mean number of ABSs cBH=34 Mbps Lower bound for cBH=34 Mbps cBH=44 Mbps Lower bound for cBH=44 Mbps cBH=54 Mbps Lower bound for cBH=54 Mbps cBH=64 Mbps Lower bound for cBH=64 Mbps Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' 9: Mean number of ABSs vs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' minimum GT rate Rmin for GSPA (M = 50 GTs).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' 34 44 54 64 74 80 90 100 Total rate of each ABS [Mbps] 5 10 15 20 25 Mean number of ABSs Lower bound K-means Alg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' (Galkin et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=') Space rate Alg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' (Hammouti et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=') Genetic Alg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' (Shehzad et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=') GSPA (proposed) Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' 10: Mean number of ABSs vs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' backhaul link capacity cBH (Rmin = 7 Mbps, M = 50 GTs).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' one can observe that the benchmark algorithms saturate for large cBH, which indicates that C imposes a more stringent constraint than cBH in the scenario of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' When it comes to GSPA, the greater tightness of the bound for small cBH is a manifestation of the same effect, as discussed earlier.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' VII.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' CONCLUSIONS Whereas existing algorithms for ABS placement assume that the channel gain depends only on the length and (possibly) elevation of each link, this paper presents a scheme that can accommodate an arbitrary dependence of the gain on the posi- tion of the ABSs and GTs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' This enables the utilization of radio maps for ABS placement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' The proposed algorithm determines a set of ABS locations that approximately minimizes the num- ber of ABSs required to guarantee a minimum rate to all GTs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Relative to most existing schemes, the proposed algorithm has a low complexity, accounts for a limited backhaul capacity, and can accommodate flight restrictions such as no-fly zones or airspace occupied by buildings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' A solver whose complexity is linear in the number of users was derived based on the alternating-direction method of multipliers and the problem of evaluating tomographic integrals was revisited and extended to air-to-ground channels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' An extensive set of simulations demonstrate that the proposed GSPA algorithm outperforms competing algorithms by a wide margin both in tomographic and ray-tracing channels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Remarkably, it was observed in the numerical experiments that the proposed algorithm is the only one among the compared schemes whose efficiency, measured in terms of number of GTs served per ABS, increases with the number of GTs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' This fundamental distinction renders GSPA especially suitable for scenarios with a large number of users.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Future directions include approaches for tracking air-to- ground propagation maps, possibly based on online kernel methods [46], [47], and algorithms that can adapt to changes in the GT locations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' VIII.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' ACKNOWLEDGEMENTS The authors would like to thank Prof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Geert Leus for insightful discussions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' APPENDIX A INTERIOR-POINT SOLVER The present section illustrates how (10) can be solved using an interior-point algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Although such a solver is not utilized in this paper, the ensuing derivation provides its computational complexity, which motivates the ADMM algorithm from Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' It is convenient to start by expressing (10) in a canonical form with only non-negativity constraints and linear equality constraints.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' To this end, introduce the slack variables δ1, ∆2, and ∆3 to write (10) as minimize R,s,δ1,∆2,∆3 w⊤s (29a) s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' R⊤1 + δ1 = cBH (29b) R1 = Rmin1 (29c) R + ∆2 = C (29d) R + ∆3 = 1s⊤ (29e) R ≥ 0, δ1 ≥ 0, ∆2 ≥ 0, ∆3 ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' (29f) With this formulation, it is easy to see that (29) is equivalent to minimize ˜x ˜w⊤˜x (30a) s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' ˜A˜x = ˜b (30b) ˜x[G + 1 : end] ≥ 0, (30c) where ˜x := [s⊤, r⊤, δ⊤ 1 , vec⊤(∆2), vec⊤(∆3)]⊤, r = vec(R), ˜w := [w1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' , wG, 0, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' , 0]⊤, ˜x[G + 1 : end] := [r⊤, δ⊤ 1 , vec⊤(∆2), vec⊤(∆3)]⊤, ˜b := [(cBH)⊤, Rmin1⊤, vec⊤(C), 0⊤]⊤, and ˜A := � ��� 0 IG ⊗ 1⊤ IG 0 0 0 1⊤ ⊗ IM 0 0 0 0 IGM 0 IGM 0 −IG ⊗ 1 IGM 0 0 IGM � ��� .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' (31) 12 Problem (30) can be solved by means of a standard interior- point algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' To derive a lower bound for its computational complexity, note that each inner iteration of the algorithm will involve solving a system of equations where the number of unknowns equals the number of variables of the optimization problem plus the number of linear constraints [48, Ch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' 10 and 11].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' For (30), the former equals 2G + 3GM whereas the latter is given by G + M + 2GM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Solving this system of equations without any tailor-made approach that exploits the specific structure of ˜A in this problem therefore involves O(G3M 3) arithmetic operations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' It is worth remarking that this complexity is prohibitive in practice: if, for example, G = M = 100, then 1012 operations would be required per inner iteration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' APPENDIX B LOWER BOUND FOR THE NUMBER OF ABSS This appendix presents a lower bound for the number of ABSs and, therefore, also for the mean number of ABSs, which is the performance metric adopted in Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' VI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' This bound constitutes a fundamental limit for the problem of ABS placement and, hence, it applies regardless of the adopted algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Let N denote the smallest number of ABSs required to serve all M users with rate at least Rmin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' This means that the total backhaul rate available to all ABSs together, which is not greater than N maxg cBH g , cannot be less than the total rate MRmin demanded by the users.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' It follows that N maxg cBH g ≥ MRmin and, therefore, N ≥ ⌈MRmin/ maxg cBH g ⌉, where ⌈z⌉ denotes the smallest integer greater than or equal to z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' APPENDIX C DERIVATION OF ALGORITHM 1 Algorithm 1, which can be classified as a parametric, floating point, and zeroth-order algorithm according to the terminology of [42, Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' I-B-1], is our approach (yet others are possible) to approximate the tomographic integral by comput- ing exactly the integral of a piecewise constant approximation of the SLF.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' The idea is to parameterize the line segment between x1 and x2 as x(t) = x1 + t(x2 − x1), where t ∈ [0, 1], and identify the values t1 < t2 < .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' < tT for which the boundary between two adjacent voxels is crossed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Since ∥x(ti) − x(ti−1)∥ = (ti − ti−1)∥x2 − x1∥ whenever ti > ti−1, the approximation is then ξ(x1, x2) ≈ �T i=2(ti − ti−1)∥x2 − x1∥l(x ¯ X qi) ∥x2 − x1∥1/2 (32a) = ∥x2 − x1∥1/2 T � i=2 (ti − ti−1)l(x ¯ X qi), (32b) where qi is the index of the voxel that contains the i-th segment {x(t) : t ∈ (ti−1, ti)}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Since ¯ X is a 3D grid, each point in {x ¯ X 1 , .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' , x ¯ X Q} can also be indexed by a vector i of 3 indices that lies in the set I := {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' , Qx} × {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' , Qy} × {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' , Qz}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' The values of the SLF can also be collected in a tensor L ∈ RQx×Qy×Qz, whose entry L[i] is the value of l at the i-th grid point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' If δ ¯ X ∈ R3 ++ denotes a vector whose j-th entry δ ¯ X [j] represents the spacing between grid points along the j-th axis, the coordinates of the i-th grid point are clearly i ⊙ δ ¯ X , where ⊙ denotes entrywise product.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Similarly, the boundaries between adjacent voxels along the j-th axis occur at values of the j-th coordinate given by δ ¯ X [j](i±1/2), where i is an integer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' It is then clear that steps 6-8 in Algorithm 1 simply find the next value of t for which the segment crosses a voxel boundary along one of the axes by solving the equation x1[j] + t(x2[j] − x1[j]) = δ ¯ X [j](icurrent[j] ± 1/2) (33) for t along each axis j and taking the minimum across axes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' The ± becomes a plus sign for the j-th axis if the segment is increasing along this axis (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' x1[j] ≤ x2[j]) and a minus sign otherwise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' An alternative implementation of the same integral approx- imation with smaller computational complexity but greater memory complexity could be obtained by creating 3 lists corresponding to the values of t for which the line segment between x1 and x2 intersects each axis and then merging those lists into a list with non-decreasing values of t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' APPENDIX D STOPPING CRITERION The stopping criterion of Algorithm 2 follows the frame- work in [35].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Particularly, given the absolute and relative tolerance parameters ϵabs and ϵrel, let ϵk+1 pri and ϵk+1 dual be ϵk+1 pri := √ MGϵabs (34a) + ϵrel max{∥A1Xk+1A2∥F, ∥B1Zk+1B2∥F}, ϵk+1 dual := √ MGϵabs + ϵrel∥ρA⊤ 1 U k+1A⊤ 2 ∥F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' (34b) Algorithm 2 stops when both conditions ∥Qk+1∥2 F ⩽ ϵk+1 pri and ∥P k+1∥2 F ⩽ ϵk+1 dual (35a) are satisfied, where Qk+1 := A1Xk+1A2 + B1Zk+1B2 (36a) P k+1 := ρA⊤ 1 B1(Zk+1 − Zk)B2A⊤ 2 (36b) are the so-called primal and dual residuals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' APPENDIX E PROOF OF THEOREM 1 The idea is to establish that a special case of (7) is a multidimensional knapsack problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' To this end, let the g- th entry of cBH be at least as large as 1⊤cg and note that, due to (7d), constraint (7b) holds regardless of the choice of {αg}G g=1 and R, meaning that (7b) can be removed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Next, note that if {αg}G g=1 and R are feasible, then replac- ing any rg with αgcg yields another feasible point that attains the same cost.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' This is because none of the entries of the left- hand side of (7c) decreases after modifying rg in this way.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' The left-hand side of (7c) can then be written as R1 = � g rg = � g αgcg, which yields the following problem minimize {αg}G g=1 � g αg (37a) s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' � g αgcg ≥ Rmin1 (37b) αg ∈ {0, 1}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' (37c) 13 Finally, applying the change of variables βg ← 1 − αg, the objective becomes G − � g βg and the left-hand side of (37b) becomes � g(1 − βg)cg = � g cg − � g βgcg, which implies that (37) reads as maximize {βg}G g=1 � g βg (38a) s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' � g βgcg ≤ � g cg − Rmin1 (38b) βg ∈ {0, 1}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' (38c) This problem is an instance of the so-called multidimensional knapsack problem, which has been shown to be NP-hard unless P=NP [49].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' APPENDIX F PROOF OF PROPOSITION 1 Since Problem (16) is convex differentiable and Slater’s con- ditions are satisfied, it follows that the Karush-Kuhn-Tucker (KKT) conditions are sufficient and necessary [48, Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content='3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' To obtain these conditions, observe that the Lagrangian of (16) is given by L(rg, sg;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' ν) = wgsg + ρ 2∥rg − zk g + uk g∥2 2 + ν⊤(rg − sg1) (39) and note that the KKT conditions can be stated as ∇rgL(rg, sg;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' ν) = ρ(rg − zk g + uk g) + ν = 0 (40a) ∇sgL(rg, sg;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' ν) = wg − 1⊤ν = 0 (40b) rg ≤ sg1 (40c) ν ≥ 0, ν[m](rg[m] − sg) = 0 ∀m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' (40d) From (40a) and the inequality in (40d), it follows that ν = −ρ(rg − zk g + uk g) ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' (41) This implies that rg ≤ zk g − uk g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Combining this inequality with (40c) yields rg ≤ min(zk g − uk g, sg1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' (42) On the other hand, from the equality in (41) and the equality in (40d), one finds that −ρ(rg[m] − zk g[m] + uk g[m])(rg[m] − sg) = 0 ∀m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' (43) This holds if and only if either rg[m] = zk g[m] − uk g[m] or rg[m] = sg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Therefore, it follows from (42) that rg = min(zk g − uk g, sg1), (44) which establishes (17a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Finally, combine this expression with (40b) and (41) to arrive at wg = −ρ1⊤(rg − zk g + uk g) (45a) = −ρ1⊤(min(zk g − uk g, sg1) − zk g + uk g) (45b) = −ρ1⊤ min(0, sg1 − zk g + uk g) (45c) = ρ1⊤ max(0, zk g − uk g − sg1), (45d) thereby recovering (17b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' The proof is complete by noting that (40) holds if and only if (44) and (45d) hold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' APPENDIX G PROOF OF PROPOSITION 2 Consider the function F(s) := 1⊤ max(zk g −uk g −s1, 0) = � m max(zk g[m] − uk g[m] − s, 0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Since F is the sum of non- increasing piecewise linear functions, so is F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Since F(s) → ∞ as s → −∞ and F(s) = 0 for a sufficiently large s, it follows that (17b) has at least one root.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Uniqueness of the root follows readily by noting that F is strictly decreasing whenever F(s) > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' It remains to be shown that F(ˇsk g) ≥ wg/(Mρ) whereas F(ˆsk g) ≤ wg/(Mρ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' For the first of these inequalities, observe that ˇsk g ≤ zk g[m] − uk g[m] − wg/(Mρ) for all m, which in turn implies that zk g[m] − uk g[m] − ˇsk g ≥ wg/(Mρ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Thus, max(zk g[m] − uk g[m] − ˇsk g, 0) = zk g[m] − uk g[m] − ˇsk g ≥ wg/(Mρ), which yields F(ˇsk g) ≥ � m wg/(Mρ) = wg/ρ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' For the second inequality, note similarly that zk g[m]−uk g[m]− ˆsk g ≤ wg/(Mρ) for all m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' This means that F(ˆsk g) ≤ � m max(wg/(Mρ), 0) = wg/ρ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' APPENDIX H PROOF OF PROPOSITION 3 Again, the KKT conditions are sufficient and necessary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Since the Lagrangian is L(rg, sg;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' ν) = wgsg + ρ 2∥rg − zk g + uk g∥2 2 + ν⊤(rg − sg1) + µ(1⊤rg − cBH g ), (46) the KKT conditions read as ∇rgL(rg, sg;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' ν) = ρ(rg − zk g + uk g) + ν + µ1 = 0 (47a) ∇sgL(rg, sg;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' ν) = wg − 1⊤ν = 0 (47b) rg ≤ sg1 (47c) ν ≥ 0, ν[m](rg[m] − sg) = 0 ∀m (47d) 1⊤rg = cBH g .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' (47e) From (47a) and the inequality in (47d), it follows that ν = −ρ(rg − zk g + uk g) − µ1 ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' (48) This implies that rg ≤ zk g − uk g − (µ/ρ)1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Combining this inequality with (47c) yields rg ≤ min(zk g − uk g − (µ/ρ)1, sg1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' (49) On the other hand, from the equality in (48) and the equality in (47d), one finds that [−ρ(rg[m] − zk g[m] + uk g[m]) − µ](rg[m] − sg) = 0 ∀m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' (50) This holds if and only if either rg[m] = zk g[m]−uk g[m]−µ/ρ or rg[m] = sg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Therefore, it follows that rg = min(zk g − uk g − (µ/ρ)1, sg1), (51) which establishes (20a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' To find µ, substitute the equality in (48) into (47b) to obtain 1⊤[−ρ(rg − zk g + uk g) − µ1] = wg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' (52) 14 Solving for µ yields µ = −ρ1⊤rg + ρ1⊤(zk g − uk g) − wg M (53) and using (47e) results in (21).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Finally, substitute (51) into (52) to arrive at wg = 1⊤ max(µ1, ρ(zk g − uk g − sg1)) − µM, (54) thereby recovering (20b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' The proof is complete by noting that (47) holds if and only if (20a) and (20b) hold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' APPENDIX I PROOF OF PROPOSITION 4 Consider the function F(s) := 1⊤ max(µ1, ρ(zk g − uk g − s1)) = � m max(µ, ρ(zk g[m] − uk g[m] − s)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Due to the same argument as in the proof of Proposition 2, this function has a unique root.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' To show that F(ˇsk g) ≥ wg + µM, observe that F(ˇsk g) ≥ � m ρ(zk g[m] − uk g[m] − ˇsk g) (55a) ≥ M min m [ρ(zk g[m] − uk g[m] − ˇsk g)] (55b) = Mρ � wg Mρ + µ ρ � (55c) = wg + µM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' (55d) To show that F(ˆsk g) ≤ wg + µM, observe that F(ˆsk g) ≤ M max m [max(µ, ρ(zk g[m] − uk g[m] − ˆsk g))] (56a) = M max(µ, ρ(max m [zk g[m] − uk g[m]] − ˆsk g)) (56b) = M max � µ, ρ � wg Mρ + µ ρ �� (56c) ≤ wg + µM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' (56d) APPENDIX J PROOF OF PROPOSITION 5 The fact that 1⊤¯cm < Rmin implies that (24) is infeasible is trivial and, therefore, the rest of the proof focuses on the case where 1⊤¯cm ≥ Rmin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' As before, the KKT conditions are sufficient and necessary in this case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Noting that the Lagrangian is given by L(¯zm;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' λ, ν, µ) = 1 2∥¯rk+1 m − ¯zm + ¯uk m∥2 F + λ(1⊤¯zm − Rmin) − ν⊤¯zm + µ⊤(¯zm − ¯cm) (57) yields the KKT conditions ∇¯zmL(¯zm;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' λ, ν, µ) = − (¯rk+1 m − ¯zm + ¯uk m) + λ1 − ν + µ = 0, (58a) 1⊤¯zm = Rmin, (58b) ¯zm ≥ 0, ν ≥ 0, ν[g]¯zm[g] = 0 ∀g, (58c) ¯zm ≤ ¯cm, µ ≥ 0, µ[g](¯zm[g] − ¯cm[g]) = 0 ∀g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' (58d) From (58a) and the second inequality in (58d), it follows that µ = ¯rk+1 m − ¯zm + ¯uk m − λ1 + ν ≥ 0, (59) which in turn implies that ¯zm ≤ ¯rk+1 m + ¯uk m − λ1 + ν.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' (60) Combining this expression with the first inequality in (58d) yields ¯zm ≤ min(¯cm, ¯rk+1 m + ¯uk m − λ1 + ν).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' (61) To show that this expression holds with equality, substitute (59) into the equality of (58d) to obtain (¯rk+1 m [g] − ¯zm[g] + ¯uk m[g] − λ + ν[g])(¯zm[g] − ¯cm[g]) = 0, (62) which implies that either ¯zm[g] = ¯rk+1 m [g] + ¯uk m[g] − λ + ν[g] or ¯zm[g] = ¯cm[g].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Therefore, ¯zm = min(¯cm, ¯rk+1 m + ¯uk m − λ1 + ν).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' (63) To obtain an expression for ¯zm that does not depend on ν, one may consider three cases for each g: C1: ¯rk+1 m [g] + ¯uk m[g] − λ < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' In this case, if ν[g] = 0, expression (63) would imply that ¯zm[g] < 0, which would violate the first inequality in (58c).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Therefore, ν[g] > 0 and, due to the equality in (58c), ¯zm[g] = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' If ¯cm[g] > 0, it is then clear from (63) that ν[g] = −(¯rk+1 m [g]+ ¯uk m[g]−λ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' If ¯cm[g] = 0, then greater values of ν[g] will also satisfy the KKT conditions but this is not relevant since the only feasible ¯zm[g] in case C1 is ¯zm[g] = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' C2: ¯rk+1 m [g] + ¯uk m[g] − λ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' In this case, (63) becomes ¯zm[g] = min(¯cm[g], ν[g]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Due to the equality in (58c), it then follows that either ¯cm[g] = 0 and ν[g] ≥ 0, or ¯zm[g] = ν[g] = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' C3: ¯rk+1 m [g] + ¯uk m[g] − λ > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' If ¯cm[g] = 0, then necessarily ¯zm[g] = 0 and any ν[g] ≥ 0 satisfies the KKT conditions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' On the other hand, if ¯cm[g] > 0, then it is clear that ¯zm[g] > 0 and, due to the equality in (58c), one has that ν[g] = 0, which in turn implies that ¯zm[g] = min(¯cm[g], ¯rk+1 m [g] + ¯uk m[g] − λ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Combining C1-C3 yields ¯zm[g] = max(0, min(¯cm[g], ¯rk+1 m [g] + ¯uk m[g] − λ)), (64) which is just the scalar version of (25).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Finally, to obtain λ, one may substitute (64) into (58b), which produces (26).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' 15 10 20 30 40 50 60 70 80 90 Minimum flight height [m] 10 15 20 25 30 35 40 45 50 55 Mean number of ABSs Lower bound K-means Alg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' (Galkin et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=') Space rate Alg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' (Hammouti et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=') Genetic Alg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' (Shehzad et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=') GSPA (proposed) Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' 12: Mean number of ABSs vs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' minimum flight height (Rmin = 17 Mbps, cBH = 84 Mbps).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' 0 10 20 30 40 50 Height of the buildings [m] 12 14 16 18 20 22 24 26 28 30 32 Mean number of ABSs Lower bound K-means Alg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' (Galkin et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=') Space rate Alg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' (Hammouti et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=') Genetic Alg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' (Shehzad et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=') GSPA (proposed) Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' 13: Mean number of ABSs vs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' height of the buildings (Rmin = 17 Mbps, cBH = 84 Mbps).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' 5 7 9 11 13 15 17 Minimum GT rate [Mbps] 0 5 10 15 20 25 30 35 40 45 Mean number of ABSs cBH = 40 Mbps Lower bound for cBH = 40 Mbps cBH = 60 Mbps Lower bound for cBH = 60 Mbps cBH = 80 Mbps Lower bound for cBH = 80 Mbps cBH = 100 Mbps Lower bound for cBH = 100 Mbps Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' 11: Mean number of ABSs vs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Rmin of the proposed GSPA algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' APPENDIX K PROOF OF PROPOSITION 6 Denote by G(λ) the left-hand side of (26), i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=', G(λ) := � g max(0, min(¯cm[g], ¯rk+1 m [g] + ¯uk m[g] − λ)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' (65) This is a sum of non-increasing piecewise continuous func- tions and therefore G is also non-increasing piecewise contin- uous.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' The maximum value is attained for sufficiently small λ and equals � g ¯cm[g] = 1⊤¯cm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' If 1⊤¯cm < Rmin, then G(λ) < Rmin ∀λ and (26) admits no solution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Conversely, if 1⊤¯cm > Rmin, then a solution can be found since G(λ) > Rmin for sufficiently small λ and G(λ) = 0 for sufficiently large λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Uniqueness follows from the fact that G is strictly decreasing except when G(λ) = 0 or G(λ) = 1⊤¯cm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' To show that G(ˇλ k m) ≥ Rmin just note from (27a) that ˇλ k m ≤ ¯rk+1 m [g] + ¯uk m[g] − ¯cm[g] or, equivalently, ¯cm[g] ≤ ¯rk+1 m [g] + ¯uk m[g] − ˇλ k m, for all g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' This clearly yields G(ˇλ k m) = � g max(0, ¯cm[g]) = � g ¯cm[g], which is greater than or equal to Rmin by assumption.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' To show that G(ˆλ k m) ≤ Rmin, note from (27b) that ˆλ k m ≥ ¯rk+1 m [g]+¯uk m[g]−Rmin/G for all g such that ¯cm[g] > Rmin/G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' This clearly implies that ¯rk+1 m [g] + ¯uk m[g] − ˆλ k m ≤ Rmin/G for all g such that ¯cm[g] > Rmin/G and, as a consequence, min(¯cm[g], ¯rk+1 m [g] + ¯uk m[g] − ˆλ k m)) ≤ Rmin/G and the in- equality G(ˆλ k m) ≤ Rmin follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' APPENDIX L ADDITIONAL EXPERIMENTS WITH THE TOMOGRAPHIC MODEL Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' 11 is the counterpart of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' 9 for tomographic chan- nels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' The purpose of this simulation is to confirm that the approximate linearity and proximity to the bound of GSPA observed in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' 4 take place for a wide range of parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' 12 investigates the influence of the minimum flight height on the performance of the considered algorithms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' The staircase behavior of the benchmarks can be explained by noting that the flight grid initially comprises points with heights 0, 30 m, 60 m, 90 m, etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Then, the points inside buildings and the points below the minimum flight height are removed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Thus, the allowed flight points are the same e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' when the minimum flight height is 10 m as when it is 20 m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' As already observed in Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' VI, the performance of GSPA is not degraded for increasing flight height because the back- haul capacity poses a more stringent constraint than the one imposed by C even for the maximum flight height considered in the figure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' 13 studies the impact of the height of the buildings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' To reduce the spatial quantization effect of the tomographic integral approximation, the numbers of SLF grid points in the x, y, and z axes were set to 50, 40, and 150, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' It is observed that the K-means and space rate K-means algorithms 16 are negatively affected by the increased attenuation introduced by higher buildings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' In contrast, the genetic placement algo- rithm and GSPA exhibit a milder dependence on the building height.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' The reason is the greater capacity of these algorithms to select ABS locations with favorable propagation conditions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' The backhaul capacity is again the limiting constraint, which explains why the performance of GSPA is unaffected by a greater building height.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' REFERENCES [1] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Romero, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Viet, and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Leus, “Aerial base station placement leveraging radio tomographic maps,” in IEEE Int.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Conf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Acoustics Speech Signal Process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Available at arXiv:2109.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content='07372, Singapore, May 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' [2] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Zeng, Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Wu, and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Zhang, “Accessing from the sky: A tutorial on uav communications for 5g and beyond,” Proceedings IEEE, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' 107, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' 12, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' 2327–2375, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' [3] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Viet and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Romero, “Aerial base station placement: A tutorial introduction,” IEEE Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Magazine.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' 60, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' 5, May 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' [4] Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Han, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Swindlehurst, and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Liu, “Optimization of manet connectivity via smart deployment/movement of unmanned air vehicles,” IEEE Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Veh.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Technol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' 58, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' 7, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' 3533–3546, 2009.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' [5] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content='-J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Lee, “Autonomous unmanned flying robot control for recon- figurable airborne wireless sensor networks using adaptive gradient climbing algorithm,” J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Korea Robotics Society, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' 6, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' 2, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' 97–107, May 2011.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' [6] I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Bor-Yaliniz, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' El-Keyi, and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Yanikomeroglu, “Efficient 3-d placement of an aerial base station in next generation cellular networks,” in Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' IEEE Int.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Conf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' IEEE, 2016, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' 1–5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' [7] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Chen and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Gesbert, “Optimal positioning of flying relays for wireless networks: A LOS map approach,” in Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' IEEE Int.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Conf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=', Paris, France, May 2017, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' 1–6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' [8] Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Wang, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Duan, and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Zhang, “Adaptive deployment for UAV-aided communication networks,” IEEE Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Wireless Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' 18, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' 9, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' 4531–4543, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' [9] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content='-J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Lee and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Mark, “Decentralized control of unmanned aerial robots for wireless airborne communication networks,” Int.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Advanced Robotic Syst.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' 7, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' 3, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' 22, 2010.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' [10] O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Andryeyev and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Mitschele-Thiel, “Increasing the cellular network capacity using self-organized aerial base stations,” in Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Workshop Micro Aerial Veh.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Netw.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=', Syst.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=', Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' ACM, 2017, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' 37–42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' [11] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Galkin, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Kibilda, and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' DaSilva, “Deployment of UAV-mounted access points according to spatial user locations in two-tier cellular networks,” in Wireless Days.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' IEEE, 2016, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' 1–6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' [12] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Lyu, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Zeng, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Zhang, and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content='J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Lim, “Placement optimization of UAV-mounted mobile base stations,” IEEE Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Letters, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' 21, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' 3, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' 604–607, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' [13] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Romero and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Leus, “Non-cooperative aerial base station placement via stochastic optimization,” in Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' IEEE Mobile Ad-hoc Sensor Netw.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=', Shenzhen, China, Dec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' 2019, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' 131–136.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' [14] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Huang, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Huang, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Zhong, and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Zhang, “UAV-mounted mobile base station placement via sparse recovery,” IEEE Access, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' 8, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' 71775–71781, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' [15] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Mach, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Becvar, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Najla, “Power allocation, channel reuse, and positioning of flying base stations with realistic backhaul,” IEEE Internet Things J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=', pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' 1–1, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' [16] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Yin and F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Yu, “Resource allocation and trajectory design in uav- aided cellular networks based on multi-agent reinforcement learning,” IEEE Internet Things J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=', pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' 1–1, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' [17] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Park, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Kim, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Kim, and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Kim, “Formation control algorithm of multi-uav-based network infrastructure,” Applied Sciences, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' 8, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' 10, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' 1740, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' [18] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content='-Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Kim and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content='-W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Lee, “Integrated topology management in flying ad hoc networks: Topology construction and adjustment,” IEEE Access, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' 6, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' 61196–61211, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' [19] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Al-Hourani, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Kandeepan, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Jamalipour, “Modeling air-to- ground path loss for low altitude platforms in urban environments,” in IEEE Global Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Conf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=', 2014, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' 2898–2904.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' [20] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Al-Hourani, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Kandeepan, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Lardner, “Optimal LAP altitude for maximum coverage,” IEEE Wireless Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' 3, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' 6, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' 569–572, 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' [21] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Kalantari, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Yanikomeroglu, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Yongacoglu, “On the number and 3D placement of drone base stations in wireless cellular networks,” in IEEE Vehicular Tech.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Conf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=', 2016, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' 1–6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' [22] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' El Hammouti, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Benjillali, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Shihada, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content='-S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Alouini, “A distributed mechanism for joint 3D placement and user association in UAV-assisted networks,” in IEEE Wireless Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Netw.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Conf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=', Marrakech, Morocco, Apr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' [23] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Perabathini, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Tummuri, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Agrawal, and V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Varma, “Efficient 3D placement of UAVs with QoS Assurance in Ad Hoc Wireless Networks,” in Int.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Conf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Comput.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Netw.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=', 2019, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' 1–6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' [24] X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Liu, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Liu, and Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Chen, “Reinforcement learning in multiple-UAV networks: Deployment and movement design,” IEEE Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Veh.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Tech.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' 68, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' 8, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' 8036–8049, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' [25] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content='K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Shehzad, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Ahmad, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Hassan, and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Jung, “Backhaul- aware intelligent positioning of UAVs and association of terrestrial base stations for fronthaul connectivity,” IEEE Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Netw.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Eng.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=', pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' 1–1, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' [26] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Qiu, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Lyu, and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Fu, “Placement optimization of aerial base stations with deep reinforcement learning,” in IEEE Int.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Conf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=', 2020, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' 1–6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' [27] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Sabzehali, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content='K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Shah, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Dhillon, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content='H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Reed, “3D placement and orientation of mmWave-based UAVs for Guaranteed LoS Coverage,” IEEE Wireless Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Letters, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' 1–1, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' [28] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Romero and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content='-J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Kim, “Radio map estimation: A data-driven approach to spectrum cartography,” IEEE Signal Process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Mag.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=', Nov.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' [29] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Alaya-Feki, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Jemaa, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Sayrac, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Houze, and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Moulines, “Informed spectrum usage in cognitive radio networks: Interference cartography,” in Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' IEEE Int.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Symp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Personal, Indoor Mobile Radio Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=', Cannes, France, Sep.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' 2008, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' 1–5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' [30] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Shrestha, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Romero, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Chepuri, “Spectrum surveying: Active radio map estimation with autonomous UAVs,” IEEE Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Wireless Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=', Aug.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' [31] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Teganya, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Romero, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Lopez-Ramos, and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Beferull-Lozano, “Location-free spectrum cartography,” IEEE Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Signal Process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' 67, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' 15, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' 4013–4026, Aug.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' [32] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Teganya and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Romero, “Deep completion autoencoders for radio map estimation,” IEEE Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Wireless Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=', 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' [33] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Patwari and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Agrawal, “NeSh: a joint shadowing model for links in a multi-hop network,” in Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' IEEE Int.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Conf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Acoust.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=', Speech, Signal Process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=', Las Vegas, NV, Mar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' 2008, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' 2873–2876.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' [34] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Patwari and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Agrawal, “Effects of correlated shadowing: Connectiv- ity, localization, and RF tomography,” in Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Int.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Conf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Info.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Sensor Networks, St.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Louis, MO, Apr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' 2008, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' 82–93.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' [35] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Boyd, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Parikh, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Chu, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Peleato, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Eckstein, “Distributed optimization and statistical learning via the alternating direction method of multipliers,” Found.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Trends Mach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Learn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' 3, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' 1, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' 1–122, Jan.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' 2011.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' [36] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Imai, “A survey of efficient ray-tracing techniques for mobile radio propagation analysis,” IEICE Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' 100, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' 5, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' 666– 679, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' [37] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Romero, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Lee, and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Giannakis, “Blind radio tomography,” IEEE Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Signal Process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' 66, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' 8, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' 2055–2069, Jan.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' [38] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Wilson, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Patwari, and O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Vasquez, “Regularization methods for radio tomographic imaging,” in Virginia Tech Symp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Wireless Personal Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=', Blacksburg, VA, Jun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' 2009.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' [39] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Kanso and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Rabbat, “Compressed RF tomography for wireless sensor networks: Centralized and decentralized approaches,” in Int.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Conf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Distributed Comput.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Sensor Syst.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=', Marina del Rey, CA, 2009, Springer, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' 173–186.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' [40] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Hamilton, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Ma, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Baxley, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Matechik, “Propagation modeling for radio frequency tomography in wireless networks,” IEEE J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Sel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Topics Signal Process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' 8, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' 1, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' 55–65, Feb.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' [41] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Gutierrez-Estevez, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Kasparick, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Cavalvante, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Sta´nczak, “Hybrid model and data driven algorithm for online learn- ing of any-to-any path loss maps,” arXiv preprint arXiv:2107.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content='06677, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' [42] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content='R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Mitchell, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Dickof, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content='G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Law, “A comparison of line integral algorithms,” Comput.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Physics, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' 4, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' 2, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' 166–172, 1990.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' [43] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content='J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Candes, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content='B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Wakin, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content='P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Boyd, “Enhancing sparsity by reweighted ℓ1 minimization,” J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Fourier Analysis App.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' 14, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' 5, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' 877–905, 2008.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' [44] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Lin, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Ma, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Ye, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Zhang, “An ADMM-based interior-point method for large-scale linear programming,” Optim.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Methods Software, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' 36, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' 2-3, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' 389–424, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' [45] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Yuan and Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Lin, “Model selection and estimation in regression with grouped variables,” J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Royal Statist.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' : Series B (Statist.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' ), vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' 68, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' 1, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' 49–67, 2006.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' 17 [46] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Romero, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content='-J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Kim, and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Giannakis, “Stochastic semiparametric regression for spectrum cartography,” in Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' IEEE Int.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Workshop Comput.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Advan.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Multi-Sensor Adapt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=', Cancun, Mexico, Dec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' 2015, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' 513–516.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' [47] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Romero, S-J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Kim, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Giannakis, and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' L´opez-Valcarce, “Learn- ing power spectrum maps from quantized power measurements,” IEEE Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Signal Process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' 65, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' 10, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' 2547–2560, May 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' [48] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Boyd and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Vandenberghe, Convex Optimization, Cambridge University Press, Cambridge, UK, 2004.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' [49] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Gens and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' Levner, “Complexity of approximation algorithms for combinatorial problems: a survey,” ACM SIGACT News, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' 12, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' 3, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} +page_content=' 52–65, 1980.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/Z9E4T4oBgHgl3EQfOgzR/content/2301.04966v1.pdf'} diff --git a/_tFLT4oBgHgl3EQfEC7f/content/tmp_files/2301.11982v1.pdf.txt b/_tFLT4oBgHgl3EQfEC7f/content/tmp_files/2301.11982v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..54234420d342fc359a9df2de99cac0c69889c2d9 --- /dev/null +++ b/_tFLT4oBgHgl3EQfEC7f/content/tmp_files/2301.11982v1.pdf.txt @@ -0,0 +1,2954 @@ +Strategy evolution on dynamic networks +Qi Su1,2,3, Alex McAvoy1,2, and Joshua B. Plotkin1,2,3 +1Department of Mathematics, University of Pennsylvania, Philadelphia, PA 19104, USA +2Center for Mathematical Biology, University of Pennsylvania, Philadelphia, PA 19104, USA +3Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA +Abstract +Models of strategy evolution on static networks help us understanding how population struc- +ture can promote the spread of traits like cooperation. One key mechanism is the formation +of altruistic spatial clusters, where neighbors of a cooperative individual are likely to recip- +rocate, which protects prosocial traits from exploitation. But most real-world interactions +are ephemeral and subject to exogenous restructuring, resulting in dynamic social networks. +Strategic behavior on dynamic networks is difficult to study, and much less is known about +the resulting evolutionary dynamics. Here, we provide an analytical treatment of cooperation +on dynamic networks, allowing for arbitrary spatial and temporal heterogeneity. We show +that transitions among network structures can favor the spread of cooperation, even if each +individual social network would inhibit cooperation when static. Furthermore, we show that +spatial heterogeneity tends to inhibit cooperation while temporal heterogeneity tends to pro- +mote it. Dynamic networks can therefore have profound effects on the evolution of prosocial +traits, even in cases where individuals have no agency over network structure. +1 +Introduction +The geographic locations of individuals, together with their social or physical connections, con- +strain interactions and shape behavioral evolution in a population. A network is a useful model +of a population’s structure, where nodes represent individuals and edges capture interactions. +How network structure affects evolutionary dynamics has been extensively investigated over the +last several decades, using techniques including computer simulations, mathematical analysis, +and experimental studies with human subjects. A well-known and illustrative finding1 is that +population structure can favor cooperation provided the ratio of the benefit from cooperative be- +havior, b, to its cost, c, exceeds the average number of neighbors, d. The mechanism underlying +this cooperation-promoting effect is that spatial structure enables the formation of cooperative +clusters of individuals, who have high payoffs and are capable of resisting invasion by defectors. +Most existing studies are based on a static network, where the duration and intensity of inter- +actions remain unchanged throughout the evolutionary process. In contrast, empirical networks +1 +arXiv:2301.11982v1 [physics.soc-ph] 27 Jan 2023 + +frequently vary over time2. Representative examples include communication networks involv- +ing telephone calls or emails3,4; networks of physical proximity, where individuals encounter +different people as they move through space5,6; and ecological networks that change with the +seasons as organisms go through different phases of their life cycles7–9. Temporal features can +even reverse the evolutionary outcomes. For example, whether an idea or information diffuses +throughout a society depends not only on the structure of the network guiding interactions but +also on the timing of those interactions, as the the coexistence of individuals with different active +timing maximizes diffusion10. In the context of epidemics, high concurrency (the number of +neighbors of a node) leads to a lower epidemic threshold under susceptible-infected-susceptible +dynamics, while low concurrency can suppress epidemics11. +Despite the attention that other dynamical processes have received on time-varying networks, +the evolution of cooperation in this setting remains much less studied. One reason to discount +any positive effect of dynamic structures comes from intuition on static networks: since coop- +erators spread via clusters, network transitions will tend break up these clusters, likely leading +to diminished reciprocity and exploitation by defectors. Another impediment to undertaking +research in this area is the lack of mathematical tools for analyzing strategic interactions on dy- +namic networks. In static networks, mathematical approaches provide general conditions for how +structure affects evolutionary dynamics12,13. They also allow for extensive, efficient numerical +explorations into example networks, both artificial and empirical14. Whether these approaches +can be extended to dynamic networks remains unknown. +Endogenous network transitions often produce predictable results for the evolution of coopera- +tion. For example, if cooperators can selectively seek out new connections with other cooperators +(“cooperation begets friends”) and sever ties with defectors, then it is not surprising to find that +these endogenous networks changes favor the spread cooperation. But it is much less clear how +exogenous transitions in network structure will affect the evolution of cooperation, and so this is +the main focus of our study. There is also substantial evidence for the prevalence of exogenous +network transitions in nature, ranging from weather fluctuations to human-induced changes to +ecosystems15. The scope of models with dynamic networks is broad and can include environ- +mental feedback and ecosystem engineering16. And even when an organism has some agency +over the structure of their environment, the behavioral trait of interest might be unrelated to these +changes (e.g. movement between cities need not be tied to altruistic tendencies). Finally, exoge- +nous network transitions that are not dependent on individual behavior provide the most natural +point of comparison to static structures. +In this paper, we study the evolution of strategic behavior in a population whose structure of +social interactions change over time. At any point in time, the population structure is described by +a network whose nodes represent individuals and edges represent interactions. Individuals may +change their strategies over time, imitating neighbors who have higher payoffs; and the network +of interactions itself may also change over time. The interaction network changes at random +times, unrelated to the current composition of strategies in the population. We derive general +mathematical results for when cooperative behavior is favored, which apply to any stochastic +transition pattern among any number of networks, each with arbitrary structure. Surprisingly, we +2 + +find that in a large class of networks, stochastic transitions among networks can strongly promote +cooperation, even though they tend to disrupt cooperative clusters in each network. In fact, even +if each individual static network would disfavor cooperation, transitions among them can rescue +cooperation. We conclude by analyzing spatial and temporal burstiness, which we show have +opposite effects on the evolution of cooperation. +2 +Model +Our model consists of a finite population of size N, with individuals engaged in pairwise social +interactions. The structure of the population varies over time, and at each discrete time it is +represented by one of L weighted networks, each with N nodes. For network β ∈ {1, . . . , L}, +we let w[β] +ij denote the weight of the edge between nodes i and j. We assume that all networks +are undirected, meaning w[β] +ij = w[β] +ji for all i, j ∈ {1, . . . , N} and β ∈ {1, . . . , L}. +Each individual in the population can adopt one of two types, or strategies: “cooperator” (C) or +“defector” (D). Individuals interact in pairwise donation games, with cooperators paying a cost c +to generate benefit b for their co-player. Defectors pay no costs and generate no benefits. In each +time step, everyone plays a donation game with each of their neighbors in the current network, +β. We denote the state of the population by x, where xi ∈ {0, 1} indicates the type of individual +i, with 0 and 1 representing types D and C, respectively. The accumulated payoff to individual i +in network β is then +ui (x, β) = +N +∑ +j=1 +w[β] +ij +�−cxi + bxj +� +. +(1) +In other words, individual i receives a benefit w[β] +ij b from of each of its neighbors j who are +cooperators (xj = 1), and i pays a cost w[β] +ij c to each j if i is itself a cooperator (xi = 1). An +individual’s accumulated payoff in network β is transformed into fecundity, which represents i’s +propensity to reproduce or, equivalently, to be imitated by another individual. The fecundity is +given by Fi (x, β) = 1 + δui (x, β), where δ is called the selection intensity, which we assume +to be small (δ ≪ 1). This assumption, called “weak selection,” is common in the literature and +it aims to capture scenarios in which the social trait (C or D) has a small effect on reproductive +success. +After all pairwise games are played in network β and individuals accumulate payoffs, a random +individual i is selected uniformly from the population to update his or her strategy. This individ- +ual then imitates the type of a neighbor, j, with probability proportional to j’s fecundity. In other +words, in network β, the probability that i copies j’s type is +eji (x, β) = 1 +N +Fj (x, β) w[β] +ji +∑N +k=1 Fk (x, β) w[β] +ki +. +(2) +3 + +a +Network 1 +Network 2 +b +c +Strategy updating +d +Network 1 +Network 2 +Network updating +e +C +C +C +C +D +D +D +C +C +? +C +D +D +D +C +C +D +C +D +D +D +1 +2 +6 +4 +7 +5 +3 +1 +2 +6 +4 +7 +5 +3 +1 +2 +6 +4 +7 +5 +3 +-2c +2b +2b +b-2c +2b-4c +2b +b-2c +b-2c +b-2c +2b +0 +-2c +b +b +1 +2 +6 +4 +7 +5 +3 +q11 +q12 +q21 +q22 +Interaction at time n+1 +Interaction at time n +Figure 1: Evolutionary games on dynamic networks. a, The population structure at any time is described by a +network, which may change from one time point to the next. (The figure illustrates an example with two possible +networks.) b, Each individual (node) in the population adopts the strategy cooperate (C) or defect (D) in games +played with each neighbor. Each individual i accumulates a total payoff ui across pairwise interactions with neigh- +bors, which determine their reproductive rate Fi = 1 + δui. c, An individual (marked by “?”) is selected uniformly +at random to update its strategy, and all neighboring individuals, indicated by black circles, compete to be imitated +by the focal node, with probability proportional to reproductive rates. d, After an individual updates its strategy, +the population structure itself either changes (from network 1 to network 2 with probability q12, or from network +2 to network 1 with probability q21) or remains the same. e, Social interactions and strategy updates repeat on the +population structure at the next time step, n + 1. +Here, the factor of 1/N represents the probability that i is chosen to update in the first place. +After each strategic update, the population structure itself then undergoes a transition step. The +probability of moving from network β to network γ is independent of the strategic composition +of the population, and it depends only on the current network state, β. The stochastic process +governing these transitions is described by an L × L matrix Q = +� +qβγ +� +, where qβγ is the prob- +ability of transitioning from network β to network γ. Note that there may be (and we often +assume) a positive chance that the network will remain unchanged at the transition stage, e.g. +qββ > 0. The pairwise social interactions, strategic update, and network transition, which com- +prise a single time step, are depicted in Fig. 1. +4 + +3 +Results +Without mutation, the population must eventually reach a monomorphic strategic state in which +all individuals have the same type, either cooperate or defect. The duration that the population +spends in each network is proportional to the corresponding value in stationary distribution υ, +which is determined by the network transition matrix Q (see Methods). We assume that a mutant +appears in network β with probability υ (β), and it is located at a node chosen uniformly at +random. We let ρC denote the probability that a single cooperator mutant eventually takes over +a resident population of defectors. Likewise, we let ρD be the probability that a single defector +mutant takes over a resident population of cooperators. We use the condition ρC > ρD to +measure whether selection favors cooperation relative to defection17. +3.1 +Selection condition for the evolution of cooperation +We first derive a general result applicable to almost any transition pattern, Q, among any finite +number of networks, each with arbitrary spatial structure. This result combines several different +quantities describing the dynamics under neutral drift (δ = 0), together with the payoffs for the +game13,18. +Let p[β] +ij +:= w[β] +ij / ∑N +k=1 w[β] +ik be the one-step random-walk probability of moving from i to j on +network β. This quantity can be interpreted as the probability that i imitates the strategy of j +under neutral drift, conditioned on i being chosen for an update. In other words, p can be seen +as defining an ancestral process, tracking replacement backwards in time under neutral drift. +The most fundamental neutral quantity is the reproductive value of individual i in network β, +which can be interpreted as the probability that a mutant introduced at node i in network β +generates a lineage that eventually takes over the population. This quantity, denoted by π[β] +i +is independent of the payoffs and thus independent of the particular mutant that arises in the +population. The version of reproductive value that we use is a generalization of Fisher’s clas- +sical notion19,20 that also takes into account environmental changes. It can be calculated using +Equation 5 in Methods. +Another neutral quantity we use is related to coalescence times. Under neutral drift, we can look +backward in time and ask how long it takes, on average, before two or more lineages meet at a +common ancestor. Starting in network β, let T[β] be the expected number of steps to the most +recent common ancestor of the entire population. If τ[β] +ij +is the expected time to the most recent +common ancestor of i and j, then the mean amount of time that i and j are identical by descent is +T[β] − τ[β] +ij . The pairwise times to a common ancestor, τ, can be calculated using Equation 8 in +Methods. +In terms of the neutral quantities π, τ, and T, the general condition for cooperation to be favored +5 + +over defection under weak selection is given by +N +∑ +i,j=1 +L +∑ +β=1 +υ (β) +� +L +∑ +γ=1 +qβγπ[γ] +i +� +p[β] +ij +N +∑ +ℓ=1 +� +− +� +T[β]−τ[β] +jj +� +w[β] +jℓ c ++ +� +T[β]−τ[β] +jℓ +� +w[β] +ℓj b +� +> +N +∑ +i,j,k=1 +L +∑ +β=1 +υ (β) +� +L +∑ +γ=1 +qβγπ[γ] +i +� +p[β] +ij p[β] +ik +N +∑ +ℓ=1 +� +− +� +T[β]−τ[β] +jk +� +w[β] +kℓ c ++ +� +T[β]−τ[β] +jℓ +� +w[β] +ℓk b +� +. +(3) +Broadly speaking, what Equation 3 says is that an individual i is chosen, a cooperator is placed +at a neighbor j of i, and another neighbor k of i is chosen to compare its (weighted) payoff with +that of the cooperator. If j’s weighted payoff exceeds that of k, then selection favors the evolution +of cooperation. +The condition above reflects a similar intuition behind the corresponding condition for static +networks (L = 1; see Allen et al.14 or Fig. 1 of McAvoy & Wakeley21), but there are a few +notable effects of network transitions in Equation 3. The first effect is that the network β is chosen +with probability υ (β), where υ is the stationary distribution of the structure-transition chain +defined by Q. Moreover, whereas individual i is chosen with probability based on reproductive +value πi on a static network, here i is chosen based on reproductive value in the next network +following imitation, ∑L +γ=1 qβγπ[γ] +i +. The reason for this is natural, because once an individual +replaces i in network β, the network immediately transitions to network γ, and so the resulting +reproductive value of i must be understood within the context of γ. Once β and i are chosen, +the probabilities of choosing neighbors j and k are p[β] +ij and p[β] +ik , respectively. Moreover, if j is a +cooperator, then individual k is also a cooperator for T[β] − τ[β] +jk time steps, and during each such +step k pays cw[β] +kℓ to provide ℓ with a benefit of bw[β] +kℓ . This property accounts for the weighting +of benefits and costs in Equation 3. Note that the term T[β] cancels out in Equation 3, and +so although this quantity is helpful for gathering intuition, it is not strictly needed to evaluate +whether cooperators are favored by selection. +Given the vast number of networks with N nodes, as well as the vast space of possible transitions +among them, we focus most of our analysis on transitions between a pair of networks (i.e. L = +2). For a given network transition matrix Q, the value 1/q12 (resp. 1/q21) gives the expected +time during which the population remains in network 1 (resp. network 2) before transitioning +to network 2 (resp. network 1). We denote 1/q12 and 1/q21 by t1N and t2N, respectively, so +that t1 and t2 correspond to the expected number of times each individual updates prior to a +transition to a different network. Small values of t1 and t2 correspond to frequent changes in the +population structure. Sufficiently large values of t1 and t2 indicate that the population structure is +nearly fixed, so that the population will reach an absorbing strategic state (all C or all D) before +the network transitions to a different state. The regime t1 = 1 (resp. t2 = 1) means that, on +average, each individual updates their strategy once in network 1 (resp. network 2) before the +network structure changes. +6 + +a +Network 1 +Network 2 +5 +6 +7 +8 +9 +10 +11 +Benefit, b +-1.680 +-0.800 +-0.080 +-0.040 +-0.020 +0 +0.020 +0.040 +0.060 +Rescaled fixation probability, N( +C- +D) +b +// +// +αN +(1−α)N +Dynamic (α=0.5) +Static network 1 or 2 + (α=0.5) +Dynamic (α=0.8) +Static network 1 + (α=0.8) +Static network 2 + (α=0.8) +tN +1 +tN +1 +tN +1 +1− +tN +1 +1− +Figure 2: Transitions between networks that contain dense and sparse cliques. We consider dynamic transitions +between two networks, each of which is comprised of two cliques containing aN and (1 − a) N nodes, respectively. +a, Each network has a star graph comprising one clique and a complete graph comprising the other clique, with +a single edge connecting the two cliques. When network 1 transitions to network 2, the star clique becomes the +complete clique and vice versa. b, The fixation probability of cooperation versus defection, ρC − ρD, as a function +of the benefit b in the donation game. Selection favors cooperation over defection if ρC − ρD exceeds the horizontal +line, i.e., ρC > ρD. Dots indicate the results of Monte Carlo simulations on dynamic networks (solid dots) and +on a static network (open dots). The vertical lines correspond to analytical predictions for the critical benefit-to- +cost ratio (b/c)∗ on dynamic networks, above which we predict cooperation will be favored. The results show +that cooperation is always disfavored in both static network 1 and static network 2, but dynamic transition between +these networks can favor cooperation. Here, we show two examples with different clique sizes, a = 0.5 (blue) and +a = 0.7 (green). The beneficial effect of structure transitions is strongest when cliques have equal size (a = 0.5; +see Supplementary Figure 1). Parameter values: N = 40, t = 1, and c = 1.0. Fixation probabilities are computed +across an ensemble of 107 runs with selection intensity δ = 0.002. +3.2 +Dynamic networks with dense and sparse cliques +We begin by studying dynamic transitions between a pair of networks where each network is +comprised of two cliques. One clique is a star graph, which is sparse, and the other clique is +a complete graph, which is dense. In each network, the two cliques are connected by a single +edge. When the population transitions from one network to another, the star clique becomes the +complete clique and vice versa (see Figure 2a). This kind of dynamic network models a situation +in which a portion of the population is densely connected while the remainder of the population +is connected to only a single node; and which portion is dense versus sparse changes over time, +as the state transitions between the two networks. +When the population evolves on either network 1 or network 2 alone, the fixation probability +of cooperators is always lower than that of defectors, i.e. ρC < ρD,meaning that cooperation +is disfavored by selection regardless of the benefit-to-cost ratio b/c (Figure 2b). Nonetheless, +when the population transitions dynamically between networks 1 and 2, cooperation is favored +7 + +provided the benefit-to-cost ratio b/c exceeds the critical value (b/c)∗ ≈ 7. As a result, we +see that dynamic population structures can favor cooperation, even when all networks involved +would each individually suppress cooperation were they static. +Dynamic population structure facilities cooperation across a wide range of population sizes for +the pair of networks shown in Figure 2a. When t = 1, which means that individuals each +update their strategy once, on average, before the network changes, cooperation can be favored +by selection regardless of network size N (Figure 3a). By contrast, if the network is static, +then cooperation is favored only when the population size is very small (N < 17)–and, even +then, only if the benefit-to-cost ratio is large. For larger population sizes, N ⩾ 17, the critical +benefit-to-cost ratio is negative on a static network, (b/c)∗ < 0, which means that selection +actually favors the evolution of spite, a behavior in which individuals pay a cost c to decrease +the fitness of their opponent by b. For this static network we can prove that (b/c)∗ ≈ −N/2 in +large populations (see Methods), compared to (b/c)∗ ≈ 7 for any population size in a dynamic +network. Consequently, we see that the effects of dynamic population structures are dramatic, +capable of converting a spiteful outcome into a cooperative one, and they persist across a wide +range of population sizes. +Dynamic networks also facilitate cooperation across a wide range of structural transition rates. +For a sufficiently large population size, N, on a single static network of the type shown in Fig- +ure 2a, the critical benefit-to-cost ratio is negative ((b/c)∗ ≈ −N/2), which means that selec- +tion favors the evolution of spite. By contrast, dynamic transitions between networks 1 and 2 +can favor cooperation, especially when they occur rapidly (Figure 3b). When the transition rate +is very slow–in particular, when t exceeds +�√ +2 + 1 +� +N–the population stays in one network for +so long that the evolutionary dynamics are similar to those of a static network, and the critical +benefit-to-cost ratio becomes negative (Figure 3b). In the limit of the transition rate approaching +zero (t → ∞), the “dynamic” network is actually static and our dynamic calculations agree with +those of a static network. +3.3 +How dynamic structures can facilitate the spread of cooperation +To further understand how dynamic structures can favor cooperation more than their static coun- +terparts, we inspect evolutionary trajectories on the dense-sparse graph of Figure 2a. When the +network is static, the process is depicted in Figure 4a. Starting from a specific configuration +of cooperators in both hubs and two leaf nodes, cooperation will initially tend to spread in the +star clique while shrinking in the complete clique. After cooperation fixes within the star clique, +selection strongly suppresses further spread to the complete clique because the node connected +to the star clique is exploited by multiple defectors. If ever a defector manages to diffuse to the +hub of the star clique, however, defection will then rapidly spread within the star and ultimately +fix in the entire network. +By contrast, if the population undergoes structural transitions between networks (e.g. n2 → n3 +in Figure 4b), the star clique of network 1 will transition into the complete clique of network +2, which promotes the exploitation of cooperators and allows defectors to spread (n3 → n4). +8 + +101 +102 +103 +104 +Network size, N +-106 +-104 +-102 +0 +102 +104 +106 +Critical benefit-to-cost ratio, (b/c)* +a +Dynamic, Eq. 3 +7.00 +Static network 1, Eq. 3 +-N/2 +5 +10 +15 +20 +25 +-103 +-102 +-101 +0 +101 +102 +103 +10-1 +100 +101 +102 +103 +104 +105 +106 +Rescaled duration, t +-106 +-104 +-102 +0 +102 +104 +106 +Critical benefit-to-cost ratio, (b/c)* +b +Dynamic, Eq. 3 +Static network 1, Eq. 3 +-N/2 +104 +105 +106 +-107 +-106 +-105 +-104 +-103 +t3+10t2+26t+19 +t2+4t+3 +t2N+tN2 +−t2+2tN+N2 +Figure 3: Dynamic structures facilitate cooperation for a broad range of population sizes and network transi- +tion rates. We consider transitions between the two networks shown in Figure 2a, each composed of a sparse clique +and a dense clique. a, The critical benefit-to-cost ratio required to favor cooperation as a function of population size, +N, for a = 0.5 and t = 1. Dynamic networks can favor cooperation for any population size, N, provided b/c > 7. +In contrast, the corresponding static networks favor cooperation only in small populations (N < 17), and they favor +the evolution of spite ((b/c)∗ < 0) in larger populations. Dots show exact analytical computations for finite N +(Equation 3), and lines show analytical approximations for large N. b, The critical benefit-to-cost ratio as a func- +tion of the mean duration between network transitions, t, for a = 0.5 and N = 10,000. Whereas a static network +always disfavors cooperation, dynamic networks can favor cooperation provided they do not transition too slowly +(t < +�√ +2 + 1 +� +N). Dots show exact analytical computations for arbitrary t; the blue line shows an analytical +approximation in the regime t ≪ N; and the red line shows an analytical approximation in the regime t = O (N). +9 + +Meanwhile, the complete clique of network 1 transitions into the star clique of network 2, which +stimulates the expansion of cooperators. The rate of cooperator expansion in one clique exceeds +their exploitation in the other clique so that, overall, network transitions facilitate cooperation. +3.4 +Other dynamic structures +The examples of dynamic structure considered so far may seem highly specialized because the +networks each contain two stylized cliques with a single edge between them. But we find similar +results on networks with many cliques and with more complicated connections between them. In +Figure 5a,b, we analyze networks comprised of multiple star and complete cliques, connected by +either hub nodes or by leaf nodes. In both cases, we again find that dynamic transitions between +networks reduce the critical benefit-to-cost ratio for the evolution of cooperation, compared to +any single static network. This effect is increasingly strong as the network size grows (see +Supplementary Figure 2). For the networks in Figure 5a with N = 1,200, for example, the +critical benefit-to-cost ratio to favor cooperation is (b/c)∗ ≈ 188.1 when the network is static, +which is reduced to (b/c)∗ ≈ 3.49 when the network is dynamic. +In addition to networks comprised of star and complete cliques, we also investigated networks +with cliques defined by various types of random graphs, such as Erd¨os-R´enyi and scale-free +networks. In the former case, node degrees within a clique do not vary substantially, while the +latter exhibits large variation in degree. For both classes of random networks, we still find that +dynamic transitions between random networks tends to promote cooperation, compared to each +static network (Figure 5c,d). +In all examples of dynamic networks considered thus far, transitions between networks involve +dense regions of a network swapping with sparse regions. Regardless of the exact structure of +the cliques, this general feature of structural transitions conforms to the underlying intuition for +why dynamic networks can facilitate cooperation (Figure 4). Dynamic structures can still facil- +itate cooperation even when networks differ in only a small fraction of connections, although +the strength of the effect is weakened. Furthermore, these effects also persist (and can be quite +strong) when populations transition between three or more network structures. We give illustra- +tions in Supplementary Figure 3. +3.5 +The probability and time to fixation of cooperation +We have studied dynamic structures by comparing the fixation probability of a cooperator to +that of a defector, and by calculating the critical benefit-to-cost ratio (b/c)∗ that ensures ρC > +ρD. We can also study the fixation probability ρC in absolute terms. We find that a dynamic +population structure increases the fixation probability of cooperators, making them more likely +to overtake the population, compared to a static network. Dynamic population structures also +tends to decrease the duration before one type or another fixes (see Supplementary Figure 4), +as well as shorten the mean conditional time until cooperators fix. The underlying intuition for +these results is evident in Figure 4: on a static network, the population will tend to be stuck +at stage n3 for a long time, before defectors eventually diffuse to the sparse clique; whereas +10 + +Evolution on static network +Evolution on dynamic network +Network 1 +Network 1 +Network 2 +Cooperator +Defector +n1 +n2 +n3 +n4 +n1 +n2 +n5 +n6 +n3 +n4 +n7 +n8 +Strategy +updating +Network +updating +a +b +Figure 4: Intuition for how dynamic structures can facilitate cooperation. Starting from a configuration in +which the hub and two leaf nodes are cooperators (time point n1 in a and b), we illustrate how cooperation can be +favored in dynamic structures even when it is inhibited in each static structure. Initially, cooperators are expected +to spread in the star clique and shrink in the complete clique, and the rate of spreading exceeds that of shrinking. a, +The evolutionary process on a static network. Cooperators rapidly take over the star clique and nearly die out in the +complete clique (n1 → n3). The system tends to stay in this state until defectors spread throughout the star clique +(n4). b, The evolutionary process with network transitions. Initially, cooperators spread in the star clique and shrink +in the complete clique (n1 → n2). However, when the network changes, the star clique transitions to the complete +clique and vice versa (n2 → n3). This transition is followed by the rapid spread of cooperators in the star clique +and (relatively slower) shrinking of cooperators in the complete clique (n3 → n4). From n1 to n5, the frequency of +cooperators increases in both cliques so that, under dynamic structure transitions, the population tends to result in +cooperators being fixed in both cliques (n8). +11 + +a +Network 1, (b/c)* +7.31 +Network 2, (b/c)* +7.31 +Dynamic network, (b/c)* +4.92 +Multiple cliques connected via hub nodes +b +Network 1, (b/c)* +7.00 +Network 2, (b/c)* +7.00 +Dynamic network, (b/c)* +5.34 +Multiple cliques connected via leaf nodes +c +Network 1, (b/c)* +39.85 +Network 2, (b/c)* +40.80 +Dynamic network, (b/c)* +32.86 +Multiple ER communities +d +Network 1, (b/c)* +39.64 +Network 2, (b/c)* +40.07 +Dynamic network, (b/c)* +22.33 +Multiple GKK communities +Figure 5: Evolution of cooperation on diverse dynamic structures. a, Each individual network comprises four +star cliques and four complete cliques, where each star clique in one network corresponds to a complete clique +in the other network, and clique hubs are fully connected to each other. b is similar to a, but cliques are now +sparsely connected via leaf nodes. Network transitions facilitate cooperation compared to a static structure. c, Each +individual network comprises two sparse and two dense cliques of Erd¨os-R´enyi (ER) random networks22, with +cliques connected by random nodes. d, Each individual network comprises two sparse and two dense cliques of +Goh-Kahng-Kim scale-free networks (GKK)23 with exponent 2.5, with cliques connected by nodes of the highest +degree. In all these examples, network transitions reduce the benefit-to-cost ratio (b/c)∗ required for cooperation +compared to each static network. Parameters: t = 1 and N = 64 for a and b. For panels c and d, in network 1, +the two sparse cliques have 30 nodes and average degree 4, and the two dense cliques have 40 nodes and average +degree 30; in network 2, the two sparse cliques have 40 nodes and average degree 4, and the two dense cliques have +30 nodes and average degree 20. +12 + +on dynamic networks, cooperators spread rapidly by selection in both cliques. Thus, dynamic +networks increase the likelihood that cooperators sweep the population as well as the rate at +which they do so. +3.6 +Spatial and temporal burstiness +We can adapt our method of analysis to study the effects of spatial and temporal burstiness. +For dynamically changing networks, spatial burstiness arises when there is temporal variation in +the density of network edges (node degree), whereas temporal burstiness arises when there are +periods of rapidly changing network structures along with periods in which structures change +more slowly. Empirical networks of both human and non-human (e.g. honeybee) interactions +are known to exhibit both spatial and temporal burstiness10,24, but the effects of these two forms +of over-dispersion for behavior remains an active area of current research. +To study spatial burstiness, we consider the following minimal model of dynamically varying +networks that differ in their average node degree. We construct a pair of networks as follows +(see Figure 6a): (i) we first generate a single network with N nodes and E edges drawn from one +of several classical families of networks (e.g. Erdos-Reyni random networks22, Watts-Strogatz +small-world networks25, Barab´asi-Albert scale free networks26, etc.); (ii) we decompose this +network into two networks, by randomly selecting a fraction ε ∈ [0, 1/2] of the edges for net- +work 1 and using the remaining (1 − ε) E edges for network 2. If ε = 1/2 then the resulting +networks 1 and 2 have the same density of interactions, and there is no spatial burstiness. For all +other values of ε ̸= 1/2, the network exhibits spatial burstiness, and we study a simple stochastic +transition pattern between these networks, with t1 = t2 = 1 so that each individual updates his +strategy once, on average, before the network switches. +We find that spatial burstiness tends to inhibit the evolution of cooperation, whereas spatial reg- +ularity (equal network densities) is more beneficial for cooperation (Figure 6c). In particular, +regardless of the class of network from which networks 1 and 2 are derived, the critical ratio +(b/c)∗ required to favor cooperation is substantially increased (roughly by a factor of two) in +the regime ε → 0 compared to the spatially homogeneous regime ε = 1/2. +We also study the effects of temporal burstiness, in which case networks 1 and 2 are chosen to +have the same edge density (ε = 1/2), but there are periods of rapid transitions between the +two networks, punctuated by periods of slow transitions. To construct this scenario, instead of +having a single transition matrix, Q, we consider two such matrices, Q f and Qs, corresponding +to fast and slow epochs. At any time, the population is either in hidden state f, so that network +transitions occur according to Q f , or alternatively in hidden state s, so that network transitions +occur according to Qs. Whenever the population transitions to a new network, the hidden state +is drawn uniformly-at-random from { f, s} (see Figure 6b). (Note that the hidden state s or f is +re-sampled only when the network changes, from 1 to 2 or from 2 to 1.) +The speed of network transitions in each hidden state, s and f, is governed by a parameter +¯t ∈ [0, 1], so that transitions are fast in state f and slow in state s. When the population enters +13 + +a +b +Hidden +state s +Hidden +state f +on transition to +new structure +Network 1 +(edge fraction, ε) +Network 2 +(edge fraction, 1−ε) +ε +High spatial + burstiness +Low spatial + burstiness +High temporal + burstiness +Low temporal + burstiness +Figure 6: Effects of spatial and temporal burstiness on cooperation. We consider transitions between two +networks, with either a, spatial burstiness (different edge densities) or b, temporal burstiness (periods of both rapid +and slow transitions). c, The critical benefit-to-cost ratio (b/c)∗ as a function of spatial heterogeneity, ε. When +the two networks have the same edge density, ε = 0.5, cooperation is most readily favored. When the networks +that differ in their edge densities (ε ≪ 0.5), much larger values of b/c are required to support cooperation. d The +critical benefit-to-cost ratio (b/c)∗ required to favor cooperation as a function of temporal heterogeneity, ¯t. The +case ¯t = 1 means that networks transition at the same rate, regardless of the hidden state. When ¯t < 1, the networks +transition more rapidly in state f than in state s, so that there is temporal burstiness. Results on spatial and temporal +burtiness are shown for six classes of networks: random regular networks (RR), Erd¨os-R´enyi networks (ER)22, +Watts-Strogatz small-world networks (SW)25 with rewiring probability 0.1, Barab´asi-Albert scale-free networks +(BA)26, Goh-Kahng-Kim scale-free networks (GKK)23 with exponent 2.5, and Holme–Kim scale-free networks +(HK)27 with triad formation probability 0.1. For each such class, we generate 2,000 networks, each with 100 nodes +and average degree 20. We take ¯t = 1 in c and ε = 0.5 in d. +14 + +100 +30 +RR +ER +Critical benefit-to-cost ratio, (b/c)* +sw +80 +BA +ratio, +GKK +HK +60 +40 +RR +ER +sw +20 +0008880888088809 +BA +GKK · +HK +10 +0L +0.0 +0.1 +0.2 +0.3 +0.4 +0.5 +0.0 +0.2 +0.4 +0.6 +0.8 +1.0 +Edge fraction, E +Rescaled duration, tstate f, the expected duration before a network transition is small, namely ¯tN. Whereas when +the population enters state s the expected duration of the current network is longer, (2 − ¯t) N +(see Figure 6b). The case ¯t = 1 means that the current network has the same expected duration, +regardless of the hidden state, and there is no temporal burstiness. When ¯t < 1, the networks +transition more quickly in state f than they do in state s. Regardless of the value of ¯t, how- +ever, the total accumulated time spent in network 1 is the same as in network 2, throughout the +evolutionary process. +Temporal burstiness tends to facilitate cooperation, regardless of the overall structure of underly- +ing networks (Figure 6d). In particular, the critical benefit-to-cost required to favor cooperation +is largest when temporal burstiness is absent (¯t = 1), and it is reduced (typically by 20%) +when temporal burstiness is large (¯t = 0). Therefore, even when two networks have the same +edge density (ε = 1/2) and the accumulated time is spent on each network is the same, tem- +poral burstiness facilitates the spread of cooperation, in stark contrast to our findings for spatial +burstiness. +4 +Discussion +Many real-world interactions are ephemeral, and the entire network of social interactions may +be subject to exogenous changes. Seasonal changes in a species’ environment, for example, can +lead to active and dormant periods, as can diurnal cycles. Such periodic transitions are widely +used to model temporal networks28–31. Stochastic transitions in social structures can arise from +the effects of weather, animal migration and movement, and role reversal32. Motivated by the +ubiquity of structural variation in nature, we provide a treatment of dynamic social networks that +allows for arbitrary stochastic transitions between structures, with arbitrary networks within each +time step. +Our main mathematical result (Equation 3) predicts when cooperation will evolve on dynamic +networks, under weak selection. The population structure in every time step need not be con- +nected; all that we require is that the population satisfy a coherence condition so that it does not +become fragmented into multiple sub-populations (see §SI.1.1 in Supplementary Information). +In addition to probabilistic transitions, our analysis also extends to deterministic and periodic net- +work transitions (see Equation SI.33 in Supplementary Information). Our work can also cover +other scenarios for changing structures, such as when the direction of public goods or informa- +tion flow changes over time33; the number of active nodes or edges varies; or the population +size fluctuates (in fact, the results in Supplementary Information allow for arbitrary patterns of +replacement). Although prosocial behaviors in different strategic domains may manifest in dif- +ferent ways, such as trust games or dictator games, the desire to pay costs to benefit others has a +substantial degree of domain generality34. Our conclusions, based on donation games, are thus +indicative of how dynamic networks may broadly impact prosocial behavior. +In the donation game, we have seen that changing social structures can promote cooperation, +and that these effects can be dramatic. Even if every network individually disfavors cooperators, +15 + +transitions between them can facilitate the evolution of cooperation – a result that is reminiscent +of Parrondo’s paradox35. Figure 4 illustrates the mechanism for how this phenomenon arises, +as transitions move individuals between regions of the network that are dense to those that are +sparse. These types of changing social structures are common in real-world settings. Groups and +communities are more likely to form among people with close geographical locations and similar +religion, culture, and affiliations36,37; but connection density will be altered when individuals +migrate or change social groups. Changes in connection densities in different communities may +alternatively result from a phase difference, e.g. in online social networks across different time +zones. Spatio-temporal heterogeneity of interaction density within a community also leads to +time-varying connection densities, from sparse to dense and vice versa2. We find that each kind +of burstiness has a clear effect on cooperation, either hindering it in the case of spatial burstiness +or promoting it in the case of temporal burstiness. Broadly speaking, our work highlights the +significance of integrating multiple communities into one system, since treating communities +individually and independently may lead to erroneous conclusions about behavioral dynamics38. +All of our results are based on exogenous network transitions, which means that individuals can- +not selectively engineer their neighborhoods based on the traits of others. There are, of course, +many interesting models involving endogenous transitions, in which cooperators can selectively +form links with other cooperators and break links with defectors. In such models cooperation +can flourish when structure transitions are rapid enough39–51, for the simple reason that this en- +dogenous dynamic establishes cooperative clusters. Such “form follows function” models are +frequently aimed at answering the question: what kinds of networks arise from certain traits, and +how do these networks serve the greater good? By contrast, our focus is not the coevolutionary +dynamics of trait and structure, but on a different question altogether: what is the impact of ex- +ogenous structural changes for the evolution of behavior. This approach is more closely related +to classical studies of network effects on cooperation: given a (dynamic) network, what behav- +ioral traits evolve? Since exogenous structural changes do not provide any explicit advantage or +disadvantage to cooperators relative to defectors, the resulting evolutionary dynamics of social +traits are all the more intriguing. +We have aimed for generality in framing our mathematical results, but a natural limitation of +our study is the scope of networks we have analysed, compared to the vast space of possible +population structures and transitions among them. For this reason, even static structures are still +an active topic of current research in evolutionary game theory. We have therefore chosen to +consider a limited number of representative examples of dynamic networks, which showcase the +interesting effects they can have on the evolution of cooperation. Areas for future investigation +include the effects of fluctuating resources on cooperation, alternative evolutionary update rules, +stronger selection, and environments that involve both endogenous and exogenous transitions. In +fact, although we use cooperation as an example, our analysis is framed quite generally to allow +the study of other traits on dynamic structures. To the best of our knowledge, our analytical +findings constitute the first general results for behavioral evolution on dynamic networks, and we +hope that they will be valuable tools in future work. +16 + +5 +Methods +5.1 +Analysis of weak selection +Here, we outline a derivation of the critical benefit-to-cost ratio (b/c)∗ for selection to favor co- +operation, based on an extension of the methods of McAvoy & Allen18. Complete mathematical +details are provided in Supplementary Information. +For i, j ∈ N , let w[β] +ij be the weight of edge between nodes i and j in network β ∈ {1, . . . , L}. +We assume that the network is undirected, meaning w[β] +ij += w[β] +ji +for all i, j ∈ {1, . . . , N} and +β ∈ {1, . . . , L}. If i and j share an edge, then they interact. The class of models we are interested +in here involve social goods52 in which, on network β, an individual of type A at i pays a cost of +C[β] +ij to donate B[β] +ij to the individual at j. In state (x, β), the total payoff to the individual at i is +ui (x, β) = +N +∑ +j=1 +� +−xiC[β] +ij + xjB[β] +ji +� +. +(4) +This net payoff is converted to reproductive rate via the formula Fk (x, β) = eδuk(x,β). If the pop- +ulation structure is β, then a node in β is first selected uniformly-at-random to die. Subsequently, +all neighboring nodes in β compete to produce an offspring to fill the vacancy at node i. The +probability that j replaces i in state (x, β) is given by Equation 2. +Let p[β] +ij := w[β] +ij / ∑N +k=1 w[β] +ik be the probability of moving from i to j in one step of a random walk +on network β. Under neutral drift, the probability π[β] +i +that, starting in network β, i generates a +lineage that takes over the population (i.e. the reproductive value of i in β) satisfies +π[β] +i += 1 +N +N +∑ +j=1 +p[β] +ji +L +∑ +γ=1 +qβγπ[γ] +j ++ +� +1 − 1 +N +N +∑ +j=1 +p[β] +ij +� +L +∑ +γ=1 +qβγπ[γ] +i +, +(5) +subject to the constraint ∑N +i=1 π[β] +i += 1. π is thus determined by a linear system of size O (LN). +For the initial state, we choose the network according to the stationary distribution of the network- +transition chain, and a mutant appears uniformly-at-random within that network. There are two +mutant-appearance distributions overall, one for C arising after the all-D state (denoted µC) and +one for D arising after the all-C state (denoted µD). Associated to each µ ∈ {µC, µD} is a +quantity η[β] +I +(µ) related to the co-occurrence of a trait in β among the nodes in I ⊆ {1, . . . , N}, +which is defined formally in §SI.1.5 of Supplementary Information. For our purposes, we need +17 + +η[β] +I +(µ) only for I containing one or two nodes, in which case η[β] +I +(µC) = η[β] +I +(µD) and +η[β] +ij = +� +� +� +� +� +� +� +� +� +� +� +0 +i = j, +1 +N υ (β) + +L +∑ +γ=1 +qγβ +� +1 +N +N +∑ +k=1 +p[γ] +ik η[γ] +kj + 1 +N +N +∑ +k=1 +p[γ] +jk η[γ] +ik + +� +1 − 2 +N +� +η[γ] +ij +� +i ̸= j. +(6) +We refer the reader to Equation SI.32 in Supplementary Information for details. +It turns out that a scaled version of η, namely τ[β] +ij +:= η[β] +ij /υ (β), allows for a more intuitive +interpretation of the selection condition. Consider the time-reversed structure transition chain +defined by +�qβγ := υ (γ) +υ (β)qγβ. +(7) +Using this time-reversed chain in conjunction with Equation 6, we see that +τ[β] +ij += +� +� +� +� +� +� +� +� +� +� +� +0 +i = j, +1 +N + +L +∑ +γ=1 +�qβγ +� +1 +N +N +∑ +k=1 +p[γ] +ik τ[γ] +kj + 1 +N +N +∑ +k=1 +p[γ] +jk τ[γ] +ik + +� +1 − 2 +N +� +τ[γ] +ij +� +i ̸= j. +(8) +In the ancestral process, looking backward in time under neutral drift, Nτ[β] +ij +has the interpre- +tation as the expected number of update steps until i and j coalesce. Equivalently, since one of +N individuals is updated in each time step, τ[β] +ij +can be seen as the mean number of generations +needed for i and j to coalesce. If, conditioned on the population being in state β, T[β] is the mean +time to reach the most recent common ancestor going backward in time, then the mean time that +i and j spend identical by descent is T[β] − τ[β] +ij . Finding τ for all structures and pairs of individ- +uals involves solving a linear system of size O +� +LN2� +. (Although T aids in the interpretation of +τ as determining identity by descent, it does not need to be calculated in order to understand the +first-order effects of selection on fixation probability.) +We now have all of the neutral quantities we need to state the selection condition. The final piece +is the connection between the payoffs and the replacement probabilities under weak selection. A +straightforward calculation gives eji (x, β) = 1 +N p[β] +ij + δ ∑N +k=1 cji +k (β) xk + O +� +δ2� +, where +cji +k (β) = +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +1 +N p[β] +ij +� +− +N +∑ +ℓ=1 +C[β] +jℓ + B[β] +jj + p[β] +ij +N +∑ +ℓ=1 +C[β] +jℓ − +N +∑ +ℓ=1 +p[β] +iℓ B[β] +jℓ +� +k = j, +1 +N p[β] +ij +� +B[β] +kj + p[β] +ik +N +∑ +ℓ=1 +C[β] +kℓ − +N +∑ +ℓ=1 +p[β] +iℓ B[β] +kℓ +� +k ̸= j. +(9) +18 + +Putting everything together using Equation SI.31 in Supplementary Information, we see that +d +dδ +����� +δ=0 +ρC = 1 +N +N +∑ +i,j=1 +L +∑ +β=1 +υ (β) +� +L +∑ +γ=1 +qβγπ[γ] +i +� +p[β] +ij +N +∑ +ℓ=1 +� +− +� +T[β]−τ[β] +jj +� +C[β] +jℓ ++ +� +T[β]−τ[β] +jℓ +� +B[β] +ℓj +� +− 1 +N +N +∑ +i,j,k=1 +L +∑ +β=1 +υ (β) +� +L +∑ +γ=1 +qβγπ[γ] +i +� +p[β] +ij p[β] +ik +N +∑ +ℓ=1 +� +− +� +T[β]−τ[β] +jk +� +C[β] +kℓ ++ +� +T[β]−τ[β] +jℓ +� +B[β] +ℓk +� +. +(10) +Moreover, an analogous calculation for D gives d +dδ +��� +δ=0ρD = − d +dδ +��� +δ=0ρC, which means that the +condition d +dδ +��� +δ=0ρC > 0 is equivalent to d +dδ +��� +δ=0ρC > d +dδ +��� +δ=0ρD. +In the donation game, we have B[β] +ij = w[β] +ij b and C[β] +ij = w[β] +ij c, and Equation 10 gives +d +dδ +����� +δ=0 +ρC > d +dδ +����� +δ=0 +ρD ⇐⇒ bµ2 − cν2 > bµ0 − cν0, +(11) +where +µ0 = 1 +N +N +∑ +i,j=1 +L +∑ +β=1 +υ (β) +� +L +∑ +γ=1 +qβγπ[γ] +i +� +p[β] +ij +N +∑ +ℓ=1 +w[β] +ℓj τ[β] +jℓ ; +(12a) +ν0 = 1 +N +N +∑ +i,j=1 +L +∑ +β=1 +υ (β) +� +L +∑ +γ=1 +qβγπ[γ] +i +� +p[β] +ij +N +∑ +ℓ=1 +w[β] +jℓ τ[β] +jj ; +(12b) +µ2 = 1 +N +N +∑ +i,j,k=1 +L +∑ +β=1 +υ (β) +� +L +∑ +γ=1 +qβγπ[γ] +i +� +p[β] +ij p[β] +ik +N +∑ +ℓ=1 +w[β] +ℓk τ[β] +jℓ ; +(12c) +ν2 = 1 +N +N +∑ +i,j,k=1 +L +∑ +β=1 +υ (β) +� +L +∑ +γ=1 +qβγπ[γ] +i +� +p[β] +ij p[β] +ik +N +∑ +ℓ=1 +w[β] +kℓ τ[β] +jk . +(12d) +The critical benefit-to-cost ratio is therefore (b/c)∗ = (ν2 − ν0) / (µ2 − µ0). +Note that, for simplicity, we have assumed that any node can be selected for death in a given +network. In reality, this assumption might not hold because each individual network need not +be connected, which can lead to isolated nodes. If an isolated node is chosen for death, then +the individual at this node cannot be immediately replaced by the offspring of a neighbor. All +of our calculations can be modified to allow for only non-isolated nodes to be chosen for death, +although in practice we do not need to do so in any of our examples. +19 + +5.2 +Specific examples +We study the transition between two networks, with transition probabilities given by +qβγ = +� +� +� +� +� +� +� +� +� +1 − p +β = 1, γ = 1; +p +β = 1, γ = 2; +q +β = 2, γ = 1; +1 − q +β = 2, γ = 2. +(13) +The expected durations in networks 1 and 2 are q/ (p + q) and p/ (p + q), respectively. +We study evolution on dynamic two-clique networks. The two-clique network is made up of a +star clique and a complete clique, with the hubs connected (see Figure 2a). Let n and m denote +the numbers of nodes in the star and complete cliques, respectively, so that n + m = N. We +denote by 1, . . . , n the nodes in the star clique and by n + 1, . . . n + m the nodes in the complete +clique, where n is the hub of the star and n + m is the node of the complete clique connected +to the hub of the star. The other network is obtained by swapping the star and complete cliques. +The adjacency matrix for the first network satisfies w[1] +ij = 1 only if (i) i = n and j < n, or i < n +and j = n; (ii) i = n and j = n + m, or i = n + m and j = n; or (iii) i, j ⩾ n + 1 and i ̸= j. +The adjacency for the second network satisfies w[2] +ij = 1 only if (i) i = n + 1 and j > n + 1, or +i > n + 1 and j = n + 1; (ii) i = n and j = n + m, or i = n + m and j = n; or (iii) i, j ⩽ n +and i ̸= j. +Using the results of the previous section, we can directly calculate π and τ and calculate the +critical benefit-to-cost ratio. Here, we provide explicit mathematical results for representative +cases. Assuming p = q = 1/ (tN) and letting a := n/ (n + m), we find that +�b +c +�∗ += +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +(2a2−2a+1)t3+(8a2−8a+7)t2+(8a2−8a+15)t+2a2−2a+10 +2a(1−a)(t2+4t+3) +N → ∞, +t3+10t2+26t+19 +t2+4t+3 +N → ∞, a = 1 +2, +20a2−20a+33 +16a(1−a) +N → ∞ , t = 1, +¯t(¯t+1) +−2¯t2+2¯t+1N +N → ∞, t/N = ¯t, a = 1 +2, +� +� +� +210N16−520N15−1034N14+1770N13 ++14028N12−93440N11+300848N10−330944N9 +−663040N8+2230528N7−1096448N6−4570112N5 ++10000384N4−9265152N3+4259840N2−786432N +� +� +� +� +� +� +30N16−79N15+225N14+1756N13 +−15088N12−13128N11+247296N10−365152N9 +−849344N8+2987392N7−1801984N6−5024768N5 ++11302912N4−9949184N3+3940352N2−327680N−131072 +� +� +� +a = 1 +2, t = 1. +(14) +20 + +In particular, when N → ∞ and a = 1/2, (b/c)∗ is a monotonically increasing function of t. +We can compare this critical ratio to that of just a single network, which is the same for either +network 1 or network 2 and satisfies +�b +c +�∗ += +� +� +� +� +� +− (1 − a) N +N → ∞, +−3N9−40N8−204N7−848N6−2464N5+1920N4+15872N3−40960N2+24576N +6N8−64N7−520N6−1232N5+3872N4+6272N3−24320N2+22528N+4096 +a = 1 +2. +(15) +21 + +0 +0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 +1 +-106 +-104 +-102 +0 +102 +104 +106 +Supplementary Figure 1: The cooperation-promoting effects of structure transitions as the sizes of the two +cliques vary. The dynamic network is illustrated in Figure 2a, with a fraction a (resp. 1 − a) of nodes in the top +(resp. bottom) clique. The critical benefit-to-cost ratio, (b/c)∗, is shown as a function of a. The dots are the results +of numerical calculations with N = 10,000 and the lines are analytical approximations for sufficiently large N. The +rescaled duration is t = 1. +22 + +50 +100 +150 +200 +250 +300 +350 +400 +0 +10 +20 +30 +40 +50 +a +Network 1 +Dynamic +10-1 +100 +101 +102 +103 +104 +0 +5 +10 +15 +20 +25 +b +50 +100 +150 +200 +250 +300 +350 +400 +0 +10 +20 +30 +40 +50 +60 +c +10-1 +100 +101 +102 +103 +104 +0 +5 +10 +15 +20 +25 +30 +d +Supplementary Figure 2: Cooperation-promoting effects of dynamic multi-clique networks. We consider +networks made up of eight cliques connected via hub nodes (see Figure 5a; panels a and b here) and via leaf nodes +(see Figure 5b; panels c and d here). a,c, The critical ratio (b/c)∗ as a function of population size N, for the rescaled +duration t = 1. b,d, The critical ratio (b/c)∗ as a function of the rescaled duration t, for N = 200. +23 + +a +b +Supplementary Figure 3: Cooperation-promoting effects of structure transitions among more than two net- +works, and when networks differ in a small fraction of connections. a, Structure transitions among three net- +works. Every network transitions to another network with probability 1/ (2tN) and remains unchanged otherwise. +b, Structure transitions between multi-clique networks in which the two networks differ in only two cliques. We +take N = 150 in a and N = 64 in b, and the rescaled duration is t = 1. +24 + +10-1 +100 +101 +0.00 +0.01 +0.02 +0.03 +0.04 +0.05 +a +10-1 +100 +101 +0 +50 +100 +150 +200 +250 +300 +350 +400 +b +Supplementary Figure 4: Dynamic networks promote and accelerate the fixation of cooperators. We consider +the network with a star clique and a complete-graph clique with N = 16 and a = 0.5 (see Figure 2a). a, Fixation +probability of cooperators as a function of the rescaled duration, t, in network 1 and in the dynamic network. The +dynamic network leads to the larger fixation probability of cooperators than in network 1. b, Conditional and +unconditional fixation times as functions of the rescaled duration, t. Both the conditional and unconditional times +in the dynamic networks are smaller than in network 1.We take selection intensity δ = 0.1. +25 + +Supplementary Information +SI.1 +Modeling evolution on dynamic networks +SI.1.1 +Assumptions, definitions, and notation +We consider a population of N individuals (labeled N = {1, 2, . . . , N}), residing at any point in +time on one of L structures (labeled L = {1, 2, . . . , L}). Implicitly, this means that each of these +L structures is a network on N nodes, although each network need not be connected and some +nodes can be isolated. Each individual has type A or B, and the state of population is tracked by +a pair (x, β) ∈ {0, 1}N × L, where xi = 1 means i has type A and xi = 0 means i has type B. +At each time step, a set of individuals to be replaced, R ⊆ N , is chosen, together with an +offspring-to-parent map, α : R → N . Let p(R,α) (x, β) denote the probability of replacement +event (R, α) in state (x, β). Once (R, α) is chosen, the type configuration, x, is updated to y, +where yi = xα(i) if i ∈ R and yi = xi if i ̸∈ R. This update can be specified more succinctly +using an extended mapping �α : N → N defined by �α (j) = α (j) if j ∈ R and �α (j) = j if +j ̸∈ R, which leads to the updated state x�α, where (x�α)i = x�α(i) for i ∈ N . The network, β, is +updated via a transition matrix, Q = +� +qβγ +� +β,γ∈L, where qβγ is the probability of transitioning +from network β to network γ. An important feature of the model is that network transitions are +independent of x; thus, the population structure is exogenous and not influenced by traits. We +assume that Q is irreducible, which guarantees that it has a unique stationary distribution, υ. +We assume that for each replacement event, (R, α), type configuration, x, and network, β, the +probability p(R,α) (x, β) is a smooth function of a selection intensity parameter, δ ⩾ 0, in a small +neighborhood of δ = 0. Moreover, when δ = 0 (“neutral drift”), we assume that p(R,α) (x, β) is +independent of x (but it can depend on β). We denote by p◦ +(R,α) (β) the probability of choosing +(R, α) under neutral drift. The chain defined by Q does not depend on the selection intensity. +We also make the following assumption, which ensures that for every starting configuration +and network, there exists at least one individual whose lineage can take over the population: +Fixation Axiom. For all network structures β0 ∈ L, there exists a location i ∈ N , an integer +m ⩾ 1, and sequences of replacement events {(Rk, αk)}m +k=1 and networks {βk}m−1 +k=1 for which +(i) p(Rk,αk) (x, βk−1) > 0 for every k ∈ {1, . . . , m} and x ∈ {0, 1}N ; +(ii) qβk−1βk > 0 for every k ∈ {1, . . . , m − 1}; +(iii) i ∈ Rk for some k ∈ {1, . . . , m}; +(iv) �α1 ◦ �α2 ◦ · · · ◦ �αm (j) = i for all locations j ∈ N . +These conditions are similar to those used by Allen & McAvoy13 and McAvoy & Allen18, +except here it is modified to account for dynamic networks. Informally, it guarantees that no +individual lives forever and that the process eventually reaches a state in which all individuals +are identical by descent. We note that here it does not require each network to be connected. +26 + +Since there is no mutation of traits, all individuals must have the same type when they +are identical by descent. The configurations A := (1, 1, . . . , 1) and B := (0, 0, . . . , 0) are +the only absorbing configurations. (Note that while the configuration of types cannot leave A +or B, the state itself, which includes the network structure, can still change.) We denote by +BN the set of all configurations, {0, 1}N , and by BN +⊺ the set of all transient configurations, +{0, 1}N − {A, B}. From the Fixation Axiom, we see that given any starting configuration- +network pair, (x, β) ∈ BN × L, there is a well-defined probability, ρA (x, β) (resp. ρB (x, β)), +that the population eventually reaches the monomorphic state A (resp. B). The behavior of these +fixation probabilities (under weak selection, meaning δ ≪ 1) is the main focus of this study. +We follow the workflow proposed by McAvoy & Allen18 for analyzing mutation-free evo- +lutionary dynamics under weak selection. We first study the assortment of traits under neutral +drift (δ = 0). Subsequently, we link these findings to the game using a martingale perturba- +tion argument. We avoid reproducing the entire derivation in18; instead, we highlight the main +modifications to those arguments necessary to accommodate stochastic network transitions. +SI.1.2 +Network-mediated reproductive value +With the main assumptions in place, we now introduce some derived, demographic quantities +that we will refer to throughout the analysis of the model. If the population is in state (x, β), then +the marginal probability that i produces an offspring that replaces j in the next update is +eij (x, β) := +∑ +(R,α) +j∈R, α(j)=i +p(R,α) (x, β) . +(SI.1) +The expected change in the abundance of A in state (x, β) can be expressed as +∆ (x, β) := ∑ +i∈N +xi ∑ +j∈N +eij (x, β) + ∑ +i∈N +xi +� +1 − ∑ +j∈N +eji (x, β) +� +− ∑ +i∈N +xi += ∑ +i,j∈N +eji (x, β) +� +xj − xi +� +. +(SI.2) +One inconvenient aspect of dealing with the true abundance of A is that it is generally not +a martingale under neutral drift. This property is well-known even in models without dynamic +structure13 and it necessitates working with a weighted frequency instead. The notion of repro- +ductive value, which can be (informally) interpreted as the expected contribution of an individual +to future generations, turns out to give the proper weighting. For our purposes, we interpret the +reproductive value of i ∈ N as the probability that, under neutral drift, i generates a lineage +that eventually takes over the population. Because our interest is in fixation probabilities in the +first place, it is not surprising that such a quantity should appear. This quantity depends on the +network structure, but it is independent of the type configuration due to the drift assumption. +Formally, we define the reproductive value of i in network β, denoted π[β] +i , to be the proba- +bility that under neutral drift and starting in structure β, a mutant in node i eventually takes over +the whole population. Let e◦ +ij (β) denote the probability, that under neutral drift and in structure +27 + +β, individual i spreads her strategy to j. A one-step analysis of the neutral Markov chain gives +π[β] +i += ∑ +j∈N +e◦ +ij (β) ∑ +γ∈L +qβγπ[γ] +j ++ +� +1 − ∑ +j∈N +e◦ +ji (β) +� +∑ +γ∈L +qβγπ[γ] +i +; +(SI.3a) +∑ +i∈N +π[β] +i += 1 +(SI.3b) +for all i ∈ N and β ∈ L. There is one point of subtlety in relation to reproductive value on +static networks, which relates to the normalization condition ∑i∈N π[β] +i += 1 for all β ∈ L. +The Fixation Axiom guarantees that there is a unique π satisfying Equation SI.3a up to a +scalar multiple. In this case, for any fixed C ∈ R, requiring ∑i∈N ∑β∈L π[β] +i += C yields +a unique solution to Equation SI.3a. +Summing both sides of Equation SI.3a over i ∈ N +yields ∑i∈N π[β] +i += ∑γ∈L qβγ ∑i∈N π[γ] +i +. Since the chain Q is irreducible, it follows that +∑i∈N π[β] +i +is independent of β ∈ L, and thus it must be equal to C/L. Therefore, asserting +that ∑i∈N ∑β∈L π[β] +i += L is equivalent to the requirement that ∑i∈N π[β] +i += 1 for all β ∈ L. +As a result, π, which we refer to as network-mediated reproductive value due to its dependence +on network transitions, is uniquely defined by Equation SI.3. +Finally, the change in ∑i∈N π[β] +i xi, the π-weighted abundance of A, is +�∆ (x, β) = ∑ +i∈N +xi ∑ +j∈N +eij (x, β) ∑ +γ∈L +qβγπ[γ] +j ++ ∑ +i∈N +xi +� +1 − ∑ +j∈N +eji (x, β) +� +∑ +γ∈L +qβγπ[γ] +i +− ∑ +i∈N +π[β] +i xi += ∑ +i,j∈N +eji (x, β) ∑ +γ∈L +qβγπ[γ] +i +� +xj − xi +� + ∑ +i∈N +xi +� +∑ +γ∈L +qβγπ[γ] +i +− π[β] +i +� +. +(SI.4) +It follows from Equation SI.3 that, under neutral drift, �∆◦ (x, β) = 0, for all x ∈ BN and +β ∈ L. This property will play a key role in our subsequent weak-selection analysis of the +process (Equation SI.13). +SI.1.3 +A mutation-modified evolutionary process +The process under consideration is mutation-free. However, following Ref.18, in order to get +an idea of the assortment of types prior to hitting an absorbing configuration, it is convenient +to introduce an artificial mutation that makes the chain ergodic and gives it a unique stationary +distribution. The idea is to choose a state (z, λ) with z ∈ BN +⊺ , and let mutations bring absorbing +configurations into (z, λ) with some small probability u > 0. If P(x,β)→(y,γ) denotes the proba- +bility of transitioning from (x, β) to (y, γ) in the original (mutation-free) chain over the course +28 + +of one time step, then the transition probabilities for the mutation-modified chain are given by +P⟳(z,λ) +(x,β)→(y,γ) = +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +u +x ∈ {A, B} , (y, γ) = (z, λ) , +(1 − u) P(x,β)→(y,γ) +x ∈ {A, B} , (y, γ) ̸= (z, λ) , +P(x,β)→(y,γ) +x ̸∈ {A, B} . +(SI.5) +As a result of the Fixation Axiom, there is a unique stationary distribution, π⟳(z,λ), such that +π◦ +⟳(z,λ) (x, β) = ∑ +γ∈L +� +π◦ +⟳(z,λ) (A, γ) P⟳(z,λ) +(A,γ)→(x,β) + π◦ +⟳(z,λ) (B, γ) P⟳(z,λ) +(B,γ)→(x,β) +� ++ ∑ +y∈BN +⊺ +∑ +γ∈L +π◦ +⟳(z,λ) (y, γ) P⟳(z,λ) +(y,γ)→(x,β) += ∑ +γ∈L +π◦ +⟳(z,λ) (A, γ) +� +uδz,xδλ,β + (1 − u) δA,xqγβ +� ++ ∑ +γ∈L +π◦ +⟳(z,λ) (B, γ) +� +uδz,xδλ,β + (1 − u) δB,xqγβ +� ++ ∑ +y∈BN +⊺ +∑ +γ∈L +π◦ +⟳(z,λ) (y, γ) P(y,γ)→(x,β) +(SI.6) +for all x ∈ B and β ∈ L. +In one step after state (x, β), the expected change in the π-weighted abundance of A is +�∆⟳(z,λ) (x, β) = +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +−u +� +1 − ∑i∈N π[λ] +i +zi +� +x = A, +u ∑i∈N π[λ] +i +zi +x = B, +�∆ (x, β) +x ̸∈ {A, B} . +(SI.7) +Averaging this expected change over the stationary distribution of the modified chain gives +0 = E⟳(z,λ) +� +�∆⟳(z,λ) +� += E⟳(z,λ) +� +�∆ +� +− u ∑ +β∈L +π⟳(z,λ) (A, β) +� +1 − ∑ +i∈N +π[λ] +i +zi +� ++ u ∑ +β∈L +π⟳(z,λ) (B, β) ∑ +i∈N +π[λ] +i +zi. +(SI.8) +Owing to a result of Fudenberg & Imhof53, we know that, in the low-mutation limit, +lim +u→0 ∑ +β∈L +π⟳(z,λ) (A, β) = ρA (z, λ) ; +(SI.9a) +lim +u→0 ∑ +β∈L +π⟳(z,λ) (B, β) = ρB (z, λ) . +(SI.9b) +29 + +Therefore, taking the derivative of both sides of Equation SI.8 with respect to u at u = 0 gives +ρA (z, λ) = ∑ +i∈N +π[λ] +i +zi + d +du +����� +u=0 +E⟳(z,λ) +� +�∆ +� +. +(SI.10) +Let ⟨·⟩(z,λ) := +d +du +��� +u=0E⟳(z,λ) [·]. By the argument given in Ref.18 Corollary 1, we see that +for any function ϕ : BN × L → R satisfying ϕ (A, β) = ϕ (B, β) = 0 for all β ∈ L, +⟨ϕ⟩(z,λ) = +∞ +∑ +t=0 +E +� +ϕ +� +xt, βt� | +� +x0, β0� += (z, λ) +� +, +(SI.11) +where the summation on the right-hand side converges absolutely. In particular, this equation +holds for the expected change in the π-weighted abundance of A, ϕ = �∆. Since we also have +d +dδ +����� +δ=0 +eij (x, β) = ∑ +I⊆N +cij +I (β) xI +(SI.12) +for unique coefficients cij +I (β), where xI := ∏i∈I xi, it follows that +d +dδ +����� +δ=0 +ρA (z, λ) = d +dδ +����� +δ=0 +� +�∆ +� +(z,λ) += +� +d +dδ +����� +δ=0 +�∆ +�◦ +(z,λ) += +� +d +dδ +����� +δ=0 +∑ +i,j∈N +eji (x, β) ∑ +γ∈L +qβγπ[γ] +i +� +xj − xi +� +�◦ +(z,λ) += ∑ +i,j∈N ∑ +I⊆N +� +cji +I (β) ∑ +γ∈L +qβγπ[γ] +i +� +xI∪{j} − xI∪{i} +��◦ +(z,λ) +, +(SI.13) +where the interchange of the two limits is possible due to Equation SI.11 and the absolute con- +vergence of its summation. The second line of Equation SI.13 is where we use the fact that +�∆0 (x, β) = 0 for all x ∈ BN and β ∈ L, highlighting the importance of network-mediated +reproductive value. +As a result of these calculations, what remains in order to understand the first-order effects +of selection on a mutant type’s fixation probability is an analysis of the neutral operator ⟨·⟩◦ +(z,λ). +SI.1.4 +Analysis of neutral drift +Throughout this section, we denote the stationary distribution of the structure-transition chain, +Q, by υ. We also suppress either the configuration or the network when we marginalize. For ex- +ample, we write π⟳(z,λ) (x) for ∑β∈L π⟳(z,λ) (x, β) and π⟳(z,λ) (β) for ∑x∈BN π⟳(z,λ) (x, β). +In the limit of low mutation, we know π◦ +⟳(z,λ) (A) converges to ρ◦ +A (z, λ) and π◦ +⟳(z,λ) (B) +converges to ρ◦ +B (z, λ). The following lemma is a slightly stronger version of this result: +30 + +Lemma 1. For all networks β ∈ L, +lim +u→0 π◦ +⟳(z,λ) (A, β) = ρ◦ +A (z, λ) υ (β) ; +(SI.14a) +lim +u→0 π◦ +⟳(z,λ) (B, β) = ρ◦ +B (z, λ) υ (β) . +(SI.14b) +Proof. Letting x = A in Equation SI.6 and taking u → 0 gives +lim +u→0 π◦ +⟳(z,λ) (A, β) = ∑ +γ∈L +� +lim +u→0 π◦ +⟳(z,λ) (A, γ) +� +qγβ. +(SI.15) +It follows that limu→0 π◦ +⟳(z,λ) (A, β) is proportional to υ (β), for all β ∈ L. The constant of +proportionality must be ρ◦ +A (z, λ) due to the fact that limu→0 π◦ +⟳(z,λ) (A) = ρ◦ +A (z, λ). The +result for limu→0 π◦ +⟳(z,λ) (B, β) follows from analogous reasoning and is omitted here. +Remark 1. Neutral fixation probabilities, ρ◦ +A (z, λ) and ρ◦ +B (z, λ), can be calculated using re- +productive values and the identities ρ◦ +A (z, λ) = ∑i∈N π[λ] +i +zi and ρ◦ +B (z, λ) = 1 − ∑i∈N π[λ] +i +zi. +The following is an immediate consequence of Lemma 1: +Corollary 1. limu→0 π◦ +⟳(z,λ) (β) = υ (β). +The next lemma establishes a recurrence for d +du +��� +u=0π◦ +⟳(z,λ) (β): +Lemma 2. For every β, we have +d +du +����� +u=0 +π◦ +⟳(z,λ) (β) = δβ,λ − υ (β) + ∑ +γ∈L +� +d +du +����� +u=0 +π◦ +⟳(z,λ) (γ) +� +qγβ. +(SI.16) +Proof. Summing both sides of Equation SI.6 over all x ∈ BN gives +π◦ +⟳(z,λ) (β) = u ∑ +γ∈L +� +π◦ +⟳(z,λ) (A, γ) + π◦ +⟳(z,λ) (B, γ) +� � +δβ,λ − qγβ +� ++ ∑ +γ∈L +π◦ +⟳(z,λ) (γ) qγβ. +(SI.17) +Differentiating this equation with respect to u at u = 0 and using Lemma 1 yields Equation SI.16. +Since the state of the process consists of both a configuration of traits and a network structure, +the next result gives a recurrence for calculating a modified version of ⟨·⟩◦ +(z,λ), using conditioning +on the network structure. In particular, for a function ϕ : BN → R defined on just configura- +tions, we let ⟨ϕ | β⟩◦ +(z,λ) = +d +du +��� +u=0E◦ +⟳(z,λ) [ϕ | β]. This quantity can be calculated as follows: +31 + +Proposition 1. For every function ϕ : BN → R, we have +υ (β) ⟨ϕ | β⟩◦ +(z,λ) = δλ,β (ϕ (z) − ρ◦ +A (z, λ) ϕ (A) − ρ◦ +B (z, λ) ϕ (B)) ++ ∑ +γ∈L +υ (γ) ∑ +(R,α) +p◦ +(R,α) (γ) qγβ ⟨ϕ�α | γ⟩◦ +(z,λ) , +(SI.18) +where, for �α : N → N , ϕ�α : BN → R is the map defined by ϕ�α (x) = ϕ (x�α) for x ∈ BN . +Proof. For x ∈ BN +⊺ , differentiating both sides of Equation SI.6 with respect to u at u = 0 gives +d +du +����� +u=0 +π◦ +⟳(z,λ) (x, β) += δz,xδλ,β + ∑ +y∈BN +⊺ +∑ +γ∈L +� +d +du +����� +u=0 +π◦ +⟳(z,λ) (y, γ) +� +P◦ +(y,γ)→(x,β) += δz,xδλ,β + ∑ +y∈BN +⊺ +∑ +γ∈L +� +d +du +����� +u=0 +π◦ +⟳(z,λ) (y, γ) +� +∑ +(R,α) +y�α=x +p◦ +(R,α) (γ) qγβ. +(SI.19) +Doing so for x ∈ {A, B} gives +d +du +����� +u=0 +π◦ +⟳(z,λ) (A, β) = ∑ +γ∈L +� +d +du +����� +u=0 +π◦ +⟳(z,λ) (A, γ) +� +qγβ − ρ◦ +A (z, λ) υ (β) ++ ∑ +y∈BN +⊺ +∑ +γ∈L +� +d +du +����� +u=0 +π◦ +⟳(z,λ) (y, γ) +� +∑ +(R,α) +y�α=A +p◦ +(R,α) (γ) qγβ; (SI.20a) +d +du +����� +u=0 +π◦ +⟳(z,λ) (B, β) = ∑ +γ∈L +� +d +du +����� +u=0 +π◦ +⟳(z,λ) (B, γ) +� +qγβ − ρ◦ +B (z, λ) υ (β) ++ ∑ +y∈BN +⊺ +∑ +γ∈L +� +d +du +����� +u=0 +π◦ +⟳(z,λ) (y, γ) +� +∑ +(R,α) +y�α=B +p◦ +(R,α) (γ) qγβ. (SI.20b) +If ϕ : BN → R is a fixed function, then, by definition, +υ (β) ⟨ϕ | β⟩◦ +(z,λ) = ∑ +x∈BN +υ (β) d +du +����� +u=0 +π◦ +⟳(z,λ) (x, β) +π◦ +⟳(z,λ) (β) ϕ (x) . +(SI.21) +Combining Lemma 2 and Eqs. SI.19–SI.20 with the fact that +υ (β) d +du +����� +u=0 +π◦ +⟳(z,λ) (x, β) +π◦ +⟳(z,λ) (β) += d +du +����� +u=0 +π◦ +⟳(z,λ) (x, β) − (δA,xρ◦ +A (z, λ) + δB,xρ◦ +B (z, λ)) d +du +����� +u=0 +π◦ +⟳(z,λ) (β) (SI.22) +then gives Equation SI.18 after some tedious but straightforward simplifications. +32 + +Corollary 2. With I ⊆ N and η[β] +I +(z, λ) := υ (β) +� +∑i∈N π[β] +i xi − xI | β +�◦ +(z,λ), we have +η[β] +I +(z, λ) = δλ,β +� +∑ +i∈N +π[β] +i zi − zI +� ++ ∑ +γ∈L ∑ +(R,α) +p◦ +(R,α) (γ) qγβη[γ] +�α(I) (z, λ) . +(SI.23) +Subject to ∑i∈N π[β] +i η[β] +i +(z, λ) = 0 for some β ∈ L, the solution to Equation SI.23 is unique. +Proof. Setting ϕ (x) = ∑i∈N π[β] +i xi − xI in Proposition 1 gives Equation SI.23. Conversely, +we know that η[β] +I +(z, λ) := υ (β) +� +∑i∈N π[β] +i xi − xI | β +�◦ +(z,λ) solves Equation SI.23, so that +there is at least one solution to Equation SI.23. By the Fixation Axiom, the dimensionality of +the space of solutions to Equation SI.23 is determined by that of the case |I| = 1. (The reason +is that all subsets of size greater than one are transient under the ancestral process.) Specifically, +the recurrence for I = {i} is +η[β] +i +(z, λ) = δλ,β (ρ◦ +A (z, λ) − zi) + ∑ +γ∈L ∑ +j∈N +e◦ +ji (γ) qγβη[γ] +j +(z, λ) ++ ∑ +γ∈L +� +1 − ∑ +j∈N +e◦ +ji (γ) +� +qγβη[γ] +i +(z, λ) . +(SI.24) +If �η (z, λ) is another solution to Equation SI.24, then χ (z, λ) := η (z, λ) − �η (z, λ) satisfies +χ[β] +i +(z, λ) = ∑ +γ∈L ∑ +j∈N +e◦ +ji (γ) qγβχ[γ] +j +(z, λ) + ∑ +γ∈L +� +1 − ∑ +j∈N +e◦ +ji (γ) +� +qγβχ[γ] +i +(z, λ) . (SI.25) +Noting that any constant function is a solution to Equation SI.25, and the space of solutions to +this equation is one-dimensional as a result of the Fixation Axiom, there must exist K ∈ R +such that η (z, λ) = �η (z, λ) + K. Since the solution η[β] +i +(z, λ) = υ (β) ⟨xi | β⟩◦ +(z,λ) satisfies +∑i∈N π[β] +i η[β] +i +(z, λ) = 0 for all β ∈ L, it follows that K = 0 and η (z, λ) = �η (z, λ) whenever +�η (z, λ) satisfies Equation SI.23 and ∑i∈N η[β] +i +�η[β] +i +(z, λ) = 0 for some β ∈ L. We note that +∑i∈N π[β] +i η[β] +i +(z, λ) = 0 for some β ∈ L ensures that this equation holds for all β ∈ L. +33 + +SI.1.5 +Calculating first-order effects of selection on fixation probabilities +SI.1.5.1 +Fixed initial configurations +Note that for functions ϕ : BN → R and φ : L → R, we have +⟨φϕ⟩◦ +(z,λ) = d +du +����� +u=0 +∑ +β∈L +π◦ +⟳(z,λ) (β) φ (β) E◦ +⟳(z,λ) [ϕ | β] += ∑ +β∈L +υ (β) φ (β) ⟨ϕ | β⟩◦ +(z,λ) ++ (ρ◦ +A (z, λ) ϕ (A) + ρ◦ +B (z, λ) ϕ (B)) ∑ +β∈L +φ (β) d +du +����� +u=0 +π◦ +⟳(z,λ) (β) . +(SI.26) +Therefore, we may rewrite Equation SI.13 as +d +dδ +����� +δ=0 +ρA (z, λ) += ∑ +i,j∈N ∑ +I⊆N +� +cji +I (β) ∑γ∈L qβγπ[γ] +i +� +�� +� +φ +� +xI∪{j} − xI∪{i} +� +�� +� +ϕ +��◦ +(z,λ) += ∑ +i,j∈N ∑ +I⊆N ∑ +β∈L +υ (β) cji +I (β) ∑ +γ∈L +qβγπ[γ] +i +�� +xI∪{j} | β +�◦ +(z,λ) − +� +xI∪{i} | β +�◦ +(z,λ) +� +. +(SI.27) +Defining η[β] +I +(z, λ) := υ (β) +� +∑i∈N π[β] +i xi − xI | β +�◦ +(z,λ), we then have +d +dδ +����� +δ=0 +ρA (z, λ) = ∑ +i,j∈N ∑ +I⊆N ∑ +β∈L +cji +I (β) ∑ +γ∈L +qβγπ[γ] +i +� +η[β] +I∪{i} (z, λ) − η[β] +I∪{j} (z, λ) +� +, +(SI.28) +where, by Corollary 2, the terms η are uniquely determined by +η[β] +I +(z, λ) = δλ,β +� +∑ +i∈N +π[β] +i zi − zI +� ++ ∑ +γ∈L ∑ +(R,α) +p◦ +(R,α) (γ) qγβη[γ] +�α(I) (z, λ) ; (SI.29a) +∑ +i∈N +π[β] +i η[β] +i +(z, λ) = 0 for some β ∈ L. +(SI.29b) +SI.1.5.2 +Probabilistic initial configurations +Up until this point, we have focused on fixation probabilities given some fixed initial state, +(z, λ) ∈ N × L. We now allow mutant types to arise stochastically and consider mean fix- +34 + +ation probabilities for both types. For two distributions, µA, µB ∈ ∆ +� +BN +⊺ × L +� +, we let +ρA (µA) := E(z,λ)∼µA [ρA (z, λ)] ; +(SI.30a) +ρB (µB) := E(z,λ)∼µB [ρB (z, λ)] . +(SI.30b) +By the results of §SI.1.5.1, for any µ ∈ ∆ +� +BN +⊺ × L +� +, we have +d +dδ +����� +δ=0 +ρA (µ) = ∑ +i,j∈N ∑ +I⊆N ∑ +β∈L +cji +I (β) ∑ +γ∈L +qβγπ[γ] +i +� +η[β] +I∪{i} (µ) − η[β] +I∪{j} (µ) +� +, +(SI.31) +where +η[β] +I +(µ) = E(z,λ)∼µ +� +δλ,β +� +∑ +i∈N +π[β] +i zi − zI +�� ++ ∑ +γ∈L ∑ +(R,α) +p◦ +(R,α) (γ) qγβη[γ] +�α(I) (µ) ; +(SI.32a) +∑ +i∈N +π[β] +i η[β] +i +(µ) = 0 for some β ∈ L. +(SI.32b) +Letting µ = µA gives the mean fixation probability for type A, while the mean fixation proba- +bility for type B can be calculated analogously using the equation ρB (µB) = 1 − ρA (µB). +Although the main focus of our study is on network-transition chains that are both aperiodic +and irreducible, we do also consider periodic structures. Suppose that among the L networks in +L, network β transitions deterministically to network β + 1 for β ∈ {1, . . . , L − 1}, and network +L transitions deterministically to network 1. We can then write Equation SI.32 more explicitly +as +η[1] +I (µ) = E(z,λ)∼µ +� +δλ,1 +� +∑ +i∈N +π[1] +i zi − zI +�� ++ ∑ +(R,α) +p◦ +(R,α) (L) η[L] +�α(I) (µ) ; (SI.33a) +η[β] +I +(µ) = E(z,λ)∼µ +� +δλ,β +� +∑ +i∈N +π[β] +i zi − zI +�� ++ ∑ +(R,α) +p◦ +(R,α) (β − 1) η[β−1] +�α(I) (µ) ; +(1 < β ⩽ L) +(SI.33b) +∑ +i∈N +π[β] +i η[β] +i +(µ) = 0 for some β ∈ L. +(SI.33c) +References +[1] Ohtsuki, H., Hauert, C., Lieberman, E. & Nowak, M. A. A simple rule for the evolution of +cooperation on graphs and social networks. Nature 441, 502–505 (2006). +[2] Holme, P. & Saram¨aki, J. Temporal networks. Physics Reports 519, 97–125 (2012). +35 + +[3] Vazquez, A., R´acz, B., Luk´acs, A. & Barab´asi, A. L. Impact of non-poissonian activity +patterns on spreading processes. Physical Review Letters 98, 158702 (2007). +[4] Onnela, J. P. et al. Structure and tie strengths in mobile communication networks. Proceed- +ings of the National Academy of Sciences of the United States of America 104, 7332–7336 +(2007). +[5] Isella, L. et al. What’s in a crowd? Analysis of face-to-face behavioral networks. Journal +of Theoretical Biology 271, 166–180 (2011). +[6] Mastrandrea, R., Fournet, J. & Barrat, A. Contact patterns in a high school: A comparison +between data collected using wearable sensors, contact diaries and friendship surveys. PLoS +ONE 10, 1–26 (2015). +[7] Ulanowicz, R. E. Quantitative methods for ecological network analysis. Computational +Biology and Chemistry 28, 321–339 (2004). +[8] Bascompte, J. & Jordano, P. Plant-animal mutualistic networks: The architecture of biodi- +versity. Annual Review of Ecology, Evolution, and Systematics 38, 567–593 (2007). +[9] Miele, V. & Matias, C. Revealing the hidden structure of dynamic ecological networks. +Royal Society Open Science 4, 170251 (2017). +[10] Akbarpour, M. & Jackson, M. O. Diffusion in networks and the virtue of burstiness. Pro- +ceedings of the National class-structured of Sciences of the United States of America 115, +E6996–E7004 (2018). +[11] Onaga, T., Gleeson, J. P. & Masuda, N. Concurrency-induced transitions in epidemic dy- +namics on temporal networks. Physical Review Letters 119, 108301 (2017). +[12] Taylor, P. D., Day, T. & Wild, G. Evolution of cooperation in a finite homogeneous graph. +Nature 447, 469–472 (2007). +[13] Allen, B. & McAvoy, A. A mathematical formalism for natural selection with arbitrary +spatial and genetic structure. Journal of Mathematical Biology 78, 1147–1210 (2019). +[14] Allen, B. et al. Evolutionary dynamics on any population structure. Nature 544, 227–230 +(2017). +[15] Wong, B. B. M. & Candolin, U. Behavioral responses to changing environments. Behav- +ioral Ecology 26, 665–673 (2014). +[16] Tilman, A. R., Plotkin, J. B. & Akc¸ay, E. Evolutionary games with environmental feed- +backs. Nature Communications 11 (2020). +[17] Nowak, M. A., Sasaki, A., Taylor, C. & Fudenberg, D. Emergence of cooperation and +evolutionary stability in finite populations. Nature 428, 646–650 (2004). +36 + +[18] McAvoy, A. & Allen, B. Fixation probabilities in evolutionary dynamics under weak se- +lection. Journal of Mathematical Biology 82, 14 (2021). +[19] Fisher, R. A. The Genetical Theory of Natural Selection (Clarendon Press, 1930). +[20] Taylor, P. D. +Allele-frequency change in a class-structured population. +The American +Naturalist 135, 95–106 (1990). +[21] McAvoy, A. & Wakeley, J. Evaluating the structure-coefficient theorem of evolutionary +game theory. Proceedings of the National Academy of Sciences of the United States of +America 119 (2022). +[22] Erd¨os, P. & R´enyi, A. On the evolution of random graphs. Publication of the Mathematical +Institute of the Hungarian Academy of Sciences 5, 17–61 (1960). +[23] Goh, K. I., Kahng, B. & Kim, D. Universal behavior of load distribution in scale-free +networks. Physical Review Letters 87, 278701 (2001). +[24] Gernat, T. et al. +Automated monitoring of behavior reveals bursty interaction patterns +and rapid spreading dynamics in honeybee social networks. Proceedings of the National +Academy of Sciences of the United States of America 115, 1433–1438 (2018). +[25] Watts, D. J. & Strogatz, S. H. Collective dynamics of ‘small-world’ networks. Nature 393, +440–442 (1998). +[26] Barab´asi, A.-L. & Albert, R. Emergence of scaling in random networks. Science 286, +509–512 (1999). +[27] Holme, P. & Kim, B. J. Growing scale-free networks with tunable clustering. Physical +Review E 65, 2–5 (2002). +[28] Lieberman, E., Hauert, C. & Nowak, M. A. Evolutionary dynamics on graphs. Nature 433, +312–316 (2005). +[29] Pan, R. K. & Saram¨aki, J. Path lengths, correlations, and centrality in temporal networks. +Physical Review E 84, 016105 (2011). +[30] Holme, P. Modern temporal network theory: a colloquium. European Physical Journal B +88, 234 (2015). +[31] Valdano, E., Ferreri, L., Poletto, C. & Colizza, V. Analytical computation of the epidemic +threshold on temporal networks. Physical Review X 5, 21005 (2015). +[32] Povinelli, D. J., Nelson, K. E. & Boysen, S. T. Comprehension of role reversal in chim- +panzees: evidence of empathy? Animal Behaviour 43, 633–640 (1992). +[33] Su, Q., Allen, B. & Plotkin, J. B. Evolution of cooperation with asymmetric social inter- +actions. Proceedings of the National Academy of Sciences of the United States of America +119, e2113468118 (2022). +37 + +[34] Peysakhovich, A., Nowak, M. A. & Rand, D. G. Humans display a ’cooperative phenotype’ +that is domain general and temporally stable. Nature Communications 5, 4939 (2014). +[35] Harmer, G. & Abbott, D. Losing strategies can win by Parrondo’s paradox. Nature 402 +(1999). +[36] Girvan, M. & Newman, M. E. Community structure in social and biological networks. +Proceedings of the National Academy of Sciences of the United States of America 99, 7821– +7826 (2002). +[37] Newman, M. E. Modularity and community structure in networks. Proceedings of the +National Academy of Sciences of the United States of America 103, 8577–8582 (2006). +[38] Blonder, B., Wey, T. W., Dornhaus, A., James, R. & Sih, A. Temporal dynamics and +network analysis. Methods in Ecology and Evolution 3, 958–972 (2012). +[39] Pacheco, J. M., Traulsen, A. & Nowak, M. A. Coevolution of strategy and structure in +complex networks with dynamical linking. Physical Review Letters 97, 258103 (2006). +[40] Santos, F. C., Pacheco, J. M. & Lenaerts, T. Cooperation prevails when individuals adjust +their social ties. PLoS Computational Biology 2, 1284–1291 (2006). +[41] Pacheco, J. M., Traulsen, A., Ohtsuki, H. & Nowak, M. A. Repeated games and direct +reciprocity under active linking. Journal of Theoretical Biology (2008). +[42] Van Segbroeck, S., Santos, F. C., Lenaerts, T. & Pacheco, J. M. Reacting differently to +adverse ties promotes cooperation in social networks. Physical Review Letters 102 (2009). +[43] Wu, B. et al. Evolution of cooperation on stochastic dynamical networks. PLoS ONE 5, +e11187 (2010). +[44] Fehl, K., van der Post, D. J. & Semmann, D. Co-evolution of behaviour and social network +structure promotes human cooperation. Ecology Letters 14, 546–551 (2011). +[45] Rand, D. G., Arbesman, S. & Christakis, N. A. Dynamic social networks promote cooper- +ation in experiments with humans. Proceedings of the National academy of Sciences of the +United States of America 108, 19193–19198 (2011). +[46] Bravo, G., Squazzoni, F. & Boero, R. Trust and partner selection in social networks: An +experimentally grounded model. Social Networks (2012). +[47] Wang, J., Suri, S. & Watts, D. J. Cooperation and assortativity with dynamic partner up- +dating. Proceedings of the National Academy of Sciences of the United States of America +109, 14363–14368 (2012). +[48] Bednarik, P., Fehl, K. & Semmann, D. Costs for switching partners reduce network dynam- +ics but not cooperative behaviour. Proceedings of the Royal Society B: Biological Sciences +(2014). +38 + +[49] Cardillo, A. et al. Evolutionary dynamics of time-resolved social interactions. Physical +Review E 90, 52825 (2014). +[50] Harrell, A., Melamed, D. & Simpson, B. The strength of dynamic ties: The ability to alter +some ties promotes cooperation in those that cannot be altered. Science Advances (2018). +[51] Akc¸ay, E. +Collapse and rescue of cooperation in evolving dynamic networks. +Nature +Communications 9, 2692 (2018). +[52] McAvoy, A., Allen, B. & Nowak, M. A. Social goods dilemmas in heterogeneous societies. +Nature Human Behaviour 4, 819–831 (2020). +[53] Fudenberg, D. & Imhof, L. A. Imitation processes with small mutations. Journal of Eco- +nomic Theory 131, 251–262 (2006). +39 + diff --git a/_tFLT4oBgHgl3EQfEC7f/content/tmp_files/load_file.txt b/_tFLT4oBgHgl3EQfEC7f/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..2d355fc246ae643cc5c7a9f44494224aa264eabf --- /dev/null +++ b/_tFLT4oBgHgl3EQfEC7f/content/tmp_files/load_file.txt @@ -0,0 +1,1062 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf,len=1061 +page_content='Strategy evolution on dynamic networks Qi Su1,2,3, Alex McAvoy1,2, and Joshua B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Plotkin1,2,3 1Department of Mathematics, University of Pennsylvania, Philadelphia, PA 19104, USA 2Center for Mathematical Biology, University of Pennsylvania, Philadelphia, PA 19104, USA 3Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA Abstract Models of strategy evolution on static networks help us understanding how population struc- ture can promote the spread of traits like cooperation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' One key mechanism is the formation of altruistic spatial clusters, where neighbors of a cooperative individual are likely to recip- rocate, which protects prosocial traits from exploitation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' But most real-world interactions are ephemeral and subject to exogenous restructuring, resulting in dynamic social networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Strategic behavior on dynamic networks is difficult to study, and much less is known about the resulting evolutionary dynamics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Here, we provide an analytical treatment of cooperation on dynamic networks, allowing for arbitrary spatial and temporal heterogeneity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' We show that transitions among network structures can favor the spread of cooperation, even if each individual social network would inhibit cooperation when static.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Furthermore, we show that spatial heterogeneity tends to inhibit cooperation while temporal heterogeneity tends to pro- mote it.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Dynamic networks can therefore have profound effects on the evolution of prosocial traits, even in cases where individuals have no agency over network structure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' 1 Introduction The geographic locations of individuals, together with their social or physical connections, con- strain interactions and shape behavioral evolution in a population.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' A network is a useful model of a population’s structure, where nodes represent individuals and edges capture interactions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' How network structure affects evolutionary dynamics has been extensively investigated over the last several decades, using techniques including computer simulations, mathematical analysis, and experimental studies with human subjects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' A well-known and illustrative finding1 is that population structure can favor cooperation provided the ratio of the benefit from cooperative be- havior, b, to its cost, c, exceeds the average number of neighbors, d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' The mechanism underlying this cooperation-promoting effect is that spatial structure enables the formation of cooperative clusters of individuals, who have high payoffs and are capable of resisting invasion by defectors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Most existing studies are based on a static network, where the duration and intensity of inter- actions remain unchanged throughout the evolutionary process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' In contrast, empirical networks 1 arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content='11982v1 [physics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content='soc-ph] 27 Jan 2023 frequently vary over time2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Representative examples include communication networks involv- ing telephone calls or emails3,4;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' networks of physical proximity, where individuals encounter different people as they move through space5,6;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' and ecological networks that change with the seasons as organisms go through different phases of their life cycles7–9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Temporal features can even reverse the evolutionary outcomes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' For example, whether an idea or information diffuses throughout a society depends not only on the structure of the network guiding interactions but also on the timing of those interactions, as the the coexistence of individuals with different active timing maximizes diffusion10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' In the context of epidemics, high concurrency (the number of neighbors of a node) leads to a lower epidemic threshold under susceptible-infected-susceptible dynamics, while low concurrency can suppress epidemics11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Despite the attention that other dynamical processes have received on time-varying networks, the evolution of cooperation in this setting remains much less studied.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' One reason to discount any positive effect of dynamic structures comes from intuition on static networks: since coop- erators spread via clusters, network transitions will tend break up these clusters, likely leading to diminished reciprocity and exploitation by defectors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Another impediment to undertaking research in this area is the lack of mathematical tools for analyzing strategic interactions on dy- namic networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' In static networks, mathematical approaches provide general conditions for how structure affects evolutionary dynamics12,13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' They also allow for extensive, efficient numerical explorations into example networks, both artificial and empirical14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Whether these approaches can be extended to dynamic networks remains unknown.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Endogenous network transitions often produce predictable results for the evolution of coopera- tion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' For example, if cooperators can selectively seek out new connections with other cooperators (“cooperation begets friends”) and sever ties with defectors, then it is not surprising to find that these endogenous networks changes favor the spread cooperation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' But it is much less clear how exogenous transitions in network structure will affect the evolution of cooperation, and so this is the main focus of our study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' There is also substantial evidence for the prevalence of exogenous network transitions in nature, ranging from weather fluctuations to human-induced changes to ecosystems15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' The scope of models with dynamic networks is broad and can include environ- mental feedback and ecosystem engineering16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' And even when an organism has some agency over the structure of their environment, the behavioral trait of interest might be unrelated to these changes (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' movement between cities need not be tied to altruistic tendencies).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Finally, exoge- nous network transitions that are not dependent on individual behavior provide the most natural point of comparison to static structures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' In this paper, we study the evolution of strategic behavior in a population whose structure of social interactions change over time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' At any point in time, the population structure is described by a network whose nodes represent individuals and edges represent interactions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Individuals may change their strategies over time, imitating neighbors who have higher payoffs;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' and the network of interactions itself may also change over time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' The interaction network changes at random times, unrelated to the current composition of strategies in the population.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' We derive general mathematical results for when cooperative behavior is favored, which apply to any stochastic transition pattern among any number of networks, each with arbitrary structure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Surprisingly, we 2 find that in a large class of networks, stochastic transitions among networks can strongly promote cooperation, even though they tend to disrupt cooperative clusters in each network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' In fact, even if each individual static network would disfavor cooperation, transitions among them can rescue cooperation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' We conclude by analyzing spatial and temporal burstiness, which we show have opposite effects on the evolution of cooperation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' 2 Model Our model consists of a finite population of size N, with individuals engaged in pairwise social interactions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' The structure of the population varies over time, and at each discrete time it is represented by one of L weighted networks, each with N nodes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' For network β ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' , L}, we let w[β] ij denote the weight of the edge between nodes i and j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' We assume that all networks are undirected, meaning w[β] ij = w[β] ji for all i, j ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' , N} and β ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' , L}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Each individual in the population can adopt one of two types, or strategies: “cooperator” (C) or “defector” (D).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Individuals interact in pairwise donation games, with cooperators paying a cost c to generate benefit b for their co-player.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Defectors pay no costs and generate no benefits.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' In each time step, everyone plays a donation game with each of their neighbors in the current network, β.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' We denote the state of the population by x, where xi ∈ {0, 1} indicates the type of individual i, with 0 and 1 representing types D and C, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' The accumulated payoff to individual i in network β is then ui (x, β) = N ∑ j=1 w[β] ij �−cxi + bxj � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' (1) In other words, individual i receives a benefit w[β] ij b from of each of its neighbors j who are cooperators (xj = 1), and i pays a cost w[β] ij c to each j if i is itself a cooperator (xi = 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' An individual’s accumulated payoff in network β is transformed into fecundity, which represents i’s propensity to reproduce or, equivalently, to be imitated by another individual.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' The fecundity is given by Fi (x, β) = 1 + δui (x, β), where δ is called the selection intensity, which we assume to be small (δ ≪ 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' This assumption, called “weak selection,” is common in the literature and it aims to capture scenarios in which the social trait (C or D) has a small effect on reproductive success.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' After all pairwise games are played in network β and individuals accumulate payoffs, a random individual i is selected uniformly from the population to update his or her strategy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' This individ- ual then imitates the type of a neighbor, j, with probability proportional to j’s fecundity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' In other words, in network β, the probability that i copies j’s type is eji (x, β) = 1 N Fj (x, β) w[β] ji ∑N k=1 Fk (x, β) w[β] ki .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' (2) 3 a Network 1 Network 2 b c Strategy updating d Network 1 Network 2 Network updating e C C C C D D D C C ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' C D D D C C D C D D D 1 2 6 4 7 5 3 1 2 6 4 7 5 3 1 2 6 4 7 5 3 2c 2b 2b b-2c 2b-4c 2b b-2c b-2c b-2c 2b 0 2c b b 1 2 6 4 7 5 3 q11 q12 q21 q22 Interaction at time n+1 Interaction at time n Figure 1: Evolutionary games on dynamic networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' a, The population structure at any time is described by a network, which may change from one time point to the next.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' (The figure illustrates an example with two possible networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=') b, Each individual (node) in the population adopts the strategy cooperate (C) or defect (D) in games played with each neighbor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Each individual i accumulates a total payoff ui across pairwise interactions with neigh- bors, which determine their reproductive rate Fi = 1 + δui.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' c, An individual (marked by “?”' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=') is selected uniformly at random to update its strategy, and all neighboring individuals, indicated by black circles, compete to be imitated by the focal node, with probability proportional to reproductive rates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' d, After an individual updates its strategy, the population structure itself either changes (from network 1 to network 2 with probability q12, or from network 2 to network 1 with probability q21) or remains the same.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' e, Social interactions and strategy updates repeat on the population structure at the next time step, n + 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Here, the factor of 1/N represents the probability that i is chosen to update in the first place.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' After each strategic update, the population structure itself then undergoes a transition step.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' The probability of moving from network β to network γ is independent of the strategic composition of the population, and it depends only on the current network state, β.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' The stochastic process governing these transitions is described by an L × L matrix Q = � qβγ � , where qβγ is the prob- ability of transitioning from network β to network γ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Note that there may be (and we often assume) a positive chance that the network will remain unchanged at the transition stage, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' qββ > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' The pairwise social interactions, strategic update, and network transition, which com- prise a single time step, are depicted in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' 4 3 Results Without mutation, the population must eventually reach a monomorphic strategic state in which all individuals have the same type, either cooperate or defect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' The duration that the population spends in each network is proportional to the corresponding value in stationary distribution υ, which is determined by the network transition matrix Q (see Methods).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' We assume that a mutant appears in network β with probability υ (β), and it is located at a node chosen uniformly at random.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' We let ρC denote the probability that a single cooperator mutant eventually takes over a resident population of defectors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Likewise, we let ρD be the probability that a single defector mutant takes over a resident population of cooperators.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' We use the condition ρC > ρD to measure whether selection favors cooperation relative to defection17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content='1 Selection condition for the evolution of cooperation We first derive a general result applicable to almost any transition pattern, Q, among any finite number of networks, each with arbitrary spatial structure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' This result combines several different quantities describing the dynamics under neutral drift (δ = 0), together with the payoffs for the game13,18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Let p[β] ij := w[β] ij / ∑N k=1 w[β] ik be the one-step random-walk probability of moving from i to j on network β.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' This quantity can be interpreted as the probability that i imitates the strategy of j under neutral drift, conditioned on i being chosen for an update.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' In other words, p can be seen as defining an ancestral process, tracking replacement backwards in time under neutral drift.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' The most fundamental neutral quantity is the reproductive value of individual i in network β, which can be interpreted as the probability that a mutant introduced at node i in network β generates a lineage that eventually takes over the population.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' This quantity, denoted by π[β] i is independent of the payoffs and thus independent of the particular mutant that arises in the population.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' The version of reproductive value that we use is a generalization of Fisher’s clas- sical notion19,20 that also takes into account environmental changes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' It can be calculated using Equation 5 in Methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Another neutral quantity we use is related to coalescence times.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Under neutral drift, we can look backward in time and ask how long it takes, on average, before two or more lineages meet at a common ancestor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Starting in network β, let T[β] be the expected number of steps to the most recent common ancestor of the entire population.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' If τ[β] ij is the expected time to the most recent common ancestor of i and j, then the mean amount of time that i and j are identical by descent is T[β] − τ[β] ij .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' The pairwise times to a common ancestor, τ, can be calculated using Equation 8 in Methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' In terms of the neutral quantities π, τ, and T, the general condition for cooperation to be favored 5 over defection under weak selection is given by N ∑ i,j=1 L ∑ β=1 υ (β) � L ∑ γ=1 qβγπ[γ] i � p[β] ij N ∑ ℓ=1 � − � T[β]−τ[β] jj � w[β] jℓ c + � T[β]−τ[β] jℓ � w[β] ℓj b � > N ∑ i,j,k=1 L ∑ β=1 υ (β) � L ∑ γ=1 qβγπ[γ] i � p[β] ij p[β] ik N ∑ ℓ=1 � − � T[β]−τ[β] jk � w[β] kℓ c + � T[β]−τ[β] jℓ � w[β] ℓk b � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' (3) Broadly speaking, what Equation 3 says is that an individual i is chosen, a cooperator is placed at a neighbor j of i, and another neighbor k of i is chosen to compare its (weighted) payoff with that of the cooperator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' If j’s weighted payoff exceeds that of k, then selection favors the evolution of cooperation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' The condition above reflects a similar intuition behind the corresponding condition for static networks (L = 1;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' see Allen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content='14 or Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' 1 of McAvoy & Wakeley21), but there are a few notable effects of network transitions in Equation 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' The first effect is that the network β is chosen with probability υ (β), where υ is the stationary distribution of the structure-transition chain defined by Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Moreover, whereas individual i is chosen with probability based on reproductive value πi on a static network, here i is chosen based on reproductive value in the next network following imitation, ∑L γ=1 qβγπ[γ] i .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' The reason for this is natural, because once an individual replaces i in network β, the network immediately transitions to network γ, and so the resulting reproductive value of i must be understood within the context of γ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Once β and i are chosen, the probabilities of choosing neighbors j and k are p[β] ij and p[β] ik , respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Moreover, if j is a cooperator, then individual k is also a cooperator for T[β] − τ[β] jk time steps, and during each such step k pays cw[β] kℓ to provide ℓ with a benefit of bw[β] kℓ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' This property accounts for the weighting of benefits and costs in Equation 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Note that the term T[β] cancels out in Equation 3, and so although this quantity is helpful for gathering intuition, it is not strictly needed to evaluate whether cooperators are favored by selection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Given the vast number of networks with N nodes, as well as the vast space of possible transitions among them, we focus most of our analysis on transitions between a pair of networks (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' L = 2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' For a given network transition matrix Q, the value 1/q12 (resp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' 1/q21) gives the expected time during which the population remains in network 1 (resp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' network 2) before transitioning to network 2 (resp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' network 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' We denote 1/q12 and 1/q21 by t1N and t2N, respectively, so that t1 and t2 correspond to the expected number of times each individual updates prior to a transition to a different network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Small values of t1 and t2 correspond to frequent changes in the population structure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Sufficiently large values of t1 and t2 indicate that the population structure is nearly fixed, so that the population will reach an absorbing strategic state (all C or all D) before the network transitions to a different state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' The regime t1 = 1 (resp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' t2 = 1) means that, on average, each individual updates their strategy once in network 1 (resp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' network 2) before the network structure changes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' 6 a Network 1 Network 2 5 6 7 8 9 10 11 Benefit, b 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content='680 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content='800 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content='080 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content='040 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content='020 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content='020 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content='040 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content='060 Rescaled fixation probability, N( C- D) b // // αN (1−α)N Dynamic (α=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content='5) Static network 1 or 2 (α=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content='5) Dynamic (α=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content='8) Static network 1 (α=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content='8) Static network 2 (α=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content='8) tN 1 tN 1 tN 1 1− tN 1 1− Figure 2: Transitions between networks that contain dense and sparse cliques.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' We consider dynamic transitions between two networks, each of which is comprised of two cliques containing aN and (1 − a) N nodes, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' a, Each network has a star graph comprising one clique and a complete graph comprising the other clique, with a single edge connecting the two cliques.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' When network 1 transitions to network 2, the star clique becomes the complete clique and vice versa.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' b, The fixation probability of cooperation versus defection, ρC − ρD, as a function of the benefit b in the donation game.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Selection favors cooperation over defection if ρC − ρD exceeds the horizontal line, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=', ρC > ρD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Dots indicate the results of Monte Carlo simulations on dynamic networks (solid dots) and on a static network (open dots).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' The vertical lines correspond to analytical predictions for the critical benefit-to- cost ratio (b/c)∗ on dynamic networks, above which we predict cooperation will be favored.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' The results show that cooperation is always disfavored in both static network 1 and static network 2, but dynamic transition between these networks can favor cooperation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Here, we show two examples with different clique sizes, a = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content='5 (blue) and a = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content='7 (green).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' The beneficial effect of structure transitions is strongest when cliques have equal size (a = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content='5;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' see Supplementary Figure 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Parameter values: N = 40, t = 1, and c = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content='0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Fixation probabilities are computed across an ensemble of 107 runs with selection intensity δ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content='002.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content='2 Dynamic networks with dense and sparse cliques We begin by studying dynamic transitions between a pair of networks where each network is comprised of two cliques.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' One clique is a star graph, which is sparse, and the other clique is a complete graph, which is dense.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' In each network, the two cliques are connected by a single edge.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' When the population transitions from one network to another, the star clique becomes the complete clique and vice versa (see Figure 2a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' This kind of dynamic network models a situation in which a portion of the population is densely connected while the remainder of the population is connected to only a single node;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' and which portion is dense versus sparse changes over time, as the state transitions between the two networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' When the population evolves on either network 1 or network 2 alone, the fixation probability of cooperators is always lower than that of defectors, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' ρC < ρD,meaning that cooperation is disfavored by selection regardless of the benefit-to-cost ratio b/c (Figure 2b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Nonetheless, when the population transitions dynamically between networks 1 and 2, cooperation is favored 7 provided the benefit-to-cost ratio b/c exceeds the critical value (b/c)∗ ≈ 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' As a result, we see that dynamic population structures can favor cooperation, even when all networks involved would each individually suppress cooperation were they static.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Dynamic population structure facilities cooperation across a wide range of population sizes for the pair of networks shown in Figure 2a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' When t = 1, which means that individuals each update their strategy once, on average, before the network changes, cooperation can be favored by selection regardless of network size N (Figure 3a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' By contrast, if the network is static, then cooperation is favored only when the population size is very small (N < 17)–and, even then, only if the benefit-to-cost ratio is large.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' For larger population sizes, N ⩾ 17, the critical benefit-to-cost ratio is negative on a static network, (b/c)∗ < 0, which means that selection actually favors the evolution of spite, a behavior in which individuals pay a cost c to decrease the fitness of their opponent by b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' For this static network we can prove that (b/c)∗ ≈ −N/2 in large populations (see Methods), compared to (b/c)∗ ≈ 7 for any population size in a dynamic network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Consequently, we see that the effects of dynamic population structures are dramatic, capable of converting a spiteful outcome into a cooperative one, and they persist across a wide range of population sizes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Dynamic networks also facilitate cooperation across a wide range of structural transition rates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' For a sufficiently large population size, N, on a single static network of the type shown in Fig- ure 2a, the critical benefit-to-cost ratio is negative ((b/c)∗ ≈ −N/2), which means that selec- tion favors the evolution of spite.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' By contrast, dynamic transitions between networks 1 and 2 can favor cooperation, especially when they occur rapidly (Figure 3b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' When the transition rate is very slow–in particular, when t exceeds �√ 2 + 1 � N–the population stays in one network for so long that the evolutionary dynamics are similar to those of a static network, and the critical benefit-to-cost ratio becomes negative (Figure 3b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' In the limit of the transition rate approaching zero (t → ∞), the “dynamic” network is actually static and our dynamic calculations agree with those of a static network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content='3 How dynamic structures can facilitate the spread of cooperation To further understand how dynamic structures can favor cooperation more than their static coun- terparts, we inspect evolutionary trajectories on the dense-sparse graph of Figure 2a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' When the network is static, the process is depicted in Figure 4a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Starting from a specific configuration of cooperators in both hubs and two leaf nodes, cooperation will initially tend to spread in the star clique while shrinking in the complete clique.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' After cooperation fixes within the star clique, selection strongly suppresses further spread to the complete clique because the node connected to the star clique is exploited by multiple defectors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' If ever a defector manages to diffuse to the hub of the star clique, however, defection will then rapidly spread within the star and ultimately fix in the entire network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' By contrast, if the population undergoes structural transitions between networks (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' n2 → n3 in Figure 4b), the star clique of network 1 will transition into the complete clique of network 2, which promotes the exploitation of cooperators and allows defectors to spread (n3 → n4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' 8 101 102 103 104 Network size, N 106 104 102 0 102 104 106 Critical benefit-to-cost ratio, (b/c)* a Dynamic, Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' 3 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content='00 Static network 1, Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' 3 N/2 5 10 15 20 25 103 102 101 0 101 102 103 10-1 100 101 102 103 104 105 106 Rescaled duration, t 106 104 102 0 102 104 106 Critical benefit-to-cost ratio, (b/c)* b Dynamic, Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' 3 Static network 1, Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' 3 N/2 104 105 106 107 106 105 104 103 t3+10t2+26t+19 t2+4t+3 t2N+tN2 −t2+2tN+N2 Figure 3: Dynamic structures facilitate cooperation for a broad range of population sizes and network transi- tion rates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' We consider transitions between the two networks shown in Figure 2a, each composed of a sparse clique and a dense clique.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' a, The critical benefit-to-cost ratio required to favor cooperation as a function of population size, N, for a = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content='5 and t = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Dynamic networks can favor cooperation for any population size, N, provided b/c > 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' In contrast, the corresponding static networks favor cooperation only in small populations (N < 17), and they favor the evolution of spite ((b/c)∗ < 0) in larger populations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Dots show exact analytical computations for finite N (Equation 3), and lines show analytical approximations for large N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' b, The critical benefit-to-cost ratio as a func- tion of the mean duration between network transitions, t, for a = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content='5 and N = 10,000.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Whereas a static network always disfavors cooperation, dynamic networks can favor cooperation provided they do not transition too slowly (t < �√ 2 + 1 � N).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Dots show exact analytical computations for arbitrary t;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' the blue line shows an analytical approximation in the regime t ≪ N;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' and the red line shows an analytical approximation in the regime t = O (N).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' 9 Meanwhile, the complete clique of network 1 transitions into the star clique of network 2, which stimulates the expansion of cooperators.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' The rate of cooperator expansion in one clique exceeds their exploitation in the other clique so that, overall, network transitions facilitate cooperation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content='4 Other dynamic structures The examples of dynamic structure considered so far may seem highly specialized because the networks each contain two stylized cliques with a single edge between them.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' But we find similar results on networks with many cliques and with more complicated connections between them.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' In Figure 5a,b, we analyze networks comprised of multiple star and complete cliques, connected by either hub nodes or by leaf nodes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' In both cases, we again find that dynamic transitions between networks reduce the critical benefit-to-cost ratio for the evolution of cooperation, compared to any single static network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' This effect is increasingly strong as the network size grows (see Supplementary Figure 2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' For the networks in Figure 5a with N = 1,200, for example, the critical benefit-to-cost ratio to favor cooperation is (b/c)∗ ≈ 188.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content='1 when the network is static, which is reduced to (b/c)∗ ≈ 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content='49 when the network is dynamic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' In addition to networks comprised of star and complete cliques, we also investigated networks with cliques defined by various types of random graphs, such as Erd¨os-R´enyi and scale-free networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' In the former case, node degrees within a clique do not vary substantially, while the latter exhibits large variation in degree.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' For both classes of random networks, we still find that dynamic transitions between random networks tends to promote cooperation, compared to each static network (Figure 5c,d).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' In all examples of dynamic networks considered thus far, transitions between networks involve dense regions of a network swapping with sparse regions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Regardless of the exact structure of the cliques, this general feature of structural transitions conforms to the underlying intuition for why dynamic networks can facilitate cooperation (Figure 4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Dynamic structures can still facil- itate cooperation even when networks differ in only a small fraction of connections, although the strength of the effect is weakened.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Furthermore, these effects also persist (and can be quite strong) when populations transition between three or more network structures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' We give illustra- tions in Supplementary Figure 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content='5 The probability and time to fixation of cooperation We have studied dynamic structures by comparing the fixation probability of a cooperator to that of a defector, and by calculating the critical benefit-to-cost ratio (b/c)∗ that ensures ρC > ρD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' We can also study the fixation probability ρC in absolute terms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' We find that a dynamic population structure increases the fixation probability of cooperators, making them more likely to overtake the population, compared to a static network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Dynamic population structures also tends to decrease the duration before one type or another fixes (see Supplementary Figure 4), as well as shorten the mean conditional time until cooperators fix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' The underlying intuition for these results is evident in Figure 4: on a static network, the population will tend to be stuck at stage n3 for a long time, before defectors eventually diffuse to the sparse clique;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' whereas 10 Evolution on static network Evolution on dynamic network Network 1 Network 1 Network 2 Cooperator Defector n1 n2 n3 n4 n1 n2 n5 n6 n3 n4 n7 n8 Strategy updating Network updating a b Figure 4: Intuition for how dynamic structures can facilitate cooperation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Starting from a configuration in which the hub and two leaf nodes are cooperators (time point n1 in a and b), we illustrate how cooperation can be favored in dynamic structures even when it is inhibited in each static structure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Initially, cooperators are expected to spread in the star clique and shrink in the complete clique, and the rate of spreading exceeds that of shrinking.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' a, The evolutionary process on a static network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Cooperators rapidly take over the star clique and nearly die out in the complete clique (n1 → n3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' The system tends to stay in this state until defectors spread throughout the star clique (n4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' b, The evolutionary process with network transitions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Initially, cooperators spread in the star clique and shrink in the complete clique (n1 → n2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' However, when the network changes, the star clique transitions to the complete clique and vice versa (n2 → n3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' This transition is followed by the rapid spread of cooperators in the star clique and (relatively slower) shrinking of cooperators in the complete clique (n3 → n4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' From n1 to n5, the frequency of cooperators increases in both cliques so that, under dynamic structure transitions, the population tends to result in cooperators being fixed in both cliques (n8).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' 11 a Network 1, (b/c)* 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content='31 Network 2, (b/c)* 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content='31 Dynamic network, (b/c)* 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content='92 Multiple cliques connected via hub nodes b Network 1, (b/c)* 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content='00 Network 2, (b/c)* 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content='00 Dynamic network, (b/c)* 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content='34 Multiple cliques connected via leaf nodes c Network 1, (b/c)* 39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content='85 Network 2, (b/c)* 40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content='80 Dynamic network, (b/c)* 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content='86 Multiple ER communities d Network 1, (b/c)* 39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content='64 Network 2, (b/c)* 40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content='07 Dynamic network, (b/c)* 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content='33 Multiple GKK communities Figure 5: Evolution of cooperation on diverse dynamic structures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' a, Each individual network comprises four star cliques and four complete cliques, where each star clique in one network corresponds to a complete clique in the other network, and clique hubs are fully connected to each other.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' b is similar to a, but cliques are now sparsely connected via leaf nodes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Network transitions facilitate cooperation compared to a static structure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' c, Each individual network comprises two sparse and two dense cliques of Erd¨os-R´enyi (ER) random networks22, with cliques connected by random nodes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' d, Each individual network comprises two sparse and two dense cliques of Goh-Kahng-Kim scale-free networks (GKK)23 with exponent 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content='5, with cliques connected by nodes of the highest degree.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' In all these examples, network transitions reduce the benefit-to-cost ratio (b/c)∗ required for cooperation compared to each static network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Parameters: t = 1 and N = 64 for a and b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' For panels c and d, in network 1, the two sparse cliques have 30 nodes and average degree 4, and the two dense cliques have 40 nodes and average degree 30;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' in network 2, the two sparse cliques have 40 nodes and average degree 4, and the two dense cliques have 30 nodes and average degree 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' 12 on dynamic networks, cooperators spread rapidly by selection in both cliques.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Thus, dynamic networks increase the likelihood that cooperators sweep the population as well as the rate at which they do so.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content='6 Spatial and temporal burstiness We can adapt our method of analysis to study the effects of spatial and temporal burstiness.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' For dynamically changing networks, spatial burstiness arises when there is temporal variation in the density of network edges (node degree), whereas temporal burstiness arises when there are periods of rapidly changing network structures along with periods in which structures change more slowly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Empirical networks of both human and non-human (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' honeybee) interactions are known to exhibit both spatial and temporal burstiness10,24, but the effects of these two forms of over-dispersion for behavior remains an active area of current research.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' To study spatial burstiness, we consider the following minimal model of dynamically varying networks that differ in their average node degree.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' We construct a pair of networks as follows (see Figure 6a): (i) we first generate a single network with N nodes and E edges drawn from one of several classical families of networks (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Erdos-Reyni random networks22, Watts-Strogatz small-world networks25, Barab´asi-Albert scale free networks26, etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' );' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' (ii) we decompose this network into two networks, by randomly selecting a fraction ε ∈ [0, 1/2] of the edges for net- work 1 and using the remaining (1 − ε) E edges for network 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' If ε = 1/2 then the resulting networks 1 and 2 have the same density of interactions, and there is no spatial burstiness.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' For all other values of ε ̸= 1/2, the network exhibits spatial burstiness, and we study a simple stochastic transition pattern between these networks, with t1 = t2 = 1 so that each individual updates his strategy once, on average, before the network switches.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' We find that spatial burstiness tends to inhibit the evolution of cooperation, whereas spatial reg- ularity (equal network densities) is more beneficial for cooperation (Figure 6c).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' In particular, regardless of the class of network from which networks 1 and 2 are derived, the critical ratio (b/c)∗ required to favor cooperation is substantially increased (roughly by a factor of two) in the regime ε → 0 compared to the spatially homogeneous regime ε = 1/2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' We also study the effects of temporal burstiness, in which case networks 1 and 2 are chosen to have the same edge density (ε = 1/2), but there are periods of rapid transitions between the two networks, punctuated by periods of slow transitions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' To construct this scenario, instead of having a single transition matrix, Q, we consider two such matrices, Q f and Qs, corresponding to fast and slow epochs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' At any time, the population is either in hidden state f, so that network transitions occur according to Q f , or alternatively in hidden state s, so that network transitions occur according to Qs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Whenever the population transitions to a new network, the hidden state is drawn uniformly-at-random from { f, s} (see Figure 6b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' (Note that the hidden state s or f is re-sampled only when the network changes, from 1 to 2 or from 2 to 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=') The speed of network transitions in each hidden state, s and f, is governed by a parameter ¯t ∈ [0, 1], so that transitions are fast in state f and slow in state s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' When the population enters 13 a b Hidden state s Hidden state f on transition to new structure Network 1 (edge fraction, ε) Network 2 (edge fraction, 1−ε) ε High spatial burstiness Low spatial burstiness High temporal burstiness Low temporal burstiness Figure 6: Effects of spatial and temporal burstiness on cooperation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' We consider transitions between two networks, with either a, spatial burstiness (different edge densities) or b, temporal burstiness (periods of both rapid and slow transitions).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' c, The critical benefit-to-cost ratio (b/c)∗ as a function of spatial heterogeneity, ε.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' When the two networks have the same edge density, ε = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content='5, cooperation is most readily favored.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' When the networks that differ in their edge densities (ε ≪ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content='5), much larger values of b/c are required to support cooperation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' d The critical benefit-to-cost ratio (b/c)∗ required to favor cooperation as a function of temporal heterogeneity, ¯t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' The case ¯t = 1 means that networks transition at the same rate, regardless of the hidden state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' When ¯t < 1, the networks transition more rapidly in state f than in state s, so that there is temporal burstiness.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Results on spatial and temporal burtiness are shown for six classes of networks: random regular networks (RR), Erd¨os-R´enyi networks (ER)22, Watts-Strogatz small-world networks (SW)25 with rewiring probability 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content='1, Barab´asi-Albert scale-free networks (BA)26, Goh-Kahng-Kim scale-free networks (GKK)23 with exponent 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content='5, and Holme–Kim scale-free networks (HK)27 with triad formation probability 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' For each such class, we generate 2,000 networks, each with 100 nodes and average degree 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' We take ¯t = 1 in c and ε = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content='5 in d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' 14 100 30 RR ER Critical benefit-to-cost ratio, (b/c)* sw 80 BA ratio, GKK HK 60 40 RR ER sw 20 0008880888088809 BA GKK · HK 10 0L 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content='0 Edge fraction, E Rescaled duration, tstate f, the expected duration before a network transition is small, namely ¯tN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Whereas when the population enters state s the expected duration of the current network is longer, (2 − ¯t) N (see Figure 6b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' The case ¯t = 1 means that the current network has the same expected duration, regardless of the hidden state, and there is no temporal burstiness.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' When ¯t < 1, the networks transition more quickly in state f than they do in state s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Regardless of the value of ¯t, how- ever, the total accumulated time spent in network 1 is the same as in network 2, throughout the evolutionary process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Temporal burstiness tends to facilitate cooperation, regardless of the overall structure of underly- ing networks (Figure 6d).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' In particular, the critical benefit-to-cost required to favor cooperation is largest when temporal burstiness is absent (¯t = 1), and it is reduced (typically by 20%) when temporal burstiness is large (¯t = 0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Therefore, even when two networks have the same edge density (ε = 1/2) and the accumulated time is spent on each network is the same, tem- poral burstiness facilitates the spread of cooperation, in stark contrast to our findings for spatial burstiness.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' 4 Discussion Many real-world interactions are ephemeral, and the entire network of social interactions may be subject to exogenous changes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Seasonal changes in a species’ environment, for example, can lead to active and dormant periods, as can diurnal cycles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Such periodic transitions are widely used to model temporal networks28–31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Stochastic transitions in social structures can arise from the effects of weather, animal migration and movement, and role reversal32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Motivated by the ubiquity of structural variation in nature, we provide a treatment of dynamic social networks that allows for arbitrary stochastic transitions between structures, with arbitrary networks within each time step.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Our main mathematical result (Equation 3) predicts when cooperation will evolve on dynamic networks, under weak selection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' The population structure in every time step need not be con- nected;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' all that we require is that the population satisfy a coherence condition so that it does not become fragmented into multiple sub-populations (see §SI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content='1 in Supplementary Information).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' In addition to probabilistic transitions, our analysis also extends to deterministic and periodic net- work transitions (see Equation SI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content='33 in Supplementary Information).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Our work can also cover other scenarios for changing structures, such as when the direction of public goods or informa- tion flow changes over time33;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' the number of active nodes or edges varies;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' or the population size fluctuates (in fact, the results in Supplementary Information allow for arbitrary patterns of replacement).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Although prosocial behaviors in different strategic domains may manifest in dif- ferent ways, such as trust games or dictator games, the desire to pay costs to benefit others has a substantial degree of domain generality34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Our conclusions, based on donation games, are thus indicative of how dynamic networks may broadly impact prosocial behavior.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' In the donation game, we have seen that changing social structures can promote cooperation, and that these effects can be dramatic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Even if every network individually disfavors cooperators, 15 transitions between them can facilitate the evolution of cooperation – a result that is reminiscent of Parrondo’s paradox35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Figure 4 illustrates the mechanism for how this phenomenon arises, as transitions move individuals between regions of the network that are dense to those that are sparse.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' These types of changing social structures are common in real-world settings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Groups and communities are more likely to form among people with close geographical locations and similar religion, culture, and affiliations36,37;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' but connection density will be altered when individuals migrate or change social groups.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Changes in connection densities in different communities may alternatively result from a phase difference, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' in online social networks across different time zones.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Spatio-temporal heterogeneity of interaction density within a community also leads to time-varying connection densities, from sparse to dense and vice versa2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' We find that each kind of burstiness has a clear effect on cooperation, either hindering it in the case of spatial burstiness or promoting it in the case of temporal burstiness.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Broadly speaking, our work highlights the significance of integrating multiple communities into one system, since treating communities individually and independently may lead to erroneous conclusions about behavioral dynamics38.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' All of our results are based on exogenous network transitions, which means that individuals can- not selectively engineer their neighborhoods based on the traits of others.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' There are, of course, many interesting models involving endogenous transitions, in which cooperators can selectively form links with other cooperators and break links with defectors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' In such models cooperation can flourish when structure transitions are rapid enough39–51, for the simple reason that this en- dogenous dynamic establishes cooperative clusters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Such “form follows function” models are frequently aimed at answering the question: what kinds of networks arise from certain traits, and how do these networks serve the greater good?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' By contrast, our focus is not the coevolutionary dynamics of trait and structure, but on a different question altogether: what is the impact of ex- ogenous structural changes for the evolution of behavior.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' This approach is more closely related to classical studies of network effects on cooperation: given a (dynamic) network, what behav- ioral traits evolve?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Since exogenous structural changes do not provide any explicit advantage or disadvantage to cooperators relative to defectors, the resulting evolutionary dynamics of social traits are all the more intriguing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' We have aimed for generality in framing our mathematical results, but a natural limitation of our study is the scope of networks we have analysed, compared to the vast space of possible population structures and transitions among them.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' For this reason, even static structures are still an active topic of current research in evolutionary game theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' We have therefore chosen to consider a limited number of representative examples of dynamic networks, which showcase the interesting effects they can have on the evolution of cooperation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Areas for future investigation include the effects of fluctuating resources on cooperation, alternative evolutionary update rules, stronger selection, and environments that involve both endogenous and exogenous transitions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' In fact, although we use cooperation as an example, our analysis is framed quite generally to allow the study of other traits on dynamic structures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' To the best of our knowledge, our analytical findings constitute the first general results for behavioral evolution on dynamic networks, and we hope that they will be valuable tools in future work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' 16 5 Methods 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content='1 Analysis of weak selection Here, we outline a derivation of the critical benefit-to-cost ratio (b/c)∗ for selection to favor co- operation, based on an extension of the methods of McAvoy & Allen18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Complete mathematical details are provided in Supplementary Information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' For i, j ∈ N , let w[β] ij be the weight of edge between nodes i and j in network β ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' , L}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' We assume that the network is undirected, meaning w[β] ij = w[β] ji for all i, j ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' , N} and β ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' , L}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' If i and j share an edge, then they interact.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' The class of models we are interested in here involve social goods52 in which, on network β, an individual of type A at i pays a cost of C[β] ij to donate B[β] ij to the individual at j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' In state (x, β), the total payoff to the individual at i is ui (x, β) = N ∑ j=1 � −xiC[β] ij + xjB[β] ji � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' (4) This net payoff is converted to reproductive rate via the formula Fk (x, β) = eδuk(x,β).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' If the pop- ulation structure is β, then a node in β is first selected uniformly-at-random to die.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Subsequently, all neighboring nodes in β compete to produce an offspring to fill the vacancy at node i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' The probability that j replaces i in state (x, β) is given by Equation 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Let p[β] ij := w[β] ij / ∑N k=1 w[β] ik be the probability of moving from i to j in one step of a random walk on network β.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Under neutral drift, the probability π[β] i that, starting in network β, i generates a lineage that takes over the population (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' the reproductive value of i in β) satisfies π[β] i = 1 N N ∑ j=1 p[β] ji L ∑ γ=1 qβγπ[γ] j + � 1 − 1 N N ∑ j=1 p[β] ij � L ∑ γ=1 qβγπ[γ] i , (5) subject to the constraint ∑N i=1 π[β] i = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' π is thus determined by a linear system of size O (LN).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' For the initial state, we choose the network according to the stationary distribution of the network- transition chain, and a mutant appears uniformly-at-random within that network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' There are two mutant-appearance distributions overall, one for C arising after the all-D state (denoted µC) and one for D arising after the all-C state (denoted µD).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Associated to each µ ∈ {µC, µD} is a quantity η[β] I (µ) related to the co-occurrence of a trait in β among the nodes in I ⊆ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' , N}, which is defined formally in §SI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content='5 of Supplementary Information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' For our purposes, we need 17 η[β] I (µ) only for I containing one or two nodes, in which case η[β] I (µC) = η[β] I (µD) and η[β] ij = � � � � � � � � � � � 0 i = j, 1 N υ (β) + L ∑ γ=1 qγβ � 1 N N ∑ k=1 p[γ] ik η[γ] kj + 1 N N ∑ k=1 p[γ] jk η[γ] ik + � 1 − 2 N � η[γ] ij � i ̸= j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' (6) We refer the reader to Equation SI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content='32 in Supplementary Information for details.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' It turns out that a scaled version of η, namely τ[β] ij := η[β] ij /υ (β), allows for a more intuitive interpretation of the selection condition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Consider the time-reversed structure transition chain defined by �qβγ := υ (γ) υ (β)qγβ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' (7) Using this time-reversed chain in conjunction with Equation 6, we see that τ[β] ij = � � � � � � � � � � � 0 i = j, 1 N + L ∑ γ=1 �qβγ � 1 N N ∑ k=1 p[γ] ik τ[γ] kj + 1 N N ∑ k=1 p[γ] jk τ[γ] ik + � 1 − 2 N � τ[γ] ij � i ̸= j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' (8) In the ancestral process, looking backward in time under neutral drift, Nτ[β] ij has the interpre- tation as the expected number of update steps until i and j coalesce.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Equivalently, since one of N individuals is updated in each time step, τ[β] ij can be seen as the mean number of generations needed for i and j to coalesce.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' If, conditioned on the population being in state β, T[β] is the mean time to reach the most recent common ancestor going backward in time, then the mean time that i and j spend identical by descent is T[β] − τ[β] ij .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Finding τ for all structures and pairs of individ- uals involves solving a linear system of size O � LN2� .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' (Although T aids in the interpretation of τ as determining identity by descent, it does not need to be calculated in order to understand the first-order effects of selection on fixation probability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=') We now have all of the neutral quantities we need to state the selection condition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' The final piece is the connection between the payoffs and the replacement probabilities under weak selection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' A straightforward calculation gives eji (x, β) = 1 N p[β] ij + δ ∑N k=1 cji k (β) xk + O � δ2� , where cji k (β) = � � � � � � � � � � � � � � � 1 N p[β] ij � − N ∑ ℓ=1 C[β] jℓ + B[β] jj + p[β] ij N ∑ ℓ=1 C[β] jℓ − N ∑ ℓ=1 p[β] iℓ B[β] jℓ � k = j, 1 N p[β] ij � B[β] kj + p[β] ik N ∑ ℓ=1 C[β] kℓ − N ∑ ℓ=1 p[β] iℓ B[β] kℓ � k ̸= j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' (9) 18 Putting everything together using Equation SI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content='31 in Supplementary Information, we see that d dδ ����� δ=0 ρC = 1 N N ∑ i,j=1 L ∑ β=1 υ (β) � L ∑ γ=1 qβγπ[γ] i � p[β] ij N ∑ ℓ=1 � − � T[β]−τ[β] jj � C[β] jℓ + � T[β]−τ[β] jℓ � B[β] ℓj � − 1 N N ∑ i,j,k=1 L ∑ β=1 υ (β) � L ∑ γ=1 qβγπ[γ] i � p[β] ij p[β] ik N ∑ ℓ=1 � − � T[β]−τ[β] jk � C[β] kℓ + � T[β]−τ[β] jℓ � B[β] ℓk � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' (10) Moreover, an analogous calculation for D gives d dδ ��� δ=0ρD = − d dδ ��� δ=0ρC, which means that the condition d dδ ��� δ=0ρC > 0 is equivalent to d dδ ��� δ=0ρC > d dδ ��� δ=0ρD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' In the donation game, we have B[β] ij = w[β] ij b and C[β] ij = w[β] ij c, and Equation 10 gives d dδ ����� δ=0 ρC > d dδ ����� δ=0 ρD ⇐⇒ bµ2 − cν2 > bµ0 − cν0, (11) where µ0 = 1 N N ∑ i,j=1 L ∑ β=1 υ (β) � L ∑ γ=1 qβγπ[γ] i � p[β] ij N ∑ ℓ=1 w[β] ℓj τ[β] jℓ ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' (12a) ν0 = 1 N N ∑ i,j=1 L ∑ β=1 υ (β) � L ∑ γ=1 qβγπ[γ] i � p[β] ij N ∑ ℓ=1 w[β] jℓ τ[β] jj ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' (12b) µ2 = 1 N N ∑ i,j,k=1 L ∑ β=1 υ (β) � L ∑ γ=1 qβγπ[γ] i � p[β] ij p[β] ik N ∑ ℓ=1 w[β] ℓk τ[β] jℓ ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' (12c) ν2 = 1 N N ∑ i,j,k=1 L ∑ β=1 υ (β) � L ∑ γ=1 qβγπ[γ] i � p[β] ij p[β] ik N ∑ ℓ=1 w[β] kℓ τ[β] jk .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' (12d) The critical benefit-to-cost ratio is therefore (b/c)∗ = (ν2 − ν0) / (µ2 − µ0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Note that, for simplicity, we have assumed that any node can be selected for death in a given network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' In reality, this assumption might not hold because each individual network need not be connected, which can lead to isolated nodes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' If an isolated node is chosen for death, then the individual at this node cannot be immediately replaced by the offspring of a neighbor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' All of our calculations can be modified to allow for only non-isolated nodes to be chosen for death, although in practice we do not need to do so in any of our examples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' 19 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content='2 Specific examples We study the transition between two networks, with transition probabilities given by qβγ = � � � � � � � � � 1 − p β = 1, γ = 1;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' p β = 1, γ = 2;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' q β = 2, γ = 1;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' 1 − q β = 2, γ = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' (13) The expected durations in networks 1 and 2 are q/ (p + q) and p/ (p + q), respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' We study evolution on dynamic two-clique networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' The two-clique network is made up of a star clique and a complete clique, with the hubs connected (see Figure 2a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Let n and m denote the numbers of nodes in the star and complete cliques, respectively, so that n + m = N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' We denote by 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' , n the nodes in the star clique and by n + 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' n + m the nodes in the complete clique, where n is the hub of the star and n + m is the node of the complete clique connected to the hub of the star.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' The other network is obtained by swapping the star and complete cliques.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' The adjacency matrix for the first network satisfies w[1] ij = 1 only if (i) i = n and j < n, or i < n and j = n;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' (ii) i = n and j = n + m, or i = n + m and j = n;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' or (iii) i, j ⩾ n + 1 and i ̸= j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' The adjacency for the second network satisfies w[2] ij = 1 only if (i) i = n + 1 and j > n + 1, or i > n + 1 and j = n + 1;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' (ii) i = n and j = n + m, or i = n + m and j = n;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' or (iii) i, j ⩽ n and i ̸= j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Using the results of the previous section, we can directly calculate π and τ and calculate the critical benefit-to-cost ratio.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Here, we provide explicit mathematical results for representative cases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Assuming p = q = 1/ (tN) and letting a := n/ (n + m),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' we find that �b c �∗ = � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � (2a2−2a+1)t3+(8a2−8a+7)t2+(8a2−8a+15)t+2a2−2a+10 2a(1−a)(t2+4t+3) N → ∞,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' t3+10t2+26t+19 t2+4t+3 N → ∞,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' a = 1 2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' 20a2−20a+33 16a(1−a) N → ∞ ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' t = 1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' ¯t(¯t+1) −2¯t2+2¯t+1N N → ∞,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' t/N = ¯t,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' a = 1 2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' � � � 210N16−520N15−1034N14+1770N13 +14028N12−93440N11+300848N10−330944N9 −663040N8+2230528N7−1096448N6−4570112N5 +10000384N4−9265152N3+4259840N2−786432N � � � � � � 30N16−79N15+225N14+1756N13 −15088N12−13128N11+247296N10−365152N9 −849344N8+2987392N7−1801984N6−5024768N5 +11302912N4−9949184N3+3940352N2−327680N−131072 � � � a = 1 2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' t = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' (14) 20 In particular, when N → ∞ and a = 1/2, (b/c)∗ is a monotonically increasing function of t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' We can compare this critical ratio to that of just a single network, which is the same for either network 1 or network 2 and satisfies �b c �∗ = � � � � � − (1 − a) N N → ∞, −3N9−40N8−204N7−848N6−2464N5+1920N4+15872N3−40960N2+24576N 6N8−64N7−520N6−1232N5+3872N4+6272N3−24320N2+22528N+4096 a = 1 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' (15) 21 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content='7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content='9 1 106 104 102 0 102 104 106 Supplementary Figure 1: The cooperation-promoting effects of structure transitions as the sizes of the two cliques vary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' The dynamic network is illustrated in Figure 2a, with a fraction a (resp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' 1 − a) of nodes in the top (resp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' bottom) clique.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' The critical benefit-to-cost ratio, (b/c)∗, is shown as a function of a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' The dots are the results of numerical calculations with N = 10,000 and the lines are analytical approximations for sufficiently large N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' The rescaled duration is t = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' 22 50 100 150 200 250 300 350 400 0 10 20 30 40 50 a Network 1 Dynamic 10-1 100 101 102 103 104 0 5 10 15 20 25 b 50 100 150 200 250 300 350 400 0 10 20 30 40 50 60 c 10-1 100 101 102 103 104 0 5 10 15 20 25 30 d Supplementary Figure 2: Cooperation-promoting effects of dynamic multi-clique networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' We consider networks made up of eight cliques connected via hub nodes (see Figure 5a;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' panels a and b here) and via leaf nodes (see Figure 5b;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' panels c and d here).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' a,c, The critical ratio (b/c)∗ as a function of population size N, for the rescaled duration t = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' b,d, The critical ratio (b/c)∗ as a function of the rescaled duration t, for N = 200.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' 23 a b Supplementary Figure 3: Cooperation-promoting effects of structure transitions among more than two net- works, and when networks differ in a small fraction of connections.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' a, Structure transitions among three net- works.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Every network transitions to another network with probability 1/ (2tN) and remains unchanged otherwise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' b, Structure transitions between multi-clique networks in which the two networks differ in only two cliques.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' We take N = 150 in a and N = 64 in b, and the rescaled duration is t = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' 24 10-1 100 101 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content='01 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content='02 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content='03 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content='04 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content='05 a 10-1 100 101 0 50 100 150 200 250 300 350 400 b Supplementary Figure 4: Dynamic networks promote and accelerate the fixation of cooperators.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' We consider the network with a star clique and a complete-graph clique with N = 16 and a = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content='5 (see Figure 2a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' a, Fixation probability of cooperators as a function of the rescaled duration, t, in network 1 and in the dynamic network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' The dynamic network leads to the larger fixation probability of cooperators than in network 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' b, Conditional and unconditional fixation times as functions of the rescaled duration, t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Both the conditional and unconditional times in the dynamic networks are smaller than in network 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content='We take selection intensity δ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' 25 Supplementary Information SI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content='1 Modeling evolution on dynamic networks SI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content='1 Assumptions, definitions, and notation We consider a population of N individuals (labeled N = {1, 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' , N}), residing at any point in time on one of L structures (labeled L = {1, 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' , L}).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Implicitly, this means that each of these L structures is a network on N nodes, although each network need not be connected and some nodes can be isolated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Each individual has type A or B, and the state of population is tracked by a pair (x, β) ∈ {0, 1}N × L, where xi = 1 means i has type A and xi = 0 means i has type B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' At each time step, a set of individuals to be replaced, R ⊆ N , is chosen, together with an offspring-to-parent map, α : R → N .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Let p(R,α) (x, β) denote the probability of replacement event (R, α) in state (x, β).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Once (R, α) is chosen, the type configuration, x, is updated to y, where yi = xα(i) if i ∈ R and yi = xi if i ̸∈ R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' This update can be specified more succinctly using an extended mapping �α : N → N defined by �α (j) = α (j) if j ∈ R and �α (j) = j if j ̸∈ R, which leads to the updated state x�α, where (x�α)i = x�α(i) for i ∈ N .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' The network, β, is updated via a transition matrix, Q = � qβγ � β,γ∈L, where qβγ is the probability of transitioning from network β to network γ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' An important feature of the model is that network transitions are independent of x;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' thus, the population structure is exogenous and not influenced by traits.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' We assume that Q is irreducible, which guarantees that it has a unique stationary distribution, υ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' We assume that for each replacement event, (R, α), type configuration, x, and network, β, the probability p(R,α) (x, β) is a smooth function of a selection intensity parameter, δ ⩾ 0, in a small neighborhood of δ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Moreover, when δ = 0 (“neutral drift”), we assume that p(R,α) (x, β) is independent of x (but it can depend on β).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' We denote by p◦ (R,α) (β) the probability of choosing (R, α) under neutral drift.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' The chain defined by Q does not depend on the selection intensity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' We also make the following assumption, which ensures that for every starting configuration and network, there exists at least one individual whose lineage can take over the population: Fixation Axiom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' For all network structures β0 ∈ L, there exists a location i ∈ N , an integer m ⩾ 1, and sequences of replacement events {(Rk, αk)}m k=1 and networks {βk}m−1 k=1 for which (i) p(Rk,αk) (x, βk−1) > 0 for every k ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' , m} and x ∈ {0, 1}N ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' (ii) qβk−1βk > 0 for every k ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' , m − 1};' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' (iii) i ∈ Rk for some k ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' , m};' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' (iv) �α1 ◦ �α2 ◦ · · · ◦ �αm (j) = i for all locations j ∈ N .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' These conditions are similar to those used by Allen & McAvoy13 and McAvoy & Allen18, except here it is modified to account for dynamic networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Informally, it guarantees that no individual lives forever and that the process eventually reaches a state in which all individuals are identical by descent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' We note that here it does not require each network to be connected.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' 26 Since there is no mutation of traits, all individuals must have the same type when they are identical by descent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' The configurations A := (1, 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' , 1) and B := (0, 0, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' , 0) are the only absorbing configurations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' (Note that while the configuration of types cannot leave A or B, the state itself, which includes the network structure, can still change.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=') We denote by BN the set of all configurations, {0, 1}N , and by BN ⊺ the set of all transient configurations, {0, 1}N − {A, B}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' From the Fixation Axiom, we see that given any starting configuration- network pair, (x, β) ∈ BN × L, there is a well-defined probability, ρA (x, β) (resp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' ρB (x, β)), that the population eventually reaches the monomorphic state A (resp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' B).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' The behavior of these fixation probabilities (under weak selection, meaning δ ≪ 1) is the main focus of this study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' We follow the workflow proposed by McAvoy & Allen18 for analyzing mutation-free evo- lutionary dynamics under weak selection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' We first study the assortment of traits under neutral drift (δ = 0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Subsequently, we link these findings to the game using a martingale perturba- tion argument.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' We avoid reproducing the entire derivation in18;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' instead, we highlight the main modifications to those arguments necessary to accommodate stochastic network transitions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' SI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content='2 Network-mediated reproductive value With the main assumptions in place, we now introduce some derived, demographic quantities that we will refer to throughout the analysis of the model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' If the population is in state (x, β), then the marginal probability that i produces an offspring that replaces j in the next update is eij (x, β) := ∑ (R,α) j∈R, α(j)=i p(R,α) (x, β) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' (SI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content='1) The expected change in the abundance of A in state (x, β) can be expressed as ∆ (x, β) := ∑ i∈N xi ∑ j∈N eij (x, β) + ∑ i∈N xi � 1 − ∑ j∈N eji (x, β) � − ∑ i∈N xi = ∑ i,j∈N eji (x, β) � xj − xi � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' (SI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content='2) One inconvenient aspect of dealing with the true abundance of A is that it is generally not a martingale under neutral drift.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' This property is well-known even in models without dynamic structure13 and it necessitates working with a weighted frequency instead.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' The notion of repro- ductive value, which can be (informally) interpreted as the expected contribution of an individual to future generations, turns out to give the proper weighting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' For our purposes, we interpret the reproductive value of i ∈ N as the probability that, under neutral drift, i generates a lineage that eventually takes over the population.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Because our interest is in fixation probabilities in the first place, it is not surprising that such a quantity should appear.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' This quantity depends on the network structure, but it is independent of the type configuration due to the drift assumption.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Formally, we define the reproductive value of i in network β, denoted π[β] i , to be the proba- bility that under neutral drift and starting in structure β, a mutant in node i eventually takes over the whole population.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Let e◦ ij (β) denote the probability, that under neutral drift and in structure 27 β, individual i spreads her strategy to j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' A one-step analysis of the neutral Markov chain gives π[β] i = ∑ j∈N e◦ ij (β) ∑ γ∈L qβγπ[γ] j + � 1 − ∑ j∈N e◦ ji (β) � ∑ γ∈L qβγπ[γ] i ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' (SI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content='3a) ∑ i∈N π[β] i = 1 (SI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content='3b) for all i ∈ N and β ∈ L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' There is one point of subtlety in relation to reproductive value on static networks, which relates to the normalization condition ∑i∈N π[β] i = 1 for all β ∈ L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' The Fixation Axiom guarantees that there is a unique π satisfying Equation SI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content='3a up to a scalar multiple.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' In this case, for any fixed C ∈ R, requiring ∑i∈N ∑β∈L π[β] i = C yields a unique solution to Equation SI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content='3a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Summing both sides of Equation SI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content='3a over i ∈ N yields ∑i∈N π[β] i = ∑γ∈L qβγ ∑i∈N π[γ] i .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Since the chain Q is irreducible, it follows that ∑i∈N π[β] i is independent of β ∈ L, and thus it must be equal to C/L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Therefore, asserting that ∑i∈N ∑β∈L π[β] i = L is equivalent to the requirement that ∑i∈N π[β] i = 1 for all β ∈ L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' As a result, π, which we refer to as network-mediated reproductive value due to its dependence on network transitions, is uniquely defined by Equation SI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Finally, the change in ∑i∈N π[β] i xi, the π-weighted abundance of A, is �∆ (x, β) = ∑ i∈N xi ∑ j∈N eij (x, β) ∑ γ∈L qβγπ[γ] j + ∑ i∈N xi � 1 − ∑ j∈N eji (x, β) � ∑ γ∈L qβγπ[γ] i − ∑ i∈N π[β] i xi = ∑ i,j∈N eji (x, β) ∑ γ∈L qβγπ[γ] i � xj − xi � + ∑ i∈N xi � ∑ γ∈L qβγπ[γ] i − π[β] i � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' (SI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content='4) It follows from Equation SI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content='3 that, under neutral drift, �∆◦ (x, β) = 0, for all x ∈ BN and β ∈ L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' This property will play a key role in our subsequent weak-selection analysis of the process (Equation SI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content='13).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' SI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content='3 A mutation-modified evolutionary process The process under consideration is mutation-free.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' However, following Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content='18, in order to get an idea of the assortment of types prior to hitting an absorbing configuration, it is convenient to introduce an artificial mutation that makes the chain ergodic and gives it a unique stationary distribution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' The idea is to choose a state (z, λ) with z ∈ BN ⊺ , and let mutations bring absorbing configurations into (z, λ) with some small probability u > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' If P(x,β)→(y,γ) denotes the proba- bility of transitioning from (x, β) to (y, γ) in the original (mutation-free) chain over the course 28 of one time step, then the transition probabilities for the mutation-modified chain are given by P⟳(z,λ) (x,β)→(y,γ) = � � � � � � � � � � � � � � � u x ∈ {A, B} , (y, γ) = (z, λ) , (1 − u) P(x,β)→(y,γ) x ∈ {A, B} , (y, γ) ̸= (z, λ) , P(x,β)→(y,γ) x ̸∈ {A, B} .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' (SI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content='5) As a result of the Fixation Axiom, there is a unique stationary distribution, π⟳(z,λ), such that π◦ ⟳(z,λ) (x, β) = ∑ γ∈L � π◦ ⟳(z,λ) (A, γ) P⟳(z,λ) (A,γ)→(x,β) + π◦ ⟳(z,λ) (B, γ) P⟳(z,λ) (B,γ)→(x,β) � + ∑ y∈BN ⊺ ∑ γ∈L π◦ ⟳(z,λ) (y, γ) P⟳(z,λ) (y,γ)→(x,β) = ∑ γ∈L π◦ ⟳(z,λ) (A, γ) � uδz,xδλ,β + (1 − u) δA,xqγβ � + ∑ γ∈L π◦ ⟳(z,λ) (B, γ) � uδz,xδλ,β + (1 − u) δB,xqγβ � + ∑ y∈BN ⊺ ∑ γ∈L π◦ ⟳(z,λ) (y, γ) P(y,γ)→(x,β) (SI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content='6) for all x ∈ B and β ∈ L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' In one step after state (x, β), the expected change in the π-weighted abundance of A is �∆⟳(z,λ) (x, β) = � � � � � � � � � � � � � � � � � −u � 1 − ∑i∈N π[λ] i zi � x = A, u ∑i∈N π[λ] i zi x = B, �∆ (x, β) x ̸∈ {A, B} .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' (SI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content='7) Averaging this expected change over the stationary distribution of the modified chain gives 0 = E⟳(z,λ) � �∆⟳(z,λ) � = E⟳(z,λ) � �∆ � − u ∑ β∈L π⟳(z,λ) (A, β) � 1 − ∑ i∈N π[λ] i zi � + u ∑ β∈L π⟳(z,λ) (B, β) ∑ i∈N π[λ] i zi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' (SI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content='8) Owing to a result of Fudenberg & Imhof53, we know that, in the low-mutation limit, lim u→0 ∑ β∈L π⟳(z,λ) (A, β) = ρA (z, λ) ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' (SI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content='9a) lim u→0 ∑ β∈L π⟳(z,λ) (B, β) = ρB (z, λ) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' (SI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content='9b) 29 Therefore, taking the derivative of both sides of Equation SI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content='8 with respect to u at u = 0 gives ρA (z, λ) = ∑ i∈N π[λ] i zi + d du ����� u=0 E⟳(z,λ) � �∆ � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' (SI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content='10) Let ⟨·⟩(z,λ) := d du ��� u=0E⟳(z,λ) [·].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' By the argument given in Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content='18 Corollary 1, we see that for any function ϕ : BN × L → R satisfying ϕ (A, β) = ϕ (B, β) = 0 for all β ∈ L, ⟨ϕ⟩(z,λ) = ∞ ∑ t=0 E � ϕ � xt, βt� | � x0, β0� = (z, λ) � , (SI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content='11) where the summation on the right-hand side converges absolutely.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' In particular, this equation holds for the expected change in the π-weighted abundance of A, ϕ = �∆.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Since we also have d dδ ����� δ=0 eij (x, β) = ∑ I⊆N cij I (β) xI (SI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content='12) for unique coefficients cij I (β), where xI := ∏i∈I xi, it follows that d dδ ����� δ=0 ρA (z, λ) = d dδ ����� δ=0 � �∆ � (z,λ) = � d dδ ����� δ=0 �∆ �◦ (z,λ) = � d dδ ����� δ=0 ∑ i,j∈N eji (x, β) ∑ γ∈L qβγπ[γ] i � xj − xi � �◦ (z,λ) = ∑ i,j∈N ∑ I⊆N � cji I (β) ∑ γ∈L qβγπ[γ] i � xI∪{j} − xI∪{i} ��◦ (z,λ) , (SI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content='13) where the interchange of the two limits is possible due to Equation SI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content='11 and the absolute con- vergence of its summation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' The second line of Equation SI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content='13 is where we use the fact that �∆0 (x, β) = 0 for all x ∈ BN and β ∈ L, highlighting the importance of network-mediated reproductive value.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' As a result of these calculations, what remains in order to understand the first-order effects of selection on a mutant type’s fixation probability is an analysis of the neutral operator ⟨·⟩◦ (z,λ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' SI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content='4 Analysis of neutral drift Throughout this section, we denote the stationary distribution of the structure-transition chain, Q, by υ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' We also suppress either the configuration or the network when we marginalize.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' For ex- ample, we write π⟳(z,λ) (x) for ∑β∈L π⟳(z,λ) (x, β) and π⟳(z,λ) (β) for ∑x∈BN π⟳(z,λ) (x, β).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' In the limit of low mutation, we know π◦ ⟳(z,λ) (A) converges to ρ◦ A (z, λ) and π◦ ⟳(z,λ) (B) converges to ρ◦ B (z, λ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' The following lemma is a slightly stronger version of this result: 30 Lemma 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' For all networks β ∈ L, lim u→0 π◦ ⟳(z,λ) (A, β) = ρ◦ A (z, λ) υ (β) ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' (SI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content='14a) lim u→0 π◦ ⟳(z,λ) (B, β) = ρ◦ B (z, λ) υ (β) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' (SI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content='14b) Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Letting x = A in Equation SI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content='6 and taking u → 0 gives lim u→0 π◦ ⟳(z,λ) (A, β) = ∑ γ∈L � lim u→0 π◦ ⟳(z,λ) (A, γ) � qγβ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' (SI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content='15) It follows that limu→0 π◦ ⟳(z,λ) (A, β) is proportional to υ (β), for all β ∈ L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' The constant of proportionality must be ρ◦ A (z, λ) due to the fact that limu→0 π◦ ⟳(z,λ) (A) = ρ◦ A (z, λ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' The result for limu→0 π◦ ⟳(z,λ) (B, β) follows from analogous reasoning and is omitted here.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Remark 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Neutral fixation probabilities, ρ◦ A (z, λ) and ρ◦ B (z, λ), can be calculated using re- productive values and the identities ρ◦ A (z, λ) = ∑i∈N π[λ] i zi and ρ◦ B (z, λ) = 1 − ∑i∈N π[λ] i zi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' The following is an immediate consequence of Lemma 1: Corollary 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' limu→0 π◦ ⟳(z,λ) (β) = υ (β).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' The next lemma establishes a recurrence for d du ��� u=0π◦ ⟳(z,λ) (β): Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' For every β, we have d du ����� u=0 π◦ ⟳(z,λ) (β) = δβ,λ − υ (β) + ∑ γ∈L � d du ����� u=0 π◦ ⟳(z,λ) (γ) � qγβ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' (SI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content='16) Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Summing both sides of Equation SI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content='6 over all x ∈ BN gives π◦ ⟳(z,λ) (β) = u ∑ γ∈L � π◦ ⟳(z,λ) (A, γ) + π◦ ⟳(z,λ) (B, γ) � � δβ,λ − qγβ � + ∑ γ∈L π◦ ⟳(z,λ) (γ) qγβ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' (SI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content='17) Differentiating this equation with respect to u at u = 0 and using Lemma 1 yields Equation SI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content='16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Since the state of the process consists of both a configuration of traits and a network structure, the next result gives a recurrence for calculating a modified version of ⟨·⟩◦ (z,λ), using conditioning on the network structure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' In particular, for a function ϕ : BN → R defined on just configura- tions, we let ⟨ϕ | β⟩◦ (z,λ) = d du ��� u=0E◦ ⟳(z,λ) [ϕ | β].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' This quantity can be calculated as follows: 31 Proposition 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' For every function ϕ : BN → R, we have υ (β) ⟨ϕ | β⟩◦ (z,λ) = δλ,β (ϕ (z) − ρ◦ A (z, λ) ϕ (A) − ρ◦ B (z, λ) ϕ (B)) + ∑ γ∈L υ (γ) ∑ (R,α) p◦ (R,α) (γ) qγβ ⟨ϕ�α | γ⟩◦ (z,λ) , (SI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content='18) where, for �α : N → N , ϕ�α : BN → R is the map defined by ϕ�α (x) = ϕ (x�α) for x ∈ BN .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' For x ∈ BN ⊺ , differentiating both sides of Equation SI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content='6 with respect to u at u = 0 gives d du ����� u=0 π◦ ⟳(z,λ) (x, β) = δz,xδλ,β + ∑ y∈BN ⊺ ∑ γ∈L � d du ����� u=0 π◦ ⟳(z,λ) (y, γ) � P◦ (y,γ)→(x,β) = δz,xδλ,β + ∑ y∈BN ⊺ ∑ γ∈L � d du ����� u=0 π◦ ⟳(z,λ) (y, γ) � ∑ (R,α) y�α=x p◦ (R,α) (γ) qγβ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' (SI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content='19) Doing so for x ∈ {A, B} gives d du ����� u=0 π◦ ⟳(z,λ) (A, β) = ∑ γ∈L � d du ����� u=0 π◦ ⟳(z,λ) (A, γ) � qγβ − ρ◦ A (z, λ) υ (β) + ∑ y∈BN ⊺ ∑ γ∈L � d du ����� u=0 π◦ ⟳(z,λ) (y, γ) � ∑ (R,α) y�α=A p◦ (R,α) (γ) qγβ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' (SI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content='20a) d du ����� u=0 π◦ ⟳(z,λ) (B, β) = ∑ γ∈L � d du ����� u=0 π◦ ⟳(z,λ) (B, γ) � qγβ − ρ◦ B (z, λ) υ (β) + ∑ y∈BN ⊺ ∑ γ∈L � d du ����� u=0 π◦ ⟳(z,λ) (y, γ) � ∑ (R,α) y�α=B p◦ (R,α) (γ) qγβ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' (SI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content='20b) If ϕ : BN → R is a fixed function, then, by definition, υ (β) ⟨ϕ | β⟩◦ (z,λ) = ∑ x∈BN υ (β) d du ����� u=0 π◦ ⟳(z,λ) (x, β) π◦ ⟳(z,λ) (β) ϕ (x) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' (SI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content='21) Combining Lemma 2 and Eqs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' SI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content='19–SI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content='20 with the fact that υ (β) d du ����� u=0 π◦ ⟳(z,λ) (x, β) π◦ ⟳(z,λ) (β) = d du ����� u=0 π◦ ⟳(z,λ) (x, β) − (δA,xρ◦ A (z, λ) + δB,xρ◦ B (z, λ)) d du ����� u=0 π◦ ⟳(z,λ) (β) (SI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content='22) then gives Equation SI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content='18 after some tedious but straightforward simplifications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' 32 Corollary 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' With I ⊆ N and η[β] I (z, λ) := υ (β) � ∑i∈N π[β] i xi − xI | β �◦ (z,λ), we have η[β] I (z, λ) = δλ,β � ∑ i∈N π[β] i zi − zI � + ∑ γ∈L ∑ (R,α) p◦ (R,α) (γ) qγβη[γ] �α(I) (z, λ) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' (SI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content='23) Subject to ∑i∈N π[β] i η[β] i (z, λ) = 0 for some β ∈ L, the solution to Equation SI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content='23 is unique.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Setting ϕ (x) = ∑i∈N π[β] i xi − xI in Proposition 1 gives Equation SI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content='23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Conversely, we know that η[β] I (z, λ) := υ (β) � ∑i∈N π[β] i xi − xI | β �◦ (z,λ) solves Equation SI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content='23, so that there is at least one solution to Equation SI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content='23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' By the Fixation Axiom, the dimensionality of the space of solutions to Equation SI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content='23 is determined by that of the case |I| = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' (The reason is that all subsets of size greater than one are transient under the ancestral process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=') Specifically, the recurrence for I = {i} is η[β] i (z, λ) = δλ,β (ρ◦ A (z, λ) − zi) + ∑ γ∈L ∑ j∈N e◦ ji (γ) qγβη[γ] j (z, λ) + ∑ γ∈L � 1 − ∑ j∈N e◦ ji (γ) � qγβη[γ] i (z, λ) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' (SI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content='24) If �η (z, λ) is another solution to Equation SI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content='24, then χ (z, λ) := η (z, λ) − �η (z, λ) satisfies χ[β] i (z, λ) = ∑ γ∈L ∑ j∈N e◦ ji (γ) qγβχ[γ] j (z, λ) + ∑ γ∈L � 1 − ∑ j∈N e◦ ji (γ) � qγβχ[γ] i (z, λ) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' (SI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content='25) Noting that any constant function is a solution to Equation SI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content='25, and the space of solutions to this equation is one-dimensional as a result of the Fixation Axiom, there must exist K ∈ R such that η (z, λ) = �η (z, λ) + K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Since the solution η[β] i (z, λ) = υ (β) ⟨xi | β⟩◦ (z,λ) satisfies ∑i∈N π[β] i η[β] i (z, λ) = 0 for all β ∈ L, it follows that K = 0 and η (z, λ) = �η (z, λ) whenever �η (z, λ) satisfies Equation SI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content='23 and ∑i∈N η[β] i �η[β] i (z, λ) = 0 for some β ∈ L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' We note that ∑i∈N π[β] i η[β] i (z, λ) = 0 for some β ∈ L ensures that this equation holds for all β ∈ L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' 33 SI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content='5 Calculating first-order effects of selection on fixation probabilities SI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content='1 Fixed initial configurations Note that for functions ϕ : BN → R and φ : L → R, we have ⟨φϕ⟩◦ (z,λ) = d du ����� u=0 ∑ β∈L π◦ ⟳(z,λ) (β) φ (β) E◦ ⟳(z,λ) [ϕ | β] = ∑ β∈L υ (β) φ (β) ⟨ϕ | β⟩◦ (z,λ) + (ρ◦ A (z, λ) ϕ (A) + ρ◦ B (z, λ) ϕ (B)) ∑ β∈L φ (β) d du ����� u=0 π◦ ⟳(z,λ) (β) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' (SI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content='26) Therefore, we may rewrite Equation SI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content='13 as d dδ ����� δ=0 ρA (z, λ) = ∑ i,j∈N ∑ I⊆N � cji I (β) ∑γ∈L qβγπ[γ] i � �� � φ � xI∪{j} − xI∪{i} � �� � ϕ ��◦ (z,λ) = ∑ i,j∈N ∑ I⊆N ∑ β∈L υ (β) cji I (β) ∑ γ∈L qβγπ[γ] i �� xI∪{j} | β �◦ (z,λ) − � xI∪{i} | β �◦ (z,λ) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' (SI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content='27) Defining η[β] I (z, λ) := υ (β) � ∑i∈N π[β] i xi − xI | β �◦ (z,λ), we then have d dδ ����� δ=0 ρA (z, λ) = ∑ i,j∈N ∑ I⊆N ∑ β∈L cji I (β) ∑ γ∈L qβγπ[γ] i � η[β] I∪{i} (z, λ) − η[β] I∪{j} (z, λ) � , (SI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content='28) where, by Corollary 2, the terms η are uniquely determined by η[β] I (z, λ) = δλ,β � ∑ i∈N π[β] i zi − zI � + ∑ γ∈L ∑ (R,α) p◦ (R,α) (γ) qγβη[γ] �α(I) (z, λ) ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' (SI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content='29a) ∑ i∈N π[β] i η[β] i (z, λ) = 0 for some β ∈ L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' (SI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content='29b) SI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content='2 Probabilistic initial configurations Up until this point, we have focused on fixation probabilities given some fixed initial state, (z, λ) ∈ N × L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' We now allow mutant types to arise stochastically and consider mean fix- 34 ation probabilities for both types.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' For two distributions, µA, µB ∈ ∆ � BN ⊺ × L � , we let ρA (µA) := E(z,λ)∼µA [ρA (z, λ)] ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' (SI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content='30a) ρB (µB) := E(z,λ)∼µB [ρB (z, λ)] .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' (SI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content='30b) By the results of §SI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content='1, for any µ ∈ ∆ � BN ⊺ × L � , we have d dδ ����� δ=0 ρA (µ) = ∑ i,j∈N ∑ I⊆N ∑ β∈L cji I (β) ∑ γ∈L qβγπ[γ] i � η[β] I∪{i} (µ) − η[β] I∪{j} (µ) � , (SI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content='31) where η[β] I (µ) = E(z,λ)∼µ � δλ,β � ∑ i∈N π[β] i zi − zI �� + ∑ γ∈L ∑ (R,α) p◦ (R,α) (γ) qγβη[γ] �α(I) (µ) ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' (SI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content='32a) ∑ i∈N π[β] i η[β] i (µ) = 0 for some β ∈ L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' (SI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content='32b) Letting µ = µA gives the mean fixation probability for type A, while the mean fixation proba- bility for type B can be calculated analogously using the equation ρB (µB) = 1 − ρA (µB).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Although the main focus of our study is on network-transition chains that are both aperiodic and irreducible, we do also consider periodic structures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Suppose that among the L networks in L, network β transitions deterministically to network β + 1 for β ∈ {1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' , L − 1}, and network L transitions deterministically to network 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' We can then write Equation SI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content='32 more explicitly as η[1] I (µ) = E(z,λ)∼µ � δλ,1 � ∑ i∈N π[1] i zi − zI �� + ∑ (R,α) p◦ (R,α) (L) η[L] �α(I) (µ) ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' (SI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content='33a) η[β] I (µ) = E(z,λ)∼µ � δλ,β � ∑ i∈N π[β] i zi − zI �� + ∑ (R,α) p◦ (R,α) (β − 1) η[β−1] �α(I) (µ) ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' (1 < β ⩽ L) (SI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content='33b) ∑ i∈N π[β] i η[β] i (µ) = 0 for some β ∈ L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' (SI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content='33c) References [1] Ohtsuki, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=', Hauert, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=', Lieberman, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' & Nowak, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' A simple rule for the evolution of cooperation on graphs and social networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Nature 441, 502–505 (2006).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' [2] Holme, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' & Saram¨aki, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Temporal networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Physics Reports 519, 97–125 (2012).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' 35 [3] Vazquez, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=', R´acz, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=', Luk´acs, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' & Barab´asi, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Impact of non-poissonian activity patterns on spreading processes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Physical Review Letters 98, 158702 (2007).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' [4] Onnela, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Structure and tie strengths in mobile communication networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Proceed- ings of the National Academy of Sciences of the United States of America 104, 7332–7336 (2007).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' [5] Isella, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' What’s in a crowd?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Analysis of face-to-face behavioral networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Journal of Theoretical Biology 271, 166–180 (2011).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' [6] Mastrandrea, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=', Fournet, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' & Barrat, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Contact patterns in a high school: A comparison between data collected using wearable sensors, contact diaries and friendship surveys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' PLoS ONE 10, 1–26 (2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' [7] Ulanowicz, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Quantitative methods for ecological network analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Computational Biology and Chemistry 28, 321–339 (2004).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' [8] Bascompte, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' & Jordano, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Plant-animal mutualistic networks: The architecture of biodi- versity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Annual Review of Ecology, Evolution, and Systematics 38, 567–593 (2007).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' [9] Miele, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' & Matias, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Revealing the hidden structure of dynamic ecological networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Royal Society Open Science 4, 170251 (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' [10] Akbarpour, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' & Jackson, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Diffusion in networks and the virtue of burstiness.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Pro- ceedings of the National class-structured of Sciences of the United States of America 115, E6996–E7004 (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' [11] Onaga, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=', Gleeson, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' & Masuda, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Concurrency-induced transitions in epidemic dy- namics on temporal networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Physical Review Letters 119, 108301 (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' [12] Taylor, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=', Day, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' & Wild, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Evolution of cooperation in a finite homogeneous graph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Nature 447, 469–472 (2007).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' [13] Allen, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' & McAvoy, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' A mathematical formalism for natural selection with arbitrary spatial and genetic structure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Journal of Mathematical Biology 78, 1147–1210 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' [14] Allen, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Evolutionary dynamics on any population structure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Nature 544, 227–230 (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' [15] Wong, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' & Candolin, U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Behavioral responses to changing environments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Behav- ioral Ecology 26, 665–673 (2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' [16] Tilman, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=', Plotkin, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' & Akc¸ay, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Evolutionary games with environmental feed- backs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Nature Communications 11 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' [17] Nowak, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=', Sasaki, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=', Taylor, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' & Fudenberg, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Emergence of cooperation and evolutionary stability in finite populations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Nature 428, 646–650 (2004).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' 36 [18] McAvoy, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' & Allen, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Fixation probabilities in evolutionary dynamics under weak se- lection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Journal of Mathematical Biology 82, 14 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' [19] Fisher, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' The Genetical Theory of Natural Selection (Clarendon Press, 1930).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' [20] Taylor, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Allele-frequency change in a class-structured population.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' The American Naturalist 135, 95–106 (1990).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' [21] McAvoy, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' & Wakeley, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Evaluating the structure-coefficient theorem of evolutionary game theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Proceedings of the National Academy of Sciences of the United States of America 119 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' [22] Erd¨os, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' & R´enyi, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' On the evolution of random graphs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Publication of the Mathematical Institute of the Hungarian Academy of Sciences 5, 17–61 (1960).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' [23] Goh, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=', Kahng, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' & Kim, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Universal behavior of load distribution in scale-free networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Physical Review Letters 87, 278701 (2001).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' [24] Gernat, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Automated monitoring of behavior reveals bursty interaction patterns and rapid spreading dynamics in honeybee social networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Proceedings of the National Academy of Sciences of the United States of America 115, 1433–1438 (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' [25] Watts, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' & Strogatz, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Collective dynamics of ‘small-world’ networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Nature 393, 440–442 (1998).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' [26] Barab´asi, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content='-L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' & Albert, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Emergence of scaling in random networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Science 286, 509–512 (1999).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' [27] Holme, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' & Kim, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Growing scale-free networks with tunable clustering.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Physical Review E 65, 2–5 (2002).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' [28] Lieberman, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=', Hauert, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' & Nowak, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Evolutionary dynamics on graphs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Nature 433, 312–316 (2005).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' [29] Pan, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' & Saram¨aki, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Path lengths, correlations, and centrality in temporal networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Physical Review E 84, 016105 (2011).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' [30] Holme, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Modern temporal network theory: a colloquium.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' European Physical Journal B 88, 234 (2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' [31] Valdano, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=', Ferreri, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=', Poletto, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' & Colizza, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Analytical computation of the epidemic threshold on temporal networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Physical Review X 5, 21005 (2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' [32] Povinelli, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=', Nelson, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' & Boysen, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Comprehension of role reversal in chim- panzees: evidence of empathy?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Animal Behaviour 43, 633–640 (1992).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' [33] Su, Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=', Allen, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' & Plotkin, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Evolution of cooperation with asymmetric social inter- actions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Proceedings of the National Academy of Sciences of the United States of America 119, e2113468118 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' 37 [34] Peysakhovich, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=', Nowak, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' & Rand, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Humans display a ’cooperative phenotype’ that is domain general and temporally stable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Nature Communications 5, 4939 (2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' [35] Harmer, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' & Abbott, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Losing strategies can win by Parrondo’s paradox.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Nature 402 (1999).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' [36] Girvan, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' & Newman, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Community structure in social and biological networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Proceedings of the National Academy of Sciences of the United States of America 99, 7821– 7826 (2002).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' [37] Newman, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Modularity and community structure in networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Proceedings of the National Academy of Sciences of the United States of America 103, 8577–8582 (2006).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' [38] Blonder, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=', Wey, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=', Dornhaus, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=', James, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' & Sih, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Temporal dynamics and network analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Methods in Ecology and Evolution 3, 958–972 (2012).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' [39] Pacheco, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=', Traulsen, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' & Nowak, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Coevolution of strategy and structure in complex networks with dynamical linking.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Physical Review Letters 97, 258103 (2006).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' [40] Santos, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=', Pacheco, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' & Lenaerts, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Cooperation prevails when individuals adjust their social ties.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' PLoS Computational Biology 2, 1284–1291 (2006).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' [41] Pacheco, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=', Traulsen, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=', Ohtsuki, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' & Nowak, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Repeated games and direct reciprocity under active linking.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Journal of Theoretical Biology (2008).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' [42] Van Segbroeck, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=', Santos, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=', Lenaerts, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' & Pacheco, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Reacting differently to adverse ties promotes cooperation in social networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Physical Review Letters 102 (2009).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' [43] Wu, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Evolution of cooperation on stochastic dynamical networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' PLoS ONE 5, e11187 (2010).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' [44] Fehl, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=', van der Post, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' & Semmann, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Co-evolution of behaviour and social network structure promotes human cooperation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Ecology Letters 14, 546–551 (2011).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' [45] Rand, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=', Arbesman, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' & Christakis, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Dynamic social networks promote cooper- ation in experiments with humans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Proceedings of the National academy of Sciences of the United States of America 108, 19193–19198 (2011).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' [46] Bravo, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=', Squazzoni, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' & Boero, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Trust and partner selection in social networks: An experimentally grounded model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Social Networks (2012).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' [47] Wang, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=', Suri, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' & Watts, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Cooperation and assortativity with dynamic partner up- dating.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Proceedings of the National Academy of Sciences of the United States of America 109, 14363–14368 (2012).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' [48] Bednarik, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=', Fehl, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' & Semmann, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Costs for switching partners reduce network dynam- ics but not cooperative behaviour.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Proceedings of the Royal Society B: Biological Sciences (2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' 38 [49] Cardillo, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Evolutionary dynamics of time-resolved social interactions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Physical Review E 90, 52825 (2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' [50] Harrell, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=', Melamed, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' & Simpson, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' The strength of dynamic ties: The ability to alter some ties promotes cooperation in those that cannot be altered.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Science Advances (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' [51] Akc¸ay, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Collapse and rescue of cooperation in evolving dynamic networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Nature Communications 9, 2692 (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' [52] McAvoy, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=', Allen, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' & Nowak, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Social goods dilemmas in heterogeneous societies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Nature Human Behaviour 4, 819–831 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' [53] Fudenberg, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' & Imhof, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Imitation processes with small mutations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' Journal of Eco- nomic Theory 131, 251–262 (2006).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} +page_content=' 39' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/_tFLT4oBgHgl3EQfEC7f/content/2301.11982v1.pdf'} diff --git a/aNE1T4oBgHgl3EQfwwVc/content/tmp_files/2301.03414v1.pdf.txt b/aNE1T4oBgHgl3EQfwwVc/content/tmp_files/2301.03414v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..23a7b6a872cbd4c281139d3129d8c9752ad71bed --- /dev/null +++ b/aNE1T4oBgHgl3EQfwwVc/content/tmp_files/2301.03414v1.pdf.txt @@ -0,0 +1,3696 @@ +Submitted to Transportation Science +manuscript 1 +Authors are encouraged to submit new papers to INFORMS journals by means of a style file template, +which includes the journal title. However, use of a template does not certify that the paper has been +accepted for publication in the named journal. INFORMS journal templates are for the exclusive +purpose of submitting to an INFORMS journal and should not be used to distribute the papers in print +or online or to submit the papers to another publication. +Multimodal Transportation Alliance Design with +Endogenous Demand: Large-Scale Optimization for Rapid +Gains +Kayla Cummings*, Vikrant Vaze†, ¨Ozlem Ergun‡, Cynthia Barnhart* +Transit agencies have the opportunity to outsource certain services to well-established platform-based Mobility on +Demand (MOD) providers. Such alliances can improve service quality, coverage, and ridership; reduce public sector +costs and vehicular emissions; and integrate the passenger experience. To amplify the effectiveness of such alliances, +we develop a fare-setting model that jointly optimizes discounted fares across a multimodal network. We capture com- +muters’ travel choices with a discrete choice model, resulting in a large-scale, mixed-integer, non-convex optimization +problem. To solve this challenging problem, we develop a two-stage decomposition with the pricing decisions in the first +stage and a mixed-integer linear optimization problem optimizing fare discounts and the induced passenger behaviors +in the second stage. To solve the decomposition, we develop a new solution approach combining tailored coordinate +descent, parsimonious second-stage evaluations, and interpolations using special ordered sets. This approach, enhanced +by acceleration techniques based on slanted traversal, randomization and warm-start, significantly improves system-wide +practical outcomes over algorithmic benchmarks. Different alliance priorities result in qualitatively different fare designs: +flat fares decrease the total vehicle-miles traveled, while geographically-informed discounts improve passenger happi- +ness. The model responds appropriately to equity-oriented and passenger-centric priorities, improving system utilization +and lowering prices for low-income residents and long-distance commuters. Finally, our revenue allocation mechanism +improves outcomes for both operators, thus incentivizing profit-oriented MOD operators to adopt transit priorities. +Key words: Public transit, transportation pricing, alliance design, mixed-integer non-convex optimization +1. +Introduction +Cities face critical challenges in the quest to improve urban mobility. Prior to the pandemic, congestion was +steadily rising, translating to $160 billion annual costs to U.S. cities and record-breaking contributions to +greenhouse gas emissions (Schrank et al. 2015). Recent declines in transit ridership demonstrate the inabil- +ity of transit’s static infrastructure to accommodate rapidly evolving commuting patterns (The Economist +2018). Private ride-sharing apps from Transportation Network Companies (TNCs) like Uber and Lyft have +* Massachusetts Institute of Technology +† Dartmouth College +‡ Northeastern University +1 +arXiv:2301.03414v1 [math.OC] 9 Jan 2023 + +Cummings et al.: Transportation Alliance Design with Endogenous Demand +2 +Article submitted to Transportation Science; manuscript no. 1 +challenged this fixed-infrastructure status quo. TNCs transported 2.6 billion passengers in 2017, more than +doubling the ride-sharing market since 2012 (Schaller 2018). The majority of urban TNC patrons admit that +they would have otherwise walked, biked, taken public transit, or not made the trip, coinciding with tens +of millions in annual transit revenue losses, worsening congestion, higher emissions, lower navigability of +cities, and reduced accessibility to affordable public options (Gehrke and Reardon 2018, Schaller 2018). +Mobility-on-demand (MOD) services have the potential to service transit deserts—low-density areas +disconnected from public transit. However, cost presents a key barrier: while all public transit modes operate +at a loss, MOD services administered by transit agencies incur the highest average per-trip costs ($23.10 vs. +the next-highest $11.19 for commuter rail) (Kane, Tomer, and Puentes 2016). High labor needs, outdated +technology, and coordination difficulties lead to inefficient, expensive operations. Notably, average TNC +trip costs $13, a full $10 less than agency-sponsored MOD trips. Outsourcing all 223 million on-demand +transit trips to TNCs could hypothetically save billions of dollars for US transit agencies (Kane, Tomer, and +Puentes 2016). Thus, pricing alliances between TNCs and transit agencies have the potential to improve +service quality and coverage, while reducing costs and decreasing citywide vehicle-miles travelled (VMT). +1.1. +Pricing Alliances in the Real World +TNCs have the infrastructure to provide more cost-effective MOD services supplementing fixed-route tran- +sit. Microtransit platforms like BRIDJ and Via—differentiated from TNCs due to fleets comprising mini- +vans or shuttles as opposed to sedans—have oriented their business model toward complementing transit +(Via Transp. 2023, BRIDJ 2023). The Federal Transit Administration’s MOD Sandbox program has pro- +vided millions in funding to transit agencies in US cities such as Dallas, San Francisco, and Los Angeles +to develop on-demand pilots that fill service gaps in their service regions (Federal Transp. Administration +2016). Rather than designing a complementary MOD system from scratch and incurring high fixed costs, +transit agencies could outsource MOD services to TNC platforms that are well-established, highly con- +nected, and widely trusted; or to microtransit platforms that more closely align with transit agency goals. +This section formalizes such alliances within a rigorous conceptual framework. We define a pricing +alliance as a cooperative pricing scheme between a transit agency and an MOD operator with independently +operated infrastructures serving overlapping or adjacent regions. A pricing alliance seeks to improve each +operator’s own prioritized metrics whilst also improving system-wide benefits through integration. Indeed, +real-world pricing alliance pilots have shown great promise in improving regional mobility, providing alter- +natives with higher service levels, lower fares and increased ridership (The Boston Globe 2022, Mag 2021). +Pricing alliances are characterized by the intended service populations and the relationship of the MOD +operator’s system to the fixed-route transit network. Service population may be a targeted demographic, +e.g. persons with limited mobility, low-income people, or senior citizens; the service population might also +constitute residents of a particular geographic area, e.g. residents of a transit desert or people traveling + +Cummings et al.: Transportation Alliance Design with Endogenous Demand +Article submitted to Transportation Science; manuscript no. 1 +3 +(a) GoLink in Dallas, TX (Plano region) utilizes a zone- +based route structure. +(b) The NewMo Pilot in Newton, MA utilized a hub-based route +structure. +Figure 1 +Route structures of recent pricing alliances. In Plano (Dallas Area Rapid Transit 2020), passengers +spend up to $3 to travel anywhere within a color-blocked region. In the NewMo Pilot (City of New- +ton, MA 2021), passengers could travel anywhere within town limits for $2, as long as either trip +endpoint was one of seven hubs. NewMo now allows passengers to travel anywhere within Newton. +within a given radius of a transit hub. The MOD infrastructure may complement, substitute, or extend fixed- +route options. Once participating operators establish the nature of the pricing alliance, the alliance can select +a joint pricing scheme. Carefully designed fares influence passenger behavior, incentivizing choices that +benefit the entire system. Table 1 surveys these traits of recent pricing alliances: +• MOD operator: This can be a TNC like Uber or Lyft, or a microtransit platform like Via. +• Service population: Recent alliances have served people with limited mobility, seniors, essential work- +ers, or simply everyone. +• Fare structure: For passengers traveling within the system, some alliances charge a flat fare and/or +a variable fare based on distance travelled. Selectively applied, interpretable discount structures for +jointly offered routes can encourage multimodal travel and engineer outcomes desired by the operators. +• Route structure: Alliances often require specific trip geography: point-to-point (PTP) (trips must occur +within a given geographic region), zone-based (partitions a larger region into small zones and requires +intra-zonal trips), and hub-based (at least one trip endpoint must be anchored at specified locations). +Figure 1 illustrates zone-based and hub-based route structures. +• Integration into public transit network: The MOD portion of the network might integrate into the +transit network in several ways: complementary (provides another mode option to improve service +quality), substitutive (replaces existing fixed-route transit), first-/last-mile (FLM) (connects travelers +to the fixed-route network), and extension (serves transit desert regions). +1.2. +Literature Review +This work sits at the intersection of literature on FLM system design and operations management, integrated +multimodal transport system design, and horizontal cooperation among competing transportation operators. + +MobilityOptionsinPlano +OpcionesdemovilidadenlaszonasdePlano +CISEMONTC +WLIS +CHASEOUKS BIVD +NWPLANO +PARK&RIDE +NONEN +Mapnottoscale +Elm30ano +representa +laestala +PLRER +Travel between zones is not permitted. +N +PARKERRD +STATION +LegacyWestServiceArea Zone +Noesta permitidoviajardirectoentrezonas. +PARXBVO +LegacyWest Zona del area de servicio +LegacyWestserves Northwest +FarNorth Plano serves Parker Road +North Central Plano/Chase Oaks +Far North Plano Service Area Zone +PlanoPark&Ride,forconnections +Station,forconnectionstoDART rail +servesParker RoadStation,for +FarNorthPlano Zonadelareadeservicio +to DART buses. +and buses. +connections to DART rail and buses. +Legacy Westsinve la Northwest Plano +Far North Plano sirve la Parkor Road +NorthCentral Plano/Chase Oaks sinve la +NorthCentral Plano/Chase Oaks ServiceAreaZone +Park&Ride,para conexionesalos +Station,paraconexiones alostrenesy +ParkerRoadStation,para conexionesalos +NorthCentral Plano/ChaseOaksZonadelareadesenvicig +sutobusos de DART. +autobuses de DART. +trenesy autobusos de DART. +DARTTransitFacility +Terminal de DART +DARTRed&OrangeLines +DART lineas Rojas yNaranjas + CollinCollege-SpringCreekCampusWaltham +Watertown +Eligibledestinations: +City centers: +NewtonCentre +NeedhamStreet +Newton +WellsAve/Mt.ldaCampus +ofUMassAmherst +Transit hubs: +NewtonvilleCommuterRail +ChestnutHillGreenLine +Newton Highlands +Green Line +Needham Heights +CommuterRail +NeedhamCummings et al.: Transportation Alliance Design with Endogenous Demand +4 +Article submitted to Transportation Science; manuscript no. 1 +Table 1 +Survey of recent pricing alliances. PTP: point-to-point. Flat fare: same price for every passenger. +Mode: fares vary by travel mode. Distance: fares increase with distance traveled. (Dallas Area Rapid Transit +2020, Regional Transp. Commission of Southern Nevada 2021, City of Seattle, WA 2021, MBTA 2021, City of +Newton, MA 2021, City of Jersey City, NJ 2021, St. Louis Metro 2021, MARTA 2021, Indianapolis Public Transp. +Corporation 2021) ∗ Not operated by a transit agency. ∗∗ Specially marketed for senior citizens. ∗∗∗ Available to +everyone, but only in case of transit closures. ∗∗∗∗ Transported essential workers at the beginning of the +COVID-19 pandemic. +Program +City +Transit agency +MOD Op. Service population +Fares +Routes Integration +GoLink +Dallas, TX +DART +Via +Everyone +Mode +Zone +Complementary, FLM +RTC On-demand Pilot Las Vegas, NV +RTC +Lyft +Paratransit +Distance PTP +Substitutive +Via to Transit +Seattle, WA +King County Metro Via +Everyone +Flat fare +Hub +Complementary, FLM +The RIDE Flex +Boston, MA +MBTA +Uber, Lyft +Paratransit +Flat fare +PTP +Substitutive +NewMo Pilot +Newton, MA +City of Newton∗ +Via +Everyone, seniors∗∗ +Flat fare +Hub +Extension, FLM +No program name +Jersey City, NJ +NJ TRANSIT +Via +Everyone +Distance Zone +Complementary, extension +No program name +St. Louis, MO +St. Louis Metro +Lyft +Everyone +Distance Hub +Complementary, FLM +MARTAConnect +Atlanta, GA +MARTA +Uber, Lyft +Everyone (closures)∗∗∗ Distance PTP +Extension +IndyGo + Uber +Indianapolis, IN IndyGo +Uber +Essential workers∗∗∗∗ +Flat fare +PTP +Substitutive +FLM system design and operations: Research on demand responsive connector (DRC) systems devel- +ops analytical models to evaluate service quality and determine first-mile system parameters. In particu- +lar, such work specifies optimal zone size and headways, identifies transition points between regions best +serviced by fixed-route vs. flexible services, and establishes best practices for inter-zone transfer coordina- +tion (Chandra and Quadrifoglio 2013, Kim, Levy, and Schonfeld 2019, Kim and Schonfeld 2014, Lee and +Savelsbergh 2017, Li and Quadrifoglio 2010, Lu, Quadrifoglio, and Petrelli 2017, Lu, Shen, and Quadri- +foglio 2014). The tactical question of how to operate a first-mile system is also well-studied. The Dial-A- +Ride Problem (DARP) encompasses the vehicle routing problem faced by transit agencies, given a set of +trip requests and a vehicle fleet (Ho et al. 2018, Molenbruch, Braekers, and Caris 2017). The Integrated +DARP (IDARP) designs vehicle routes and schedules to meet trip requests, allowing transfers with fixed- +route timetabled service (Posada, Andersson, and Hall 2017). Closely related to IDARP is the problem +of matching individual carpoolers and integrating their trips with transit timetables (Stiglic et al. 2018). +Finally, many studies design strategies for routing and scheduling (Wang 2019), pricing (Chen and Wang +2018), and trip request acceptance (Agussurja, Cheng, and Lau 2019) for FLM transportation systems. +Multimodal network optimization with endogenous demand: Our work is related to literature on opti- +mal design and operation of transportation systems that acknowledges and leverages endogenous demand. +Past research has modeled decision-making travelers with preferences. One-to-one and many-to-one assign- +ment problems among travelers and suppliers have been addressed with preference-based stable matchings +to prevent participants from leaving ride-sharing systems (Wang, Agatz, and Erera 2018) or transit systems +(Rasulkhani and Chow 2019). Passenger decisions are also often captured by discrete choice models. Bert- +simas, Ng, and Yan (2020) jointly determine frequencies and prices for multimodal transit to minimize wait +times, subject to passenger mode and route choices. Cadarso et al. (2017) optimize airline scheduling, fleet +assignment, and fares while capturing the effects of competing high-speed rail service, taking passengers’ + +Cummings et al.: Transportation Alliance Design with Endogenous Demand +Article submitted to Transportation Science; manuscript no. 1 +5 +mode choices into consideration. Wei, Vaze, and Jacquillat (2020) develop fixed-route transit timetables +to maximize welfare, subject to competition with ride-sourcing companies, and congestion effects from +passengers’ mode switching. Wang, Jacquillat, and Vaze (2022) optimize a network of vertiports for sup- +porting urban aerial mobility, with passenger mode choices described by two alternative models, including +a multinomial logit model. Banerjee et al. (2021) tackle a welfare-maximizing system design and pricing +problem for centrally coordinated multimodal transport networks with price-dependent demand, and for- +mulate it using mixed-integer convex optimization. In contrast, we tackle a multi-objective pricing alliance +design problem with a practically suitable pricing scheme that enables transparent price communication to +passengers, but also prevents its convexification and, in turn, heightens the computational challenge. +Horizontal Cooperation: Finally, we review cooperation models among competing operators. Litera- +ture on horizontal cooperation in logistics and airline scheduling is particularly mature (Cruijssen, Dullaert, +and Fleuren 2007, Guajardo and R¨onnqvist 2016, Wright, Groenevelt, and Shumsky 2010, Hu, Caldentey, +and Vulcano 2013). Chun, Kleywegt, and Shapiro (2017) design a liner shipping alliance with endogenous +linear demand for a homogeneous product; shipping companies first trade physical capacity on respective +networks, and then compete to sell substitutable products in an overlapping market. Our work also involves +joint products over a shared network subject to endogenous demand, but the allied operators offer those +products together rather than exchanging capacity to compete. Algaba et al. (2019) formulate an urban trans- +portation network flow game, using exogenous passenger and cost information to coordinate a single-fare +payment among competing operators. Bian and Liu (2019a,b) design mechanisms for the first-mile problem +incorporating personalized passenger requirements. Siddiq, Tang, and Zhang (2021) investigate incentive +mechanisms to inspire commuters to use public transportation, modeling commuters, transit agency, ride- +sharing platform, municipal government, and local private enterprises as stakeholders. +Liu and Chow (2022) investigate whether competing transit agencies can share data to improve selfish +outcomes when setting frequencies, subject to user equilibrium passenger flows. Policymakers can lever- +age results of their Bayesian game and coalition formation model to inform decisions about establishing +mandatory data-sharing amongst transit operators, but the model is not amenable to large-scale operations +management. The most similar study to ours in this branch of literature is by Schlicher and Lurkin (2022), +who formulate a transport choice game in which operators cooperatively price their pooled resources, sub- +ject to passengers making travel choices according to a multinomial logit model. They design a market share +exchange allocation rule that ensures a stable grand coalition. Their study differs from ours in that each +operator offers homogeneous products with a single price to travelers with unspecified origins and destina- +tions, thus entirely ignoring network effects. In summary, most existing studies individually model either +operator or passenger incentives when designing integrated, multimodal urban transportation systems; to +our knowledge, studies incorporating both strategic operators and passengers provide only general high- +level intervention recommendations and rules of thumb. Our work differs in that we provide a prescriptive +and strategic design framework to build pricing alliances at scale and in full operational detail. + +Cummings et al.: Transportation Alliance Design with Endogenous Demand +6 +Article submitted to Transportation Science; manuscript no. 1 +1.3. +Contributions +We propose a prescriptive pricing alliance to enable incentive-aligned collaboration between transit agencies +and established ride-sharing operators. A fare-setting model is formulated to maximize total system-wide +benefits across the integrated network. Our framework helps operators navigate competing alliance objec- +tives: (1) enhancing access to high-quality public transportation options for underserved populations, (2) +lowering vehicle emissions and congestion from single-occupancy vehicle trips, and (3) maintaining the +financial well-being of participating operators to ensure that the profit-oriented operators are incentivized to +participate. A key technical challenge when optimizing these objectives lies in capturing interdependencies +between fares and commuters’ travel choices. In response, our model integrates a discrete choice model of +passengers’ route and mode decisions based on prices and non-pricing attributes like travel times. +From a technical standpoint, our fare-setting model is a large-scale, mixed-integer, non-convex opti- +mization problem—a challenging class of problems. Our first technical contribution is to design a two- +stage decomposition in which the first-stage pricing decisions parameterize second-stage fare discounts +and the induced passenger behaviors. The second stage becomes a more tractable mixed-integer linear +optimization problem that can be solved with commercial solvers. To solve the full model, we develop a +new solution approach combining tailored coordinate descent, parsimonious second-stage evaluations, and +interpolations using Special Ordered Sets of type 2 (SOS2) (Misener and Floudas 2010). We also develop +acceleration techniques based on slanted coordinate traversal and search direction randomization. This solu- +tion approach—our second technical contribution—is applicable to any two-stage formulation with a low- +dimensional, convex, continuous first-stage and any computationally expensive black-box second stage. +This solution approach is found to significantly improve outcomes, for passengers and operators, compared +to those obtained with state-of-the-art benchmarks based on Bayesian Optimization (Mockus 2012). +From a practical standpoint, we design a large-scale case study focused on the morning commute in the +Greater Boston Area. We find that our model sets fares that are in realistic ranges and have interpretable +connections to alliance goals. For example, an alliance with a greater focus on minimizing total VMT +prefers flat rather than distance-varying fares to increase system utilization by long-distance commuters. +On the other hand, alliances with a greater emphasis on increasing transit access will set discounts with +greater geographic variation to make alliance routes more attractive to heterogeneous populations. The clear +alignment between operator goals and passenger choices achieved by our fare structures illustrates the value +of modeling endogenous demand. Moreover, analysis of our results shows that the model is appropriately +responsive to equity-oriented objectives: it enables the alliance to lower fares for, and increase utilization +by, low-income and long-distance commuters. Finally, when compared to non-cooperative pricing, our fares +and our tailored revenue allocation mechanism together incentivize revenue-oriented MOD operators not +only to participate in the alliance but also to adopt the transit operator’s priorities. + +Cummings et al.: Transportation Alliance Design with Endogenous Demand +Article submitted to Transportation Science; manuscript no. 1 +7 +Section 2 presents the allied fare-setting model formulation, its two-stage decomposition enabling +tractable solutions, as well as our revenue allocation mechanism. Section 3 describes our parsimonious +SOS2-based coordinate descent approach, whose computational performance is compared against bench- +marks in Section 4. We present our practical insights in Section 5 and conclude in Section 6. +2. +Pricing Alliance Design Problem +We now present our design pipeline for the Pricing Alliance Design Problem (PADP). In the PADP, the +alliance—i.e., the jointly acting operators—sets a fare structure that optimizes joint operator priorities over +the integrated multimodal network, subject to the passengers’ endogenous route choice decisions. The indi- +vidual operators must then decide whether or not to participate in the alliance they have designed based on +the optimized fares and a revenue allocation mechanism. +2.1. +Assumptions +Before formulating the allied fare-setting model, we specify our characterization of system-wide benefits, +our model of passenger decision-making, and our assumptions about static fares. +System-wide benefits. The alliance cooperatively set fares over an integrated network with the objective +of maximizing overall benefits to society, including travelers, operators, and the rest of society (Daganzo +2012). Consistent with the motivation of this work, we assume that transit agency’s own objective is identi- +cal to that of the alliance. We characterize an operator’s benefits as its fare revenue and a passenger’s benefits +as its average utility across all available travel options. High passenger utility corresponds to the availability +of many high-quality travel options. Finally, there are many ways to capture the system’s impact on the +rest of society, defined as everyone except the travelers and operators. Most people who take alternative +travel options choose to drive personal vehicles, contributing to negative externalities, such as air pollution. +Because a pricing alliance involves no change in permanent infrastructure but rather better utilization of the +existing infrastructure, the key benefits of the alliance to the rest of society are likely to come from single- +occupancy VMT reduction under the allied pricing regime. We ultimately compute system-wide benefits +as a weighted sum of operator revenue, passenger utility, and a penalty for the outside-option VMT. The +weights are determined by the alliance’s relative priorities and can be varied to evaluate trade-offs. +Passenger discrete choice model. We model travelers as rational agents making travel decisions accord- +ing to a multinomial logit (MNL) discrete choice model. In an MNL model, the choice probabilities are +proportional to each option’s exponentiated utility, also known as its attractiveness (McFadden 1974). The +MNL choice model allows us to embed a closed form of the passengers’ decision-making process in the +alliance fare-setting model, but it also presents limitations related to the independence of irrelevant alter- +natives (IIA) property. Some have circumvented such inaccuracies by using the general attraction model +(GAM), of which the MNL model is a special case (Gallego, Ratliff, and Shebalov 2015). The GAM for- +mulates each choice probability as a function not only of the available options’ attractiveness, but also the + +Cummings et al.: Transportation Alliance Design with Endogenous Demand +8 +Article submitted to Transportation Science; manuscript no. 1 +shadow attractiveness of unavailable options. In practice, researchers have set the shadow attractiveness +values to zero, in the absence of reliable data to estimate these parameters (Wei, Vaze, and Jacquillat 2020). +Others leverage the nested MNL (Williams 1977), of which the MNL is also a special case. Lo, Yip, and +Wan (2004) and Bertsimas, Ng, and Yan (2020) assume that passengers select travel mode in the first level, +and then they select a route under that mode in the second level. In our work, we populate passengers’ route +choice sets with the fastest route from each available travel mode (transit-only, MOD-only, or transit-MOD +hybrid), including the option to drive, referred to in the literature as the outside option or the no purchase +alternative. Thus, our simplified choice model framework is equivalent to a GAM with zero shadow attrac- +tiveness values, or to a mode-route nested MNL with second-level choice sets containing one route each. +Fare-setting. The alliance sets fares over the integrated network. Some MOD operators might set time- +varying fares on their independently operated network. In particular, TNCs may implement fare multipliers +to manage two-sided markets between drivers and riders (Castillo, Knoepfle, and Weyl 2017). In a pricing +alliance, however, the MOD operator is a contractor to the transit agency and consequently agrees to set +time- and demand-homogeneous fares over allied network. This agreement facilitates transparent communi- +cation with passengers who can easily anticipate public sector prices, and it also allows the transit operator +to set a budget for the alliance with higher confidence. We also assume that each operator is capable of +serving all demand redistribution that occurs as a result of the newly set fares, and that capacity reallocation +is therefore unnecessary to consider in the pricing alliance design process. Schlicher and Lurkin (2022) +make a similar assumption: they assume a constant marginal cost due to market shares that do not change +significantly. From a transit perspective, this implies that the fixed-route options (e.g., buses) have low load +factors to start with, especially in and near transit deserts; on the MOD side, it implies that the operators +have large driver pools driven by private market dynamics. In summary, we assume that the load difference +on the integrated network when transitioning from non-cooperative to allied fare-setting will not impose a +large enough change in network utilization to necessitate consideration of the associated resource allocation +decisions. In the practical case study of Section 5, we validate this assumption by showing that the potential +pricing alliances indeed do not pose a risk of over-saturating the integrated infrastructure. +2.2. +Exact Formulation +We now provide notation for formulating our allied fare-setting model with endogenous demand. Passengers +select from a set of routes, R, serviced by a set of operators, O, which includes a public transit operator +and an MOD operator, so that |O| = 2. A route is a sequence of trip legs, each served by some operator’s +infrastructure. To capture flat and distance-based fares, we define non-discounted price of route r ∈ R as: +� +k∈Or +(β0 +k + ∆rk · β∆ +k ) +(1) +where Or ⊆ O is the set of operators serving route r; ∆rk is the distance of route r covered by operator +k; and β0 +k and β∆ +k , respectively, are the base fare, and markup per unit distance traveled, for operator k’s + +Cummings et al.: Transportation Alliance Design with Endogenous Demand +Article submitted to Transportation Science; manuscript no. 1 +9 +sub-network. We collectively refer to the base fares and distance-based markups of all operators as the +fare parameters (β), which are decision variables in our model. Fare parameters are constrained by (non- +negative) upper and lower bounds ((β0 +min,β0 +max), (β∆ +min,β∆ +max)) determined by local legislative or operational +requirements. +In addition to the fare parameters, the operators jointly select a set of discounted routes. Only a subset of +routes, RDE ⊆ R, may be discount-eligible (DE). Rather than deciding whether or not each individual route +should receive a discount, the discount-eligible routes may be grouped into discount activation categories. +Routes in the same discount activation category may share common geographic components specified by +the alliance. By grouping routes into categories, passengers can easily interpret which routes are discounted +from a map or a simple set of rules. Example definitions for discount activation categories might include all +routes anchored on a particular hub location, or all routes whose origins and destinations are contained in +specified regions. Let Ra ⊂ R be the set of routes corresponding to discount activation category a ∈ A. The +sets Ra partition RDE, i.e., ∪a∈ARa = RDE and Ra ∩ Rb = ∅ for a ̸= b ∈ A. Let xa ∈ {0,1} denote the +decision variable that activates discounts on all routes in Ra. This assumption is not restrictive; absence of +activation categories can be handled easily by putting each route in its own category: |Ra| = 1,∀a ∈ A. We +note that the relaxation of this assumption might result in discount rules that are difficult to communicate to +passengers in large-scale systems. +Λ is the discount multiplier for the routes selected to receive a discount, with an allowable range of +[Λmin,Λmax] : 0 ≤ Λmin ≤ Λmax ≤ 1. The customer-facing price, pr, of route r ∈ R, is given as: +pr = +� +(1 − Λ · xa) · +�� +k∈Or(β0 +k + ∆rk · β∆ +k ) +� +if r ∈ Ra,a ∈ A +� +k∈Or(β0 +k + ∆rk · β∆ +k ) +if r ∈ R \ RDE +(2) +We consider a set N of passenger types. Each passenger type i ∈ N is identified by a unique combination +of origin, destination, and preference profile as described by their route choice utility coefficients. Ri is the +set of routes available to passengers of type i ∈ N. Some passengers are more averse to expensive travel +options, whereas others are more sensitive to travel time, constituting different preference profiles. There +are Ni passengers of type i ∈ N. We denote the utility to a passenger of type i ∈ N of route r ∈ Ri as +uir + αi · pr, where uir is the utility from non-monetary route attributes and αi ≤ 0 is the utility per unit +price. The market share sir of route r ∈ Ri for passenger type i ∈ N is computed according to MNL as: +sir = +exp(uir + αi · pr) +exp(ui0) + � +s∈Ri exp(uis + αi · ps), +(3) +where the outside option—not in set R = � +i∈N Ri—has a utility ui0 and a market share computed as: +si0 = +exp(ui0) +exp(ui0) + � +s∈Ri exp(uis + αi · ps). +(4) +Finally, the operators’ relative priorities over the system-wide performance metrics are captured by non- +negative objective function weights: µP AX,µREV ,µV MT, respectively, corresponding to passenger benefits, + +Cummings et al.: Transportation Alliance Design with Endogenous Demand +10 +Article submitted to Transportation Science; manuscript no. 1 +operator benefits, and the benefits from negative externality reduction. Table 2 summarizes all notation. +Model PADP-FS (5)-(13) provides the exact formulation for the PADP fare-setting model. It jointly sets +fares and discounts to maximize system-wide benefits across the integrated network (objective function (5)). +Discounts are applied on selected routes (Constraints (6) and (7)) and utility-maximizing passengers make +route selections according to an MNL (Constraints (8) and (9)). Fare parameters and the discount multipliers +obey bounds (Constraints (10)-(12)). Discount activation decisions are binary (Constraints (13)). +Table 2 +Notation. +Component +Type +Description +A +Set +Discount activation categories +N +Set +Passenger types +O +Set +Operators +R +Set +Intrasystem routes, not including the outside option +Or +Set +Operators who help service route r ∈ R +Ri +Set +Route options available to passengers of type i ∈ N +Ra +Set +Routes in discount activation category a ∈ A +RDE +Set +Discount-eligible routes, i.e., � +a∈A Ra +Ni +Param. Number of passengers of type i ∈ N +∆i0 +Param. Driving distance for a passenger of type i ∈ N +∆rk +Param +Distance the passenger travels with operator k ∈ O on route r ∈ R +uir +Param. Non-monetary utility accrued by a passenger of type i ∈ N on route r ∈ Ri +ui0 +Param. Utility accrued by a passenger of type i ∈ N by driving +αi +Param. Utility per unit price to a passenger of type i ∈ N +β0 +min,β0 +max +Param. Minimum and maximum allowable base fares +β∆ +min,β∆ +max +Param. Minimum and maximum allowable distance-based markups +Λmin,Λmax +Param. Minimum and maximum allowable values of discount multipliers +µP AX,µREV ,µV MT +Param. Relative priority weights of system-wide performance metrics +xa +Var. +Binary. Whether to activate discount option a ∈ A +β0 +k,β∆ +k +Var. +Continuous. Base fare and markup of operator k ∈ O +pr +Var. +Continuous. Customer-facing price of route r ∈ R +Λ +Var. +Continuous. Discount multiplier applied to routes with activated discounts +sir +Var. +Continuous. Proportion of passengers of type i ∈ N who choose route r ∈ Ri +si0 +Var. +Continuous. Proportion of passengers of type i ∈ N who choose the outside option +(PADP-FS) +max +� +i∈N +Ni· +� +µP AX · +� +ui0+ +� +r∈Ri +(uir+αi·pr) +� ++µREV · +� +r∈Ri +pr·sir−µV MT ·(∆i0·si0) +� +(5) +s.t. +pr = +� +k∈Or +(β0 +k + ∆rk · β∆ +k ) +r ∈ R \ RDE +(6) +pr = (1 − Λ · xa) · +� � +k∈Or +(β0 +k + ∆rk · β∆ +k ) +� +a ∈ A,r ∈ Ra +(7) +sir = +exp(uir + αi · pr) +exp(ui0) + � +s∈Ri exp(uis + αi · ps) +i ∈ N,r ∈ Ri +(8) + +Cummings et al.: Transportation Alliance Design with Endogenous Demand +Article submitted to Transportation Science; manuscript no. 1 +11 +si0 = +exp(ui0) +exp(ui0) + � +s∈Ri exp(uis + αi · ps) +i ∈ N +(9) +β0 +min ≤ β0 +k ≤ β0 +max +k ∈ O +(10) +β∆ +min ≤ β∆ +k ≤ β∆ +max +k ∈ O +(11) +Λmin ≤ Λ ≤ Λmax +(12) +xa ∈ {0,1} +a ∈ A +(13) +2.3. +Two-stage Decomposition +The PADP-FS model is a non-convex mixed-integer nonlinear optimization problem (MINLOP). There +are no commercial solvers that accommodate non-convex MINLOPs, and no open-source solvers accept +non-convex MINLOPs at practically large scale. Therefore, we propose a different solution approach. We +decompose the formulation to tractably obtain high-quality solutions for practically sized problems (tens +of thousands of variables and hundreds of thousands of constraints in our case study). By letting first- +stage pricing decisions parameterize second-stage discount activations and induced passenger behaviors, +the second stage can be formulated as a more tractable mixed integer linear optimization problem (MILOP). +Let B := [β0 +min,β0 +max]2 × [β∆ +min,β∆ +max]2 and L := [Λmin,Λmax] respectively be the sets of allowable fare +parameters and discount multipliers. We parameterize the second-stage problem by ( �β, �Λ) ∈ B × L and +define S( �β, �Λ) as the feasible region parameterized by ( �β, �Λ). We utilize the sales-based linear optimization +formulation by Gallego, Ratliff, and Shebalov (2015) to reformulate the choice model constraints. The +premise of the reformulation rests on proportionality constraints. Let γir = exp(ui0)/exp(uir + αi · pr) be +the ratio of the attractiveness values of the outside option and route r ∈ Ri. Since the fare parameters are +determined in the first stage, γir is a constant in the second stage formulation for the non-discount-eligible +routes. Then constraints (8) and (9) are reformulated as follows: +si0 = γir · sir +i ∈ N,r ∈ Ri +(14) +si0 + +� +r∈Ri +sir = 1 +i ∈ N +(15) +si0 ≥ 0 +i ∈ N +(16) +sir ≥ 0 +i ∈ N,r ∈ Ri +(17) +Equation (14) ensures that the market share of each route is proportional to its attractiveness. Constraints +(15), (16), and (17) ensure that the market shares are non-negative and sum to 1. Note that Equation (14) still +includes bilinearities for discount-eligible routes r ∈ Ri ∩ RDE. For a type i passenger, γir is either equal +to the discounted price (γir = γir( �β, �Λ)) or full price (γir = γir( �β,0)), depending on whether the model +selects the discount for route r. Let Na ⊂ N be the set of passenger types with at least one route option +corresponding to discount activation category a ∈ A. We linearize constraint (14) as (18) using big-M +constraints, letting M s +ir = γir( �β,0) ≥ 0. + +Cummings et al.: Transportation Alliance Design with Endogenous Demand +12 +Article submitted to Transportation Science; manuscript no. 1 +� +� +� +� +� +� +� +� +� +si0 ≤ γir( �β,0) · sir +si0 ≥ γir( �β,0) · sir − M s +ir · xa +si0 ≤ γir( �β, �Λ) · sir + M s +ir · (1 − xa) +si0 ≥ γir( �β, �Λ) · sir +a ∈ A,i ∈ Na,r ∈ Ri ∩ Ra +(18) +We similarly handle the bilinearities presented by the revenue terms in the objective function. We define a +new decision variable wir = pr · sir for passenger types i ∈ N with discount-eligible routes r ∈ Ri ∩ RDE. +The linearized constraints (19) set the value of wir with M w +ir = �Λ · +�� +k∈Or(�β0 +k + ∆rk · �β∆ +k ) +� +≥ 0. +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +wir ≤ +�� +k∈Or(�β0 +k + ∆rk · �β∆ +k ) +� +· sir +wir ≥ +�� +k∈Or(�β0 +k + ∆rk · �β∆ +k ) +� +· sir − M w +ir · xa +wir ≤ (1 − �Λ) · +�� +k∈Or(�β0 +k + ∆rk · �β∆ +k ) +� +· sir + M w +ir · (1 − xa) +wir ≥ (1 − �Λ) · +�� +k∈Or(�β0 +k + ∆rk · �β∆ +k ) +� +· sir +a ∈ A,i ∈ Na,r ∈ Ri ∩ Ra +(19) +Table 3 summarizes the additional and modified notation for the second-stage model. +Table 3 +Additional and modified notation for second-stage model of the decomposition framework. +Component Type +Description +B +Set +Allowable fare parameter values +L +Set +Allowable percent discount values +Na +Set +Passenger types with access to at least one discount-eligible route in +discount activation category a ∈ A, i.e. Ri ∩ Ra ̸= ∅ +γir(β,Λ) +Parameter Ratio of outside option attractiveness to attractiveness of route r ∈ Ri +with price parameters β and discount Λ for passenger type i ∈ N +M w +ir,M s +ir +Parameter Big-M parameters for each i ∈ N,r ∈ Ri +wir +Variable +Continuous. Equivalent to pr · sir for discount-eligible routes r ∈ Ri ∩ RDE +In response to fare parameters set in the first stage, the second-stage problem activates discounts that +optimize system-wide performance metrics, subject to induced passenger decisions. The optimal value of +the second-stage problem is denoted by W in equation (20). +W( �β, �Λ) := +max +(x,s,w,p)∈S( � +β,�Λ) +� +i∈N +Ni · +� +µP AX · +� +ui0 + +� +r∈Ri +(uir +αi ·pr) +� ++µREV · +� +r∈Ri +wir −µV MT ·(∆i0 ·si0) +� +, (20) +where S( �β, �Λ) is given as follows: +Then we define the PADP-FS2SD model, the two-stage decomposition of the PADP-FS model. +(PADP-FS2SD) +max +W(β,Λ) +(26) +s.t. +β ∈ B +(27) +Λ ∈ L +(28) +LEMMA 1. Formulations PADP-FS and PADP-FS2SD are equivalent. +The proof of Lemma 1 is in Appendix A. + +Cummings et al.: Transportation Alliance Design with Endogenous Demand +Article submitted to Transportation Science; manuscript no. 1 +13 +S( �β, �Λ) ≡ +� +(x,s,w,p) ∈ {0,1}|A| × R +� +i∈N (|Ri|+1) ++ +× R +� +i∈N |Ri∩RDE| × R|R| : +Constraints (18) - (19) +si0 + +� +r∈Ri +sir = 1 +i ∈ N +(21) +si0 = γir( �β,0) · sir +i ∈ N,r ∈ Ri \ RDE +(22) +wir = +� � +k∈Or +(�β0 +k + ∆rk · �β∆ +k ) +� +· sir +i ∈ N,r ∈ Ri \ RDE +(23) +pr = +� +k∈Or +(�β0 +k + ∆rk · �β∆ +k ) +r ∈ R \ RDE +(24) +pr = (1 − �Λ · xa) · +� � +k∈Or +(�β0 +k + ∆rk · �β∆ +k ) +� +a ∈ A,r ∈ Ra +� +(25) +2.4. +Revenue Allocation Mechanism +When considering a pricing alliance, an operator assesses whether the cooperative regime would improve its +prioritized system-wide metrics over the non-cooperative regime. A non-cooperative fare-setting game and +a solution approach for it are presented in Appendix B. The MOD operator is solely revenue-maximizing, +while the transit agency maximizes a linear combination of multiple system-wide metrics. By entering a +pricing alliance, the transit agency (denoted as TR) is guaranteed to fare no worse than that under the non- +cooperative regime. However, it remains to ensure that the revenue-maximizing MOD operator will not lose +revenue by cooperating with the transit agency, which would ensure the MOD operator’s participation. +We now design a revenue allocation mechanism that guarantees the MOD operator’s alliance participa- +tion. Let βnc and (βa,Λa) respectively denote the non-cooperative equilibrium fare parameters and allied +optimal fare parameters. Let fk(βnc) denote the revenue of operator k ∈ O in the non-cooperative regime, +and f(βa,Λa) denote the combined revenue of both operators in the alliance. +LEMMA 2. Let δ = f(βa,Λa) − � +k∈O fk(βnc) be the surplus allied revenue compared to the total +non-cooperative revenue. Define Φk : R2 ++ × R+ → R+ to be the revenue allocation to operator k ∈ O := +{TR,MOD}: +ΦT R((fk(βnc))k∈O,f(βa,Λa)) = +� +fT R(βnc) + δ +2· +if δ ≥ 0, +f(βa,Λa) − fMOD(βnc) +otherwise. +(29) +ΦMOD((fk(βnc))k∈O,f(βa,Λa)) = fMOD(βnc) + +� δ +2 +�+ +(30) +(a) The MOD operator will enter the pricing alliance with payment rule Φ. +(b) When δ ≥ 0, the mechanism satisfies Pareto efficiency, symmetry, the core property, scale invariance, +and independence of irrelevant alternatives. + +Cummings et al.: Transportation Alliance Design with Endogenous Demand +14 +Article submitted to Transportation Science; manuscript no. 1 +The proof of Lemma 2 is in Appendix C. Because the alliance’s priorities may also include benefits to +passengers and/or benefits to the rest of the society in the form of reduced VMT, the alliance may earn +less revenue than the operators’ combined revenue in the non-cooperative regime. Despite this, the transit +operator can choose to guarantee that, by cooperating, the revenue-oriented MOD operator earns at least as +much as it would have earned otherwise. We assume that the MOD operator will participate in the alliance if +its non-cooperative and allied revenues are equal. In the event that the alliance accrues strictly more revenue +than that in the non-cooperative regime, the operators split the surplus evenly. +3. +Solution Approach +3.1. +Motivation +Section 2.3 presented a two-stage decomposition of the allied fare-setting formulation, with the second +stage characterized as a mixed-integer linear optimization problem and the first stage as a low-dimensional +decision problem over a convex space. Without an analytic closed-form of W, the function’s gradients are +inaccessible, eliminating the possibility of using any gradient-based approaches. Bayesian Optimization is +applicable and has been leveraged in recent urban transportation studies focusing on MOD systems (Liu +et al. 2019), but it does not provide clear convergence criteria. PADP-2SD is also not amenable to Benders +decomposition due to the nonlinear interdependencies between first- and second-stage decisions. Our prob- +lem’s incompatibility with the simpler centralized welfare-maximization structure of the problem tackled +by Banerjee et al. (2021) implies that their convexification strategy cannot be applied either. +Our solution strategy approximates gradient descent for solving the first-stage problem. Because the first- +stage feasible space is low-dimensional and convex, we begin with a coordinate descent framework, which +takes turns fixing all fare parameters except one and greedily optimizing along the free dimension. Even +one-dimensional search is difficult because the search space is a continuous spectrum of optimal MILOP +solutions. While a solution of the second-stage problem is fast enough to be a useful tool (see Section 4: +needing at most 5 seconds on average), it is also slow enough to warrant a judicious selection of first-stage +valuation points. Thus, our tailored coordinate descent approach scans each search direction by solving a +model that approximates the best solution along that search direction. After evaluating a few points along the +free search direction with the second-stage MILOP, an auxiliary model interpolates intermediate solutions +along that search direction with Special Ordered Sets of type 2 (SOS2) (Misener and Floudas 2010). The +process terminates when no improvements are found along any coordinate direction. We define this as the +basic SOS2 Coordinate Descent (SOS2-CD) approach in Section 3.2. +To further improve final solution quality given a computational budget, we develop three acceleration +strategies that build upon SOS2-CD. First, rather than using an arbitrary search direction sequence, we intro- +duce more opportunities to escape local optima by randomizing search direction order. Second, we exploit +the fact that the SOS2 approximation model is valid along any search direction through the first-stage prob- +lem’s search space, and not just those parallel to coordinate axes. Natural search direction candidates are + +Cummings et al.: Transportation Alliance Design with Endogenous Demand +Article submitted to Transportation Science; manuscript no. 1 +15 +those where each operator’s base fare and markup are jointly varied while holding all other parameters con- +stant. By considering SOS2 coordinate descent over such slanted directions, we unlock directions navigating +trade-offs between high base fares and low markups vs. low base fares and high markups, which would +be unavailable with single-coordinate search directions. Finally, we show how to mitigate the SOS2-CD’s +sensitivity to random initializations by leveraging warm-start solutions. 3.3 describes the final algorithm, +including acceleration strategies, initialization procedures, and the incorporation of time limits. Computa- +tional results in Section 4 demonstrate the effectiveness of SOS2-CD and all acceleration strategies. +3.2. +SOS2 Coordinate Descent +Let Y := B × L denote the search space over which to optimize W, and y := (β,λ) ∈ Y denote a solution. +Let Yi(y) = {z ∈ R : (y1,··· ,yi−1,z,yi+1,··· ,yn) ∈ Y} be the subset of the feasible space with all dimen- +sions other than the ith fixed to those of solution y ∈ Y. We define S(y) and S∗(y) ⊆ S(y), respectively, +to be the set of feasible and optimal second-stage decisions given fare parameters y := (β,Λ) ∈ Y: +S∗(y) := arg +max +(x,s,w,p)∈S(y) +� +i∈N +Ni · +� +µP AX · +� +ui0 + +� +r∈Ri +(uir + αi · pr) +� ++ µREV · +� +r∈Ri +wir − µV MT · (∆i0 · si0) +� +. +Basic Coordinate Descent. Coordinate descent is a greedy method that successively optimizes a mul- +tivariate function along coordinate axes. Starting from an initial point, it cyclically optimizes along every +coordinate direction holding all other dimensions fixed. Algorithm 1 presents basic coordinate descent to +solve the PADP. Optimizing even a single dimension of W is hard, because it entails navigating a contin- +uous spectrum of optimal solutions to MILOPs, which does not have closed analytic form. Therefore, we +will propose a rigorous method for tractably modifying Step 7 of Algorithm 1 using SOS2 interpolation. +Algorithm 1 Coordinate Descent for maximization of W +1: ARG y0 : Initial solution in Y +2: procedure COORDINATE DESCENT(y0) +3: +objPrev ← −∞; objCur ← W(y0); k ← 0; n ← dim(y0) +4: +while objCur − objPrev > ϵ do +5: +k ← k + 1;objPrev ← objCur;yk ← yk−1 +6: +for i ∈ {1,...,n} do +7: +yk +i = arg maxz∈Yi(yk) W(yk +1,··· ,yk +i−1,z,yk +i+1,··· ,yk +n) +8: +objCur ← W(yk) +9: +return yk + +Cummings et al.: Transportation Alliance Design with Endogenous Demand +16 +Article submitted to Transportation Science; manuscript no. 1 +SOS2 Interpolation. Our SOS2 interpolation procedure performs approximate local search along a spec- +ified direction to produce the next candidate solution. First, we solve D second-stage models at evenly +spaced points along the search direction, obtaining a sequence of fare parameter values acting as anchors +for the SOS2 interpolation. We denote the anchors by yd := (βd,Λd) and their corresponding solutions by +(xd,sd,wd,pd) ∈ S∗(yd),∀d ∈ {1,...,D}. Let Ω = {yd : d ∈ {1,...,D}} be the ordered set of anchors. +Larger D values interpolate more accurately, but the solution is also more computationally expensive. +Figure 2 visualizes the selection of the next candidate solution using SOS2 variables. W is exactly eval- +uated at every anchor and approximated between the anchors using the interpolated anchor solutions. The +next candidate solution is selected where the approximation of W is maximized. Rather than directly inter- +polating W, or wir variables linearizing prsir terms, we interpolate the price and market share variables, p +and s. Otherwise, the interpolated values of W will be convex combinations of anchor valuations (straight +line segments connecting consecutive anchors in Figure 2), eliminating any chance of selecting fare param- +eters between anchors. Moreover, since the objective function’s nonlinearities are quadratic in nature due to +the multiplicative revenue terms, we capture them with this SOS2 approximation. +Figure 2 +SOS2 interpolation of W value and the selection of next candidate first-stage solution y∗. +For a given number of anchor points D, the SOS2 model (Misener and Floudas 2010) is algebraically +specified as SOS2(D) ≡ +� +(λ,z) ∈ RD ++ × {0,1}D−1 : �D +d=1 λd = 1,�D−1 +d=1 zd = 1,λ1 ≤ z1,λd ≤ zd−1 + +zd ∀d ∈ {2,...,D},λD ≤ zD−1 +� +. Here, the λ variables are the convex combination weights for outputs +at fare parameters (βd,Λd), and each binary zd variable indicates whether to select the segment between +anchors d and d + 1. Now we use the SOS2 variables to approximate W along a given coordinate axis. +Expression (31) presents the set of fare parameters, SOS2∗(Ω), that optimize approximated W given the +ordered anchor set Ω. Expression (32) denotes optimal solutions at all anchors. The optimal SOS2 vari- +ables are selected to maximize the approximated W function in Constraint (33). Finally, the approximately +optimal fares are interpolated in equation (34). The approximated objective function is quadratic, making + +M +Wevaluatedatanchor +SOS2 interpolation of W +TruevalueofW +Search direction +True optimumCummings et al.: Transportation Alliance Design with Endogenous Demand +Article submitted to Transportation Science; manuscript no. 1 +17 +(33) a mixed-integer quadratic optimization problem. Fortunately, it can be solved almost instantly to global +optimality with commercial solvers, because D is small by design. +SOS2∗(Ω) := +(31) +� +y : (xd,sd,wd,pd) ∈ S∗(yd), +∀yd ∈ Ω +(32) +(λ∗,z∗) ∈ +arg max +(λ,z)∈SOS2(D) +� +i∈N +Ni · +� +µP AX · +� +ui0 + +� +r∈Ri +(uir + αi · +� +d∈D +pd +r · λd) +� ++ +µREV · +� +r∈Ri +�� +d∈D +(pd +r · λd) · +� +d∈D +(sd +ir · λd) +� +− µV MT · ∆i0 · +� +d∈D +(sd +i0 · λd) +� +(33) +y = +� +yd∈Ω +λ∗ +dyd +� +(34) +Summary of SOS2 Coordinate Descent. We present SOS2-CD in Algorithm 2, which replaces the +one-dimensional optimization in Step 7 of Algorithm 1 with the SOS2-based approximation. The sub- +routine SEARCH DIRECTIONS provides a comprehensive ordered list of search directions that can poten- +tially be multidimensional and/or randomized (options further discussed in the next subsection); the default +is to cycle through coordinate axes, i.e. to return searchDirections = {1,...,dim(y0)} when random +and multidim are both set to false. The subroutine GENERATE ANCHORS returns evenly spaced SOS2 +anchors along the specified search direction. The current solution is included in the anchor set to ensure +that the new solution is at least as good as the previous. Appendix D presents subroutines SEARCH DIREC- +TIONS and GENERATE ANCHORS in full detail. After generating the anchors in Step 7, Step 8 computes an +optimal solution for each anchor, uses these anchor solutions for interpolation, and picks the solution that +maximizes approximated W over the given search direction. Step 9 computes true value of W at the new +candidate solution and updates the current solution if necessary. The algorithm iterates until convergence. +3.3. +Final Algorithm +We now present three strategies that provide SOS2-CD with additional opportunities to escape local optima +and thus improve solution quality. The first strategy relaxes the assumption of deterministic search direc- +tion order. Because the order of search direction is arbitrary, we can randomize it after each iteration. We +can select this strategy by setting the random argument to TRUE. Second, since the SOS2 approximation +model is valid along any search direction intersecting the current solution, not just the coordinate axes, +an operator’s fare parameter pair (base fare and markup) defines a natural subset of dimensions to search +simultaneously. Given a pair of dimensions, this strategy randomly selects the spanning dimension, and then +selects the line’s slope in this 2D plane uniformly at random from the set of affine lines that intersect the +current solution and span the selected dimensions. Finally, it drops anchors at evenly spaced points along the +sampled line and obtains the next candidate solution maximizing approximated value of W. While there are + +Cummings et al.: Transportation Alliance Design with Endogenous Demand +18 +Article submitted to Transportation Science; manuscript no. 1 +Algorithm 2 SOS2 Coordinate Descent for maximization of W +1: ARGS y0 : Initial solution in Y; D: Number of SOS2 anchors; random: Boolean, whether to randomize +search directions; multidim: Boolean, whether to use multidimensional slanted search directions +2: procedure SOS2 COORDINATE DESCENT(y0,D,random,multidim) +3: +objPrev ← −∞; objCur ← W(y0); k ← 0 +4: +while objCur − objPrev > ϵ do +5: +k ← k + 1;objPrev ← objCur;yk ← yk−1 +6: +for i ∈ SEARCH DIRECTIONS (random, multidim) do +7: +Ω ← GENERATE ANCHORS(yk,i,D) +8: +Interpolate an optimal solution: draw some y∗ from SOS2∗(Ω) +9: +yk ← y∗ if W(y∗) > objCur else yk +10: +objCur ← W(yk) +11: +return yk +many possibilities for multidimensional search directions, we limit to each operator’s fare parameter pair. +Thus, when the algorithm’s multidim argument is set to TRUE, the list of search directions contains three +items: (1) transit parameters, (2) MOD parameters, and (3) the discount multiplier. Whenever an operator’s +fare parameters are selected as the search direction, we sample a new affine line with the aforementioned +procedure. Appendix D fully specifies the subroutine SEARCH DIRECTIONS. +The last acceleration strategy incorporates a timed warm-start procedure. The outcome of a single round +of SOS2-CD may depend on the initial solution. From a random set of initial solutions, the basic implemen- +tation repeats SOS2-CD until a computational time budget limit has elapsed. Each repetition of SOS2-CD is +called a trajectory. The best fare parameters found across all trajectories are returned. Convergence to higher +quality solutions may be more likely given intelligent initializations. We can warm-start the algorithm by +first obtaining a few samples in the region with a specified warmStartProcedure, and selecting the best +starting points from them. The warmStartProcedure might simply be uniform sampling from the region, +or it can consist of searching the space in a more principled way, such as with Bayesian Optimization. +Algorithm 3 presents the overall solution algorithm. τ W S and τ each define the time limits devoted +to the warm-start and SOS2-CD procedures, respectively. The arguments random and multidim are +Booleans indicating whether randomized and/or multidimensional search directions will be used. The +warmStartProcedure specifies the procedure for generating informed initializations. +4. +Computational Results +We now discuss the accuracy and tractability of our approach through several computational experiments +using a large-scale profit maximization case study of the Greater Boston Area (see Section 5.1 for details). + +Cummings et al.: Transportation Alliance Design with Endogenous Demand +Article submitted to Transportation Science; manuscript no. 1 +19 +Algorithm 3 Timed SOS2-CD with warm-start initialization +1: ARGS τ W S: Warm-start time limit (seconds); τ: SOS2-CD time limit (seconds); random: Boolean, +whether to randomize search directions; multidim: Boolean, whether to use multidimensional slanted +search directions; warmStartProcedure: Initialization procedure; D: Number of SOS2 anchors +2: procedure TIMED SOS2-CD(τ W S, τ, random, multidim, warmStartPocedure, D) +3: +objCur ← −∞; Y0 ← ∅; T W S ← τ W S; T ← τ; draw y∗ ∈ Y uniformly at random +4: +while T W S > 0 do +// generate warm-start solutions +5: +Draw y ∈ Y with warmStartPocedure +6: +Subtract from T W S the time to run warmStartPocedure and to compute W(y) +7: +if T W S ≥ 0 then: Insert (y,W(y)) into set Y0 +8: +while T > 0 do +// execute SOS2-CD +9: +if Y0 ̸= ∅ then: y0 ← arg max{W(y) : (y,W(y)) ∈ Y0}; Remove (y0,W(y0)) from Y0 +10: +else: Draw y0 from Y uniformly at random +11: +�y ← SOS2 COORDINATE DESCENT (y0,D,random,multidim) +12: +Subtract from T the time to run SOS2 COORDINATE DESCENT and to compute W(�y) +13: +if W(�y) > objCur and T ≥ 0 then: y∗ ← �y; objCur ← W(�y) +14: +return y∗ +All optimization models are solved with Gurobi v9.0 and the JuMP package in Julia v1.4 (Dunning, +Huchette, and Lubin 2017). +4.1. +Comparisons under 1-Hour Computational Time Budget +We now demonstrate the superior computational performance of our approach (Algorithm 3). Table 4 com- +pares different versions of our approach, with different combinations of acceleration strategies, including +multidimensional search (SOS2-CD-MD), randomized search directions (SOS2-CD-R), both (SOS2-CD- +MD-R) and neither (SOS2-CD). None of these four approaches use intelligent warm-starts. We establish +two algorithmic benchmarks against which to compare our computational results. The first benchmark is +Brute-Force Coordinate Descent (BF-CD). BF-CD differs from SOS2-CD in the way it conducts each iter- +ation of coordinate descent. BF-CD uses a much higher number of “anchors” along the search direction +and solves a second-stage model at each anchor. Instead of the SOS2-based interpolation, it just selects the +anchor with the highest value of the second-stage objective function as the new candidate solution. The +trade-off at each iteration is a drastic computation time increase for a more accurate evaluation of the points +along the search direction. We implement BF-CD using a 1% granularity for the discount multiplier and a +$0.01 granularity for both base fares and markups. The second benchmark is Bayesian Optimization (BO)— +a global optimization method for black-box functions that are computationally expensive to evaluate and + +Cummings et al.: Transportation Alliance Design with Endogenous Demand +20 +Article submitted to Transportation Science; manuscript no. 1 +may not have gradients (Mockus 2012). Our black-box function is W. BO imposes upon W a prior belief +about the space of possible objective values based on the candidate solutions considered so far. The poste- +rior distribution decides which candidate solution to evaluate next, so that our sequential search successfully +explores unseen regions in the decision space and exploits regions that are more likely to host global optima +based on prior beliefs. Appendix F includes a detailed account of BO, including all hyperparameter settings. +We also tested time-limited SOS2-CD-MD-R with BO warm-starts, with varying time limit allocations +to the warm-starts. In other words, we execute Algorithm 3 where the warmStartProcedure is Bayesian +Optimization. The warm-start trials have names ending in BO-TL, where TL is the BO warm-start time +limit in minutes. Table 4 presents the performances statistics across 50 trials each with a 1-hour limit. All +outcomes are expressed in surplus USD over the average 1-hour BO benchmark performance. +First, we observe that all four variations of our approach, even without warm-starts, significantly out- +perform the BO benchmark in terms of the average (by $13.5K-$19.3K) and best-case (by $5.1K-$5.8K) +performance. Moreover, our approaches with multidimensional search (SOS2-CD-MD-R and SOS2-CD- +MD), beat the BO benchmark also on the worst-case performance across the 50 trials (by $7.5K-$22.3K). +Note that the average-case as well as the worst-case performance of the approaches with either acceleration +strategy (MD or R or both) were superior to those of the basic SOS2-CD approach. The BF-CD approach +never terminated within the one-hour time limit; in fact, BF-CD could not even evaluate one full set of +anchors in all but 7 cases. Furthermore, our approaches with warm-starts perform even better than those +without. In particular, a 40-minute BO warm-start drastically outperforms the benchmarks in the worst case +and provides the best average-case performance, while 20 minute BO warm-start provides the strongest +best-case performance. In summary, all our approaches significantly beat benchmarks, and all three accel- +eration strategies (random search, slanted search and warm-start) were found to enhance the performance +of our basic SOS2-CD solution approach. +Table 4 +Objective function statistics with 1-hour time limits and 50 trials each, expressed in terms of +surplus compared to average 1-hour BO performance. ∗ Average BO performance = $3,634,074. +Objective (Thousand $) +Algorithm +random multidim warmStartProcedure τ W S +τ +Min +Avg. +Max +BO +- +- +- +- +- +−28.0 +0.0∗ +18.6 +SOS2-CD-MD-R-BO-50 +Yes +Yes +BO +50 +10 +−11.9 +15.4 +24.1 +SOS2-CD-MD-R-BO-40 +Yes +Yes +BO +40 +20 +12.6 +20.3 +24.1 +SOS2-CD-MD-R-BO-30 +Yes +Yes +BO +30 +30 +0.0 +19.7 +24.0 +SOS2-CD-MD-R-BO-20 +Yes +Yes +BO +20 +40 +−4.3 +19.1 +24.6 +SOS2-CD-MD-R-BO-10 +Yes +Yes +BO +10 +50 +−9.8 +20.0 +24.2 +SOS2-CD-MD-R +Yes +Yes +- +- +60 +−20.5 +19.0 +23.7 +BF-CD +- +- +- +- +60 +- +- +4.8 +SOS2-CD +No +No +- +- +60 −103.8 +13.5 +24.1 +SOS2-CD-MD +No +Yes +- +- +60 +−5.7 +19.3 +24.1 +SOS2-CD-R +Yes +No +- +- +60 +−77.6 +17.1 +24.4 + +Cummings et al.: Transportation Alliance Design with Endogenous Demand +Article submitted to Transportation Science; manuscript no. 1 +21 +4.2. +Comparisons under Higher Computational Time Budgets +All comparisons in the previous subsection assumed a 1-hour computational time budget and showed the +significant superiority of our basic approach over the benchmarks, as well as the value of our acceleration +strategies. A question emerges as to whether these findings hold when longer computational budgets are +available. To answer this question, Table 5 compares performances under three time budgets - 1 hour, 6 +hours, and 12 hours. We additionally provide statistics on the number of trajectories. All versions of our +approach under all time budgets outperform the BO benchmark on average. This is especially true for the +versions of SOS2-CD with acceleration strategies. The larger time budgets allow accelerated SOS2-CD to +offer robust performance. In general, the trajectories of SOS2-CD with multidimensional search (that is, +SOS2-CD-MD and SOS2-CD-MD-R) converge more quickly, allowing more trajectories to be computed +within a given time limit. BF-CD is extremely slow and did not terminate before the 12-hour time limit in +any of our runs. We report the performance statistics for BF-CD corresponding to the best solutions found +within the computational time budgets, prior to termination. While the best-case runs of BF-CD provide a +slight edge over all benchmarks (of merely $200 USD), the average-case and the worst-case performance is +significantly worse than our methods. While BF-CD is more thorough for a single random initialization, it +is too computationally intensive to properly explore the search region. Note that warm-starts did not provide +much additional value for longer time budgets and hence warm-start approaches are omitted from Table 5. +For additional analyses of the solution times and SOS2 optimality gaps, see Appendix E. +Table 5 +Objective function statistics with varying time budgets and 50 trials each, expressed in terms of +surplus compared to 1-hour BO performance. ∗ Average BO performance = $3,634,074. +Time +Algorithm +Trajectories +Objective (Thousand USD) +limit +Min +Avg. +Max +Min +Avg. +Max +1 hour +BO +- +- +- +−28.0 +0∗ +18.6 +BF-CD +0 +0 +0 +- +- +4.8 +SOS2-CD +2 +3.8 +5 +−103.8 +13.5 +24.1 +SOS2-CD-MD +2 +4.0 +7 +−5.7 +19.3 +24.1 +SOS2-CD-R +2 +3.8 +5 +−77.6 +17.1 +24.4 +SOS2-CD-MD-R +2 +4.2 +6 +−20.5 +19.0 +23.7 +6 hours +BO +- +- +- +7.7 +17.9 +23.9 +BF-CD +0 +0 +0 +−2132.7 −791.9 +24.6 +SOS2-CD +16 +20.1 +25 +−2.7 +22.3 +24.3 +SOS2-CD-MD +15 +21.3 +28 +22.0 +23.3 +24.1 +SOS2-CD-R +13 +19.7 +24 +22.4 +23.8 +24.4 +SOS2-CD-MD-R +15 +21.4 +26 +21.1 +23.3 +24.3 +12 hours +BO +- +- +- +18.7 +21.9 +23.9 +BF-CD +0 +0 +0 +−2003.4 −112.7 +24.6 +SOS2-CD +32 +39.6 +50 +22.0 +23.7 +24.3 +SOS2-CD-MD +32 +42.4 +54 +22.8 +23.7 +24.2 +SOS2-CD-R +26 +38.2 +47 +23.5 +24.0 +24.4 +SOS2-CD-MD-R +31 +42.7 +52 +22.2 +23.7 +24.4 + +Cummings et al.: Transportation Alliance Design with Endogenous Demand +22 +Article submitted to Transportation Science; manuscript no. 1 +5. +Insights from Practical Case Study +To inform the real-world policymakers’ decisions, we obtained practical results with the PADP model over +a Greater Boston Area case study described in Section 5.1. Section 5.2 confirms that our model yields +interpretable outputs with prices in realistic ranges. An equity-oriented case study in Section 5.3 underlines +the value of accurately capturing passenger preferences. Section 5.4 demonstrates the value of cooperative +pricing. All results are obtained with the SOS2-CD-MD-R approach and a 12-hour time limit. +5.1. +Greater Boston Area Case Study +We model a potential pricing alliance between the Massachusetts Bay Transit Authority (MBTA) and a TNC +like Uber or Lyft, in the Greater Boston Area. We use Lyft data for generating case study inputs because +of fare parameter data availability (Lyft Inc. 2020). MBTA subsidizes Uber and Lyft trips as part of their +on-demand paratransit program called The RIDE Flex (MBTA 2021). We model an alliance with a wider +passenger scope that aligns with MBTA goals outlined in a recent report (MDOT 2019). In this report, +the MBTA identified 14 towns (called “urban gateways.”) adjacent to the commuter rail network whose +residents had the greatest likelihood of utilizing—and benefiting from—targeted transit expansion efforts. +We identify these 14 towns as the service region of the potential pricing alliance, as depicted in Figure 3. +Figure 3 +Partial map of urban gateways, as identified by the MBTA (MDOT 2019). The regions are identi- +fied with solid-line bounding boxes. The dashed-line bounding box demarcates the region that we +identified as the inner city. (Urban gateway not depicted: Brockton, located south of the inner city.) +Our case study integrates many datasets describing travel characteristics in the Greater Boston Area +during the weekday morning commute (6-10 am). We consider passenger travel patterns for those who + +Newburyport +HAVERHILL +WestNewbury +Newbury +URBANGATEWAYS +Groveland +Methuen +Georgetown +Rowley +Dracut +LAWRENCE +Boxford +Ipswich +Dunstable +Tyngsboroug +NorthAndover +OMELL +Andoyer +Topsfield +Hamilton +Groton +Tewksbury +Chelmsford +Middleton +Wenham +Westford +NorthReading +Danvers +Ayer +Beverly +Billerica +Wilnt +ngtor +Lynnfield +Littleton +READING +Carlisle +Peabod +BURLINGTPN +WAKEFIELD +SALEM +Bedford +/Marblehead +Harvard +Acton +WOBURN +Saugus +LYNN +MELROSE +Wampscott +Concord +STONEHAM +Lexington +Maynard +Malden +Stow +Lincoln +Arlington +Medford +Nahant +Reve +Everett +elmontr +WALTHAM +samerville +ne +Sudbury +Winthrop +atertowncambr.Ige +Bosto +Wayiand +Westo +Newton +Brookline +FRAMINGHAM +Wellesley +Bostor +Natick +Needham +HUHCummings et al.: Transportation Alliance Design with Endogenous Demand +Article submitted to Transportation Science; manuscript no. 1 +23 +commute from the service region to the inner city (Boston and Cambridge), or those who commute locally +within the service region. We define a local commute as either working in the town of residence or in an +adjacent town that is also part of the service region. For example, commutes between Salem and Lynn or +between Burlington and Melrose are considered local. We use Origin-Destination Employment Statistics +from the Longitudinal Employer-Household Dynamics (LODES) datasets provided by the U.S. Census +Bureau to approximate the commuting population at a census tract level (U.S. Census Bureau 2017). +We obtain MBTA’s commuter rail network data using MBTA General Transit Specification Feed data +(MBTA 2018), while the MOD operator corresponds to all potential direct travel options and first-mile +connections in the service region. We construct route choice sets for each passenger type by first executing +Yen’s k-shortest paths algorithm (Yen 1970). We then include in each passenger type’s route choice set their +fastest option of each mode: transit-only, MOD only, hybrid (MOD first mile to transit), and driving (which +corresponds to the outside option). We represent the utility of each route option as a linear combination +of travel and wait time; incurred costs including fare, gasoline, and parking fees as appropriate; and mode +discomfort relative to the convenience of driving. The discount activation categories correspond to town +pairs. In other words, a discount might be activated from any town in the service region to the inner city, to +an adjacent town that is also part of the service region, or to itself. In total, there are 77 discount activation +categories in the case study. We allow each operator to set fares up to a maximum of $10 for base fares, $5 +per mile for distance-based markups, and a maximum 0.5 for discount multiplier. Transit-only routes are +not eligible for discount, while all others are. Appendix G provides more details about the case study. +5.2. +Model Validation +First, we will demonstrate that the allied fare-setting model sets route prices in realistic and reasonable +ranges from a practical standpoint. Further, we find that the optimal fares intuitively reflect various port- +folios of alliance priorities. We vary the objective function coefficients µ, i.e., relative weights among the +three performance metrics: revenue, passenger utility, and VMT. In particular, we focus on regimes with +varying combinations of priorities between revenue and passenger utility (i.e., setting µV MT = 0), as well as +between revenue and VMT (i.e., setting µP AX = 0). We do not emphasize regimes that completely exclude +revenue as a priority, because they intuitively result in zero fares and are not interesting from an analysis +standpoint. Thus, all experiments have µREV > 0. We also do not analyze regimes that vary all three metrics +for reasons explained later in this section. Table 6 presents summary statistics about route prices, system uti- +lization, and system-wide performance metrics across the tested priority regimes. Figure 4 depicts optimal +fare parameters and discount multipliers, demonstrating the different fare-setting strategies of each regime. +We extract a few representative solutions from Table 6 and present them in Table 7 alongside real-world +fares, and the corresponding ridership values obtained by our model for the real-world fares. We compute +the MOD base fare by combining Lyft’s published minimum fare and service fee, and we compute their + +Cummings et al.: Transportation Alliance Design with Endogenous Demand +24 +Article submitted to Transportation Science; manuscript no. 1 +Table 6 +Aggregate metrics for different operator priority regimes. System-wide performance metrics are +normalized against best possible values. System utilization (util.) is the alliance’s total market share, i.e. the +percentage of travelers electing to travel on a transit, MOD, or hybrid option instead of driving a +single-occupancy vehicle. +Objective weights +Route price ($) +Performance +System +µP AX +µREV +µV MT +Min. +Mean +Max. +PAX +REV +VMT +util. % +1.0 +0 +0 +$0.00 +$0.00 +$0.00 +100.00% +0.00% +100.00% +50.32% +1.0 +0.2 +0 +$0.00 +$0.04 +$0.54 +99.26% +3.19% +100.59% +50.32% +1.0 +0.4 +0 +$0.18 +$4.24 +$12.29 +80.15% +61.62% +113.01% +45.02% +1.0 +0.6 +0 +$3.63 +$7.88 +$23.62 +70.50% +78.38% +117.89% +40.20% +1.0 +0.8 +0 +$6.63 +$10.43 +$25.89 +64.61% +85.66% +120.39% +37.33% +1.0 +1.0 +0 +$7.04 +$12.00 +$28.14 +59.99% +90.04% +122.35% +35.93% +0.8 +1.0 +0 +$7.17 +$13.14 +$29.66 +56.35% +92.79% +123.81% +34.95% +0.6 +1.0 +0 +$7.47 +$15.20 +$31.64 +51.94% +95.39% +125.33% +32.95% +0.4 +1.0 +0 +$6.91 +$16.27 +$38.89 +46.81% +97.57% +127.13% +31.82% +0.2 +1.0 +0 +$8.59 +$18.59 +$45.27 +40.03% +99.33% +129.17% +29.95% +0 +1.0 +0 +$10.00 $21.58 +$60.37 +30.91% +100.00% +131.65% +27.65% +0 +1.0 +0.2 +$9.71 +$18.28 +$42.20 +45.90% +97.77% +127.10% +29.95% +0 +1.0 +0.4 +$8.52 +$16.41 +$36.63 +59.59% +89.37% +121.46% +30.97% +0 +1.0 +0.6 +$8.50 +$13.02 +$25.58 +70.54% +76.54% +116.32% +33.99% +0 +1.0 +0.8 +$5.22 +$11.13 +$21.65 +80.62% +56.33% +110.38% +35.17% +0 +1.0 +1.0 +$1.83 +$8.39 +$14.59 +90.11% +29.53% +104.39% +37.83% +0 +0.8 +1.0 +$0.00 +$6.77 +$10.00 +95.40% +10.83% +100.87% +39.48% +0 +0.6 +1.0 +$0.00 +$6.67 +$9.96 +95.58% +10.45% +100.81% +39.54% +0 +0.4 +1.0 +$0.00 +$3.70 +$6.00 +97.63% +6.53% +100.43% +44.04% +0 +0.2 +1.0 +$0.00 +$0.00 +$0.00 +100.00% +0.00% +100.00% +50.32% +0 +0 +1.0 +$0.00 +$0.00 +$0.00 +100.00% +0.00% +100.00% +50.32% +(a) Optimal fare parameter values. +(b) Optimal discount characteristics. +Figure 4 +Optimal fares across varying alliance priority regimes. + +MOD base fare +Fare value +10.0 +Transit base fare +7.5 +5.0 +MOD markup +2.5 +Transit markup +0.0 +(1,0,0) +(0.1.0) +(0.1.1 +(0,0,1) +(PAX weight, REV weight, VMT weight)roportion of discounts activated +0.6 +Percent discount +50% +40% +0.2 +30% +0.0 +(1,0,0) +(1,1,0) +(0,0,1) +0.1.0 +(PAX weight, REV weight, VMT weight)Cummings et al.: Transportation Alliance Design with Endogenous Demand +Article submitted to Transportation Science; manuscript no. 1 +25 +markup by combining the published markups per unit distance and time, assuming an average vehicle speed +of 25 mph (Lyft Inc. 2020). We ignore fare multipliers utilized to manage the two-sided market, since they +are outside the scope of this work; note that this may lead to slight undercounting of real MOD fares and +slight overcounting of the real ridership. The real-world MBTA commuter rail base fare and markup are +interpolated from its zone-based pricing structure, which assigns higher prices to farther zones (MBTA +2020). While all regimes have slightly lower ridership than that under real fares, all benchmarks achieve +non-negligible improvements in system-wide metrics. In particular, the REV, REV+PAX, and REV+VMT +regimes respectively achieve objective value increases of 47.4%, 5.6%, and 1.8% respectively. +Table 7 +Summary statistics of representative priority regimes. REV, REV+PAX, and REV+VMT regimes +respectively have objective weights (µREV ,µP AX,µV MT ) equal to (1,0,0),(1,1,0), and (1,0,1). “% routes +discounted” provides the proportion of routes in the system with activated discounts. “Number of travelers” +is the total alliance passenger count originating within the alliance service region. +Priority regime +Base fares ($) +Markups ($/mile) +Discount +% routes +Number of +MOD +Transit MOD +Transit +Multiplier +discounted +travelers +Real fares +$4.53 +$4.50 +$1.07 +$0.16 +0% +0% +25,816 +REV +$10.00 +$10.00 +$2.37 +$0.63 +50% +31.20% +18,309 +REV+PAX +$10.00 +$8.50 +$0.56 +$0.25 +31% +70.13% +23,793 +REV+VMT +$10.00 +$1.83 +$0.16 +$0.00 +50% +6.50% +25,051 +As shown in Table 6, each set of priorities induces interpretable optimal prices and passenger deci- +sions. The minimum, mean, and maximum real-world route prices in the service region are respectively +$4, $10.23, and $54.46, while those given by our model are in the range $0-$60.37; thus optimal fares +are set at the correct order of magnitude across all regimes. Intuitively, route prices are the highest for the +revenue maximizing regime, and they decrease gradually as the importance of VMT or passenger utility +increases. System-wide performance metrics are normalized against the best possible values across tested +regimes, naturally achieved by each metric’s corresponding single-objective optimization. The lowest rev- +enue is achieved in regimes that solely maximize passenger utility or minimize VMT, because very low +prices achieve very low revenues, but increase passenger happiness and entice more passengers away from +single-occupancy vehicles. Analogously, the highest fares achieve the highest revenue, with more passen- +gers electing to travel outside the system, and lowering overall passenger utility. System-wide outcomes +vary smoothly with gradually changing alliance priorities. Note that even under single-objective revenue +maximization,, route prices remain in the ballpark of real-world fares. While both base fares and discount +multiplier reach their upper limits, the both optimal markups stay in the interior of the allowable range. +We attribute the model’s realism to the incorporation of the endogenous passenger choice model into the +fare-setting model, as opposed to modeling exogenous demand parametrically. These intuitive observations +confirm that our fare-setting model is suitable for generating trustworthy qualitative insights. + +Cummings et al.: Transportation Alliance Design with Endogenous Demand +26 +Article submitted to Transportation Science; manuscript no. 1 +At a quick glance, minimizing VMT and maximizing passenger utility seem to achieve similar outcomes +in Table 6—lower prices and higher system utilization—raising the question of why it is worth modeling +them separately. We turn to Figure 4 to illustrate how each objective yields qualitatively very different +designs. As VMT minimization increases in importance (moving from the middle towards the right in Fig- +ure 4a), the markup is zeroed out, equalizing fares across longer and shorter routes. The elimination of a +distance-based markup entices more longer-distance commuters to travel on the allied network, thus lower- +ing VMT. When the system maximizes passenger utility, a more nuanced fare structure emerges to address +heterogeneous passenger preferences. All pricing levers are employed: base fares, markups, discount multi- +pliers, and discount activations. Higher markups and base fares are coupled with more numerous discounts +across hybrid options, illustrated in the left halves of both Figures 4a and 4b. Thus, prioritization of each +objective (PAX versus VMT) results in similar system-wide performance metrics by qualitatively different +means. To extract the corresponding fare designs, we consider case studies prioritizing at most one of PAX +and VMT at a time, with varying weights for revenue. Section 5.3 further investigates geographic factors. +Finally, note that the variation in system utilization due to allied fare-setting is small compared to the +integrated network’s total loads. Before the pandemic, MBTA’s bus load factor during peak hours was +already below 75% (Hicks 2017). MBTA commuter rail transported around 120k passengers on an average +weekday in 2018 (MBTA 2022), with 81.2% of inbound ridership on peak trains (BRMPO 2012), yielding +approximately 49k travelers on MBTA commuter rail during the AM rush. Moreover, approximately 116k +daily TNC rides were destined for Boston in 2018, while another 15.3k originated in the alliance service +region every day (MDPU 2018). In contrast, the ridership numbers in Table 7 show that the alliance’s +ridership under real fares is a small proportion of the entire integrated network and that the system is capable +of accommodating all demand redistribution as a result of allied fare-setting. In fact, Table 7 shows that +the aggregate alliance ridership is slightly lower than under real fares. Thus, drops on other routes will +compensate for the slight ridership increases that may happen on certain routes under our proposed pricing +alliance, ensuring that the system-wide transit load factors and MOD detour times are expected to remain +largely unchanged as a result of the pricing alliance. We conclude that the linked resource reallocation +problem need not be considered, when looking for rapid gains through pricing alliance formation. +5.3. +Ensuring Equitable Access through a Refined Income-Aware Model Specification +Our fare-setting model captures passenger’s travel preferences and travel decisions when designing fares, a +critical step to satisfying passenger needs. However, different groups of passengers may have very different +preferences. Ignoring such differences can lead to inequitable and socially undesirable outcomes. After all, +equity is a key driver for integrating on-demand services into public transportation options. Acknowledging +this challenge, in this section we further refine our choice model and quantify the impacts of this nuanced +model specification on system-wide metrics compared to an aggregated, average-case choice model. + +Cummings et al.: Transportation Alliance Design with Endogenous Demand +Article submitted to Transportation Science; manuscript no. 1 +27 +To this end, we augment our case study. Towns targeted for transit expansion by the MBTA in our case +study have wide-ranging median household incomes, translating into varying price sensitivities. Affluent +travelers’ route choice decisions are less susceptible to changing fares than those of low-income travelers. +To partly account for such passenger heterogeneity, we compute a ratio of each town’s median household +income to the average of the median household incomes across the entire service region (U.S. Census +Bureau 2018). We use this income ratio to scale passengers’ price sensitivities. See Appendix G for details. +Table 8 +Allied system’s daily morning rush ridership with (Refined) and without (Base) the choice model +refinement, their percentage difference (Diff.), real-world ridership (Real), median household income (HHI), and +average distance (Dist.) of alliance routes originating in the corresponding town and ending in the inner city. +HHI +Dist. +REV+PAX +REV +REV+VMT +Town +$K +Miles Base Refined +Diff. +Base Refined +Diff. +Base Refined +Diff. +Real +Lawrence +41.6 +32.4 +1585 +1982 +125% +918 +1881 +205% 1331 +2065 +155% 1566 +Lowell +52.0 +30.8 +2000 +2525 +126% 1285 +1565 +122% 1852 +2633 +142% 2115 +Lynn +54.6 +13.5 +3539 +3769 +107% 2283 +2560 +112% 3615 +3188 +88% +4023 +Brockton +55.1 +24.6 +3498 +3709 +106% 1949 +3364 +173% 3416 +3919 +115% 3872 +Salem +65.6 +18.9 +1885 +2043 +108% 1189 +1382 +116% 1961 +1786 +91% +2171 +Haverhill +67.6 +39.1 +1605 +1746 +109% 1068 +1214 +114% 1630 +1809 +111% 1801 +Framingham +79.1 +26.1 +1203 +1327 +110% +780 +936 +120% 1093 +1117 +102% 1198 +Waltham +85.7 +11.8 +1974 +1873 +95% +1597 +1713 +107% 2101 +1946 +93% +2249 +Woburn +88.7 +14.3 +1795 +1828 +102% 1479 +1633 +110% 2047 +1910 +93% +2199 +Stoneham +94.8 +11.6 +761 +785 +103% +610 +691 +113% +880 +830 +94% +948 +Wakefield +95.3 +13.3 +1004 +1007 +100% +783 +889 +114% 1140 +1076 +94% +1228 +Melrose +103.7 +9.8 +810 +821 +101% +637 +711 +112% +889 +842 +95% +949 +Burlington +105.4 +17.6 +1091 +1144 +105% +975 +1053 +108% 1264 +1193 +94% +1340 +Reading +112.6 +16.6 +846 +871 +103% +703 +787 +112% +972 +927 +95% +1038 +Winchester +159.5 +10.8 +197 +207 +105% +193 +198 +103% +218 +210 +96% +227 +We compare the allied system ridership across priority regimes and towns under fares corresponding to +base (i.e., income-agnostic) as well as refined (i.e., income-aware) choice models. We first calculate fares +using the fare-setting model incorporating income-agnostic and income-aware choice models separately, +and then evaluate both fare designs by calculating (and reporting in Table 8) ridership using only the income- +aware choice model. Due to the use of the income-aware model, the system ridership in the REV+PAX +regime increases by 13% on average for the towns with below-average median HHI compared to a less +than 2% average increase for the towns with above-average median HHI. While ridership increases across +the board due to generally lower fares, the greatest increases occur in Lawrence and Lowell, which are the +two towns with the lowest median household incomes. The lower middle-income bracket (Lynn, Brockton, +Salem, Haverhill, and Framingham) sees the next-highest ridership increase. Similar trends are observed in +the REV regime: ridership increases across all towns due to the fact that higher revenue can be achieved with +lower fares and higher volume. The above-average income towns gain ridership by only 10% on average, +while the below-average income towns have a 37% gain. + +Cummings et al.: Transportation Alliance Design with Endogenous Demand +28 +Article submitted to Transportation Science; manuscript no. 1 +In contrast to the 7% and 23% average ridership gains in REV+PAX and REV regimes, average ridership +grows by less than 4% in the REV+VMT regime. But interestingly, this regime has significantly larger +ridership increases for longer distance passengers. In particular, the five towns that are farthest from the +inner city area—Lawrence, Lowell, Brockton, Haverhill, and Framingham—are the exact five towns with +ridership increases. Their average increase is about 25% while the remaining 10 towns see an average 7% +drop in ridership. Thus, the REV+VMT regime increases access to the allied network for commuters who +are farther from the inner city. Overall, the prioritized system-wide objectives improved by 19.16%, 0.35% +and 0.99% respectively for REV+PAX, REV, and REV+VMT regimes compared to the real-world fares. +These results underline the importance of capturing passenger preference heterogeneity to amplify our +model’s practical impact. A choice model that reflects passenger preferences more accurately improves +system-wide outcomes and especially maximizes passenger benefits. We conclude that our income-aware +refined model improves transportation equity for passengers—as compared to the income-agnostic aggre- +gate model—making it a valuable tool for transit agencies to incorporate into strategic decision-making. +5.4. +Quantifying the Value of Cooperation +To quantify the value of operator cooperation for operators and passengers, we solve the non-cooperative +fare-setting model for all allied priorities depicted in Table 6. In each experiment, the transit operator’s +priorities are identical to alliance priorities, whereas the MOD operator always maximizes revenue. Thus, +our experiment reflects an assumption that the prospective alliance will adopt the transit operator’s priorities. +Figure 5 depicts the non-cooperative equilibrium fares. Discount multipliers are not included since they +are not applicable in the non-cooperative setting. Table 9 compares allied outcomes to corresponding non- +cooperative outcomes. In particular, we report the percentage increase in the alliance objective compared +to that computed under the non-cooperative setting (transit obj. % inc.), and the percentage increase in +MOD operator revenue due to the alliance (MOD rev. % inc.). We also provide the revenue allocations +to both operators as determined by the revenue allocation mechanism in Section 2.4. The non-cooperative +system utilization and non-cooperative average route prices are also provided for each experiment. Figure +6 illustrates passenger mode choices across all tested regimes for both allied and non-cooperative fares. +Figure 5 +Non-cooperative fare parameters for different transit operator priorities. + +MOD base fare +Fare value +10.0 +Transit base fare +7.5 +5.0 +MOD markup +2.5 +0.0 +Transit markup +(1,0,0) +(1,1,0) +(0,1,0) +(0,1,1) +(0,0,1) +(PAX weight, REV weight, VMT weight)Cummings et al.: Transportation Alliance Design with Endogenous Demand +Article submitted to Transportation Science; manuscript no. 1 +29 +Table 9 +Allied vs. non-cooperative outcomes. Transit operator’s priorities represented as µT R. +Transit obj. weights +Transit obj. +MOD rev. +MOD allied +Transit allied +System +Route price +µP AX +T R +µREV +T R +µV MT +T R +% inc. +% inc. +rev. alloc. +rev. alloc. +util. % +($) Mean +1.0 +0 +0 +9.60% +0.00% +$501.90K +-$501.90K +35.01% +$12.83 +1.0 +0.2 +0 +6.87% +0.00% +$501.90K +-$501.90K +35.01% +$12.83 +1.0 +0.4 +0 +4.93% +0.00% +$487.91K +$1848.89K +32.41% +$13.45 +1.0 +0.6 +0 +4.80% +0.00% +$479.04K +$2337.68K +30.46% +$14.78 +1.0 +0.8 +0 +5.45% +0.00% +$473.18K +$2624.27K +29.21% +$15.83 +1.0 +1.0 +0 +7.57% +0.00% +$468.14K +$2824.63K +28.16% +$16.96 +0.8 +1.0 +0 +27.71% +0.00% +$465.06K +$2940.94K +27.39% +$17.77 +0.6 +1.0 +0 +5.82% +0.00% +$462.29K +$3022.50K +26.70% +$18.54 +0.4 +1.0 +0 +1.31% +0.00% +$460.45K +$3101.99K +26.43% +$18.66 +0.2 +1.0 +0 +0.54% +1.04% +$463.61K +$3173.57K +26.00% +$18.97 +0 +1.0 +0 +0.33% +1.33% +$462.79K +$3195.02K +25.65% +$19.24 +0 +1.0 +0.2 +1.55% +4.42% +$481.71K +$3108.48K +26.66% +$18.50 +0 +1.0 +0.4 +0.52% +0.00% +$465.54K +$2839.52K +27.50% +$18.07 +0 +1.0 +0.6 +0.37% +4.34% +$492.25K +$2376.74K +28.67% +$17.40 +0 +1.0 +0.8 +0.51% +0.00% +$482.97K +$1573.28K +31.13% +$15.33 +0 +1.0 +1.0 +0.54% +0.00% +$494.38K +$591.27K +33.48% +$13.76 +0 +0.8 +1.0 +0.60% +0.00% +$501.90K +-$105.59K +35.01% +$12.83 +0 +0.6 +1.0 +0.73% +0.00% +$501.90K +-$119.73K +35.01% +$12.83 +0 +0.4 +1.0 +0.92% +0.00% +$501.90K +-$262.97K +35.01% +$12.83 +0 +0.2 +1.0 +1.36% +0.00% +$501.90K +-$501.90K +35.01% +$12.83 +0 +0 +1.0 +1.90% +0.00% +$501.90K +-$501.90K +35.01% +$12.83 +Figure 6 +Market shares by mode across priority regimes for allied and non-cooperative fare-setting models. +Figure 5 illustrates that the MOD operator’s revenue-maximizing strategy remains relatively constant, +regardless of the transit operator’s priorities. Still, when the transit operator prioritizes VMT minimization or +passenger benefits maximization, the MOD operator selects higher fare parameters (mainly through higher +markups) than in the corresponding allied settings. Thus, the average route price (Route price ($) Mean) +columns in Tables 6 and 9 show that the non-cooperative average route prices are higher than average allied +route prices in every regime except for the one where the transit operator only prioritizes revenue. +In scenarios that partially maximize passenger benefits or minimize VMT, the alliance sets MOD fare +parameters lower than in the non-cooperative regime (Figure 4a vs. 5). Figure 6 shows that MOD-only mar- +ket shares decrease and hybrid market shares increase in the non-cooperative regime as passenger benefits +or VMT are increasingly prioritized. We can conclude that, although fewer passengers utilize MOD-only + +30 +Mode +Transit +MOD +Hybrid +Fare model +10 +Allied +Non-coop +0 +(1,0,0) +(1,1,0) +(0,1,0) +(0,1,1) +(0,0,1) +(PAX weight, REV weight, VMT weight)Cummings et al.: Transportation Alliance Design with Endogenous Demand +30 +Article submitted to Transportation Science; manuscript no. 1 +options in non-cooperative scenarios where the transit operator is VMT- or passenger-oriented, a higher +volume of passengers selects hybrid options due to the very low (or free) transit fares observed in Figure +5. Thus, the MOD operator earns more revenue in those non-cooperative scenarios in which the transit +operator is more altruistic. This is reflected in the revenue allocation mechanism: observe in Table 9 that +the MOD operator earns strictly more revenue in almost all regimes where the transit operator is not solely +a revenue maximizer, even though the system as a whole generates strictly less total revenue, as seen in +comparison with Table 6. The revenue allocation mechanism ensures that the MOD operator receives their +non-cooperative earnings, despite the lower MOD fares that the alliance sets to achieve lower VMT or +higher passenger benefits. This in turn reduces the transit’s revenue allocation as high VMT or low pas- +senger benefits are increasingly penalized. On the other hand, the transit operator always strictly improves +its objective of optimizing total system-wide performance, however it chooses to define it. As a result, the +MOD operator interestingly finds it in its interest to adopt transit’s priorities as transit increasingly diverges +from revenue maximization. In other words, the revenue-maximizing MOD operator would not prefer a +revenue-maximizing alliance. In fact, the MOD operator would benefit most from total altruism on transit’s +side (an exclusive focus on either passenger utility or VMT reduction). Passengers win due to the strictly +lower prices and higher system utilization that result from such alliances. +The transit operator must ultimately set the ceiling in terms of the price they are willing to pay for +the alliance benefits. Table 9 shows that the transit agency runs a deficit to appease the MOD operator if +its revenue emphasis is too low. A deficit alone might not be enough to dissuade the transit agency from +participating in the alliance: as we have noted, every public transit mode operates at a loss, especially on- +demand options (Kane, Tomer, and Puentes 2016). To weigh the financial implications of an alliance, the +agency may compare the magnitude of the loss to the cost of the analogous MOD system operated by +transit on their own in the absence of outsourcing through an alliance. Oftentimes, transit agencies also +receive grants to fund pricing alliances (Federal Transp. Administration 2016), and the daily deficit rate +can be compared to the grant award amount and intended duration. To enable a daily deficit rate that keeps +pace with financial resources over time, the transit agency may propose to reset overall performance metric +goals to induce different optimal fares, or to adjust the geographic and/or temporal scope of the alliance. +In the end, each transit agency is expected to choose the trade-off point between its financial, passenger- +focused, and environmental goals that most closely aligns with their overall policy and various practical +and financial constraints. Regardless, our allied and non-cooperative fare-setting models together with our +revenue allocation mechanism jointly provide a toolkit usable by transit agencies to weigh these trade-offs +as they evaluate a potential pricing alliance. +6. +Conclusions, Limitations and Future Directions +We contribute a pricing alliance design framework to enable incentive-aligned collaboration between transit +agencies and MOD operators. Our allied fare-setting model captures the interdependent decisions of pas- +sengers and operators, allowing the alliance to maximize benefits for all stakeholders across the integrated + +Cummings et al.: Transportation Alliance Design with Endogenous Demand +Article submitted to Transportation Science; manuscript no. 1 +31 +network. The prescriptive pricing framework can be generalized to different types of large-scale alliances +with varying MOD operators, service populations, fare structures, service goals, and network configurations. +We accomplish large scale by developing a tractable two-stage fare-setting formulation equivalent to the +original mixed-integer non-convex optimization problem, which we then solve with a tailored SOS2 coor- +dinate descent approach. From a technical standpoint, our approach selects consistently and significantly +higher quality solutions than benchmarks based on Bayesian Optimization, enabling additional system- +wide benefits worth tens of thousands dollars per day over the service region. Practically speaking, the high +quality solutions from our allied fare-setting model together with our dedicated revenue allocation mech- +anism work together to align revenue-oriented MOD operators with transit goals of passenger utility and +single-occupancy VMT reduction. In other words, cooperative pricing results in win-win-win outcomes for +passengers, MOD operators, and transit agencies. Finally, the income-aware nuanced version of our fare- +setting model helps enhance passenger equity-related goals: by tuning passenger route choice models, the +alliance can prioritize lower fares and higher utilization for low-income or long-distance commuters. +Our analysis is based on a few assumptions which can be relaxed in future work. We assumed that the +MOD operator serves as a contractor to the transit agency and agrees to set static fares for trips in the inte- +grated system. While this is one good way to ensure public sector prices are transparently communicated, +it may also be possible to set fare schemes that allow MOD operators, especially TNCs, to maintain their +dynamic prices, perhaps through the transit operator subsidizing the cost of a passenger’s trip up to a fixed +dollar amount. Additionally, we model average-case travel times over a fixed set of route options for the +MOD operator’s portion of the network to represent average-case operations, which simplifies their typi- +cally dynamic routing scheme. In other words, we consider the case where the alliance sets one permanent +fare scheme that is optimized for average-case performance. Future research may consider optimizing for +the worst-case performance, and/or integrating dynamic routing into the fare-setting model if the alliance +prefers dynamic fares, requiring the integration of two complex problem classes. Finally, we did not incor- +porate joint resource reallocation into the pricing scheme, due to the observation that the system is capable +of accommodating all demand re-distributions attributed to changing prices. This assumption works well +for our case study over the Greater Boston Area because the allied system’s ridership is a small fraction of +the larger service region with a high-capacity existing network. Future research could consider relaxing this +assumption to generalize the analysis by jointly modeling the capacity allocation and pricing decisions. +Acknowledgments +This material is based upon work supported by the National Science Foundation under Grant no. 1122374. +References +Agussurja L, Cheng SF, Lau HC, 2019 A state aggregation approach for stochastic multiperiod last-mile ride-sharing +problems. Transp. Sci. 53(1):148–166. + +Cummings et al.: Transportation Alliance Design with Endogenous Demand +32 +Article submitted to Transportation Science; manuscript no. 1 +Algaba E, Fragnelli V, Llorca N, S´anchez-Soriano J, 2019 Horizontal cooperation in a multimodal public transport +system: The profit allocation problem. Eur. J. Oper. Res. 275. +Banerjee S, Hssaine C, Luo Q, Samaranayake S, 2021 Plan your system and price for free: Fast algorithms for +multimodal transit operations. SSRN Available at https://ssrn.com/abstract=3972423. +Bertsimas D, Ng YS, Yan J, 2020 Joint frequency-setting and pricing optimization for multi-modal transit networks at +scale. Transp. Sci. 54(3):839–853. +Bian Z, Liu X, 2019a Mechanism design for first-mile ridesharing based on personalized requirements part I: Theo- +retical analysis in generalized scenarios. Transp. Res. B 120:147–171. +Bian Z, Liu X, 2019b Mechanism design for first-mile ridesharing based on personalized requirements part II: Solution +algorithm for large-scale problems. Transp. Res. B 120:172–192. +BRIDJ, 2023 Move Better. Acc. 4 Jan 2023 at https://www.bridj.com/#Platform. +BRMPO +CTPS, +2012 +MBTA +commuter +rail +passenger +count +memorandum. +Acc. +15 +Sep +2022 +at +https://www.ctps.org/data/html/studies/transit/2012_MBTA_Commuter_Rail_ +Passenger_Counts/MBTA_Commuter_Rail_Passenger_Count_Results.html. +Brochu E, Cora VM, de Freitas N, 2010 A tutorial on Bayesian optimization of expensive cost functions, with appli- +cation to active user modeling and hierarchical reinforcement learning. arXiv URL http://dx.doi.org/ +10.48550/ARXIV.1012.2599. +Cadarso L, Vaze V, Barnhart C, Mar´ınd A, 2017 Integrated airline scheduling: Considering competition effects and +the entry of the high speed rail. Transp. Sci. 51(1):132–154. +Castillo JC, Knoepfle D, Weyl G, 2017 Surge pricing solves the wild goose chase. ACM Trans. Econ. Comput. 1(1). +Chandra S, Quadrifoglio L, 2013 A model for estimating the optimal cycle length of demand responsive feeder transit +services. Transp. Res. B 51:1–16. +Chen Y, Wang H, 2018 Pricing for a last-mile transportation system. Transp. Res. B 107:57–69. +Chun SY, Kleywegt A, Shapiro A, 2017 When friends become competitors: The design of resource exchange alliances. +Manag. Sci. 63(7):2127–2145. +City of Jersey City, NJ, 2021 Jersey City and Via launch first on-demand public bus service in New Jersey. Acc. 27 +Oct 2021 at https://jerseycitynj.gov/cms/one.aspx. +City of Newton, MA, 2021 NewMo. Acc. 5 Oct 2021 at https://www.newtonma.gov/government/ +planning/transportation-planning/newmo. +City of Seattle, WA, 2021 Via to Transit - Metro - King County. Acc. 27 Oct 2021 at https://kingcounty.gov/ +depts/transportation/metro/travel-options/on-demand/via-to-transit.aspx. +Cruijssen F, Dullaert W, Fleuren H, 2007 Horizontal cooperation in transport and logistics: a literature review. Transp. +J. 46(3):22–39. +Daganzo C, 2012 On the design of public infrastructure systems with elastic demand. Transp. Res. B 46:1288–1293. + +Cummings et al.: Transportation Alliance Design with Endogenous Demand +Article submitted to Transportation Science; manuscript no. 1 +33 +Dallas Area Rapid Transit, 2020 Golink: Personalized, on-demand, curb-to-curb service when and where you need it +– plano zones. Acc. 1 Oct 2020 at https://www.dart.org/riding/golinkplano.asp. +Dunning I, Huchette J, Lubin M, 2017 JuMP: A modeling language for mathematical optimization. SIAM review +59(2):295–320. +Federal +Transp +Administration, +2016 +Fiscal +year +2016 +mobility +on +demand +(mod) +sandbox +program +projects. +Acc. +19 +Nov +2020 +at +https://www.transit.dot.gov/research-innovation/ +fiscal-year-2016-mobility-demand-mod-sandbox-program-projects. +Fudenberg D, Tirole J, 1991 Game Theory (Cambridge, MA: MIT Press). +Gallego G, Ratliff R, Shebalov S, 2015 A general attraction model and sales-based linear program for network revenue +management under customer choice. Oper. Res. 63(1):212–232. +Gehrke SR, Reardon T, 2018 Share of choices: Further evidence of the ride-hailing effect in Metro Boston and Mas- +sachusetts. Technical report, Metropolitan Area Planning Council. +Guajardo M, R¨onnqvist M, 2016 A review on cost allocation methods in collaborative transportation. Intl. Trans. +Oper. Res. 23(3):371–392. +Hicks R, 2017 Technical memorandum: Fall 2016 monitoring of MBTA bus performance measures. Technical report, +MBTA, acc. 4 Jan 2023 at https://www.ctps.org/data/calendar/htmls/2017/CMP_1221_ +Fall_2016_MBTA_Bus_Performance_Measures_Memo.html. +Ho S, Szeto W, Kuo YH, Leung J, Petering M, Tou T, 2018 A survey of dial-a-ride problems: Literature review and +recent developments. Transp. Res. B 111:395–421. +Hu X, Caldentey R, Vulcano G, 2013 Revenue sharing in airline alliances. Manag. Sci. 59(5). +Indianapolis Public Transp Corporation, 2021 Rides for Essential Workers. Acc. 27 Oct 2021 at https://www. +indygo.net/rides-for-essential-workers/. +Kane JW, Tomer A, Puentes R, 2016 How Lyft and Uber can improve transit agency budgets. Technical report, The +Brookings Institution. +Kim M, Levy J, Schonfeld P, 2019 Optimal zone sizes and headways for flexible-route bus services. Transp. Res. B +130:67–81. +Kim M, Schonfeld P, 2014 Integration of conventional and flexible bus services with timed transfers. Transp. Res. B +68:76–97. +Lee A, Savelsbergh M, 2017 An extended demand responsive connector. EURO J. Transp. Logist. 6:25–50. +Li X, Quadrifoglio L, 2010 Feeder transit services: Choosing between fixed and demand responsive policy. Transp. +Res. C 18:770–780. +Liu Q, Chow J, 2022 Efficient and stable data-sharing in a public transit oligopoly as a coopetitive game. Transp. Res. +B 163:64–87. + +Cummings et al.: Transportation Alliance Design with Endogenous Demand +34 +Article submitted to Transportation Science; manuscript no. 1 +Liu Y, Bansal P, Daziano R, Samaranayake S, 2019 A framework to integrate mode choice in the design of mobility- +on-demand systems. Transp. Res. C 105:648 – 665. +Lo HK, Yip CW, Wan QK, 2004 Modeling competitive multi-modaltransit services: A nested logit approach. Transp. +Res. C 12(3-4):251–272. +Lu W, Quadrifoglio L, Petrelli M, 2017 Reliability analysis of centralized versus decentralized zoning strategies for +paratransit services. Transp. Res. Proc. 25. +Lu W, Shen CW, Quadrifoglio L, 2014 Innovative operating strategies for paratransit services with zoning. Transp. +Res. Rec. 2469. +Lyft Inc, 2020 Boston area pricing. Acc. 14 Oct 2020 at https://www.lyft.com/pricing/bos. +Mag MT, 2021 King County Transit increases mobility options with expanded Via to Transit. https://www. +masstransitmag.com/alt-mobility/shared-mobility/car-sharing, acc. 28 Mar 2022. +MARTA, 2021 MARTAConnect. Acc. 27 Oct 2021 at https://www.itsmarta.com/marta-connect2. +aspx. +MBTA, 2018 General transit feed specification. Acc. 16 Sep 2020 at https://cdn.mbtace.com/archive/ +20181128.zip. +MBTA, 2020 Commuter rail fare zones. Acc. 14 Oct 2020 at https://www.mbta.com/fares/. +MBTA, 2021 The RIDE Flex. Acc. 26 Aug 2021 at https://www.mbta.com/accessibility/the-ride/. +MBTA, 2022 MBTA monthly ridership by mode. Acc. 15 Sep 2022 at https://mbta-massdot.opendata. +arcgis.com/datasets/MassDOT::mbta-monthly-ridership-by-mode. +McFadden D, 1974 The measurement of urban travel demand. J. Public Econ. 3:303–328. +MDOT, 2019 FOCUS40: the 2040 investment plan for the MBTA. Technical report, MDOT. +MDPU, 2018 Rideshare in Massachusetts: 2018 data report. Acc. 15 Sep 2022 at https://tnc.sites. +digital.mass.gov/2018/. +Misener R, Floudas C, 2010 Piecewise-linear approximations of multidimensional functions. J. Optim. Theory Appl. +145. +Mockus J, 2012 Bayesian Approach to Global Optimization: Theory and Applications. Mathematics and its Applica- +tions (Springer Netherlands), ISBN 9789400909090. +Molenbruch Y, Braekers K, Caris A, 2017 Typology and literature review for dial-a-ride problems. Ann. Oper. Res. +259:295–325. +Posada M, Andersson H, Hall C, 2017 The integrated dial-a-ride problem with timetabled fixed route service. Public +Transp. 9:217–241. +Rasulkhani S, Chow J, 2019 Route-cost-assignment with joint user and operator behavior as a many-to-one stable +matching assignment game. Transp. Res. B 124:60–81. + +Cummings et al.: Transportation Alliance Design with Endogenous Demand +Article submitted to Transportation Science; manuscript no. 1 +35 +Regional Transp Commission of Southern Nevada, 2021 RTC On-Demand Pilot Program. Acc. 26 Aug 2021 at +https://www.rtcsnv.com/ways-to-travel/paratransit-accessibility/. +Schaller B, 2018 The new automobility: Lyft, Uber and the future of american cities. Technical report, Schaller Cons. +Schlicher L, Lurkin V, 2022 Stable allocations for choice-based collaborative price setting. Eur. J. Oper. Res. 302(3). +Schrank D, Eisele B, Lomax T, Bak J, 2015 Urban mobility scorecard. Technical report. +Siddiq A, Tang CS, Zhang J, 2021 Partnerships in urban mobility: Incentive mechanisms for improving public transit +adoption. Manuf. Serv. Oper. Manag. Articles in Advance. +St Louis Metro, 2021 $1 Lyft trips to transit connections. Acc. 27 Oct 2021 at https://www.metrostlouis. +org/lyft/. +Stiglic M, Agatz N, Savelsbergh M, Gradisar M, 2018 Enhancing urban mobility: Integrating ride-sharing and public +transit. Comput. Oper. Res. 90:12–21. +The +Boston +Globe, +2022 +With +NewMo, +Newton’s +rideshare +service +contin- +ues +to +grow. +https://www.bostonglobe.com/2022/02/16/metro/ +with-newmo-newtons-rideshare-service-continues-grow/, acc. 28 Mar 2022. +The Economist, 2018 Public transport is in decline in many wealthy cities. www.economist.com/ +international/2018/06/21/public-transport-is-in-decline-in-many-wealthy-cities. +Uber Technologies Inc, 2020 Uber movement. Acc. 16 Sep 2020 at https://movement.uber.com. +US Census Bureau, 2017 Longitudinal employer-household dynamics origin-destination employment statistics. Acc. +16 Sep 2020 at https://lehd.ces.census.gov/data/. +US Census Bureau, 2018 Census reporter. Acc. 28 Sep 2020 at https://censusreporter.org/tables/. +US Census Bureau, 2019 TIGER/Line shapefiles. Acc. 21 Sep 2020 at https://www2.census.gov/geo/ +tiger/TIGER2019/TRACT/. +Via Transp, 2023 The Backbone of a Modern Transportation System. Acc. 4 Jan 2023 at https://ridewithvia. +com/solutions. +Wang H, 2019 Routing and scheduling for a last-mile transportation system. Transp. Sci. 53(1):131–147. +Wang K, Jacquillat A, Vaze V, 2022 Vertiport planning for urban aerial mobility: An adaptive discretization approach. +Manuf. Serv. Oper. Manag. 24(6):3215–3235. +Wang X, Agatz N, Erera A, 2018 Stable matching for dynamic ride-sharing systems. Transp. Sci. 52(4):850–867. +Wei K, Vaze V, Jacquillat A, 2020 Airline timetable development and fleet assignment incorporating passenger choice. +Transp. Sci. 54(1):139–163. +Williams H, 1977 On the formation of travel demand modelsand economic evaluation measures of user benefit. Envi- +ron. Plan. A 9(3):285–344. +Wright CP, Groenevelt H, Shumsky RA, 2010 Dynamic revenue management in airline alliances. Transp. Sci. 44(1). + +Cummings et al.: Transportation Alliance Design with Endogenous Demand +36 +Article submitted to Transportation Science; manuscript no. 1 +Yen J, 1970 An algorithm for finding shortest routes from all source nodes to a given destination in general networks. +Q. Appl. Math. 27. + +Cummings et al.: Transportation Alliance Design with Endogenous Demand +Article submitted to Transportation Science; manuscript no. 1 +37 +Appendix A: +Proof of Lemma 1: Two-stage Decomposition is Equivalent to Full Formulation +Given an optimal solution from each formulation, we construct a feasible solution for the other with the same objective +value. In this section, we introduce the following notation for a non-discounted route price r ∈ R, for expositional +brevity: +σr(β) = +� +k∈Or +(β0 +k + ∆rk · β∆ +k ). +(35) +PADP-FS2SD → PADP-FS. Let (β2SD,Λ2SD,x2SD,s2SD,w2SD,p2SD) be an optimal solution to the PADP- +FS2SD model with objective value z2SD. We construct the following solution to the PADP-FS model. +� +� +� +� +� +� +� +� +� +� +� +� +� +βF S = β2SD +ΛF S = Λ2SD +xF S = x2SD +sF S = s2SD +pF S = p2SD +(36) +We demonstrate feasibility of (36) to the PADP-FS model. +• xF S are binary by construction. +• Constraints (6) and (7) hold by construction. +• Constraints (8) and (9) are feasible due to constraints (18), (21), and (22). For a given i ∈ N, constraints (18) +and (22) ensure that +sF S +ir ∝ exp(uir + αi · pF S +r ) +∀r ∈ Ri, and +sF S +i0 ∝ exp(ui0). +Constraint (21) forces each sir and si0 to be normalized by exp(ui0) + � +r∈Ri exp(uir + αi · pF S +r ). The result +follows. +• Constraints (10) - (12) hold by definition of B and L. +Finally, to show that solution (36) has the same objective value as z2SD, we must only prove that pF S +r +· sF S +ir = w2SD +ir +for all i ∈ N and r ∈ Ri, which follows directly from Constraints (19) and (23). +PADP-FS → PADP-FS2SD. Let (βF S,ΛF S,pF S,sF S,xF S) be an optimal solution to the PADP-FS model with +objective value zF S. We construct the following solution to the PADP-FS2SD model. +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +� +β2SD = βF S +Λ2SD = ΛF S +x2SD = xF S +s2SD = sF S +w2SD +ir += pF S +r +· sF S +ir +∀i ∈ N,r ∈ Ri +p2SD = pF S +(37) +First we demonstrate the feasibility of (37) to PADP-FS2SD. +• s2SD, w2SD and p2SD are non-negative and x2SD are binary by construction. +• Constraints (18) and (22): Consider any i ∈ N. For r ∈ Ri \ RDE, and by expressions (8) and (9), +γir(β2SD,0) · s2SD +ir += γir(βF S,0) · sF S +ir + +Cummings et al.: Transportation Alliance Design with Endogenous Demand +38 +Article submitted to Transportation Science; manuscript no. 1 += +exp(ui0) +exp(uir + αi · pF S +r ) · +exp(uir + αi · pF S +r ) +ui0 + � +s∈Ri exp(uis + αi · pF S +s ) += +exp(ui0) +ui0 + � +s∈Ri exp(uis + αi · pF S +s ) += sF S +i0 = s2SD +i0 +. +Thus constraints (22) are satisfied. Now, consider any a ∈ A with r ∈ Ria. If x2SD +a += 0, then we can use the +exact same argument as above to confirm that γir(β2SD,0) · s2SD +ir += s2SD +i0 +again holds. Since +γir(β2SD,Λ2SD) · s2SD +ir +≤ γir(β2SD,0) · s2SD +ir += s2SD +i0 +≤ γi0(β2SD,0) +≤ γi0(β2SD,0) + γir(β2SD,Λ2SD) · s2SD +ir += γir(β2SD,Λ2SD) · s2SD +ir ++ M s +ir · (1 − x2SD +a +), +the constraints hold. A similar argument applies when x2SD +a += 1. +• Constraints (19) and (23): For any i ∈ N, Constraints (23) hold by construction for all r ∈ Ri \ RDE. For a ∈ A +with r ∈ Ria, we have w2SD +ir += p2SD +r +· s2SD +ir +regardless of the value of x2SD +a +. If x2SD +a += 0, then +(1 − Λ2SD) · σr(β2SD) · s2SD +ir +≤ w2SD +ir += σr(β2SD) · s2SD +ir += (1 − Λ2SD) · σr(β2SD) · s2SD +ir ++ Λ2SD · σr(β2SD) · s2SD +ir +≤ (1 − Λ2SD) · σr(β2SD) · s2SD +ir ++ Λ2SD · σr(β2SD) += (1 − Λ2SD) · σr(β2SD) · s2SD +ir ++ M w +ir · (1 − x2SD +a +), +and hence constraints (19) hold. A similar argument applies when x2SD +a += 1. +• Constraints (21): Consider any i ∈ N. By expressions (8) and (9), +s2SD +i0 ++ +� +r∈Ri +s2SD +ir += sF S +i0 + +� +r∈Ri +sF S +ir += +exp(ui0) +exp(ui0) + � +s∈Ri exp(uis + αi · pF S +s )+ +� +r∈Ri +exp(uir + αi · pF S +r ) +exp(ui0) + � +s∈Ri exp(uis + αi · pF S +s ) += 1. +• Constraints (24) and (25) hold by construction. +• Constraints β ∈ B and Λ ∈ L hold by construction. +Now we show that solution (37) to Formulation PADP-FS2SD has the same objective value of zF S. +z2SD = +� +i∈N +Ni · +� +µP AX · (ui0 + +� +r∈Ri +(uir + αi · p2SD +r +) + µREV · +� +r∈Ri +w2SD +ir +− µV MT · (∆i0 · s2SD +i0 +) +� += +� +i∈N +Ni · +� +µP AX · (ui0 + +� +r∈Ri +(uir + αi · p2SD +r +) + µREV · +� +r∈Ri +p2SD +r +· s2SD +ir +− µV MT · (∆i0 · s2SD +i0 +) +� += +� +i∈N +Ni · +� +µP AX · (ui0 + +� +r∈Ri +(uir + αi · pF S +r ) + µREV · +� +r∈Ri +pF S +r +· sF S +ir − µV MT · (∆i0 · sF S +i0 ) +� += zF S + +Cummings et al.: Transportation Alliance Design with Endogenous Demand +Article submitted to Transportation Science; manuscript no. 1 +39 +Appendix B: +Non-cooperative Fare-setting Game and Iterated Best Response Algorithm +To benchmark the solutions of our allied fare-setting model, we formulate the non-cooperative fare-setting problem +between a transit operator and an MOD operator. When they are not allied, each operator can only make fare-setting +decisions over their portion of the integrated network. The discount activation decision is not applicable in this context, +and operators set their own fare parameters so as to optimize their prioritized performance metrics over the integrated +network, subject to endogenous passenger decisions. +First we introduce new notation. Let µk = (µP AX +k +,µREV +k +,µV MT +k +) be the relative priority weights of operator k ∈ O +for each system-wide performance metric. For a given k ∈ O, let −k indicate the other operator, i.e. the singleton +−k ∈ O \ {k}. Each operator sets fare parameters βk = (β0 +k,β∆ +k ). Let Bk := [β0 +min,β0 +max] × [β∆ +min,β∆ +max] be the set +of valid fare parameters that operator k can set. Let si0(β) and sir(β) respectively denote the market shares of the +outside option and of route r ∈ Ri for passenger type i ∈ N, as functions by both operators’ fare parameters β. +sir(β) = +exp(uir + αi · σr(β)) +exp(ui0) + � +s∈Ri exp(uis + αi · σs(β)) +i ∈ N,r ∈ Ri +si0(β) = +exp(ui0) +exp(ui0) + � +s∈Ri exp(uis + αi · σs(β)) +i ∈ N +Let ˆβ−k denote the fixed fare parameter decisions of operator −k. Then σr(βk; ˆβ−k) denotes the non-discounted price +of route r ∈ R as a function of the fare parameter decisions of operator k, parameterized by the fixed decisions of oper- +ator −k, where σr is originally defined in Equation (35). Similarly, sir(βk; ˆβ−k) and si0(βk; ˆβ−k) represent market +shares as functions of the fare parameter decisions of operator k, given fixed decisions of operator −k. Formulation +PADP-NC is the non-cooperative fare setting model of operator k. +(PADP-NC) +max +βk∈Bk Wk(βk; ˆβ−k) +≡ +max +βk∈Bk +� +i∈N +Ni · +� +µP AX +k +· +� +ui0 + +� +r∈Ri +(uir + αi · σr(βk; ˆβ−k)) +� ++ +µREV +k +· +� +r∈Ri +σr(βk; ˆβ−k) · sir(βk; ˆβ−k)− +µV MT +k +· (∆i0 · si0(βk; ˆβ−k)) +� +An operator’s non-cooperative fare-setting model is a simplified version of the allied fare-setting model, with more +restricted decisions. Operator k sets their fare parameters within allowable bounds to maximize system-wide benefits +over the integrated network, subject to the induced passenger decisions and for given fare parameters set by the other +operator. Each operator’s model has two decision variables: their base fare and their distance-based markup. Fare +parameters β must satisfy condition (38) below to be considered a solution to the non-cooperative fare setting problem. +βk = arg max +β′ +k∈Bk Wk(β′ +k;β−k) +k ∈ O +(38) +When fare parameters β satisfy condition (38), they define a Nash equilibrium (NE), or more precisely, a pure strategy +Nash equilibrium. Fare parameters form an NE when neither operator can unilaterally change their pricing strategy to +improve their own objective, given the fare parameters set by the other operator. We compute an NE using an iterated +best response algorithm, which takes turns alternating between each operator’s optimal fare parameters computation +in response to their competitor’s fixed fare parameters, until convergence. + +Cummings et al.: Transportation Alliance Design with Endogenous Demand +40 +Article submitted to Transportation Science; manuscript no. 1 +A pure strategy Nash equilibrium to the non-cooperative fare-setting game is a set of fares such that each opera- +tor’s decision is the optimal response given the other operator’s fare parameters. An iterated best response algorithm +randomly initializes the fare parameters and lets each operator take turns setting their best response. The algorithm +converges when neither operator can gain by changing their response (Fudenberg and Tirole 1991). +Algorithm 4 Iterated best response for non-cooperative fare setting +1: procedure ITERATED BEST RESPONSE(ϵ) +2: +βk ← uniform draw from Bk for each k ∈ O +3: +objPrevk ← −∞ for each k ∈ O +4: +objCurk ← Wk(β) for each k ∈ O +5: +while maxk∈O(objCurk − objPrevk) > ϵ do +6: +for k ∈ O do +7: +objPrevk ← objCurk +8: +obj ← maxβ′ +k∈Bk Wk(β′ +k;β−k) +9: +if obj > objCurk then +10: +objCurk ← obj +11: +βk ← arg maxβ′ +k∈Bk Wk(β′ +k;β−k) +12: +return β +In general, without proof of existence of a Nash equilibrium, Algorithm 4 is not guaranteed to converge, let alone +to the same β in the face of random initializations. To prevent infinite oscillation, a maximum iteration limit can +potentially be implemented. Yet, in all runs of our computational experiments performed when generating Table 9, a +unique NE was always obtained across the 10 random initializations in a given row of the table. +Appendix C: +Proof of Lemma 2: Revenue Allocation Mechanism +Proof of Lemma (2a): The MOD operator participates in the alliance whenever they can earn at least as much +revenue by cooperating with the transit agency as they can otherwise. By construction, +ΦMOD((fk(βnc))k∈O,f(βa,Λa)) = fMOD(βnc) + +� δ +2 +�+ ≥ fMOD(βnc), +so the result follows. +Proof of Lemma (2b): In the case that allied revenue exceeds combined non-cooperative revenue, we show that the +allocation is a Nash bargaining solution, which is a classic payment rule guaranteeing properties of Pareto efficiency, +symmetry, scale invariance, and independence of irrelevant alternatives. +We frame the alliance revenue allocation problem as a collective bargaining problem. Let the disagreement outcome +be the operator revenues resulting from non-cooperation, d = (fk(βnc))k∈O. Let X be the set of all revenue allocations + +Cummings et al.: Transportation Alliance Design with Endogenous Demand +Article submitted to Transportation Science; manuscript no. 1 +41 +such that each operator receives at least their disagreement outcome, and such that the sum of revenue allocations does +not exceed allied revenue p = f(βa,Λa). +X(d,p) := +�� +ak +� +k∈O : ak ≥ dk,∀k ∈ O; +� +k∈O +ak ≤ p +� +Let F be the set of all such allocation problems, with each (d,p) ∈ F corresponding to a different allocation problem +(i.e., a different potential alliance). We seek an allocation solution function Φ : F → X that allocates the available profit +according to the axioms of Pareto efficiency, symmetry, scale invariance, and independence of irrelevant alternatives. +It is known that Nash bargaining solutions – which satisfy the above axioms– exactly coincide with optimal solutions +to optimization problem (39). +max +a∈X(d,p) +� +k∈O +(ak − dk) +(39) +Expression (40) clearly solves (39). +dk + p − � +k∈O dk +2 += fk(βnc) + δ +2 ≡ Φk(d,p), +∀k ∈ O +(40) +To establish the core property, we point to Lemma (2a), as well as the fact that ΦT R(d,p) ≥ fT R(βnc) in the case that +δ ≥ 0. This proves Lemma (2a). +Appendix D: +SOS2 Coordinate Descent Subroutines +This section specifies subroutines of SOS2 Coordinate Descent, presented in Algorithm 2. The subroutine SEARCH +DIRECTIONS provides a comprehensive ordered list of search directions that can be multidimensional and/or random- +ized or neither. The subroutine GENERATE ANCHORS computes an ordered set of evenly spaced SOS2 anchors along +the specified search direction. In case of a multidimensional search direction, we determine the range of slopes that +will ensure that the line spans the selected dimension, and sample uniformly from that range. +Figure 7 visualizes the computation of the slope range in lines (16)-(21) of the GENERATE ANCHORS procedure. +The most negative slope of a line passing through the current solution is determined by the maximum of the slopes +of the two line segments connecting the current solution to the upper left and bottom right corners of the diagram. +Similarly, the most positive slope is determined by the minimum of the slopes of the two line segments connecting the +current solution to the lower left and upper right corners. +Appendix E: +Performance of Algorithm Components +In this section, we examine the performance of individual components of the algorithm. +Figure 8 illustrates the distribution of solution times in seconds for the second-stage model. Each calculation of W, +which requires solving the second-stage model once, needs on average 5.7 seconds of CPU time, which is fast enough +to be useful, but slow enough to warrant judicious selection of candidate first-stage solution points to evaluate. Each +of the 31,553 observations was obtained in under one minute. The observations were aggregated across all solutions +of the second-stage model represented in the paper, including runs of SOS2-CD, BF-CD, and BO. +Figure 9 depicts the accuracy of the SOS2 model with anchors placed at 10% intervals for the discount multiplier +axis and at $1 intervals for the rest of the fare parameters. In each trial, a fare parameter combination and a search +dimension were selected uniformly at random. The “true optimal” fare parameters for each trial (i.e., each combination +of current solution and search direction) were computed using a brute-force approach, through exhaustive enumeration + +Cummings et al.: Transportation Alliance Design with Endogenous Demand +42 +Article submitted to Transportation Science; manuscript no. 1 +Algorithm 5 Subroutines for SOS2 Coordinate Descent +1: procedure SEARCH DIRECTIONS(random, multidim) +2: +if multidim then +3: +searchDirs ← {(β0 +T R,β∆ +T R), (β0 +MOD,β∆ +MOD), Λ} +// index names of y +4: +else +5: +searchDirs ← {β0 +T R, β∆ +T R, β0 +MOD, β∆ +MOD, Λ} +6: +if random then +7: +searchDirs ← SHUFFLE(searchDirs) +// randomly permutes the set searchDirs +8: +return searchDirs +9: procedure GENERATE ANCHORS((β,Λ), searchDir, D) +10: +if searchDir ∈ {(β0 +k′,β∆ +k′) : k′ ∈ O} then +// if searchDir is multidimensional +11: +β0 +k,β∆ +k ← searchDir +12: +if Unif(0,1) < 0.5 then +// select spanning dimension +13: +(x,xmin,xmax),(y,ymin,ymax) ← (β0 +k,β0 +min,β0 +max),(β∆ +k ,β∆ +min,β∆ +max) +14: +else +15: +(x,xmin,xmax),(y,ymin,ymax) ← (β∆ +k ,β∆ +min,β∆ +max),(β0 +k,β0 +min,β0 +max) +16: +if x == 0 then +// determine valid slopes for spanning affine lines +17: +mmin ← ymin−y +xmax−x; mmax ← ymax−y +xmax−x +18: +else if x == xmax then +19: +mmin ← ymax−y +xmin−x; mmax ← ymin−y +xmin−x +20: +else +21: +mmin ← max{ ymax−y +xmin−x, ymin−y +xmax−x}; mmax ← min{ ymin−y +xmin−x, ymax−y +xmax−x} +// see Figure 7 +22: +m ← Unif(mmin,mmax); b ← y − m · x; δx = xmax − xmin +// slope of spanning affine line +23: +anchors ← {(xmin + i−1 +D−1 · δx,b + m · (xmin + i−1 +D−1 · δx),β0 +−k,β∆ +−k,Λ) : i ∈ {1,...,D}} +24: +else +25: +if searchDir == Λ then +26: +maxV al ← Λmax; minV al ← Λmin +27: +else if searchDir in {β0 +k : k ∈ O} then +28: +maxV al ← β0 +max; minV al ← β0 +min +29: +else +30: +maxV al ← β∆ +max; minV al ← β∆ +min +31: +anchors ← {(minV al + i−1 +D−1 · (maxV al − minV al),(β,Λ) \ {searchDir}) : i ∈ {1,...,D}} +32: +Insert (β,Λ) into the ordered set anchors +33: +return anchors +of every solution along that affine line at a 1% granularity for discount multiplier and a $0.10 granularity for the other +four fare parameters. Then the W obtained through SOS2∗ procedure was evaluated and compared with this “true +optimal” solution, to compute the SOS2 optimality gap. The mean optimality gap was 0.25%, and it was 0% in 29.8% +of the instances. This establishes the trustworthiness of the SOS2 model outputs, especially given the drastic CPU time +reduction they provide. We repeated this procedure for 10 hours, resulting in 927 solutions. + +Cummings et al.: Transportation Alliance Design with Endogenous Demand +Article submitted to Transportation Science; manuscript no. 1 +43 +Figure 7 +Computing the range of slopes such that the selected dimension is spanned. +Figure 8 +Distribution of 31,553 second-stage model solution times. Mean solution time = 5.7s. +Figure 9 +Distribution of SOS2 model optimality gaps. Mean gap = 0.25%, across 927 solutions. Exact solu- +tions (with 0% gaps) obtained in 276 of the 927 cases. +Figure 10 shows the distribution of BF-CD solution times for a single trajectory across 50 trials. BF-CD never +terminates before an hour elapses. +Appendix F: +Bayesian Optimization Benchmark +Bayesian Optimization (BO) is a sequential search strategy for optimizing low-dimensional black-box functions +(Mockus 2012). Typically, the function being optimized takes a long time to evaluate and has no analytical form, pre- +cluding access to gradients. We first provide a high-level overview of BO, and then we summarize the design choices +that we use in this paper. In particular, we adapt the setup of a recent dedicated study by Liu et al. (2019) on using +Bayesian Optimization to select MOD system service parameters subject to passenger mode choice. Interested readers + +0.3 +0.2 +Density +0.1 +0.0 +10 +20 +30 +Solution time (s)1000 +750 +Density +500 +250 +0 - +0.00 +0.01 +0.02 +0.03 +SOs2 model optimality gapYmax +Ymax - y +Ymax - y +Xmin - X +X - xewx +Other dimension +βcur +Ymin - y +Ymin - y +Xmin - X +Xmax - X +Ymin +Xmin +x +xewx +Spanning dimensionCummings et al.: Transportation Alliance Design with Endogenous Demand +44 +Article submitted to Transportation Science; manuscript no. 1 +Figure 10 +BF-CD single-trajectory solution times across 50 trials. +are referred to Liu et al. (2019) for a more detailed description of BO in this application context. Readers interested in +a general BO tutorial are referred to Brochu, Cora, and de Freitas (2010). +In the absence of a closed-form representation of our black-box function f : x → R, the BO framework first imposes +a prior belief upon f via a probabilistic surrogate model. Given this surrogate model, BO iteratively (i) updates +the likelihood of historical observations with new evaluations of f to obtain a more informative posterior, and (ii) +queries an acquisition function that uses the updated posterior to recommend the next value of x that should be +evaluated. A very common surrogate model for the black-box function is called a Gaussian Process (GP), which is a +stochastic process in which any finite set of random variables follows a multivariate Gaussian distribution (Mockus +2012). After building the GP with historical observations, the GP maps a given point in the search space to a univariate +Gaussian distribution. We interpret this output distribution as a set of potential values of f(x), accounting for noise. +The acquisition function is a BO design choice intended to help in navigating the trade-off between exploration and +exploitation, i.e. exploring more of the search space versus exploiting regions where a globally optimal solution is +suspected to exist. As in Liu et al. (2019), we use a GP upper confidence bound as our acquisition function, which +characterizes the BO optimization process as a multi-armed bandit problem. +Appendix G: +Greater Boston Area Case Study +First we describe the primary case study. Then we explain the income-aware modification to the choice model. +Primary case study. Our case study is based on several datasets describing travel characteristics in the Greater +Boston Area. We consider a pricing alliance for the morning commute, restricting our time window to 6-10AM on a +typical weekday in Fall 2018. Our data sources and their purposes are as follows: +• Massachusetts Bay Transit Authority (MBTA) Focus40 report: We consider MBTA “urban gateways,” character- +ized as regions located beyond the rapid transit network but in close proximity to the commuter rail network. +More formally, an urban gateway is a town with high potential to be receptive to additional development of pub- +lic transportation options, especially if they connect to commuter rail hubs (MDOT 2019). These towns define +the service region of our case study. +• MBTA Fall 2018 General Transit Feed Specification (GTFS): We use the MBTA GTFS to extract rapid transit +and commuter rail stations and edges. We also collect valid transfer edges from those enumerated by the feed +(MBTA 2018). +• 2017 Longitudinal Employer-Household Dynamics (LEHD) Origin-Destination Employment Statistics +(LODES): This data specifies the number of jobs corresponding to each origin-destination census tract pair, +where the origin represents the employee’s home tract and the destination represents their work tract. We used +this data as a proxy for daily morning commute demand (U.S. Census Bureau 2017). + +0.100 +0.075 +Density +0.050 +0.025 +0.000 +15 +20 +25 +Solution time (h)Cummings et al.: Transportation Alliance Design with Endogenous Demand +Article submitted to Transportation Science; manuscript no. 1 +45 +• U.S. Census Bureau American Community Survey, 2014-2018: We extracted town-level data on the modes of +transportation to work, median household income, and total population for towns in selected priority places (U.S. +Census Bureau 2018). This data was primarily used to calibrate the passenger utility parameters. +• TIGER/Line shapefiles: We used this data to assign network components to census tracts. We use the centroids +of census tracts in priority places to define passenger origins and destinations (U.S. Census Bureau 2019). +• Uber Movement travel times: We used travel times aggregated over the 4th quarter of 2018 in the Greater Boston +Area to approximate travel times of first- and last-mile edges and outside options (Uber Technologies Inc. 2020). +• Lyft fare parameters: We calculate the real-world prices of the MOD operator’s services using Lyft’s base fares, +distance-based markups, and time-based markups (Lyft Inc. 2020). We also use this data to calibrate the passen- +ger utility parameters. +• MBTA commuter rail fares: We characterize the real-world prices of the transit operator’s services using the +MBTA commuter rail fares. We interpolate the base fares and distance-based markups from the discretized, +zone-based fare structure together with the distances between transit stations in each zone (MBTA 2020). +We define the transit network using commuter rail and rapid transit edges. Each passenger’s origin and destination +are census tract centroids from the LODES dataset. We built MOD operator network’s edges by connecting centroids +to transit stations and to each other within each priority place. We filtered out unnecessary edges that corresponded to +very low demand; implementing a 90% service goal enabled us to reduce the MOD operator’s edge set by 50%. We +only consider those commuters who work locally (within their home priority place) or in the inner city (the dashed +bounding box in Figure 3). Commuters to the inner city were assumed to walk the last leg of their trip, from their final +transit station to their destination centroid. Because the rapid transit network is so well connected within the inner city, +approximately 90% of all inner city destinations in the data were within a 0.5 mile walk of at least one transit station. +To generate the route choice sets, we first built a routing network. This routing network is a transformation of the +physical network, consisting of MOD, transit, waiting, walking, and transfer edges. The cost of each edge was the +time to “traverse”, whether that traversal entailed travel on the transit and/or MOD system, travel by foot, or stationary +waiting. We filtered out the trips with more than one transfer, by performing a transformation on the relevant transit +stations by replicating those nodes—each transfer station had one node for incoming transfers and one for outgoing +transfers. A path through this network from a passenger’s origin to destination captures their total travel time along +that path. Over this routing network, we implemented Yen’s algorithm for finding the k-shortest loopless paths over a +directed graph with non-negative edge costs (Yen 1970). We first obtained up to 10 shortest paths for each commuter to +the inner city. Some paths were effectively duplicates, in that every aspect of the path was the same except for the final +transit station. We identified “unique” routes by their starting and transfer locations. With this definition of uniqueness, +we selected the shortest path for each mode: direct via transit (with a potential walking, driving, or local bus option +for the first mile, selecting whichever was the least costly from each passenger’s available options), direct via MOD +operator, or hybrid (MOD first mile transferring to transit, and potentially an MOD last mile for local commuters). +We selected a route choice model specification representative of the factors influencing passenger decisions in our +model: monetary costs (i.e., fares) and travel time (both within and outside the system), and alternative-specific con- +stants (ASC) for each represented mode (driving, transit, MOD, and hybrid). To calibrate choice model parameters, + +Cummings et al.: Transportation Alliance Design with Endogenous Demand +46 +Article submitted to Transportation Science; manuscript no. 1 +we used a simplified version of the non-cooperative pricing game. We fixed fare parameters to their real-world values +and selected model coefficients that make real-world fares correspond to a Nash equilibrium. This simplified game +for the calibration purposes included only three passenger types: local commuters, commuters to inner city, and those +traveling on the transit network outside of the alliance region. Each passenger had a simplified choice set represent- +ing average-case travel times and distances. We solved the simplified game by enumerating solutions over a coarse +grid of candidate choice model coefficients values. Finally, all passengers were grouped into 3 sensitivity profiles: +time-sensitive, price sensitive, and intermediate. Intermediate category uses the calibrated parameters as is. We char- +acterize the time-sensitive passengers by doubling the time-sensitivity coefficients and halving the price-sensitivity +coefficients; and vice versa for the price-sensitive passengers. Table 10 shows the final calibrated route choice model +coefficients. All signs and relative magnitudes are as expected intuitively, with ASCs indicating that all else equal, +people prefer driving the most and transit the least. Price and travel time impact passenger utility negatively. The +calibrated parameters thus clearly pass the common sense test. +Table 10 +Route choice model’s calibrated coefficients. +MOD ASC Transit ASC Hybrid ASC +Driving ASC +Price (USD) +Travel time (min) +-0.75 +-1.125 +-0.9375 +0 +-0.05 +-0.0075 +Modifications to Make the Model Income-aware. In the modified case study in Section (5.3), rather than uni- +formly dividing the Greater Boston Area population into the three sensitivity profiles, we normalized time sensitivity +and calibrated price sensitivity to the relative median household income (HHI) of each town, as described in Section +5.3. The price-sensitivity coefficient for each town was obtained by dividing the primary case study’s coefficient in +Table 10 by that town’s income ratio. This scaling method leads to the towns with the lower values of median HHI +(i.e., the towns with a lower income ratio) appropriately correspond to higher price sensitivity values. +For each town, Table 11 displays its price sensitivity coefficient and income ratio—i.e., a ratio of that town’s median +HHI to the average of the median HHIs across the service region (which was $92,618.17). Absolute values of the +median HHIs by town are available in Table 8. Note that the average of the median HHIs for the rest of the transit +service population outside of the alliance service region is 9% higher than that within the service region, underlining +that the proposed alliance particularly aims to serve lower income populations. + +Cummings et al.: Transportation Alliance Design with Endogenous Demand +Article submitted to Transportation Science; manuscript no. 1 +47 +Table 11 +Price sensitivity coefficients in the passengers’ route choice model and the income ratios by town +for the income-aware case study. +Town +Price Sensitivity Coefficient Income Ratio +Outside +-0.04592 +1.0888 +Brockton +-0.0840 +0.5953 +Framingham +-0.0585 +0.8544 +Waltham +-0.0541 +0.9251 +Lynn +-0.0848 +0.5895 +Salem +-0.0706 +0.7079 +Lowell +-0.0891 +0.5613 +Lawrence +-0.1114 +0.4490 +Haverhill +-0.0685 +0.7297 +Burlington +-0.0439 +1.1385 +Reading +-0.0411 +1.2161 +Wakefield +-0.0486 +1.0290 +Stoneham +-0.0488 +1.0239 +Melrose +-0.0446 +1.1201 +Woburn +-0.0522 +0.9582 +Winchester +-0.0293 +1.7225 + diff --git a/aNE1T4oBgHgl3EQfwwVc/content/tmp_files/load_file.txt b/aNE1T4oBgHgl3EQfwwVc/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..31d07e8a297b504bec760a595712a612d1d908b9 --- /dev/null +++ b/aNE1T4oBgHgl3EQfwwVc/content/tmp_files/load_file.txt @@ -0,0 +1,2150 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf,len=2149 +page_content='Submitted to Transportation Science manuscript 1 Authors are encouraged to submit new papers to INFORMS journals by means of a style file template, which includes the journal title.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' However, use of a template does not certify that the paper has been accepted for publication in the named journal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' INFORMS journal templates are for the exclusive purpose of submitting to an INFORMS journal and should not be used to distribute the papers in print or online or to submit the papers to another publication.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Multimodal Transportation Alliance Design with Endogenous Demand: Large-Scale Optimization for Rapid Gains Kayla Cummings*, Vikrant Vaze†, ¨Ozlem Ergun‡, Cynthia Barnhart* Transit agencies have the opportunity to outsource certain services to well-established platform-based Mobility on Demand (MOD) providers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Such alliances can improve service quality, coverage, and ridership;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' reduce public sector costs and vehicular emissions;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' and integrate the passenger experience.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' To amplify the effectiveness of such alliances, we develop a fare-setting model that jointly optimizes discounted fares across a multimodal network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' We capture com- muters’ travel choices with a discrete choice model, resulting in a large-scale, mixed-integer, non-convex optimization problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' To solve this challenging problem, we develop a two-stage decomposition with the pricing decisions in the first stage and a mixed-integer linear optimization problem optimizing fare discounts and the induced passenger behaviors in the second stage.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' To solve the decomposition, we develop a new solution approach combining tailored coordinate descent, parsimonious second-stage evaluations, and interpolations using special ordered sets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' This approach, enhanced by acceleration techniques based on slanted traversal, randomization and warm-start, significantly improves system-wide practical outcomes over algorithmic benchmarks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Different alliance priorities result in qualitatively different fare designs: flat fares decrease the total vehicle-miles traveled, while geographically-informed discounts improve passenger happi- ness.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' The model responds appropriately to equity-oriented and passenger-centric priorities, improving system utilization and lowering prices for low-income residents and long-distance commuters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Finally, our revenue allocation mechanism improves outcomes for both operators, thus incentivizing profit-oriented MOD operators to adopt transit priorities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Key words: Public transit, transportation pricing, alliance design, mixed-integer non-convex optimization 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Introduction Cities face critical challenges in the quest to improve urban mobility.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Prior to the pandemic, congestion was steadily rising, translating to $160 billion annual costs to U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' cities and record-breaking contributions to greenhouse gas emissions (Schrank et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' 2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Recent declines in transit ridership demonstrate the inabil- ity of transit’s static infrastructure to accommodate rapidly evolving commuting patterns (The Economist 2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Private ride-sharing apps from Transportation Network Companies (TNCs) like Uber and Lyft have Massachusetts Institute of Technology † Dartmouth College ‡ Northeastern University 1 arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='03414v1 [math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='OC] 9 Jan 2023 Cummings et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' : Transportation Alliance Design with Endogenous Demand 2 Article submitted to Transportation Science;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' manuscript no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' 1 challenged this fixed-infrastructure status quo.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' TNCs transported 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='6 billion passengers in 2017, more than doubling the ride-sharing market since 2012 (Schaller 2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' The majority of urban TNC patrons admit that they would have otherwise walked, biked, taken public transit, or not made the trip, coinciding with tens of millions in annual transit revenue losses, worsening congestion, higher emissions, lower navigability of cities, and reduced accessibility to affordable public options (Gehrke and Reardon 2018, Schaller 2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Mobility-on-demand (MOD) services have the potential to service transit deserts—low-density areas disconnected from public transit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' However, cost presents a key barrier: while all public transit modes operate at a loss, MOD services administered by transit agencies incur the highest average per-trip costs ($23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='10 vs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' the next-highest $11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='19 for commuter rail) (Kane, Tomer, and Puentes 2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' High labor needs, outdated technology, and coordination difficulties lead to inefficient, expensive operations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Notably, average TNC trip costs $13, a full $10 less than agency-sponsored MOD trips.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Outsourcing all 223 million on-demand transit trips to TNCs could hypothetically save billions of dollars for US transit agencies (Kane, Tomer, and Puentes 2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Thus, pricing alliances between TNCs and transit agencies have the potential to improve service quality and coverage, while reducing costs and decreasing citywide vehicle-miles travelled (VMT).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Pricing Alliances in the Real World TNCs have the infrastructure to provide more cost-effective MOD services supplementing fixed-route tran- sit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Microtransit platforms like BRIDJ and Via—differentiated from TNCs due to fleets comprising mini- vans or shuttles as opposed to sedans—have oriented their business model toward complementing transit (Via Transp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' 2023, BRIDJ 2023).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' The Federal Transit Administration’s MOD Sandbox program has pro- vided millions in funding to transit agencies in US cities such as Dallas, San Francisco, and Los Angeles to develop on-demand pilots that fill service gaps in their service regions (Federal Transp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Administration 2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Rather than designing a complementary MOD system from scratch and incurring high fixed costs, transit agencies could outsource MOD services to TNC platforms that are well-established, highly con- nected, and widely trusted;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' or to microtransit platforms that more closely align with transit agency goals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' This section formalizes such alliances within a rigorous conceptual framework.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' We define a pricing alliance as a cooperative pricing scheme between a transit agency and an MOD operator with independently operated infrastructures serving overlapping or adjacent regions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' A pricing alliance seeks to improve each operator’s own prioritized metrics whilst also improving system-wide benefits through integration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Indeed, real-world pricing alliance pilots have shown great promise in improving regional mobility, providing alter- natives with higher service levels, lower fares and increased ridership (The Boston Globe 2022, Mag 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Pricing alliances are characterized by the intended service populations and the relationship of the MOD operator’s system to the fixed-route transit network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Service population may be a targeted demographic, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' persons with limited mobility, low-income people, or senior citizens;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' the service population might also constitute residents of a particular geographic area, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' residents of a transit desert or people traveling Cummings et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' : Transportation Alliance Design with Endogenous Demand Article submitted to Transportation Science;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' manuscript no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' 1 3 (a) GoLink in Dallas, TX (Plano region) utilizes a zone- based route structure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' (b) The NewMo Pilot in Newton, MA utilized a hub-based route structure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Figure 1 Route structures of recent pricing alliances.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' In Plano (Dallas Area Rapid Transit 2020), passengers spend up to $3 to travel anywhere within a color-blocked region.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' In the NewMo Pilot (City of New- ton, MA 2021), passengers could travel anywhere within town limits for $2, as long as either trip endpoint was one of seven hubs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' NewMo now allows passengers to travel anywhere within Newton.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' within a given radius of a transit hub.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' The MOD infrastructure may complement, substitute, or extend fixed- route options.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Once participating operators establish the nature of the pricing alliance, the alliance can select a joint pricing scheme.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Carefully designed fares influence passenger behavior, incentivizing choices that benefit the entire system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Table 1 surveys these traits of recent pricing alliances: MOD operator: This can be a TNC like Uber or Lyft, or a microtransit platform like Via.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Service population: Recent alliances have served people with limited mobility, seniors, essential work- ers, or simply everyone.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Fare structure: For passengers traveling within the system, some alliances charge a flat fare and/or a variable fare based on distance travelled.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Selectively applied, interpretable discount structures for jointly offered routes can encourage multimodal travel and engineer outcomes desired by the operators.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Route structure: Alliances often require specific trip geography: point-to-point (PTP) (trips must occur within a given geographic region), zone-based (partitions a larger region into small zones and requires intra-zonal trips), and hub-based (at least one trip endpoint must be anchored at specified locations).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Figure 1 illustrates zone-based and hub-based route structures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Integration into public transit network: The MOD portion of the network might integrate into the transit network in several ways: complementary (provides another mode option to improve service quality), substitutive (replaces existing fixed-route transit), first-/last-mile (FLM) (connects travelers to the fixed-route network), and extension (serves transit desert regions).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Literature Review This work sits at the intersection of literature on FLM system design and operations management, integrated multimodal transport system design, and horizontal cooperation among competing transportation operators.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' MobilityOptionsinPlano OpcionesdemovilidadenlaszonasdePlano CISEMONTC WLIS CHASEOUKS BIVD NWPLANO PARK&RIDE NONEN Mapnottoscale Elm30ano representa laestala PLRER Travel between zones is not permitted.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' N PARKERRD STATION LegacyWestServiceArea Zone Noesta permitidoviajardirectoentrezonas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' PARXBVO LegacyWest Zona del area de servicio LegacyWestserves Northwest FarNorth Plano serves Parker Road North Central Plano/Chase Oaks Far North Plano Service Area Zone PlanoPark&Ride,forconnections Station,forconnectionstoDART rail servesParker RoadStation,for FarNorthPlano Zonadelareadeservicio to DART buses.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' and buses.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' connections to DART rail and buses.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Legacy Westsinve la Northwest Plano Far North Plano sirve la Parkor Road NorthCentral Plano/Chase Oaks sinve la NorthCentral Plano/Chase Oaks ServiceAreaZone Park&Ride,para conexionesalos Station,paraconexiones alostrenesy ParkerRoadStation,para conexionesalos NorthCentral Plano/ChaseOaksZonadelareadesenvicig sutobusos de DART.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' autobuses de DART.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' trenesy autobusos de DART.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' DARTTransitFacility Terminal de DART DARTRed&OrangeLines DART lineas Rojas yNaranjas CollinCollege-SpringCreekCampusWaltham Watertown Eligibledestinations: City centers: NewtonCentre NeedhamStreet Newton WellsAve/Mt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='ldaCampus ofUMassAmherst Transit hubs: NewtonvilleCommuterRail ChestnutHillGreenLine Newton Highlands Green Line Needham Heights CommuterRail NeedhamCummings et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' : Transportation Alliance Design with Endogenous Demand 4 Article submitted to Transportation Science;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' manuscript no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' 1 Table 1 Survey of recent pricing alliances.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' PTP: point-to-point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Flat fare: same price for every passenger.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Mode: fares vary by travel mode.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Distance: fares increase with distance traveled.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' (Dallas Area Rapid Transit 2020, Regional Transp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Commission of Southern Nevada 2021, City of Seattle, WA 2021, MBTA 2021, City of Newton, MA 2021, City of Jersey City, NJ 2021, St.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Louis Metro 2021, MARTA 2021, Indianapolis Public Transp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Corporation 2021) ∗ Not operated by a transit agency.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' ∗∗ Specially marketed for senior citizens.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' ∗∗∗ Available to everyone, but only in case of transit closures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' ∗∗∗∗ Transported essential workers at the beginning of the COVID-19 pandemic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Program City Transit agency MOD Op.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Service population Fares Routes Integration GoLink Dallas,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' TX DART Via Everyone Mode Zone Complementary,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' FLM RTC On-demand Pilot Las Vegas,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' NV RTC Lyft Paratransit Distance PTP Substitutive Via to Transit Seattle,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' WA King County Metro Via Everyone Flat fare Hub Complementary,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' FLM The RIDE Flex Boston,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' MA MBTA Uber,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Lyft Paratransit Flat fare PTP Substitutive NewMo Pilot Newton,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' MA City of Newton∗ Via Everyone,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' seniors∗∗ Flat fare Hub Extension,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' FLM No program name Jersey City,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' NJ NJ TRANSIT Via Everyone Distance Zone Complementary,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' extension No program name St.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Louis, MO St.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Louis Metro Lyft Everyone Distance Hub Complementary, FLM MARTAConnect Atlanta, GA MARTA Uber, Lyft Everyone (closures)∗∗∗ Distance PTP Extension IndyGo + Uber Indianapolis, IN IndyGo Uber Essential workers∗∗∗∗ Flat fare PTP Substitutive FLM system design and operations: Research on demand responsive connector (DRC) systems devel- ops analytical models to evaluate service quality and determine first-mile system parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' In particu- lar, such work specifies optimal zone size and headways, identifies transition points between regions best serviced by fixed-route vs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' flexible services, and establishes best practices for inter-zone transfer coordina- tion (Chandra and Quadrifoglio 2013, Kim, Levy, and Schonfeld 2019, Kim and Schonfeld 2014, Lee and Savelsbergh 2017, Li and Quadrifoglio 2010, Lu, Quadrifoglio, and Petrelli 2017, Lu, Shen, and Quadri- foglio 2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' The tactical question of how to operate a first-mile system is also well-studied.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' The Dial-A- Ride Problem (DARP) encompasses the vehicle routing problem faced by transit agencies, given a set of trip requests and a vehicle fleet (Ho et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' 2018, Molenbruch, Braekers, and Caris 2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' The Integrated DARP (IDARP) designs vehicle routes and schedules to meet trip requests, allowing transfers with fixed- route timetabled service (Posada, Andersson, and Hall 2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Closely related to IDARP is the problem of matching individual carpoolers and integrating their trips with transit timetables (Stiglic et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' 2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Finally, many studies design strategies for routing and scheduling (Wang 2019), pricing (Chen and Wang 2018), and trip request acceptance (Agussurja, Cheng, and Lau 2019) for FLM transportation systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Multimodal network optimization with endogenous demand: Our work is related to literature on opti- mal design and operation of transportation systems that acknowledges and leverages endogenous demand.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Past research has modeled decision-making travelers with preferences.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' One-to-one and many-to-one assign- ment problems among travelers and suppliers have been addressed with preference-based stable matchings to prevent participants from leaving ride-sharing systems (Wang, Agatz, and Erera 2018) or transit systems (Rasulkhani and Chow 2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Passenger decisions are also often captured by discrete choice models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Bert- simas, Ng, and Yan (2020) jointly determine frequencies and prices for multimodal transit to minimize wait times, subject to passenger mode and route choices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Cadarso et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' (2017) optimize airline scheduling, fleet assignment, and fares while capturing the effects of competing high-speed rail service, taking passengers’ Cummings et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' : Transportation Alliance Design with Endogenous Demand Article submitted to Transportation Science;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' manuscript no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' 1 5 mode choices into consideration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Wei, Vaze, and Jacquillat (2020) develop fixed-route transit timetables to maximize welfare, subject to competition with ride-sourcing companies, and congestion effects from passengers’ mode switching.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Wang, Jacquillat, and Vaze (2022) optimize a network of vertiports for sup- porting urban aerial mobility, with passenger mode choices described by two alternative models, including a multinomial logit model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Banerjee et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' (2021) tackle a welfare-maximizing system design and pricing problem for centrally coordinated multimodal transport networks with price-dependent demand, and for- mulate it using mixed-integer convex optimization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' In contrast, we tackle a multi-objective pricing alliance design problem with a practically suitable pricing scheme that enables transparent price communication to passengers, but also prevents its convexification and, in turn, heightens the computational challenge.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Horizontal Cooperation: Finally, we review cooperation models among competing operators.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Litera- ture on horizontal cooperation in logistics and airline scheduling is particularly mature (Cruijssen, Dullaert, and Fleuren 2007, Guajardo and R¨onnqvist 2016, Wright, Groenevelt, and Shumsky 2010, Hu, Caldentey, and Vulcano 2013).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Chun, Kleywegt, and Shapiro (2017) design a liner shipping alliance with endogenous linear demand for a homogeneous product;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' shipping companies first trade physical capacity on respective networks, and then compete to sell substitutable products in an overlapping market.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Our work also involves joint products over a shared network subject to endogenous demand, but the allied operators offer those products together rather than exchanging capacity to compete.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Algaba et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' (2019) formulate an urban trans- portation network flow game, using exogenous passenger and cost information to coordinate a single-fare payment among competing operators.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Bian and Liu (2019a,b) design mechanisms for the first-mile problem incorporating personalized passenger requirements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Siddiq, Tang, and Zhang (2021) investigate incentive mechanisms to inspire commuters to use public transportation, modeling commuters, transit agency, ride- sharing platform, municipal government, and local private enterprises as stakeholders.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Liu and Chow (2022) investigate whether competing transit agencies can share data to improve selfish outcomes when setting frequencies, subject to user equilibrium passenger flows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Policymakers can lever- age results of their Bayesian game and coalition formation model to inform decisions about establishing mandatory data-sharing amongst transit operators, but the model is not amenable to large-scale operations management.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' The most similar study to ours in this branch of literature is by Schlicher and Lurkin (2022), who formulate a transport choice game in which operators cooperatively price their pooled resources, sub- ject to passengers making travel choices according to a multinomial logit model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' They design a market share exchange allocation rule that ensures a stable grand coalition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Their study differs from ours in that each operator offers homogeneous products with a single price to travelers with unspecified origins and destina- tions, thus entirely ignoring network effects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' In summary, most existing studies individually model either operator or passenger incentives when designing integrated, multimodal urban transportation systems;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' to our knowledge, studies incorporating both strategic operators and passengers provide only general high- level intervention recommendations and rules of thumb.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Our work differs in that we provide a prescriptive and strategic design framework to build pricing alliances at scale and in full operational detail.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Cummings et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' : Transportation Alliance Design with Endogenous Demand 6 Article submitted to Transportation Science;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' manuscript no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' 1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Contributions We propose a prescriptive pricing alliance to enable incentive-aligned collaboration between transit agencies and established ride-sharing operators.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' A fare-setting model is formulated to maximize total system-wide benefits across the integrated network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Our framework helps operators navigate competing alliance objec- tives: (1) enhancing access to high-quality public transportation options for underserved populations, (2) lowering vehicle emissions and congestion from single-occupancy vehicle trips, and (3) maintaining the financial well-being of participating operators to ensure that the profit-oriented operators are incentivized to participate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' A key technical challenge when optimizing these objectives lies in capturing interdependencies between fares and commuters’ travel choices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' In response, our model integrates a discrete choice model of passengers’ route and mode decisions based on prices and non-pricing attributes like travel times.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' From a technical standpoint, our fare-setting model is a large-scale, mixed-integer, non-convex opti- mization problem—a challenging class of problems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Our first technical contribution is to design a two- stage decomposition in which the first-stage pricing decisions parameterize second-stage fare discounts and the induced passenger behaviors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' The second stage becomes a more tractable mixed-integer linear optimization problem that can be solved with commercial solvers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' To solve the full model, we develop a new solution approach combining tailored coordinate descent, parsimonious second-stage evaluations, and interpolations using Special Ordered Sets of type 2 (SOS2) (Misener and Floudas 2010).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' We also develop acceleration techniques based on slanted coordinate traversal and search direction randomization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' This solu- tion approach—our second technical contribution—is applicable to any two-stage formulation with a low- dimensional, convex, continuous first-stage and any computationally expensive black-box second stage.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' This solution approach is found to significantly improve outcomes, for passengers and operators, compared to those obtained with state-of-the-art benchmarks based on Bayesian Optimization (Mockus 2012).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' From a practical standpoint, we design a large-scale case study focused on the morning commute in the Greater Boston Area.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' We find that our model sets fares that are in realistic ranges and have interpretable connections to alliance goals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' For example, an alliance with a greater focus on minimizing total VMT prefers flat rather than distance-varying fares to increase system utilization by long-distance commuters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' On the other hand, alliances with a greater emphasis on increasing transit access will set discounts with greater geographic variation to make alliance routes more attractive to heterogeneous populations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' The clear alignment between operator goals and passenger choices achieved by our fare structures illustrates the value of modeling endogenous demand.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Moreover, analysis of our results shows that the model is appropriately responsive to equity-oriented objectives: it enables the alliance to lower fares for, and increase utilization by, low-income and long-distance commuters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Finally, when compared to non-cooperative pricing, our fares and our tailored revenue allocation mechanism together incentivize revenue-oriented MOD operators not only to participate in the alliance but also to adopt the transit operator’s priorities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Cummings et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' : Transportation Alliance Design with Endogenous Demand Article submitted to Transportation Science;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' manuscript no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' 1 7 Section 2 presents the allied fare-setting model formulation, its two-stage decomposition enabling tractable solutions, as well as our revenue allocation mechanism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Section 3 describes our parsimonious SOS2-based coordinate descent approach, whose computational performance is compared against bench- marks in Section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' We present our practical insights in Section 5 and conclude in Section 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Pricing Alliance Design Problem We now present our design pipeline for the Pricing Alliance Design Problem (PADP).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' In the PADP, the alliance—i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=', the jointly acting operators—sets a fare structure that optimizes joint operator priorities over the integrated multimodal network, subject to the passengers’ endogenous route choice decisions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' The indi- vidual operators must then decide whether or not to participate in the alliance they have designed based on the optimized fares and a revenue allocation mechanism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Assumptions Before formulating the allied fare-setting model, we specify our characterization of system-wide benefits, our model of passenger decision-making, and our assumptions about static fares.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' System-wide benefits.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' The alliance cooperatively set fares over an integrated network with the objective of maximizing overall benefits to society, including travelers, operators, and the rest of society (Daganzo 2012).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Consistent with the motivation of this work, we assume that transit agency’s own objective is identi- cal to that of the alliance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' We characterize an operator’s benefits as its fare revenue and a passenger’s benefits as its average utility across all available travel options.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' High passenger utility corresponds to the availability of many high-quality travel options.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Finally, there are many ways to capture the system’s impact on the rest of society, defined as everyone except the travelers and operators.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Most people who take alternative travel options choose to drive personal vehicles, contributing to negative externalities, such as air pollution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Because a pricing alliance involves no change in permanent infrastructure but rather better utilization of the existing infrastructure, the key benefits of the alliance to the rest of society are likely to come from single- occupancy VMT reduction under the allied pricing regime.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' We ultimately compute system-wide benefits as a weighted sum of operator revenue, passenger utility, and a penalty for the outside-option VMT.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' The weights are determined by the alliance’s relative priorities and can be varied to evaluate trade-offs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Passenger discrete choice model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' We model travelers as rational agents making travel decisions accord- ing to a multinomial logit (MNL) discrete choice model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' In an MNL model, the choice probabilities are proportional to each option’s exponentiated utility, also known as its attractiveness (McFadden 1974).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' The MNL choice model allows us to embed a closed form of the passengers’ decision-making process in the alliance fare-setting model, but it also presents limitations related to the independence of irrelevant alter- natives (IIA) property.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Some have circumvented such inaccuracies by using the general attraction model (GAM), of which the MNL model is a special case (Gallego, Ratliff, and Shebalov 2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' The GAM for- mulates each choice probability as a function not only of the available options’ attractiveness, but also the Cummings et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' : Transportation Alliance Design with Endogenous Demand 8 Article submitted to Transportation Science;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' manuscript no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' 1 shadow attractiveness of unavailable options.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' In practice, researchers have set the shadow attractiveness values to zero, in the absence of reliable data to estimate these parameters (Wei, Vaze, and Jacquillat 2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Others leverage the nested MNL (Williams 1977), of which the MNL is also a special case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Lo, Yip, and Wan (2004) and Bertsimas, Ng, and Yan (2020) assume that passengers select travel mode in the first level, and then they select a route under that mode in the second level.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' In our work, we populate passengers’ route choice sets with the fastest route from each available travel mode (transit-only, MOD-only, or transit-MOD hybrid), including the option to drive, referred to in the literature as the outside option or the no purchase alternative.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Thus, our simplified choice model framework is equivalent to a GAM with zero shadow attrac- tiveness values, or to a mode-route nested MNL with second-level choice sets containing one route each.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Fare-setting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' The alliance sets fares over the integrated network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Some MOD operators might set time- varying fares on their independently operated network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' In particular, TNCs may implement fare multipliers to manage two-sided markets between drivers and riders (Castillo, Knoepfle, and Weyl 2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' In a pricing alliance, however, the MOD operator is a contractor to the transit agency and consequently agrees to set time- and demand-homogeneous fares over allied network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' This agreement facilitates transparent communi- cation with passengers who can easily anticipate public sector prices, and it also allows the transit operator to set a budget for the alliance with higher confidence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' We also assume that each operator is capable of serving all demand redistribution that occurs as a result of the newly set fares, and that capacity reallocation is therefore unnecessary to consider in the pricing alliance design process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Schlicher and Lurkin (2022) make a similar assumption: they assume a constant marginal cost due to market shares that do not change significantly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' From a transit perspective, this implies that the fixed-route options (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=', buses) have low load factors to start with, especially in and near transit deserts;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' on the MOD side, it implies that the operators have large driver pools driven by private market dynamics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' In summary, we assume that the load difference on the integrated network when transitioning from non-cooperative to allied fare-setting will not impose a large enough change in network utilization to necessitate consideration of the associated resource allocation decisions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' In the practical case study of Section 5, we validate this assumption by showing that the potential pricing alliances indeed do not pose a risk of over-saturating the integrated infrastructure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Exact Formulation We now provide notation for formulating our allied fare-setting model with endogenous demand.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Passengers select from a set of routes, R, serviced by a set of operators, O, which includes a public transit operator and an MOD operator, so that |O| = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' A route is a sequence of trip legs, each served by some operator’s infrastructure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' To capture flat and distance-based fares, we define non-discounted price of route r ∈ R as: � k∈Or (β0 k + ∆rk · β∆ k ) (1) where Or ⊆ O is the set of operators serving route r;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' ∆rk is the distance of route r covered by operator k;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' and β0 k and β∆ k , respectively, are the base fare, and markup per unit distance traveled, for operator k’s Cummings et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' : Transportation Alliance Design with Endogenous Demand Article submitted to Transportation Science;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' manuscript no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' 1 9 sub-network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' We collectively refer to the base fares and distance-based markups of all operators as the fare parameters (β), which are decision variables in our model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Fare parameters are constrained by (non- negative) upper and lower bounds ((β0 min,β0 max), (β∆ min,β∆ max)) determined by local legislative or operational requirements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' In addition to the fare parameters, the operators jointly select a set of discounted routes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Only a subset of routes, RDE ⊆ R, may be discount-eligible (DE).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Rather than deciding whether or not each individual route should receive a discount, the discount-eligible routes may be grouped into discount activation categories.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Routes in the same discount activation category may share common geographic components specified by the alliance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' By grouping routes into categories, passengers can easily interpret which routes are discounted from a map or a simple set of rules.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Example definitions for discount activation categories might include all routes anchored on a particular hub location, or all routes whose origins and destinations are contained in specified regions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Let Ra ⊂ R be the set of routes corresponding to discount activation category a ∈ A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' The sets Ra partition RDE, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=', ∪a∈ARa = RDE and Ra ∩ Rb = ∅ for a ̸= b ∈ A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Let xa ∈ {0,1} denote the decision variable that activates discounts on all routes in Ra.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' This assumption is not restrictive;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' absence of activation categories can be handled easily by putting each route in its own category: |Ra| = 1,∀a ∈ A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' We note that the relaxation of this assumption might result in discount rules that are difficult to communicate to passengers in large-scale systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Λ is the discount multiplier for the routes selected to receive a discount, with an allowable range of [Λmin,Λmax] : 0 ≤ Λmin ≤ Λmax ≤ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' The customer-facing price, pr, of route r ∈ R, is given as: pr = � (1 − Λ · xa) · �� k∈Or(β0 k + ∆rk · β∆ k ) � if r ∈ Ra,a ∈ A � k∈Or(β0 k + ∆rk · β∆ k ) if r ∈ R \\ RDE (2) We consider a set N of passenger types.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Each passenger type i ∈ N is identified by a unique combination of origin, destination, and preference profile as described by their route choice utility coefficients.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Ri is the set of routes available to passengers of type i ∈ N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Some passengers are more averse to expensive travel options, whereas others are more sensitive to travel time, constituting different preference profiles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' There are Ni passengers of type i ∈ N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' We denote the utility to a passenger of type i ∈ N of route r ∈ Ri as uir + αi · pr, where uir is the utility from non-monetary route attributes and αi ≤ 0 is the utility per unit price.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' The market share sir of route r ∈ Ri for passenger type i ∈ N is computed according to MNL as: sir = exp(uir + αi · pr) exp(ui0) + � s∈Ri exp(uis + αi · ps), (3) where the outside option—not in set R = � i∈N Ri—has a utility ui0 and a market share computed as: si0 = exp(ui0) exp(ui0) + � s∈Ri exp(uis + αi · ps).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' (4) Finally, the operators’ relative priorities over the system-wide performance metrics are captured by non- negative objective function weights: µP AX,µREV ,µV MT, respectively, corresponding to passenger benefits, Cummings et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' : Transportation Alliance Design with Endogenous Demand 10 Article submitted to Transportation Science;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' manuscript no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' 1 operator benefits, and the benefits from negative externality reduction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Table 2 summarizes all notation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Model PADP-FS (5)-(13) provides the exact formulation for the PADP fare-setting model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' It jointly sets fares and discounts to maximize system-wide benefits across the integrated network (objective function (5)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Discounts are applied on selected routes (Constraints (6) and (7)) and utility-maximizing passengers make route selections according to an MNL (Constraints (8) and (9)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Fare parameters and the discount multipliers obey bounds (Constraints (10)-(12)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Discount activation decisions are binary (Constraints (13)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Table 2 Notation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Component Type Description A Set Discount activation categories N Set Passenger types O Set Operators R Set Intrasystem routes, not including the outside option Or Set Operators who help service route r ∈ R Ri Set Route options available to passengers of type i ∈ N Ra Set Routes in discount activation category a ∈ A RDE Set Discount-eligible routes, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=', � a∈A Ra Ni Param.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Number of passengers of type i ∈ N ∆i0 Param.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Driving distance for a passenger of type i ∈ N ∆rk Param Distance the passenger travels with operator k ∈ O on route r ∈ R uir Param.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Non-monetary utility accrued by a passenger of type i ∈ N on route r ∈ Ri ui0 Param.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Utility accrued by a passenger of type i ∈ N by driving αi Param.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Utility per unit price to a passenger of type i ∈ N β0 min,β0 max Param.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Minimum and maximum allowable base fares β∆ min,β∆ max Param.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Minimum and maximum allowable distance-based markups Λmin,Λmax Param.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Minimum and maximum allowable values of discount multipliers µP AX,µREV ,µV MT Param.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Relative priority weights of system-wide performance metrics xa Var.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Binary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Whether to activate discount option a ∈ A β0 k,β∆ k Var.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Continuous.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Base fare and markup of operator k ∈ O pr Var.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Continuous.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Customer-facing price of route r ∈ R Λ Var.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Continuous.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Discount multiplier applied to routes with activated discounts sir Var.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Continuous.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Proportion of passengers of type i ∈ N who choose route r ∈ Ri si0 Var.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Continuous.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Proportion of passengers of type i ∈ N who choose the outside option (PADP-FS) max � i∈N Ni· � µP AX · � ui0+ � r∈Ri (uir+αi·pr) � +µREV · � r∈Ri pr·sir−µV MT ·(∆i0·si0) � (5) s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' pr = � k∈Or (β0 k + ∆rk · β∆ k ) r ∈ R \\ RDE (6) pr = (1 − Λ · xa) · � � k∈Or (β0 k + ∆rk · β∆ k ) � a ∈ A,r ∈ Ra (7) sir = exp(uir + αi · pr) exp(ui0) + � s∈Ri exp(uis + αi · ps) i ∈ N,r ∈ Ri (8) Cummings et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' : Transportation Alliance Design with Endogenous Demand Article submitted to Transportation Science;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' manuscript no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' 1 11 si0 = exp(ui0) exp(ui0) + � s∈Ri exp(uis + αi · ps) i ∈ N (9) β0 min ≤ β0 k ≤ β0 max k ∈ O (10) β∆ min ≤ β∆ k ≤ β∆ max k ∈ O (11) Λmin ≤ Λ ≤ Λmax (12) xa ∈ {0,1} a ∈ A (13) 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Two-stage Decomposition The PADP-FS model is a non-convex mixed-integer nonlinear optimization problem (MINLOP).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' There are no commercial solvers that accommodate non-convex MINLOPs, and no open-source solvers accept non-convex MINLOPs at practically large scale.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Therefore, we propose a different solution approach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' We decompose the formulation to tractably obtain high-quality solutions for practically sized problems (tens of thousands of variables and hundreds of thousands of constraints in our case study).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' By letting first- stage pricing decisions parameterize second-stage discount activations and induced passenger behaviors, the second stage can be formulated as a more tractable mixed integer linear optimization problem (MILOP).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Let B := [β0 min,β0 max]2 × [β∆ min,β∆ max]2 and L := [Λmin,Λmax] respectively be the sets of allowable fare parameters and discount multipliers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' We parameterize the second-stage problem by ( �β, �Λ) ∈ B × L and define S( �β, �Λ) as the feasible region parameterized by ( �β, �Λ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' We utilize the sales-based linear optimization formulation by Gallego, Ratliff, and Shebalov (2015) to reformulate the choice model constraints.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' The premise of the reformulation rests on proportionality constraints.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Let γir = exp(ui0)/exp(uir + αi · pr) be the ratio of the attractiveness values of the outside option and route r ∈ Ri.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Since the fare parameters are determined in the first stage, γir is a constant in the second stage formulation for the non-discount-eligible routes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Then constraints (8) and (9) are reformulated as follows: si0 = γir · sir i ∈ N,r ∈ Ri (14) si0 + � r∈Ri sir = 1 i ∈ N (15) si0 ≥ 0 i ∈ N (16) sir ≥ 0 i ∈ N,r ∈ Ri (17) Equation (14) ensures that the market share of each route is proportional to its attractiveness.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Constraints (15), (16), and (17) ensure that the market shares are non-negative and sum to 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Note that Equation (14) still includes bilinearities for discount-eligible routes r ∈ Ri ∩ RDE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' For a type i passenger, γir is either equal to the discounted price (γir = γir( �β, �Λ)) or full price (γir = γir( �β,0)), depending on whether the model selects the discount for route r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Let Na ⊂ N be the set of passenger types with at least one route option corresponding to discount activation category a ∈ A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' We linearize constraint (14) as (18) using big-M constraints, letting M s ir = γir( �β,0) ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Cummings et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' : Transportation Alliance Design with Endogenous Demand 12 Article submitted to Transportation Science;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' manuscript no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' 1 � � � � � � � � � si0 ≤ γir( �β,0) · sir si0 ≥ γir( �β,0) · sir − M s ir · xa si0 ≤ γir( �β, �Λ) · sir + M s ir · (1 − xa) si0 ≥ γir( �β, �Λ) · sir a ∈ A,i ∈ Na,r ∈ Ri ∩ Ra (18) We similarly handle the bilinearities presented by the revenue terms in the objective function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' We define a new decision variable wir = pr · sir for passenger types i ∈ N with discount-eligible routes r ∈ Ri ∩ RDE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' The linearized constraints (19) set the value of wir with M w ir = �Λ · �� k∈Or(�β0 k + ∆rk · �β∆ k ) � ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' � � � � � � � � � � � � � � � wir ≤ �� k∈Or(�β0 k + ∆rk · �β∆ k ) � sir wir ≥ �� k∈Or(�β0 k + ∆rk · �β∆ k ) � sir − M w ir · xa wir ≤ (1 − �Λ) · �� k∈Or(�β0 k + ∆rk · �β∆ k ) � sir + M w ir · (1 − xa) wir ≥ (1 − �Λ) · �� k∈Or(�β0 k + ∆rk · �β∆ k ) � sir a ∈ A,i ∈ Na,r ∈ Ri ∩ Ra (19) Table 3 summarizes the additional and modified notation for the second-stage model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Table 3 Additional and modified notation for second-stage model of the decomposition framework.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Component Type Description B Set Allowable fare parameter values L Set Allowable percent discount values Na Set Passenger types with access to at least one discount-eligible route in discount activation category a ∈ A, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Ri ∩ Ra ̸= ∅ γir(β,Λ) Parameter Ratio of outside option attractiveness to attractiveness of route r ∈ Ri with price parameters β and discount Λ for passenger type i ∈ N M w ir,M s ir Parameter Big-M parameters for each i ∈ N,r ∈ Ri wir Variable Continuous.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Equivalent to pr · sir for discount-eligible routes r ∈ Ri ∩ RDE In response to fare parameters set in the first stage, the second-stage problem activates discounts that optimize system-wide performance metrics, subject to induced passenger decisions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' The optimal value of the second-stage problem is denoted by W in equation (20).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' W( �β, �Λ) := max (x,s,w,p)∈S( � β,�Λ) � i∈N Ni · � µP AX · � ui0 + � r∈Ri (uir +αi ·pr) � +µREV · � r∈Ri wir −µV MT ·(∆i0 ·si0) � , (20) where S( �β, �Λ) is given as follows: Then we define the PADP-FS2SD model, the two-stage decomposition of the PADP-FS model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' (PADP-FS2SD) max W(β,Λ) (26) s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' β ∈ B (27) Λ ∈ L (28) LEMMA 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Formulations PADP-FS and PADP-FS2SD are equivalent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' The proof of Lemma 1 is in Appendix A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Cummings et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' : Transportation Alliance Design with Endogenous Demand Article submitted to Transportation Science;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' manuscript no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' 1 13 S( �β, �Λ) ≡ � (x,s,w,p) ∈ {0,1}|A| × R � i∈N (|Ri|+1) + × R � i∈N |Ri∩RDE| × R|R| : Constraints (18) - (19) si0 + � r∈Ri sir = 1 i ∈ N (21) si0 = γir( �β,0) · sir i ∈ N,r ∈ Ri \\ RDE (22) wir = � � k∈Or (�β0 k + ∆rk · �β∆ k ) � sir i ∈ N,r ∈ Ri \\ RDE (23) pr = � k∈Or (�β0 k + ∆rk · �β∆ k ) r ∈ R \\ RDE (24) pr = (1 − �Λ · xa) · � � k∈Or (�β0 k + ∆rk · �β∆ k ) � a ∈ A,r ∈ Ra � (25) 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Revenue Allocation Mechanism When considering a pricing alliance, an operator assesses whether the cooperative regime would improve its prioritized system-wide metrics over the non-cooperative regime.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' A non-cooperative fare-setting game and a solution approach for it are presented in Appendix B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' The MOD operator is solely revenue-maximizing, while the transit agency maximizes a linear combination of multiple system-wide metrics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' By entering a pricing alliance, the transit agency (denoted as TR) is guaranteed to fare no worse than that under the non- cooperative regime.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' However, it remains to ensure that the revenue-maximizing MOD operator will not lose revenue by cooperating with the transit agency, which would ensure the MOD operator’s participation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' We now design a revenue allocation mechanism that guarantees the MOD operator’s alliance participa- tion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Let βnc and (βa,Λa) respectively denote the non-cooperative equilibrium fare parameters and allied optimal fare parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Let fk(βnc) denote the revenue of operator k ∈ O in the non-cooperative regime, and f(βa,Λa) denote the combined revenue of both operators in the alliance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' LEMMA 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Let δ = f(βa,Λa) − � k∈O fk(βnc) be the surplus allied revenue compared to the total non-cooperative revenue.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Define Φk : R2 + × R+ → R+ to be the revenue allocation to operator k ∈ O := {TR,MOD}: ΦT R((fk(βnc))k∈O,f(βa,Λa)) = � fT R(βnc) + δ 2· if δ ≥ 0, f(βa,Λa) − fMOD(βnc) otherwise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' (29) ΦMOD((fk(βnc))k∈O,f(βa,Λa)) = fMOD(βnc) + � δ 2 �+ (30) (a) The MOD operator will enter the pricing alliance with payment rule Φ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' (b) When δ ≥ 0, the mechanism satisfies Pareto efficiency, symmetry, the core property, scale invariance, and independence of irrelevant alternatives.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Cummings et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' : Transportation Alliance Design with Endogenous Demand 14 Article submitted to Transportation Science;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' manuscript no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' 1 The proof of Lemma 2 is in Appendix C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Because the alliance’s priorities may also include benefits to passengers and/or benefits to the rest of the society in the form of reduced VMT, the alliance may earn less revenue than the operators’ combined revenue in the non-cooperative regime.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Despite this, the transit operator can choose to guarantee that, by cooperating, the revenue-oriented MOD operator earns at least as much as it would have earned otherwise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' We assume that the MOD operator will participate in the alliance if its non-cooperative and allied revenues are equal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' In the event that the alliance accrues strictly more revenue than that in the non-cooperative regime, the operators split the surplus evenly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Solution Approach 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Motivation Section 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='3 presented a two-stage decomposition of the allied fare-setting formulation, with the second stage characterized as a mixed-integer linear optimization problem and the first stage as a low-dimensional decision problem over a convex space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Without an analytic closed-form of W, the function’s gradients are inaccessible, eliminating the possibility of using any gradient-based approaches.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Bayesian Optimization is applicable and has been leveraged in recent urban transportation studies focusing on MOD systems (Liu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' 2019), but it does not provide clear convergence criteria.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' PADP-2SD is also not amenable to Benders decomposition due to the nonlinear interdependencies between first- and second-stage decisions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Our prob- lem’s incompatibility with the simpler centralized welfare-maximization structure of the problem tackled by Banerjee et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' (2021) implies that their convexification strategy cannot be applied either.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Our solution strategy approximates gradient descent for solving the first-stage problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Because the first- stage feasible space is low-dimensional and convex, we begin with a coordinate descent framework, which takes turns fixing all fare parameters except one and greedily optimizing along the free dimension.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Even one-dimensional search is difficult because the search space is a continuous spectrum of optimal MILOP solutions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' While a solution of the second-stage problem is fast enough to be a useful tool (see Section 4: needing at most 5 seconds on average), it is also slow enough to warrant a judicious selection of first-stage valuation points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Thus, our tailored coordinate descent approach scans each search direction by solving a model that approximates the best solution along that search direction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' After evaluating a few points along the free search direction with the second-stage MILOP, an auxiliary model interpolates intermediate solutions along that search direction with Special Ordered Sets of type 2 (SOS2) (Misener and Floudas 2010).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' The process terminates when no improvements are found along any coordinate direction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' We define this as the basic SOS2 Coordinate Descent (SOS2-CD) approach in Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' To further improve final solution quality given a computational budget, we develop three acceleration strategies that build upon SOS2-CD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' First, rather than using an arbitrary search direction sequence, we intro- duce more opportunities to escape local optima by randomizing search direction order.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Second, we exploit the fact that the SOS2 approximation model is valid along any search direction through the first-stage prob- lem’s search space, and not just those parallel to coordinate axes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Natural search direction candidates are Cummings et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' : Transportation Alliance Design with Endogenous Demand Article submitted to Transportation Science;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' manuscript no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' 1 15 those where each operator’s base fare and markup are jointly varied while holding all other parameters con- stant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' By considering SOS2 coordinate descent over such slanted directions, we unlock directions navigating trade-offs between high base fares and low markups vs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' low base fares and high markups, which would be unavailable with single-coordinate search directions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Finally, we show how to mitigate the SOS2-CD’s sensitivity to random initializations by leveraging warm-start solutions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='3 describes the final algorithm, including acceleration strategies, initialization procedures, and the incorporation of time limits.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Computa- tional results in Section 4 demonstrate the effectiveness of SOS2-CD and all acceleration strategies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' SOS2 Coordinate Descent Let Y := B × L denote the search space over which to optimize W, and y := (β,λ) ∈ Y denote a solution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Let Yi(y) = {z ∈ R : (y1,··· ,yi−1,z,yi+1,··· ,yn) ∈ Y} be the subset of the feasible space with all dimen- sions other than the ith fixed to those of solution y ∈ Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' We define S(y) and S∗(y) ⊆ S(y), respectively, to be the set of feasible and optimal second-stage decisions given fare parameters y := (β,Λ) ∈ Y: S∗(y) := arg max (x,s,w,p)∈S(y) � i∈N Ni · � µP AX · � ui0 + � r∈Ri (uir + αi · pr) � + µREV · � r∈Ri wir − µV MT · (∆i0 · si0) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Basic Coordinate Descent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Coordinate descent is a greedy method that successively optimizes a mul- tivariate function along coordinate axes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Starting from an initial point, it cyclically optimizes along every coordinate direction holding all other dimensions fixed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Algorithm 1 presents basic coordinate descent to solve the PADP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Optimizing even a single dimension of W is hard, because it entails navigating a contin- uous spectrum of optimal solutions to MILOPs, which does not have closed analytic form.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Therefore, we will propose a rigorous method for tractably modifying Step 7 of Algorithm 1 using SOS2 interpolation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Algorithm 1 Coordinate Descent for maximization of W 1: ARG y0 : Initial solution in Y 2: procedure COORDINATE DESCENT(y0) 3: objPrev ← −∞;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' objCur ← W(y0);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' k ← 0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' n ← dim(y0) 4: while objCur − objPrev > ϵ do 5: k ← k + 1;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='objPrev ← objCur;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='yk ← yk−1 6: for i ∈ {1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=',n} do 7: yk i = arg maxz∈Yi(yk) W(yk 1,··· ,yk i−1,z,yk i+1,··· ,yk n) 8: objCur ← W(yk) 9: return yk Cummings et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' : Transportation Alliance Design with Endogenous Demand 16 Article submitted to Transportation Science;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' manuscript no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' 1 SOS2 Interpolation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Our SOS2 interpolation procedure performs approximate local search along a spec- ified direction to produce the next candidate solution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' First, we solve D second-stage models at evenly spaced points along the search direction, obtaining a sequence of fare parameter values acting as anchors for the SOS2 interpolation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' We denote the anchors by yd := (βd,Λd) and their corresponding solutions by (xd,sd,wd,pd) ∈ S∗(yd),∀d ∈ {1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=',D}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Let Ω = {yd : d ∈ {1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=',D}} be the ordered set of anchors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Larger D values interpolate more accurately, but the solution is also more computationally expensive.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Figure 2 visualizes the selection of the next candidate solution using SOS2 variables.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' W is exactly eval- uated at every anchor and approximated between the anchors using the interpolated anchor solutions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' The next candidate solution is selected where the approximation of W is maximized.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Rather than directly inter- polating W, or wir variables linearizing prsir terms, we interpolate the price and market share variables, p and s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Otherwise, the interpolated values of W will be convex combinations of anchor valuations (straight line segments connecting consecutive anchors in Figure 2), eliminating any chance of selecting fare param- eters between anchors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Moreover, since the objective function’s nonlinearities are quadratic in nature due to the multiplicative revenue terms, we capture them with this SOS2 approximation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Figure 2 SOS2 interpolation of W value and the selection of next candidate first-stage solution y∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' For a given number of anchor points D, the SOS2 model (Misener and Floudas 2010) is algebraically specified as SOS2(D) ≡ � (λ,z) ∈ RD + × {0,1}D−1 : �D d=1 λd = 1,�D−1 d=1 zd = 1,λ1 ≤ z1,λd ≤ zd−1 + zd ∀d ∈ {2,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=',D},λD ≤ zD−1 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Here, the λ variables are the convex combination weights for outputs at fare parameters (βd,Λd), and each binary zd variable indicates whether to select the segment between anchors d and d + 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Now we use the SOS2 variables to approximate W along a given coordinate axis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Expression (31) presents the set of fare parameters, SOS2∗(Ω), that optimize approximated W given the ordered anchor set Ω.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Expression (32) denotes optimal solutions at all anchors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' The optimal SOS2 vari- ables are selected to maximize the approximated W function in Constraint (33).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Finally, the approximately optimal fares are interpolated in equation (34).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' The approximated objective function is quadratic, making M Wevaluatedatanchor SOS2 interpolation of W TruevalueofW Search direction True optimumCummings et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' : Transportation Alliance Design with Endogenous Demand Article submitted to Transportation Science;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' manuscript no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' 1 17 (33) a mixed-integer quadratic optimization problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Fortunately, it can be solved almost instantly to global optimality with commercial solvers, because D is small by design.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' SOS2∗(Ω) := (31) � y : (xd,sd,wd,pd) ∈ S∗(yd), ∀yd ∈ Ω (32) (λ∗,z∗) ∈ arg max (λ,z)∈SOS2(D) � i∈N Ni · � µP AX · � ui0 + � r∈Ri (uir + αi · � d∈D pd r · λd) � + µREV · � r∈Ri �� d∈D (pd r · λd) · � d∈D (sd ir · λd) � − µV MT · ∆i0 · � d∈D (sd i0 · λd) � (33) y = � yd∈Ω λ∗ dyd � (34) Summary of SOS2 Coordinate Descent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' We present SOS2-CD in Algorithm 2, which replaces the one-dimensional optimization in Step 7 of Algorithm 1 with the SOS2-based approximation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' The sub- routine SEARCH DIRECTIONS provides a comprehensive ordered list of search directions that can poten- tially be multidimensional and/or randomized (options further discussed in the next subsection);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' the default is to cycle through coordinate axes, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' to return searchDirections = {1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=',dim(y0)} when random and multidim are both set to false.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' The subroutine GENERATE ANCHORS returns evenly spaced SOS2 anchors along the specified search direction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' The current solution is included in the anchor set to ensure that the new solution is at least as good as the previous.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Appendix D presents subroutines SEARCH DIREC- TIONS and GENERATE ANCHORS in full detail.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' After generating the anchors in Step 7, Step 8 computes an optimal solution for each anchor, uses these anchor solutions for interpolation, and picks the solution that maximizes approximated W over the given search direction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Step 9 computes true value of W at the new candidate solution and updates the current solution if necessary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' The algorithm iterates until convergence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Final Algorithm We now present three strategies that provide SOS2-CD with additional opportunities to escape local optima and thus improve solution quality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' The first strategy relaxes the assumption of deterministic search direc- tion order.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Because the order of search direction is arbitrary, we can randomize it after each iteration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' We can select this strategy by setting the random argument to TRUE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Second, since the SOS2 approximation model is valid along any search direction intersecting the current solution, not just the coordinate axes, an operator’s fare parameter pair (base fare and markup) defines a natural subset of dimensions to search simultaneously.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Given a pair of dimensions, this strategy randomly selects the spanning dimension, and then selects the line’s slope in this 2D plane uniformly at random from the set of affine lines that intersect the current solution and span the selected dimensions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Finally, it drops anchors at evenly spaced points along the sampled line and obtains the next candidate solution maximizing approximated value of W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' While there are Cummings et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' : Transportation Alliance Design with Endogenous Demand 18 Article submitted to Transportation Science;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' manuscript no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' 1 Algorithm 2 SOS2 Coordinate Descent for maximization of W 1: ARGS y0 : Initial solution in Y;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' D: Number of SOS2 anchors;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' random: Boolean, whether to randomize search directions;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' multidim: Boolean, whether to use multidimensional slanted search directions 2: procedure SOS2 COORDINATE DESCENT(y0,D,random,multidim) 3: objPrev ← −∞;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' objCur ← W(y0);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' k ← 0 4: while objCur − objPrev > ϵ do 5: k ← k + 1;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='objPrev ← objCur;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='yk ← yk−1 6: for i ∈ SEARCH DIRECTIONS (random, multidim) do 7: Ω ← GENERATE ANCHORS(yk,i,D) 8: Interpolate an optimal solution: draw some y∗ from SOS2∗(Ω) 9: yk ← y∗ if W(y∗) > objCur else yk 10: objCur ← W(yk) 11: return yk many possibilities for multidimensional search directions, we limit to each operator’s fare parameter pair.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Thus, when the algorithm’s multidim argument is set to TRUE, the list of search directions contains three items: (1) transit parameters, (2) MOD parameters, and (3) the discount multiplier.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Whenever an operator’s fare parameters are selected as the search direction, we sample a new affine line with the aforementioned procedure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Appendix D fully specifies the subroutine SEARCH DIRECTIONS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' The last acceleration strategy incorporates a timed warm-start procedure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' The outcome of a single round of SOS2-CD may depend on the initial solution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' From a random set of initial solutions, the basic implemen- tation repeats SOS2-CD until a computational time budget limit has elapsed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Each repetition of SOS2-CD is called a trajectory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' The best fare parameters found across all trajectories are returned.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Convergence to higher quality solutions may be more likely given intelligent initializations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' We can warm-start the algorithm by first obtaining a few samples in the region with a specified warmStartProcedure, and selecting the best starting points from them.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' The warmStartProcedure might simply be uniform sampling from the region, or it can consist of searching the space in a more principled way, such as with Bayesian Optimization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Algorithm 3 presents the overall solution algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' τ W S and τ each define the time limits devoted to the warm-start and SOS2-CD procedures, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' The arguments random and multidim are Booleans indicating whether randomized and/or multidimensional search directions will be used.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' The warmStartProcedure specifies the procedure for generating informed initializations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Computational Results We now discuss the accuracy and tractability of our approach through several computational experiments using a large-scale profit maximization case study of the Greater Boston Area (see Section 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='1 for details).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Cummings et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' : Transportation Alliance Design with Endogenous Demand Article submitted to Transportation Science;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' manuscript no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' 1 19 Algorithm 3 Timed SOS2-CD with warm-start initialization 1: ARGS τ W S: Warm-start time limit (seconds);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' τ: SOS2-CD time limit (seconds);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' random: Boolean, whether to randomize search directions;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' multidim: Boolean, whether to use multidimensional slanted search directions;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' warmStartProcedure: Initialization procedure;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' D: Number of SOS2 anchors 2: procedure TIMED SOS2-CD(τ W S, τ, random, multidim, warmStartPocedure, D) 3: objCur ← −∞;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Y0 ← ∅;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' T W S ← τ W S;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' T ← τ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' draw y∗ ∈ Y uniformly at random 4: while T W S > 0 do // generate warm-start solutions 5: Draw y ∈ Y with warmStartPocedure 6: Subtract from T W S the time to run warmStartPocedure and to compute W(y) 7: if T W S ≥ 0 then: Insert (y,W(y)) into set Y0 8: while T > 0 do // execute SOS2-CD 9: if Y0 ̸= ∅ then: y0 ← arg max{W(y) : (y,W(y)) ∈ Y0};' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Remove (y0,W(y0)) from Y0 10: else: Draw y0 from Y uniformly at random 11: �y ← SOS2 COORDINATE DESCENT (y0,D,random,multidim) 12: Subtract from T the time to run SOS2 COORDINATE DESCENT and to compute W(�y) 13: if W(�y) > objCur and T ≥ 0 then: y∗ ← �y;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' objCur ← W(�y) 14: return y∗ All optimization models are solved with Gurobi v9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='0 and the JuMP package in Julia v1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='4 (Dunning, Huchette, and Lubin 2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Comparisons under 1-Hour Computational Time Budget We now demonstrate the superior computational performance of our approach (Algorithm 3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Table 4 com- pares different versions of our approach, with different combinations of acceleration strategies, including multidimensional search (SOS2-CD-MD), randomized search directions (SOS2-CD-R), both (SOS2-CD- MD-R) and neither (SOS2-CD).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' None of these four approaches use intelligent warm-starts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' We establish two algorithmic benchmarks against which to compare our computational results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' The first benchmark is Brute-Force Coordinate Descent (BF-CD).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' BF-CD differs from SOS2-CD in the way it conducts each iter- ation of coordinate descent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' BF-CD uses a much higher number of “anchors” along the search direction and solves a second-stage model at each anchor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Instead of the SOS2-based interpolation, it just selects the anchor with the highest value of the second-stage objective function as the new candidate solution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' The trade-off at each iteration is a drastic computation time increase for a more accurate evaluation of the points along the search direction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' We implement BF-CD using a 1% granularity for the discount multiplier and a $0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='01 granularity for both base fares and markups.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' The second benchmark is Bayesian Optimization (BO)— a global optimization method for black-box functions that are computationally expensive to evaluate and Cummings et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' : Transportation Alliance Design with Endogenous Demand 20 Article submitted to Transportation Science;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' manuscript no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' 1 may not have gradients (Mockus 2012).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Our black-box function is W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' BO imposes upon W a prior belief about the space of possible objective values based on the candidate solutions considered so far.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' The poste- rior distribution decides which candidate solution to evaluate next, so that our sequential search successfully explores unseen regions in the decision space and exploits regions that are more likely to host global optima based on prior beliefs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Appendix F includes a detailed account of BO, including all hyperparameter settings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' We also tested time-limited SOS2-CD-MD-R with BO warm-starts, with varying time limit allocations to the warm-starts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' In other words, we execute Algorithm 3 where the warmStartProcedure is Bayesian Optimization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' The warm-start trials have names ending in BO-TL, where TL is the BO warm-start time limit in minutes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Table 4 presents the performances statistics across 50 trials each with a 1-hour limit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' All outcomes are expressed in surplus USD over the average 1-hour BO benchmark performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' First, we observe that all four variations of our approach, even without warm-starts, significantly out- perform the BO benchmark in terms of the average (by $13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='5K-$19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='3K) and best-case (by $5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='1K-$5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='8K) performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Moreover, our approaches with multidimensional search (SOS2-CD-MD-R and SOS2-CD- MD), beat the BO benchmark also on the worst-case performance across the 50 trials (by $7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='5K-$22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='3K).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Note that the average-case as well as the worst-case performance of the approaches with either acceleration strategy (MD or R or both) were superior to those of the basic SOS2-CD approach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' The BF-CD approach never terminated within the one-hour time limit;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' in fact, BF-CD could not even evaluate one full set of anchors in all but 7 cases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Furthermore, our approaches with warm-starts perform even better than those without.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' In particular, a 40-minute BO warm-start drastically outperforms the benchmarks in the worst case and provides the best average-case performance, while 20 minute BO warm-start provides the strongest best-case performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' In summary, all our approaches significantly beat benchmarks, and all three accel- eration strategies (random search, slanted search and warm-start) were found to enhance the performance of our basic SOS2-CD solution approach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Table 4 Objective function statistics with 1-hour time limits and 50 trials each, expressed in terms of surplus compared to average 1-hour BO performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' ∗ Average BO performance = $3,634,074.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Objective (Thousand $) Algorithm random multidim warmStartProcedure τ W S τ Min Avg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Max BO −28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='0∗ 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='6 SOS2-CD-MD-R-BO-50 Yes Yes BO 50 10 −11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='9 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='4 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='1 SOS2-CD-MD-R-BO-40 Yes Yes BO 40 20 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='6 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='3 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='1 SOS2-CD-MD-R-BO-30 Yes Yes BO 30 30 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='0 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='7 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='0 SOS2-CD-MD-R-BO-20 Yes Yes BO 20 40 −4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='3 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='1 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='6 SOS2-CD-MD-R-BO-10 Yes Yes BO 10 50 −9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='8 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='0 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='2 SOS2-CD-MD-R Yes Yes 60 −20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='5 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='0 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='7 BF-CD 60 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='8 SOS2-CD No No 60 −103.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='8 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='5 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='1 SOS2-CD-MD No Yes 60 −5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='7 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='3 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='1 SOS2-CD-R Yes No 60 −77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='6 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='1 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='4 Cummings et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' : Transportation Alliance Design with Endogenous Demand Article submitted to Transportation Science;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' manuscript no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' 1 21 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Comparisons under Higher Computational Time Budgets All comparisons in the previous subsection assumed a 1-hour computational time budget and showed the significant superiority of our basic approach over the benchmarks, as well as the value of our acceleration strategies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' A question emerges as to whether these findings hold when longer computational budgets are available.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' To answer this question, Table 5 compares performances under three time budgets - 1 hour, 6 hours, and 12 hours.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' We additionally provide statistics on the number of trajectories.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' All versions of our approach under all time budgets outperform the BO benchmark on average.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' This is especially true for the versions of SOS2-CD with acceleration strategies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' The larger time budgets allow accelerated SOS2-CD to offer robust performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' In general, the trajectories of SOS2-CD with multidimensional search (that is, SOS2-CD-MD and SOS2-CD-MD-R) converge more quickly, allowing more trajectories to be computed within a given time limit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' BF-CD is extremely slow and did not terminate before the 12-hour time limit in any of our runs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' We report the performance statistics for BF-CD corresponding to the best solutions found within the computational time budgets, prior to termination.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' While the best-case runs of BF-CD provide a slight edge over all benchmarks (of merely $200 USD), the average-case and the worst-case performance is significantly worse than our methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' While BF-CD is more thorough for a single random initialization, it is too computationally intensive to properly explore the search region.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Note that warm-starts did not provide much additional value for longer time budgets and hence warm-start approaches are omitted from Table 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' For additional analyses of the solution times and SOS2 optimality gaps, see Appendix E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Table 5 Objective function statistics with varying time budgets and 50 trials each, expressed in terms of surplus compared to 1-hour BO performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' ∗ Average BO performance = $3,634,074.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Time Algorithm Trajectories Objective (Thousand USD) limit Min Avg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Max Min Avg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Max 1 hour BO −28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='0 0∗ 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='6 BF-CD 0 0 0 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='8 SOS2-CD 2 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='8 5 −103.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='8 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='5 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='1 SOS2-CD-MD 2 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='0 7 −5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='7 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='3 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='1 SOS2-CD-R 2 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='8 5 −77.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='6 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='1 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='4 SOS2-CD-MD-R 2 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='2 6 −20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='5 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='0 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='7 6 hours BO 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='7 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='9 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='9 BF-CD 0 0 0 −2132.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='7 −791.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='9 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='6 SOS2-CD 16 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='1 25 −2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='7 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='3 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='3 SOS2-CD-MD 15 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='3 28 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='0 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='3 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='1 SOS2-CD-R 13 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='7 24 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='4 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='8 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='4 SOS2-CD-MD-R 15 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='4 26 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='1 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='3 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='3 12 hours BO 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='7 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='9 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='9 BF-CD 0 0 0 −2003.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='4 −112.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='7 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='6 SOS2-CD 32 39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='6 50 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='0 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='7 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='3 SOS2-CD-MD 32 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='4 54 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='8 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='7 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='2 SOS2-CD-R 26 38.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='2 47 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='5 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='0 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='4 SOS2-CD-MD-R 31 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='7 52 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='2 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='7 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='4 Cummings et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' : Transportation Alliance Design with Endogenous Demand 22 Article submitted to Transportation Science;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' manuscript no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' 1 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Insights from Practical Case Study To inform the real-world policymakers’ decisions, we obtained practical results with the PADP model over a Greater Boston Area case study described in Section 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Section 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='2 confirms that our model yields interpretable outputs with prices in realistic ranges.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' An equity-oriented case study in Section 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='3 underlines the value of accurately capturing passenger preferences.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Section 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='4 demonstrates the value of cooperative pricing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' All results are obtained with the SOS2-CD-MD-R approach and a 12-hour time limit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Greater Boston Area Case Study We model a potential pricing alliance between the Massachusetts Bay Transit Authority (MBTA) and a TNC like Uber or Lyft, in the Greater Boston Area.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' We use Lyft data for generating case study inputs because of fare parameter data availability (Lyft Inc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' 2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' MBTA subsidizes Uber and Lyft trips as part of their on-demand paratransit program called The RIDE Flex (MBTA 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' We model an alliance with a wider passenger scope that aligns with MBTA goals outlined in a recent report (MDOT 2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' In this report, the MBTA identified 14 towns (called “urban gateways.”) adjacent to the commuter rail network whose residents had the greatest likelihood of utilizing—and benefiting from—targeted transit expansion efforts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' We identify these 14 towns as the service region of the potential pricing alliance, as depicted in Figure 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Figure 3 Partial map of urban gateways, as identified by the MBTA (MDOT 2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' The regions are identi- fied with solid-line bounding boxes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' The dashed-line bounding box demarcates the region that we identified as the inner city.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' (Urban gateway not depicted: Brockton, located south of the inner city.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=') Our case study integrates many datasets describing travel characteristics in the Greater Boston Area during the weekday morning commute (6-10 am).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' We consider passenger travel patterns for those who ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='Newburyport ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='HAVERHILL ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='WestNewbury ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='Newbury ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='URBANGATEWAYS ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='Groveland ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='Methuen ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='Georgetown ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='Rowley ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='Dracut ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='LAWRENCE ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='Boxford ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='Ipswich ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='Dunstable ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='Tyngsboroug ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='NorthAndover ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='OMELL ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='Andoyer ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='Topsfield ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='Hamilton ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='Groton ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='Tewksbury ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='Chelmsford ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='Middleton ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='Wenham ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='Westford ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='NorthReading ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='Danvers ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='Ayer ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='Beverly ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='Billerica ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='Wilnt ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='ngtor ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='Lynnfield ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='Littleton ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='READING ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='Carlisle ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='Peabod ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='BURLINGTPN ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='WAKEFIELD ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='SALEM ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='Bedford ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='/Marblehead ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='Harvard ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='Acton ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='WOBURN ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='Saugus ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='LYNN ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='MELROSE ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='Wampscott ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='Concord ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='STONEHAM ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='Lexington ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='Maynard ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='Malden ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='Stow ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='Lincoln ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='Arlington ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='Medford ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='Nahant ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='Reve ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='Everett ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='elmontr ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='WALTHAM ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='samerville ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='ne ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='Sudbury ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='Winthrop ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='atertowncambr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='Ige Bosto Wayiand Westo Newton Brookline FRAMINGHAM Wellesley Bostor Natick Needham HUHCummings et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' : Transportation Alliance Design with Endogenous Demand Article submitted to Transportation Science;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' manuscript no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' 1 23 commute from the service region to the inner city (Boston and Cambridge), or those who commute locally within the service region.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' We define a local commute as either working in the town of residence or in an adjacent town that is also part of the service region.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' For example, commutes between Salem and Lynn or between Burlington and Melrose are considered local.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' We use Origin-Destination Employment Statistics from the Longitudinal Employer-Household Dynamics (LODES) datasets provided by the U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Census Bureau to approximate the commuting population at a census tract level (U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Census Bureau 2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' We obtain MBTA’s commuter rail network data using MBTA General Transit Specification Feed data (MBTA 2018), while the MOD operator corresponds to all potential direct travel options and first-mile connections in the service region.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' We construct route choice sets for each passenger type by first executing Yen’s k-shortest paths algorithm (Yen 1970).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' We then include in each passenger type’s route choice set their fastest option of each mode: transit-only, MOD only, hybrid (MOD first mile to transit), and driving (which corresponds to the outside option).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' We represent the utility of each route option as a linear combination of travel and wait time;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' incurred costs including fare, gasoline, and parking fees as appropriate;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' and mode discomfort relative to the convenience of driving.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' The discount activation categories correspond to town pairs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' In other words, a discount might be activated from any town in the service region to the inner city, to an adjacent town that is also part of the service region, or to itself.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' In total, there are 77 discount activation categories in the case study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' We allow each operator to set fares up to a maximum of $10 for base fares, $5 per mile for distance-based markups, and a maximum 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='5 for discount multiplier.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Transit-only routes are not eligible for discount, while all others are.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Appendix G provides more details about the case study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Model Validation First, we will demonstrate that the allied fare-setting model sets route prices in realistic and reasonable ranges from a practical standpoint.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Further, we find that the optimal fares intuitively reflect various port- folios of alliance priorities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' We vary the objective function coefficients µ, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=', relative weights among the three performance metrics: revenue, passenger utility, and VMT.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' In particular, we focus on regimes with varying combinations of priorities between revenue and passenger utility (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=', setting µV MT = 0), as well as between revenue and VMT (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=', setting µP AX = 0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' We do not emphasize regimes that completely exclude revenue as a priority, because they intuitively result in zero fares and are not interesting from an analysis standpoint.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Thus, all experiments have µREV > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' We also do not analyze regimes that vary all three metrics for reasons explained later in this section.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Table 6 presents summary statistics about route prices, system uti- lization, and system-wide performance metrics across the tested priority regimes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Figure 4 depicts optimal fare parameters and discount multipliers, demonstrating the different fare-setting strategies of each regime.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' We extract a few representative solutions from Table 6 and present them in Table 7 alongside real-world fares, and the corresponding ridership values obtained by our model for the real-world fares.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' We compute the MOD base fare by combining Lyft’s published minimum fare and service fee, and we compute their Cummings et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' : Transportation Alliance Design with Endogenous Demand 24 Article submitted to Transportation Science;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' manuscript no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' 1 Table 6 Aggregate metrics for different operator priority regimes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' System-wide performance metrics are normalized against best possible values.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' System utilization (util.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=') is the alliance’s total market share, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' the percentage of travelers electing to travel on a transit, MOD, or hybrid option instead of driving a single-occupancy vehicle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Objective weights Route price ($) Performance System µP AX µREV µV MT Min.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Mean Max.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' PAX REV VMT util.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' % 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='0 0 0 $0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='00 $0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='00 $0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='00 100.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='00% 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='00% 100.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='00% 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='32% 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='2 0 $0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='00 $0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='04 $0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='54 99.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='26% 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='19% 100.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='59% 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='32% 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='4 0 $0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='18 $4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='24 $12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='29 80.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='15% 61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='62% 113.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='01% 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='02% 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='6 0 $3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='63 $7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='88 $23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='62 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='50% 78.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='38% 117.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='89% 40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='20% 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='8 0 $6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='63 $10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='43 $25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='89 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='61% 85.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='66% 120.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='39% 37.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='33% 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='0 0 $7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='04 $12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='00 $28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='14 59.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='99% 90.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='04% 122.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='35% 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='93% 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='0 0 $7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='17 $13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='14 $29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='66 56.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='35% 92.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='79% 123.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='81% 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='95% 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='6 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='0 0 $7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='47 $15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='20 $31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='64 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='94% 95.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='39% 125.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='33% 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='95% 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='4 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='0 0 $6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='91 $16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='27 $38.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='89 46.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='81% 97.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='57% 127.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='13% 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='82% 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='0 0 $8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='59 $18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='59 $45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='27 40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='03% 99.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='33% 129.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='17% 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='95% 0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='0 0 $10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='00 $21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='58 $60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='37 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='91% 100.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='00% 131.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='65% 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='65% 0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='2 $9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='71 $18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='28 $42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='20 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='90% 97.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='77% 127.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='10% 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='95% 0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='4 $8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='52 $16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='41 $36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='63 59.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='59% 89.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='37% 121.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='46% 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='97% 0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='6 $8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='50 $13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='02 $25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='58 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='54% 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='54% 116.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='32% 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='99% 0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='8 $5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='22 $11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='13 $21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='65 80.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='62% 56.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='33% 110.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='38% 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='17% 0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='0 $1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='83 $8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='39 $14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='59 90.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='11% 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='53% 104.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='39% 37.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='83% 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='0 $0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='00 $6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='77 $10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='00 95.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='40% 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='83% 100.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='87% 39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='48% 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='6 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='0 $0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='00 $6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='67 $9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='96 95.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='58% 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='45% 100.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='81% 39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='54% 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='4 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='0 $0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='00 $3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='70 $6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='00 97.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='63% 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='53% 100.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='43% 44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='04% 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='0 $0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='00 $0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='00 $0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='00 100.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='00% 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='00% 100.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='00% 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='32% 0 0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='0 $0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='00 $0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='00 $0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='00 100.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='00% 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='00% 100.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='00% 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='32% (a) Optimal fare parameter values.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' (b) Optimal discount characteristics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Figure 4 Optimal fares across varying alliance priority regimes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' MOD base fare Fare value 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='0 Transit base fare 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='5 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='0 MOD markup 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='5 Transit markup 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='0 (1,0,0) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='0) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='1 (0,0,1) (PAX weight, REV weight, VMT weight)roportion of discounts activated 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='6 Percent discount 50% 40% 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='2 30% 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='0 (1,0,0) (1,1,0) (0,0,1) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='0 (PAX weight, REV weight, VMT weight)Cummings et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' : Transportation Alliance Design with Endogenous Demand Article submitted to Transportation Science;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' manuscript no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' 1 25 markup by combining the published markups per unit distance and time, assuming an average vehicle speed of 25 mph (Lyft Inc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' 2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' We ignore fare multipliers utilized to manage the two-sided market, since they are outside the scope of this work;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' note that this may lead to slight undercounting of real MOD fares and slight overcounting of the real ridership.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' The real-world MBTA commuter rail base fare and markup are interpolated from its zone-based pricing structure, which assigns higher prices to farther zones (MBTA 2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' While all regimes have slightly lower ridership than that under real fares, all benchmarks achieve non-negligible improvements in system-wide metrics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' In particular, the REV, REV+PAX, and REV+VMT regimes respectively achieve objective value increases of 47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='4%, 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='6%, and 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='8% respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Table 7 Summary statistics of representative priority regimes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' REV, REV+PAX, and REV+VMT regimes respectively have objective weights (µREV ,µP AX,µV MT ) equal to (1,0,0),(1,1,0), and (1,0,1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' “% routes discounted” provides the proportion of routes in the system with activated discounts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' “Number of travelers” is the total alliance passenger count originating within the alliance service region.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Priority regime Base fares ($) Markups ($/mile) Discount % routes Number of MOD Transit MOD Transit Multiplier discounted travelers Real fares $4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='53 $4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='50 $1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='07 $0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='16 0% 0% 25,816 REV $10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='00 $10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='00 $2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='37 $0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='63 50% 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='20% 18,309 REV+PAX $10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='00 $8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='50 $0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='56 $0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='25 31% 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='13% 23,793 REV+VMT $10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='00 $1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='83 $0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='16 $0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='00 50% 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='50% 25,051 As shown in Table 6, each set of priorities induces interpretable optimal prices and passenger deci- sions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' The minimum, mean, and maximum real-world route prices in the service region are respectively $4, $10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='23, and $54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='46, while those given by our model are in the range $0-$60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='37;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' thus optimal fares are set at the correct order of magnitude across all regimes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Intuitively, route prices are the highest for the revenue maximizing regime, and they decrease gradually as the importance of VMT or passenger utility increases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' System-wide performance metrics are normalized against the best possible values across tested regimes, naturally achieved by each metric’s corresponding single-objective optimization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' The lowest rev- enue is achieved in regimes that solely maximize passenger utility or minimize VMT, because very low prices achieve very low revenues, but increase passenger happiness and entice more passengers away from single-occupancy vehicles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Analogously, the highest fares achieve the highest revenue, with more passen- gers electing to travel outside the system, and lowering overall passenger utility.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' System-wide outcomes vary smoothly with gradually changing alliance priorities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Note that even under single-objective revenue maximization,, route prices remain in the ballpark of real-world fares.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' While both base fares and discount multiplier reach their upper limits, the both optimal markups stay in the interior of the allowable range.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' We attribute the model’s realism to the incorporation of the endogenous passenger choice model into the fare-setting model, as opposed to modeling exogenous demand parametrically.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' These intuitive observations confirm that our fare-setting model is suitable for generating trustworthy qualitative insights.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Cummings et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' : Transportation Alliance Design with Endogenous Demand 26 Article submitted to Transportation Science;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' manuscript no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' 1 At a quick glance, minimizing VMT and maximizing passenger utility seem to achieve similar outcomes in Table 6—lower prices and higher system utilization—raising the question of why it is worth modeling them separately.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' We turn to Figure 4 to illustrate how each objective yields qualitatively very different designs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' As VMT minimization increases in importance (moving from the middle towards the right in Fig- ure 4a), the markup is zeroed out, equalizing fares across longer and shorter routes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' The elimination of a distance-based markup entices more longer-distance commuters to travel on the allied network, thus lower- ing VMT.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' When the system maximizes passenger utility, a more nuanced fare structure emerges to address heterogeneous passenger preferences.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' All pricing levers are employed: base fares, markups, discount multi- pliers, and discount activations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Higher markups and base fares are coupled with more numerous discounts across hybrid options, illustrated in the left halves of both Figures 4a and 4b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Thus, prioritization of each objective (PAX versus VMT) results in similar system-wide performance metrics by qualitatively different means.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' To extract the corresponding fare designs, we consider case studies prioritizing at most one of PAX and VMT at a time, with varying weights for revenue.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Section 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='3 further investigates geographic factors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Finally, note that the variation in system utilization due to allied fare-setting is small compared to the integrated network’s total loads.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Before the pandemic, MBTA’s bus load factor during peak hours was already below 75% (Hicks 2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' MBTA commuter rail transported around 120k passengers on an average weekday in 2018 (MBTA 2022), with 81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='2% of inbound ridership on peak trains (BRMPO 2012), yielding approximately 49k travelers on MBTA commuter rail during the AM rush.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Moreover, approximately 116k daily TNC rides were destined for Boston in 2018, while another 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='3k originated in the alliance service region every day (MDPU 2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' In contrast, the ridership numbers in Table 7 show that the alliance’s ridership under real fares is a small proportion of the entire integrated network and that the system is capable of accommodating all demand redistribution as a result of allied fare-setting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' In fact, Table 7 shows that the aggregate alliance ridership is slightly lower than under real fares.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Thus, drops on other routes will compensate for the slight ridership increases that may happen on certain routes under our proposed pricing alliance, ensuring that the system-wide transit load factors and MOD detour times are expected to remain largely unchanged as a result of the pricing alliance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' We conclude that the linked resource reallocation problem need not be considered, when looking for rapid gains through pricing alliance formation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Ensuring Equitable Access through a Refined Income-Aware Model Specification Our fare-setting model captures passenger’s travel preferences and travel decisions when designing fares, a critical step to satisfying passenger needs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' However, different groups of passengers may have very different preferences.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Ignoring such differences can lead to inequitable and socially undesirable outcomes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' After all, equity is a key driver for integrating on-demand services into public transportation options.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Acknowledging this challenge, in this section we further refine our choice model and quantify the impacts of this nuanced model specification on system-wide metrics compared to an aggregated, average-case choice model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Cummings et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' : Transportation Alliance Design with Endogenous Demand Article submitted to Transportation Science;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' manuscript no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' 1 27 To this end, we augment our case study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Towns targeted for transit expansion by the MBTA in our case study have wide-ranging median household incomes, translating into varying price sensitivities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Affluent travelers’ route choice decisions are less susceptible to changing fares than those of low-income travelers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' To partly account for such passenger heterogeneity, we compute a ratio of each town’s median household income to the average of the median household incomes across the entire service region (U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Census Bureau 2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' We use this income ratio to scale passengers’ price sensitivities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' See Appendix G for details.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Table 8 Allied system’s daily morning rush ridership with (Refined) and without (Base) the choice model refinement, their percentage difference (Diff.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' ), real-world ridership (Real), median household income (HHI), and average distance (Dist.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=') of alliance routes originating in the corresponding town and ending in the inner city.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' HHI Dist.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' REV+PAX REV REV+VMT Town $K Miles Base Refined Diff.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Base Refined Diff.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Base Refined Diff.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Real Lawrence 41.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='6 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='4 1585 1982 125% 918 1881 205% 1331 2065 155% 1566 Lowell 52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='0 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='8 2000 2525 126% 1285 1565 122% 1852 2633 142% 2115 Lynn 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='6 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='5 3539 3769 107% 2283 2560 112% 3615 3188 88% 4023 Brockton 55.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='1 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='6 3498 3709 106% 1949 3364 173% 3416 3919 115% 3872 Salem 65.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='6 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='9 1885 2043 108% 1189 1382 116% 1961 1786 91% 2171 Haverhill 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='6 39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='1 1605 1746 109% 1068 1214 114% 1630 1809 111% 1801 Framingham 79.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='1 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='1 1203 1327 110% 780 936 120% 1093 1117 102% 1198 Waltham 85.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='7 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='8 1974 1873 95% 1597 1713 107% 2101 1946 93% 2249 Woburn 88.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='7 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='3 1795 1828 102% 1479 1633 110% 2047 1910 93% 2199 Stoneham 94.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='8 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='6 761 785 103% 610 691 113% 880 830 94% 948 Wakefield 95.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='3 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='3 1004 1007 100% 783 889 114% 1140 1076 94% 1228 Melrose 103.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='7 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='8 810 821 101% 637 711 112% 889 842 95% 949 Burlington 105.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='4 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='6 1091 1144 105% 975 1053 108% 1264 1193 94% 1340 Reading 112.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='6 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='6 846 871 103% 703 787 112% 972 927 95% 1038 Winchester 159.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='5 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='8 197 207 105% 193 198 103% 218 210 96% 227 We compare the allied system ridership across priority regimes and towns under fares corresponding to base (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=', income-agnostic) as well as refined (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=', income-aware) choice models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' We first calculate fares using the fare-setting model incorporating income-agnostic and income-aware choice models separately, and then evaluate both fare designs by calculating (and reporting in Table 8) ridership using only the income- aware choice model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Due to the use of the income-aware model, the system ridership in the REV+PAX regime increases by 13% on average for the towns with below-average median HHI compared to a less than 2% average increase for the towns with above-average median HHI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' While ridership increases across the board due to generally lower fares, the greatest increases occur in Lawrence and Lowell, which are the two towns with the lowest median household incomes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' The lower middle-income bracket (Lynn, Brockton, Salem, Haverhill, and Framingham) sees the next-highest ridership increase.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Similar trends are observed in the REV regime: ridership increases across all towns due to the fact that higher revenue can be achieved with lower fares and higher volume.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' The above-average income towns gain ridership by only 10% on average, while the below-average income towns have a 37% gain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Cummings et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' : Transportation Alliance Design with Endogenous Demand 28 Article submitted to Transportation Science;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' manuscript no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' 1 In contrast to the 7% and 23% average ridership gains in REV+PAX and REV regimes, average ridership grows by less than 4% in the REV+VMT regime.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' But interestingly, this regime has significantly larger ridership increases for longer distance passengers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' In particular, the five towns that are farthest from the inner city area—Lawrence, Lowell, Brockton, Haverhill, and Framingham—are the exact five towns with ridership increases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Their average increase is about 25% while the remaining 10 towns see an average 7% drop in ridership.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Thus, the REV+VMT regime increases access to the allied network for commuters who are farther from the inner city.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Overall, the prioritized system-wide objectives improved by 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='16%, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='35% and 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='99% respectively for REV+PAX, REV, and REV+VMT regimes compared to the real-world fares.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' These results underline the importance of capturing passenger preference heterogeneity to amplify our model’s practical impact.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' A choice model that reflects passenger preferences more accurately improves system-wide outcomes and especially maximizes passenger benefits.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' We conclude that our income-aware refined model improves transportation equity for passengers—as compared to the income-agnostic aggre- gate model—making it a valuable tool for transit agencies to incorporate into strategic decision-making.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Quantifying the Value of Cooperation To quantify the value of operator cooperation for operators and passengers, we solve the non-cooperative fare-setting model for all allied priorities depicted in Table 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' In each experiment, the transit operator’s priorities are identical to alliance priorities, whereas the MOD operator always maximizes revenue.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Thus, our experiment reflects an assumption that the prospective alliance will adopt the transit operator’s priorities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Figure 5 depicts the non-cooperative equilibrium fares.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Discount multipliers are not included since they are not applicable in the non-cooperative setting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Table 9 compares allied outcomes to corresponding non- cooperative outcomes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' In particular, we report the percentage increase in the alliance objective compared to that computed under the non-cooperative setting (transit obj.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' % inc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='), and the percentage increase in MOD operator revenue due to the alliance (MOD rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' % inc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=').' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' We also provide the revenue allocations to both operators as determined by the revenue allocation mechanism in Section 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' The non-cooperative system utilization and non-cooperative average route prices are also provided for each experiment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Figure 6 illustrates passenger mode choices across all tested regimes for both allied and non-cooperative fares.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Figure 5 Non-cooperative fare parameters for different transit operator priorities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' MOD base fare Fare value 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='0 Transit base fare 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='5 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='0 MOD markup 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='0 Transit markup (1,0,0) (1,1,0) (0,1,0) (0,1,1) (0,0,1) (PAX weight, REV weight, VMT weight)Cummings et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' : Transportation Alliance Design with Endogenous Demand Article submitted to Transportation Science;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' manuscript no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' 1 29 Table 9 Allied vs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' non-cooperative outcomes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Transit operator’s priorities represented as µT R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Transit obj.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' weights Transit obj.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' MOD rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' MOD allied Transit allied System Route price µP AX T R µREV T R µV MT T R % inc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' % inc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' alloc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' alloc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' util.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' % ($) Mean 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='0 0 0 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='60% 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='00% $501.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='90K $501.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='90K 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='01% $12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='83 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='2 0 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='87% 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='00% $501.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='90K $501.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='90K 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='01% $12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='83 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='4 0 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='93% 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='00% $487.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='91K $1848.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='89K 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='41% $13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='45 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='6 0 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='80% 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='00% $479.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='04K $2337.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='68K 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='46% $14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='78 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='8 0 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='45% 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='00% $473.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='18K $2624.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='27K 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='21% $15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='83 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='0 0 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='57% 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='00% $468.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='14K $2824.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='63K 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='16% $16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='96 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='0 0 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='71% 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='00% $465.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='06K $2940.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='94K 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='39% $17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='77 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='6 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='0 0 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='82% 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='00% $462.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='29K $3022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='50K 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='70% $18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='54 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='4 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='0 0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='31% 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='00% $460.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='45K $3101.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='99K 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='43% $18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='66 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='0 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='54% 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='04% $463.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='61K $3173.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='57K 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='00% $18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='97 0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='0 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='33% 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='33% $462.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='79K $3195.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='02K 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='65% $19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='24 0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='55% 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='42% $481.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='71K $3108.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='48K 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='66% $18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='50 0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='52% 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='00% $465.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='54K $2839.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='52K 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='50% $18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='07 0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='37% 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='34% $492.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='25K $2376.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='74K 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='67% $17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='40 0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='51% 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='00% $482.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='97K $1573.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='28K 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='13% $15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='33 0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='54% 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='00% $494.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='38K $591.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='27K 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='48% $13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='76 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='60% 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='00% $501.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='90K $105.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='59K 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='01% $12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='83 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='6 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='73% 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='00% $501.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='90K $119.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='73K 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='01% $12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='83 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='4 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='92% 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='00% $501.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='90K $262.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='97K 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='01% $12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='83 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='36% 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='00% $501.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='90K $501.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='90K 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='01% $12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='83 0 0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='90% 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='00% $501.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='90K $501.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='90K 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='01% $12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='83 Figure 6 Market shares by mode across priority regimes for allied and non-cooperative fare-setting models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Figure 5 illustrates that the MOD operator’s revenue-maximizing strategy remains relatively constant, regardless of the transit operator’s priorities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Still, when the transit operator prioritizes VMT minimization or passenger benefits maximization, the MOD operator selects higher fare parameters (mainly through higher markups) than in the corresponding allied settings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Thus, the average route price (Route price ($) Mean) columns in Tables 6 and 9 show that the non-cooperative average route prices are higher than average allied route prices in every regime except for the one where the transit operator only prioritizes revenue.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' In scenarios that partially maximize passenger benefits or minimize VMT, the alliance sets MOD fare parameters lower than in the non-cooperative regime (Figure 4a vs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' 5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Figure 6 shows that MOD-only mar- ket shares decrease and hybrid market shares increase in the non-cooperative regime as passenger benefits or VMT are increasingly prioritized.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' We can conclude that, although fewer passengers utilize MOD-only 30 Mode Transit MOD Hybrid Fare model 10 Allied Non-coop 0 (1,0,0) (1,1,0) (0,1,0) (0,1,1) (0,0,1) (PAX weight, REV weight, VMT weight)Cummings et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' : Transportation Alliance Design with Endogenous Demand 30 Article submitted to Transportation Science;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' manuscript no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' 1 options in non-cooperative scenarios where the transit operator is VMT- or passenger-oriented, a higher volume of passengers selects hybrid options due to the very low (or free) transit fares observed in Figure 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Thus, the MOD operator earns more revenue in those non-cooperative scenarios in which the transit operator is more altruistic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' This is reflected in the revenue allocation mechanism: observe in Table 9 that the MOD operator earns strictly more revenue in almost all regimes where the transit operator is not solely a revenue maximizer, even though the system as a whole generates strictly less total revenue, as seen in comparison with Table 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' The revenue allocation mechanism ensures that the MOD operator receives their non-cooperative earnings, despite the lower MOD fares that the alliance sets to achieve lower VMT or higher passenger benefits.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' This in turn reduces the transit’s revenue allocation as high VMT or low pas- senger benefits are increasingly penalized.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' On the other hand, the transit operator always strictly improves its objective of optimizing total system-wide performance, however it chooses to define it.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' As a result, the MOD operator interestingly finds it in its interest to adopt transit’s priorities as transit increasingly diverges from revenue maximization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' In other words, the revenue-maximizing MOD operator would not prefer a revenue-maximizing alliance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' In fact, the MOD operator would benefit most from total altruism on transit’s side (an exclusive focus on either passenger utility or VMT reduction).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Passengers win due to the strictly lower prices and higher system utilization that result from such alliances.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' The transit operator must ultimately set the ceiling in terms of the price they are willing to pay for the alliance benefits.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Table 9 shows that the transit agency runs a deficit to appease the MOD operator if its revenue emphasis is too low.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' A deficit alone might not be enough to dissuade the transit agency from participating in the alliance: as we have noted, every public transit mode operates at a loss, especially on- demand options (Kane, Tomer, and Puentes 2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' To weigh the financial implications of an alliance, the agency may compare the magnitude of the loss to the cost of the analogous MOD system operated by transit on their own in the absence of outsourcing through an alliance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Oftentimes, transit agencies also receive grants to fund pricing alliances (Federal Transp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Administration 2016), and the daily deficit rate can be compared to the grant award amount and intended duration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' To enable a daily deficit rate that keeps pace with financial resources over time, the transit agency may propose to reset overall performance metric goals to induce different optimal fares, or to adjust the geographic and/or temporal scope of the alliance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' In the end, each transit agency is expected to choose the trade-off point between its financial, passenger- focused, and environmental goals that most closely aligns with their overall policy and various practical and financial constraints.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Regardless, our allied and non-cooperative fare-setting models together with our revenue allocation mechanism jointly provide a toolkit usable by transit agencies to weigh these trade-offs as they evaluate a potential pricing alliance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Conclusions, Limitations and Future Directions We contribute a pricing alliance design framework to enable incentive-aligned collaboration between transit agencies and MOD operators.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Our allied fare-setting model captures the interdependent decisions of pas- sengers and operators, allowing the alliance to maximize benefits for all stakeholders across the integrated Cummings et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' : Transportation Alliance Design with Endogenous Demand Article submitted to Transportation Science;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' manuscript no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' 1 31 network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' The prescriptive pricing framework can be generalized to different types of large-scale alliances with varying MOD operators, service populations, fare structures, service goals, and network configurations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' We accomplish large scale by developing a tractable two-stage fare-setting formulation equivalent to the original mixed-integer non-convex optimization problem, which we then solve with a tailored SOS2 coor- dinate descent approach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' From a technical standpoint, our approach selects consistently and significantly higher quality solutions than benchmarks based on Bayesian Optimization, enabling additional system- wide benefits worth tens of thousands dollars per day over the service region.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Practically speaking, the high quality solutions from our allied fare-setting model together with our dedicated revenue allocation mech- anism work together to align revenue-oriented MOD operators with transit goals of passenger utility and single-occupancy VMT reduction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' In other words, cooperative pricing results in win-win-win outcomes for passengers, MOD operators, and transit agencies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Finally, the income-aware nuanced version of our fare- setting model helps enhance passenger equity-related goals: by tuning passenger route choice models, the alliance can prioritize lower fares and higher utilization for low-income or long-distance commuters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Our analysis is based on a few assumptions which can be relaxed in future work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' We assumed that the MOD operator serves as a contractor to the transit agency and agrees to set static fares for trips in the inte- grated system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' While this is one good way to ensure public sector prices are transparently communicated, it may also be possible to set fare schemes that allow MOD operators, especially TNCs, to maintain their dynamic prices, perhaps through the transit operator subsidizing the cost of a passenger’s trip up to a fixed dollar amount.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Additionally, we model average-case travel times over a fixed set of route options for the MOD operator’s portion of the network to represent average-case operations, which simplifies their typi- cally dynamic routing scheme.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' In other words, we consider the case where the alliance sets one permanent fare scheme that is optimized for average-case performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Future research may consider optimizing for the worst-case performance, and/or integrating dynamic routing into the fare-setting model if the alliance prefers dynamic fares, requiring the integration of two complex problem classes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Finally, we did not incor- porate joint resource reallocation into the pricing scheme, due to the observation that the system is capable of accommodating all demand re-distributions attributed to changing prices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' This assumption works well for our case study over the Greater Boston Area because the allied system’s ridership is a small fraction of the larger service region with a high-capacity existing network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Future research could consider relaxing this assumption to generalize the analysis by jointly modeling the capacity allocation and pricing decisions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Acknowledgments This material is based upon work supported by the National Science Foundation under Grant no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' 1122374.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' References Agussurja L, Cheng SF, Lau HC, 2019 A state aggregation approach for stochastic multiperiod last-mile ride-sharing problems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Transp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' 53(1):148–166.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Cummings et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' : Transportation Alliance Design with Endogenous Demand 32 Article submitted to Transportation Science;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' manuscript no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' 1 Algaba E, Fragnelli V, Llorca N, S´anchez-Soriano J, 2019 Horizontal cooperation in a multimodal public transport system: The profit allocation problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Eur.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Oper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Res.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' 275.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Banerjee S, Hssaine C, Luo Q, Samaranayake S, 2021 Plan your system and price for free: Fast algorithms for multimodal transit operations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' SSRN Available at https://ssrn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='com/abstract=3972423.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Bertsimas D, Ng YS, Yan J, 2020 Joint frequency-setting and pricing optimization for multi-modal transit networks at scale.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Transp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' 54(3):839–853.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Bian Z, Liu X, 2019a Mechanism design for first-mile ridesharing based on personalized requirements part I: Theo- retical analysis in generalized scenarios.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Transp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Res.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' B 120:147–171.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Bian Z, Liu X, 2019b Mechanism design for first-mile ridesharing based on personalized requirements part II: Solution algorithm for large-scale problems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Transp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Res.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' B 120:172–192.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' BRIDJ, 2023 Move Better.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Acc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' 4 Jan 2023 at https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='bridj.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='com/#Platform.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' BRMPO CTPS, 2012 MBTA commuter rail passenger count memorandum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Acc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' 15 Sep 2022 at https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='ctps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='org/data/html/studies/transit/2012_MBTA_Commuter_Rail_ Passenger_Counts/MBTA_Commuter_Rail_Passenger_Count_Results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='html.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Brochu E, Cora VM, de Freitas N, 2010 A tutorial on Bayesian optimization of expensive cost functions, with appli- cation to active user modeling and hierarchical reinforcement learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' arXiv URL http://dx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='org/ 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='48550/ARXIV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='1012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='2599.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Cadarso L, Vaze V, Barnhart C, Mar´ınd A, 2017 Integrated airline scheduling: Considering competition effects and the entry of the high speed rail.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Transp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' 51(1):132–154.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Castillo JC, Knoepfle D, Weyl G, 2017 Surge pricing solves the wild goose chase.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' ACM Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Econ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Comput.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' 1(1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Chandra S, Quadrifoglio L, 2013 A model for estimating the optimal cycle length of demand responsive feeder transit services.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Transp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Res.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' B 51:1–16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Chen Y, Wang H, 2018 Pricing for a last-mile transportation system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Transp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Res.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' B 107:57–69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Chun SY, Kleywegt A, Shapiro A, 2017 When friends become competitors: The design of resource exchange alliances.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Manag.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' 63(7):2127–2145.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' City of Jersey City, NJ, 2021 Jersey City and Via launch first on-demand public bus service in New Jersey.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Acc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' 27 Oct 2021 at https://jerseycitynj.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='gov/cms/one.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='aspx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' City of Newton, MA, 2021 NewMo.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Acc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' 5 Oct 2021 at https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='newtonma.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='gov/government/ planning/transportation-planning/newmo.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' City of Seattle, WA, 2021 Via to Transit - Metro - King County.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Acc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' 27 Oct 2021 at https://kingcounty.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='gov/ depts/transportation/metro/travel-options/on-demand/via-to-transit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='aspx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Cruijssen F, Dullaert W, Fleuren H, 2007 Horizontal cooperation in transport and logistics: a literature review.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Transp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' 46(3):22–39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Daganzo C, 2012 On the design of public infrastructure systems with elastic demand.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Transp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Res.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' B 46:1288–1293.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Cummings et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' : Transportation Alliance Design with Endogenous Demand Article submitted to Transportation Science;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' manuscript no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' 1 33 Dallas Area Rapid Transit, 2020 Golink: Personalized, on-demand, curb-to-curb service when and where you need it – plano zones.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Acc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' 1 Oct 2020 at https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='dart.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='org/riding/golinkplano.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='asp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Dunning I, Huchette J, Lubin M, 2017 JuMP: A modeling language for mathematical optimization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' SIAM review 59(2):295–320.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Federal Transp Administration, 2016 Fiscal year 2016 mobility on demand (mod) sandbox program projects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Acc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' 19 Nov 2020 at https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='transit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='dot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='gov/research-innovation/ fiscal-year-2016-mobility-demand-mod-sandbox-program-projects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Fudenberg D, Tirole J, 1991 Game Theory (Cambridge, MA: MIT Press).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Gallego G, Ratliff R, Shebalov S, 2015 A general attraction model and sales-based linear program for network revenue management under customer choice.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Oper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Res.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' 63(1):212–232.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Gehrke SR, Reardon T, 2018 Share of choices: Further evidence of the ride-hailing effect in Metro Boston and Mas- sachusetts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Technical report, Metropolitan Area Planning Council.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Guajardo M, R¨onnqvist M, 2016 A review on cost allocation methods in collaborative transportation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Intl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Oper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Res.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' 23(3):371–392.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Hicks R, 2017 Technical memorandum: Fall 2016 monitoring of MBTA bus performance measures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Technical report, MBTA, acc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' 4 Jan 2023 at https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='ctps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='org/data/calendar/htmls/2017/CMP_1221_ Fall_2016_MBTA_Bus_Performance_Measures_Memo.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='html.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Ho S, Szeto W, Kuo YH, Leung J, Petering M, Tou T, 2018 A survey of dial-a-ride problems: Literature review and recent developments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Transp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Res.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' B 111:395–421.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Hu X, Caldentey R, Vulcano G, 2013 Revenue sharing in airline alliances.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Manag.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' 59(5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Indianapolis Public Transp Corporation, 2021 Rides for Essential Workers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Acc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' 27 Oct 2021 at https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' indygo.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='net/rides-for-essential-workers/.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Kane JW, Tomer A, Puentes R, 2016 How Lyft and Uber can improve transit agency budgets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Technical report, The Brookings Institution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Kim M, Levy J, Schonfeld P, 2019 Optimal zone sizes and headways for flexible-route bus services.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Transp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Res.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' B 130:67–81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Kim M, Schonfeld P, 2014 Integration of conventional and flexible bus services with timed transfers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Transp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Res.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' B 68:76–97.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Lee A, Savelsbergh M, 2017 An extended demand responsive connector.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' EURO J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Transp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Logist.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' 6:25–50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Li X, Quadrifoglio L, 2010 Feeder transit services: Choosing between fixed and demand responsive policy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Transp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Res.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' C 18:770–780.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Liu Q, Chow J, 2022 Efficient and stable data-sharing in a public transit oligopoly as a coopetitive game.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Transp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Res.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' B 163:64–87.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Cummings et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' : Transportation Alliance Design with Endogenous Demand 34 Article submitted to Transportation Science;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' manuscript no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' 1 Liu Y, Bansal P, Daziano R, Samaranayake S, 2019 A framework to integrate mode choice in the design of mobility- on-demand systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Transp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Res.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' C 105:648 – 665.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Lo HK, Yip CW, Wan QK, 2004 Modeling competitive multi-modaltransit services: A nested logit approach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Transp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Res.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' C 12(3-4):251–272.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Lu W, Quadrifoglio L, Petrelli M, 2017 Reliability analysis of centralized versus decentralized zoning strategies for paratransit services.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Transp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Res.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Lu W, Shen CW, Quadrifoglio L, 2014 Innovative operating strategies for paratransit services with zoning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Transp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Res.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Rec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' 2469.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Lyft Inc, 2020 Boston area pricing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Acc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' 14 Oct 2020 at https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='lyft.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='com/pricing/bos.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Mag MT, 2021 King County Transit increases mobility options with expanded Via to Transit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' masstransitmag.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='com/alt-mobility/shared-mobility/car-sharing, acc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' 28 Mar 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' MARTA, 2021 MARTAConnect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Acc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' 27 Oct 2021 at https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='itsmarta.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='com/marta-connect2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' aspx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' MBTA, 2018 General transit feed specification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Acc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' 16 Sep 2020 at https://cdn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='mbtace.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='com/archive/ 20181128.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='zip.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' MBTA, 2020 Commuter rail fare zones.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Acc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' 14 Oct 2020 at https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='mbta.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='com/fares/.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' MBTA, 2021 The RIDE Flex.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Acc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' 26 Aug 2021 at https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='mbta.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='com/accessibility/the-ride/.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' MBTA, 2022 MBTA monthly ridership by mode.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Acc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' 15 Sep 2022 at https://mbta-massdot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='opendata.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' arcgis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='com/datasets/MassDOT::mbta-monthly-ridership-by-mode.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' McFadden D, 1974 The measurement of urban travel demand.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Public Econ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' 3:303–328.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' MDOT, 2019 FOCUS40: the 2040 investment plan for the MBTA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Technical report, MDOT.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' MDPU, 2018 Rideshare in Massachusetts: 2018 data report.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Acc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' 15 Sep 2022 at https://tnc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='sites.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' digital.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='mass.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='gov/2018/.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Misener R, Floudas C, 2010 Piecewise-linear approximations of multidimensional functions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Optim.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Theory Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' 145.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Mockus J, 2012 Bayesian Approach to Global Optimization: Theory and Applications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Mathematics and its Applica- tions (Springer Netherlands), ISBN 9789400909090.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Molenbruch Y, Braekers K, Caris A, 2017 Typology and literature review for dial-a-ride problems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Ann.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Oper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Res.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' 259:295–325.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Posada M, Andersson H, Hall C, 2017 The integrated dial-a-ride problem with timetabled fixed route service.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Public Transp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' 9:217–241.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Rasulkhani S, Chow J, 2019 Route-cost-assignment with joint user and operator behavior as a many-to-one stable matching assignment game.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Transp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Res.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' B 124:60–81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Cummings et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' : Transportation Alliance Design with Endogenous Demand Article submitted to Transportation Science;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' manuscript no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' 1 35 Regional Transp Commission of Southern Nevada, 2021 RTC On-Demand Pilot Program.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Acc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' 26 Aug 2021 at https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='rtcsnv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='com/ways-to-travel/paratransit-accessibility/.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Schaller B, 2018 The new automobility: Lyft, Uber and the future of american cities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Technical report, Schaller Cons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Schlicher L, Lurkin V, 2022 Stable allocations for choice-based collaborative price setting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Eur.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Oper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Res.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' 302(3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Schrank D, Eisele B, Lomax T, Bak J, 2015 Urban mobility scorecard.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Technical report.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Siddiq A, Tang CS, Zhang J, 2021 Partnerships in urban mobility: Incentive mechanisms for improving public transit adoption.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Manuf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Serv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Oper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Manag.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Articles in Advance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' St Louis Metro, 2021 $1 Lyft trips to transit connections.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Acc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' 27 Oct 2021 at https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='metrostlouis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' org/lyft/.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Stiglic M, Agatz N, Savelsbergh M, Gradisar M, 2018 Enhancing urban mobility: Integrating ride-sharing and public transit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Comput.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Oper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Res.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' 90:12–21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' The Boston Globe, 2022 With NewMo, Newton’s rideshare service contin- ues to grow.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='bostonglobe.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='com/2022/02/16/metro/ with-newmo-newtons-rideshare-service-continues-grow/, acc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' 28 Mar 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' The Economist, 2018 Public transport is in decline in many wealthy cities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='economist.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='com/ international/2018/06/21/public-transport-is-in-decline-in-many-wealthy-cities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Uber Technologies Inc, 2020 Uber movement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Acc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' 16 Sep 2020 at https://movement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='uber.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='com.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' US Census Bureau, 2017 Longitudinal employer-household dynamics origin-destination employment statistics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Acc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' 16 Sep 2020 at https://lehd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='ces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='census.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='gov/data/.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' US Census Bureau, 2018 Census reporter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Acc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' 28 Sep 2020 at https://censusreporter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='org/tables/.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' US Census Bureau, 2019 TIGER/Line shapefiles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Acc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' 21 Sep 2020 at https://www2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='census.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='gov/geo/ tiger/TIGER2019/TRACT/.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Via Transp, 2023 The Backbone of a Modern Transportation System.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Acc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' 4 Jan 2023 at https://ridewithvia.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' com/solutions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Wang H, 2019 Routing and scheduling for a last-mile transportation system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Transp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' 53(1):131–147.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Wang K, Jacquillat A, Vaze V, 2022 Vertiport planning for urban aerial mobility: An adaptive discretization approach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Manuf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Serv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Oper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Manag.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' 24(6):3215–3235.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Wang X, Agatz N, Erera A, 2018 Stable matching for dynamic ride-sharing systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Transp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' 52(4):850–867.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Wei K, Vaze V, Jacquillat A, 2020 Airline timetable development and fleet assignment incorporating passenger choice.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Transp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' 54(1):139–163.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Williams H, 1977 On the formation of travel demand modelsand economic evaluation measures of user benefit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Envi- ron.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Plan.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' A 9(3):285–344.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Wright CP, Groenevelt H, Shumsky RA, 2010 Dynamic revenue management in airline alliances.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Transp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' 44(1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Cummings et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' : Transportation Alliance Design with Endogenous Demand 36 Article submitted to Transportation Science;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' manuscript no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' 1 Yen J, 1970 An algorithm for finding shortest routes from all source nodes to a given destination in general networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Cummings et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' : Transportation Alliance Design with Endogenous Demand Article submitted to Transportation Science;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' manuscript no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' 1 37 Appendix A: Proof of Lemma 1: Two-stage Decomposition is Equivalent to Full Formulation Given an optimal solution from each formulation, we construct a feasible solution for the other with the same objective value.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' In this section, we introduce the following notation for a non-discounted route price r ∈ R, for expositional brevity: σr(β) = � k∈Or (β0 k + ∆rk · β∆ k ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' (35) PADP-FS2SD → PADP-FS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Let (β2SD,Λ2SD,x2SD,s2SD,w2SD,p2SD) be an optimal solution to the PADP- FS2SD model with objective value z2SD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' We construct the following solution to the PADP-FS model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' � � � � � � � � � � � � � βF S = β2SD ΛF S = Λ2SD xF S = x2SD sF S = s2SD pF S = p2SD (36) We demonstrate feasibility of (36) to the PADP-FS model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' xF S are binary by construction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Constraints (6) and (7) hold by construction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Constraints (8) and (9) are feasible due to constraints (18), (21), and (22).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' For a given i ∈ N, constraints (18) and (22) ensure that sF S ir ∝ exp(uir + αi · pF S r ) ∀r ∈ Ri, and sF S i0 ∝ exp(ui0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Constraint (21) forces each sir and si0 to be normalized by exp(ui0) + � r∈Ri exp(uir + αi · pF S r ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' The result follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Constraints (10) - (12) hold by definition of B and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Finally, to show that solution (36) has the same objective value as z2SD, we must only prove that pF S r sF S ir = w2SD ir for all i ∈ N and r ∈ Ri, which follows directly from Constraints (19) and (23).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' PADP-FS → PADP-FS2SD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Let (βF S,ΛF S,pF S,sF S,xF S) be an optimal solution to the PADP-FS model with objective value zF S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' We construct the following solution to the PADP-FS2SD model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' � � � � � � � � � � � � � � � � � β2SD = βF S Λ2SD = ΛF S x2SD = xF S s2SD = sF S w2SD ir = pF S r sF S ir ∀i ∈ N,r ∈ Ri p2SD = pF S (37) First we demonstrate the feasibility of (37) to PADP-FS2SD.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' s2SD, w2SD and p2SD are non-negative and x2SD are binary by construction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Constraints (18) and (22): Consider any i ∈ N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' For r ∈ Ri \\ RDE, and by expressions (8) and (9), γir(β2SD,0) · s2SD ir = γir(βF S,0) · sF S ir Cummings et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' : Transportation Alliance Design with Endogenous Demand 38 Article submitted to Transportation Science;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' manuscript no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' 1 = exp(ui0) exp(uir + αi · pF S r ) · exp(uir + αi · pF S r ) ui0 + � s∈Ri exp(uis + αi · pF S s ) = exp(ui0) ui0 + � s∈Ri exp(uis + αi · pF S s ) = sF S i0 = s2SD i0 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Thus constraints (22) are satisfied.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Now, consider any a ∈ A with r ∈ Ria.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' If x2SD a = 0, then we can use the exact same argument as above to confirm that γir(β2SD,0) · s2SD ir = s2SD i0 again holds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Since γir(β2SD,Λ2SD) · s2SD ir ≤ γir(β2SD,0) · s2SD ir = s2SD i0 ≤ γi0(β2SD,0) ≤ γi0(β2SD,0) + γir(β2SD,Λ2SD) · s2SD ir = γir(β2SD,Λ2SD) · s2SD ir + M s ir · (1 − x2SD a ), the constraints hold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' A similar argument applies when x2SD a = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Constraints (19) and (23): For any i ∈ N, Constraints (23) hold by construction for all r ∈ Ri \\ RDE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' For a ∈ A with r ∈ Ria, we have w2SD ir = p2SD r s2SD ir regardless of the value of x2SD a .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' If x2SD a = 0, then (1 − Λ2SD) · σr(β2SD) · s2SD ir ≤ w2SD ir = σr(β2SD) · s2SD ir = (1 − Λ2SD) · σr(β2SD) · s2SD ir + Λ2SD · σr(β2SD) · s2SD ir ≤ (1 − Λ2SD) · σr(β2SD) · s2SD ir + Λ2SD · σr(β2SD) = (1 − Λ2SD) · σr(β2SD) · s2SD ir + M w ir · (1 − x2SD a ), and hence constraints (19) hold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' A similar argument applies when x2SD a = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Constraints (21): Consider any i ∈ N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' By expressions (8) and (9), s2SD i0 + � r∈Ri s2SD ir = sF S i0 + � r∈Ri sF S ir = exp(ui0) exp(ui0) + � s∈Ri exp(uis + αi · pF S s )+ � r∈Ri exp(uir + αi · pF S r ) exp(ui0) + � s∈Ri exp(uis + αi · pF S s ) = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Constraints (24) and (25) hold by construction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Constraints β ∈ B and Λ ∈ L hold by construction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Now we show that solution (37) to Formulation PADP-FS2SD has the same objective value of zF S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' z2SD = � i∈N Ni · � µP AX · (ui0 + � r∈Ri (uir + αi · p2SD r ) + µREV · � r∈Ri w2SD ir − µV MT · (∆i0 · s2SD i0 ) � = � i∈N Ni · � µP AX · (ui0 + � r∈Ri (uir + αi · p2SD r ) + µREV · � r∈Ri p2SD r s2SD ir − µV MT · (∆i0 · s2SD i0 ) � = � i∈N Ni · � µP AX · (ui0 + � r∈Ri (uir + αi · pF S r ) + µREV · � r∈Ri pF S r sF S ir − µV MT · (∆i0 · sF S i0 ) � = zF S Cummings et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' : Transportation Alliance Design with Endogenous Demand Article submitted to Transportation Science;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' manuscript no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' 1 39 Appendix B: Non-cooperative Fare-setting Game and Iterated Best Response Algorithm To benchmark the solutions of our allied fare-setting model, we formulate the non-cooperative fare-setting problem between a transit operator and an MOD operator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' When they are not allied, each operator can only make fare-setting decisions over their portion of the integrated network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' The discount activation decision is not applicable in this context, and operators set their own fare parameters so as to optimize their prioritized performance metrics over the integrated network, subject to endogenous passenger decisions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' First we introduce new notation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Let µk = (µP AX k ,µREV k ,µV MT k ) be the relative priority weights of operator k ∈ O for each system-wide performance metric.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' For a given k ∈ O, let −k indicate the other operator, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' the singleton −k ∈ O \\ {k}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Each operator sets fare parameters βk = (β0 k,β∆ k ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Let Bk := [β0 min,β0 max] × [β∆ min,β∆ max] be the set of valid fare parameters that operator k can set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Let si0(β) and sir(β) respectively denote the market shares of the outside option and of route r ∈ Ri for passenger type i ∈ N, as functions by both operators’ fare parameters β.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' sir(β) = exp(uir + αi · σr(β)) exp(ui0) + � s∈Ri exp(uis + αi · σs(β)) i ∈ N,r ∈ Ri si0(β) = exp(ui0) exp(ui0) + � s∈Ri exp(uis + αi · σs(β)) i ∈ N Let ˆβ−k denote the fixed fare parameter decisions of operator −k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Then σr(βk;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' ˆβ−k) denotes the non-discounted price of route r ∈ R as a function of the fare parameter decisions of operator k, parameterized by the fixed decisions of oper- ator −k, where σr is originally defined in Equation (35).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Similarly, sir(βk;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' ˆβ−k) and si0(βk;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' ˆβ−k) represent market shares as functions of the fare parameter decisions of operator k, given fixed decisions of operator −k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Formulation PADP-NC is the non-cooperative fare setting model of operator k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' (PADP-NC) max βk∈Bk Wk(βk;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' ˆβ−k) ≡ max βk∈Bk � i∈N Ni · � µP AX k � ui0 + � r∈Ri (uir + αi · σr(βk;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' ˆβ−k)) � + µREV k � r∈Ri σr(βk;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' ˆβ−k) · sir(βk;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' ˆβ−k)− µV MT k (∆i0 · si0(βk;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' ˆβ−k)) � An operator’s non-cooperative fare-setting model is a simplified version of the allied fare-setting model, with more restricted decisions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Operator k sets their fare parameters within allowable bounds to maximize system-wide benefits over the integrated network, subject to the induced passenger decisions and for given fare parameters set by the other operator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Each operator’s model has two decision variables: their base fare and their distance-based markup.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Fare parameters β must satisfy condition (38) below to be considered a solution to the non-cooperative fare setting problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' βk = arg max β′ k∈Bk Wk(β′ k;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='β−k) k ∈ O (38) When fare parameters β satisfy condition (38), they define a Nash equilibrium (NE), or more precisely, a pure strategy Nash equilibrium.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Fare parameters form an NE when neither operator can unilaterally change their pricing strategy to improve their own objective, given the fare parameters set by the other operator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' We compute an NE using an iterated best response algorithm, which takes turns alternating between each operator’s optimal fare parameters computation in response to their competitor’s fixed fare parameters, until convergence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Cummings et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' : Transportation Alliance Design with Endogenous Demand 40 Article submitted to Transportation Science;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' manuscript no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' 1 A pure strategy Nash equilibrium to the non-cooperative fare-setting game is a set of fares such that each opera- tor’s decision is the optimal response given the other operator’s fare parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' An iterated best response algorithm randomly initializes the fare parameters and lets each operator take turns setting their best response.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' The algorithm converges when neither operator can gain by changing their response (Fudenberg and Tirole 1991).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Algorithm 4 Iterated best response for non-cooperative fare setting 1: procedure ITERATED BEST RESPONSE(ϵ) 2: βk ← uniform draw from Bk for each k ∈ O 3: objPrevk ← −∞ for each k ∈ O 4: objCurk ← Wk(β) for each k ∈ O 5: while maxk∈O(objCurk − objPrevk) > ϵ do 6: for k ∈ O do 7: objPrevk ← objCurk 8: obj ← maxβ′ k∈Bk Wk(β′ k;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='β−k) 9: if obj > objCurk then 10: objCurk ← obj 11: βk ← arg maxβ′ k∈Bk Wk(β′ k;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='β−k) 12: return β In general, without proof of existence of a Nash equilibrium, Algorithm 4 is not guaranteed to converge, let alone to the same β in the face of random initializations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' To prevent infinite oscillation, a maximum iteration limit can potentially be implemented.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Yet, in all runs of our computational experiments performed when generating Table 9, a unique NE was always obtained across the 10 random initializations in a given row of the table.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Appendix C: Proof of Lemma 2: Revenue Allocation Mechanism Proof of Lemma (2a): The MOD operator participates in the alliance whenever they can earn at least as much revenue by cooperating with the transit agency as they can otherwise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' By construction, ΦMOD((fk(βnc))k∈O,f(βa,Λa)) = fMOD(βnc) + � δ 2 �+ ≥ fMOD(βnc), so the result follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Proof of Lemma (2b): In the case that allied revenue exceeds combined non-cooperative revenue, we show that the allocation is a Nash bargaining solution, which is a classic payment rule guaranteeing properties of Pareto efficiency, symmetry, scale invariance, and independence of irrelevant alternatives.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' We frame the alliance revenue allocation problem as a collective bargaining problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Let the disagreement outcome be the operator revenues resulting from non-cooperation, d = (fk(βnc))k∈O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Let X be the set of all revenue allocations Cummings et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' : Transportation Alliance Design with Endogenous Demand Article submitted to Transportation Science;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' manuscript no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' 1 41 such that each operator receives at least their disagreement outcome, and such that the sum of revenue allocations does not exceed allied revenue p = f(βa,Λa).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' X(d,p) := �� ak � k∈O : ak ≥ dk,∀k ∈ O;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' � k∈O ak ≤ p � Let F be the set of all such allocation problems, with each (d,p) ∈ F corresponding to a different allocation problem (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=', a different potential alliance).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' We seek an allocation solution function Φ : F → X that allocates the available profit according to the axioms of Pareto efficiency, symmetry, scale invariance, and independence of irrelevant alternatives.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' It is known that Nash bargaining solutions – which satisfy the above axioms– exactly coincide with optimal solutions to optimization problem (39).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' max a∈X(d,p) � k∈O (ak − dk) (39) Expression (40) clearly solves (39).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' dk + p − � k∈O dk 2 = fk(βnc) + δ 2 ≡ Φk(d,p), ∀k ∈ O (40) To establish the core property, we point to Lemma (2a), as well as the fact that ΦT R(d,p) ≥ fT R(βnc) in the case that δ ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' This proves Lemma (2a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Appendix D: SOS2 Coordinate Descent Subroutines This section specifies subroutines of SOS2 Coordinate Descent, presented in Algorithm 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' The subroutine SEARCH DIRECTIONS provides a comprehensive ordered list of search directions that can be multidimensional and/or random- ized or neither.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' The subroutine GENERATE ANCHORS computes an ordered set of evenly spaced SOS2 anchors along the specified search direction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' In case of a multidimensional search direction, we determine the range of slopes that will ensure that the line spans the selected dimension, and sample uniformly from that range.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Figure 7 visualizes the computation of the slope range in lines (16)-(21) of the GENERATE ANCHORS procedure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' The most negative slope of a line passing through the current solution is determined by the maximum of the slopes of the two line segments connecting the current solution to the upper left and bottom right corners of the diagram.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Similarly, the most positive slope is determined by the minimum of the slopes of the two line segments connecting the current solution to the lower left and upper right corners.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Appendix E: Performance of Algorithm Components In this section, we examine the performance of individual components of the algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Figure 8 illustrates the distribution of solution times in seconds for the second-stage model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Each calculation of W, which requires solving the second-stage model once, needs on average 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='7 seconds of CPU time, which is fast enough to be useful, but slow enough to warrant judicious selection of candidate first-stage solution points to evaluate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Each of the 31,553 observations was obtained in under one minute.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' The observations were aggregated across all solutions of the second-stage model represented in the paper, including runs of SOS2-CD, BF-CD, and BO.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Figure 9 depicts the accuracy of the SOS2 model with anchors placed at 10% intervals for the discount multiplier axis and at $1 intervals for the rest of the fare parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' In each trial, a fare parameter combination and a search dimension were selected uniformly at random.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' The “true optimal” fare parameters for each trial (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=', each combination of current solution and search direction) were computed using a brute-force approach, through exhaustive enumeration Cummings et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' : Transportation Alliance Design with Endogenous Demand 42 Article submitted to Transportation Science;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' manuscript no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' 1 Algorithm 5 Subroutines for SOS2 Coordinate Descent 1: procedure SEARCH DIRECTIONS(random,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' multidim) 2: if multidim then 3: searchDirs ← {(β0 T R,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='β∆ T R),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' (β0 MOD,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='β∆ MOD),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Λ} // index names of y 4: else 5: searchDirs ← {β0 T R,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' β∆ T R,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' β0 MOD,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' β∆ MOD,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Λ} 6: if random then 7: searchDirs ← SHUFFLE(searchDirs) // randomly permutes the set searchDirs 8: return searchDirs 9: procedure GENERATE ANCHORS((β,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='Λ),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' searchDir,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' D) 10: if searchDir ∈ {(β0 k′,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='β∆ k′) : k′ ∈ O} then // if searchDir is multidimensional 11: β0 k,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='β∆ k ← searchDir 12: if Unif(0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='1) < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='5 then // select spanning dimension 13: (x,xmin,xmax),(y,ymin,ymax) ← (β0 k,β0 min,β0 max),(β∆ k ,β∆ min,β∆ max) 14: else 15: (x,xmin,xmax),(y,ymin,ymax) ← (β∆ k ,β∆ min,β∆ max),(β0 k,β0 min,β0 max) 16: if x == 0 then // determine valid slopes for spanning affine lines 17: mmin ← ymin−y xmax−x;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' mmax ← ymax−y xmax−x 18: else if x == xmax then 19: mmin ← ymax−y xmin−x;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' mmax ← ymin−y xmin−x 20: else 21: mmin ← max{ ymax−y xmin−x, ymin−y xmax−x};' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' mmax ← min{ ymin−y xmin−x, ymax−y xmax−x} // see Figure 7 22: m ← Unif(mmin,mmax);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' b ← y − m · x;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' δx = xmax − xmin // slope of spanning affine line 23: anchors ← {(xmin + i−1 D−1 · δx,b + m · (xmin + i−1 D−1 · δx),β0 −k,β∆ −k,Λ) : i ∈ {1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=',D}} 24: else 25: if searchDir == Λ then 26: maxV al ← Λmax;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' minV al ← Λmin 27: else if searchDir in {β0 k : k ∈ O} then 28: maxV al ← β0 max;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' minV al ← β0 min 29: else 30: maxV al ← β∆ max;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' minV al ← β∆ min 31: anchors ← {(minV al + i−1 D−1 · (maxV al − minV al),(β,Λ) \\ {searchDir}) : i ∈ {1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=',D}} 32: Insert (β,Λ) into the ordered set anchors 33: return anchors of every solution along that affine line at a 1% granularity for discount multiplier and a $0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='10 granularity for the other four fare parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Then the W obtained through SOS2∗ procedure was evaluated and compared with this “true optimal” solution, to compute the SOS2 optimality gap.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' The mean optimality gap was 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='25%, and it was 0% in 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='8% of the instances.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' This establishes the trustworthiness of the SOS2 model outputs, especially given the drastic CPU time reduction they provide.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' We repeated this procedure for 10 hours, resulting in 927 solutions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Cummings et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' : Transportation Alliance Design with Endogenous Demand Article submitted to Transportation Science;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' manuscript no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' 1 43 Figure 7 Computing the range of slopes such that the selected dimension is spanned.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Figure 8 Distribution of 31,553 second-stage model solution times.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Mean solution time = 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='7s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Figure 9 Distribution of SOS2 model optimality gaps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Mean gap = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='25%, across 927 solutions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Exact solu- tions (with 0% gaps) obtained in 276 of the 927 cases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Figure 10 shows the distribution of BF-CD solution times for a single trajectory across 50 trials.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' BF-CD never terminates before an hour elapses.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Appendix F: Bayesian Optimization Benchmark Bayesian Optimization (BO) is a sequential search strategy for optimizing low-dimensional black-box functions (Mockus 2012).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Typically, the function being optimized takes a long time to evaluate and has no analytical form, pre- cluding access to gradients.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' We first provide a high-level overview of BO, and then we summarize the design choices that we use in this paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' In particular, we adapt the setup of a recent dedicated study by Liu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' (2019) on using Bayesian Optimization to select MOD system service parameters subject to passenger mode choice.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Interested readers 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='2 Density 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='0 10 20 30 Solution time (s)1000 750 Density 500 250 0 - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='01 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='02 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='03 SOs2 model optimality gapYmax Ymax - y Ymax - y Xmin - X X - xewx Other dimension βcur Ymin - y Ymin - y Xmin - X Xmax - X Ymin Xmin x xewx Spanning dimensionCummings et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' : Transportation Alliance Design with Endogenous Demand 44 Article submitted to Transportation Science;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' manuscript no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' 1 Figure 10 BF-CD single-trajectory solution times across 50 trials.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' are referred to Liu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' (2019) for a more detailed description of BO in this application context.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Readers interested in a general BO tutorial are referred to Brochu, Cora, and de Freitas (2010).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' In the absence of a closed-form representation of our black-box function f : x → R, the BO framework first imposes a prior belief upon f via a probabilistic surrogate model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Given this surrogate model, BO iteratively (i) updates the likelihood of historical observations with new evaluations of f to obtain a more informative posterior, and (ii) queries an acquisition function that uses the updated posterior to recommend the next value of x that should be evaluated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' A very common surrogate model for the black-box function is called a Gaussian Process (GP), which is a stochastic process in which any finite set of random variables follows a multivariate Gaussian distribution (Mockus 2012).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' After building the GP with historical observations, the GP maps a given point in the search space to a univariate Gaussian distribution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' We interpret this output distribution as a set of potential values of f(x), accounting for noise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' The acquisition function is a BO design choice intended to help in navigating the trade-off between exploration and exploitation, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' exploring more of the search space versus exploiting regions where a globally optimal solution is suspected to exist.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' As in Liu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' (2019), we use a GP upper confidence bound as our acquisition function, which characterizes the BO optimization process as a multi-armed bandit problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Appendix G: Greater Boston Area Case Study First we describe the primary case study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Then we explain the income-aware modification to the choice model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Primary case study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Our case study is based on several datasets describing travel characteristics in the Greater Boston Area.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' We consider a pricing alliance for the morning commute, restricting our time window to 6-10AM on a typical weekday in Fall 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Our data sources and their purposes are as follows: Massachusetts Bay Transit Authority (MBTA) Focus40 report: We consider MBTA “urban gateways,” character- ized as regions located beyond the rapid transit network but in close proximity to the commuter rail network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' More formally, an urban gateway is a town with high potential to be receptive to additional development of pub- lic transportation options, especially if they connect to commuter rail hubs (MDOT 2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' These towns define the service region of our case study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' MBTA Fall 2018 General Transit Feed Specification (GTFS): We use the MBTA GTFS to extract rapid transit and commuter rail stations and edges.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' We also collect valid transfer edges from those enumerated by the feed (MBTA 2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' 2017 Longitudinal Employer-Household Dynamics (LEHD) Origin-Destination Employment Statistics (LODES): This data specifies the number of jobs corresponding to each origin-destination census tract pair, where the origin represents the employee’s home tract and the destination represents their work tract.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' We used this data as a proxy for daily morning commute demand (U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Census Bureau 2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='100 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='075 Density 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='050 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='025 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='000 15 20 25 Solution time (h)Cummings et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' : Transportation Alliance Design with Endogenous Demand Article submitted to Transportation Science;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' manuscript no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' 1 45 U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Census Bureau American Community Survey, 2014-2018: We extracted town-level data on the modes of transportation to work, median household income, and total population for towns in selected priority places (U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Census Bureau 2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' This data was primarily used to calibrate the passenger utility parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' TIGER/Line shapefiles: We used this data to assign network components to census tracts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' We use the centroids of census tracts in priority places to define passenger origins and destinations (U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Census Bureau 2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Uber Movement travel times: We used travel times aggregated over the 4th quarter of 2018 in the Greater Boston Area to approximate travel times of first- and last-mile edges and outside options (Uber Technologies Inc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' 2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Lyft fare parameters: We calculate the real-world prices of the MOD operator’s services using Lyft’s base fares, distance-based markups, and time-based markups (Lyft Inc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' 2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' We also use this data to calibrate the passen- ger utility parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' MBTA commuter rail fares: We characterize the real-world prices of the transit operator’s services using the MBTA commuter rail fares.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' We interpolate the base fares and distance-based markups from the discretized, zone-based fare structure together with the distances between transit stations in each zone (MBTA 2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' We define the transit network using commuter rail and rapid transit edges.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Each passenger’s origin and destination are census tract centroids from the LODES dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' We built MOD operator network’s edges by connecting centroids to transit stations and to each other within each priority place.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' We filtered out unnecessary edges that corresponded to very low demand;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' implementing a 90% service goal enabled us to reduce the MOD operator’s edge set by 50%.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' We only consider those commuters who work locally (within their home priority place) or in the inner city (the dashed bounding box in Figure 3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Commuters to the inner city were assumed to walk the last leg of their trip, from their final transit station to their destination centroid.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Because the rapid transit network is so well connected within the inner city, approximately 90% of all inner city destinations in the data were within a 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='5 mile walk of at least one transit station.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' To generate the route choice sets, we first built a routing network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' This routing network is a transformation of the physical network, consisting of MOD, transit, waiting, walking, and transfer edges.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' The cost of each edge was the time to “traverse”, whether that traversal entailed travel on the transit and/or MOD system, travel by foot, or stationary waiting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' We filtered out the trips with more than one transfer, by performing a transformation on the relevant transit stations by replicating those nodes—each transfer station had one node for incoming transfers and one for outgoing transfers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' A path through this network from a passenger’s origin to destination captures their total travel time along that path.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Over this routing network, we implemented Yen’s algorithm for finding the k-shortest loopless paths over a directed graph with non-negative edge costs (Yen 1970).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' We first obtained up to 10 shortest paths for each commuter to the inner city.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Some paths were effectively duplicates, in that every aspect of the path was the same except for the final transit station.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' We identified “unique” routes by their starting and transfer locations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' With this definition of uniqueness, we selected the shortest path for each mode: direct via transit (with a potential walking, driving, or local bus option for the first mile, selecting whichever was the least costly from each passenger’s available options), direct via MOD operator, or hybrid (MOD first mile transferring to transit, and potentially an MOD last mile for local commuters).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' We selected a route choice model specification representative of the factors influencing passenger decisions in our model: monetary costs (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=', fares) and travel time (both within and outside the system), and alternative-specific con- stants (ASC) for each represented mode (driving, transit, MOD, and hybrid).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' To calibrate choice model parameters, Cummings et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' : Transportation Alliance Design with Endogenous Demand 46 Article submitted to Transportation Science;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' manuscript no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' 1 we used a simplified version of the non-cooperative pricing game.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' We fixed fare parameters to their real-world values and selected model coefficients that make real-world fares correspond to a Nash equilibrium.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' This simplified game for the calibration purposes included only three passenger types: local commuters, commuters to inner city, and those traveling on the transit network outside of the alliance region.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Each passenger had a simplified choice set represent- ing average-case travel times and distances.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' We solved the simplified game by enumerating solutions over a coarse grid of candidate choice model coefficients values.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Finally, all passengers were grouped into 3 sensitivity profiles: time-sensitive, price sensitive, and intermediate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Intermediate category uses the calibrated parameters as is.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' We char- acterize the time-sensitive passengers by doubling the time-sensitivity coefficients and halving the price-sensitivity coefficients;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' and vice versa for the price-sensitive passengers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Table 10 shows the final calibrated route choice model coefficients.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' All signs and relative magnitudes are as expected intuitively, with ASCs indicating that all else equal, people prefer driving the most and transit the least.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Price and travel time impact passenger utility negatively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' The calibrated parameters thus clearly pass the common sense test.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Table 10 Route choice model’s calibrated coefficients.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' MOD ASC Transit ASC Hybrid ASC Driving ASC Price (USD) Travel time (min) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='75 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='125 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='9375 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='0075 Modifications to Make the Model Income-aware.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' In the modified case study in Section (5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='3), rather than uni- formly dividing the Greater Boston Area population into the three sensitivity profiles, we normalized time sensitivity and calibrated price sensitivity to the relative median household income (HHI) of each town, as described in Section 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' The price-sensitivity coefficient for each town was obtained by dividing the primary case study’s coefficient in Table 10 by that town’s income ratio.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' This scaling method leads to the towns with the lower values of median HHI (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=', the towns with a lower income ratio) appropriately correspond to higher price sensitivity values.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' For each town, Table 11 displays its price sensitivity coefficient and income ratio—i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=', a ratio of that town’s median HHI to the average of the median HHIs across the service region (which was $92,618.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='17).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Absolute values of the median HHIs by town are available in Table 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Note that the average of the median HHIs for the rest of the transit service population outside of the alliance service region is 9% higher than that within the service region, underlining that the proposed alliance particularly aims to serve lower income populations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Cummings et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' : Transportation Alliance Design with Endogenous Demand Article submitted to Transportation Science;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' manuscript no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' 1 47 Table 11 Price sensitivity coefficients in the passengers’ route choice model and the income ratios by town for the income-aware case study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content=' Town Price Sensitivity Coefficient Income Ratio Outside 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='04592 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='0888 Brockton 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='0840 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='5953 Framingham 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='0585 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='8544 Waltham 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='0541 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='9251 Lynn 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='0848 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='5895 Salem 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='0706 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='7079 Lowell 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='0891 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='5613 Lawrence 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='1114 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='4490 Haverhill 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='0685 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='7297 Burlington 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='0439 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='1385 Reading 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='0411 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='2161 Wakefield 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='0486 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='0290 Stoneham 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='0488 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='0239 Melrose 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='0446 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='1201 Woburn 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='0522 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='9582 Winchester 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='0293 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} +page_content='7225' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/aNE1T4oBgHgl3EQfwwVc/content/2301.03414v1.pdf'} diff --git a/adE3T4oBgHgl3EQf2ws3/content/2301.04757v1.pdf b/adE3T4oBgHgl3EQf2ws3/content/2301.04757v1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..3055e3c482622fb1a01a7ef6801e0989c0db185b --- /dev/null +++ b/adE3T4oBgHgl3EQf2ws3/content/2301.04757v1.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:3211cf63286d2f33a6e85cddc6d72881ac39b886eccfd850ae1c12a3b4a9954f +size 418608 diff --git a/adE3T4oBgHgl3EQf2ws3/vector_store/index.pkl b/adE3T4oBgHgl3EQf2ws3/vector_store/index.pkl new file mode 100644 index 0000000000000000000000000000000000000000..5fc1dfa521c30f5d1b74a211d79bcfb9b1313a1e --- /dev/null +++ b/adE3T4oBgHgl3EQf2ws3/vector_store/index.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:a6edac4c10135769760299e2a062725b9c031bc6d3d7f64bd3b987a19b34228e +size 153285 diff --git a/bNFLT4oBgHgl3EQfXy8v/vector_store/index.pkl b/bNFLT4oBgHgl3EQfXy8v/vector_store/index.pkl new file mode 100644 index 0000000000000000000000000000000000000000..ddbaae00bce8a41a2e7a385b0ef784ecff6cd850 --- /dev/null +++ b/bNFLT4oBgHgl3EQfXy8v/vector_store/index.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:f91826bd506b329c112babe1096ba85be33d9a85fff571524342c30dd104cb31 +size 124951 diff --git a/bdE1T4oBgHgl3EQfKwMf/content/2301.02967v1.pdf b/bdE1T4oBgHgl3EQfKwMf/content/2301.02967v1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..a47e6bed14ebdea97e17f27fde6fef67b8369391 --- /dev/null +++ b/bdE1T4oBgHgl3EQfKwMf/content/2301.02967v1.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:75bb2d129c3299ae45cc47230347528ea0817ece45758843fd3667fe143f08fc +size 938501 diff --git a/bdE1T4oBgHgl3EQfKwMf/vector_store/index.pkl b/bdE1T4oBgHgl3EQfKwMf/vector_store/index.pkl new file mode 100644 index 0000000000000000000000000000000000000000..63d8e74d9840a4f086fec20cfb174d5821a2f374 --- /dev/null +++ b/bdE1T4oBgHgl3EQfKwMf/vector_store/index.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:23e2b99ec28331a38cb4379fa3c88b8367c52dc18ea50d8b0afdf8e6f253d017 +size 151836 diff --git a/btE_T4oBgHgl3EQfzhyy/content/tmp_files/2301.08324v1.pdf.txt b/btE_T4oBgHgl3EQfzhyy/content/tmp_files/2301.08324v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..1ed5693d422312c453292ee13b5ec3c0ec81d227 --- /dev/null +++ b/btE_T4oBgHgl3EQfzhyy/content/tmp_files/2301.08324v1.pdf.txt @@ -0,0 +1,3386 @@ +Differentially Private Confidence +Intervals for Proportions under +Stratified Random Sampling∗ +Shurong Lin +Department of Mathematics and Statistics, Boston University, Boston, MA +e-mail: shrlin@bu.edu +Mark Bun and Marco Gaboardi +Department of Computer Science, Boston University, Boston, MA +e-mail: mbun@bu.edu; gaboardi@bu.edu +Eric D. Kolaczyk +Department of Mathematics and Statistics, McGill University, Canada +e-mail: eric.kolaczyk@mcgill.ca +Adam Smith +Department of Computer Science, Boston University, Boston, MA +e-mail: ads22@bu.edu +Abstract: Confidence intervals are a fundamental tool for quantifying the +uncertainty of parameters of interest. With the increase of data privacy +awareness, developing a private version of confidence intervals has gained +growing attention from both statisticians and computer scientists. Differ- +ential privacy is a state-of-the-art framework for analyzing privacy loss +when releasing statistics computed from sensitive data. Recent work has +been done around differentially private confidence intervals, yet to the best +of our knowledge, rigorous methodologies on differentially private confi- +dence intervals in the context of survey sampling have not been studied. In +this paper, we propose three differentially private algorithms for construct- +ing confidence intervals for proportions under stratified random sampling. +We articulate two variants of differential privacy that make sense for data +from stratified sampling designs, analyzing each of our algorithms within +one of these two variants. We establish analytical privacy guarantees and +asymptotic properties of the estimators. In addition, we conduct simula- +tion studies to evaluate the proposed private confidence intervals, and two +applications to the 1940 Census data are provided. +MSC2020 subject classifications: Primary 68P27, 62G15; secondary +62Dxx. +Keywords and phrases: Differential privacy, confidence intervals, strat- +ified sampling, population proportion. +∗The research presented in this paper was supported by the U.S. Census Bureau Cooper- +ative Agreement CB20ADR0160001. +1 +arXiv:2301.08324v1 [stat.ME] 19 Jan 2023 + +S. Lin et al./Differentially Private Confidence Intervals +2 +Contents +1 +Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +2 +1.1 +Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +4 +2 +Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +4 +2.1 +Confidence Intervals for the Population Proportion . . . . . . . . +5 +2.2 +Differential Privacy . . . . . . . . . . . . . . . . . . . . . . . . . . +5 +3 +Methodology +. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +7 +3.1 +Estimating with Public Sample Sizes . . . . . . . . . . . . . . . . +7 +3.1.1 +Adding Noise at the Stratum Level . . . . . . . . . . . . . +8 +3.1.2 +Adding Noise at the Population Level +. . . . . . . . . . . +8 +3.2 +Estimating with Private Sample Sizes +. . . . . . . . . . . . . . . +10 +4 +Theoretical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +13 +4.1 +Privacy and Coverage Guarantees . . . . . . . . . . . . . . . . . . +13 +4.2 +Comparisons of Variances . . . . . . . . . . . . . . . . . . . . . . +15 +4.2.1 +Extrinsic Variances . . . . . . . . . . . . . . . . . . . . . . +15 +4.2.2 +Comparing with Non-Private CI: One Stratum Case . . . +16 +5 +Numerical Results +. . . . . . . . . . . . . . . . . . . . . . . . . . . . . +17 +5.1 +Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +17 +5.1.1 +Normality Check . . . . . . . . . . . . . . . . . . . . . . . +18 +5.1.2 +Varying Key Parameters . . . . . . . . . . . . . . . . . . . +18 +5.2 +Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +20 +5.2.1 +Confidence Intervals for the Unemployment Rate . . . . . +21 +5.2.2 +Confidence Intervals for the Difference in Income Level . . +22 +6 +Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +24 +A Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +25 +A.1 Proof of Theorem 3.1 . . . . . . . . . . . . . . . . . . . . . . . . . +25 +A.2 Proof of Theorem 4.1 . . . . . . . . . . . . . . . . . . . . . . . . . +29 +A.3 Proof of Theorem 4.2 . . . . . . . . . . . . . . . . . . . . . . . . . +30 +A.4 Proof of Theorem 4.3 . . . . . . . . . . . . . . . . . . . . . . . . . +31 +A.5 Proof of Theorem 4.4 . . . . . . . . . . . . . . . . . . . . . . . . . +32 +A.6 Proof of Theorem 4.5 . . . . . . . . . . . . . . . . . . . . . . . . . +33 +Acknowledgments +. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +37 +References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +37 +1. Introduction +With the increase of privacy awareness in the modern information era, estab- +lishing privacy-preserving methodologies for statistics and machine learning has +become an active research area. Differential privacy, a state-of-the-art privacy +protection technique [13], is considered a gold standard for rigorous privacy +guarantees. Not only has it drawn significant attention in academia [14, 15], but +also it has been deployed by governments, firms, and other data agencies, such + +S. Lin et al./Differentially Private Confidence Intervals +3 +as the U.S. Census Bureau [1], Google [19], Microsoft [7], and Apple [37]. Re- +cently, the U.S. Census Bureau released a new demonstration of its differentially +private Disclosure Avoidance System (DAS) for the 2020 Census [4, 23]. +Simply put, a differentially private mechanism guarantees privacy via care- +fully injecting random noise (e.g., drawn from the Laplace or Gaussian dis- +tribution) into the data analysis or modeling procedure. At the intersection +of differential privacy and statistics, both statisticians and computer scientists +are working on developing private versions of statistical inference procedures. +Early work discussing differential privacy in the context of statistics includes +[16, 12, 41, 36]. More recent work has explored statistical inference and estima- +tion under the constraint of differential privacy [5, 28, 30]. +As one of the most fundamental tools for statistical inference, confidence in- +tervals are ubiquitous in quantifying the uncertainty of parameters of interest. +In this paper, we propose three differentially private algorithms for constructing +confidence intervals for the population proportion under stratified random sam- +pling. To the best of our knowledge, our work is the first to establish rigorous +methodologies on differentially private confidence intervals in the context of sur- +vey sampling. Survey sampling is an important area in statistics that involves +selecting a sample of individuals from a target population to conduct a survey. +It provides timely and cost-efficient estimates of population characteristics of +interest and is widely used in broad-scale data gatherings, such as the American +Community Survey (ACS), the Survey of Income and Program Participation +(SIPP), and the Current Population Survey (CPS). +This paper provides the first study of differentially private confidence intervals +for data from stratified sampling designs. Specifically: +• We articulate two specific variants of differential privacy that are appropri- +ate for data from stratified sampling designs. In addition to the standard +notion of differential privacy, we also consider settings in which the sample +stratum sample sizes are fixed and public. This latter setting allows for +simpler algorithms and tighter confidence intervals. +• We give methods to propagate the uncertainty due to the application of +differentially private mechanisms (adding random noise) into the construc- +tion of confidence intervals. A necessary bias correction is made to achieve +(asymptotic) unbiased variance estimates. Central limit theorem (CLT)- +type statements are provided to guarantee the confidence level asymptot- +ically. +• We assess the performance of the proposed algorithms both in theory and +through simulations. The theoretical analysis comparing the non-private +and private methods gives practitioners a sense of how the algorithms +would work prior to applying them to real data. +• To support the theoretical analysis of one of the algorithms, we study +the behavior of a reciprocal normal variable in depth. A general form of +the Taylor expansion (for conditional moments) is obtained to solve the +problem of the non-existence of moments due to its heavy-tailed nature. +The paper is organized as follows. We briefly discuss the existing work on + +S. Lin et al./Differentially Private Confidence Intervals +4 +differentially private confidence intervals in Section 1.1. Section 2 provides pre- +liminaries on confidence intervals of population proportions and differential pri- +vacy. In Section 3, we discuss the methodology of three differentially private +algorithms. Section 4 provides theorems on both privacy and asymptotic cov- +erage guarantees. Numerical experiments, including simulation studies and two +applications to the 1940 Census data, are conducted in Section 5. Section 6 +discusses the implications of our methods and general research directions on +differentially private confidence intervals. +1.1. Related Work +Differentially private confidence intervals have recently been studied for other +settings. Some studied differentially private confidence intervals for the popula- +tion mean of normally distributed data [26, 10, 22] . Other tasks on confidence +intervals have also been explored. Drechsler et al. designed and evaluated sev- +eral strategies to obtain differentially private confidence intervals for the median +[9]. Wang et al. provided confidence intervals for differentially private models +trained with objective or output perturbation algorithms [40]. +Besides, bootstrapping is a popular technique for constructing more general +differentially private confidence intervals. Ferrando et al. proposed a general- +purpose approach to construct confidence intervals for a population parameter +[20]. A numerical confidence interval for the difference of mean was provided [8]. +The nonparametric bootstrap was considered in [2]. Covington et al. described a +method to induce distributions of mean and covariance estimates via the bag of +little bootstraps (BLB), which can further produce private confidence intervals +[6]. +Our work is the first to study design-based approaches to sampling. In a +design-based setting, the values of interest are viewed as fixed but unknown con- +stants. Randomness only comes from the sampling design. The selection proba- +bilities introduced with the design will be used for estimation. On the contrary, +in a model-based setting, a parametric model is postulated. Design-based meth- +ods in sampling can be more reassuring than model-based approaches for the +reason that in many cases, no accurate prior information about the population +distribution is available. More discussion of design-based versus model-based +approaches in sampling can be found in [38]. +2. Preliminaries +In this section, we provide some preliminaries on population proportion estima- +tion and differential privacy. We first review the classic Wald confidence interval +for the population proportion under stratified random sampling. Then we define +a notion of differential privacy specifically for stratified data. Some properties +of differential privacy are revisited in preparation for the theoretical analysis in +Section 4. + +S. Lin et al./Differentially Private Confidence Intervals +5 +2.1. Confidence Intervals for the Population Proportion +In stratified random sampling, a population of N individuals is partitioned into +H strata, where stratum h has Nh individuals, and simple random sampling +of nh individuals is conducted within each stratum. When the objective is to +estimate the proportion of individuals having some attribute in the population, +one can estimate it by the sample proportion. Let yhi be the corresponding +indicator variable: yhi = 1 when the individual i in stratum h has the attribute +and yhi = 0 otherwise. One can estimate the population proportion +p = 1 +N +H +� +h=1 +Nh +� +i=1 +yhi +by the sample proportion +ˆp = 1 +N +H +� +h=1 +Nh +nh +nh +� +i=1 +yhi = +H +� +h=1 +whˆph +where wh +def += Nh +N +and ˆph +def += +1 +nh +nh +� +i=1 +yhi. Its variance Var(ˆp) = +H +� +h=1 +w2 +hVar(ˆph), +where +Var(ˆph) = +�Nh − nh +Nh − 1 +� ph(1 − ph) +nh +. +An unbiased estimator for Var(ˆph) is given by the sample variance in the stratum +� +Var(ˆph) = +�Nh − nh +Nh +� ˆph(1 − ˆph) +nh − 1 +. +(1) +Then an unbiased estimator for Var(ˆp) is given by � +Var(ˆp) = +H +� +h=1 +w2 +h� +Var(ˆph). An +approximate 100%(1−α) confidence interval for p based on a normal distribution +can be constructed: +ˆp ± z1− α +2 +� +� +Var(ˆp), +(2) +where z1− α +2 denotes the 1 − α +2 quantile of standard normal distribution. The +normal approximation is useful when all the sample sizes are moderate to large. +Otherwise, the t distribution with appropriate degrees of freedom is typically +used to replace the standard normal distribution. For small sample sizes, various +specialized confidence intervals have been developed [21]. +2.2. Differential Privacy +Differential privacy ensures that the output of data analysis or a query does not +differ much when the data set is changed by one record, such that one can not + +S. Lin et al./Differentially Private Confidence Intervals +6 +infer the presence or absence of any individual. If two data sets x, x′ differ by +one record, we say that x, x′ are adjacent or neighboring, written as x ∼ x′. +The definition of differential privacy depends on how we define adjacency. For +the partitioned data under stratified sampling, there are two ways to change a +record: (1) one way is to substitute one record within a stratum, with all the +stratum sample sizes fixed. We refer to this adjacency relation as “substitute-one +relation within a stratum” and denote it by ∼ss. This relation corresponds to the +case where the sample sizes are public and fixed; (2) another way to obtain an +adjacent data set is to remove or add one record from one stratum; we refer to +the corresponding relation as, which we call “remove/add-one relation”, denoted +by ∼r. In this case, one of the stratum sample sizes will change by one, as will +the overall sample size. This relation corresponds to the case where the sample +sizes are private. +Under either adjacency relation, we can define zero-concentrated differentially +private (ρ-zCDP) as in [3]: +Definition 1 (ρ-zCDP). Let X ∗ denote the space of the input data with an +arbitrary finite dimension. Under the adjacency relation ∼, a randomized algo- +rithm M : X ∗ → Y is ρ-zero-concentrated-differentially private (ρ-zCDP) if, for +every pair of adjacent data sets x ∼ x′ ∈ X ∗, and all α ∈ (1, ∞), +Dα(M(x)∥M(x′)) ≤ ρα, +where Dα(M(x)∥M(x′)) is the α-Rényi divergence [39] between the distribution +of M(x) and the distribution of M(x′). +The parameter ρ indicates the privacy level. A smaller ρ means a more re- +strictive distance control between M(x) and M(x′). As a result, the outputs on +two adjacent data sets are harder to tell apart and the algorithm achieves higher +privacy. We call ρ the privacy budget when we deliberately design an algorithm +to satisfy ρ-zCDP. +Depending on the adjacency notion, there are two types of differential pri- +vacy: bounded and unbounded differential privacy [27]. Definition 1 under the +“remove/add-one relation” corresponds to the standard unbounded differential +privacy. The sample size of the data set changes when one record is added or +removed to obtain an adjacent data set. With “substitute-one within a stratum” +relation ∼ss, the resulting notion corresponds to the bounded version of differ- +ential privacy where the sizes of two adjacent data sets are the same. But it +is somewhat different from the standard notion of bounded differential privacy +in that for the latter, substitutions can happen across strata. That is, we can +change both the record and the stratum it is part of. +In the literature on differential privacy, (ϵ, δ)-DP ([14] Definition 2.4) is con- +sidered the classic notion. We consider ρ-zCDP because (1) ρ-zCDP implies +(ϵ, δ)-DP ([3] Proposition 1.3), (2) the application of the Gaussian mechanism +to achieve zCDP facilitates the theoretical analyses, and (3) the composition of +ρ-zCDP is straightforward. The Gaussian mechanism is a prototypical exam- +ple of a mechanism satisfying zCDP, which perturbs the true values by adding + +S. Lin et al./Differentially Private Confidence Intervals +7 +Gaussian noise. We provide the Gaussian mechanism and the composition and +post-processing properties of ρ-zCDP in the following propositions. All proposi- +tions can be found in [3] and will be used in the analyses of privacy guarantees +in Section 4. +Definition 2 (Sensitivity). A function q: X ∗ → R has sensitivity ∆ if for all +pairs of adjacent data sets x ∼ x′ ∈ X ∗, we have |q(x) − q(x′)| ≤ ∆. +Proposition 1 (Gaussian Mechanism of ρ-zCDP). Let q : X ∗ → R be a +sensitivity-∆ query. Consider the mechanism M : X ∗ → R that on input x, +releases a sample from N(q(x), ∆2/(2ρ)). Then, M satisfies ρ-zCDP. +A smaller budget leads to larger noise added to the query on average. Con- +sequently, the output is more private. +Proposition 2 (Composition). Let M : X ∗ → Y and M ′ : X ∗ → Z be two +randomized algorithms. Suppose M satisfies ρ-zCDP and M ′ satisfies ρ′-zCDP, +then algorithm M ′′ = (M, M ′) : X ∗ → Y × Z is (ρ + ρ′)-zCDP. +Proposition 3 (Post-processing). Let M : X ∗ → Y and f : Y → Z be +randomized algorithms. If M is ρ-zCDP, then so is the composed algorithm +M ′ = f ◦ M : X ∗ → Z. +3. Methodology +Our goal is to release a ρ-zCDP confidence interval for the population proportion +p under stratified random sampling. To construct a confidence interval as in (2), +we need to estimate both p and the variance of the estimator privately. Recall +that the non-private estimator of population proportion is given by the sample +proportion +ˆp = +H +� +h=1 +whˆph. +We assume the stratum sizes Nh are all public and fixed, thus so are wh. To get +a private estimator for p, denoted by ˜p, we can add noise at the level of either +the (non-private) estimator ˆp or the estimator ˆph. With ˜p, we further devise a +private estimator for Var(˜p). Based on this idea, two algorithms for the case of +public sample sizes are designed by adding noise at the stratum or population +level in section 3.1. In section 3.2, we additionally propose adding noise at the +stratum level when sample sizes are private. Throughout the paper, the accents +ˆ· and ˜· are used to represent non-private and private estimators, respectively. +3.1. Estimating with Public Sample Sizes +When sample sizes nh are fixed, there are two natural strategies for perturbing +ˆp: add Gaussian noise to (1) the stratum-level statistics ˆph’s, or (2) the overall +statistic ˆp. Adding noise to the ˆph’s has the advantage of producing private +estimators for stratum-level proportions simultaneously. + +S. Lin et al./Differentially Private Confidence Intervals +8 +3.1.1. Adding Noise at the Stratum Level +We apply the Gaussian mechanism to each stratum to derive a private estimator +˜ph +def += ˆph + eh where eh is the Gaussian noise. Then the private estimator for +the population proportion is +˜p +def += +H +� +h=1 +wh˜ph. +As a result, the variance of ˜p consists of both the intrinsic variances of estimating +ph’s by ˆph’s and the additional variability from added noise: +Var(˜p) = +H +� +h=1 +w2 +h +� +Var(ˆph) + w2 +h Var(eh) +� +(3) +where Var(eh), h = 1, ..., H are public since they do not depend on the data. +To obtain a private confidence interval for ˆp, we will need to privately estimate +Var(ˆph). Note that the added noise biases the term ˆph(1− ˆph) in the non-private +estimate of Var(ˆph) in (1). More specifically, Ee[˜ph(1−˜ph)] = ˆph(1−ˆph)−Var(eh) +where Ee denotes the expectation taken on the randomness of the added noise. +Then a private unbiased estimator of Var(ˆph) in the right-hand side in (3) is +given by +� +Var(ˆph) +def += +�Nh − nh +Nh +� ˜ph(1 − ˜ph) + Var(eh) +nh − 1 +. +(4) +To estimate Var(˜p), we set +� +Var(˜p) +def += +H +� +h=1 +w2 +h +� +� +Var(ˆph) + Var(eh) +� +This approach is formulated in Algorithm 1 which we call StrNz-PubSz (adding +noise at the stratum level with public sample sizes). The theoretical results re- +garding privacy level and asymptotic coverage are provided in Theorems 4.1 and +4.2. +3.1.2. Adding Noise at the Population Level +An alternative strategy is to directly add noise to the non-private estimator of +p, i.e., ˆp. The sensitivity of ˆp is +∆p = max +h +wh +nh +. +Since wh and nh are public, ∆p can be made public. We set ˜p = ˆp + e where +e is the Gaussian noise with standard deviation proportional to ∆p. Then, the +variance of ˜p becomes +Var(˜p) = Var(ˆp) + Var(e). +(5) + +S. Lin et al./Differentially Private Confidence Intervals +9 +Algorithm 1 Adding noise at the stratum level with public sample sizes, StrNz- +PubSz +Input: ˆph, nh, Nh, wh, ρ, α. +Output: ρ-zCDP (1 − α) CI for the population proportion. +1: for h = 1 to H do +2: +Generate Gaussian noise eh ∼ N(0, +1 +2ρn2 +h ), and let +˜ph ← ˆph + eh. +3: +Estimate Var(˜ph) by +�Vh ← +� Nh − nh +Nh +� ˜ph(1 − ˜ph) + +1 +2ρn2 +h +nh − 1 ++ +1 +2ρn2 +h +. +4: end for +5: Estimate p by ˜p ← +H +� +h=1 +wh ˜ph and Var(˜p) by �V ← +H +� +h=1 +w2 +h �Vh. +6: Return +˜p ± z1−α/2 +� +�V , +where z1−α/2 is the (1 − α/2)-quantile of the standard normal distribution. +Recall that +� +Var(ˆp) = +H +� +h=1 +w2 +h +�Nh − nh +Nh +� ˆph(1 − ˆph) +nh − 1 +is an unbiased estimator for Var(ˆp). To get a private estimator for Var(˜p), +we again apply the Gaussian mechanism to � +Var(ˆp) based on the sensitivity +of Var(ˆp): +∆V = max +h +�Ch +nh +� +1 − 1 +nh +�� +, +where Ch = w2 +h +Nh−nh +Nh +1 +nh−1. +Since we apply the Gaussian mechanism twice, the total privacy budget +should be divided into two parts: ρ = ρ1 + ρ2 to spend on adding noise to ˆp +and Var(ˆp), respectively. The composition property (Proposition 2) ensures the +total privacy level is ρ. The resulting algorithm, PopNz-PubSz, is presented +in Algorithm 2. +Remark 1. When there are multiple strata with similar sampling rates, Algo- +rithm 1 yields a wider confidence interval for p than Algorithm 2 does, given the +same privacy budget. However, Algorithm 1 additionally produces private confi- +dence intervals for ˆph which may be of interest for release. In Section 4.2.1, we +compare the two algorithms quantitatively. +Remark 2. Proportions are always between 0 and 1. One can post-process +proportion estimates (˜ph in Algorithm 1 and ˜p in Algorithm 2) by clipping them +onto interval [0,1] without undermining privacy. When the privacy budget is +very small, the noisy proportion estimates are likely to lie outside [0,1]. Thus, +clipping moves the confidence interval toward the truth and a higher coverage + +S. Lin et al./Differentially Private Confidence Intervals +10 +Algorithm 2 Adding noise at the population level with public sample sizes, +PopNz-PubSz +Input: ˆp, ˆph, nh, Nh, wh, ρ, α. +Output: A ρ-zCDP (1 − α) CI for Population Proportion. +1: Split the budget ρ = ρ1 + ρ2. Let ρ1 = ρ2 if not specified otherwise. +2: Generate noise e ∼ N(0, +∆2 +p +2ρ1 ) where ∆p = maxh +wh +nh and let +˜p ← ˆp + e. +3: Generate noise eV +∼ +N(0, ∆2 +V +2ρ2 ) where ∆V += +maxh +� +Ch +nh +� +1 − +1 +nh +�� +and Ch += +w2 +h +Nh−nh +Nh +1 +nh−1 . Let +�V ← +H +� +h=1 +w2 +h +� Nh − nh +Nh +� ˆph(1 − ˆph) +nh − 1 ++ ∆2 +p +2ρ1 ++ eV . +4: Return +˜p ± z1−α/2 +� +�V , +where z1−α/2 is the (1 − α/2)-quantile of the standard normal distribution. +rate will be observed. With a moderate or large budget, clipping does not make +a noticeable difference. +Lastly, one can always clip the output confidence intervals onto [0,1] without +privacy loss. +3.2. Estimating with Private Sample Sizes +When sample sizes are public information, keeping the proportions private is es- +sentially protecting only the numerator (the counts of individuals with y = 1). +In some cases where subpopulation proportions also need to be estimated, Al- +gorithms 1 and 2 with public sample sizes can lead to privacy leakage since the +counts become the denominator. Therefore, a method of constructing confidence +intervals for proportions to keep both the counts and sample sizes private is nec- +essary. We protect the sample sizes by adding noise to them. As a result, sample +sizes are not fixed and therefore we need the unbounded notion of differential +privacy with the adjacency relation ∼r. In the following, we extend Algorithm +1 to serve the needs of privacy protection of sample sizes by adding noise at the +stratum level. (It is not obvious how to extend Algorithm 2, which adds noise +at the population level. It requires more sophisticated mechanisms; we briefly +discuss in Section 6.) +To begin, we first consider the setting of simple random sampling. The idea +is to add independent Gaussian noise to both the numerator and denominator +for each stratum. For ease of notation, we first consider a single stratum with +count c = �n +i=1 xi. We know +c ∼ Hypergeometric(N, K, n), +where K is the total number of individuals with the attribute of interest. The +count c has mean n K +N = np and variance n K +N +N−K +N +N−n +N−1 = n2 Var(ˆp). By applying + +S. Lin et al./Differentially Private Confidence Intervals +11 +the Gaussian mechanism to c and n with privacy budgets ρ1 and ρ2, respectively, +we have private count ˜c and sample size ˜n: +˜c | c ∼ N(c, 1 +2ρ1 +) +and +˜n ∼ N(n, 1 +2ρ2 +). +The unconditional mean and variance for c are +E(˜c) = E[E(˜c | c)] = E(c) = np +and +Var(˜c) = E Var(˜c | c) + Var E(˜c | c) = +1 +2ρ1 ++ n2 Var(ˆp). +(6) +By the composition property of zCDP, we get a private estimator for proportion +p, denoted by ˜p, with privacy level ρ = ρ1 + ρ2. Since ˜c and ˜n are independent +variables, in principle, +E(˜p) = E +� ˜c +˜n +� += E(˜c)E +� 1 +˜n +� +, +(7) +and +Var(˜p) = E +� ˜c +˜n +�2 +− +� +E +� ˜c +˜n +��2 += E˜c2E +� 1 +˜n2 +� +− (E˜c)2 +� +E 1 +˜n +�2 +. +(8) +However, the moments of 1 +˜n do not exist, thus neither do those of ˜p. Generally +speaking, the ratio of two independent normal random variables has a heavy- +tailed distribution with no moments [33, 17]. The shape of the distribution could +be unimodal, bimodal, symmetric, or asymmetric. It is primarily determined by +the coefficient of variation of the denominator variable, CV . When CV is suffi- +ciently small, a normal distribution approximation can be effective. It has been +shown theoretically that a normal distribution can be arbitrarily close to the +ratio variable in an interval centered at the ratio of means of two normal ran- +dom variables [17]. Experiments have provided guidelines for when the normal +approximation can be used. For example, a simple rule is that the approxima- +tion is reasonable whenever CV is less than 0.1 [29]. Other practical rules are +mentioned in [25, 33]. +We take advantage of the normal approximation to construct a ρ-zCDP con- +fidence interval for the proportion. We present the following estimation strategy +in Algorithm 3, StrNz-PrivSz. In the algorithm, we clip ˜nh in (9) to ensure the +denominator is not too small. Otherwise, the ratio can be arbitrarily large. Such +a post-processing step preserves the same privacy guarantee. For the theoretical +analysis, we do not clip ˜nh, but instead, we consider the ratio variable ˜ch/˜nh +given the event Sh = {1 ≤ ˜nh ≤ 2nh − 1} (a symmetric area around the mean +of ˜nh). It is more convenient for the analysis. The asymptotic behaviors of ˜ph + +S. Lin et al./Differentially Private Confidence Intervals +12 +Algorithm 3 Adding noise at the stratum level with private sample sizes, +StrNz-PrivSz +Input: Nh, wh, nh, ch, ρ, α. +Output: A ρ-zCDP (1 − α) CI for the population proportion. +1: Split the budget ρ = ρ1 + ρ2. Let ρ1 = ρ2 if not specified otherwise. +2: for h = 1 to H do +3: +Generate e(1) +h +∼ N(0, +1 +2ρ1 ) and e(2) +h +∼ N(0, +1 +2ρ2 ), and let +� +˜ch ← ch + e(1) +h +˜nh ← max(nh + e(2) +h , 2) +(9) +4: +Let +˜ph ← ˜ch +˜nh +(10) +5: +Let +�Vh ← +� Nh − ˜nh +Nh − 1 +� ˜ph(1 − ˜ph) +˜nh ++ +1 +2ρ1˜n2 +h ++ +˜p2 +h +2ρ2˜n2 +h +. +(11) +6: end for +7: Estimate p by ˜p ← +H +� +h=1 +wh ˜ph and Var(˜p) by �V ← +H +� +h=1 +w2 +h �Vh. +8: Return +˜p ± z1−α/2 +� +�V , +where z1−α/2 is the (1 − α/2)-quantile of the standard normal distribution. +in the algorithm and ˜ch/˜nh | Sh are essentially the same since Pr(˜nh ≥ 2) → 1 +and Pr(Sh) → 1 as n → ∞. We will see the private estimator of the variance of +˜ph we derive from the analysis of ˜ch/˜nh | Sh works well and the algorithm does +achieve the desired coverage level. +We consider the ratio of two independent normal variables. By independence, +what remains unclear is the behavior of the reciprocal of a normal distribution. +(We should mention that the Inverse Gaussian distribution is a different dis- +tribution than the reciprocal distribution we discuss here.) In Theorem 3.1, we +provide a general form of the Taylor series of conditional mean and variance of +a reciprocal normal distribution. To our best knowledge, this is the first com- +plete result of the Taylor series, with the remainder term specified. We prove +the theorem in the Proofs section. We use k = 2 to derive an estimator for the +variance of ˜p Algorithm 3, which leads to (11). +Theorem 3.1 (Conditional mean and variance of a reciprocal normal distribu- +tion). For random variable X ∼ N(µ, σ2) where µ > 1 and σ2 > 0, given the +event S = {1 ≤ X ≤ 2µ − 1}, for any integer k > 0, the first two moments of +1 +X | S have the following expansions: +E +� 1 +X | S +� += 1 +µ +k +� +j=0 +(2j − 1)!!σ2j +µ2j ++ O +�σ2k+2 +µ2k+2 +� +(12) + +S. Lin et al./Differentially Private Confidence Intervals +13 +and +E +� 1 +X2 | S +� += 1 +µ2 +k +� +j=0 +(2j + 1)!!σ2j +µ2j ++ O +�σ2k+2 +µ2k+2 +� +. +(13) +4. Theoretical Results +In this section, we present the theoretical results of both privacy and asymptotic +coverage guarantees. In addition, comparisons of the three algorithms in terms +of variance and width ratios are discussed. +4.1. Privacy and Coverage Guarantees +Our theoretical results are two-fold. First, the proposed algorithms satisfy the +desired privacy level under the corresponding adjacency relation, which is pre- +sented in Theorem 4.1. +Theorem 4.1 (Privacy Guarantee). Algorithms 1 and 2 satisfy ρ-zCDP under +the adjacency relation ∼ss; Algorithm 3 satisfies ρ-zCDP under the adjacency +relation ∼r. +Proofs are presented in the Proofs section. +On the other hand, for the confidence intervals to be useful, we provide the- +orems that guarantee the asymptotic coverage for each algorithm. The central +limit theorem (CLT) asserts (essentially) that the sample mean is asymptoti- +cally normally distributed regardless of the original distribution. Therefore, the +sample mean can be used to construct a confidence interval for the population +mean. In the finite-population sampling designs we are considering, variants of +CLTs can be found among [18, 24, 31] and others. We restate a general form +of the finite-population CLT for simple random sampling in Theorem A.2 and +provide asymptotic coverage guarantees in the following theorems. +Theorem 4.2 (Algorithm 1). For a population of size N, let p be the pro- +portion in the population with the attribute of interest. Under stratified random +sampling with sample sizes nh within the stratum of size Nh, h = 1, .., H, let +�V = +H +� +h=1 +w2 +h �Vh where +�Vh = +�Nh − nh +Nh +� ˜ph(1 − ˜ph) + +1 +2ρn2 +h +nh − 1 ++ +1 +2ρn2 +h +. +(14) +for ρ > 0 as described in Algorithm 1. If ρ = ω(1/nh) for all h, then as Nh −nh +and nh both tend to infinity for every stratum, +(i) �V +p→ Var(ˆp), and + +S. Lin et al./Differentially Private Confidence Intervals +14 +(ii) for 0 < α < 1, +Pr +� +p ∈ +� +˜p − z1−α/2 +� +�V , ˜p + z1−α/2 +� +�V +�� +→ 1 − α. +(15) +Theorem 4.3 (Algorithm 2). For a population of size N, let p be the proportion +in the population with the attribute of interest. Under stratified random sampling +with sample sizes nh within the stratum of size Nh, h = 1, .., H, let +�V = +H +� +h=1 +w2 +h +�Nh − nh +Nh +� ˆph(1 − ˆph) +nh − 1 ++ ∆2 +p +2ρ1 ++ eV +(16) +where eV ∼ N(0, ∆2 +V +2ρ2 ) for ρ1, ρ2 > 0 as described in Algorithm 2. If ρ1 = +ω(1/nh) and ρ2 = ω(1/nh) for all h, then as Nh − nh and nh both tend to +infinity for every stratum, +(i) �V +p→ Var(ˆp), and +(ii) for 0 < α < 1, +Pr +� +p ∈ +� +˜p − z1−α/2 +� +�V , ˜p + z1−α/2 +� +�V +�� +→ 1 − α. +(17) +Proofs of the above theorems use the finite-population CLT and are provided +in the Proofs section. +For Algorithm 3, the asymptotic behavior of ˜p is grounded on the normal +approximation to a ratio variable in addition to the CLT. We revisit the result +of normal approximation by [17] in Theorem A.4. Based on the approximation, +we have shown the consistency of ˜p in the case of simple random sampling. +Theorem 4.4. Under simple random sampling, let c be the count of individuals +having the attribute of interest and n be the sample size. The true population +proportion is denoted by p. Let ˜p = ˜c/˜n where ˜c ∼ N(c, +1 +2ρ1 ) and ˜n ∼ N(n, +1 +2ρ2 ) +for ρ1, ρ2 > 0. Under the conditions that ρ2 = ω(1/n), ρ1 = ω(1/n), ˜p is a +consistent estimator for p. +With the foundation of the above consistency, we establish the asymptotic +properties: +Theorem 4.5 (Algorithm 3). For a population of size N, let p be the pro- +portion in the population with the attribute of interest. Under stratified random +sampling with sample sizes nh within the stratum of size Nh, h = 1, .., H, let +�V = +H +� +h=1 +w2 +h �Vh where +�Vh = +�Nh − ˜nh +Nh − 1 +� ˜ph(1 − ˜ph) +˜nh ++ +1 +2ρ1˜n2 +h ++ +˜p2 +h +2ρ2˜n2 +h +(18) + +S. Lin et al./Differentially Private Confidence Intervals +15 +for ρ1, ρ2 > 0 as described in Algorithm 3. If ρ1 = ω(1/nh) and ρ2 = ω(1/nh) +for all h, then as Nh − nh and nh both tend to infinity for every stratum, +(i) �V +p→ Var(ˆp), and +(ii) for 0 < α < 1, +Pr +� +p ∈ +� +˜p − z1−α/2 +� +�V , ˜p + z1−α/2 +� +�V +�� +→ 1 − α. +(19) +To prove Theorem 4.5, we start with a single stratum. We use a normal dis- +tribution (denoted by p∗ +h) to approximate that of the proportion estimator ˜ph, +with the distance between the two distribution vanishing to zero in an interval. +Then for multiple strata, we show that the linear combination of the normal +variables (denoted by p∗) is an accurate approximation to ˜p. Last but not least, +due to the consistency stated in Theorem 4.4, the noisy estimator �V is a consis- +tent estimator for the variance of p∗. Then, a Wald confidence interval can be +constructed using ˜p and �V . Details are presented in the Proofs section. +4.2. Comparisons of Variances +The theorems presented in Section 4.1 ensure that, under proper conditions, the +desired coverage is achieved asymptotically. Therefore, to compare the perfor- +mance of the different proposed confidence intervals, we compare their widths, +which are determined by their variance estimates. In this section, we will an- +alyze our variance estimates and compare the resulting widths to that of the +non-private confidence interval. +4.2.1. Extrinsic Variances +To investigate how much additional uncertainty is caused by adding noise, we +decompose the variances of the private estimators into two parts: (1) the inherent +component coming from the estimation from the sampling data, i.e, Var(ˆp), and +(2) the extrinsic component introduced by the added noise, written as +Vex +def += Var(˜p) − Var(ˆp). +Table 1 provides the (approximate) variances of ˜p for three algorithms, where +wh = Nh +N are the stratum weights. The variances are derived in the proofs of +Theorems 4.2, 4.3, and 4.5. The additional variance terms, Vex, can be rewritten +in terms of uh +def += +Nh +nh instead of wh, as shown in the second row of the table. +In fact, uh are called sampling weights in the literature on survey sampling. A +sample weight is defined as the number of individuals that each respondent in +the sample is representing in the population. It is the reciprocal of the sampling +rate +nh +Nh and plays an important role in statistical inference for survey data +[34, 11]. Understanding the relation between sampling weights and the variance + +S. Lin et al./Differentially Private Confidence Intervals +16 +of the noisy estimators is helpful for practitioners to make survey designs and +the choice of algorithms. +Table 1 +(Approximate) variances of ˜p. +Algorithm +StrNz-PubSz +PopNz-PubSz +StrNz-PrivSz (approximate) +Var(˜p) +Var(ˆp) + +1 +2ρ +�H +h=1 +w2 +h +n2 +h +Var(ˆp) + +1 +2ρ1 maxh +w2 +h +n2 +h +Var(ˆp) + +1 +2ρ1 +�H +h=1 +w2 +h +n2 +h + +1 +2ρ2 +�H +h=1 +w2 +hp2 +h +n2 +h +Vex +1 +2N2 +�H +h=1 +u2 +h +ρ +1 +2N2 maxh +u2 +h +ρ1 +1 +2N2 +�H +h=1 u2 +h( 1 +ρ1 + p2 +h +ρ2 ) +With a fixed population size N and a chosen privacy level ρ, the extra vari- +ances Vex induced by the added noise are primarily dictated by uh. In PopNz- +PubSz where we add noise at the population level, Vex is solely determined by +the largest sample weight among all strata. If noise is injected into each stra- +tum, then sampling weights in all strata collectively affect Vex. In particular, +for StrNz-PrivSz, Vex is impacted by ph additionally. For all three algorithms, +smaller sampling weights lead to lower extrinsic variance. +For comparison, we look at the ratio of Vex with the default budgeting ρ1 = +ρ2 = ρ/2 for PopNz-PubSz and StrNz-PrivSz. The ratio of Vex for StrNz-PubSz +to PopNz-PubSz is +�H +h=1 u2 +h +2 maxh u2 +h +. +(20) +Roughly speaking, when there are many strata, adding noise at the population +level gives a smaller variance. To compare StrNz-PrivSz and StrNz-PubSz, the +ratio of Vex is +2 �H +h=1 u2 +h(1 + p2 +h) +�H +h=1 u2 +h +, +(21) +which will always be greater than 2 (due to the cost it takes to protect sample +sizes in StrNz-PrivSz) and at most 4. +4.2.2. Comparing with Non-Private CI: One Stratum Case +To assess the width in theory, we also look at the confidence interval width +ratios by comparing them to the non-private one. Since the parameters Nh, nh, +ph, ρh come into play together in the stratification setting, it is more practical +to analyze the special case with one stratum. +Let the theoretical width ratio (TWR) be +TWR = +� +Var(˜p) +Var(ˆp). +In the implementation, the real width ratio (WR), defined as +� +�V / Var(ˆp), will +be very close to TWR in that �V is a consistent estimator for Var(˜p). Table 2 + +S. Lin et al./Differentially Private Confidence Intervals +17 +displays some relevant quantities. Note that N−1 +N−n is always less than 1 but tends +to 1 when the population size is far larger than the sample size. +Table 2 +Theoretical width ratios and lower bounds. +Algorithm +StrNz-PubSz +PopNz-PubSz +StrNz-PrivSz +˜p +ˆp + N(0, +1 +2ρn2 ) +ˆp + N(0, +1 +ρn2 ) +(c + N(0, 1 +ρ))/(n + N(0, 1 +ρ)) +Var(˜p) +Var(ˆp) + +1 +2ρn2 +Var(ˆp) + +1 +ρn2 +Var(ˆp) + 1+p2 +ρn2 +TWR +� +1 + N−1 +N−n +1 +2p(1−p)nρ +� +1 + N−1 +N−n +1 +p(1−p)nρ +� +1 + N−1 +N−n +1+p2 +p(1−p)nρ +Lower bound of TWR +� +1 + +2 +nρ +� +1 + +4 +nρ +� +1 + 2(1+ +√ +2) +nρ +We can obtain a lower bound for TWR by dropping the factor +N−1 +N−n and +minimizing over p. We can see that the width ratio mainly depends on p and +the relative magnitude between n and ρ. If p is extreme (tends to 0 or 1), TWR is +drastically large; when p is around 0.5, TWR is close to the lower bound. Also, +the added noise induces a term involving ρ. For example, under the regime +ρ = 1/n, the three algorithms result in an interval of length at least +√ +3 ≈ 1.73, +√ +5 ≈ 2.24, and +� +3 + 2 +√ +2 ≈ 2.41 as wide, respectively. It is trivial that with +one stratum, StrNz-PubSz produces a tighter confidence interval than PopNz- +PubSz does in that the ratio of Vex in (20) is 1/2. However, PopNz-PubSz will +outperform StrNz-PubSz once there are enough strata such that (20) is greater +than 1. +5. Numerical Results +In this section, we conduct both simulation studies and applications to assess +and illustrate the numerical performance of the proposed algorithms. We clip +the proportions ˜ph onto [0, 1] as mentioned in Remark 2. +5.1. Simulations +We set up a set of experiments to (1) check the normality of noisy estimators, +and (2) evaluate the performance of the proposed confidence intervals by varying +the number of strata H, the true population proportion p, and the privacy level +ρ. To generate the data, we need to specify the strata sizes Nh and the sampling +rates rh. The setup of these parameters is presented in Table 3. We generate +a proportion for each stratum to create heterogeneity across strata. The true +population proportion is then calculated and reported in each experiment. + +S. Lin et al./Differentially Private Confidence Intervals +18 +Table 3 +Parameter setup. The resulting sample sizes are between 60 and 160. +Fixed parameter +Value / Distribution +Varying parameter +Value / Distribution +α +0.1 +H +1 or 20 +Nh +Uniform(1500, 2000) +ph +0.5, Uniform(0.4, 0.6) or Uniform(0.05, 0.15) +rh +Uniform(0.04, 0.08) +ρ +1/ max(nh) or specified in the axis of the plot +5.1.1. Normality Check +We first check whether the distributions of ˜p in the three algorithms are reason- +ably close to the theoretical normal distributions with the corresponding means +and variances. Figure 1 displays the Q-Q plots of the theoretical distribution of +˜p versus its sample distribution: +• Non-private: N(p, Var(ˆp)); +• StrNz-PubSz: N(p, Var(˜p)) as Var(˜p) in (3); +• PopNz-PubSz: N(p, Var(˜p)) as Var(˜p) in (5); +• StrNz-PrivSz: N +� +p + �H +h=1 +whph +2ρ2n2 +h , �H +h=1 w2 +hVh +� +with Vh specified in (51). +Note that, ˜p in Algorithms StrNz-PubSz and PopNz-PubSz are unbiased for +p while ˜p in StrNz-PrivSz is not. Nevertheless, under the condition that ρ2 = +ω(1/nh) in Theorem 3, the bias term �H +h=1 +whph +2ρ2n2 +h is negligible and thus we +do not make a bias correction in Algorithm 3. We observe great alignments +between the theoretical and experimental distributions, indicating that the pri- +vate estimators in all three algorithms are indeed highly close to being normally +distributed. +5.1.2. Varying Key Parameters +Assured by the results of the normality check, we experiment with a wide range +of the privacy budget, different numbers of strata, and true population propor- +tions. +We examine the impact of ρ on the performance of the three private esti- +mators. The simulation is run on 10,000 repetitions and therefore the empirical +coverage falling into 90% ± 0.006 (departure of two standard deviations) is con- +sidered appropriate. In Figure 2a, the empirical coverage is reasonable except +that StrNz-PrivSz gives unnecessarily higher coverage when ρ is smaller than +around 0.005. This is because the budget is so small for the method that, with +clipping, it covers the truth more often than needed. In this case, the confidence +intervals are too wide to be as useful, as shown in Figure 2b. For all three meth- +ods, the width grows as ρ becomes smaller. However, the rates of width growth +differ: in the multiple strata case we simulate, the width of PopNz-PubSz grows +the slowest, StrNz-PrivSz grows the fastest, and StrNz-PubSz is in the middle. +Thus, the optimal privacy level should be chosen by taking into account the +method, width, and coverage. For instance, if we want a 90% of confidence level +and width under 0.1, one can choose the value for ρ as small as (1) 0.001 for +PopNz-PubSz, (2) 0.003 for StrNz-PubSz, and (3) 0.01 for StrNz-PrivSz. + +S. Lin et al./Differentially Private Confidence Intervals +19 +0.46 +0.48 +0.50 +0.52 +0.54 +Theoretical Quantiles +0.46 +0.48 +0.50 +0.52 +0.54 +Sample Quantiles +Non-Private +0.425 +0.450 +0.475 +0.500 +0.525 +0.550 +0.575 +Theoretical Quantiles +0.45 +0.50 +0.55 +Sample Quantiles +StrNz-PubSz +0.46 +0.48 +0.50 +0.52 +0.54 +0.56 +Theoretical Quantiles +0.475 +0.500 +0.525 +0.550 +Sample Quantiles +PopNz-PubSz +0.40 +0.45 +0.50 +0.55 +0.60 +Theoretical Quantiles +0.4 +0.5 +0.6 +Sample Quantiles +StrNz-PrivSz +Fig 1: Q-Q plots: Theoretical versus sample distributions of ˜p with 20 strata and p = 0.505 +(resulting from ph ∼ Uniform(0.4, 0.6)), based on 10,000 repetitions each. +In addition, Table 4 shows the numerical results of three experiments with +different combinations of the numbers of strata and the true population pro- +portions. The simulation in the middle panel shares the same setting as the +experiment shown in Figure 2 but has a fixed privacy level: 1/ max(nh). This +is an analogous regime to ρ = 1/n (for simple random sampling) for multiple +strata. In the literature on differential privacy, the regime ρ = 1/n for a simple +random sample is often considered to understand how small ρ can be as the +sample size increases. Recall that a smaller ρ means a higher privacy level. +As argued above, clipping ˜ph (or ˜p) onto [0,1] will yield better results in some +cases. The conclusions coincide with the analyses in Section 4. The empirical +coverage of the three private ones in all simulations achieves the nominal level of +90%, as guaranteed by Theorems 4.2, 4.3, and 4.5. The case where StrNz-PrivSz +gives a 91.9% confidence level in the bottom panel is due to clipping. (When +the stratum proportions are close to the extreme, clipping is more noticeable.) +The average width and width ratio (WR) varies. With one single stratum, +WRs are near the lower bounds of theoretical width ratios (TWR) given in +Section 4.2.2, which suggests that the lower bounds are almost tight. StrNz- +PubSz gives a narrower CI than PopNz-PubSz with one stratum. But with +more strata, PopNz-PubSz outperforms StrNz-PubSz in terms of WR. Having +more strata means splitting the total privacy budget into smaller portions, which +leads to adding more noise on the whole. The CI needs to be wider to achieve the +same confidence level. As for StrNz-PrivSz, however, it always yields the widest +CI due to the additional price it pays to protect sample sizes simultaneously. + +S. Lin et al./Differentially Private Confidence Intervals +20 +10 +3 +10 +2 +10 +1 +100 +0.80 +0.85 +0.90 +0.95 +1.00 +Empirical coverage +Non-Private +PopNz-PubSz +StrNz-PubSz +StrNz-PrivSz +(a) Empirical coverage +10 +3 +10 +2 +10 +1 +100 +0.0 +0.1 +0.2 +0.3 +0.4 +0.5 +0.6 +Width +0 +2 +4 +8 +16 +Width ratio +Non-Private +PopNz-PubSz +StrNz-PubSz +StrNz-PrivSz +(b) Width and ratio +Fig 2: Setup: 20 strata and p = 0.505 (ph ∼ Uniform(0.4, 0.6)) with 10,000 repetitions. +Figure (a) is the empirical coverage with the red line indicating the nominal confidence level +of 90%. The average width and width ratio are displayed in (b) with the non-private as the +benchmark. +On the other hand, with the same number of strata (20 here), we see that more +extreme ph leads to a larger WR than ph in the middle range. This is because +the factor ph(1 − ph) comes into play as p(1 − p) does in TWR in Table 2 for +the one stratum case. +We also provide the sample standard deviation of the widths (width SD). In +general, the non-private method results in a smaller standard deviation than +the private ones. In some cases, clipping helps reduce the width SD for the +private algorithms. With the same privacy level, there is more fluctuation in +width for PopNz-PubSz compared to StrNz-PubSz. This is because we use one- +half of the privacy budget and directly add noise to the variance estimate. As +expected, StrNz-PrivSz has the largest width SD since the magnitude of width +is the largest and the ratio variable is heavy-tailed by design. Nevertheless, +compared to the width, the width SD for all methods is so small that it does +not compromise the effectiveness of the confidence interval. +5.2. Applications +In this section, we apply the proposed methods to the 1940 Census full enumer- +ation from IPUMS USA [35] and evaluate the performance of three differentially +private confidence intervals. To conduct stratified random sampling on the data +set, the state-level geographical variable “STATEICP” (49 categories, constitut- +ing the then-48 states and Washington, D.C.) is used for stratification. Under +stratified random sampling with H = 49 strata, we estimate the national un- +employment rate for the first application. In the second application, we are +interested in studying the discrepancy in income levels between black and white + +S. Lin et al./Differentially Private Confidence Intervals +21 +Table 4 +Simulation results under ρ = 1/n (or ρ = 1/ max(nh)) regime based on 10,000 repetitions. +The strata sizes and sampling rates are drawn as described in Table 3. For the multiple +strata case, the resulting sample sizes in nh range from 72 to 152, and ρ is set to be +1/152 ≈ 6.58 × 10−3. For the one-stratum case, we set the sample size to 152 so that we +have the same level of privacy. +Non-Private +StrNz-PubSz +PopNz-PubSz +StrNz-PrivSz +1 stratum, p = 0.5 +coverage +0.893 +0.901 +0.894 +0.901 +width +0.127 +0.228 +0.295 +0.327 +width SD +5.47 × 10−4 +9.85 × 10−4 +8.89 × 10−3 +3.15 × 10−2 +CI +(0.436, 0.564) +(0.386, 0.614) +(0.352, 0.648) +(0.34, 0.667) +WR +1 +1.786 +2.318 +2.567 +20 strata, p = 0.505 (ph ∼ Uniform(0.4, 0.6)) +coverage +0.902 +0.895 +0.902 +0.902 +width +0.035 +0.073 +0.043 +0.111 +width SD +1.08 × 10−4 +1.58 × 10−4 +5.87 × 10−4 +5.22 × 10−3 +CI +(0.488, 0.523) +(0.469, 0.542) +(0.483, 0.527) +(0.457, 0.568) +WR +1 +2.074 +1.239 +3.168 +20 strata, p = 0.103 (ph ∼ Uniform(0.05, 0.15)) +coverage +0.902 +0.919 +0.904 +0.899 +width +0.021 +0.067 +0.033 +0.096 +width SD +6.17 × 10−4 +5.21 × 10−4 +8.71 × 10−4 +3.94 × 10−3 +CI +(0.092, 0.113) +(0.073, 0.143) +(0.086, 0.119) +(0.072, 0.168) +WR +1 +3.189 +1.571 +4.563 +men. +5.2.1. Confidence Intervals for the Unemployment Rate +As an important indicator of the status of the national economy, the unem- +ployment rate is the percentage of unemployed workers in the total labor force +consisting of both the employed and unemployed. Thus, we consider all the indi- +viduals who are either employed or unemployed as the whole population. In the +1940 Census data set, the binary characteristic “EMPSTAT” represents employ- +ment status. The full enumeration is considered the truth and the true popula- +tion proportion is p = 9.346%. To carry out stratified random sampling, sample +sizes or sampling rates are selected for all 49 strata. For modern relevance, we +simulate in a manner intended to mimic the canonical design implemented in +the current American Community Survey (ACS), by choosing a typical range of +sampling rates used in ACS which is [0.5%, 15%]. See Table 5 for detail. + +S. Lin et al./Differentially Private Confidence Intervals +22 +Table 5 +Sampling rates +Stratum size +Sampling rate +nh ≤ 5 × 104 +15% +5 × 104 < nh ≤ 105 +10% +105 < nh ≤ 5 × 105 +5% +5 × 105 < nh ≤ 106 +2% +106 < nh ≤ 5 × 106 +1% +nh > 5 × 106 +0.5% +To apply and assess the proposed algorithms, we experiment with a wide +range of small privacy budgets: ρ ∈ [10−6, 10−3]. Each method is repeated 10,000 +times and the empirical coverage, the average CI width, and the average CI +width ratio (WR) are computed. As shown in Figure 3a, the empirical coverage +is always around the nominal level which is chosen at the level of 90% for the +whole range of privacy levels. In Figure 3b, the CI width and CI width ratio +with the non-private CI as the benchmark, share the same shape. Even when +the CI given by StrNz-PrivSz is 8 times the non-private CI width, the CI width +is only 0.01 due to the large sample size. Both CI width and width ratio should +be taken into account when choosing an optimal privacy level. +10 +6 +10 +5 +10 +4 +10 +3 +0.80 +0.85 +0.90 +0.95 +1.00 +Empirical coverage +Non-Private +PopNz-PubSz +StrNz-PubSz +StrNz-PrivSz +(a) Empirical coverage +10 +6 +10 +5 +10 +4 +10 +3 +0.00 +0.01 +0.02 +0.03 +Width +0 +5 +10 +15 +20 +25 +WR +Non-Private +PopNz-PubSz +StrNz-PubSz +StrNz-PrivSz +(b) Width and ratio +Fig 3: The empirical coverage and average width and width ratio of DP-CIs of the unemploy- +ment rate. +5.2.2. Confidence Intervals for the Difference in Income Level +In the second application, we want to investigate whether there was a discrep- +ancy between the income levels of white males (population 1) and that of black +males (population 2). Note that only those who had valid income numbers in +the 1940 Census are considered. Since the poverty thresholds were not devel- +oped until the 1960s and thus are not available for the 1940 data, the national + +S. Lin et al./Differentially Private Confidence Intervals +23 +income average is used as a threshold instead. We are interested in examining +the difference in subpopulation proportions of those whose income levels passed +this threshold. +The geographic feature “STATEICP” is used for stratification, yielding 49 +strata, with stratum size ranges of (41838, 4621442) for the population of white +males and (50, 309214) for the population of black males. Sampling rates are +adaptively chosen based on stratum sizes. For the population of white males, the +range of sampling rates is also [0.5%, 15%], whereas the range of sampling rates +is [0.5%, 30%] for the population of black males given its small stratum sizes. +Additionally, to allow solid approximations based on the asymptotic results, we +impose that the sample sizes are adjusted to be 50 if the sampling rates give +smaller sizes than 50. See Table 6 for detail. +Table 6 +Sampling rates for two populations. Stratum sizes nh ∈ (4.1 × 104, 4.7 × 106) for the +population of white males and stratum sizes nh ∈ (50, 3.1 × 105) for the population of black +males. *The sample size will be adjusted to be 50 if the above sampling rate results in a size +smaller than 50. +Stratum size Nh of white males +Sampling rate +Nh ≤ 5 × 104 +15% +5 × 104 < Nh ≤ 105 +10% +105 < Nh ≤ 5 × 105 +5% +5 × 105 < Nh ≤ 106 +2% +106 < Nh ≤ 4 × 106 +1% +Nh > 4 × 106 +0.5% +Stratum size Nh of black males +Sampling rate* +Nh ≤ 500 +30% +500 < Nh ≤ 5 × 103 +15% +5 × 103 < Nh ≤ 104 +5% +104 < Nh ≤ 2 × 104 +2% +2 × 104 < Nh ≤ 3 × 104 +1% +nh > 3 × 104 +0.5% +Let p1 and p2 denote the proportions of eligible individuals who earned more +than the national average income level $442.12. The true values of proportions +are p1 = 49.0223% and p2 = 29.5152%. Let pdiff = p1 − p2, then the true +difference in these two proportions is pdiff = 19.5071%. By the additivity of two +independent normal distributions, naturally, we use the following differentially +private CI: +˜pdiff + z1−α/2 +� +�V(˜pdiff), +(22) +where �V (·) denotes a private estimator of variance, ˜pdiff is defined as ˜p1 − ˜p2 +and +�V(pdiff) = �V(p1) + �V(p2). +In Figure 4, similar patterns are observed in this application as in the first. +All CIs have empirical coverage around/above the nominal confidence level as +in the simulation study in Section 5.1.2. The phenomenon of higher coverage +is due to small ρ and effective clipping. When the range of stratum sizes is +large (it is (50, 309214) in this application), that is, when the stratum sizes are +very different, a large privacy budget ρ should be chosen. The choice of a small +ρ harms the estimates of small-sized strata. We advise that the smallest ρ be +chosen given the tolerance of uncertainty in terms of width and/or width ratio. +For example, if the accuracy requirement is that the width should be under 0.05 +or WR under 5, then the best choices of ρ among the experiments in Figure 4b + +S. Lin et al./Differentially Private Confidence Intervals +24 +10 +4 +10 +3 +10 +2 +10 +1 +0.80 +0.85 +0.90 +0.95 +1.00 +Empirical coverage +Non-Private +PopNz-PubSz +StrNz-PubSz +StrNz-PrivSz +(a) Empirical coverage +10 +4 +10 +3 +10 +2 +10 +1 +0.00 +0.05 +0.10 +0.15 +0.20 +0.25 +0.30 +0.35 +Width +0 +5 +10 +15 +20 +25 +30 +WR +Non-Private +PopNz-PubSz +StrNz-PubSz +StrNz-PrivSz +(b) Width and ratio +Fig 4: The empirical coverage and average width and width ratio of DP-CIs of the difference of +the above-national-income-level proportions between black and white males with valid income +values. +are (1) 0.0001 for PopNz-PubSz, (2) 0.0018 for StrNz-PubSz, and (3) 0.0056 for +StrNz-PrivSz. +6. Discussion +We have designed three algorithms to construct confidence intervals for the +population proportion under stratified random sampling with zero concentrated +differential privacy guarantees. We consider both the case where the sample sizes +are public and the case where they are private information. Theoretical results +including privacy guarantees and asymptotic properties are established. With +proper conditions on the relation between the privacy budget and sample sizes, +as stated in the theorems, the resulting confidence intervals will achieve the +desired coverage asymptotically, and the width tends to be that of a non-private +confidence interval when the sample sizes go to infinity. +In the simulation studies and two applications, we have experimented with a +wide range of privacy budgets under a variety of parameter setups. The three +algorithms always perform well in terms of empirical coverage. The width and +width ratio are in a reasonable range even under the strict regime where ρ = +1/ maxh nh. Typically in practice, a constant between 0.001 to 10 is chosen to +be the privacy budget. According to our experiments, with the choice of the +smallest budget in this range, 0.001, the three algorithms still have fairly good +results even when the smallest stratum has only a size 50 (as demonstrated in +the second application). +The comparative analysis of the three algorithms in Section 4.2 gives ac- +tionable guidance to practitioners. When releasing the population proportion is +the only goal and there are enough strata (such that Eq.(20) regarding sam- + +S. Lin et al./Differentially Private Confidence Intervals +25 +ple weights is greater than 1), PopNz-PubSz is the better option. However, if +stratum proportions should also be released or there are just a few strata, StrNz- +PubSz is preferable. On the other hand, when the population proportion and +sample sizes must be protected simultaneously, StrNz-PrivSz is the only algo- +rithm presented in this paper. StrNz-PrivSz, compared to the case with public +sample sizes, needs a larger budget to meet the same width requirement on +account of the additional cost of protecting sample sizes. +There are a few open questions worth considering for future research. In +this paper, we discuss the case where the number of strata is fixed and the +sample sizes tend to infinity, we use the finite-population CLTs for each stra- +tum to derive an aggregated estimator. For the other case where the number +of stratum tends to infinity instead of sample sizes, one can apply the Linde- +berg–Lévy–Feller Theorem to obtain the asymptotic normality. More interest- +ingly, we do not provide ‘PopNz-PrivSz’ – an analogous algorithm to PopNz- +PubSz for the private sample sizes case. To protect both the population pro- +portion and the sample sizes, the direct addition of noise to the non-private +aggregated estimator is not plausible. One should consider more sophisticated +mechanisms other than directly adding noise to the statistics. If ‘PopNz-PrivSz’ +were proposed, we shall expect it to yield a narrower confidence interval since +we only need to publish the private population proportion without being able to +provide private confidence intervals for stratum proportions at the same time. +Another direction for future research would be optimal budget allocation. We do +not experiment with different ways to divide the total budget in PopNz-PubSz +or StrNz-PrivSz but simply split it up evenly. Budgeting for the composed ap- +plication of the algorithms may also be of interest, like in Section 5.2.2 where +we apply the algorithms twice for two independent populations. Lastly, one +broad direction is to develop the differentially private versions for other alter- +natives to the basic Wald interval, such as the Wilson Interval, Jeffreys interval, +etc.(see [21] for a comparative summary of seven such types of confidence inter- +vals for proportions). Many of these latter are specifically designed for the case +of small sample sizes, which we do not consider here and for which we expect +fundamentally different approaches to differential privacy likely to be necessary. +Appendix A: Proofs +A.1. Proof of Theorem 3.1 +Lemma A.1. Let X ∼ N(µ, σ2) and S = {µ − a ≤ X ≤ µ + a}. For any a > 0 +and an integer k ≥ 1, the conditional even moments +E[(X − µ)2k | S] = σ2k(2k − 1)!! − O +� +e− a2 +2σ2 a2k−1� +, +(23) +where the big-O hides a constant depending on σ and k. +Proof. Without loss of generality, we assume µ = 0. We prove the lemma by + +S. Lin et al./Differentially Private Confidence Intervals +26 +induction. Set k = 1, integrate by parts, +E[X2IS] = +� a +−a +x2 +1 +σ +√ +2π e− x2 +2σ2 dx += +σ +√ +2π +� +−xe− x2 +2σ2 ��a +−a + +� a +−a +e− x2 +2σ2 dx +� +. +Integrate by substitution, the integral in the second term becomes +� a +−a +e− x2 +2σ2 dx = σ +√ +2π erf +� +a +σ +√ +2 +� +where +erf(z) = σ +� z +0 +e−t2 dt +is the error function. Then, +E[X2IS] = σ2 erf +� +a +σ +√ +2 +� +− O +� +e− a2 +2σ2 a +� +. +Assuming +E[X2kIS] = σ2k(2k − 1)!! erf +� +a +σ +√ +2 +� +− O +� +e− a2 +2σ2 a2k−1� +, +(24) +then integrate by parts for the k + 1 case, +E[X2(k+1)IS] = +� a +−a +x2k+2 +1 +σ +√ +2π e− x2 +2σ2 dx += +σ +√ +2π +� a +−a +x2k+1 · x +σ2 e− x2 +2σ2 dx += +σ +√ +2π +� +−x2k+1e− x2 +2σ2 ��a +−a + (2k + 1) +� a +−a +x2ke− x2 +2σ2 dx +� += σ2(2k + 1)E[X2kIS] − O +� +e− a2 +2σ2 a2k+1� +. +Plug in (24), we obtain +E[X2(k+1)IS] = σ2k+2(2k + 1)!! erf +� +a +σ +√ +2 +� +− O +� +e− a2 +2σ2 a2k+1� +. +So far we have proved (24). Note that +Pr(S) = +� a +−a +1 +σ +√ +2π e− x2 +2σ2 dx = erf +� +a +σ +√ +2 +� +, +and that the image of erf(z) is between (−1, 1). Therefore, +E[X2k | S] = E[X2kIS]/ Pr(S) = σ2k(2k − 1)!! − O +� +e− a2 +2σ2 a2k−1� +. + +S. Lin et al./Differentially Private Confidence Intervals +27 +Proof of (12) in Theorem 3.1. Consider the Taylor series of 1 +x at x = µ: +1 +x = +∞ +� +j=0 +(−(x − µ))j +µj+1 += 1 +µ − x − µ +µ2 ++ (x − µ)2 +µ3 +− (x − µ)3 +µ4 ++ . . . +Let ym be the partial sum of the above series, i.e., ym(x) = �m +k=0 +(−(x−µ))k +µk+1 +. +Then ym(x) converges to 1 +x in (0, 2µ) which contains [1, 2µ − 1]. Let +g(x) = +∞ +� +k=0 +|x − µ|k +µk+1 += +� +1 +x, +if 1 ≤ x ≤ µ +1 +2µ−x +if µ < x ≤ 2µ − 1 +Then g is integrable as +� 2µ−1 +1 +|g(x)|dν = +� µ +1 +1 +xdν + +� 2µ−1 +µ +1 +2µ − xdν = 2 +� µ +1 +1 +xdν < ∞, +where dν = f(x)dx is induced by N(µ, σ2) conditional on event S. Note also +that |ym(x)| ≤ g(x) for any naturals m and x ∈ [1, 2µ − 1]. By the dominated +convergence theorem, the operations of limit and integral are exchangeable for +ym(x). +� 2µ−1 +1 +1 +xdν = +� 2µ−1 +1 +lim +m→∞ ym(x)dν += lim +m→∞ +� 2µ−1 +1 +ym(x)dν += lim +m→∞ +� 2µ−1 +1 +� +� +m +� +j=0 +(−(x − µ))j +µj+1 +� +� dν += lim +m→∞ +� +� +m +� +j=0 +� 2µ−1 +1 +(−(x − µ))j +µj+1 +dν +� +� +(25) +Then, +E +� 1 +X | S +� += +∞ +� +j=0 +1 +µj+1 E +� +(−(X − µ))j | S +� += +∞ +� +j=0 +1 +µ2j+1 E +� +(X − µ)2j | S +� += +k +� +j=0 +1 +µ2j+1 E +� +(X − µ)2j | S +� ++ 1 +µ +∞ +� +j=k+1 +E +��X − µ +µ +�2j +| S +� +. +(26) +The second equality is because the odd moments are zero due to symmetry. + +S. Lin et al./Differentially Private Confidence Intervals +28 +Note that given event S, | X−µ +µ | ≤ µ−1 +µ +< 1, then +E +��X − µ +µ +�2k+2 +| S +� +≤ +�µ − 1 +µ +�2 +E +��X − µ +µ +�2k +| S +� +. +(27) +It follows that +∞ +� +j=k+1 +E +��X − µ +µ +�2j +| S +� +≤ +∞ +� +j=0 +�µ − 1 +µ +�2j +E +��X − µ +µ +�2k+2 +| S +� += +µ2 +2µ − 1E +��X − µ +µ +�2k+2 +| S +� += O +� +1 +µ2k+1 +� +· E[(X − µ)2k+2 | S]. +Applying Lemma A.1, by the choice of a = µ − 1, (26) becomes +E +� 1 +X | S +� += 1 +µ +k +� +j=0 +(2j − 1)!!σ2j +µ2j ++ O +�σ2k+2 +µ2k+2 +� +. +Proof of (13) in Theorem 3.1. We conduct a similar procedure for the second +moment of X | S. Based on the Taylor expansion +1 +x2 = +∞ +� +j=0 +(j + 1)(−(x − µ))j +µj+2 += 1 +µ2 − 2(x − µ) +µ3 ++ 3(x − µ)2 +µ4 +− 4(x − µ)3 +µ5 ++ · · · , +we have +E +� 1 +X2 | S +� += +∞ +� +j=0 +j + 1 +µj+2 E +� +(−(X − µ))j | S +� += +∞ +� +j=0 +2j + 1 +µ2j+2 E +� +(X − µ)2j | S +� += +k +� +j=0 +2j + 1 +µ2j+2 E +� +(X − µ)2j | S +� ++ 1 +µ2 +∞ +� +j=k+1 +(2j + 1)E +��X − µ +µ +�2j +| S +� +. +(28) + +S. Lin et al./Differentially Private Confidence Intervals +29 +Due to (27), it follows that +∞ +� +j=k+1 +(2j + 1)E +��X − µ +µ +�2j +| S +� +≤ E +��X − µ +µ +�2k+2 +| S +� +· +∞ +� +j=0 +(2k + 3 + 2j) +�µ − 1 +µ +�2j += E +��X − µ +µ +�2k+2 +| S +� +· +� +�(2k + 3) +∞ +� +j=0 +�µ − 1 +µ +�2j ++ 2 +∞ +� +j=1 +j +�µ − 1 +µ +�2j +� +� += E +��X − µ +µ +�2k+2 +| S +� +· +�(2k + 3)µ2 +2µ − 1 ++ 2µ2(µ − 1)2 +(2µ − 1)2 +� += E +��X − µ +µ +�2k+2 +| S +� +· O(µ2) += O +� 1 +µ2k +� +· E[(X − µ)2k+2 | S], +(29) +where the term �∞ +j=1 j +� +µ−1 +µ +�2j +is a sum of an arithmetic–geometric sequence. +By Lemma A.1, (28) becomes +E +� 1 +X2 | S +� += 1 +µ2 +k +� +j=0 +(2j + 1)!!σ2j +µ2j ++ O +�σ2k+2 +µ2k+2 +� +. +(30) +A.2. Proof of Theorem 4.1 +Proof for Algorithm 1. Under neighboring relation ∼ss, only one record changes +within one stratum and sample sizes remain the same. Applying the Gaussian +mechanism to each stratum at the level of ρ gives ρ-zCDP guarantee. By post- +processing, the confidence interval is also ρ-zCDP. +Proof for Algorithm 2. The sensitivities of ˆp and � +Var(ˆp) are ∆p and ∆V , re- +spectively. Applying the Gaussian mechanism, it follows that ˜p is ρ1-zCDP and +�V is ρ2-zCDP. By basic composition, the confidence interval ˜p ± z1− α +2 +� +�V is +(ρ1 + ρ2)-zCDP. +Proof for Algorithm 3. By the Gaussian mechanism and the basic composition +property of zCDP, we know that ˜ph is ρ-zCDP. Under neighboring relation +∼r, only one record changes within one stratum. Then, by post-processing, the +confidence interval is ρ-zCDP. + +S. Lin et al./Differentially Private Confidence Intervals +30 +A.3. Proof of Theorem 4.2 +Before proving the theorem, we revisit the finite-population CLT first: +Theorem A.2 (Theorem 1, [32]). Consider a finite population Π = {X1, ..., XN} +of size N. Let µ be the population mean and ¯Xn be the mean of a simple ran- +dom sample of size n from Π, and Var( ¯Xn) is the variance of ¯Xn. The finite +population variance of Π is denoted by +v = +1 +N − 1 +N +� +i=1 +(Xi − µ)2. +As N → ∞, if +1 +min(n, N − n) · max1≤i≤N(Xi − µ)2 +v +→ 0, +(31) +we have +¯Xn − µ +� +Var( ¯Xn) +d→ N(0, 1). +(32) +The variance of ¯Xn is determined by the population variance v which is +unknown. Nevertheless, the sample variance � +Var( ¯Xn) can be used to estimate +v. To make sure the CLT still holds when substituting Var( ¯Xn) by � +Var( ¯Xn), +the consistency of � +Var( ¯Xn) is crucial, as stated in the following lemma. +Lemma A.3. Let � +Var( ¯Xn) be the sample variance. � +Var( ¯Xn) is an unbiased +estimator for Var( ¯Xn). Moreover, under the condition in Theorem A.2, as N → +∞, +� +Var( ¯Xn)/Var( ¯Xn) +p→ 1. +Now we prove Theorem 4.2: +Proof of Theorem 4.2. It suffices to show +˜ph−ph +√ +�Vh +d→ N(0, 1) for all h. By the +finite-population CLT in Theorem A.2, we know +ˆph − ph +� +Var(ˆph) +d→ N(0, 1). +Since ˜ph = ˆph + eh where eh ∼ N(0, +1 +2ρn2 +h ), we have +˜ph − ph +� +Var(˜ph) +d→ N(0, 1) +(33) +where +Var(˜ph) = Var(ˆph) + +1 +2ρn2 +h +. + +S. Lin et al./Differentially Private Confidence Intervals +31 +Let +�Vh = +�Nh − nh +Nh +� ˜ph(1 − ˜ph) + +1 +2ρn2 +h +nh − 1 ++ +1 +2ρn2 +h += � +Var(ˆph) + +�Nh − nn +Nh +� eh − 2˜pheh − e2 +h + +1 +2ρn2 +h +nh − 1 ++ +1 +2ρn2 +h +. +(34) +If +1 +ρnh → 0, we have eh +p→ 0 and then the second term of (34) is oP ( 1 +nh ). +Note that � +Var(ˆph) is of order +1 +nh , and that by Lemma A.3, � +Var(ˆph) +p→ Var(ˆph). +Therefore, �Vh +p→ Var(ˆph) + +1 +2ρn2 +h = Var(˜ph). Combining it with (33), we have +˜ph − ph +� +�Vh +d→ N(0, 1) +(35) +by Slutsky’s Theorem. Then, ˜p−p +√ +�V +d→ N(0, 1). Therefore, the confidence interval +given by p ± z1−α/2 +� +�V has asymptotic coverage level 1 − α. +Note that, under the condition +1 +ρnh → 0, it follows that +1 +2ρn2 +h = o(Var(ˆph)) +and hence �Vh +p→ Var(ˆph). Therefore, �V +p→ Var(ˆp). +A.4. Proof of Theorem 4.3 +Proof. Since +ˆp−p +√ +Var(ˆp) +d→ N(0, 1) and ˜p = ˆp+N(0, ∆2 +p/2ρ1) with ∆p = maxh +wh +nh , +it follows that +˜p − p +� +Var(˜p) +d→ N(0, 1), +and +Var(˜p) = Var(ˆp) + ∆2 +p +2ρ1 +. +In Algorithm 2, we set +�V = � +Var(ˆp) + ∆2 +p +2ρ1 ++ eV , +(36) +where eV ∼ N(0, ∆2 +V +2ρ2 ) with ∆V = maxh +� +Ch +nh +� +1 − +1 +nh +�� +and Ch = w2 +h +Nh−nh +Nh +1 +nh−1. +If +1 +ρ2nh → 0 for all h, then eV = oP ( 1 +nh ) for all h. Since � +Var(ˆp) +d→ Var(ˆp) by +finite-population CLT, we have �V +d→ Var(˜p). Therefore, by Slutsky’s Theorem, +˜p − p +� +�V +d→ N(0, 1). +(37) +Then, the confidence interval given by p ± z1−α/2 +� +�V has the asymptotic cov- +erage level 1 − α. In fact, �V +p→ Var(ˆp) if +1 +ρ1nh → 0 for all h since +∆2 +p +2ρ1 = +o(Var(ˆp)). + +S. Lin et al./Differentially Private Confidence Intervals +32 +A.5. Proof of Theorem 4.4 +Proof. For ˜n ∼ N(n, +1 +2ρ2 ), by Proposition 3.1, we derive the kth-order Taylor +series of the conditional expectation of ˜p given S = {1 ≤ ˜n ≤ 2n − 1}: +E (˜p | S) = p +k +� +j=0 +(2j − 1)!! +n2j(2ρ2)j + O +� +1 +n2k+1ρk+1 +2 +� +. +(38) +For example, when k = 2, +E (˜p | S) = p +� +1 + +1 +2n2ρ2 ++ +3 +4n4ρ2 +2 +� ++ O +� +1 +n5ρ3 +2 +� +. +(39) +To obtain a Taylor expansion for the conditional variance, we plug +E +� 1 +˜n | S +� += 1 +n +k +� +j=0 +(2j − 1)!! +n2j(2ρ2)j + O +� +1 +n2k+2ρk+1 +2 +� +and +E +� 1 +˜n2 | S +� += 1 +n2 +k +� +j=0 +(2j + 1)!! +n2j(2ρ2)j + O +� +1 +n2k+2ρk+1 +2 +� +into +Var(˜p | S) = E(˜p2 | S) − (E(˜p | S))2 = E˜c2E +� 1 +˜n2 | S +� +− (E(˜p | S))2, +by which we derive a general expansion for the conditional variance: +Var(˜p | S) = Var(ˆp) +k +� +j=0 +(2j + 1)!! +n2j(2ρ2)j + p2 +� +� +� +k +� +j=0 +(2j + 1)!! +n2j(2ρ2)j − +� +� +k +� +j=0 +(2j − 1)!! +n2j(2ρ2)j +� +� +2� +� +� ++ +1 +2ρ1 +k +� +j=0 +(2j + 1)!! +n2j+2(2ρ2)j + O +� +1 +n2kρk+1 +2 +� ++ O +� +1 +n2k+2ρ1ρk+1 +2 +� +. +(40) +When k = 2, +Var(˜p | S) = Var(ˆp) +� +1 + +3 +2n2ρ2 ++ +15 +4n4ρ2 +2 +� ++ p2 +� +1 +2n2ρ2 ++ +2 +n4ρ2 +2 +− +6 +8n6ρ3 +2 +− +9 +16n8ρ4 +2 +� ++ +1 +2ρ1 +� 1 +n2 + +3 +2n4ρ2 ++ +15 +4n6ρ2 +2 +� ++ O +� +1 +n4ρ3 +2 +� ++ O +� +1 +n6ρ1ρ3 +2 +� +. +(41) +Based on Taylor expansion with k = 2 for both conditional mean and variance +given in (39) and (41), under the condition +1 +ρ1n = o(1) and +1 +ρ2n = o(1), we have +E(˜p | S) = p + o +� 1 +n +� + +S. Lin et al./Differentially Private Confidence Intervals +33 +and +Var(˜p | S) = Var(ˆp) + o +� 1 +n +� +. +Then, ˜p | S is asymptotically unbiased. Note that Var(ˆp) is of order 1 +n and thus +˜p | S has a vanishing variance. Therefore, ˜p | S converges to p in probability. +Note also that Pr(S) → 1 as n → ∞, then for any ϵ > 0, +Pr(|˜p − p| > ϵ) = Pr(|˜p − p| > ϵ | S) + Pr(|˜p − p| > ϵ | Sc) → 0. +That is, ˜p is a consistent estimator for p. +A.6. Proof of Theorem 4.5 +To prove Theorem 4.5, we need the following theorem and lemmas. +Theorem A.4 (Theorem 1, [17]). Let X be a normal random variable with +positive mean µx, variance σ2 +x and coefficient of variation δx = σx/µx such that +0 < δx < λ ≤ 1, where λ is a known constant. For every ϵ > 0, there exists +γ(ϵ) ∈ (0, +� +λ2 − δ2x) and also a normal random variable Y independent of X, +with positive mean µy, variance σ2 +y and coefficient of variation δy = σy/µy that +satisfy the conditions, +0 < δy ≤ γ(ϵ) ≤ +� +λ2 − δ2x < λ +(42) +for which the following result holds. Any z that belongs to the interval +I = +� +β − σz +λ , β + σz +λ +� +, +where β = µx/µy, σz = β +� +δ2x + δ2y, satisfies that +|G(z) − FZ(z)| < ϵ, +where G(z) is the cumulative distribution function of N(β, σ2 +z), and FZ is that +of Z = X/Y . Note that once a given Y fulfills the closeness between the cor- +responding G to FZ , any other random variables with a smaller coefficient of +variation will satisfy this result too. +Lemma A.5. For a population of size N, let p be the true proportion in the +population with the attribute of interest. Consider simple random sampling with +sample size n. Let Z∗ ∼ N(p, V ) where V = +� +N−n +N−1 +� +p(1−p) +n ++ +1 +2ρ1n2 + +p2 +2ρ2n2 . If +ρ1 = ω(1/n2) and ρ2 = ω(1/n), as N − n and n both tend to infinity, then for +any z ∈ (0, 2p), +|F˜p(z) − FZ∗(z)| → 0. +(43) + +S. Lin et al./Differentially Private Confidence Intervals +34 +Proof. By the CLT in Theorem A.2, we know that ˆp ∼ AN(p, Var(ˆp)). Recall +that ˜c = nˆp + N(n, +1 +2ρ1 ), then ˜c ∼ AN(np, n2 Var(ˆp) + +1 +2ρ1 ). +Let ˜X ∼ AN(np, n2 Var(ˆp)+ 1 +2ρ1 ) and X ∼ N(np, n2 Var(ˆp)+ 1 +2ρ1 ). Therefore, +for any ϵ > 0, there exists some n0 = n0(ϵ) such that for any x and n > n0, +|F ˜ +X(x) − FX(x)| < ϵ, +(44) +where F denotes the cumulative density function. Let Y ∼ N(n, +1 +2ρ2 ), ˜Z = ˜X/Y +and Z = X/Y , then +F ˜ +Z(z) = Pr +� ˜X +Y < z +� += Pr( ˜X < Y z) = +� ∞ +−∞ +F ˜ +X(yz)fy(y)dy, +where fy(y) is the density function of Y . From (44), |F ˜ +X(yx) − FX(yx)| < ϵ. It +follows that, +� ∞ +−∞ +(FX(yx) − ϵ)fy(y)dy < +� ∞ +−∞ +F ˜ +X(yx)fy(y)dy < +� ∞ +−∞ +(FX(yx) + ϵ)fy(y)dy, +which is equivalent to +���� +� ∞ +−∞ +F ˜ +X(yx)fy(y)dy − +� ∞ +−∞ +FX(yx)fy(y)dy +���� < ϵ, +i.e., +|F ˜ +Z(z) − FZ(z)| < ϵ. +(45) +Let δx and δy be the coefficients of variation of X and Y , respectively, then +δ2 +x = (Var(ˆp) + +1 +2ρ1n2 )/p2 and δ2 +y = +1 +2ρ2n2 . Under the condition +1 +ρ1n = o(1), +we have δ2 +x = O( 1 +n) since Var(ˆp) = O( 1 +n). Under the condition +1 +ρ2n = o(1), +we know δ2 +y = o( 1 +n) and then δy = o(δx). When n is sufficiently large, δy is +sufficiently small. Let λ = +� +δ2x + 2δ2y and FZ∗(z) be the distribution function of +Z∗ ∼ N(p, Var(ˆp)+ +1 +2ρ1n2 + +p2 +2ρ2n2 ). By Lemma A.4, for a normal random variable +Y independent of X, with small enough δy, the condition (42) is satisfied and +we have +|FZ(z) − FZ∗(z)| < ϵ, +(46) +for any z ∈ I = +� +p − σz∗ +λ , p + σz∗ +λ +� +where σz∗ = p +� +δ2x + δ2y. Hence, for z ∈ I, +|F ˜ +Z(z) − FZ∗(z)| < |F ˜ +Z(z) − FZ(z)| + |FZ(z) − FZ∗(z)| < 2ϵ. +(47) +Note also that as n → ∞, σz∗ +λ +→ p, and the limit of I is (0, 2p). +So far, we have shown that as n goes to infinity, under the conditions +1 +ρ1n = +o(1) and +1 +ρ2n = o(1), for z ∈ Ih, +|F ˜ +Z(z) − FZ∗(z)| → 0. +(48) + +S. Lin et al./Differentially Private Confidence Intervals +35 +Lemma A.6. Let Z1, ..., ZH and Z∗ +1, ..., Z∗ +H be independent continuous random +variables which depend on n. Let F denote the distribution function. As n → ∞, +if +|FZh(z) − FZ∗ +h(z)| → 0 +holds for any h = 1, ..., H and z in an interval (ah, bh) and Pr(Zh ∈ (ah, bh)) → +1, Pr(Z∗ +h ∈ (ah, bh)) → 1. Then, +���F�H +h=1 chZh(z) − F�H +h=1 chZ∗ +h(z) +��� → 0 +for any z ∈ +��H +h=1 chah, �H +h=1 chbh +� +, where ch’s are constants. +Proof. It suffices to show that, for any z ∈ (a1c1 + a2c2, b1c1 + b2c2), +��Fc1Z1+c2Z2(z) − Fc1Z∗ +1 +c2Z∗ +2 (z) +�� → 0 +as n → ∞. We have +Fc1Z1+c2Z2(z) += Pr(c1Z1 + c2Z2 < z) += Pr +� +Z1 < z − c2Z2 +c1 +� += +� +R +FZ1 +�z − c2x +c1 +� +fZ2(x)dx += +� +R +� +FZ1 +�z − c2x +c1 +� +− FZ∗ +1 +�z − c2x +c1 +�� +fZ2(x)dx + +� +R +FZ∗ +1 +�z − c2x +c1 +� +fZ2(x)dx += +� +R +� +FZ1 +�z − c2x +c1 +� +− FZ∗ +1 +�z − c2x +c1 +�� +fZ2(x)dx + Fc1Z∗ +1 +c2Z2(z). +(49) +When a1 < (z − c2x)/c1 < b1, we know +����FZ1 +�z − c2x +c1 +� +− FZ∗ +1 +�z − c2x +c1 +����� → 0. +(50) +Since FZ1(b1) − FZ1(a1) → 1 and FZ∗ +1 (b1) − FZ∗ +1 (a1) → 1, for any a < a1, +it holds that FZ1(a) → 0 and FZ∗ +1 (a) → 0, and for any b > b1, FZ1(b) → 1 +and FZ∗ +1 (b) → 1. Thus, (50) also holds when (z − c2x)/c1 is outside (a1, b1). +Therefore, the first term of the right-hand side of (49) converges to 0. Then +��Fc1Z1+c2Z2(z) − Fc1Z∗ +1 +c2Z2(z) +�� → 0. +Similarly, we have +��Fc1Z∗ +1 +c2Z2(z) − Fc1Z∗ +1 +c2Z∗ +2 (z) +�� → 0. +By the triangle inequality, +��Fc1Z1+c2Z2(z) − Fc1Z∗ +1 +c2Z∗ +2 (z) +�� → 0. + +S. Lin et al./Differentially Private Confidence Intervals +36 +Proof of Theorem 4.5. By Lemma A.5, for each stratum, under the conditions +ρ1 = ω(1/nh) and ρ2 = ω(1/nh), the distribution function of ˜ph converges to +that of N(ph, Vh) in the interval (0, 2ph) where +Vh = +�Nh − nh +Nh − 1 +� ph(1 − ph) +nh ++ +1 +2ρ1n2 +h ++ +p2 +h +2ρ2n2 +h +. +(51) +Let p∗ ∼ N(p, V ) where V = �H +h=1 w2 +hVh. By Lemma A.6, in the interval (0, 2p), +we have +|F˜p(z) − Fp∗(z)| → 0. +(52) +where F˜p denotes the distribution function of ˜p designed in Algorithm 3 and +Fp∗ is the distribution function of p∗. +Let L = p − z1−α/2 +√ +V , U = p + z1−α/2 +√ +V , ˜L = p − z1−α/2 +� +�V and ˜U = +p + z1−α/2 +� +�V . Note that L and U are constants whereas ˜L and ˜U are random +variables. Provided that nh’s are sufficiently large, U and L lie in the interval +where the following hold due to (52), +|F˜p(U) − Fp∗(U)| → 0 +(53) +and +|F˜p(L) − Fp∗(L)| → 0. +(54) +On the other hand, by Theorems 3.1 and 4.4, we know that ˜ph +p→ ph and +1 +˜nh +p→ +1 +nh under the conditions ρ1 = ω(1/nh) and ρ2 = ω(1/nh). By the continuous +mapping theorem, �Vh +p→ Vh as nh → ∞, and, hence, �V +p→ V . Therefore, ˜U +p→ U +and ˜L +p→ L. Since F˜p is continuous, we have +|F˜p( ˜U) − F˜p(U)| +p→ 0 +(55) +and +|F˜p(˜L) − F˜p(L)| +p→ 0. +(56) +Therefore, +Pr +� +p ∈ +� +˜p − z1−α/2 +� +�V , ˜p + z1−α/2 +� +�V +�� += Pr +� +p − z1−α/2 +� +�V < ˜p < p + z1−α/2 +� +�V +� += +� +F˜p( ˜U) − F˜p(U) +� ++ (F˜p(U) − Fp∗(U)) +− +� +F˜p(˜L) − F˜p(L) +� +− (F˜p(L) − Fp∗(L)) + (Fp∗(U) − Fp∗(L)) . +Putting together (53) through (56) and Fp∗(U) − Fp∗(L) = 1 − α, we have +lim +n→∞ Pr +� +p ∈ +� +˜p − z1−α/2 +� +�V , ˜p + z1−α/2 +� +�V +�� +→ 1 − α. +Since +1 +˜nh +p→ +1 +nh , under the conditions ρ1 = ω(1/nh) and ρ2 = ω(1/nh), it +holds that +1 +2ρ1˜n2 +h = oP ( 1 +nh ) and +˜p2 +h +2ρ2˜n2 +h = oP ( 1 +nh ). Then �Vh +p→ Var(ˆph). Therefore, +�V +p→ Var(ˆp). + +S. Lin et al./Differentially Private Confidence Intervals +37 +Acknowledgments +We are grateful for helpful conversations with and comments from (in no partic- +ular order) Rolando Rodriguez, Brian Finley, Jörg Drechsler, Gary Benedetto, +Michael Freiman, and Justin Doty. This project was funded by the U.S. Census +Bureau cooperative agreements CB20ADR0160001. +References +[1] Abowd, J. M. (2016). The challenge of scientific reproducibility and pri- +vacy protection for statistical agencies. +[2] Brawner, T. and Honaker, J. (2018). Bootstrap Inference and Differ- +ential Privacy: Standard Errors for Free. Unpublished Manuscript. +[3] Bun, M. and Steinke, T. (2016). Concentrated Differential Privacy: Sim- +plifications, Extensions, and Lower Bounds. ArXiv abs/1605.02065. +[4] Bureau, U. S. C. (2020). Disclosure Avoidance for the 2020 Census: An +Introduction. +[5] Cai, T. T., Wang, Y. and Zhang, L. (2021). The cost of privacy: Optimal +rates of convergence for parameter estimation with differential privacy. The +Annals of Statistics 49 2825–2850. +[6] Covington, C., He, X., Honaker, J. and Kamath, G. (2021). Unbiased +Statistical Estimation and Valid Confidence Intervals Under Differential +Privacy. ArXiv abs/2110.14465. +[7] Ding, B., Kulkarni, J. and Yekhanin, S. (2017). Collecting Teleme- +try Data Privately. In Advances in Neural Information Processing Systems +30: Annual Conference on Neural Information Processing Systems 2017, +December 4-9, 2017, Long Beach, CA, USA 3571–3580. +[8] D’Orazio, V., Honaker, J. and King, G. (2015). Differential Privacy +for Social Science Inference. ERN: Other Econometrics: Econometric & +Statistical Methods (Topic). +[9] Drechsler, J., Globus-Harris, I., Mcmillan, A., Sarathy, J. and +Smith, A. (2022). Nonparametric Differentially Private Confidence Inter- +vals for the Median. Journal of Survey Statistics and Methodology 10 804- +829. +[10] Du, W., Foot, C., Moniot, M., Bray, A. and Groce, A. (2020). +Differentially Private Confidence Intervals. ArXiv abs/2001.02285. +[11] DuMouchel, D. G. J. William H. (1983). Using Sample Survey Weights +in Multiple Regression Analyses of Stratified Samples. Journal of the Amer- +ican Statistical Association 78 535–543. +[12] Dwork, C. and Lei, J. (2009). Differential privacy and robust statistics. +In Proceedings of the forty-first annual ACM symposium on Theory of com- +puting 371–380. +[13] Dwork, C., McSherry, F., Nissim, K. and Smith, A. (2006). Calibrat- +ing noise to sensitivity in private data analysis. In Theory of cryptography +conference 265–284. Springer. + +S. Lin et al./Differentially Private Confidence Intervals +38 +[14] Dwork, C. and Roth, A. (2014). The algorithmic foundations of differ- +ential privacy. Foundations and Trends® in Theoretical Computer Science +9 211–407. +[15] Dwork, C. and Rothblum, G. N. (2016). Concentrated Differential Pri- +vacy. CoRR abs/1603.01887. +[16] Dwork, C. and Smith, A. (2009). Differential privacy for statistics: What +we know and what we want to learn. Journal of Privacy and Confidentiality +1. +[17] Díaz-Francés, E. and Rubio, F. (2013). On the existence of a normal +approximation to the distribution of the ratio of two independent normal +random variables. Statistical Papers 54. +[18] Erdös, P. and Rényi, A. (1959). On the Central Limit Theorem for Sam- +ples From a Finite Population. Publications of the Mathematical Institute +of the Hungarian Academy of Sciences 4 49–61. +[19] Erlingsson, U., Pihur, V. and Korolova, A. (2014). RAPPOR: Ran- +domized Aggregatable Privacy-Preserving Ordinal Response. In Proceed- +ings of the 2014 ACM SIGSAC Conference on Computer and Communica- +tions Security. CCS ’14 1054–1067. Association for Computing Machinery, +New York, NY, USA. +[20] Ferrando, C., Wang, S. and Sheldon, D. (2022). Parametric Bootstrap +for Differentially Private Confidence Intervals. In AISTATS. +[21] Franco, C., Little, R. J. A., Louis, T. A. and Slud, E. V. (2019). +Comparative Study of Confidence Intervals for Proportions in Complex +Sample Surveys. Journal of survey statistics and methodology 7 3 334-364. +[22] Gaboardi, M., Rogers, R. M. and Sheffet, O. (2019). Locally +Private Mean Estimation: Z-test and Tight Confidence Intervals. ArXiv +abs/1810.08054. +[23] Groshen, E. L. and Goroff, D. (2022). Disclosure Avoidance and the +2020 Census: What Do Researchers Need to Know? Harvard Data Science +Review Special Issue 2. +[24] Hájek, J. (1960). Limiting distributions in simple random sampling from +a finite population. Magyar Tud. Akad. Mat. Kutató Int. Közl. 5 361–374. +[25] Hayya, J., Armstrong, D. and Gressis, N. (1975). A Note on the Ra- +tio of Two Normally Distributed Variables. Management Science 21 1338- +1341. +[26] Karwa, V. and Vadhan, S. (2017). Finite sample differentially private +confidence intervals. CoRR abs/1711.03908. +[27] Kifer, D. and Machanavajjhala, A. (2011). No free lunch in data pri- +vacy. In ACM SIGMOD Conference. +[28] Kroll, M. (2021). On density estimation at a fixed point under local +differential privacy. Electronic Journal of Statistics 15 1783 – 1813. +[29] Kuethe, D., Caprihan, A., Gach, H., Lowe, I. and Fukushima, E. +(2000). Imaging obstructed ventilation with NMR using inert fluorinated +gases. Journal of applied physiology (Bethesda, Md. : 1985) 88 2279-86. +[30] Lam-Weil, J., Laurent, B. and Loubes, J.-M. (2022). Minimax op- +timal goodness-of-fit testing for densities and multinomials under a local + +S. Lin et al./Differentially Private Confidence Intervals +39 +differential privacy constraint. Bernoulli 28 579 – 600. +[31] Lehmann, E. L., ed. (1999). Elements of Large-Sample Theory. Springer +New York, New York, NY. +[32] Li, X. and Ding, P. (2017). General Forms of Finite Population Cen- +tral Limit Theorems with Applications to Causal Inference. Journal of the +American Statistical Association 112 1759-1769. +[33] Marsaglia, G. (2006). Ratios of Normal Variables. Journal of Statistical +Software 16 1–10. +[34] Pfeffermann, D. (1993). The Role of Sampling Weights When Modeling +Survey Data. International Statistical Review 61 317–37. +[35] Ruggles, S., Flood, S., Goeken, R., Grover, J., Meyer, E., +Pacas, J. and Sobek, M. (2018). IPUMS USA: Version 8.0 Extract of 1940 +Census for U.S. Census Bureau Disclosure Avoidance Research [dataset]. +Minneapolis, MN: IPUMS. +[36] Smith, A. D. (2009). Asymptotically Optimal and Private Statistical Es- +timation. In Cryptology and Network Security, 8th International Confer- +ence, CANS 2009, Kanazawa, Japan, December 12-14, 2009. Proceedings +(J. A. Garay, A. Miyaji and A. Otsuka, eds.). Lecture Notes in Com- +puter Science 5888 53–57. Springer. +[37] Team, A. D. P. (2017). Learning with Privacy at Scale. +[38] Thompson, M. E. (1997). Theory of Sample Surveys. Monographs on +Statistics and Applied Probability. Springer US. +[39] van Erven, T. and Harremos, P. (2014). Rényi Divergence and +Kullback-Leibler Divergence. IEEE Transactions on Information Theory +60 3797-3820. +[40] Wang, Y., Kifer, D. and Lee, J. (2019). Differentially Private Confi- +dence Intervals for Empirical Risk Minimization. J. Priv. Confidentiality +9. +[41] Wasserman, L. and Zhou, S. (2010). A Statistical Framework for Dif- +ferential Privacy. Journal of the American Statistical Association 105 375- +389. + diff --git a/btE_T4oBgHgl3EQfzhyy/content/tmp_files/load_file.txt b/btE_T4oBgHgl3EQfzhyy/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..621a291d866f8922532794ad2d16785c09b75c71 --- /dev/null +++ b/btE_T4oBgHgl3EQfzhyy/content/tmp_files/load_file.txt @@ -0,0 +1,2100 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf,len=2099 +page_content='Differentially Private Confidence Intervals for Proportions under Stratified Random Sampling∗ Shurong Lin Department of Mathematics and Statistics, Boston University, Boston, MA e-mail: shrlin@bu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='edu Mark Bun and Marco Gaboardi Department of Computer Science, Boston University, Boston, MA e-mail: mbun@bu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='edu;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' gaboardi@bu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='edu Eric D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Kolaczyk Department of Mathematics and Statistics, McGill University, Canada e-mail: eric.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='kolaczyk@mcgill.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='ca Adam Smith Department of Computer Science, Boston University, Boston, MA e-mail: ads22@bu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='edu Abstract: Confidence intervals are a fundamental tool for quantifying the uncertainty of parameters of interest.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' With the increase of data privacy awareness, developing a private version of confidence intervals has gained growing attention from both statisticians and computer scientists.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Differ- ential privacy is a state-of-the-art framework for analyzing privacy loss when releasing statistics computed from sensitive data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Recent work has been done around differentially private confidence intervals, yet to the best of our knowledge, rigorous methodologies on differentially private confi- dence intervals in the context of survey sampling have not been studied.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' In this paper, we propose three differentially private algorithms for construct- ing confidence intervals for proportions under stratified random sampling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' We articulate two variants of differential privacy that make sense for data from stratified sampling designs, analyzing each of our algorithms within one of these two variants.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' We establish analytical privacy guarantees and asymptotic properties of the estimators.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' In addition, we conduct simula- tion studies to evaluate the proposed private confidence intervals, and two applications to the 1940 Census data are provided.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' MSC2020 subject classifications: Primary 68P27, 62G15;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' secondary 62Dxx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Keywords and phrases: Differential privacy, confidence intervals, strat- ified sampling, population proportion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' ∗The research presented in this paper was supported by the U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Census Bureau Cooper- ative Agreement CB20ADR0160001.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' 1 arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='08324v1 [stat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='ME] 19 Jan 2023 S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Lin et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='/Differentially Private Confidence Intervals 2 Contents 1 Introduction .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' 2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='1 Related Work .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' 4 2 Preliminaries .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' 4 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='1 Confidence Intervals for the Population Proportion .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' 5 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='2 Differential Privacy .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' 5 3 Methodology .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' 7 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='1 Estimating with Public Sample Sizes .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' 7 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='1 Adding Noise at the Stratum Level .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' 8 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='2 Adding Noise at the Population Level .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' 8 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='2 Estimating with Private Sample Sizes .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' 10 4 Theoretical Results .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' 13 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='1 Privacy and Coverage Guarantees .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' 13 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='2 Comparisons of Variances .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' 15 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='1 Extrinsic Variances .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' 15 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='2 Comparing with Non-Private CI: One Stratum Case .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' 16 5 Numerical Results .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' 17 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='1 Simulations .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' 17 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='1 Normality Check .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' 18 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='2 Varying Key Parameters .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' 18 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='2 Applications .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' 20 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='1 Confidence Intervals for the Unemployment Rate .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' 21 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='2 Confidence Intervals for the Difference in Income Level .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' 22 6 Discussion .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' 24 A Proofs .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' 25 A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='1 Proof of Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' 25 A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='2 Proof of Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' 29 A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='3 Proof of Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' 30 A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='4 Proof of Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='3 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' 31 A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='5 Proof of Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='4 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' 32 A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='6 Proof of Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='5 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' 33 Acknowledgments .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' 37 References .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' 37 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Introduction With the increase of privacy awareness in the modern information era, estab- lishing privacy-preserving methodologies for statistics and machine learning has become an active research area.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Differential privacy, a state-of-the-art privacy protection technique [13], is considered a gold standard for rigorous privacy guarantees.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Not only has it drawn significant attention in academia [14, 15], but also it has been deployed by governments, firms, and other data agencies, such S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Lin et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='/Differentially Private Confidence Intervals 3 as the U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Census Bureau [1], Google [19], Microsoft [7], and Apple [37].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Re- cently, the U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Census Bureau released a new demonstration of its differentially private Disclosure Avoidance System (DAS) for the 2020 Census [4, 23].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Simply put, a differentially private mechanism guarantees privacy via care- fully injecting random noise (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=', drawn from the Laplace or Gaussian dis- tribution) into the data analysis or modeling procedure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' At the intersection of differential privacy and statistics, both statisticians and computer scientists are working on developing private versions of statistical inference procedures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Early work discussing differential privacy in the context of statistics includes [16, 12, 41, 36].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' More recent work has explored statistical inference and estima- tion under the constraint of differential privacy [5, 28, 30].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' As one of the most fundamental tools for statistical inference, confidence in- tervals are ubiquitous in quantifying the uncertainty of parameters of interest.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' In this paper, we propose three differentially private algorithms for constructing confidence intervals for the population proportion under stratified random sam- pling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' To the best of our knowledge, our work is the first to establish rigorous methodologies on differentially private confidence intervals in the context of sur- vey sampling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Survey sampling is an important area in statistics that involves selecting a sample of individuals from a target population to conduct a survey.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' It provides timely and cost-efficient estimates of population characteristics of interest and is widely used in broad-scale data gatherings, such as the American Community Survey (ACS), the Survey of Income and Program Participation (SIPP), and the Current Population Survey (CPS).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' This paper provides the first study of differentially private confidence intervals for data from stratified sampling designs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Specifically: We articulate two specific variants of differential privacy that are appropri- ate for data from stratified sampling designs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' In addition to the standard notion of differential privacy, we also consider settings in which the sample stratum sample sizes are fixed and public.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' This latter setting allows for simpler algorithms and tighter confidence intervals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' We give methods to propagate the uncertainty due to the application of differentially private mechanisms (adding random noise) into the construc- tion of confidence intervals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' A necessary bias correction is made to achieve (asymptotic) unbiased variance estimates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Central limit theorem (CLT)- type statements are provided to guarantee the confidence level asymptot- ically.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' We assess the performance of the proposed algorithms both in theory and through simulations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' The theoretical analysis comparing the non-private and private methods gives practitioners a sense of how the algorithms would work prior to applying them to real data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' To support the theoretical analysis of one of the algorithms, we study the behavior of a reciprocal normal variable in depth.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' A general form of the Taylor expansion (for conditional moments) is obtained to solve the problem of the non-existence of moments due to its heavy-tailed nature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' The paper is organized as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' We briefly discuss the existing work on S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Lin et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='/Differentially Private Confidence Intervals 4 differentially private confidence intervals in Section 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Section 2 provides pre- liminaries on confidence intervals of population proportions and differential pri- vacy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' In Section 3, we discuss the methodology of three differentially private algorithms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Section 4 provides theorems on both privacy and asymptotic cov- erage guarantees.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Numerical experiments, including simulation studies and two applications to the 1940 Census data, are conducted in Section 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Section 6 discusses the implications of our methods and general research directions on differentially private confidence intervals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Related Work Differentially private confidence intervals have recently been studied for other settings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Some studied differentially private confidence intervals for the popula- tion mean of normally distributed data [26, 10, 22] .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Other tasks on confidence intervals have also been explored.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Drechsler et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' designed and evaluated sev- eral strategies to obtain differentially private confidence intervals for the median [9].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Wang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' provided confidence intervals for differentially private models trained with objective or output perturbation algorithms [40].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Besides, bootstrapping is a popular technique for constructing more general differentially private confidence intervals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Ferrando et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' proposed a general- purpose approach to construct confidence intervals for a population parameter [20].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' A numerical confidence interval for the difference of mean was provided [8].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' The nonparametric bootstrap was considered in [2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Covington et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' described a method to induce distributions of mean and covariance estimates via the bag of little bootstraps (BLB), which can further produce private confidence intervals [6].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Our work is the first to study design-based approaches to sampling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' In a design-based setting, the values of interest are viewed as fixed but unknown con- stants.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Randomness only comes from the sampling design.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' The selection proba- bilities introduced with the design will be used for estimation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' On the contrary, in a model-based setting, a parametric model is postulated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Design-based meth- ods in sampling can be more reassuring than model-based approaches for the reason that in many cases, no accurate prior information about the population distribution is available.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' More discussion of design-based versus model-based approaches in sampling can be found in [38].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Preliminaries In this section, we provide some preliminaries on population proportion estima- tion and differential privacy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' We first review the classic Wald confidence interval for the population proportion under stratified random sampling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Then we define a notion of differential privacy specifically for stratified data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Some properties of differential privacy are revisited in preparation for the theoretical analysis in Section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Lin et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='/Differentially Private Confidence Intervals 5 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Confidence Intervals for the Population Proportion In stratified random sampling, a population of N individuals is partitioned into H strata, where stratum h has Nh individuals, and simple random sampling of nh individuals is conducted within each stratum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' When the objective is to estimate the proportion of individuals having some attribute in the population, one can estimate it by the sample proportion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Let yhi be the corresponding indicator variable: yhi = 1 when the individual i in stratum h has the attribute and yhi = 0 otherwise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' One can estimate the population proportion p = 1 N H � h=1 Nh � i=1 yhi by the sample proportion ˆp = 1 N H � h=1 Nh nh nh � i=1 yhi = H � h=1 whˆph where wh def = Nh N and ˆph def = 1 nh nh � i=1 yhi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Its variance Var(ˆp) = H � h=1 w2 hVar(ˆph), where Var(ˆph) = �Nh − nh Nh − 1 � ph(1 − ph) nh .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' An unbiased estimator for Var(ˆph) is given by the sample variance in the stratum � Var(ˆph) = �Nh − nh Nh � ˆph(1 − ˆph) nh − 1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' (1) Then an unbiased estimator for Var(ˆp) is given by � Var(ˆp) = H � h=1 w2 h� Var(ˆph).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' An approximate 100%(1−α) confidence interval for p based on a normal distribution can be constructed: ˆp ± z1− α 2 � � Var(ˆp), (2) where z1− α 2 denotes the 1 − α 2 quantile of standard normal distribution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' The normal approximation is useful when all the sample sizes are moderate to large.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Otherwise, the t distribution with appropriate degrees of freedom is typically used to replace the standard normal distribution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' For small sample sizes, various specialized confidence intervals have been developed [21].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Differential Privacy Differential privacy ensures that the output of data analysis or a query does not differ much when the data set is changed by one record, such that one can not S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Lin et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='/Differentially Private Confidence Intervals 6 infer the presence or absence of any individual.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' If two data sets x, x′ differ by one record, we say that x, x′ are adjacent or neighboring, written as x ∼ x′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' The definition of differential privacy depends on how we define adjacency.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' For the partitioned data under stratified sampling, there are two ways to change a record: (1) one way is to substitute one record within a stratum, with all the stratum sample sizes fixed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' We refer to this adjacency relation as “substitute-one relation within a stratum” and denote it by ∼ss.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' This relation corresponds to the case where the sample sizes are public and fixed;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' (2) another way to obtain an adjacent data set is to remove or add one record from one stratum;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' we refer to the corresponding relation as, which we call “remove/add-one relation”, denoted by ∼r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' In this case, one of the stratum sample sizes will change by one, as will the overall sample size.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' This relation corresponds to the case where the sample sizes are private.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Under either adjacency relation, we can define zero-concentrated differentially private (ρ-zCDP) as in [3]: Definition 1 (ρ-zCDP).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Let X ∗ denote the space of the input data with an arbitrary finite dimension.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Under the adjacency relation ∼, a randomized algo- rithm M : X ∗ → Y is ρ-zero-concentrated-differentially private (ρ-zCDP) if, for every pair of adjacent data sets x ∼ x′ ∈ X ∗, and all α ∈ (1, ∞), Dα(M(x)∥M(x′)) ≤ ρα, where Dα(M(x)∥M(x′)) is the α-Rényi divergence [39] between the distribution of M(x) and the distribution of M(x′).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' The parameter ρ indicates the privacy level.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' A smaller ρ means a more re- strictive distance control between M(x) and M(x′).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' As a result, the outputs on two adjacent data sets are harder to tell apart and the algorithm achieves higher privacy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' We call ρ the privacy budget when we deliberately design an algorithm to satisfy ρ-zCDP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Depending on the adjacency notion, there are two types of differential pri- vacy: bounded and unbounded differential privacy [27].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Definition 1 under the “remove/add-one relation” corresponds to the standard unbounded differential privacy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' The sample size of the data set changes when one record is added or removed to obtain an adjacent data set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' With “substitute-one within a stratum” relation ∼ss, the resulting notion corresponds to the bounded version of differ- ential privacy where the sizes of two adjacent data sets are the same.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' But it is somewhat different from the standard notion of bounded differential privacy in that for the latter, substitutions can happen across strata.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' That is, we can change both the record and the stratum it is part of.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' In the literature on differential privacy, (ϵ, δ)-DP ([14] Definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='4) is con- sidered the classic notion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' We consider ρ-zCDP because (1) ρ-zCDP implies (ϵ, δ)-DP ([3] Proposition 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='3), (2) the application of the Gaussian mechanism to achieve zCDP facilitates the theoretical analyses, and (3) the composition of ρ-zCDP is straightforward.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' The Gaussian mechanism is a prototypical exam- ple of a mechanism satisfying zCDP, which perturbs the true values by adding S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Lin et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='/Differentially Private Confidence Intervals 7 Gaussian noise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' We provide the Gaussian mechanism and the composition and post-processing properties of ρ-zCDP in the following propositions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' All proposi- tions can be found in [3] and will be used in the analyses of privacy guarantees in Section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Definition 2 (Sensitivity).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' A function q: X ∗ → R has sensitivity ∆ if for all pairs of adjacent data sets x ∼ x′ ∈ X ∗, we have |q(x) − q(x′)| ≤ ∆.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Proposition 1 (Gaussian Mechanism of ρ-zCDP).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Let q : X ∗ → R be a sensitivity-∆ query.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Consider the mechanism M : X ∗ → R that on input x, releases a sample from N(q(x), ∆2/(2ρ)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Then, M satisfies ρ-zCDP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' A smaller budget leads to larger noise added to the query on average.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Con- sequently, the output is more private.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Proposition 2 (Composition).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Let M : X ∗ → Y and M ′ : X ∗ → Z be two randomized algorithms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Suppose M satisfies ρ-zCDP and M ′ satisfies ρ′-zCDP, then algorithm M ′′ = (M, M ′) : X ∗ → Y × Z is (ρ + ρ′)-zCDP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Proposition 3 (Post-processing).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Let M : X ∗ → Y and f : Y → Z be randomized algorithms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' If M is ρ-zCDP, then so is the composed algorithm M ′ = f ◦ M : X ∗ → Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Methodology Our goal is to release a ρ-zCDP confidence interval for the population proportion p under stratified random sampling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' To construct a confidence interval as in (2), we need to estimate both p and the variance of the estimator privately.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Recall that the non-private estimator of population proportion is given by the sample proportion ˆp = H � h=1 whˆph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' We assume the stratum sizes Nh are all public and fixed, thus so are wh.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' To get a private estimator for p, denoted by ˜p, we can add noise at the level of either the (non-private) estimator ˆp or the estimator ˆph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' With ˜p, we further devise a private estimator for Var(˜p).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Based on this idea, two algorithms for the case of public sample sizes are designed by adding noise at the stratum or population level in section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' In section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='2, we additionally propose adding noise at the stratum level when sample sizes are private.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Throughout the paper, the accents ˆ· and ˜· are used to represent non-private and private estimators, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Estimating with Public Sample Sizes When sample sizes nh are fixed, there are two natural strategies for perturbing ˆp: add Gaussian noise to (1) the stratum-level statistics ˆph’s, or (2) the overall statistic ˆp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Adding noise to the ˆph’s has the advantage of producing private estimators for stratum-level proportions simultaneously.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Lin et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='/Differentially Private Confidence Intervals 8 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Adding Noise at the Stratum Level We apply the Gaussian mechanism to each stratum to derive a private estimator ˜ph def = ˆph + eh where eh is the Gaussian noise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Then the private estimator for the population proportion is ˜p def = H � h=1 wh˜ph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' As a result, the variance of ˜p consists of both the intrinsic variances of estimating ph’s by ˆph’s and the additional variability from added noise: Var(˜p) = H � h=1 w2 h � Var(ˆph) + w2 h Var(eh) � (3) where Var(eh), h = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=', H are public since they do not depend on the data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' To obtain a private confidence interval for ˆp, we will need to privately estimate Var(ˆph).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Note that the added noise biases the term ˆph(1− ˆph) in the non-private estimate of Var(ˆph) in (1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' More specifically, Ee[˜ph(1−˜ph)] = ˆph(1−ˆph)−Var(eh) where Ee denotes the expectation taken on the randomness of the added noise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Then a private unbiased estimator of Var(ˆph) in the right-hand side in (3) is given by � Var(ˆph) def = �Nh − nh Nh � ˜ph(1 − ˜ph) + Var(eh) nh − 1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' (4) To estimate Var(˜p), we set � Var(˜p) def = H � h=1 w2 h � � Var(ˆph) + Var(eh) � This approach is formulated in Algorithm 1 which we call StrNz-PubSz (adding noise at the stratum level with public sample sizes).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' The theoretical results re- garding privacy level and asymptotic coverage are provided in Theorems 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='1 and 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Adding Noise at the Population Level An alternative strategy is to directly add noise to the non-private estimator of p, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=', ˆp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' The sensitivity of ˆp is ∆p = max h wh nh .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Since wh and nh are public, ∆p can be made public.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' We set ˜p = ˆp + e where e is the Gaussian noise with standard deviation proportional to ∆p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Then, the variance of ˜p becomes Var(˜p) = Var(ˆp) + Var(e).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' (5) S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Lin et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='/Differentially Private Confidence Intervals 9 Algorithm 1 Adding noise at the stratum level with public sample sizes, StrNz- PubSz Input: ˆph, nh, Nh, wh, ρ, α.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Output: ρ-zCDP (1 − α) CI for the population proportion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' 1: for h = 1 to H do 2: Generate Gaussian noise eh ∼ N(0, 1 2ρn2 h ), and let ˜ph ← ˆph + eh.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' 3: Estimate Var(˜ph) by �Vh ← � Nh − nh Nh � ˜ph(1 − ˜ph) + 1 2ρn2 h nh − 1 + 1 2ρn2 h .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' 4: end for 5: Estimate p by ˜p ← H � h=1 wh ˜ph and Var(˜p) by �V ← H � h=1 w2 h �Vh.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' 6: Return ˜p ± z1−α/2 � �V , where z1−α/2 is the (1 − α/2)-quantile of the standard normal distribution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Recall that � Var(ˆp) = H � h=1 w2 h �Nh − nh Nh � ˆph(1 − ˆph) nh − 1 is an unbiased estimator for Var(ˆp).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' To get a private estimator for Var(˜p), we again apply the Gaussian mechanism to � Var(ˆp) based on the sensitivity of Var(ˆp): ∆V = max h �Ch nh � 1 − 1 nh �� , where Ch = w2 h Nh−nh Nh 1 nh−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Since we apply the Gaussian mechanism twice, the total privacy budget should be divided into two parts: ρ = ρ1 + ρ2 to spend on adding noise to ˆp and Var(ˆp), respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' The composition property (Proposition 2) ensures the total privacy level is ρ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' The resulting algorithm, PopNz-PubSz, is presented in Algorithm 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Remark 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' When there are multiple strata with similar sampling rates, Algo- rithm 1 yields a wider confidence interval for p than Algorithm 2 does, given the same privacy budget.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' However, Algorithm 1 additionally produces private confi- dence intervals for ˆph which may be of interest for release.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' In Section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='1, we compare the two algorithms quantitatively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Remark 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Proportions are always between 0 and 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' One can post-process proportion estimates (˜ph in Algorithm 1 and ˜p in Algorithm 2) by clipping them onto interval [0,1] without undermining privacy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' When the privacy budget is very small, the noisy proportion estimates are likely to lie outside [0,1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Thus, clipping moves the confidence interval toward the truth and a higher coverage S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Lin et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='/Differentially Private Confidence Intervals 10 Algorithm 2 Adding noise at the population level with public sample sizes, PopNz-PubSz Input: ˆp, ˆph, nh, Nh, wh, ρ, α.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Output: A ρ-zCDP (1 − α) CI for Population Proportion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' 1: Split the budget ρ = ρ1 + ρ2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Let ρ1 = ρ2 if not specified otherwise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' 2: Generate noise e ∼ N(0, ∆2 p 2ρ1 ) where ∆p = maxh wh nh and let ˜p ← ˆp + e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' 3: Generate noise eV ∼ N(0, ∆2 V 2ρ2 ) where ∆V = maxh � Ch nh � 1 − 1 nh �� and Ch = w2 h Nh−nh Nh 1 nh−1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Let �V ← H � h=1 w2 h � Nh − nh Nh � ˆph(1 − ˆph) nh − 1 + ∆2 p 2ρ1 + eV .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' 4: Return ˜p ± z1−α/2 � �V , where z1−α/2 is the (1 − α/2)-quantile of the standard normal distribution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' rate will be observed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' With a moderate or large budget, clipping does not make a noticeable difference.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Lastly, one can always clip the output confidence intervals onto [0,1] without privacy loss.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Estimating with Private Sample Sizes When sample sizes are public information, keeping the proportions private is es- sentially protecting only the numerator (the counts of individuals with y = 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' In some cases where subpopulation proportions also need to be estimated, Al- gorithms 1 and 2 with public sample sizes can lead to privacy leakage since the counts become the denominator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Therefore, a method of constructing confidence intervals for proportions to keep both the counts and sample sizes private is nec- essary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' We protect the sample sizes by adding noise to them.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' As a result, sample sizes are not fixed and therefore we need the unbounded notion of differential privacy with the adjacency relation ∼r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' In the following, we extend Algorithm 1 to serve the needs of privacy protection of sample sizes by adding noise at the stratum level.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' (It is not obvious how to extend Algorithm 2, which adds noise at the population level.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' It requires more sophisticated mechanisms;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' we briefly discuss in Section 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=') To begin, we first consider the setting of simple random sampling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' The idea is to add independent Gaussian noise to both the numerator and denominator for each stratum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' For ease of notation, we first consider a single stratum with count c = �n i=1 xi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' We know c ∼ Hypergeometric(N, K, n), where K is the total number of individuals with the attribute of interest.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' The count c has mean n K N = np and variance n K N N−K N N−n N−1 = n2 Var(ˆp).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' By applying S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Lin et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='/Differentially Private Confidence Intervals 11 the Gaussian mechanism to c and n with privacy budgets ρ1 and ρ2, respectively, we have private count ˜c and sample size ˜n: ˜c | c ∼ N(c, 1 2ρ1 ) and ˜n ∼ N(n, 1 2ρ2 ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' The unconditional mean and variance for c are E(˜c) = E[E(˜c | c)] = E(c) = np and Var(˜c) = E Var(˜c | c) + Var E(˜c | c) = 1 2ρ1 + n2 Var(ˆp).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' (6) By the composition property of zCDP, we get a private estimator for proportion p, denoted by ˜p, with privacy level ρ = ρ1 + ρ2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Since ˜c and ˜n are independent variables, in principle, E(˜p) = E � ˜c ˜n � = E(˜c)E � 1 ˜n � , (7) and Var(˜p) = E � ˜c ˜n �2 − � E � ˜c ˜n ��2 = E˜c2E � 1 ˜n2 � − (E˜c)2 � E 1 ˜n �2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' (8) However, the moments of 1 ˜n do not exist, thus neither do those of ˜p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Generally speaking, the ratio of two independent normal random variables has a heavy- tailed distribution with no moments [33, 17].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' The shape of the distribution could be unimodal, bimodal, symmetric, or asymmetric.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' It is primarily determined by the coefficient of variation of the denominator variable, CV .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' When CV is suffi- ciently small, a normal distribution approximation can be effective.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' It has been shown theoretically that a normal distribution can be arbitrarily close to the ratio variable in an interval centered at the ratio of means of two normal ran- dom variables [17].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Experiments have provided guidelines for when the normal approximation can be used.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' For example, a simple rule is that the approxima- tion is reasonable whenever CV is less than 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='1 [29].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Other practical rules are mentioned in [25, 33].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' We take advantage of the normal approximation to construct a ρ-zCDP con- fidence interval for the proportion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' We present the following estimation strategy in Algorithm 3, StrNz-PrivSz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' In the algorithm, we clip ˜nh in (9) to ensure the denominator is not too small.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Otherwise, the ratio can be arbitrarily large.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Such a post-processing step preserves the same privacy guarantee.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' For the theoretical analysis, we do not clip ˜nh, but instead, we consider the ratio variable ˜ch/˜nh given the event Sh = {1 ≤ ˜nh ≤ 2nh − 1} (a symmetric area around the mean of ˜nh).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' It is more convenient for the analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' The asymptotic behaviors of ˜ph S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Lin et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='/Differentially Private Confidence Intervals 12 Algorithm 3 Adding noise at the stratum level with private sample sizes, StrNz-PrivSz Input: Nh, wh, nh, ch, ρ, α.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Output: A ρ-zCDP (1 − α) CI for the population proportion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' 1: Split the budget ρ = ρ1 + ρ2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Let ρ1 = ρ2 if not specified otherwise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' 2: for h = 1 to H do 3: Generate e(1) h ∼ N(0, 1 2ρ1 ) and e(2) h ∼ N(0, 1 2ρ2 ), and let � ˜ch ← ch + e(1) h ˜nh ← max(nh + e(2) h , 2) (9) 4: Let ˜ph ← ˜ch ˜nh (10) 5: Let �Vh ← � Nh − ˜nh Nh − 1 � ˜ph(1 − ˜ph) ˜nh + 1 2ρ1˜n2 h + ˜p2 h 2ρ2˜n2 h .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' (11) 6: end for 7: Estimate p by ˜p ← H � h=1 wh ˜ph and Var(˜p) by �V ← H � h=1 w2 h �Vh.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' 8: Return ˜p ± z1−α/2 � �V , where z1−α/2 is the (1 − α/2)-quantile of the standard normal distribution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' in the algorithm and ˜ch/˜nh | Sh are essentially the same since Pr(˜nh ≥ 2) → 1 and Pr(Sh) → 1 as n → ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' We will see the private estimator of the variance of ˜ph we derive from the analysis of ˜ch/˜nh | Sh works well and the algorithm does achieve the desired coverage level.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' We consider the ratio of two independent normal variables.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' By independence, what remains unclear is the behavior of the reciprocal of a normal distribution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' (We should mention that the Inverse Gaussian distribution is a different dis- tribution than the reciprocal distribution we discuss here.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=') In Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='1, we provide a general form of the Taylor series of conditional mean and variance of a reciprocal normal distribution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' To our best knowledge, this is the first com- plete result of the Taylor series, with the remainder term specified.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' We prove the theorem in the Proofs section.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' We use k = 2 to derive an estimator for the variance of ˜p Algorithm 3, which leads to (11).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='1 (Conditional mean and variance of a reciprocal normal distribu- tion).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' For random variable X ∼ N(µ, σ2) where µ > 1 and σ2 > 0, given the event S = {1 ≤ X ≤ 2µ − 1}, for any integer k > 0, the first two moments of 1 X | S have the following expansions: E � 1 X | S � = 1 µ k � j=0 (2j − 1)!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' !' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='σ2j µ2j + O �σ2k+2 µ2k+2 � (12) S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Lin et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='/Differentially Private Confidence Intervals 13 and E � 1 X2 | S � = 1 µ2 k � j=0 (2j + 1)!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' !' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='σ2j µ2j + O �σ2k+2 µ2k+2 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' (13) 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Theoretical Results In this section, we present the theoretical results of both privacy and asymptotic coverage guarantees.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' In addition, comparisons of the three algorithms in terms of variance and width ratios are discussed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Privacy and Coverage Guarantees Our theoretical results are two-fold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' First, the proposed algorithms satisfy the desired privacy level under the corresponding adjacency relation, which is pre- sented in Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='1 (Privacy Guarantee).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Algorithms 1 and 2 satisfy ρ-zCDP under the adjacency relation ∼ss;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Algorithm 3 satisfies ρ-zCDP under the adjacency relation ∼r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Proofs are presented in the Proofs section.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' On the other hand, for the confidence intervals to be useful, we provide the- orems that guarantee the asymptotic coverage for each algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' The central limit theorem (CLT) asserts (essentially) that the sample mean is asymptoti- cally normally distributed regardless of the original distribution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Therefore, the sample mean can be used to construct a confidence interval for the population mean.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' In the finite-population sampling designs we are considering, variants of CLTs can be found among [18, 24, 31] and others.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' We restate a general form of the finite-population CLT for simple random sampling in Theorem A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='2 and provide asymptotic coverage guarantees in the following theorems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='2 (Algorithm 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' For a population of size N, let p be the pro- portion in the population with the attribute of interest.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Under stratified random sampling with sample sizes nh within the stratum of size Nh, h = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='., H, let �V = H � h=1 w2 h �Vh where �Vh = �Nh − nh Nh � ˜ph(1 − ˜ph) + 1 2ρn2 h nh − 1 + 1 2ρn2 h .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' (14) for ρ > 0 as described in Algorithm 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' If ρ = ω(1/nh) for all h, then as Nh −nh and nh both tend to infinity for every stratum, (i) �V p→ Var(ˆp), and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Lin et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='/Differentially Private Confidence Intervals 14 (ii) for 0 < α < 1, Pr � p ∈ � ˜p − z1−α/2 � �V , ˜p + z1−α/2 � �V �� → 1 − α.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' (15) Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='3 (Algorithm 2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' For a population of size N, let p be the proportion in the population with the attribute of interest.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Under stratified random sampling with sample sizes nh within the stratum of size Nh, h = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='., H, let �V = H � h=1 w2 h �Nh − nh Nh � ˆph(1 − ˆph) nh − 1 + ∆2 p 2ρ1 + eV (16) where eV ∼ N(0, ∆2 V 2ρ2 ) for ρ1, ρ2 > 0 as described in Algorithm 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' If ρ1 = ω(1/nh) and ρ2 = ω(1/nh) for all h, then as Nh − nh and nh both tend to infinity for every stratum, (i) �V p→ Var(ˆp), and (ii) for 0 < α < 1, Pr � p ∈ � ˜p − z1−α/2 � �V , ˜p + z1−α/2 � �V �� → 1 − α.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' (17) Proofs of the above theorems use the finite-population CLT and are provided in the Proofs section.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' For Algorithm 3, the asymptotic behavior of ˜p is grounded on the normal approximation to a ratio variable in addition to the CLT.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' We revisit the result of normal approximation by [17] in Theorem A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Based on the approximation, we have shown the consistency of ˜p in the case of simple random sampling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Under simple random sampling, let c be the count of individuals having the attribute of interest and n be the sample size.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' The true population proportion is denoted by p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Let ˜p = ˜c/˜n where ˜c ∼ N(c, 1 2ρ1 ) and ˜n ∼ N(n, 1 2ρ2 ) for ρ1, ρ2 > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Under the conditions that ρ2 = ω(1/n), ρ1 = ω(1/n), ˜p is a consistent estimator for p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' With the foundation of the above consistency, we establish the asymptotic properties: Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='5 (Algorithm 3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' For a population of size N, let p be the pro- portion in the population with the attribute of interest.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Under stratified random sampling with sample sizes nh within the stratum of size Nh, h = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='., H, let �V = H � h=1 w2 h �Vh where �Vh = �Nh − ˜nh Nh − 1 � ˜ph(1 − ˜ph) ˜nh + 1 2ρ1˜n2 h + ˜p2 h 2ρ2˜n2 h (18) S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Lin et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='/Differentially Private Confidence Intervals 15 for ρ1, ρ2 > 0 as described in Algorithm 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' If ρ1 = ω(1/nh) and ρ2 = ω(1/nh) for all h, then as Nh − nh and nh both tend to infinity for every stratum, (i) �V p→ Var(ˆp), and (ii) for 0 < α < 1, Pr � p ∈ � ˜p − z1−α/2 � �V , ˜p + z1−α/2 � �V �� → 1 − α.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' (19) To prove Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='5, we start with a single stratum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' We use a normal dis- tribution (denoted by p∗ h) to approximate that of the proportion estimator ˜ph, with the distance between the two distribution vanishing to zero in an interval.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Then for multiple strata, we show that the linear combination of the normal variables (denoted by p∗) is an accurate approximation to ˜p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Last but not least, due to the consistency stated in Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='4, the noisy estimator �V is a consis- tent estimator for the variance of p∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Then, a Wald confidence interval can be constructed using ˜p and �V .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Details are presented in the Proofs section.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Comparisons of Variances The theorems presented in Section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='1 ensure that, under proper conditions, the desired coverage is achieved asymptotically.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Therefore, to compare the perfor- mance of the different proposed confidence intervals, we compare their widths, which are determined by their variance estimates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' In this section, we will an- alyze our variance estimates and compare the resulting widths to that of the non-private confidence interval.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Extrinsic Variances To investigate how much additional uncertainty is caused by adding noise, we decompose the variances of the private estimators into two parts: (1) the inherent component coming from the estimation from the sampling data, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='e, Var(ˆp), and (2) the extrinsic component introduced by the added noise, written as Vex def = Var(˜p) − Var(ˆp).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Table 1 provides the (approximate) variances of ˜p for three algorithms, where wh = Nh N are the stratum weights.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' The variances are derived in the proofs of Theorems 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='2, 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='3, and 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' The additional variance terms, Vex, can be rewritten in terms of uh def = Nh nh instead of wh, as shown in the second row of the table.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' In fact, uh are called sampling weights in the literature on survey sampling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' A sample weight is defined as the number of individuals that each respondent in the sample is representing in the population.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' It is the reciprocal of the sampling rate nh Nh and plays an important role in statistical inference for survey data [34, 11].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Understanding the relation between sampling weights and the variance S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Lin et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='/Differentially Private Confidence Intervals 16 of the noisy estimators is helpful for practitioners to make survey designs and the choice of algorithms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Table 1 (Approximate) variances of ˜p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Algorithm StrNz-PubSz PopNz-PubSz StrNz-PrivSz (approximate) Var(˜p) Var(ˆp) + 1 2ρ �H h=1 w2 h n2 h Var(ˆp) + 1 2ρ1 maxh w2 h n2 h Var(ˆp) + 1 2ρ1 �H h=1 w2 h n2 h + 1 2ρ2 �H h=1 w2 hp2 h n2 h Vex 1 2N2 �H h=1 u2 h ρ 1 2N2 maxh u2 h ρ1 1 2N2 �H h=1 u2 h( 1 ρ1 + p2 h ρ2 ) With a fixed population size N and a chosen privacy level ρ, the extra vari- ances Vex induced by the added noise are primarily dictated by uh.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' In PopNz- PubSz where we add noise at the population level, Vex is solely determined by the largest sample weight among all strata.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' If noise is injected into each stra- tum, then sampling weights in all strata collectively affect Vex.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' In particular, for StrNz-PrivSz, Vex is impacted by ph additionally.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' For all three algorithms, smaller sampling weights lead to lower extrinsic variance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' For comparison, we look at the ratio of Vex with the default budgeting ρ1 = ρ2 = ρ/2 for PopNz-PubSz and StrNz-PrivSz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' The ratio of Vex for StrNz-PubSz to PopNz-PubSz is �H h=1 u2 h 2 maxh u2 h .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' (20) Roughly speaking, when there are many strata, adding noise at the population level gives a smaller variance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' To compare StrNz-PrivSz and StrNz-PubSz, the ratio of Vex is 2 �H h=1 u2 h(1 + p2 h) �H h=1 u2 h , (21) which will always be greater than 2 (due to the cost it takes to protect sample sizes in StrNz-PrivSz) and at most 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Comparing with Non-Private CI: One Stratum Case To assess the width in theory, we also look at the confidence interval width ratios by comparing them to the non-private one.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Since the parameters Nh, nh, ph, ρh come into play together in the stratification setting, it is more practical to analyze the special case with one stratum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Let the theoretical width ratio (TWR) be TWR = � Var(˜p) Var(ˆp).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' In the implementation, the real width ratio (WR), defined as � �V / Var(ˆp), will be very close to TWR in that �V is a consistent estimator for Var(˜p).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Table 2 S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Lin et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='/Differentially Private Confidence Intervals 17 displays some relevant quantities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Note that N−1 N−n is always less than 1 but tends to 1 when the population size is far larger than the sample size.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Table 2 Theoretical width ratios and lower bounds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Algorithm StrNz-PubSz PopNz-PubSz StrNz-PrivSz ˜p ˆp + N(0, 1 2ρn2 ) ˆp + N(0, 1 ρn2 ) (c + N(0, 1 ρ))/(n + N(0, 1 ρ)) Var(˜p) Var(ˆp) + 1 2ρn2 Var(ˆp) + 1 ρn2 Var(ˆp) + 1+p2 ρn2 TWR � 1 + N−1 N−n 1 2p(1−p)nρ � 1 + N−1 N−n 1 p(1−p)nρ � 1 + N−1 N−n 1+p2 p(1−p)nρ Lower bound of TWR � 1 + 2 nρ � 1 + 4 nρ � 1 + 2(1+ √ 2) nρ We can obtain a lower bound for TWR by dropping the factor N−1 N−n and minimizing over p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' We can see that the width ratio mainly depends on p and the relative magnitude between n and ρ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' If p is extreme (tends to 0 or 1), TWR is drastically large;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' when p is around 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='5, TWR is close to the lower bound.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Also, the added noise induces a term involving ρ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' For example, under the regime ρ = 1/n, the three algorithms result in an interval of length at least √ 3 ≈ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='73, √ 5 ≈ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='24, and � 3 + 2 √ 2 ≈ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='41 as wide, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' It is trivial that with one stratum, StrNz-PubSz produces a tighter confidence interval than PopNz- PubSz does in that the ratio of Vex in (20) is 1/2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' However, PopNz-PubSz will outperform StrNz-PubSz once there are enough strata such that (20) is greater than 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Numerical Results In this section, we conduct both simulation studies and applications to assess and illustrate the numerical performance of the proposed algorithms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' We clip the proportions ˜ph onto [0, 1] as mentioned in Remark 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Simulations We set up a set of experiments to (1) check the normality of noisy estimators, and (2) evaluate the performance of the proposed confidence intervals by varying the number of strata H, the true population proportion p, and the privacy level ρ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' To generate the data, we need to specify the strata sizes Nh and the sampling rates rh.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' The setup of these parameters is presented in Table 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' We generate a proportion for each stratum to create heterogeneity across strata.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' The true population proportion is then calculated and reported in each experiment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Lin et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='/Differentially Private Confidence Intervals 18 Table 3 Parameter setup.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' The resulting sample sizes are between 60 and 160.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Fixed parameter Value / Distribution Varying parameter Value / Distribution α 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='1 H 1 or 20 Nh Uniform(1500, 2000) ph 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='5, Uniform(0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='4, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='6) or Uniform(0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='05, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='15) rh Uniform(0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='04, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='08) ρ 1/ max(nh) or specified in the axis of the plot 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Normality Check We first check whether the distributions of ˜p in the three algorithms are reason- ably close to the theoretical normal distributions with the corresponding means and variances.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Figure 1 displays the Q-Q plots of the theoretical distribution of ˜p versus its sample distribution: Non-private: N(p, Var(ˆp));' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' StrNz-PubSz: N(p, Var(˜p)) as Var(˜p) in (3);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' PopNz-PubSz: N(p, Var(˜p)) as Var(˜p) in (5);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' StrNz-PrivSz: N � p + �H h=1 whph 2ρ2n2 h , �H h=1 w2 hVh � with Vh specified in (51).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Note that, ˜p in Algorithms StrNz-PubSz and PopNz-PubSz are unbiased for p while ˜p in StrNz-PrivSz is not.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Nevertheless, under the condition that ρ2 = ω(1/nh) in Theorem 3, the bias term �H h=1 whph 2ρ2n2 h is negligible and thus we do not make a bias correction in Algorithm 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' We observe great alignments between the theoretical and experimental distributions, indicating that the pri- vate estimators in all three algorithms are indeed highly close to being normally distributed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Varying Key Parameters Assured by the results of the normality check, we experiment with a wide range of the privacy budget, different numbers of strata, and true population propor- tions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' We examine the impact of ρ on the performance of the three private esti- mators.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' The simulation is run on 10,000 repetitions and therefore the empirical coverage falling into 90% ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='006 (departure of two standard deviations) is con- sidered appropriate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' In Figure 2a, the empirical coverage is reasonable except that StrNz-PrivSz gives unnecessarily higher coverage when ρ is smaller than around 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='005.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' This is because the budget is so small for the method that, with clipping, it covers the truth more often than needed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' In this case, the confidence intervals are too wide to be as useful, as shown in Figure 2b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' For all three meth- ods, the width grows as ρ becomes smaller.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' However, the rates of width growth differ: in the multiple strata case we simulate, the width of PopNz-PubSz grows the slowest, StrNz-PrivSz grows the fastest, and StrNz-PubSz is in the middle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Thus, the optimal privacy level should be chosen by taking into account the method, width, and coverage.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' For instance, if we want a 90% of confidence level and width under 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='1, one can choose the value for ρ as small as (1) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='001 for PopNz-PubSz, (2) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='003 for StrNz-PubSz, and (3) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='01 for StrNz-PrivSz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Lin et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='/Differentially Private Confidence Intervals 19 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='46 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='48 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='50 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='52 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='54 Theoretical Quantiles 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='46 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='48 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='50 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='52 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='54 Sample Quantiles Non-Private 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='425 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='450 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='475 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='500 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='525 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='550 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='575 Theoretical Quantiles 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='45 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='50 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='55 Sample Quantiles StrNz-PubSz 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='46 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='48 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='50 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='52 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='54 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='56 Theoretical Quantiles 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='475 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='500 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='525 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='550 Sample Quantiles PopNz-PubSz 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='40 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='45 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='50 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='55 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='60 Theoretical Quantiles 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='6 Sample Quantiles StrNz-PrivSz Fig 1: Q-Q plots: Theoretical versus sample distributions of ˜p with 20 strata and p = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='505 (resulting from ph ∼ Uniform(0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='4, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='6)), based on 10,000 repetitions each.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' In addition, Table 4 shows the numerical results of three experiments with different combinations of the numbers of strata and the true population pro- portions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' The simulation in the middle panel shares the same setting as the experiment shown in Figure 2 but has a fixed privacy level: 1/ max(nh).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' This is an analogous regime to ρ = 1/n (for simple random sampling) for multiple strata.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' In the literature on differential privacy, the regime ρ = 1/n for a simple random sample is often considered to understand how small ρ can be as the sample size increases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Recall that a smaller ρ means a higher privacy level.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' As argued above, clipping ˜ph (or ˜p) onto [0,1] will yield better results in some cases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' The conclusions coincide with the analyses in Section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' The empirical coverage of the three private ones in all simulations achieves the nominal level of 90%, as guaranteed by Theorems 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='2, 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='3, and 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' The case where StrNz-PrivSz gives a 91.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='9% confidence level in the bottom panel is due to clipping.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' (When the stratum proportions are close to the extreme, clipping is more noticeable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=') The average width and width ratio (WR) varies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' With one single stratum, WRs are near the lower bounds of theoretical width ratios (TWR) given in Section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='2, which suggests that the lower bounds are almost tight.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' StrNz- PubSz gives a narrower CI than PopNz-PubSz with one stratum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' But with more strata, PopNz-PubSz outperforms StrNz-PubSz in terms of WR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Having more strata means splitting the total privacy budget into smaller portions, which leads to adding more noise on the whole.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' The CI needs to be wider to achieve the same confidence level.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' As for StrNz-PrivSz, however, it always yields the widest CI due to the additional price it pays to protect sample sizes simultaneously.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Lin et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='/Differentially Private Confidence Intervals 20 10 3 10 2 10 1 100 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='80 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='85 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='90 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='95 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='00 Empirical coverage Non-Private PopNz-PubSz StrNz-PubSz StrNz-PrivSz (a) Empirical coverage 10 3 10 2 10 1 100 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='6 Width 0 2 4 8 16 Width ratio Non-Private PopNz-PubSz StrNz-PubSz StrNz-PrivSz (b) Width and ratio Fig 2: Setup: 20 strata and p = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='505 (ph ∼ Uniform(0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='4, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='6)) with 10,000 repetitions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Figure (a) is the empirical coverage with the red line indicating the nominal confidence level of 90%.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' The average width and width ratio are displayed in (b) with the non-private as the benchmark.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' On the other hand, with the same number of strata (20 here), we see that more extreme ph leads to a larger WR than ph in the middle range.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' This is because the factor ph(1 − ph) comes into play as p(1 − p) does in TWR in Table 2 for the one stratum case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' We also provide the sample standard deviation of the widths (width SD).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' In general, the non-private method results in a smaller standard deviation than the private ones.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' In some cases, clipping helps reduce the width SD for the private algorithms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' With the same privacy level, there is more fluctuation in width for PopNz-PubSz compared to StrNz-PubSz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' This is because we use one- half of the privacy budget and directly add noise to the variance estimate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' As expected, StrNz-PrivSz has the largest width SD since the magnitude of width is the largest and the ratio variable is heavy-tailed by design.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Nevertheless, compared to the width, the width SD for all methods is so small that it does not compromise the effectiveness of the confidence interval.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Applications In this section, we apply the proposed methods to the 1940 Census full enumer- ation from IPUMS USA [35] and evaluate the performance of three differentially private confidence intervals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' To conduct stratified random sampling on the data set, the state-level geographical variable “STATEICP” (49 categories, constitut- ing the then-48 states and Washington, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=') is used for stratification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Under stratified random sampling with H = 49 strata, we estimate the national un- employment rate for the first application.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' In the second application, we are interested in studying the discrepancy in income levels between black and white S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Lin et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='/Differentially Private Confidence Intervals 21 Table 4 Simulation results under ρ = 1/n (or ρ = 1/ max(nh)) regime based on 10,000 repetitions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' The strata sizes and sampling rates are drawn as described in Table 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' For the multiple strata case, the resulting sample sizes in nh range from 72 to 152, and ρ is set to be 1/152 ≈ 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='58 × 10−3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' For the one-stratum case, we set the sample size to 152 so that we have the same level of privacy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Non-Private StrNz-PubSz PopNz-PubSz StrNz-PrivSz 1 stratum, p = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='5 coverage 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='893 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='901 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='894 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='901 width 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='127 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='228 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='295 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='327 width SD 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='47 × 10−4 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='85 × 10−4 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='89 × 10−3 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='15 × 10−2 CI (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='436, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='564) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='386, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='614) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='352, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='648) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='34, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='667) WR 1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='786 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='318 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='567 20 strata, p = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='505 (ph ∼ Uniform(0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='4, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='6)) coverage 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='902 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='895 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='902 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='902 width 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='035 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='073 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='043 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='111 width SD 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='08 × 10−4 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='58 × 10−4 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='87 × 10−4 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='22 × 10−3 CI (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='488, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='523) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='469, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='542) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='483, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='527) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='457, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='568) WR 1 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='074 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='239 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='168 20 strata, p = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='103 (ph ∼ Uniform(0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='05, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='15)) coverage 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='902 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='919 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='904 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='899 width 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='021 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='067 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='033 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='096 width SD 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='17 × 10−4 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='21 × 10−4 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='71 × 10−4 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='94 × 10−3 CI (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='092, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='113) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='073, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='143) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='086, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='119) (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='072, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='168) WR 1 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='189 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='571 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='563 men.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Confidence Intervals for the Unemployment Rate As an important indicator of the status of the national economy, the unem- ployment rate is the percentage of unemployed workers in the total labor force consisting of both the employed and unemployed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Thus, we consider all the indi- viduals who are either employed or unemployed as the whole population.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' In the 1940 Census data set, the binary characteristic “EMPSTAT” represents employ- ment status.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' The full enumeration is considered the truth and the true popula- tion proportion is p = 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='346%.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' To carry out stratified random sampling, sample sizes or sampling rates are selected for all 49 strata.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' For modern relevance, we simulate in a manner intended to mimic the canonical design implemented in the current American Community Survey (ACS), by choosing a typical range of sampling rates used in ACS which is [0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='5%, 15%].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' See Table 5 for detail.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Lin et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='/Differentially Private Confidence Intervals 22 Table 5 Sampling rates Stratum size Sampling rate nh ≤ 5 × 104 15% 5 × 104 < nh ≤ 105 10% 105 < nh ≤ 5 × 105 5% 5 × 105 < nh ≤ 106 2% 106 < nh ≤ 5 × 106 1% nh > 5 × 106 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='5% To apply and assess the proposed algorithms, we experiment with a wide range of small privacy budgets: ρ ∈ [10−6, 10−3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Each method is repeated 10,000 times and the empirical coverage, the average CI width, and the average CI width ratio (WR) are computed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' As shown in Figure 3a, the empirical coverage is always around the nominal level which is chosen at the level of 90% for the whole range of privacy levels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' In Figure 3b, the CI width and CI width ratio with the non-private CI as the benchmark, share the same shape.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Even when the CI given by StrNz-PrivSz is 8 times the non-private CI width, the CI width is only 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='01 due to the large sample size.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Both CI width and width ratio should be taken into account when choosing an optimal privacy level.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' 10 6 10 5 10 4 10 3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='80 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='85 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='90 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='95 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='00 Empirical coverage Non-Private PopNz-PubSz StrNz-PubSz StrNz-PrivSz (a) Empirical coverage 10 6 10 5 10 4 10 3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='01 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='02 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='03 Width 0 5 10 15 20 25 WR Non-Private PopNz-PubSz StrNz-PubSz StrNz-PrivSz (b) Width and ratio Fig 3: The empirical coverage and average width and width ratio of DP-CIs of the unemploy- ment rate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Confidence Intervals for the Difference in Income Level In the second application, we want to investigate whether there was a discrep- ancy between the income levels of white males (population 1) and that of black males (population 2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Note that only those who had valid income numbers in the 1940 Census are considered.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Since the poverty thresholds were not devel- oped until the 1960s and thus are not available for the 1940 data, the national S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Lin et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='/Differentially Private Confidence Intervals 23 income average is used as a threshold instead.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' We are interested in examining the difference in subpopulation proportions of those whose income levels passed this threshold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' The geographic feature “STATEICP” is used for stratification, yielding 49 strata, with stratum size ranges of (41838, 4621442) for the population of white males and (50, 309214) for the population of black males.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Sampling rates are adaptively chosen based on stratum sizes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' For the population of white males, the range of sampling rates is also [0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='5%, 15%], whereas the range of sampling rates is [0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='5%, 30%] for the population of black males given its small stratum sizes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Additionally, to allow solid approximations based on the asymptotic results, we impose that the sample sizes are adjusted to be 50 if the sampling rates give smaller sizes than 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' See Table 6 for detail.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Table 6 Sampling rates for two populations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Stratum sizes nh ∈ (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='1 × 104, 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='7 × 106) for the population of white males and stratum sizes nh ∈ (50, 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='1 × 105) for the population of black males.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' *The sample size will be adjusted to be 50 if the above sampling rate results in a size smaller than 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Stratum size Nh of white males Sampling rate Nh ≤ 5 × 104 15% 5 × 104 < Nh ≤ 105 10% 105 < Nh ≤ 5 × 105 5% 5 × 105 < Nh ≤ 106 2% 106 < Nh ≤ 4 × 106 1% Nh > 4 × 106 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='5% Stratum size Nh of black males Sampling rate* Nh ≤ 500 30% 500 < Nh ≤ 5 × 103 15% 5 × 103 < Nh ≤ 104 5% 104 < Nh ≤ 2 × 104 2% 2 × 104 < Nh ≤ 3 × 104 1% nh > 3 × 104 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='5% Let p1 and p2 denote the proportions of eligible individuals who earned more than the national average income level $442.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' The true values of proportions are p1 = 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='0223% and p2 = 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='5152%.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Let pdiff = p1 − p2, then the true difference in these two proportions is pdiff = 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='5071%.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' By the additivity of two independent normal distributions, naturally, we use the following differentially private CI: ˜pdiff + z1−α/2 � �V(˜pdiff), (22) where �V (·) denotes a private estimator of variance, ˜pdiff is defined as ˜p1 − ˜p2 and �V(pdiff) = �V(p1) + �V(p2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' In Figure 4, similar patterns are observed in this application as in the first.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' All CIs have empirical coverage around/above the nominal confidence level as in the simulation study in Section 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' The phenomenon of higher coverage is due to small ρ and effective clipping.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' When the range of stratum sizes is large (it is (50, 309214) in this application), that is, when the stratum sizes are very different, a large privacy budget ρ should be chosen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' The choice of a small ρ harms the estimates of small-sized strata.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' We advise that the smallest ρ be chosen given the tolerance of uncertainty in terms of width and/or width ratio.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' For example, if the accuracy requirement is that the width should be under 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='05 or WR under 5, then the best choices of ρ among the experiments in Figure 4b S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Lin et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='/Differentially Private Confidence Intervals 24 10 4 10 3 10 2 10 1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='80 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='85 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='90 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='95 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='00 Empirical coverage Non-Private PopNz-PubSz StrNz-PubSz StrNz-PrivSz (a) Empirical coverage 10 4 10 3 10 2 10 1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='20 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='25 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='30 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='35 Width 0 5 10 15 20 25 30 WR Non-Private PopNz-PubSz StrNz-PubSz StrNz-PrivSz (b) Width and ratio Fig 4: The empirical coverage and average width and width ratio of DP-CIs of the difference of the above-national-income-level proportions between black and white males with valid income values.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' are (1) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='0001 for PopNz-PubSz, (2) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='0018 for StrNz-PubSz, and (3) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='0056 for StrNz-PrivSz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Discussion We have designed three algorithms to construct confidence intervals for the population proportion under stratified random sampling with zero concentrated differential privacy guarantees.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' We consider both the case where the sample sizes are public and the case where they are private information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Theoretical results including privacy guarantees and asymptotic properties are established.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' With proper conditions on the relation between the privacy budget and sample sizes, as stated in the theorems, the resulting confidence intervals will achieve the desired coverage asymptotically, and the width tends to be that of a non-private confidence interval when the sample sizes go to infinity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' In the simulation studies and two applications, we have experimented with a wide range of privacy budgets under a variety of parameter setups.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' The three algorithms always perform well in terms of empirical coverage.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' The width and width ratio are in a reasonable range even under the strict regime where ρ = 1/ maxh nh.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Typically in practice, a constant between 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='001 to 10 is chosen to be the privacy budget.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' According to our experiments, with the choice of the smallest budget in this range, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='001, the three algorithms still have fairly good results even when the smallest stratum has only a size 50 (as demonstrated in the second application).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' The comparative analysis of the three algorithms in Section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='2 gives ac- tionable guidance to practitioners.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' When releasing the population proportion is the only goal and there are enough strata (such that Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' (20) regarding sam- S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Lin et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='/Differentially Private Confidence Intervals 25 ple weights is greater than 1), PopNz-PubSz is the better option.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' However, if stratum proportions should also be released or there are just a few strata, StrNz- PubSz is preferable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' On the other hand, when the population proportion and sample sizes must be protected simultaneously, StrNz-PrivSz is the only algo- rithm presented in this paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' StrNz-PrivSz, compared to the case with public sample sizes, needs a larger budget to meet the same width requirement on account of the additional cost of protecting sample sizes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' There are a few open questions worth considering for future research.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' In this paper, we discuss the case where the number of strata is fixed and the sample sizes tend to infinity, we use the finite-population CLTs for each stra- tum to derive an aggregated estimator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' For the other case where the number of stratum tends to infinity instead of sample sizes, one can apply the Linde- berg–Lévy–Feller Theorem to obtain the asymptotic normality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' More interest- ingly, we do not provide ‘PopNz-PrivSz’ – an analogous algorithm to PopNz- PubSz for the private sample sizes case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' To protect both the population pro- portion and the sample sizes, the direct addition of noise to the non-private aggregated estimator is not plausible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' One should consider more sophisticated mechanisms other than directly adding noise to the statistics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' If ‘PopNz-PrivSz’ were proposed, we shall expect it to yield a narrower confidence interval since we only need to publish the private population proportion without being able to provide private confidence intervals for stratum proportions at the same time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Another direction for future research would be optimal budget allocation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' We do not experiment with different ways to divide the total budget in PopNz-PubSz or StrNz-PrivSz but simply split it up evenly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Budgeting for the composed ap- plication of the algorithms may also be of interest, like in Section 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='2 where we apply the algorithms twice for two independent populations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Lastly, one broad direction is to develop the differentially private versions for other alter- natives to the basic Wald interval, such as the Wilson Interval, Jeffreys interval, etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' (see [21] for a comparative summary of seven such types of confidence inter- vals for proportions).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Many of these latter are specifically designed for the case of small sample sizes, which we do not consider here and for which we expect fundamentally different approaches to differential privacy likely to be necessary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Appendix A: Proofs A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Proof of Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='1 Lemma A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Let X ∼ N(µ, σ2) and S = {µ − a ≤ X ≤ µ + a}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' For any a > 0 and an integer k ≥ 1, the conditional even moments E[(X − µ)2k | S] = σ2k(2k − 1)!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' − O � e− a2 2σ2 a2k−1� , (23) where the big-O hides a constant depending on σ and k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Without loss of generality, we assume µ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' We prove the lemma by S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Lin et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='/Differentially Private Confidence Intervals 26 induction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Set k = 1, integrate by parts, E[X2IS] = � a −a x2 1 σ √ 2π e− x2 2σ2 dx = σ √ 2π � −xe− x2 2σ2 ��a −a + � a −a e− x2 2σ2 dx � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Integrate by substitution, the integral in the second term becomes � a −a e− x2 2σ2 dx = σ √ 2π erf � a σ √ 2 � where erf(z) = σ � z 0 e−t2 dt is the error function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Then, E[X2IS] = σ2 erf � a σ √ 2 � − O � e− a2 2σ2 a � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Assuming E[X2kIS] = σ2k(2k − 1)!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' erf � a σ √ 2 � − O � e− a2 2σ2 a2k−1� , (24) then integrate by parts for the k + 1 case, E[X2(k+1)IS] = � a −a x2k+2 1 σ √ 2π e− x2 2σ2 dx = σ √ 2π � a −a x2k+1 · x σ2 e− x2 2σ2 dx = σ √ 2π � −x2k+1e− x2 2σ2 ��a −a + (2k + 1) � a −a x2ke− x2 2σ2 dx � = σ2(2k + 1)E[X2kIS] − O � e− a2 2σ2 a2k+1� .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Plug in (24), we obtain E[X2(k+1)IS] = σ2k+2(2k + 1)!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' erf � a σ √ 2 � − O � e− a2 2σ2 a2k+1� .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' So far we have proved (24).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Note that Pr(S) = � a −a 1 σ √ 2π e− x2 2σ2 dx = erf � a σ √ 2 � , and that the image of erf(z) is between (−1, 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Therefore, E[X2k | S] = E[X2kIS]/ Pr(S) = σ2k(2k − 1)!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' − O � e− a2 2σ2 a2k−1� .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Lin et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='/Differentially Private Confidence Intervals 27 Proof of (12) in Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Consider the Taylor series of 1 x at x = µ: 1 x = ∞ � j=0 (−(x − µ))j µj+1 = 1 µ − x − µ µ2 + (x − µ)2 µ3 − (x − µ)3 µ4 + .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Let ym be the partial sum of the above series, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=', ym(x) = �m k=0 (−(x−µ))k µk+1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Then ym(x) converges to 1 x in (0, 2µ) which contains [1, 2µ − 1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Let g(x) = ∞ � k=0 |x − µ|k µk+1 = � 1 x, if 1 ≤ x ≤ µ 1 2µ−x if µ < x ≤ 2µ − 1 Then g is integrable as � 2µ−1 1 |g(x)|dν = � µ 1 1 xdν + � 2µ−1 µ 1 2µ − xdν = 2 � µ 1 1 xdν < ∞, where dν = f(x)dx is induced by N(µ, σ2) conditional on event S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Note also that |ym(x)| ≤ g(x) for any naturals m and x ∈ [1, 2µ − 1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' By the dominated convergence theorem, the operations of limit and integral are exchangeable for ym(x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' � 2µ−1 1 1 xdν = � 2µ−1 1 lim m→∞ ym(x)dν = lim m→∞ � 2µ−1 1 ym(x)dν = lim m→∞ � 2µ−1 1 � � m � j=0 (−(x − µ))j µj+1 � � dν = lim m→∞ � � m � j=0 � 2µ−1 1 (−(x − µ))j µj+1 dν � � (25) Then, E � 1 X | S � = ∞ � j=0 1 µj+1 E � (−(X − µ))j | S � = ∞ � j=0 1 µ2j+1 E � (X − µ)2j | S � = k � j=0 1 µ2j+1 E � (X − µ)2j | S � + 1 µ ∞ � j=k+1 E ��X − µ µ �2j | S � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' (26) The second equality is because the odd moments are zero due to symmetry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Lin et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='/Differentially Private Confidence Intervals 28 Note that given event S, | X−µ µ | ≤ µ−1 µ < 1, then E ��X − µ µ �2k+2 | S � ≤ �µ − 1 µ �2 E ��X − µ µ �2k | S � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' (27) It follows that ∞ � j=k+1 E ��X − µ µ �2j | S � ≤ ∞ � j=0 �µ − 1 µ �2j E ��X − µ µ �2k+2 | S � = µ2 2µ − 1E ��X − µ µ �2k+2 | S � = O � 1 µ2k+1 � E[(X − µ)2k+2 | S].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Applying Lemma A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='1, by the choice of a = µ − 1, (26) becomes E � 1 X | S � = 1 µ k � j=0 (2j − 1)!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' !' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='σ2j µ2j + O �σ2k+2 µ2k+2 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Proof of (13) in Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' We conduct a similar procedure for the second moment of X | S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Based on the Taylor expansion 1 x2 = ∞ � j=0 (j + 1)(−(x − µ))j µj+2 = 1 µ2 − 2(x − µ) µ3 + 3(x − µ)2 µ4 − 4(x − µ)3 µ5 + · · · , we have E � 1 X2 | S � = ∞ � j=0 j + 1 µj+2 E � (−(X − µ))j | S � = ∞ � j=0 2j + 1 µ2j+2 E � (X − µ)2j | S � = k � j=0 2j + 1 µ2j+2 E � (X − µ)2j | S � + 1 µ2 ∞ � j=k+1 (2j + 1)E ��X − µ µ �2j | S � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' (28) S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Lin et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='/Differentially Private Confidence Intervals 29 Due to (27),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' it follows that ∞ � j=k+1 (2j + 1)E ��X − µ µ �2j | S � ≤ E ��X − µ µ �2k+2 | S � ∞ � j=0 (2k + 3 + 2j) �µ − 1 µ �2j = E ��X − µ µ �2k+2 | S � � �(2k + 3) ∞ � j=0 �µ − 1 µ �2j + 2 ∞ � j=1 j �µ − 1 µ �2j � � = E ��X − µ µ �2k+2 | S � �(2k + 3)µ2 2µ − 1 + 2µ2(µ − 1)2 (2µ − 1)2 � = E ��X − µ µ �2k+2 | S � O(µ2) = O � 1 µ2k � E[(X − µ)2k+2 | S],' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' (29) where the term �∞ j=1 j � µ−1 µ �2j is a sum of an arithmetic–geometric sequence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' By Lemma A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='1, (28) becomes E � 1 X2 | S � = 1 µ2 k � j=0 (2j + 1)!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' !' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='σ2j µ2j + O �σ2k+2 µ2k+2 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' (30) A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Proof of Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='1 Proof for Algorithm 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Under neighboring relation ∼ss, only one record changes within one stratum and sample sizes remain the same.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Applying the Gaussian mechanism to each stratum at the level of ρ gives ρ-zCDP guarantee.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' By post- processing, the confidence interval is also ρ-zCDP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Proof for Algorithm 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' The sensitivities of ˆp and � Var(ˆp) are ∆p and ∆V , re- spectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Applying the Gaussian mechanism, it follows that ˜p is ρ1-zCDP and �V is ρ2-zCDP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' By basic composition, the confidence interval ˜p ± z1− α 2 � �V is (ρ1 + ρ2)-zCDP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Proof for Algorithm 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' By the Gaussian mechanism and the basic composition property of zCDP, we know that ˜ph is ρ-zCDP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Under neighboring relation ∼r, only one record changes within one stratum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Then, by post-processing, the confidence interval is ρ-zCDP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Lin et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='/Differentially Private Confidence Intervals 30 A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Proof of Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='2 Before proving the theorem, we revisit the finite-population CLT first: Theorem A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='2 (Theorem 1, [32]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Consider a finite population Π = {X1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=', XN} of size N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Let µ be the population mean and ¯Xn be the mean of a simple ran- dom sample of size n from Π, and Var( ¯Xn) is the variance of ¯Xn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' The finite population variance of Π is denoted by v = 1 N − 1 N � i=1 (Xi − µ)2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' As N → ∞, if 1 min(n, N − n) · max1≤i≤N(Xi − µ)2 v → 0, (31) we have ¯Xn − µ � Var( ¯Xn) d→ N(0, 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' (32) The variance of ¯Xn is determined by the population variance v which is unknown.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Nevertheless, the sample variance � Var( ¯Xn) can be used to estimate v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' To make sure the CLT still holds when substituting Var( ¯Xn) by � Var( ¯Xn), the consistency of � Var( ¯Xn) is crucial, as stated in the following lemma.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Lemma A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Let � Var( ¯Xn) be the sample variance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' � Var( ¯Xn) is an unbiased estimator for Var( ¯Xn).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Moreover, under the condition in Theorem A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='2, as N → ∞, � Var( ¯Xn)/Var( ¯Xn) p→ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Now we prove Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='2: Proof of Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' It suffices to show ˜ph−ph √ �Vh d→ N(0, 1) for all h.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' By the finite-population CLT in Theorem A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='2, we know ˆph − ph � Var(ˆph) d→ N(0, 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Since ˜ph = ˆph + eh where eh ∼ N(0, 1 2ρn2 h ), we have ˜ph − ph � Var(˜ph) d→ N(0, 1) (33) where Var(˜ph) = Var(ˆph) + 1 2ρn2 h .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Lin et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='/Differentially Private Confidence Intervals 31 Let �Vh = �Nh − nh Nh � ˜ph(1 − ˜ph) + 1 2ρn2 h nh − 1 + 1 2ρn2 h = � Var(ˆph) + �Nh − nn Nh � eh − 2˜pheh − e2 h + 1 2ρn2 h nh − 1 + 1 2ρn2 h .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' (34) If 1 ρnh → 0, we have eh p→ 0 and then the second term of (34) is oP ( 1 nh ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Note that � Var(ˆph) is of order 1 nh , and that by Lemma A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='3, � Var(ˆph) p→ Var(ˆph).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Therefore, �Vh p→ Var(ˆph) + 1 2ρn2 h = Var(˜ph).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Combining it with (33), we have ˜ph − ph � �Vh d→ N(0, 1) (35) by Slutsky’s Theorem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Then, ˜p−p √ �V d→ N(0, 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Therefore, the confidence interval given by p ± z1−α/2 � �V has asymptotic coverage level 1 − α.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Note that, under the condition 1 ρnh → 0, it follows that 1 2ρn2 h = o(Var(ˆph)) and hence �Vh p→ Var(ˆph).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Therefore, �V p→ Var(ˆp).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Proof of Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='3 Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Since ˆp−p √ Var(ˆp) d→ N(0, 1) and ˜p = ˆp+N(0, ∆2 p/2ρ1) with ∆p = maxh wh nh , it follows that ˜p − p � Var(˜p) d→ N(0, 1), and Var(˜p) = Var(ˆp) + ∆2 p 2ρ1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' In Algorithm 2, we set �V = � Var(ˆp) + ∆2 p 2ρ1 + eV , (36) where eV ∼ N(0, ∆2 V 2ρ2 ) with ∆V = maxh � Ch nh � 1 − 1 nh �� and Ch = w2 h Nh−nh Nh 1 nh−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' If 1 ρ2nh → 0 for all h, then eV = oP ( 1 nh ) for all h.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Since � Var(ˆp) d→ Var(ˆp) by finite-population CLT, we have �V d→ Var(˜p).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Therefore, by Slutsky’s Theorem, ˜p − p � �V d→ N(0, 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' (37) Then, the confidence interval given by p ± z1−α/2 � �V has the asymptotic cov- erage level 1 − α.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' In fact, �V p→ Var(ˆp) if 1 ρ1nh → 0 for all h since ∆2 p 2ρ1 = o(Var(ˆp)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Lin et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='/Differentially Private Confidence Intervals 32 A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Proof of Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='4 Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' For ˜n ∼ N(n, 1 2ρ2 ), by Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='1, we derive the kth-order Taylor series of the conditional expectation of ˜p given S = {1 ≤ ˜n ≤ 2n − 1}: E (˜p | S) = p k � j=0 (2j − 1)!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' !' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' n2j(2ρ2)j + O � 1 n2k+1ρk+1 2 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' (38) For example, when k = 2, E (˜p | S) = p � 1 + 1 2n2ρ2 + 3 4n4ρ2 2 � + O � 1 n5ρ3 2 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' (39) To obtain a Taylor expansion for the conditional variance, we plug E � 1 ˜n | S � = 1 n k � j=0 (2j − 1)!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' !' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' n2j(2ρ2)j + O � 1 n2k+2ρk+1 2 � and E � 1 ˜n2 | S � = 1 n2 k � j=0 (2j + 1)!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' !' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' n2j(2ρ2)j + O � 1 n2k+2ρk+1 2 � into Var(˜p | S) = E(˜p2 | S) − (E(˜p | S))2 = E˜c2E � 1 ˜n2 | S � − (E(˜p | S))2, by which we derive a general expansion for the conditional variance: Var(˜p | S) = Var(ˆp) k � j=0 (2j + 1)!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' !' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' n2j(2ρ2)j + p2 � � � k � j=0 (2j + 1)!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' !' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' n2j(2ρ2)j − � � k � j=0 (2j − 1)!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' !' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' n2j(2ρ2)j � � 2� � � + 1 2ρ1 k � j=0 (2j + 1)!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' !' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' n2j+2(2ρ2)j + O � 1 n2kρk+1 2 � + O � 1 n2k+2ρ1ρk+1 2 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' (40) When k = 2, Var(˜p | S) = Var(ˆp) � 1 + 3 2n2ρ2 + 15 4n4ρ2 2 � + p2 � 1 2n2ρ2 + 2 n4ρ2 2 − 6 8n6ρ3 2 − 9 16n8ρ4 2 � + 1 2ρ1 � 1 n2 + 3 2n4ρ2 + 15 4n6ρ2 2 � + O � 1 n4ρ3 2 � + O � 1 n6ρ1ρ3 2 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' (41) Based on Taylor expansion with k = 2 for both conditional mean and variance given in (39) and (41), under the condition 1 ρ1n = o(1) and 1 ρ2n = o(1), we have E(˜p | S) = p + o � 1 n � S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Lin et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='/Differentially Private Confidence Intervals 33 and Var(˜p | S) = Var(ˆp) + o � 1 n � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Then, ˜p | S is asymptotically unbiased.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Note that Var(ˆp) is of order 1 n and thus ˜p | S has a vanishing variance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Therefore, ˜p | S converges to p in probability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Note also that Pr(S) → 1 as n → ∞, then for any ϵ > 0, Pr(|˜p − p| > ϵ) = Pr(|˜p − p| > ϵ | S) + Pr(|˜p − p| > ϵ | Sc) → 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' That is, ˜p is a consistent estimator for p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Proof of Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='5 To prove Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='5, we need the following theorem and lemmas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Theorem A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='4 (Theorem 1, [17]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Let X be a normal random variable with positive mean µx, variance σ2 x and coefficient of variation δx = σx/µx such that 0 < δx < λ ≤ 1, where λ is a known constant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' For every ϵ > 0, there exists γ(ϵ) ∈ (0, � λ2 − δ2x) and also a normal random variable Y independent of X, with positive mean µy, variance σ2 y and coefficient of variation δy = σy/µy that satisfy the conditions, 0 < δy ≤ γ(ϵ) ≤ � λ2 − δ2x < λ (42) for which the following result holds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Any z that belongs to the interval I = � β − σz λ , β + σz λ � , where β = µx/µy, σz = β � δ2x + δ2y, satisfies that |G(z) − FZ(z)| < ϵ, where G(z) is the cumulative distribution function of N(β, σ2 z), and FZ is that of Z = X/Y .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Note that once a given Y fulfills the closeness between the cor- responding G to FZ , any other random variables with a smaller coefficient of variation will satisfy this result too.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Lemma A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' For a population of size N, let p be the true proportion in the population with the attribute of interest.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Consider simple random sampling with sample size n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Let Z∗ ∼ N(p, V ) where V = � N−n N−1 � p(1−p) n + 1 2ρ1n2 + p2 2ρ2n2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' If ρ1 = ω(1/n2) and ρ2 = ω(1/n), as N − n and n both tend to infinity, then for any z ∈ (0, 2p), |F˜p(z) − FZ∗(z)| → 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' (43) S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Lin et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='/Differentially Private Confidence Intervals 34 Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' By the CLT in Theorem A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='2, we know that ˆp ∼ AN(p, Var(ˆp)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Recall that ˜c = nˆp + N(n, 1 2ρ1 ), then ˜c ∼ AN(np, n2 Var(ˆp) + 1 2ρ1 ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Let ˜X ∼ AN(np, n2 Var(ˆp)+ 1 2ρ1 ) and X ∼ N(np, n2 Var(ˆp)+ 1 2ρ1 ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Therefore, for any ϵ > 0, there exists some n0 = n0(ϵ) such that for any x and n > n0, |F ˜ X(x) − FX(x)| < ϵ, (44) where F denotes the cumulative density function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Let Y ∼ N(n, 1 2ρ2 ), ˜Z = ˜X/Y and Z = X/Y , then F ˜ Z(z) = Pr � ˜X Y < z � = Pr( ˜X < Y z) = � ∞ −∞ F ˜ X(yz)fy(y)dy, where fy(y) is the density function of Y .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' From (44), |F ˜ X(yx) − FX(yx)| < ϵ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' It follows that, � ∞ −∞ (FX(yx) − ϵ)fy(y)dy < � ∞ −∞ F ˜ X(yx)fy(y)dy < � ∞ −∞ (FX(yx) + ϵ)fy(y)dy, which is equivalent to ���� � ∞ −∞ F ˜ X(yx)fy(y)dy − � ∞ −∞ FX(yx)fy(y)dy ���� < ϵ, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=', |F ˜ Z(z) − FZ(z)| < ϵ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' (45) Let δx and δy be the coefficients of variation of X and Y , respectively, then δ2 x = (Var(ˆp) + 1 2ρ1n2 )/p2 and δ2 y = 1 2ρ2n2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Under the condition 1 ρ1n = o(1), we have δ2 x = O( 1 n) since Var(ˆp) = O( 1 n).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Under the condition 1 ρ2n = o(1), we know δ2 y = o( 1 n) and then δy = o(δx).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' When n is sufficiently large, δy is sufficiently small.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Let λ = � δ2x + 2δ2y and FZ∗(z) be the distribution function of Z∗ ∼ N(p, Var(ˆp)+ 1 2ρ1n2 + p2 2ρ2n2 ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' By Lemma A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='4, for a normal random variable Y independent of X, with small enough δy, the condition (42) is satisfied and we have |FZ(z) − FZ∗(z)| < ϵ, (46) for any z ∈ I = � p − σz∗ λ , p + σz∗ λ � where σz∗ = p � δ2x + δ2y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Hence, for z ∈ I, |F ˜ Z(z) − FZ∗(z)| < |F ˜ Z(z) − FZ(z)| + |FZ(z) − FZ∗(z)| < 2ϵ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' (47) Note also that as n → ∞, σz∗ λ → p, and the limit of I is (0, 2p).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' So far, we have shown that as n goes to infinity, under the conditions 1 ρ1n = o(1) and 1 ρ2n = o(1), for z ∈ Ih, |F ˜ Z(z) − FZ∗(z)| → 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' (48) S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Lin et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='/Differentially Private Confidence Intervals 35 Lemma A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Let Z1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=', ZH and Z∗ 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=', Z∗ H be independent continuous random variables which depend on n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Let F denote the distribution function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' As n → ∞, if |FZh(z) − FZ∗ h(z)| → 0 holds for any h = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=', H and z in an interval (ah, bh) and Pr(Zh ∈ (ah, bh)) → 1, Pr(Z∗ h ∈ (ah, bh)) → 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Then, ���F�H h=1 chZh(z) − F�H h=1 chZ∗ h(z) ��� → 0 for any z ∈ ��H h=1 chah, �H h=1 chbh � , where ch’s are constants.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' It suffices to show that, for any z ∈ (a1c1 + a2c2, b1c1 + b2c2), ��Fc1Z1+c2Z2(z) − Fc1Z∗ 1 +c2Z∗ 2 (z) �� → 0 as n → ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' We have Fc1Z1+c2Z2(z) = Pr(c1Z1 + c2Z2 < z) = Pr � Z1 < z − c2Z2 c1 � = � R FZ1 �z − c2x c1 � fZ2(x)dx = � R � FZ1 �z − c2x c1 � − FZ∗ 1 �z − c2x c1 �� fZ2(x)dx + � R FZ∗ 1 �z − c2x c1 � fZ2(x)dx = � R � FZ1 �z − c2x c1 � − FZ∗ 1 �z − c2x c1 �� fZ2(x)dx + Fc1Z∗ 1 +c2Z2(z).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' (49) When a1 < (z − c2x)/c1 < b1, we know ����FZ1 �z − c2x c1 � − FZ∗ 1 �z − c2x c1 ����� → 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' (50) Since FZ1(b1) − FZ1(a1) → 1 and FZ∗ 1 (b1) − FZ∗ 1 (a1) → 1, for any a < a1, it holds that FZ1(a) → 0 and FZ∗ 1 (a) → 0, and for any b > b1, FZ1(b) → 1 and FZ∗ 1 (b) → 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Thus, (50) also holds when (z − c2x)/c1 is outside (a1, b1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Therefore, the first term of the right-hand side of (49) converges to 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Then ��Fc1Z1+c2Z2(z) − Fc1Z∗ 1 +c2Z2(z) �� → 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Similarly, we have ��Fc1Z∗ 1 +c2Z2(z) − Fc1Z∗ 1 +c2Z∗ 2 (z) �� → 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' By the triangle inequality, ��Fc1Z1+c2Z2(z) − Fc1Z∗ 1 +c2Z∗ 2 (z) �� → 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Lin et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='/Differentially Private Confidence Intervals 36 Proof of Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' By Lemma A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='5, for each stratum, under the conditions ρ1 = ω(1/nh) and ρ2 = ω(1/nh), the distribution function of ˜ph converges to that of N(ph, Vh) in the interval (0, 2ph) where Vh = �Nh − nh Nh − 1 � ph(1 − ph) nh + 1 2ρ1n2 h + p2 h 2ρ2n2 h .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' (51) Let p∗ ∼ N(p, V ) where V = �H h=1 w2 hVh.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' By Lemma A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='6, in the interval (0, 2p), we have |F˜p(z) − Fp∗(z)| → 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' (52) where F˜p denotes the distribution function of ˜p designed in Algorithm 3 and Fp∗ is the distribution function of p∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Let L = p − z1−α/2 √ V , U = p + z1−α/2 √ V , ˜L = p − z1−α/2 � �V and ˜U = p + z1−α/2 � �V .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Note that L and U are constants whereas ˜L and ˜U are random variables.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Provided that nh’s are sufficiently large, U and L lie in the interval where the following hold due to (52), |F˜p(U) − Fp∗(U)| → 0 (53) and |F˜p(L) − Fp∗(L)| → 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' (54) On the other hand, by Theorems 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='1 and 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='4, we know that ˜ph p→ ph and 1 ˜nh p→ 1 nh under the conditions ρ1 = ω(1/nh) and ρ2 = ω(1/nh).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' By the continuous mapping theorem, �Vh p→ Vh as nh → ∞, and, hence, �V p→ V .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Therefore, ˜U p→ U and ˜L p→ L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Since F˜p is continuous, we have |F˜p( ˜U) − F˜p(U)| p→ 0 (55) and |F˜p(˜L) − F˜p(L)| p→ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' (56) Therefore, Pr � p ∈ � ˜p − z1−α/2 � �V , ˜p + z1−α/2 � �V �� = Pr � p − z1−α/2 � �V < ˜p < p + z1−α/2 � �V � = � F˜p( ˜U) − F˜p(U) � + (F˜p(U) − Fp∗(U)) − � F˜p(˜L) − F˜p(L) � − (F˜p(L) − Fp∗(L)) + (Fp∗(U) − Fp∗(L)) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Putting together (53) through (56) and Fp∗(U) − Fp∗(L) = 1 − α, we have lim n→∞ Pr � p ∈ � ˜p − z1−α/2 � �V , ˜p + z1−α/2 � �V �� → 1 − α.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Since 1 ˜nh p→ 1 nh , under the conditions ρ1 = ω(1/nh) and ρ2 = ω(1/nh), it holds that 1 2ρ1˜n2 h = oP ( 1 nh ) and ˜p2 h 2ρ2˜n2 h = oP ( 1 nh ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Then �Vh p→ Var(ˆph).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Therefore, �V p→ Var(ˆp).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Lin et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='/Differentially Private Confidence Intervals 37 Acknowledgments We are grateful for helpful conversations with and comments from (in no partic- ular order) Rolando Rodriguez, Brian Finley, Jörg Drechsler, Gary Benedetto, Michael Freiman, and Justin Doty.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' This project was funded by the U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Census Bureau cooperative agreements CB20ADR0160001.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' References [1] Abowd, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' (2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' The challenge of scientific reproducibility and pri- vacy protection for statistical agencies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' [2] Brawner, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' and Honaker, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Bootstrap Inference and Differ- ential Privacy: Standard Errors for Free.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Unpublished Manuscript.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' [3] Bun, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' and Steinke, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' (2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Concentrated Differential Privacy: Sim- plifications, Extensions, and Lower Bounds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' ArXiv abs/1605.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='02065.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' [4] Bureau, U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Disclosure Avoidance for the 2020 Census: An Introduction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' [5] Cai, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=', Wang, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' and Zhang, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' The cost of privacy: Optimal rates of convergence for parameter estimation with differential privacy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' The Annals of Statistics 49 2825–2850.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' [6] Covington, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=', He, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=', Honaker, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' and Kamath, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Unbiased Statistical Estimation and Valid Confidence Intervals Under Differential Privacy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' ArXiv abs/2110.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='14465.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' [7] Ding, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=', Kulkarni, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' and Yekhanin, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Collecting Teleme- try Data Privately.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' In Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA 3571–3580.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' [8] D’Orazio, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=', Honaker, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' and King, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' (2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Differential Privacy for Social Science Inference.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' ERN: Other Econometrics: Econometric & Statistical Methods (Topic).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' [9] Drechsler, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=', Globus-Harris, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=', Mcmillan, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=', Sarathy, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' and Smith, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Nonparametric Differentially Private Confidence Inter- vals for the Median.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Journal of Survey Statistics and Methodology 10 804- 829.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' [10] Du, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=', Foot, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=', Moniot, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=', Bray, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' and Groce, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Differentially Private Confidence Intervals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' ArXiv abs/2001.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='02285.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' [11] DuMouchel, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' William H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' (1983).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Using Sample Survey Weights in Multiple Regression Analyses of Stratified Samples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Journal of the Amer- ican Statistical Association 78 535–543.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' [12] Dwork, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' and Lei, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' (2009).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Differential privacy and robust statistics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' In Proceedings of the forty-first annual ACM symposium on Theory of com- puting 371–380.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' [13] Dwork, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=', McSherry, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=', Nissim, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' and Smith, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' (2006).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Calibrat- ing noise to sensitivity in private data analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' In Theory of cryptography conference 265–284.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Springer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Lin et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='/Differentially Private Confidence Intervals 38 [14] Dwork, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' and Roth, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' (2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' The algorithmic foundations of differ- ential privacy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Foundations and Trends® in Theoretical Computer Science 9 211–407.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' [15] Dwork, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' and Rothblum, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' (2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Concentrated Differential Pri- vacy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' CoRR abs/1603.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='01887.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' [16] Dwork, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' and Smith, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' (2009).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Differential privacy for statistics: What we know and what we want to learn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Journal of Privacy and Confidentiality 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' [17] Díaz-Francés, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' and Rubio, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' (2013).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' On the existence of a normal approximation to the distribution of the ratio of two independent normal random variables.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Statistical Papers 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' [18] Erdös, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' and Rényi, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' (1959).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' On the Central Limit Theorem for Sam- ples From a Finite Population.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Publications of the Mathematical Institute of the Hungarian Academy of Sciences 4 49–61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' [19] Erlingsson, U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=', Pihur, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' and Korolova, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' (2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' RAPPOR: Ran- domized Aggregatable Privacy-Preserving Ordinal Response.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' In Proceed- ings of the 2014 ACM SIGSAC Conference on Computer and Communica- tions Security.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' CCS ’14 1054–1067.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Association for Computing Machinery, New York, NY, USA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' [20] Ferrando, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=', Wang, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' and Sheldon, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Parametric Bootstrap for Differentially Private Confidence Intervals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' In AISTATS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' [21] Franco, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=', Little, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=', Louis, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' and Slud, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Comparative Study of Confidence Intervals for Proportions in Complex Sample Surveys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Journal of survey statistics and methodology 7 3 334-364.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' [22] Gaboardi, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=', Rogers, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' and Sheffet, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Locally Private Mean Estimation: Z-test and Tight Confidence Intervals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' ArXiv abs/1810.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='08054.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' [23] Groshen, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' and Goroff, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Disclosure Avoidance and the 2020 Census: What Do Researchers Need to Know?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Harvard Data Science Review Special Issue 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' [24] Hájek, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' (1960).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Limiting distributions in simple random sampling from a finite population.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Magyar Tud.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Akad.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Mat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Kutató Int.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Közl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' 5 361–374.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' [25] Hayya, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=', Armstrong, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' and Gressis, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' (1975).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' A Note on the Ra- tio of Two Normally Distributed Variables.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Management Science 21 1338- 1341.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' [26] Karwa, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' and Vadhan, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Finite sample differentially private confidence intervals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' CoRR abs/1711.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='03908.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' [27] Kifer, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' and Machanavajjhala, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' (2011).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' No free lunch in data pri- vacy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' In ACM SIGMOD Conference.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' [28] Kroll, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' On density estimation at a fixed point under local differential privacy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Electronic Journal of Statistics 15 1783 – 1813.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' [29] Kuethe, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=', Caprihan, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=', Gach, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=', Lowe, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' and Fukushima, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' (2000).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Imaging obstructed ventilation with NMR using inert fluorinated gases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Journal of applied physiology (Bethesda, Md.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' : 1985) 88 2279-86.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' [30] Lam-Weil, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=', Laurent, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' and Loubes, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='-M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Minimax op- timal goodness-of-fit testing for densities and multinomials under a local S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Lin et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='/Differentially Private Confidence Intervals 39 differential privacy constraint.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Bernoulli 28 579 – 600.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' [31] Lehmann, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=', ed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' (1999).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Elements of Large-Sample Theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Springer New York, New York, NY.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' [32] Li, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' and Ding, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' General Forms of Finite Population Cen- tral Limit Theorems with Applications to Causal Inference.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Journal of the American Statistical Association 112 1759-1769.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' [33] Marsaglia, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' (2006).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Ratios of Normal Variables.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Journal of Statistical Software 16 1–10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' [34] Pfeffermann, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' (1993).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' The Role of Sampling Weights When Modeling Survey Data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' International Statistical Review 61 317–37.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' [35] Ruggles, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=', Flood, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=', Goeken, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=', Grover, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=', Meyer, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=', Pacas, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' and Sobek, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' IPUMS USA: Version 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='0 Extract of 1940 Census for U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Census Bureau Disclosure Avoidance Research [dataset].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Minneapolis, MN: IPUMS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' [36] Smith, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' (2009).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Asymptotically Optimal and Private Statistical Es- timation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' In Cryptology and Network Security, 8th International Confer- ence, CANS 2009, Kanazawa, Japan, December 12-14, 2009.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Proceedings (J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Garay, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Miyaji and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Otsuka, eds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=').' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Lecture Notes in Com- puter Science 5888 53–57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Springer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' [37] Team, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Learning with Privacy at Scale.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' [38] Thompson, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' (1997).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Theory of Sample Surveys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Monographs on Statistics and Applied Probability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Springer US.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' [39] van Erven, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' and Harremos, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' (2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Rényi Divergence and Kullback-Leibler Divergence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' IEEE Transactions on Information Theory 60 3797-3820.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' [40] Wang, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=', Kifer, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' and Lee, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Differentially Private Confi- dence Intervals for Empirical Risk Minimization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Priv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Confidentiality 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' [41] Wasserman, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' and Zhou, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' (2010).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' A Statistical Framework for Dif- ferential Privacy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} +page_content=' Journal of the American Statistical Association 105 375- 389.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/btE_T4oBgHgl3EQfzhyy/content/2301.08324v1.pdf'} diff --git a/dtFJT4oBgHgl3EQfSSx0/vector_store/index.faiss b/dtFJT4oBgHgl3EQfSSx0/vector_store/index.faiss new file mode 100644 index 0000000000000000000000000000000000000000..66f5b0b3df7572cfe752df826648b8c6ff3b9b02 --- /dev/null +++ b/dtFJT4oBgHgl3EQfSSx0/vector_store/index.faiss @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:002fb16fa99010f55fd31564a0662c7ab79f79c2157028782e5ea614e809f083 +size 9175085 diff --git a/eNE4T4oBgHgl3EQfpw2r/content/2301.05195v1.pdf b/eNE4T4oBgHgl3EQfpw2r/content/2301.05195v1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..1128074714d6d07d3385194da976b48aeff95d50 --- /dev/null +++ b/eNE4T4oBgHgl3EQfpw2r/content/2301.05195v1.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:f91ed937df323942c55f38c85f20cad93c221d0b58f4753bf9301240b518dd65 +size 931268 diff --git a/eNE4T4oBgHgl3EQfpw2r/vector_store/index.faiss b/eNE4T4oBgHgl3EQfpw2r/vector_store/index.faiss new file mode 100644 index 0000000000000000000000000000000000000000..9631ee73cfa2e387ab2e36bf7464be6fbb9969e0 --- /dev/null +++ b/eNE4T4oBgHgl3EQfpw2r/vector_store/index.faiss @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:e2a249fb7d4f6c23c2b230be2704950c599e7bc84fbe34ae314aeb62bffb5d62 +size 3604525 diff --git a/eNE4T4oBgHgl3EQfpw2r/vector_store/index.pkl b/eNE4T4oBgHgl3EQfpw2r/vector_store/index.pkl new file mode 100644 index 0000000000000000000000000000000000000000..b57df2e23a9a79a5abc37b165e3c8b690ea233f8 --- /dev/null +++ b/eNE4T4oBgHgl3EQfpw2r/vector_store/index.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:26c7e4d57838215f0ef62380f96f8382fe43ab054112d928b8633ab393f5f13b +size 130035 diff --git a/i9E3T4oBgHgl3EQf5AsY/vector_store/index.faiss b/i9E3T4oBgHgl3EQf5AsY/vector_store/index.faiss new file mode 100644 index 0000000000000000000000000000000000000000..b2320e6afdf378b99747ced58bb088695491d0ad --- /dev/null +++ b/i9E3T4oBgHgl3EQf5AsY/vector_store/index.faiss @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:4e247a6e432e43ad87b97b0d0a5bc651bb5ec5445976af56d94f7b415bfb272b +size 917549 diff --git a/itE0T4oBgHgl3EQf7AJH/content/2301.02770v1.pdf b/itE0T4oBgHgl3EQf7AJH/content/2301.02770v1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..b6e56f1f656dccc6208eff1c1798a9ef511a45a8 --- /dev/null +++ b/itE0T4oBgHgl3EQf7AJH/content/2301.02770v1.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:d9d040a1da38ef7cb845e9d201bca6465f3568a8142240a9d890bbdd7b66f77a +size 195521 diff --git a/itE0T4oBgHgl3EQf7AJH/vector_store/index.faiss b/itE0T4oBgHgl3EQf7AJH/vector_store/index.faiss new file mode 100644 index 0000000000000000000000000000000000000000..0ebcb5c4068c81b6561ca70c88ef01b74e47c283 --- /dev/null +++ b/itE0T4oBgHgl3EQf7AJH/vector_store/index.faiss @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:efcc974d2eef69f5558cd7e72618a9c3f0ecea09c3e4875137b92fcbef9f8e6d +size 2424877 diff --git a/itE3T4oBgHgl3EQfgwov/content/tmp_files/2301.04564v1.pdf.txt b/itE3T4oBgHgl3EQfgwov/content/tmp_files/2301.04564v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..24692dca0a0007c92ea41d84d14cb59619d65e3e --- /dev/null +++ b/itE3T4oBgHgl3EQfgwov/content/tmp_files/2301.04564v1.pdf.txt @@ -0,0 +1,1025 @@ +Optical valley separation in two-dimensional semimetals with tilted Dirac cones +Andrew Wild,∗ Eros Mariani,† and M. E. Portnoi‡ +Physics and Astronomy, University of Exeter, Stocker Road, Exeter EX4 4QL, United Kingdom +(Dated: January 12, 2023) +Two-dimensional semimetals with tilted Dirac cones in the electronic band structure are shown +to exhibit spatial separation of carriers belonging to different valleys under illumination. In stark +contrast to gapped Dirac materials this optovalleytronic phenomenon occurs in systems with intact +inversion and time-reversal symmetry that host massless Dirac cones in the band structure, thereby +retaining the exceptional graphene-like transport properties. As a result we demonstrate that optical +valley separation is possible at arbitrarily low photon frequencies including the deep infrared and +terahertz regimes with full gate tunability via Pauli blocking. As a specific example of our theory, we +demonstrate tunable valley separation in the proposed two-dimensional tilted Dirac cone semimetal +8-Pmmn borophene for incident infrared photons at room temperature. +I. +INTRODUCTION +Electrons in Dirac materials behave as massless +fermions, existing in one of two inequivalent Dirac cones +(known as valleys) with a low energy linear electronic +dispersion. As the valleys in Dirac materials are widely +separated in momentum space, carriers rarely scatter be- +tween them in the absence of atomic-scale disorder. This +makes Dirac materials ideal candidates for valleytronic +applications where the valley index encodes quantum in- +formation. For the realization of valleytronic devices it +is vital to achieve independent control over carriers with +different valley indices. The best known mechanism of +optovalleytronics is in materials with broken inversion +and preserved time-reversal symmetry that host gapped +Dirac cones in their band structure. +In such systems +individual valleys can be addressed with different circu- +larly polarized photons and under an external, in-plane +electric field carriers from different valleys are steered in +opposite directions yielding a finite photocurrent [1–4]. +The aforementioned mechanism does not offer optoval- +leytronic applications for gapless two-dimensional (2D) +Dirac fermions. Protecting the gapless nature of Dirac +particles preserves their superior transport properties in +the form of high mobility due to the suppression of back- +scattering associated with Klein tunneling. These mer- +its come at a cost – it becomes difficult to control the +propagation of charge carriers. +One solution to this +problem utilizes the optical momentum alignment phe- +nomenon in which photocarriers in Dirac materials such +as graphene excited by linearly-polarized light propagate +perpendicular to the polarization plane [5]. Momentum +alignment could be exploited for valleytronic applica- +tions in materials that exhibit a certain degree of val- +ley anisotropy in the band structure. +An example of +such an anisotropy is the trigonal warping of the elec- +tronic dispersion of graphene which becomes noticeable +∗ A.Wild@exeter.ac.uk +† E.Mariani@exeter.ac.uk +‡ M.E.Portnoi@exeter.ac.uk +from about 1eV above the apex of the Dirac cone [5, 6]. +However, this mechanism is limited to high excitation +frequency preventing any control of valley separation by +means of a gate voltage - the main asset of 2D materials +for optoelectronic applications. +In this work we propose a tunable mechanism of opti- +cal valley separation in high-mobility 2D semimetals over +a broad range of excitation frequencies including the elu- +sive terahertz regime. This opportunity is offered by ma- +terials hosting tilted Dirac cones in the electronic band +structure where the two valleys are skewed in opposite +directions (see inset of Fig. 1). +Combining this intrin- +sic valley anisotropy with optical momentum alignment +and Pauli blocking effects it becomes possible to spatially +separate photoexcited carriers with different valley index +away from the light spot (see Fig. 1). The degree of valley +polarization can be controlled via Pauli blocking which +in 2D semimetals is readily tuned with a back gate. The +spatial separation of valley carriers results in unequal val- +ley populations at opposite sides of the light spot. This +effect can be detected by measuring the degree of cir- +cular polarization of the edge luminescence in a nearby +gapped material [1, 2, 7], which ideally could be the same +material with locally broken inversion symmetry. +Tilted Dirac cones appear in three varieties: +sub- +critically tilted (type-I) with closed elliptical isoenergy +contours, critically tilted (type-III) with open parabolic +isoenergy contours and super-critically tilted (type- +II) with open hyperbolic isoenergy contours. +Two- +dimensional materials hosting tilted Dirac cones are an +ever growing family with candidate materials including +8-Pmmn borophene [8–10], an organic salt α-(BEDT- +TTF)2I3 [11] and many more [12–22]. +As a case study +of our work we demonstrate tunable valley separation in +8-Pmmn borophene upon illumination of infrared pho- +tons at room temperature. We further demonstrate that +type-II Dirac cone materials always possess perfect op- +tical valley separation due to their super-critically tilted +band dispersion. As an extension to our theory we show +that type-III Dirac cones will display enhanced momen- +tum alignment and emission of highly polarized terahertz +photons via hot luminescence aided by the inclusion of +carrier scattering. +arXiv:2301.04564v1 [cond-mat.mes-hall] 11 Jan 2023 + +2 +FIG. 1. +Schematic of the suggested experimental setup +for optically generating valley carrier separation in 2D tilted +Dirac cone materials. +A back-gate configuration with gate +voltage VG can be used to the change the Fermi level EF. +Linearly polarized photons are described by an electric field +which propagates along the ˆz direction and is polarized at +angle θ to the crystallographic ˆx axis. The inset shows the +band structure of two tilted Dirac cones with valley index +ξ = ± (sketched in green and orange). The incident photons +induce interband transitions - in the shaded regions optical +transitions are Pauli blocked. The resulting group velocity of +photoexcited carriers depends on their valley index. +II. +MODEL +We consider a 2D Dirac semimetal with tilted Dirac +cones in the electronic band structure described by the +Bloch Hamiltonian +Hξ(q) = ℏvF +� +ξγηqx1 + ξηqxσx + qyσy +� +, +(1) +where σx and σy are Pauli matrices, 1 is the 2 × 2 iden- +tity matrix and vF is the Fermi velocity along qy where +q = (qx, qy) is the wavevector measured from the Dirac +point in the Brillouin zone corresponding to the inequiv- +alent valleys ξ = ±. The Dirac Hamiltonian has a tilt +parameter γ which defines sub-critically tilted (|γ| < 1, +type-I), critically tilted (|γ| = 1, type-III) and super- +critically tilted (|γ| > 1, type-II) Dirac cones. +The +anisotropy parameter η > 0 scales the Dirac cone along +the tilt axis. +The valley-dependent eigenenergies and +eigenvectors of the Hamiltonian are defined as +Eξ +±(q) = ℏvFq +� +ξγη cos(ϕq) ± +� +η2 cos2(ϕq) + sin2(ϕq) +� +, +(2) +and +|Ψξ +±(q)⟩ = +1 +√ +2 +� +± +ξη cos(ϕq)−i sin(ϕq) +√ +η2 cos2(ϕq)+sin2(ϕq) +1 +� +(3) +respectively, for the conduction (+) and valence (−) +bands. +Here we have defined the wavevector in polar +coordinates as qx = q cos(ϕq) and qy = q sin(ϕq) with +q the radial wavevector and ϕq the wavevector angle. +The semimetal has a Fermi level EF that can be tuned +by means of a metallic back gate as shown in Fig. 1. +The sample is incident upon by linearly polarized pho- +tons with polarization ˆeθ = cos(θ)ˆx + sin(θ)ˆy and en- +ergy hν. +We treat the corresponding electric field as +a time-dependent perturbation to the otherwise time- +independent system using Fermi’s golden rule inducing +vertical, interband transitions. In this work we do not +consider intraband absorption as it requires knowledge +of material-dependent scattering mechanisms and in the +case of type-II Dirac cone materials, a detailed under- +standing of the Fermi surface beyond the Dirac cone ap- +proximation. We also note that our mechanism works +for photons incident normally on the sample and does +not rely on in-plane momentum transfer to electrons via +phenomena such as photon-drag [23]. +There are three factors that govern the optical absorp- +tion of photons. i) Initial and final states with wavevec- +tor q must be separated by an energy of ∆E(q) = +Eξ ++(q)−Eξ +−(q) = hν. For a fixed frequency ν this condi- +tion gives a set of wavevectors available for the transition +given by +∆E(q) = 2ℏvFq +� +η2 cos2(ϕq) + sin2(ϕq). +(4) +It can be seen that the states contributing to absorp- +tion fall on the perimeter of an ellipse in wavevector +space with semi-major and semi-minor axes (πν/vF and +πν/ηvF) proportional to the frequency of the incident +photon. For the case of the anisotropy parameter equal- +ing unity (η = 1), this ellipse becomes a circle with ra- +dius πν/vF. The geometry of this ellipse is independent +of both the valley index (ξ) and tilt parameter (γ). ii) +The transition rate describes the likelihood of an absorp- +tion event occurring at a given wavevector. For linearly +polarized photons the transition rate is proportional to +the absolute value squared of the expectation value of the +velocity operator projected along the axis of polarization +[vcv(q) = ⟨Ψξ +±(q)| ˆeθ · v |Ψξ +∓(q)⟩] between the initial and +final states[5, 24]. The velocity operator within the gra- +dient approximation v = (1/ℏ)∇qHξ(q), leads to the +squared velocity matrix element +|vcv(ϕq)|2 = +η2v2 +F +η2 cos2(ϕq) + sin2(ϕq) sin2(ϕq − θ). (5) +The formula above demonstrates momentum alignment +in Dirac materials in which, upon absorption of photons +polarized along θ, carriers are generated with wavevec- +tor angle ϕq predominantly perpendicular to the polar- +ization vector. +The velocity matrix element is equiva- +lent to that of non-tilted cones and hence is indepen- +dent of both valley (ξ) and tilt parameter (γ). iii) For +an absorption event to occur we must ensure that the +initial state is occupied and the final state is empty to +avoid Pauli blocking. +We define these conditions with + +1=3 ++=3 +Z +E(z) + 0) +the majority of carriers in valley ξ = + (−) are created +on the right (left) side of the Dirac cone [see Figs. 2(a) +and (b)]. The group velocities resulting from the coni- +cal band structure dictate that at photocreation, carriers +with valley number ξ = + will propagate to the right (ˆx +direction) whilst carriers with valley number ξ = − will +propagate to the left (−ˆx direction) towards the differ- +ent sides of the illuminated light spot. We note that in +general, the tilt parameter could take a negative value +(γ < 0), in this case carriers from valley ξ will propagate +in the −ξˆx direction. +Although we have highlighted spatial separation of val- +ley carriers for a specific polarization (θ = π/2), this phe- +nomenon occurs, to a lesser extent, for all polarizations. +As the polarization plane is rotated towards the crystal- +lographic ˆx axis (θ = 0) an increased amount of carriers +move along the ˆy axis, nevertheless, there is still a signif- +icant amount of valley separation [see Figs. 2(c) and (d)]. +As it is possible to determine the orientation of the crys- +tallographic axes of a Dirac semimetal with an optical +procedure [25], aligning the incident photon polarization +close to ˆy will yield optimal results. +By tuning a gate-voltage we can modify the Fermi level +which via Pauli blocking changes the distribution of pho- +toexcited carriers. +If the Fermi level sits close to the +Dirac point then little to no transitions are Pauli blocked +and carriers from both valleys propagate in all direc- +tions, minimizing spatial separation of valley carriers [see +Fig. 3(a)]. As the gate-voltage is increased, the regions +of Pauli blocked transitions grow and we obtain consid- +erable spatial separation of valley carriers [see Fig. 3(b)]. +If we were to increase the gate-voltage further, our ab- +sorption would decrease [see Fig. 3(c)] before stopping +altogether. + ++=$ +EF +é=y +F- +α +Q +2 +2 +(b) +a +é=x +α +Q +2 +2 +1y +(d) +(c) +qc +qc4 +FIG. 3. (a)-(c) Distribution of photoexcited carriers (F +) in a single valley (ξ = +) of a type-I Dirac cone material for photons +polarized along the crystallographic ˆy axis for a range of Fermi energies. Regions of Pauli blocked transitions are shaded in +gray. In this plot the tilt parameter is γ = 0.5, the anisotropy parameter is η = 1 and α ≈ 1/137 is the fine structure constant. +The group velocities of photoexcited carriers have been projected in to wavevector space and sketched as arrows. In panels +(b) and (c), carriers with valley index ξ = + (−) will propagate along the x (−ˆx) direction - displaying spatial separation of +valley carriers. On the contrary, in panel (a) the carriers move in each direction irrespective of their valley index. (d) The +total absorption A (red) and the absolute value of the valley polarization degree +��SR/L +�� (purple) are plotted as functions of the +Fermi level (EF) normalized by photon energy (hν). In panels (e) and (f), the degree of valley polarization and the absorption +are plotted as functions of EF/hν and |γ|. The contours EF = hν(1 − |γ|2)/2 (dotted) and EF = hν(1 + |γ|)/2 (dot-dashed) +correspond to the lines in panel (d). +To quantify the valley separation we define the param- +eter N ξ +R(L) to be the percentage of photoexcited carriers +in valley ξ that propagate to the right (left) side of the +light spot along the crystallographic ˆx axis +N ξ +R = +� +Σ Fξ(ϕq)dϕq +� +Fξ(ϕq)dϕq +. +(7) +The domain of integration Σ is defined as the set of angles +ϕq corresponding to a positive ˆx component of the group +velocity vξ +x = (1/ℏ)∂qxEξ ++ where Fξ is defined by Eq. (6). +The parameter N ξ +L can be deduced from the normaliza- +tion condition N ξ +R + N ξ +L = 1. Using these quantities, we +can define the degree of valley polarization at the right- +hand side of the light spot as +SR = N + +R − N − +R +N + +R + N − +R +. +(8) +We provide an analytic expression for the valley polar- +ization degree at either side of the light spot (SR/L) in +Appendix B. If all photoexcited carriers at the right-hand +side of the light spot are from valley ξ then the valley +polarization takes on the value SR = ξ, in contrast, if +there is an equal number of carriers from either valley +then SR = 0. The valley polarization at the left-hand +side of the light spot is the opposite of the right-hand +side SL = −SR. The degree of valley polarization can +be detected when photoexcited carriers propagate into a +nearby gapped material, where they can recombine emit- +ting circularly polarized photons with handedness deter- +mined by their valley index ξ. The degree of valley po- +larization maps on to the degree of circular polarization +of the emitted light. +We can now quantify the degree of valley polarization +for a specific tilted Dirac cone geometry with different +Fermi energies [see Fig. 3(d)]. In type-I Dirac cones the +degree of valley polarization is maximal ( +��SR/L +�� = 1) +for gate-voltages greater than or equal to hν(1 − |γ|2)/2 +[see Fig. 3(e)]. +However, we note that for there to be +any absorption, the Fermi energy must also be less than +hν(1 + |γ|)/2 [see Fig. 3(f)]. +Therefore, it is theoreti- +cally possible to achieve perfect valley carrier separation +( +��SL/R +�� = 1 and A > 0) in type-I Dirac cones for gate +voltages hν(1 − |γ|2)/2 ≤ EF < hν(1 + |γ|)/2 as demon- +strated for a specific value of tilt in Figs. 3(b) and (c). +This bound clearly vanishes in the limit of γ = 0 which +emphasizes that this mechanism of spatial separation of +valley carriers is not possible in non-tilted Dirac cone +materials such as graphene. +B. +Special case: 8 − Pmmn borophene +As a specific case study of our theory we demonstrate +the spatial separation of valley carriers in the predicted +tilted type-I Dirac cone material 8 − Pmmn borophene +under illumination of infrared photons. +In this mate- +rial the Dirac cones have a Hamiltonian of the form +given in Eq. (1) with Fermi velocity vF = 8.6 × 105ms−1, +tilt parameter γ = 0.46 and anisotropy parameter η = +0.80 [10]. It can be seen that with 8 − Pmmn borophene +at room temperature (T = 300K) it will be possible to +achieve valley separation by adding carriers to the sys- + +1.5 +F +Type-II +α-2 +SR/L +qy +Type-I + 1-2 +EF +0.8 +hv +(a) +(b) +(c) +0 +0.6 +qα +qα +qc +=0.5 +0.5 +TQ +1 +0.4 +: 1-2 +11+1l +[SR/L +EF +1+l +A +2 +hv +0.2 +(d) +[④] +0 +0 +0 +0.25 +0.5 +0.75 +0 +0 +0.5 +0 +0.5 +1 +1 +EF/hv +EF/hv +EF/hv5 +FIG. 4. Distribution of photoexcited carriers (F ξ) in the can- +didate type-I Dirac cone material 8 − Pmmn borophene. In +this plot the Dirac cone tilt is γ = 0.46, the anisotropy param- +eter is η = 0.80 and α ≈ 1/137 is the fine structure constant. +The monolayer is incident upon by infrared photons polarized +along the crystallographic ˆy axis with wavelength λ = 3µm at +ambient temperature T = 300K. The finite temperature blurs +the regions of Pauli blocked transitions, in conjunction with +previous figures, the stronger the Pauli blocking the more +opaque the gray shading. By utilizing a back-gate configu- +ration, carriers can be added to the monolayer moving the +Fermi level. The carrier density ∆n is defined as the density +of carriers added from charge neutrality (∆n = 0). The group +velocities of photoexcited carriers have been projected in to +wavevector space and sketched as arrows. +tem via a back-gate configuration [see Figs. 4(a) and (b)]. +By removing carriers, bringing the Fermi level back to +charge neutrality, valley separation can be turned off [see +Figs. 4(c) and (d)]. +C. +Type-II Dirac cones +Unlike their type-I counterparts, type-II (|γ| > 1) +Dirac cones are super-critically tilted. +The group ve- +locity of these Dirac cones dictates that all photoexcited +carriers will be spatially separated according to their val- +ley index (see Fig. 5). In other words, as long as there +is absorption [which requires EF < hν(1 + |γ|)/2] there +will always be full spatial separation of valley carriers +( +��SR/L +�� = 1) for any polarization of light [see Figs. 3(e) +and (f)]. +As we always have full spatial separation of +valley carriers in type-II Dirac cones, for demonstrative +FIG. 5. Distribution of photoexcited carriers (F ξ) in a type- +II Dirac cone material with valley indices ξ = + (−) sketched +in green (orange). In this plot the Dirac cone tilt is γ = 1.1, +the anisotropy parameter is η = 1 and α ≈ 1/137 is the fine +structure constant. Regions of Pauli blocked transitions are +shaded in gray. The group velocities of photoexcited carri- +ers have been projected in to wavevector space and sketched +as arrows. Due to the super-critically tilted band structure, +all photoexcited carriers are spatially separated according to +their valley index. +purposes, we pick the polarization of light that maximizes +the absorption and number of carriers which corresponds +to θ = 0. +D. +Carrier relaxation enhanced momentum +alignment in type-III Dirac cones +Up until this point, critically tilted type-III Dirac cones +have merely marked the boundary between type-I and II +Dirac cones. However, when including the effects of car- +rier relaxation, type-III Dirac cones offer an interesting +mechanism of momentum alignment not possible in any +other tilted Dirac cones. +Critically tilted type-III (|γ| = 1) Dirac cones have +a peculiar band structure in which the extrema of the +upper and lower bands are one-dimensional lines in the +wavevector space. First, we pump the material with ar- +bitrarily polarized photons with energy hνp > EF (see +Fig. 6). The resulting electrons and holes relax via a com- +bination of carrier-carrier and carrier-phonon scattering +processes to the most energetically favorable state. The +holes aim to increase their energy, floating to the one- +dimensional band maxima. The holes become stranded +in these intermediate states which are perfectly aligned +in momenta. Any holes that relaxed to a small wavevec- +tor | qx | will be able to recombine with electrons in the +upper band emitting photons of energy hνe < EF. Due +to the momentum alignment of these holes, the emitted + +8-Pmmn borophene +入= 3μm +T = 300K +△n = 5 × 1012 cm-2 ++=3 +2n +(b) +a +Q +2m +2m +d +C +0+=3 +F +α +α +12 +2 +qy +0 +0 +qc +qc6 +FIG. 6. +Schematic of enhanced momentum alignment in a +type-III Dirac cone with valley index ξ = + and tilt parameter +γ = 1. Black arrows indicate interband absorption/emission +and white arrows indicate relaxation via carrier-carrier and +carrier-phonon scattering processes. After interband absorp- +tion hν > EF holes float towards the Fermi level becoming +trapped in an intermediate state with wavevector qy = 0. +Upon recombination photons will be emitted with polar- +ization aligned with the crystallographic ˆy axis and energy +hν < EF. +photons will have polarization aligned with the crystal- +lographic ˆy axis. +This mechanism of emission via an +intermediate state is known as hot luminescence [26]. By +modifying the Fermi level with a back-gate voltage, the +emission energy of these photons can be tuned to the +terahertz regime yielding a highly-polarized tunable ter- +ahertz emitter. +IV. +CONCLUSION +The realization of the valley-polarized currents via the +valley Hall effect provided the elementary building block +for valleytronic devices in gapped Dirac cone materials +(see review articles [27–32] and references therein). This +discovery sparked a desire for valleytronic components +that in conjunction with the valley Hall effect could lead +to valley-sensitive logic gates for classical and quantum +computing applications [33]. In our work we demonstrate +the spatial separation of valley carriers away from the +light spot in gapless Dirac materials with tilted Dirac +cones. +Our discovery paves the way to the realization +of novel valleytronic devices benefiting from the superior +transport properties of massless Dirac fermions. +With the recent burst of interest in massless tilted +Dirac cone materials there have been several theoreti- +cal works investigating the valley-dependent transport of +carriers traversing gated junctions, waveguides and exter- +nal fields [34–38]. Combining these transport techniques +with the optical spatial separation of valley carriers pro- +posed in our work could enable the design of valleytronic +components such as valley filters and switches in gapless +materials. It may also be possible to further direct the +propagation of valley carriers across graphene-based in- +terconnects based on electrostatic waveguides [39, 40], +quantum wire leads [41] or gated junctions in externally +applied fields [42]. Furthermore, the spatial separation of +valley carriers in gapless tilted Dirac cone materials could +be combined with valley-sensitive components of gapped +Dirac cone materials such as valley transistors [43] or de- +coding the valley index via emission of circularly polar- +ized light [1, 2, 7]. This would require a detailed under- +standing of the transport phenomena occurring at the +interface between gapless and gapped Dirac cone materi- +als. It is well-known that placing graphene on a hexago- +nal boron nitride substrate induces a superlattice struc- +ture inducing local regions with pseudo-gaps [44–46] - a +similar technique for tilted Dirac materials should enable +the seamless transport of valley carriers between gap- +less and gapped regions in the spectrum allowing valley +index measurement. Lastly, the theoretical and compu- +tational predictions of two-dimensional materials hosting +massless tilted Dirac cones are rapidly growing in num- +ber [8–22]. The experimental efforts aiming at realizing +these materials are catching up [47–49]. We hope that +the prospect of optovalleytronics put forward in our work +will stimulate further research into massless tilted Dirac +cone materials. +ACKNOWLEDGMENTS +This work was supported by the EU H2020-MSCA- +RISE projects TERASSE (Project No. +823878) and +DiSeTCom +(Project +No. +823728) +as +well +as +by +the NATO Science for Peace and Security project +NATO.SPS.MYP.G5860. +A.W. is supported by a UK +EPSRC PhD studentship (Ref. 2239575). E.M. acknowl- +edges financial support from the Royal Society (Grant +No. IEC/R2/192166). +Appendix A: Analytic expression for the distribution +of photoexcited carriers in tilted Dirac cones +In this Appendix, we present the expression for the +distribution of photoexcited carriers Fξ(ϕq) for carriers +with valley index ξ as a function of wavevector angle ϕq. +Combining Eqs.(2) and (4)-(6) and solving the resultant +integral yields + +hVe < EF +hVp > EF7 +Fξ(ϕq) =α +2 +η2 sin2(ϕq − θ) +� +η2 cos2(ϕq) + sin2(ϕq) +�2 +� +1 − +� +1 + exp +� +hνξηγ cos(ϕq) +2kBT +� +η2 cos2(ϕq) + sin2(ϕq) ++ +hν +2kBT − +µ +kBT +��−1� +× +� +1 + exp +� +hνξηγ cos(ϕq) +2kBT +� +η2 cos2(ϕq) + sin2(ϕq) +− +hν +2kBT − +µ +kBT +��−1 +. +(A1) +Appendix B: Analytic expression for the +polarization of valley carriers +In this Appendix, we provide an analytic expression +for the valley polarization of photoexcited carriers that +propagate to the right-hand side of the light spot. As +the Dirac cones in either valley are tilted in opposite di- +rections, the percentage of carriers propagating to the +right in valley ξ is equal to the percentage of carriers +propagating to the left in valley −ξ yielding the iden- +tity N ξ +R = N −ξ +L . +Utilizing this expression, and the +identity N ξ +R + N ξ +L = 1, Eq. (8) can be simplified to +SR = ξ(N ξ +R − N ξ +L) which can be defined through the +distribution of photoexcited carriers as +SR = ξ +� 2π +0 +Fξ(ϕq)sign +� +vξ +x(ϕq) +� +dϕq +� 2π +0 +Fξ(ϕq)dϕq +, +(B1) +where sign(...) is the sign function and vξ +x(ϕq) is the ˆx +component of the group velocity. +The valley polariza- +tion at the left-hand side of the light spot is related to +the right-hand side by the expression SL = −SR. Solv- +ing Eq. (B1) for type-I (|γ| < 1) Dirac cone materials +incident upon by photons polarized along the crystallo- +graphic ˆy axis yields the degree of valley polarization +SR = sign(γ)S where +S = +� +� +� +� +� +S0, +EF +hν ≤ (1 − |γ|)/2, +S1, +(1 − |γ|)/2 < EF +hν < (1 − |γ|2)/2, +1, +(1 − |γ|2)/2 ≤ EF +hν < (1 + |γ|)/2, +(B2) +with +S0 = 2 +π +� +arccos(− |γ|) − |γ| +� +1 − |γ|2� +− 1, +(B3) +and +S1 = 2 +� +arccos(− |γ|) − |γ| +� +1 − |γ|2 +arccos(ψ) + ψ +� +1 − ψ2 +� +− 1, +(B4) +where ψ = (1/ |γ|)(2EF/hν − 1). In this expression we +have assumed the low temperature limit where kBT is +small compared to the photon and Fermi energies. +For type-II (|γ| > 1) Dirac cones, assuming there is +absorption which requires EF < hν(1+|γ|)/2, the degree +of valley polarization is equal to unity ( +��SR/L +�� = 1). +[1] D. Xiao, W. Yao, and Q. Niu, Valley-contrasting physics +in graphene: Magnetic moment and topological trans- +port, Phys. Rev. Lett. 99, 236809 (2007). +[2] W. Yao, D. Xiao, and Q. Niu, Valley-dependent optoelec- +tronics from inversion symmetry breaking, Phys. Rev. B +77, 235406 (2008). +[3] K. F. Mak, K. L. McGill, J. Park, and P. L. McEuen, +The valley Hall effect in MoS2 transistors, Science 344, +1489 (2014). +[4] R. V. Gorbachev, J. C. W. Song, G. L. Yu, A. V. Kre- +tinin, F. Withers, Y. Cao, A. Mishchenko, I. V. Grig- +orieva, K. S. Novoselov, L. S. Levitov, et al., Detecting +topological currents in graphene superlattices, Science +346, 448 (2014). +[5] R. R. Hartmann and M. E. Portnoi, Optoelectronic Prop- +erties of Carbon-Based Nanostructures: Steering Elec- +trons in Graphene by Electromagnetic Fields (LAP Lam- +bert Academic Publishing, Saarbr¨ucken, 2011); +R. R. +Hartmann, Ph.D. thesis, University of Exeter (2010). +[6] V. A. Saroka, R. R. Hartmann, and M. E. Portnoi, Mo- +mentum alignment and the optical valley Hall effect in +low-dimensional Dirac materials, J. Exp. Theor. Phys. +135, 513 (2022). +[7] M. A. Mojarro, R. Carrillo-Bastos, and J. A. Maytorena, +Optical properties of massive anisotropic tilted Dirac sys- +tems, Phys. Rev. B 103, 165415 (2021). +[8] X.-F. Zhou, X. Dong, A. R. Oganov, Q. Zhu, Y. Tian, +and H.-T. Wang, Semimetallic Two-Dimensional Boron +Allotrope with Massless Dirac Fermions, Phys. Rev. Lett. +112, 085502 (2014). +[9] A. Lopez-Bezanilla and P. B. Littlewood, Electronic +properties of 8−Pmmn borophene, Phys. Rev. B 93, +241405 (2016). +[10] A. D. Zabolotskiy and Y. E. Lozovik, Strain-induced +pseudomagnetic field in the Dirac semimetal borophene, +Phys. Rev. B 94, 165403 (2016). +[11] S. Katayama, A. Kobayashi, and Y. Suzumura, Pressure- +Induced Zero-Gap Semiconducting State in Organic Con- +ductor α-(BEDT-TTF)2I3 Salt, Journal of the Physical +Society of Japan 75, 054705 (2006). +[12] M. O. Goerbig, J.-N. Fuchs, G. Montambaux, and +F. Pi´echon, Tilted anisotropic Dirac cones in quinoid- +type graphene and α−(BEDT-TTF)2I3, Phys. Rev. B +78, 045415 (2008). + +8 +[13] T. Morinari, E. Kaneshita, and T. Tohyama, Topolog- +ical and Transport Properties of Dirac Fermions in an +Antiferromagnetic Metallic Phase of Iron-Based Super- +conductors, Phys. Rev. Lett. 105, 037203 (2010). +[14] X. Qian, J. Liu, L. Fu, and J. Li, Quantum spin Hall ef- +fect in two-dimensional transition metal dichalcogenides, +Science 346, 1344 (2014). +[15] L. Muechler, +A. Alexandradinata, +T. Neupert, and +R. Car, Topological Nonsymmorphic Metals from Band +Inversion, Phys. Rev. X 6, 041069 (2016). +[16] H.-Y. Lu, A. S. Cuamba, S.-Y. Lin, L. Hao, R. Wang, +H. Li, Y. Zhao, and C. S. Ting, Tilted anisotropic Dirac +cones in partially hydrogenated graphene, Phys. Rev. B +94, 195423 (2016). +[17] Y. Ma, L. Kou, X. Li, Y. Dai, and T. Heine, Room tem- +perature quantum spin Hall states in two-dimensional +crystals composed of pentagonal rings and their quan- +tum wells, NPG Asia Materials 8, 264 (2016). +[18] R. M. Geilhufe, B. Commeau, and G. W. Fernando, +Chemical-Strain Induced Tilted Dirac Nodes in (BEDT- +TTF)2X3 (X = I, Cl, Br, F) Based Charge-Transfer Salts, +physica status solidi (RRL) – Rapid Research Letters 12, +1800081 (2018). +[19] L. L. Tao and E. Y. Tsymbal, Two-dimensional type-II +Dirac fermions in a LaAlO3/LaNiO3/LaAlO3 quantum +well, Phys. Rev. B 98, 121102 (2018). +[20] R. G. Polozkov, N. Y. Senkevich, S. Morina, P. Kuzhir, +M. E. Portnoi, and I. A. Shelykh, Carbon nanotube array +as a van der Waals two-dimensional hyperbolic material, +Phys. Rev. B 100, 235401 (2019). +[21] S. Li, Y. Liu, Z.-M. Yu, Y. Jiao, S. Guan, X.-L. Sheng, +Y. Yao, and S. A. Yang, Two-dimensional antiferromag- +netic Dirac fermions in monolayer TaCoTe2, Phys. Rev. +B 100, 205102 (2019). +[22] P.-J. Guo, X.-Q. Lu, W. Ji, K. Liu, and Z.-Y. Lu, Quan- +tum spin Hall effect in monolayer and bilayer TaIrTe4, +Phys. Rev. B 102, 041109 (2020). +[23] M. Glazov and S. Ganichev, High frequency electric field +induced nonlinear effects in graphene, Physics Reports +535, 101 (2014). +[24] A. Anselm, Introduction to Semiconductor Theory, 2nd +ed. (MIR Publishers, Moscow, 1981) pp. 403–417. +[25] A. Wild, E. Mariani, and M. E. Portnoi, Optical absorp- +tion in two-dimensional materials with tilted Dirac cones, +Phys. Rev. B 105, 205306 (2022). +[26] K. Rebane and P. Saari, Hot luminescence and relaxation +processes in resonant secondary emission of solid matter, +Journal of Luminescence 16, 223 (1978). +[27] A. C. Ferrari, F. Bonaccorso, V. Fal’ko, K. S. Novoselov, +S. Roche, P. Bøggild, S. Borini, F. H. L. Koppens, +V. Palermo, N. Pugno, et al., Science and technology +roadmap for graphene, related two-dimensional crystals, +and hybrid systems, Nanoscale 7, 4598 (2015). +[28] X. Xu, W. Yao, D. Xiao, and T. F. Heinz, Spin and +pseudospins in layered transition metal dichalcogenides, +Nature Physics 10, 343 (2014). +[29] J. R. Schaibley, H. Yu, G. Clark, P. Rivera, J. S. Ross, +K. L. Seyler, W. Yao, and X. Xu, Valleytronics in 2D +materials, Nature Reviews Materials 1, 16055 (2016). +[30] K. F. Mak and J. Shan, Photonics and optoelectronics of +2D semiconductor transition metal dichalcogenides, Na- +ture Photonics 10, 216 (2016). +[31] R. Rold´an, L. Chirolli, E. Prada, J. A. Silva-Guill´en, +P. San-Jose, and F. Guinea, Theory of 2D crystals: +graphene and beyond, Chem. Soc. Rev. 46, 4387 (2017). +[32] G. Wang, A. Chernikov, M. M. Glazov, T. F. Heinz, +X. Marie, T. Amand, and B. Urbaszek, Colloquium: +Excitons in atomically thin transition metal dichalco- +genides, Rev. Mod. Phys. 90, 021001 (2018). +[33] S. A. Vitale, D. Nezich, J. O. Varghese, P. Kim, N. Gedik, +P. Jarillo-Herrero, D. Xiao, and M. Rothschild, Val- +leytronics: +Opportunities, Challenges, and Paths For- +ward, Small 14, 1801483 (2018). +[34] S.-H. Zhang and W. Yang, Oblique Klein tunneling in +8 − Pmmn borophene p − n junctions, Phys. Rev. B 97, +235440 (2018). +[35] V. H. Nguyen and J.-C. Charlier, Klein tunneling and +electron optics in Dirac-Weyl fermion systems with tilted +energy dispersion, Phys. Rev. B 97, 235113 (2018). +[36] S. F. Islam, Magnetotransport properties of 8-Pmmn +borophene: effects of Hall field and strain, Journal of +Physics: Condensed Matter 30, 275301 (2018). +[37] J. Zheng, J. Lu, and F. Zhai, Anisotropic and gate- +tunable valley filtering based on 8-Pmmn borophene, +Nanotechnology 32, 025205 (2020). +[38] R. A. Ng, A. Wild, M. E. Portnoi, and R. R. Hart- +mann, Quasi-exact solutions for guided modes in two- +dimensional materials with tilted Dirac cones, Scientific +Reports 12, 7688 (2022). +[39] R. R. Hartmann, N. J. Robinson, and M. E. Portnoi, +Smooth electron waveguides in graphene, Phys. Rev. B +81, 245431 (2010). +[40] V. Zalipaev, D. Maksimov, C. Linton, and F. Kusmart- +sev, Spectrum of localized states in graphene quantum +dots and wires, Physics Letters A 377, 216 (2013). +[41] H. Schomerus, Effective contact model for transport +through weakly-doped graphene, Phys. Rev. B 76, +045433 (2007). +[42] L. Trifunovic and P. W. Brouwer, Valley isospin of in- +terface states in a graphene pn junction in the quantum +Hall regime, Phys. Rev. B 99, 205431 (2019). +[43] M.-K. Lee, N.-Y. Lue, C.-K. Wen, and G. Y. Wu, Valley- +based field-effect transistors in graphene, Phys. Rev. B +86, 165411 (2012). +[44] C. R. Woods, L. Britnell, A. Eckmann, R. S. Ma, J. C. +Lu, H. M. Guo, X. Lin, G. L. Yu, Y. Cao, R. V. Gor- +bachev, et al., Commensurate-incommensurate transi- +tion in graphene on hexagonal boron nitride, Nature +Physics 10, 451 (2014). +[45] J. Jung, A. M. DaSilva, A. H. MacDonald, and S. Adam, +Origin of band gaps in graphene on hexagonal boron ni- +tride, Nature Communications 6, 6308 (2015). +[46] T. Aktor, J. H. Garcia, S. Roche, A.-P. Jauho, and S. R. +Power, Valley hall effect and nonlocal resistance in locally +gapped graphene, Phys. Rev. B 103, 115406 (2021). +[47] A. J. Mannix, X.-F. Zhou, B. Kiraly, J. D. Wood, D. Al- +ducin, B. D. Myers, X. Liu, B. L. Fisher, U. Santiago, +J. R. Guest, et al., Synthesis of borophenes: Anisotropic, +two-dimensional boron polymorphs, Science 350, 1513 +(2015). +[48] B. Feng, Q. Zhong, W. Li, S. Li, H. Li, P. Cheng, +S. Meng, L. Chen, and K. Wu, Experimental realization +of two-dimensional boron sheets, Nature Chemistry 8, +563 (2016). +[49] W. Gao and J. Kono, Science and applications of wafer- +scale crystalline carbon nanotube films prepared through +controlled vacuum filtration, Royal Society Open Science +6, 181605 (2019). + diff --git a/itE3T4oBgHgl3EQfgwov/content/tmp_files/load_file.txt b/itE3T4oBgHgl3EQfgwov/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..5e4fbe02abb7bbeae5d6500d00019ce00971bace --- /dev/null +++ b/itE3T4oBgHgl3EQfgwov/content/tmp_files/load_file.txt @@ -0,0 +1,687 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itE3T4oBgHgl3EQfgwov/content/2301.04564v1.pdf,len=686 +page_content='Optical valley separation in two-dimensional semimetals with tilted Dirac cones Andrew Wild,∗ Eros Mariani,† and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itE3T4oBgHgl3EQfgwov/content/2301.04564v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itE3T4oBgHgl3EQfgwov/content/2301.04564v1.pdf'} +page_content=' Portnoi‡ Physics and Astronomy, University of Exeter, Stocker Road, Exeter EX4 4QL, United Kingdom (Dated: January 12, 2023) Two-dimensional semimetals with tilted Dirac cones in the electronic band structure are shown to exhibit spatial separation of carriers belonging to different valleys under illumination.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itE3T4oBgHgl3EQfgwov/content/2301.04564v1.pdf'} +page_content=' In stark contrast to gapped Dirac materials this optovalleytronic phenomenon occurs in systems with intact inversion and time-reversal symmetry that host massless Dirac cones in the band structure, thereby retaining the exceptional graphene-like transport properties.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itE3T4oBgHgl3EQfgwov/content/2301.04564v1.pdf'} +page_content=' As a result we demonstrate that optical valley separation is possible at arbitrarily low photon frequencies including the deep infrared and terahertz regimes with full gate tunability via Pauli blocking.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itE3T4oBgHgl3EQfgwov/content/2301.04564v1.pdf'} +page_content=' As a specific example of our theory, we demonstrate tunable valley separation in the proposed two-dimensional tilted Dirac cone semimetal 8-Pmmn borophene for incident infrared photons at room temperature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itE3T4oBgHgl3EQfgwov/content/2301.04564v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itE3T4oBgHgl3EQfgwov/content/2301.04564v1.pdf'} +page_content=' INTRODUCTION Electrons in Dirac materials behave as massless fermions, existing in one of two inequivalent Dirac cones (known as valleys) with a low energy linear electronic dispersion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itE3T4oBgHgl3EQfgwov/content/2301.04564v1.pdf'} +page_content=' As the valleys in Dirac materials are widely separated in momentum space, carriers rarely scatter be- tween them in the absence of atomic-scale disorder.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itE3T4oBgHgl3EQfgwov/content/2301.04564v1.pdf'} +page_content=' This makes Dirac materials ideal candidates for valleytronic applications where the valley index encodes quantum in- formation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itE3T4oBgHgl3EQfgwov/content/2301.04564v1.pdf'} +page_content=' For the realization of valleytronic devices it is vital to achieve independent control over carriers with different valley indices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itE3T4oBgHgl3EQfgwov/content/2301.04564v1.pdf'} +page_content=' The best known mechanism of optovalleytronics is in materials with broken inversion and preserved time-reversal symmetry that host gapped Dirac cones in their band structure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itE3T4oBgHgl3EQfgwov/content/2301.04564v1.pdf'} +page_content=' In such systems individual valleys can be addressed with different circu- larly polarized photons and under an external, in-plane electric field carriers from different valleys are steered in opposite directions yielding a finite photocurrent [1–4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itE3T4oBgHgl3EQfgwov/content/2301.04564v1.pdf'} +page_content=' The aforementioned mechanism does not offer optoval- leytronic applications for gapless two-dimensional (2D) Dirac fermions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itE3T4oBgHgl3EQfgwov/content/2301.04564v1.pdf'} +page_content=' Protecting the gapless nature of Dirac particles preserves their superior transport properties in the form of high mobility due to the suppression of back- scattering associated with Klein tunneling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itE3T4oBgHgl3EQfgwov/content/2301.04564v1.pdf'} +page_content=' These mer- its come at a cost – it becomes difficult to control the propagation of charge carriers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itE3T4oBgHgl3EQfgwov/content/2301.04564v1.pdf'} +page_content=' One solution to this problem utilizes the optical momentum alignment phe- nomenon in which photocarriers in Dirac materials such as graphene excited by linearly-polarized light propagate perpendicular to the polarization plane [5].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itE3T4oBgHgl3EQfgwov/content/2301.04564v1.pdf'} +page_content=' Momentum alignment could be exploited for valleytronic applica- tions in materials that exhibit a certain degree of val- ley anisotropy in the band structure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itE3T4oBgHgl3EQfgwov/content/2301.04564v1.pdf'} +page_content=' An example of such an anisotropy is the trigonal warping of the elec- tronic dispersion of graphene which becomes noticeable ∗ A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itE3T4oBgHgl3EQfgwov/content/2301.04564v1.pdf'} +page_content='Wild@exeter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itE3T4oBgHgl3EQfgwov/content/2301.04564v1.pdf'} +page_content='ac.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itE3T4oBgHgl3EQfgwov/content/2301.04564v1.pdf'} +page_content='uk † E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itE3T4oBgHgl3EQfgwov/content/2301.04564v1.pdf'} +page_content='Mariani@exeter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itE3T4oBgHgl3EQfgwov/content/2301.04564v1.pdf'} +page_content='ac.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itE3T4oBgHgl3EQfgwov/content/2301.04564v1.pdf'} +page_content='uk ‡ M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itE3T4oBgHgl3EQfgwov/content/2301.04564v1.pdf'} +page_content='E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itE3T4oBgHgl3EQfgwov/content/2301.04564v1.pdf'} +page_content='Portnoi@exeter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itE3T4oBgHgl3EQfgwov/content/2301.04564v1.pdf'} +page_content='ac.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itE3T4oBgHgl3EQfgwov/content/2301.04564v1.pdf'} +page_content='uk from about 1eV above the apex of the Dirac cone [5, 6].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itE3T4oBgHgl3EQfgwov/content/2301.04564v1.pdf'} +page_content=' However, this mechanism is limited to high excitation frequency preventing any control of valley separation by means of a gate voltage - the main asset of 2D materials for optoelectronic applications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itE3T4oBgHgl3EQfgwov/content/2301.04564v1.pdf'} +page_content=' In this work we propose a tunable mechanism of opti- cal valley separation in high-mobility 2D semimetals over a broad range of excitation frequencies including the elu- sive terahertz regime.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itE3T4oBgHgl3EQfgwov/content/2301.04564v1.pdf'} +page_content=' This opportunity is offered by ma- terials hosting tilted Dirac cones in the electronic band structure where the two valleys are skewed in opposite directions (see inset of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itE3T4oBgHgl3EQfgwov/content/2301.04564v1.pdf'} +page_content=' 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itE3T4oBgHgl3EQfgwov/content/2301.04564v1.pdf'} +page_content=' Combining this intrin- sic valley anisotropy with optical momentum alignment and Pauli blocking effects it becomes possible to spatially separate photoexcited carriers with different valley index away from the light spot (see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itE3T4oBgHgl3EQfgwov/content/2301.04564v1.pdf'} +page_content=' 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itE3T4oBgHgl3EQfgwov/content/2301.04564v1.pdf'} +page_content=' The degree of valley polarization can be controlled via Pauli blocking which in 2D semimetals is readily tuned with a back gate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itE3T4oBgHgl3EQfgwov/content/2301.04564v1.pdf'} +page_content=' The spatial separation of valley carriers results in unequal val- ley populations at opposite sides of the light spot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itE3T4oBgHgl3EQfgwov/content/2301.04564v1.pdf'} +page_content=' This effect can be detected by measuring the degree of cir- cular polarization of the edge luminescence in a nearby gapped material [1, 2, 7], which ideally could be the same material with locally broken inversion symmetry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itE3T4oBgHgl3EQfgwov/content/2301.04564v1.pdf'} +page_content=' Tilted Dirac cones appear in three varieties: sub- critically tilted (type-I) with closed elliptical isoenergy contours, critically tilted (type-III) with open parabolic isoenergy contours and super-critically tilted (type- II) with open hyperbolic isoenergy contours.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itE3T4oBgHgl3EQfgwov/content/2301.04564v1.pdf'} +page_content=' Two- dimensional materials hosting tilted Dirac cones are an ever growing family with candidate materials including 8-Pmmn borophene [8–10], an organic salt α-(BEDT- TTF)2I3 [11] and many more [12–22].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itE3T4oBgHgl3EQfgwov/content/2301.04564v1.pdf'} +page_content=' As a case study of our work we demonstrate tunable valley separation in 8-Pmmn borophene upon illumination of infrared pho- tons at room temperature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itE3T4oBgHgl3EQfgwov/content/2301.04564v1.pdf'} +page_content=' We further demonstrate that type-II Dirac cone materials always possess perfect op- tical valley separation due to their super-critically tilted band dispersion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itE3T4oBgHgl3EQfgwov/content/2301.04564v1.pdf'} +page_content=' As an extension to our theory we show that type-III Dirac cones will display enhanced momen- tum alignment and emission of highly polarized terahertz photons via hot luminescence aided by the inclusion of carrier scattering.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itE3T4oBgHgl3EQfgwov/content/2301.04564v1.pdf'} +page_content=' arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itE3T4oBgHgl3EQfgwov/content/2301.04564v1.pdf'} +page_content='04564v1 [cond-mat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itE3T4oBgHgl3EQfgwov/content/2301.04564v1.pdf'} +page_content='mes-hall] 11 Jan 2023 2 FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itE3T4oBgHgl3EQfgwov/content/2301.04564v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itE3T4oBgHgl3EQfgwov/content/2301.04564v1.pdf'} +page_content=' Schematic of the suggested experimental setup for optically generating valley carrier separation in 2D tilted Dirac cone materials.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itE3T4oBgHgl3EQfgwov/content/2301.04564v1.pdf'} +page_content=' A back-gate configuration with gate voltage VG can be used to the change the Fermi level EF.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itE3T4oBgHgl3EQfgwov/content/2301.04564v1.pdf'} +page_content=' Linearly polarized photons are described by an electric field which propagates along the ˆz direction and is polarized at angle θ to the crystallographic ˆx axis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itE3T4oBgHgl3EQfgwov/content/2301.04564v1.pdf'} +page_content=' The inset shows the band structure of two tilted Dirac cones with valley index ξ = ± (sketched in green and orange).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itE3T4oBgHgl3EQfgwov/content/2301.04564v1.pdf'} +page_content=' The incident photons induce interband transitions - in the shaded regions optical transitions are Pauli blocked.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itE3T4oBgHgl3EQfgwov/content/2301.04564v1.pdf'} +page_content=' The resulting group velocity of photoexcited carriers depends on their valley index.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itE3T4oBgHgl3EQfgwov/content/2301.04564v1.pdf'} +page_content=' II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itE3T4oBgHgl3EQfgwov/content/2301.04564v1.pdf'} +page_content=' MODEL We consider a 2D Dirac semimetal with tilted Dirac cones in the electronic band structure described by the Bloch Hamiltonian Hξ(q) = ℏvF � ξγηqx1 + ξηqxσx + qyσy � , (1) where σx and σy are Pauli matrices, 1 is the 2 × 2 iden- tity matrix and vF is the Fermi velocity along qy where q = (qx, qy) is the wavevector measured from the Dirac point in the Brillouin zone corresponding to the inequiv- alent valleys ξ = ±.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itE3T4oBgHgl3EQfgwov/content/2301.04564v1.pdf'} +page_content=' The Dirac Hamiltonian has a tilt parameter γ which defines sub-critically tilted (|γ| < 1, type-I), critically tilted (|γ| = 1, type-III) and super- critically tilted (|γ| > 1, type-II) Dirac cones.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itE3T4oBgHgl3EQfgwov/content/2301.04564v1.pdf'} +page_content=' The anisotropy parameter η > 0 scales the Dirac cone along the tilt axis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itE3T4oBgHgl3EQfgwov/content/2301.04564v1.pdf'} +page_content=' The valley-dependent eigenenergies and eigenvectors of the Hamiltonian are defined as Eξ ±(q) = ℏvFq � ξγη cos(ϕq) ± � η2 cos2(ϕq) + sin2(ϕq) � , (2) and |Ψξ ±(q)⟩ = 1 √ 2 � ± ξη cos(ϕq)−i sin(ϕq) √ η2 cos2(ϕq)+sin2(ϕq) 1 � (3) respectively, for the conduction (+) and valence (−) bands.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itE3T4oBgHgl3EQfgwov/content/2301.04564v1.pdf'} +page_content=' Here we have defined the wavevector in polar coordinates as qx = q cos(ϕq) and qy = q sin(ϕq) with q the radial wavevector and ϕq the wavevector angle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itE3T4oBgHgl3EQfgwov/content/2301.04564v1.pdf'} +page_content=' The semimetal has a Fermi level EF that can be tuned by means of a metallic back gate as shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itE3T4oBgHgl3EQfgwov/content/2301.04564v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itE3T4oBgHgl3EQfgwov/content/2301.04564v1.pdf'} +page_content=' The sample is incident upon by linearly polarized pho- tons with polarization ˆeθ = cos(θ)ˆx + sin(θ)ˆy and en- ergy hν.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itE3T4oBgHgl3EQfgwov/content/2301.04564v1.pdf'} +page_content=' We treat the corresponding electric field as a time-dependent perturbation to the otherwise time- independent system using Fermi’s golden rule inducing vertical, interband transitions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itE3T4oBgHgl3EQfgwov/content/2301.04564v1.pdf'} +page_content=' In this work we do not consider intraband absorption as it requires knowledge of material-dependent scattering mechanisms and in the case of type-II Dirac cone materials, a detailed under- standing of the Fermi surface beyond the Dirac cone ap- proximation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itE3T4oBgHgl3EQfgwov/content/2301.04564v1.pdf'} +page_content=' We also note that our mechanism works for photons incident normally on the sample and does not rely on in-plane momentum transfer to electrons via phenomena such as photon-drag [23].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itE3T4oBgHgl3EQfgwov/content/2301.04564v1.pdf'} +page_content=' There are three factors that govern the optical absorp- tion of photons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itE3T4oBgHgl3EQfgwov/content/2301.04564v1.pdf'} +page_content=' i) Initial and final states with wavevec- tor q must be separated by an energy of ∆E(q) = Eξ +(q)−Eξ −(q) = hν.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itE3T4oBgHgl3EQfgwov/content/2301.04564v1.pdf'} +page_content=' For a fixed frequency ν this condi- tion gives a set of wavevectors available for the transition given by ∆E(q) = 2ℏvFq � η2 cos2(ϕq) + sin2(ϕq).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itE3T4oBgHgl3EQfgwov/content/2301.04564v1.pdf'} +page_content=' (4) It can be seen that the states contributing to absorp- tion fall on the perimeter of an ellipse in wavevector space with semi-major and semi-minor axes (πν/vF and πν/ηvF) proportional to the frequency of the incident photon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itE3T4oBgHgl3EQfgwov/content/2301.04564v1.pdf'} +page_content=' For the case of the anisotropy parameter equal- ing unity (η = 1), this ellipse becomes a circle with ra- dius πν/vF.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itE3T4oBgHgl3EQfgwov/content/2301.04564v1.pdf'} +page_content=' The geometry of this ellipse is independent of both the valley index (ξ) and tilt parameter (γ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itE3T4oBgHgl3EQfgwov/content/2301.04564v1.pdf'} +page_content=' ii) The transition rate describes the likelihood of an absorp- tion event occurring at a given wavevector.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itE3T4oBgHgl3EQfgwov/content/2301.04564v1.pdf'} +page_content=' For linearly polarized photons the transition rate is proportional to the absolute value squared of the expectation value of the velocity operator projected along the axis of polarization [vcv(q) = ⟨Ψξ ±(q)| ˆeθ · v |Ψξ ∓(q)⟩] between the initial and final states[5, 24].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itE3T4oBgHgl3EQfgwov/content/2301.04564v1.pdf'} +page_content=' The velocity operator within the gra- dient approximation v = (1/ℏ)∇qHξ(q), leads to the squared velocity matrix element |vcv(ϕq)|2 = η2v2 F η2 cos2(ϕq) + sin2(ϕq) sin2(ϕq − θ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itE3T4oBgHgl3EQfgwov/content/2301.04564v1.pdf'} +page_content=' (5) The formula above demonstrates momentum alignment in Dirac materials in which, upon absorption of photons polarized along θ, carriers are generated with wavevec- tor angle ϕq predominantly perpendicular to the polar- ization vector.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itE3T4oBgHgl3EQfgwov/content/2301.04564v1.pdf'} +page_content=' The velocity matrix element is equiva- lent to that of non-tilted cones and hence is indepen- dent of both valley (ξ) and tilt parameter (γ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itE3T4oBgHgl3EQfgwov/content/2301.04564v1.pdf'} +page_content=' iii) For an absorption event to occur we must ensure that the initial state is occupied and the final state is empty to avoid Pauli blocking.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/itE3T4oBgHgl3EQfgwov/content/2301.04564v1.pdf'} +page_content=' We define these conditions with 1=3 +=3 Z E(z) +Check_C&C_stage (src_host_ip)[2] then +9: +for +tgt_host_ip +∈ +Check_Discovery_stage +(src_host_ip)[4] do +10: +if +Check_Lateral_Movement_stage +(src_host_ip, +tgt_host_ip)[1] += +TRUE +&& +Check_Lateral_Movement_stage +(src_host_ip, +tgt_host_ip)[2] +> +Check_Discovery_stage +(src_host_ip)[2] then +11: +if tgt_host_ip = edge_gw_IP then +12: +if +Check_Fieldbus_scan_stage +()[1] += +TRUE +&& +Check_Fieldbus_scan_stage +()[2] +> +Check_Lateral_Movement_stage +(src_host_ip, +tgt_host_ip)[2] then +13: +if +Check_CE_comm_stage +()[1] += +TRUE +&& +Check_CE_comm_stage +()[2] +> +Check_Fieldbus_scan_stage ()[2] then +14: +det_status = APT_DET_STOP +15: +return (det_status) +16: +end if +17: +end if +18: +end if +19: +end if +20: +end for +21: end if +22: Function +Check_C&C_stage +(host_ip), +Returns +{bool_val, time_det, C&C_server_IP} +23: Function Check_Discovery_stage (host_ip), Returns +{bool_val, time_det, scan_type, list_target_host_IPs} +24: Function +Check_Lateral_Movement_stage +(src_host_ip, dst_host_ip), Returns {bool_val, time_det} +25: Function +Check_Fieldbus_scan_stage +(), +Returns +{bool_val, time_det} +26: Function +Check_CE_comm_stage +(), +Returns +{bool_val, time_det} +ML-based detection. For example, let us assume that there is +a false positive, i.e., a packet trace is classified as scanning +though it is normal and the Discovery stage is marked as +detected. The subsequent attack stages in IASM would not +be detected by the ASDC engine and therefore, RAPTOR +would know that there was a false positive in detection of +an earlier attack stage. It is also possible that there is a false +negative, i.e., a packet trace is classified as normal though it is +scanning, and therefore, the ASDC engine would not invoke +detection of subsequent attack stages in IASM. We propose to + +8 +handle both false positives and negatives by taking the mode +of classification results for a packet trace for a sufficiently +large number of iterations. +F. APT campaign graph +As the ASDC engine proceeds to detect various stages of an +APT campaign, it uses the detected stages and their attributes +to construct the APT campaign graph. It is a directed graph, +G(V,E) where each node, vi ∈ V ∀i ∈ {1,2,...,Nv}, where Nv +is the total number of nodes in the graph, corresponds to a +machine (denoted by its IP address) which is a part of one of +the detected attack stages. An edge, ej ∈ E ∀ j ∈ {1,2,...,Ne}, +where Ne is the total number of edges in the graph, is extended +from node vi to another node vk in the graph if there is +a connection from the machine corresponding to node vi to +the machine corresponding to node vk during one or more of +the APT attack stages. Each edge has an attribute {s1,s2,...} +where sl ∀l ∈ {1,2,...} is an attack stage which enables the +connection between the two machines corresponding to the +nodes at either end of the edge. +V. EXPERIMENTS +A. IIoT Testbed +To generate a realistic IIoT APT dataset which can be +used to evaluate RAPTOR’s performance, we built an IIoT +testbed modelled after Brown-IIoTbed [21] whose architecture +is reproduced in Fig. 3. The implementation of IIoT testbeds +is still in its early stages, with most existing implementations +[4] being special projects and publicly unavailable. Brown- +IIoTbed is designed based on the IIC (Industrial Internet +Consortium)’s IIRA (Industrial Internet Reference Architec- +ture) model and consists of three tiers- edge, platform and +enterprise. It supports a number of real-world IIoT function- +alities such as e-mail notifications to plant workers regarding +important OT events, web-based SCADA interface (viewing +real-time sensor values and trends, actuator status change +notifications, tuning of PLC parameters), remote maintenance +of edge gateway, query to edge data historian, etc. The testbed +also supports a number of real-world IIoT protocols such as +CoAP, MQTT, and Modbus. +B. Experimental Methodology and Results +We need to collect data from our IIoT testbed under normal +operation as well during APT attack stages. We collect data +from our testbed in the form of network traffic traces from +hosts, audit-based provenance at each x86-based host, host +logs (login records, authentication logs, syslog) and alerts from +Snort network IDS. However, we use only the optimal data +sources identified in Section IV-B towards the final attack +detection. +Command-and-control stage: To emulate this stage, we use +open-source tools such as dnscat2 to create a communication +channel between a C&C server and a compromised machine +using tunneling over DNS protocol which is one of the most +common C&C communication protocols used by attackers +since most firewalls do not block it. We run a public dnscat2 +C&C server and the client on a Windows 10 Pro and a Ubuntu +20.04 machine in our testbed. The packet traces generated +on those client machines are collected using tcpdump in sets +of 1 minute duration. A total of 1000 packet traces were +collected for each type of host and fed as input to the detection +phase of Algorithm 2 proposed in [23] for detection of C&C +communication. +The performance is evaluated in terms of detection rate +(DR) and missed-detection rate (MDR). Detection Rate is +the fraction of the total number of packet traces which have +been correctly detected as containing C&C traffic, and Missed- +detection Rate is the fraction of the total number of packet +traces which have been incorrectly detected as not containing +C&C traffic. Using the parameter values (given in Table III), +the detection performance for both the scenarios specified +above is shown in Table IV. It can be seen that the algorithm +gives a DR of 1.0 and a MDR of 0.0. +Traffic sampling frequency +0.1 +Min. autocorrelation peak height +0.7×(Max. peak height) +Inter-peak gap variance threshold +0.01 +TABLE III: Parameter Values for C&C Communication Periodicity Detection +Discovery stage: To emulate this stage, we use open-source +network scanning tools such as nmap which is either used +directly or is the inspiration for customized port scanners used +by most APT groups. We run the default nmap SYN scans +on a Windows 10 Pro and a Ubuntu 20.04 machine in our +testbed to enumerate connected hosts, their OS versions and +the services running on them. Nmap is run in both normal +mode as well as sneaky or as well call it, slow mode, with the +latter mode targeted at evading IDSes [24]. The packet traces +thus generated on those machines are collected using tcpdump +in sets of 1 minute duration. In real-world APT campaigns, +attackers may slow down network scanning to evade detection +by IDS and therefore, we may need to increase the duration +of packet captures. A total of 1000 packet traces are collected +from both the Windows and Ubuntu machines under normal +operation and further 1000 packet traces are collected during +the network scanning operation. The packet traces are used +to extract features mentioned in Section IV-C and appropriate +class labels (’normal’ or ’scanning’) are assigned to them. The +extracted features vectors are further processed (handling of +missing values, scaling) and randomly divided into training +and test datasets using an 80:20 split. Using χ2 test statistic, +we select the best features (test statistic value above a pre- +selected threshold) out of the existing ones. The final feature +vectors thus obtained are used to train Support Vector Machine +(SVM) and Random Forest (RForest) models. The trained +ML models are then used to predict class labels for the test +dataset and finally, the detection performance of the models is +evaluated. We use a 10-fold cross validation approach to tune +the hyper-parameters of the ML classifiers for achieving the +DATASET +METHOD +DR +MDR +IIoT Testbed Ubuntu host +Algorithm 2 [23] +1.0 +0.0 +IIoT Testbed Windows host +Algorithm 2 [23] +1.0 +0.0 +TABLE IV: C&C Stage Detection Performance + +9 +Fig. 3: IIoT Testbed Architecture [21] +DATASET +MODEL +PR +RC +IIoT testbed Ubuntu host +(Discovery-normal) +Rforest +0.996 +1.0 +SVM +1.0 +1.0 +IIoT testbed Ubuntu host +(Discovery- slow) +Rforest +0.991 +1.0 +SVM +0.978 +0.974 +IIoT testbed Windows host +(Discovery-normal) +Rforest +0.996 +1.0 +SVM +0.979 +1.0 +IIoT testbed Windows host +(Discovery- slow) +Rforest +1.0 +1.0 +SVM +0.912 +0.978 +IIoT testbed +(Fieldbus (Modbus) Scanning- agg.) +Rforest +1.0 +0.992 +SVM +1.0 +0.996 +IIoT testbed +(Fieldbus (Modbus) Scanning- non-agg.) +Rforest +0.996 +1.0 +SVM +0.996 +0.983 +IIoT testbed +(Fieldbus (Profibus) Scanning) +Rforest +0.992 +1.0 +SVM +0.988 +0.996 +TABLE V: Raptor’s ML performance for detection of Discovery and Fieldbus scanning +stages +highest possible CV scores. The cross validation is based on +training data only without using any information from the test +dataset. +Fieldbus scanning stage: To emulate this stage, we run +nmap with modbus-discover script on the edge-gateway for +enumerating Modbus slave IDs and collecting details about the +slave devices. We run the modbus-discover script in both +’aggressive’ and ’non-aggressive’ modes, where the former +mode refers to finding all slave IDs and the latter mode +refers to finding just the first slave ID. Though Modbus is +one of the common protocols used for communication with +PLCs/RTUs, there are other protocols as well which are used +in the industry, e.g., DNP3 (Distributed Network Protocol), +Profibus/Profinet, CAN (Controller Area Network). Therefore, +in a separate experiment, we connect a Seimens S7-1200 PLC +to the edge gateway network and run nmap with s7-info script +on the gateway for enumerating Seimens S7 PLC devices +and collecting their device information. The steps for packet +trace collection under normal and fieldbus scanning operations, +feature vector extraction, processing and selection, ML model +training and performance evaluation remain similar to the ones +outlined for Discovery stage above. +The performance of ML classifiers is typically evaluated in +terms of precision (PR) and recall (RC) scores. Precision is +the ratio +TP +TP+FP, where TP is the number of true positives +and FP is the number of false positives. It represents the +ability of a classifier to avoid labeling samples that are negative +as positive. Recall is the ratio +TP +TP+FN , where TP is the +number of true positives and FN is the number of false +negatives. It represents the ability of a classifier to avoid +labeling samples that are positive as negative. Using the tuned +hyper-parameters’ values, the average classification precision +(PR) and recall (RC) scores obtained for the final classifiers +over 10 runs are shown in Table V. It can be observed that +for the detection of Discovery stage on Ubuntu as well as +Windows hosts using normal and slow scan speeds, Random +Forest performs slightly better than SVM. In general, both +the ML classifiers perform better with normal scanning speed +compared to slow scanning speed which is expected since +within the trace duration (1 min), more number of network +scanning packets would be captured during normal versus slow +speed scanning. For the detection of Fieldbus scanning stage +using Modbus protocol in ’aggressive’ and ’non-aggressive’ +modes, Random Forest performs almost equally as SVM in +terms of precision but SVM performs quite poorly compared +to Random Forest in terms of recall for ’non-aggressive’ +mode. For the detection of Fieldbus scanning stage using +Profibus protocol, Random Forest performs slightly better than +SVM in terms of both precision and recall. Based on the +performance results obtained above, it would be preferable to +select Random Forest classifier for detection of Discovery and +Fieldbus scanning stages in RAPTOR’s implementation since +SVM’s performance degrades significantly at slow network +scanning speed and for ’non-aggressive’ fieldbus scanning +mode. +Finally, to emulate an APT attack on our testbed for +construction of APT campaign graphs, we develop three +attack storylines from an APT group’s perspective, i.e., their +background, motivation for attack, steps taken for attack and + +Edge Tier +Platform Tier +Enterprise Tier +Local SCADA & +Management devices +Cloud Applications +API +End users +Sensor & Actuator +PLC +Cloud Broker +Dashboard +End users +Sensor & Actuator +Edge gateway +Cloud Storage +0 +Connected Worker +Remote +Maintenance +On-site Supervisor +Local Servers +Phvsical assets/field devices zone +Edge gateway zone +Cloud zone +Edge mobile service zone +Enterprise service zone +- LANs, and router/firewall zone10 +final attack objective. The TTPs (Techniques, Tactics and +Procedures) used in our storylines are close to the ones +used in real-world APT attacks on IIoT environments such +as those mentioned in Section I. For reasons of space, we +present RAPTOR’s evaluation with only one of the APT +attack storylines here. The rest of the storylines are presented +in Appendix Sections A and B. Steps 1-2 (Initial Access), +step 4 (Command-and-control), step 6 (Discovery) and step 10 +(Credential Access, Lateral Movement) of the attack storyline +are based on the 2014 German steel mill and 2015/2016 +Ukraine power grid attacks. Step 16 (Fieldbus scanning, CE +communication spoofing) of the attack storyline is based on +the 2016 Ukraine power grid attack and the 2017 Saudi +petrochemical plant attack. Steps 18-19 (Impact) of the attack +storyline are based on the 2015 Ukraine power grid attack. +We run the attack storyline on our IIoT testbed over the +course of a few hours and collect the data generated from +testbed hosts. Since real-world APT campaigns can stretch +over months and it is not possible to emulate them on our +testbed, we assume that our APT storylines are executed +in an accelerated timeframe and therefore our performance +evaluation of RAPTOR holds. The complete APT attack +storyline used for evaluating RAPTOR is as follows. +APT attack storyline 1 +Background: Attackers belong to a nation-state (or APT) +group which has been tasked with targeting a prominent state- +owned steel manufacturing plant. The APT group plans to +steal ICS related data which can be used to understand the +ICS design and components which can further be used to plan +for later attacks. +Goals: To steal sensitive OT data (e.g., blast furnace temper- +ature sensor measurements, PLC configuration, credentials). +OT data such as blast furnace temperature readings are sensi- +tive because they can be used to learn the normal temperature +range and temporal trends. Attackers can use this information +to modify the settings of the furnace temperature controller +to damage the furnace. The temperature readings can also be +used to infer the furnace design. +Steps: +1) The attacker sends a spear phishing email (including +a malicious VPN portal web link) to one of the steel +plant employees posing as legitimate company email and +obtains their VPN login credentials. +2) It uses the employee’s company email address and +phished credentials to remotely login to the maintenance +machine connected to enterprise network (password re- +use) through the VPN service. +3) The attacker changes the employee’s VPN account pass- +word for persistence. +4) The compromised machine connects to an external C&C +server through DNS tunnelling and forwards a shell to +the attacker. +5) Attacker installs a malware on the compromised machine +which exploits software vulnerabilities to gain root ac- +cess. +6) The attacker controlling the compromised machine scans +its local network and finds other hosts (firewall, MQTT +server, external API machine) as well as the services +running on them. +7) Attacker tries to find CVE vulnerabilities corresponding +to the services running on other hosts but can not exploit +them successfully. +8) It goes through the shell command history on com- +promised machine and finds previous SSH connection +attempts to the edge gateway containing username and +hostname details. +9) It tries to determine the SSH login password for the edge +gateway as follows: +a) Accesses the shadow password file on compromised +machine (using root access obtained earlier) which +stores password hashes and corresponding hashing +algorithms used. +b) Tries to crack the password hashes to obtain corre- +sponding plaintext passwords. +10) The attacker attempts to log in to the edge gateway by +using one plaintext password at a time and is successful. +It explores the files, folders (hidden and non-hidden) and +the processes running on edge gateway. +11) It finds a web server, a CoAP server and Node-red +application running on edge gateway. +12) The attacker tries to exploit CoAP related vulnerabilities +but is unsuccessful. It remotely executes a script from the +compromised maintenance machine to dump the CoAP +resources. +13) It executes a fake CoAP client code on the compromised +maintenance machine to receive measurements from sen- +sors directly connected to edge gateway. +14) It scans devices connected to the edge gateway’s Wi-Fi +hotspot network and finds a host running DNP service +(PLC master). +15) Attacker downloads a script from C&C server and copies +it remotely to edge gateway. +16) It extracts PLC configuration data (e.g., hardware, +firmware, manufacturer, serial number, slave IDs) by +running the script on edge gateway. +17) The attacker compresses and encrypts all the targeted +data collected in previous steps (e.g., PLC configuration, +sensor measurements, login credentials) and exfiltrates it +through the C&C channel. +We assigned a weight, wia = 0.5 to the primary data sources +for detecting an attack stage and a weight of of wia/2 to +the secondary data sources. The threshold for detection is +selected as τ = 0.5. The APT campaign graph generated by +RAPTOR for Storyline 1 is shown in Fig. IV-F. The graph +captures broad details of the APT campaign including the +IP addresses of the machines affected and the tactics used +during the campaign which is quite useful for cybersecurity +analysts. This shows that our proposed attack stage detection +and correlation algorithm in Section IV-E works as intended. +However, the campaign graph does not capture all the tactics +employed by the APT attackers since our focus is on detecting +invariant APT tactics/stages only as explained in Section III-B. +Further, the campaign graph does not contain any details on +the specific techniques employed by the APT attackers since + +11 +our focus is not on detecting the individual techniques used +for each tactic. The APT campaign graph can serve as a +starting point for cybersecurity analysts to fill in the missing +tactics based on the APT attack frameworks for ICS, further +investigation and mitigation. The APT campaign graphs for +Storyline 2 and Storyline 3 are shown in Fig. 4 and Fig. 6 +respectively in the Appendix. +Fig. 4: APT campaign graph generated for Storyline 1 +VI. DISCUSSION +A. Comparison with State-of-the-art +We are unable to conduct a performance comparison of +RAPTOR with [12] as they do not provide any source code for +their proposed multi-stage attack detection algorithm. Further, +the dataset used for performance evaluation in [12] which con- +sist of a synthetic APT campaign injected into the CSE-IDC- +2018 intrusion detection dataset [25] has not been publicly +released. HOLMES [10] and CONAN [11] do not provide +source codes for their proposed APT detection system as well +though both use the DARPA Transparent Computing ((TC) +Engagement dataset [26] for performance evaluation which has +been released publicly. The DARPA TC dataset contains data +from a red team deploying APT-style TTPs on a target system +consisting of multiple interconnected hosts running different +OSes and having exploitable CVE vulnerabilities. However, +the DARPA TC dataset suffers from following limitations +which reduce its applicability for RAPTOR’s performance +evaluation: +• The TC network setup is simple and does not emulate +real-world enterprise/IIoT networks. +• The dataset provides only json files but no raw pcap +files for us to extract network traffic-based features for +a meaningful comparison with RAPTOR’s performance +on our IIoT testbed dataset1. +• None of the TTPs used in TC dataset are IIoT-specific. +B. Limitations +The design of RAPTOR introduces a few limitations which +are discussed in this section. RAPTOR uses supervised ML +1There is an active unresolved issue with the DARPA TC dataset. While +loading data from the compressed *.bin.1.gz files, the code get stuck at +streaming records. +algorithms for detection of certain APT attack stages which +means that it can detect only known malicious traffic pat- +terns produced by those attack stages. However, it should be +noted that supervised ML algorithms are used much more +commonly compared to unsupervised algorithms in real-world +deployments of HIDS/NIDS. Advanced APT malware may +attempt to evade detection by RAPTOR by slowing down the +scanning activity (e.g., during Discovery, Fieldbus scanning +stages) or changing the time period between scanning attempts +to confuse the trained ML algorithms. This evasion technique +can be countered by increasing the packet trace duration to +capture enough attack packets though it may lead to longer +classification delays. The ML classifiers used for detection +of certain APT attack stages may have to be re-trained, for +example, when the classification probability falls below a pre- +defined threshold or the host OS is updated, and this may +cause a delay in detection. +Evasive APT malware may also use some other C&C +server messaging mechanism than the TCP ([PSH,ACK], +[ACK])/UDP one to escape filtering and/or force the C&C +communication to be non-periodic (by adding noise traffic for +example). If the attacker does change the C&C messaging +mechanism, the detection method can be changed accordingly. +Moreover, the C&C communication periodicity detection algo- +rithm uses an ACF (Autocorrelation Function)-based approach +which can detect periodicity in the presence of noise as well +if the noise is uncorrelated with the desired signal (discrete- +time sequence extracted from C&C server traffic). An attacker +may evade the lateral movement detection logic by exploiting +an RCE vulnerability instead of performing manual logins or +using stealthy malware which blends the logins in its attack +path with a previous legitimate user login. Finally, it is also +possible that a few hosts may already be infected before +RAPTOR is deployed in an IIoT environment. +VII. CONCLUSION +We have proposed RAPTOR, an APT detection system +targeted at IIoT environments. It detects and correlates attack +stages derived from an APT Attack Invariant State Machine us- +ing optimal data sources selected for each stage. The correlated +attack stages are utilized to generate a compact, high-level +APT Campaign Graph which can be used by cybersecurity +analysts to track the progress of the APT campaign and deploy +appropriate mitigation measures. A performance evaluation of +RAPTOR shows that it can detect APT campaigns modelled +after real-world attacks with high precision and low false +positive/negative rates. +REFERENCES +[1] R. Schafer, “Protecting IoT devices and OT Networks from Cyber +Attacks,” https://blog.checkpoint.com/2020/07/06/ +protecting-iot-devices-and-ot-networks-from-cyber-attacks/, June +2020. +[2] N. Falliere, L. O. Murchu, and E. Chien, “W32.Stuxnet Dossier,” +https://www.wired.com/images_blogs/threatlevel/2010/11/w32_stuxnet_ +dossier.pdf, Nov 2010. +[3] R. M. Lee, M. J. Assante, and T. Conway, “German Steel Mill Cyber +Attack,” https://assets.contentstack.io/v3/assets/blt36c2e63521272fdc/ +bltc79a41dbf7d1441e/607f235775873e466bcc539c/ +ICS-CPPE-case-Study-2-German-Steelworks_Facility.pdf, Dec 2014. + +CommandandControl? +192.168.10.2 +192.168.102.1 +DiscoveryLateral +Movement) +192.168.15.1 +Discovery,Fieldbusscanning +192.168.15.812 +[4] ——, “Analysis of the Cyber Attack on the Ukrainian Power Grid,” +https://media.kasperskycontenthub.com/wp-content/uploads/sites/58/ +2016/12/21181126/E-ISAC_SANS_Ukraine_DUC_5.pdf, Mar 2016. +[5] A. Cherepanov, “WIN32/INDUSTROYER: A new threat for industrial +control systems,” https://www.welivesecurity.com/wp-content/uploads/ +2017/06/Win32_Industroyer.pdf, Jun 2017. +[6] B. Johnson, D. Caban, M. Krotofil, D. Scali, N. Brubaker, and +C. Glyer, “Attackers Deploy New ICS Attack Framework “TRITON” +and Cause Operational Disruption to Critical Infrastructure,” +https://www.mandiant.com/resources/blog/ +attackers-deploy-new-ics-attack-framework-triton, Dec 2017. +[7] R. Wright, “Industroyer2: How Ukraine avoided another blackout +attack,” https://www.techtarget.com/searchsecurity/news/252523694/ +Industroyer2-How-Ukraine-avoided-another-blackout-attack, Aug +2022. +[8] D. R. Staff, “Triton Malware Still Targeting Energy Firms,” +https://www.darkreading.com/attacks-breaches/ +triton-malware-still-targeting-energy-firms, Mar 2022. +[9] N. Brubaker, K. Lunden, K. P. M. Umair, D. K. Zafra, C. Hildebrandt, +and R. Caldwell, “INCONTROLLER: New State-Sponsored Cyber +Attack Tools Target Multiple Industrial Control Systems,” https://www. +mandiant.com/resources/blog/incontroller-state-sponsored-ics-tool, Apr +2022. +[10] S. M. Milajerdi, R. Gjomemo, B. Eshete, R. Sekar, and +V. Venkatakrishnan, “HOLMES: Real-Time APT Detection through +Correlation of Suspicious Information Flows,” in 2019 IEEE +Symposium on Security and Privacy (SP), 2019, pp. 1137–1152. +[11] C. Xiong, T. Zhu, W. Dong, L. Ruan, R. Yang, Y. Cheng, Y. Chen, +S. Cheng, and X. Chen, “Conan: A Practical Real-Time APT Detection +System With High Accuracy and Efficiency,” IEEE Transactions on +Dependable and Secure Computing, vol. 19, no. 1, pp. 551–565, 2022. +[12] F. Wilkens, F. Ortmann, S. Haas, M. Vallentin, and M. Fischer, +“Multi-Stage Attack Detection via Kill Chain State Machines,” ser. +CYSARM ’21. +New York, NY, USA: Association for Computing +Machinery, 2021, p. 13–24. [Online]. Available: +https://doi.org/10.1145/3474374.3486918 +[13] H. Irshad, G. Ciocarlie, A. Gehani, V. Yegneswaran, K. H. Lee, +J. Patel, S. Jha, Y. Kwon, D. Xu, and X. Zhang, “TRACE: +Enterprise-Wide Provenance Tracking for Real-Time APT Detection,” +IEEE Transactions on Information Forensics and Security, vol. 16, pp. +4363–4376, 2021. +[14] G. Ho, M. Dhiman, D. Akhawe, V. Paxson, S. Savage, G. M. Voelker, +and D. Wagner, “Hopper: Modeling and Detecting Lateral Movement,” +in 30th USENIX Security Symposium (USENIX Security 21). +USENIX Association, Aug 2021, pp. 3093–3110. [Online]. Available: +https://www.usenix.org/conference/usenixsecurity21/presentation/ho +[15] T. H. Morris, Z. Thornton, and I. Turnipseed, “Industrial control +system simulation and data logging for intrusion detection system +research,” 7th Annual Southeastern Cyber Security Summit, pp. 3–4, +2015. +[16] S. Pan, T. Morris, and U. Adhikari, “Developing a Hybrid Intrusion +Detection System Using Data Mining for Power Systems,” IEEE +Transactions on Smart Grid, vol. 6, no. 6, pp. 3104–3113, 2015. +[17] J. Goh, S. Adepu, K. N. Junejo, and A. Mathur, “A Dataset to Support +Research in the Design of Secure Water Treatment Systems,” in +Critical Information Infrastructures Security - 11th International +Conference, CRITIS 2016, Paris, France, October 10-12, 2016, +Revised Selected Papers, ser. Lecture Notes in Computer Science, +G. M. Havârneanu, R. Setola, H. Nassopoulos, and S. D. Wolthusen, +Eds., vol. 10242. +Springer, 2016, pp. 88–99. [Online]. Available: +https://doi.org/10.1007/978-3-319-71368-7_8 +[18] D. Myers, S. Suriadi, K. Radke, and E. Foo, “Anomaly detection for +industrial control systems using process mining,” Computers & +Security, vol. 78, pp. 103–125, 2018. [Online]. Available: +https://www.sciencedirect.com/science/article/pii/S0167404818306795 +[19] M. A. Teixeira, T. Salman, M. Zolanvari, R. Jain, N. Meskin, and +M. Samaka, “SCADA System Testbed for Cybersecurity Research +Using Machine Learning Approach,” Future Internet, vol. 10, no. 8, +2018. [Online]. Available: https://www.mdpi.com/1999-5903/10/8/76 +[20] M. Al-Hawawreh, E. Sitnikova, and N. Aboutorab, “X-IIoTID: A +Connectivity-Agnostic and Device-Agnostic Intrusion Data Set for +Industrial Internet of Things,” IEEE Internet of Things Journal, vol. 9, +no. 5, pp. 3962–3977, 2022. +[21] M. Al-Hawawreh and E. Sitnikova, “Developing a Security Testbed for +Industrial Internet of Things,” IEEE Internet of Things Journal, vol. 8, +no. 7, pp. 5558–5573, 2021. +[22] M. ATT&CK, “ICS tactics,” https://attack.mitre.org/tactics/ics/. +[23] A. Kumar, M. Shridhar, S. Swaminathan, and T. J. Lim, “Machine +learning-based early detection of IoT botnets using network-edge +traffic,” Computers & Security, vol. 117, p. 102693, 2022. [Online]. +Available: +https://www.sciencedirect.com/science/article/pii/S0167404822000918 +[24] Nmap.org, “NMAP Timing Templates,” +https://nmap.org/book/performance-timing-templates.html. +[25] I. Sharafaldin, A. H. Lashkari, and A. A. Ghorbani, “Toward +Generating a New Intrusion Detection Dataset and Intrusion Traffic +Characterization,” in Proceedings of the 4th International Conference +on Information Systems Security and Privacy, ICISSP 2018, Funchal, +Madeira - Portugal, January 22-24, 2018, P. Mori, S. Furnell, and +O. Camp, Eds. +SciTePress, 2018, pp. 108–116. [Online]. Available: +https://doi.org/10.5220/0006639801080116 +[26] J. Torrey, “Transparent Computing Engagement 5 Data Release,” +https://github.com/darpa-i2o/Transparent-Computing. +APPENDIX A +APT ATTACK STORYLINE 2 +Background: Attackers belong to a nation-state (or APT) +group which has been tasked with targeting a prominent state- +owned steel manufacturing plant. The APT group plans to +disrupt the steel production and thereby affect other industries +dependent on steel and exports. +Goals: To shut the blast furnace down by controlling the +furnace relays (LEDs in our testbed). This may damage the +plant operations temporarily or permanently. +Steps: +1) An insider recruited by the APT group installs malware +on the maintenance machine through a USB stick. The +malware exploits software vulnerabilities on the machine +to gain root access. +2) The compromised machine connects to an external C&C +server through DNS tunnelling and forwards a remote +display to the attacker. +3) Attacker installs a malware on the compromised machine +which exploits software vulnerabilities to gain root ac- +cess. +4) The attacker controlling the compromised machine scans +its local network and finds other hosts (firewall, MQTT +server, external API machine) as well as the services +running on them. +5) Attacker tries to find CVE vulnerabilities corresponding +to the services running on other hosts but can not exploit +them successfully. +6) It accesses the shadow password file on compromised +machine (using root access obtained earlier) which stores +password hashes and corresponding hashing algorithms +used. +7) Attacker successfully opens an RDP (Remote Desktop +Protocol) session to the external API machine using one +of the stolen password hashes. +8) It accesses the SCADA/HMI web interface on the ex- +ternal API machine and turns off the LEDs directly +connected to edge gateway. +APPENDIX B +APT ATTACK STORYLINE 3 +Background: Attackers belong to a nation-state (or APT) +group which has been tasked with targeting a prominent state- +owned steel manufacturing plant. The APT group plans to + +13 +Fig. 5: APT campaign graph generated for Storyline 2 +disrupt the steel production and thereby affect other industries +dependent on steel and exports. +Goals: To damage the plant equipment by tampering with +the operation of safety controllers which prevent the blast +furnace from entering an unsafe state. The safety controllers +may be reprogrammed to allow the blast furnace to enter +a dangerous state without any corrective action leading to +physical damage to the plant and even loss of human lives. +Steps: +1) The attacker sends a spear phishing email (including +a malicious VPN portal web link) to one of the steel +plant employees posing as legitimate company email and +obtains their VPN login credentials. +2) It uses the employee’s company email address and +phished credentials to remotely login to the maintenance +machine connected to enterprise network (password re- +use) through the VPN service. +3) The attacker changes the employee’s VPN account pass- +word for persistence. +4) The compromised machine connects to an external C&C +server through DNS tunnelling and forwards a shell to +the attacker. +5) Attacker installs a malware on the compromised machine +which exploits software vulnerabilities to gain root ac- +cess. +6) The attacker controlling the compromised machine scans +its local network and finds other hosts (firewall, MQTT +server, external API machine) as well as the services +running on them. +7) Attacker tries to find CVE vulnerabilities corresponding +to the services running on other hosts but can not exploit +them successfully. +8) It goes through the shell command history on com- +promised machine and finds previous SSH connection +attempts to the edge gateway containing username and +hostname details. +9) It hijacks any future SSH session between the com- +promised machine (started by an employee performing +remote maintenance) and the edge gateway. +10) The attacker explores the files, folders (hidden and non- +hidden) and the processes running on edge gateway. +11) It finds a web server, a CoAP server and Node-red +application running on edge gateway. +12) The attacker scans devices connected to the edge gate- +way’s Wi-Fi hotspot network and finds a host running +DNP service (PLC device). +13) It downloads a payload from C&C server, copies it +remotely to edge gateway and executes it. +14) The attacker terminates the existing process which is +communicating with the PLC device. +15) It collects more information about the PLC device and +enumerates all the slave IDs using the payload com- +mands. +16) The attacker uses the payload to send a command to the +targeted slave to read its current state. +17) It remotely uploads a new program to the PLC device +while it continues to operate. +Fig. 6: APT campaign graph generated for Storyline 3 + +fCommandandControl +192.168.10.2 +192.168.102.1 +[Discovery,Lateral +Movement) +192.168.10.4fCommandandControl) +192.168.10.2 +192.168.102.1 +[Discovery,Lateral +Movement) +192.168.15.1 +[Discovery,Fieldbusscanning, +CEcomm.spoofing) +192.168.15.8 \ No newline at end of file diff --git a/j9FJT4oBgHgl3EQfYCxF/content/tmp_files/load_file.txt b/j9FJT4oBgHgl3EQfYCxF/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..7fd4a7ecd4ab73d7227f17439a14419d0c992e79 --- /dev/null +++ b/j9FJT4oBgHgl3EQfYCxF/content/tmp_files/load_file.txt @@ -0,0 +1,854 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf,len=853 +page_content='1 RAPTOR: Advanced Persistent Threat Detection in Industrial IoT via Attack Stage Correlation Ayush Kumar and Vrizlynn L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content='L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Thing Cyber Security Strategic Technology Centre ST Engineering Email: ayush.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content='kumar@u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content='nus.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content='edu, vriz@ieee.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content='org Abstract—IIoT (Industrial Internet-of-Things) systems are get- ting more prone to attacks by APT (Advanced Persistent Threat) adversaries.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Past APT attacks on IIoT systems such as the 2016 Ukrainian power grid attack which cut off the capital Kyiv off power for an hour and the 2017 Saudi petrochemical plant attack which almost shut down the plant’s safety controllers have shown that APT campaigns can disrupt industrial processes, shut down critical systems and endanger human lives.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' In this work, we propose RAPTOR, a system to detect APT campaigns in IIoT environments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' RAPTOR detects and correlates various APT attack stages (adapted to IIoT) using multiple data sources.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Subsequently, it constructs a high-level APT campaign graph which can be used by cybersecurity analysts towards attack analysis and mitigation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' A performance evaluation of RAPTOR’s APT stage detection stages shows high precision and low false positive/negative rates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' We also show that RAPTOR is able to construct the APT campaign graph for APT attacks (modelled after real-world attacks on ICS/OT infrastructure) executed on our IIoT testbed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Index Terms—Industrial Internet of Things, IoT, IIoT, Ad- vanced Persistent Threat, APT, APT Detection I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' INTRODUCTION The Internet of Things (IoT) is a network of sensing devices with low-power and limited processing capability, which exchange data with each other and/or systems (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=', gateways, cloud servers), normally using wired and wireless technologies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Industrial IoT (IIoT) refers to the extension of IoT in industrial sectors and applications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' With a strong focus on machine-to-machine (M2M) communication, big data, and machine learning, the IIoT enables industries and enterprises to have better efficiency and reliability in their operations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' What makes IIoT distinct from IoT is the intersection of information technology (IT) and operational technology (OT).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' However, this convergence has widened the attack surface and increased the potential risks of cyberattacks being launched against such critical systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' A more significant concern relates to legacy OT systems (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=', brownfield IIoTs) which are usually isolated but are becoming more connected with new IT technologies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Sophisticated attackers can easily gain access to such brownfield IIoT systems and damage their operation for lengthy periods of time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' IIoT systems are more prone to attacks by APT adversaries than traditional ICS (Industrial Control Systems)/OT (Oper- ational Technology) networks [1] mainly due to addition of Corresponding author: A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Kumar (email: ayush.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content='kumar@u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content='nus.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content='edu).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' connectivity to IT networks (enabling lateral movement for attackers) and introduction of M2M communications which connect various new and intelligent devices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Furthermore, ICS assets themselves are prime targets for APT campaigns.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' This is because ICS devices often run on legacy, proprietary software which were not designed with security in mind and are not patched/updated regularly due to concerns over downtime in critical systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' APT attacks can be used to gather ICS-related intelligence, disrupt industrial processes, shut down critical systems and endanger human lives.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Such APT attacks by well- resourced groups have happened a number of times in the past, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=',' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' the 2010 Stuxnet attack which damaged centrifuges in Iranian uranium enrichment plants and caused a significant setback to Iranian nuclear program [2],' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' the 2014 attack on a German steel mill [3] which prevented the blast furnace from shutting down causing massive damage,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' the 2015 attack on Ukrainian power companies which disconnected substations from the power grid leaving 225,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content='000+ customers without power for more than 6 hours [4],' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' the 2016 attack on Ukranian transmission level substation which cut a fifth of the capital Kyiv off power for an hour [5] and the 2017 attack on a Saudi petrochemical plant which almost shut down the plant’s safety controllers which could have caused an explosion [6].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Industroyer/Crashoverride, the malware behind 2016 Ukraine power grid attack and TRITON, the malware behind 2017 Saudi petrochemical plant attack are still active, targeting electrical substations and energy utilities respectively [7], [8].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' New IIoT malware such as Incontroller/Pipedream [9], which was revealed as recently as 2022, contains modules that target specific ICS devices such as OPC servers, Schneider Electric PLCs using Modbus and Codesys protocols, and Omron PLCs and servo drives.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Security solutions which are commonly deployed in IT net- works such as firewalls, NIDS (Network Intrusion Detection System), SIEM (Security Information and Event Management) products are not common in ICS/OT networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Thus, there is an impending need to design systems which can detect ongoing APT attack campaigns in IIoT environments early before they cause substantial damage.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Such systems should satisfy the following requirements: Not dependent on deployment of proprietary, third-party security solutions whose features can vary across vendors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Instead, the system should use existing open-source and readily available information sources for its operation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content='11524v1 [cs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content='CR] 27 Jan 2023 2 Detect the APT attack tactics with high accuracy and low number of false positives/negatives Able to reconstruct the APT attack campaign with suffi- cient details and present them in a compact, high-level form which cybersecurity analysts can use for further analysis and attack mitigation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' An APT campaign typically consists of various stages which occur one after another (this will be explained later in the paper).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' However, not all stages defined in existing attack frameworks are found together in real-world APT campaigns.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Each stage in an APT campaign is linked to the previously executed stages, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=', in terms of chronology of execution, target hosts affected.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Thus, if we are able to detect some of the individual attack stages, the above fact can be exploited to cor- relate the detected stages and reconstruct the APT campaign with some acceptable margin of error.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' In this work, we present RAPTOR, a system for detecting ongoing APT campaigns in IIoT environments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' RAPTOR’s main component is an APT attack-stage detection and correlation engine.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' It takes as input a variety of readily available, non-proprietary data sources (such as host logs, network traffic traces) and detects attack tactics (including those specific to IIoT environments) which are part of an ongoing APT campaign.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' The attack tactics are then stitched together based on their attributes to produce the APT attack campaign graph, which is a high-level representation of APT activity across the target IIoT network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' The main contributions of our work are as follows: We present, RAPTOR, a system for detecting ongoing APT campaigns in IIoT environments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' We employ a novel attack-stage detection and correlation approach which uses open source, readily available data sources for its operation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' RAPTOR constructs a compact, high level APT cam- paign graph which can be useful for cybersecurity ana- lysts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' We evaluate RAPTOR’s performance using a new dataset which includes attack TTPs close to real-world APT attacks on ICS/OT environments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' RELATED WORK A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' APT detection in Enterprise networks APT detection in enterprise network settings has received significant attention in computer security literature in recent years.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Milajerdi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' [10] have presented HOLMES, a system for APT campaign detection with high confidence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' It maps activities in host audit logs and enterprise security alerts to the cyber kill-chain, correlates the alerts generated by APT steps based on information flow between low-level entities (files, processes, etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=') and builds a high-level scenario graph encapsulating the attack TTPs and information flows between entities involved in the TTPs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' CONAN [11] is an APT detection system which makes two major modifications to HOLMES’s approach: one, it utilizes a state-based detection framework where all processes and files are represented as data structures similar to finite-state automata and two, it focuses on three constant attack phases of APTs- 1) deploy and execute the attacker’s code, 2) collect sensitive information or cause damage, and 3) communicate with the C&C server or exfiltrate sensitive data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Wilkens et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' [12] have proposed a method to construct APT attack graphs from IDS (Intrusion Detection System) alerts to assist human analysts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' IDS alerts are clustered into meta-alerts and single alerts, assigned poten- tial attack stages and finally used to synthesize APT scenario graphs based on a kill chain state machine.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Irshad et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' [13] have proposed TRACE, a provenance tracking system for enterprise-wide APT detection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' TRACE offers host-level provenance tracking at the granularity of program executions units and integrates provenance collected from individual hosts to construct distributed enterprise-wide causal graphs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Hopper [14] instead focuses on the detection of a single APT attack stage: lateral movement, within enterprise networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' It does so by building a graph of login activity among machines in a network and identifying suspicious login sequences.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' A path inference algorithm is then deployed to identify the broader paths that each login belongs to, "caused" by the same user.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Finally, an anomaly detection algorithm is applied to conservatively infer the set of login paths most likely to reflect lateral movement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' However, all the above works suffer from certain limitations: [10]–[14] focus on enterprise networks only.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' While [10], [11], [13] have been designed using audit logs-based provenance and [14] has been designed using enterprise logs, [12] has been designed using network IDS alerts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Since each of these works is based on a single data source, they are unable to leverage the information provided by other data sources.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Further, these works are only able to detect a subset of APT attack stages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Exclusively graph-based approaches [10], [13] tend to suffer from dependency explosion problem which means that with time, each graph node gives rise to many edges which in turn give rise to new nodes and so on.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' A backward trace through the graph to infer a path exponentially increases the number of probable paths.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' [12], [14] work offline and not in real-time which means that they assume that all the data required for APT detection is available at once.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Though [10], [11], [13] claim that they work in real-time, they don’t provide the time delays encountered in APT detection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Except for [12], no other work mentioned above detects an APT campaign from a whole-network perspective.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Unfortunately, there has been no research work yet on detecting APT campaigns in IIoT settings which is the focus of this paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Our work differs from [10]–[14] in the following aspects: The focus is on APT detection in IIoT settings which combines both IT and OT environments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' The APT attack stages used to design the detection system in our paper have been adapted to IIoT settings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' We leverage data from various sources such as network packet traces, host logs (including audit logs) as well as NIDS/HIDS alerts instead of limiting ourselves to a specific or proprietary data source.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' The optimal data source(s) for detection of each APT attack stage is(are) identified and used.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' 3 We perform APT campaign detection from a whole- network perspective instead of detecting APT artifacts on individual hosts only.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' ICS/IIoT datasets In the past, researchers have built datasets (consisting of network traffic, system logs, etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=') to design IDSes for ICS (Industrial Control System).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Morris et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' [15] have provided a labeled dataset which includes network traffic captured from a laboratory scale gas pipeline system during normal operation and during 35 cyber-attacks that affect the Modbus protocol such as reconnaissance, response injection, command injection and DoS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Similarly, Pan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' [16] have produced a dataset consisting of synchrophasor measurement data and audit logs from a power system testbed, amounting to a total of 10,000 simulated instances.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' The dataset includes 25 scenarios consisting of power system single-line-to-ground (SLG) faults, normal operation and cyber-attacks (relay trip command injec- tion, relay function disabling and SLG fault replay).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Another dataset has been collected from the Secure Water Treatment (SWaT) testbed [17] and includes sensor/actuator readings both during normal operation and under 36 attacks such as bias attack, replay, single and multiple point attacks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' The final dataset includes 946,772 samples consisting of 51 attributes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' More recently, Myers et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' [18] have generated two datasets consisting of ICS device logs and network traffic captures from two separate industrial process setups respectively, during normal operation and during attacks on the testbed PLCs (command injection, flooding, etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=').' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Marcio et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' [19] have built a dataset consisting of six pre-decided ML-based flow- level features extracted from the network traffic captured during normal as well as under attack operation of a SCADA system testbed consisting of a water storage tank’s control system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Finally, Muna et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' [20] have presented the X-IIoTID intrusion dataset which targets modern IIoT systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' The dataset covers various attack scenarios and attacks related to newer IIoT connectivity protocols generated according to a pre-defined attack taxonomy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' The data collected includes end- to-end network traffic (from physical field devices to the edge gateway and from edge gateway to the cloud and enterprise devices), host logs and computing resources, and IDS alert logs (OSSEC, Zeek) collected at the edge gateway for both normal and under attack operation of the testbed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' The final dataset consists of 820,834 instances and 59 features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' However, the above datasets suffer from certain limitations: Many of the existing ICS datasets [15]–[19] highly de- pend on features related to sensor measurements, actua- tors’ statuses, and specific parameters of industrial pro- tocol packets, which limit their use for diverse industrial systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Most of those datasets lack a clear attack taxonomy and have not incorporated multi-stage attacks related to newer IIoT connectivity protocols and services (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=', CoAP, MQTT).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' The X-IIoTID dataset addresses the above shortcomings of previous datasets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' However, all the above datasets including X-IIoTID provide pre-decided ML features extracted from network flows only and do not include raw traffic traces from which additional features can be extracted.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Further, the X-IIoTID dataset provides host logs and IDS alert logs collected at the edge gateway only since according to the dataset authors, edge gateway is the highest priority target for attackers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' The dataset does not include APT campaigns.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' To address the limitations of X-IIoTID dataset for APT detection, we build a new dataset using an IIoT testbed based on Brown-IIoTbed [21] architecture.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Our dataset includes raw traffic traces from testbed hosts, host logs, audit-based system provenance at hosts as well as host/network IDS alerts col- lected during normal operation of the testbed, individual APT attack stages and APT campaigns based on real-world attacks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Our dataset also includes IIoT-specific attack stages/tactics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' BACKGROUND A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Existing Attack Frameworks for IIoT The authors in [20] have proposed a generic IIoT attack life-cycle framework consisting of the following stages: re- connaissance, weaponization, exploitation, lateral movement, command & control, exfiltration and tampering.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' MITRE has also released an Adversarial Tactics, Techniques and Com- mon Knowledge (ATT&CK) framework for ICS [22] consist- ing of the following tactics/stages: initial access, execution, persistence, privilege escalation, evasion, discovery, lateral movement, collection, command and control, inhibit response function, impair process control, and impact.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' IIoT APT Invariant State Machine It should be noted that real-world APT campaigns in IIoT environments do not follow all the stages in attack frameworks mentioned above.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Further, each tactic in an attack framework consists of many techniques, with new ones being added regularly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' It is almost impossible to model all the possible attack techniques and then use them towards detection during ongoing APT campaigns.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Therefore, using the IIoT attack life- cycle framework [20] and the MITRE ATT&CK framework for ICS [22], we have identified certain attack stages/tac- tics which are ‘invariant’: Command-and-control, Discovery, Lateral movement, Fieldbus scanning and CE communication spoofing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' These attack tactics consist of only a few techniques and those techniques have not changed significantly across APT campaigns over the years (and are not expected to change significantly in future).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' It is easier to model these invariant attack tactics and use them towards APT detection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' We propose an IIoT APT Invariant State Machine (IASM) as shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' 1 which models a typical APT campaign in an IIoT environment as a finite-state machine.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' The states in IASM represent the states of the APT campaign while the state transitions are brought about by the deployment of invariant APT tactics identified earlier.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Most real-world APT campaigns in IIoT environments such as those described in Section I follow our proposed IASM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' IASM Description: Once the APT attackers have acquired all the resources and information required for attack campaign 4 (Ready for attack state), they move by compromising one or more of the public network-facing hosts to gain entry into the target IIoT network (Infected entry host state) and establish communication with a Command-and-control or C&C server (Establish foothold state).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Next, the attackers scan for other hosts connected to the compromised machine and attempt to gain control of one of the discovered hosts (Infected new host state) either by using CVE vulnerabilities or by stealing the remote access credentials for the discovered host and then logging in to it.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' The attackers may attempt to move across the IIoT network by gaining control of more hosts, thus remaining in the same Infected new host state and using the same tactics as outlined earlier.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Once the attackers reach the edge gateway (Infected edge gateway stage), they scan for control elements (PLC/RTU/SIS) and their slave devices connected via fieldbus protocols.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Fieldbus refers to Modbus and other similar open- source or proprietary vendor protocols (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=', Profibus/Profinet, CAN) which are used to communicate with respective vendor control elements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Subsequently, they spoof communications with the discovered control elements and their slaves to gain more information about them (Collect ICS intelligence state) and execute commands on control elements remotely (Execute CE commands state).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Depending on the target(s) set by the APT adversaries (just collection of ICS intelligence or execution of desired commands on CE), they might end the campaign wilfully or forcibly due to detection by cybersecurity analysts (Goals achieved/APT detected state).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Threat Model We assume that only a few machines in the enterprise tier of the target IIoT network are connected to the Internet (through firewall/IDS).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' All other machines in the enterprise tier and other tiers (platform, edge) are isolated from the Internet though some of them can still communicate with the Internet- connected machines in enterprise tier.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' The APT attackers can enter the target IIoT network through the internet-facing enterprise tier machines (remote access) or other machines to which plant operators/engineers have access (insider attack).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Once inside the enterprise tier network, the attackers can move laterally across machines till they reach the edge tier consist- ing of edge gateway, control elements and sensors/actuators.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' The attackers are assumed to be well-resourced in terms of computational resources, financial backing, hacking skills and time which is true of most APT groups.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' SYSTEM OVERVIEW A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' RAPTOR Architecture As shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' 2, RAPTOR consumes data from different sources such as network traffic traces, audit logs, HIDS/NIDS alerts and host logs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' The data is processed prior to extraction of features and then the features are processed before being sent to the APT attack-stage detection & correlation engine which detects the invariant APT attack stages in IASM using the optimal data source(s) identified in the following sub-section.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' The detection methods employed for detection of the attacks- stages are explained in sub-section IV-C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' The attack stages are detected and correlated using their attributes to re-construct the APT campaign which is presented in the form of a graph as described in sub-sections IV-E and IV-F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' The APT Campaign Graph (ACG) thus constructed can be utilized by cybersecurity analysts to come up with appropriate actions to mitigate the attack campaign or for forensic analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Selection of optimal data sources As outlined in Section II-A, we utilize data from various sources towards APT detection instead of limiting ourselves to a specific or proprietary data source.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' However, not all of those data sources are required for detection of each APT stage.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Some of the data sources might be redundant or have limitations compared to other data sources.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Therefore, we analyse our data sources in the context of each invariant APT stage and select the optimal ones.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Command-and-Control: Most rootkits and malware regu- larly exchange keep-alive packets with a C&C server to maintain connection throughout the duration of infection which can be captured by network traffic traces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' By default, network IDS rules are not configured to detect C&C server message exchange.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Audit-based provenance which captures network socket file read/write operations can also be used to detect the establishment of a con- nection between the compromised host and public C&C server.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' However, due to the issues of pruning spurious dependencies and noise in provenance graphs due to benign activities, we feel that using audit-based prove- nance to extract C&C communication might not justify the computational cost incurred and therefore, network traffic traces alone can be sufficient for this purpose.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Discovery: This stage can be detected through network traffic traces since scanning for other targets results in TCP/UDP packets being sent from the compromised machine to other machines in the target network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' This stage can also be detected from alerts generated by an open source network IDS such as Snort or Suricata.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' However, not all organizations can be expected to deploy network IDSes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Further, slow stealth scans might be able to evade IDSes altogether.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' In case network IDS alerts are available, we can use them to increase the accuracy of detection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Lateral Movement: This stage can be detected using login logs on target machines since during lateral movement, the attacker logs in to a target machine which is connected to the same or different subnet as the compromised machine.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' IDS alerts would not be helpful in detecting lateral movement since by default, IDS rules are not configured to do so and lateral movements are not that frequent compared to the events that IDSes are expected to detect such as DoS attacks, port scans, SMB probes, etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Network traffic traces can contain evidence of lateral movement in terms of TCP/UDP packets exchanged between compromised source and target machines and hence, they can be used to increase the accuracy of lateral movement detection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Fieldbus scanning: This stage can be detected through network traffic traces since scanning for target control 5 Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' 1: IIoT APT Invariant State Machine Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' 2: RAPTOR Architecture elements over fieldbus protocols results in TCP packets being sent from the edge gateway to connected control elements at specific port numbers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' This stage can also be detected from alerts generated by an open source network IDS such as Snort or Suricata configured with customized modules.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' In case network IDS alerts are available, we can use them to increase the accuracy of detection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' CE communication spoofing: Since the attacker needs to send appropriately crafted packets over the link between edge gateway and control elements, network traffic traces can be used to detect the attacker’s spoofing of commu- nications with control elements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Our findings regarding optimal data sources for detecting various APT attack stages for IIoT are summarized in Table I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' APT attack-stage detection Detection of Command-and-control stage: In this stage, a compromised machine establishes connection with a C&C server, which is a public server, and communicates with it at regular time intervals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Therefore, multiple packet exchanges of a suspected host with public server IP address indicates com- munication with C&C server.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' We filter the TCP [PSH,ACK], [ACK]/UDP packets sent/received by public server IP ad- dresses (except VPN server) to/from IIoT testbed host IP addresses from network traffic traces (in pcap format).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' If the filter yields multiple such packets, we extract the packet arrival timings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Further, since many malware enforce periodic communication between the compromised machine and C&C server, we test for periodicity in packet arrival timings obtained earlier using the algorithm proposed in [23] which is based on discrete-time signal encoding and autocorrelation function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' If the packet arrivals are found to be periodic, it can be inferred that the Command-and-control stage has been detected.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' It should be noted that there may be machines in the enterprise tier which talk to public servers, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=', to retrieve a web page over HTTPS from a web server.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' The packets exchanged with such legitimate public servers contribute as noise to our extracted timings for periodicity detection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' The ACF (auto- correlation function) can detect periodicity reliably in presence of such noise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Detection of Discovery stage: The network traffic traces [CommandandControl) Readyfor Infectedentry Established attack host foothold {Discovery,Lateral movement) Infected new host Discovery,Lateral movement) Fieldbusscanning,C (CEcomm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content='spoofing) comm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content='spoofing) Infectededge CollectICS Execute CE intelligence commands gateway 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content='Goals achieved/APT detectedDatasource#1 Data source#2 Data Feature Feature preparation extraction processing Data source #n-1 Data source#n APTcampaign APTAttack-stageDetection graph &Correlationengine6 TABLE I: Optimal data sources for detecting APT attack stages in IIoT.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' (P) indicates primary data source.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Attack Stage Audit provenance Network traffic traces IDS alerts Host logs Command-and-control \x17 ✓ \x17 \x17 Discovery \x17 ✓(P) ✓ \x17 Lateral Movement \x17 ✓ \x17 ✓(P) Fieldbus scanning \x17 ✓(P) ✓ \x17 CE communication spoofing \x17 ✓ \x17 \x17 collected at a host are split into smaller traces of fixed time duration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' These traces are assumed to belong to either of two classes: normal or scanning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' A normal trace is one which does not consist of network scanning packets while a scanning trace is one that does.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Each trace is classified using an ML algorithm (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=', Decision Trees, SVM, etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=').' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' If a trace is classified as belonging to scanning class, it can be inferred that the Discovery attack stage has been detected.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' For each trace, the features for ML classification are extracted from TCP/UDP headers only and not the payloads of the respective packets since the network traffic might be encrypted.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' The ML features selected for detection of scanning traffic are shown in Table II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Motivation behind feature selection: The intuition behind selecting the first two features is that port scanning tools used by attackers send TCP/UDP requests to multiple IP addresses to find out open ports and the services running on them.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' The third set of features was selected because during port scan targeting an IP address, many of the ports to which TCP connection requests are sent are not open and no response/acknowledgement is sent back, so the TCP connections formed remain half-open.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' The fourth feature seeks to exploit the fact that once TCP connection is formed with an IP address at a certain port number, port scanning tools exchange data only for a short time and the connection is subsequently reset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Compared to packet length in normal TCP connections, port scanning packet lengths are generally shorter making the fifth set of features useful for classification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Finally, the sixth feature set targets the short time intervals between the transmission of port scanning packets as compared to normal packets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Detection of Lateral movement stage: According to our approach, the authentication logs on network hosts are used to detect this stage.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' We look for logins that satisfy the following suspicious property: the machine from which a user is initiating the login to another machine is a part of other detected APT attack stages that usually precede lateral move- ment, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=', command-and-control and discovery.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' For example, if user1 logs in to machine-B from machine-A, machine-A is in a different subnet as machine-B and machine-A has been identified as part of Discovery stage detected earlier, we can conclude that lateral movement has been detected from machine-A to machine-B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Detection of Fieldbus scanning: Similar to the detection of Discovery stage, the network traffic traces collected at edge gateway network interfaces connected to control elements are split into smaller traces of fixed time duration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' These traces are assumed to belong to either of two classes: normal or fieldbus scanning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' A normal trace is one which does not consist of Fieldbus scanning packets while a fieldbus scanning trace is one that does.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Each trace is classified using an ML algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' If a trace is classified as belonging to fieldbus scanning class, it can be inferred that the Fieldbus scanning attack stage has been detected.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' For each trace, the features for ML classification are extracted from TCP headers only and not the payloads of the respective packets since the network traffic might be encrypted.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' The ML features selected for detection of Fieldbus scanning traffic are shown in Table II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Motivation behind feature selection: The intuition behind selecting the first three features is that typically during fielbus scanning, attackers attempt to set up a TCP connection with a fieldbus device (PLC/RTU) which is unsuccessful for the first few times.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Once the connection is set up, the fieldbus scanner requests device enumeration data and finally, the connection is closed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' If the scanner is also trying to enumerate fieldbus slaves, it iterates through the list of slave IDs sequentially.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Since slaves are not present at all SIDs, the TCP connection may be reset only for the fieldbus scanner to set up a new connection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Again, compared to packet length in normal TCP connections, fieldbus scanning packet lengths are generally shorter making the fourth set of features useful for classi- fication.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Finally, the fifth feature set targets the short time intervals between the transmission of fieldbus scanning packets as compared to normal packets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Detection of CE communication spoofing: If an attacker is trying to spoof communications with a control element using one of the standard industrial automation (IA) protocols (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=', IEC 61850, IEC 61131-3), there would either be more than one TCP connections from the edge gateway to the control element at the destination port specific to that IA protocol, or the original TCP connection would be terminated by the attacker leaving only the attacker’s TCP connection active.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Therefore, if there are more than one TCP connections from the edge gateway to the control element at the destination port specific to that IA protocol or the original TCP connection has been terminated, it can be inferred that the CE communication spoofing stage has been detected.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Detection using multiple data sources As explained in Section IV-B, there can be more than one data sources which can be used to detect each APT attack stage.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' For an attack stage,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' a ∈ {Command-and-control,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Discovery,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Lateral movement,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Fieldbus scanning,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' CE commu- nication spoofing},' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' we define the aggregate detection score as: da = ∑ i wia1ia,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' (1) where wia is the weight assigned to the ith data source for detection of attack stage a,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' and the indicator function,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' 1ia is 7 Attack stage ML features Discovery Number of unique TCP SYN/UDP destina- tion IP addresses,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Number of unique TCP SYN/UDP destination ports per destination IP address (maximum,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' minimum,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' mean),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Number of half-open TCP connections,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Number of TCP RESET packets,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Packet length in bytes (max- imum,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' minimum,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' mean),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Packet inter-arrival time in seconds (maximum,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' minimum,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' mean) Fieldbus scanning Number of TCP 3-way handshakes with a destination IP address (maximum,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' minimum,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' mean),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Number of TCP RESET packets,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Num- ber of TCP FIN packets,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Packet length in bytes (maximum,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' minimum,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' mean),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Packet inter- arrival time in seconds (maximum,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' minimum,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' mean) TABLE II: ML features selected for detection for APT attack stages defined as: 1ia = � � � � � 1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' if ith data source is optimal for detection of attack stage a 0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' otherwise (2) The weight assigned to the primary optimal data source identified for an attack stage should be greater than the weight assigned to secondary data sources.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' If the aggregate detection score, da is greater than a pre-defined threshold, τ, then the attack stage a is considered as detected, otherwise not.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Correlation of APT attack stages There are three conditions which need to be satisfied for an attack stage A to be followed by an attack stage B: The source IP address for stage A should match with the source IP address for stage B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' When stage A involves movement of the attacker from one machine to another (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=', Lateral movement), then the destination IP address for stage A should match with the source IP address for stage B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' The time stamp for stage A should fall earlier than the time stamp for stage B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' The APT attack stage detection & correlation (ASDC) en- gine first checks if the initial stage of Command-and-control) in the proposed IASM can be detected at any of the Internet- facing hosts in enterprise tier.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' If the detection is successful, ASDC engine checks for the (Discovery) stage at the same host where Command-and-control) stage was detected.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' If the Discovery stage is detected, ASDC engine looks for signs of the Lateral movement stage at the same host.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' If the Lateral movement stage is detected, ASDC engine proceeds to check for the Discovery stage again followed by the Lateral move- ment stage as outlined above at the host accessed after lateral movement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' If the host accessed after lateral movement is the edge gateway, ASDC engine starts looking for the Fieldbus scanning stage at the edge gateway and if it is detected, ASDC engine checks if CE communication spoofing stage can also be detected.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' The complete attack stage detection and correlation algorithm proposed above is shown in Algorithm 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content='Handling false positives/negatives in ML classification: ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content='RAPTOR is designed to handle false positives/negatives in ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content='Algorithm 1 Detect_Correlate_Attack_Stages (list_host_IP_add) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content='1: INPUT: list_host_IP_add (List of IP addresses of Internet- ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content='facing hosts) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content='2: det_status = APT_DET_START ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content='3: for host_ip ∈ list_host_IP_add do ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content='4: ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content='if Check_C&C_stage (host_ip)[1] = TRUE then ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content='5: ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content='src_host_ip = host_ip ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content='6: ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content='end if ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content='7: end for ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content='8: if Check_Discovery_stage (src_host_ip)[1] = TRUE ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content='&& ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content='Check_Discovery_stage ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content='(src_host_ip)[2] ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content='> ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content='Check_C&C_stage (src_host_ip)[2] then ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content='9: ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content='for ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content='tgt_host_ip ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content='∈ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content='Check_Discovery_stage ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content='(src_host_ip)[4] do ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content='10: ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content='if ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content='Check_Lateral_Movement_stage ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content='(src_host_ip,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' tgt_host_ip)[1] = TRUE && Check_Lateral_Movement_stage (src_host_ip,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' tgt_host_ip)[2] > Check_Discovery_stage (src_host_ip)[2] then 11: if tgt_host_ip = edge_gw_IP then 12: if Check_Fieldbus_scan_stage ()[1] = TRUE && Check_Fieldbus_scan_stage ()[2] > Check_Lateral_Movement_stage (src_host_ip,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' tgt_host_ip)[2] then 13: if Check_CE_comm_stage ()[1] = TRUE && Check_CE_comm_stage ()[2] > Check_Fieldbus_scan_stage ()[2] then 14: det_status = APT_DET_STOP 15: return (det_status) 16: end if 17: end if 18: end if 19: end if 20: end for 21: end if 22: Function Check_C&C_stage (host_ip),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Returns {bool_val,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' time_det,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' C&C_server_IP} 23: Function Check_Discovery_stage (host_ip),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Returns {bool_val,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' time_det,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' scan_type,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' list_target_host_IPs} 24: Function Check_Lateral_Movement_stage (src_host_ip,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' dst_host_ip),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Returns {bool_val,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' time_det} 25: Function Check_Fieldbus_scan_stage (),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Returns {bool_val,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' time_det} 26: Function Check_CE_comm_stage (),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Returns {bool_val,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' time_det} ML-based detection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' For example, let us assume that there is a false positive, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=', a packet trace is classified as scanning though it is normal and the Discovery stage is marked as detected.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' The subsequent attack stages in IASM would not be detected by the ASDC engine and therefore, RAPTOR would know that there was a false positive in detection of an earlier attack stage.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' It is also possible that there is a false negative, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=', a packet trace is classified as normal though it is scanning, and therefore, the ASDC engine would not invoke detection of subsequent attack stages in IASM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' We propose to 8 handle both false positives and negatives by taking the mode of classification results for a packet trace for a sufficiently large number of iterations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' APT campaign graph As the ASDC engine proceeds to detect various stages of an APT campaign, it uses the detected stages and their attributes to construct the APT campaign graph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' It is a directed graph, G(V,E) where each node, vi ∈ V ∀i ∈ {1,2,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=',Nv}, where Nv is the total number of nodes in the graph, corresponds to a machine (denoted by its IP address) which is a part of one of the detected attack stages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' An edge, ej ∈ E ∀ j ∈ {1,2,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=',Ne}, where Ne is the total number of edges in the graph, is extended from node vi to another node vk in the graph if there is a connection from the machine corresponding to node vi to the machine corresponding to node vk during one or more of the APT attack stages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Each edge has an attribute {s1,s2,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content='} where sl ∀l ∈ {1,2,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content='} is an attack stage which enables the connection between the two machines corresponding to the nodes at either end of the edge.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' EXPERIMENTS A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' IIoT Testbed To generate a realistic IIoT APT dataset which can be used to evaluate RAPTOR’s performance, we built an IIoT testbed modelled after Brown-IIoTbed [21] whose architecture is reproduced in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' The implementation of IIoT testbeds is still in its early stages, with most existing implementations [4] being special projects and publicly unavailable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Brown- IIoTbed is designed based on the IIC (Industrial Internet Consortium)’s IIRA (Industrial Internet Reference Architec- ture) model and consists of three tiers- edge, platform and enterprise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' It supports a number of real-world IIoT function- alities such as e-mail notifications to plant workers regarding important OT events, web-based SCADA interface (viewing real-time sensor values and trends, actuator status change notifications, tuning of PLC parameters), remote maintenance of edge gateway, query to edge data historian, etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' The testbed also supports a number of real-world IIoT protocols such as CoAP, MQTT, and Modbus.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Experimental Methodology and Results We need to collect data from our IIoT testbed under normal operation as well during APT attack stages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' We collect data from our testbed in the form of network traffic traces from hosts, audit-based provenance at each x86-based host, host logs (login records, authentication logs, syslog) and alerts from Snort network IDS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' However, we use only the optimal data sources identified in Section IV-B towards the final attack detection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Command-and-control stage: To emulate this stage, we use open-source tools such as dnscat2 to create a communication channel between a C&C server and a compromised machine using tunneling over DNS protocol which is one of the most common C&C communication protocols used by attackers since most firewalls do not block it.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' We run a public dnscat2 C&C server and the client on a Windows 10 Pro and a Ubuntu 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content='04 machine in our testbed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' The packet traces generated on those client machines are collected using tcpdump in sets of 1 minute duration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' A total of 1000 packet traces were collected for each type of host and fed as input to the detection phase of Algorithm 2 proposed in [23] for detection of C&C communication.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' The performance is evaluated in terms of detection rate (DR) and missed-detection rate (MDR).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Detection Rate is the fraction of the total number of packet traces which have been correctly detected as containing C&C traffic, and Missed- detection Rate is the fraction of the total number of packet traces which have been incorrectly detected as not containing C&C traffic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Using the parameter values (given in Table III), the detection performance for both the scenarios specified above is shown in Table IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' It can be seen that the algorithm gives a DR of 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content='0 and a MDR of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content='0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Traffic sampling frequency 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content='1 Min.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' autocorrelation peak height 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content='7×(Max.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' peak height) Inter-peak gap variance threshold 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content='01 TABLE III: Parameter Values for C&C Communication Periodicity Detection Discovery stage: To emulate this stage, we use open-source network scanning tools such as nmap which is either used directly or is the inspiration for customized port scanners used by most APT groups.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' We run the default nmap SYN scans on a Windows 10 Pro and a Ubuntu 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content='04 machine in our testbed to enumerate connected hosts, their OS versions and the services running on them.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Nmap is run in both normal mode as well as sneaky or as well call it, slow mode, with the latter mode targeted at evading IDSes [24].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' The packet traces thus generated on those machines are collected using tcpdump in sets of 1 minute duration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' In real-world APT campaigns, attackers may slow down network scanning to evade detection by IDS and therefore, we may need to increase the duration of packet captures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' A total of 1000 packet traces are collected from both the Windows and Ubuntu machines under normal operation and further 1000 packet traces are collected during the network scanning operation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' The packet traces are used to extract features mentioned in Section IV-C and appropriate class labels (’normal’ or ’scanning’) are assigned to them.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' The extracted features vectors are further processed (handling of missing values, scaling) and randomly divided into training and test datasets using an 80:20 split.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Using χ2 test statistic, we select the best features (test statistic value above a pre- selected threshold) out of the existing ones.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' The final feature vectors thus obtained are used to train Support Vector Machine (SVM) and Random Forest (RForest) models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' The trained ML models are then used to predict class labels for the test dataset and finally, the detection performance of the models is evaluated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' We use a 10-fold cross validation approach to tune the hyper-parameters of the ML classifiers for achieving the DATASET METHOD DR MDR IIoT Testbed Ubuntu host Algorithm 2 [23] 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content='0 IIoT Testbed Windows host Algorithm 2 [23] 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content='0 TABLE IV: C&C Stage Detection Performance 9 Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' 3: IIoT Testbed Architecture [21] DATASET MODEL PR RC IIoT testbed Ubuntu host (Discovery-normal) Rforest 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content='996 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content='0 SVM 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content='0 IIoT testbed Ubuntu host (Discovery- slow) Rforest 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content='991 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content='0 SVM 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content='978 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content='974 IIoT testbed Windows host (Discovery-normal) Rforest 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content='996 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content='0 SVM 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content='979 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content='0 IIoT testbed Windows host (Discovery- slow) Rforest 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content='0 SVM 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content='912 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content='978 IIoT testbed (Fieldbus (Modbus) Scanning- agg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=') Rforest 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content='992 SVM 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content='996 IIoT testbed (Fieldbus (Modbus) Scanning- non-agg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=') Rforest 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content='996 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content='0 SVM 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content='996 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content='983 IIoT testbed (Fieldbus (Profibus) Scanning) Rforest 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content='992 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content='0 SVM 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content='988 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content='996 TABLE V: Raptor’s ML performance for detection of Discovery and Fieldbus scanning stages highest possible CV scores.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' The cross validation is based on training data only without using any information from the test dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Fieldbus scanning stage: To emulate this stage, we run nmap with modbus-discover script on the edge-gateway for enumerating Modbus slave IDs and collecting details about the slave devices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' We run the modbus-discover script in both ’aggressive’ and ’non-aggressive’ modes, where the former mode refers to finding all slave IDs and the latter mode refers to finding just the first slave ID.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Though Modbus is one of the common protocols used for communication with PLCs/RTUs, there are other protocols as well which are used in the industry, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=', DNP3 (Distributed Network Protocol), Profibus/Profinet, CAN (Controller Area Network).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Therefore, in a separate experiment, we connect a Seimens S7-1200 PLC to the edge gateway network and run nmap with s7-info script on the gateway for enumerating Seimens S7 PLC devices and collecting their device information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' The steps for packet trace collection under normal and fieldbus scanning operations, feature vector extraction, processing and selection, ML model training and performance evaluation remain similar to the ones outlined for Discovery stage above.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' The performance of ML classifiers is typically evaluated in terms of precision (PR) and recall (RC) scores.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Precision is the ratio TP TP+FP, where TP is the number of true positives and FP is the number of false positives.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' It represents the ability of a classifier to avoid labeling samples that are negative as positive.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Recall is the ratio TP TP+FN , where TP is the number of true positives and FN is the number of false negatives.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' It represents the ability of a classifier to avoid labeling samples that are positive as negative.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Using the tuned hyper-parameters’ values, the average classification precision (PR) and recall (RC) scores obtained for the final classifiers over 10 runs are shown in Table V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' It can be observed that for the detection of Discovery stage on Ubuntu as well as Windows hosts using normal and slow scan speeds, Random Forest performs slightly better than SVM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' In general, both the ML classifiers perform better with normal scanning speed compared to slow scanning speed which is expected since within the trace duration (1 min), more number of network scanning packets would be captured during normal versus slow speed scanning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' For the detection of Fieldbus scanning stage using Modbus protocol in ’aggressive’ and ’non-aggressive’ modes, Random Forest performs almost equally as SVM in terms of precision but SVM performs quite poorly compared to Random Forest in terms of recall for ’non-aggressive’ mode.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' For the detection of Fieldbus scanning stage using Profibus protocol, Random Forest performs slightly better than SVM in terms of both precision and recall.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Based on the performance results obtained above, it would be preferable to select Random Forest classifier for detection of Discovery and Fieldbus scanning stages in RAPTOR’s implementation since SVM’s performance degrades significantly at slow network scanning speed and for ’non-aggressive’ fieldbus scanning mode.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Finally, to emulate an APT attack on our testbed for construction of APT campaign graphs, we develop three attack storylines from an APT group’s perspective, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=',' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' their background,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' motivation for attack,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' steps taken for attack and Edge Tier Platform Tier Enterprise Tier Local SCADA & Management devices Cloud Applications API End users Sensor & Actuator PLC Cloud Broker Dashboard End users Sensor & Actuator Edge gateway Cloud Storage 0 Connected Worker Remote Maintenance On-site Supervisor Local Servers Phvsical assets/field devices zone Edge gateway zone Cloud zone Edge mobile service zone Enterprise service zone LANs,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' and router/firewall zone10 final attack objective.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' The TTPs (Techniques, Tactics and Procedures) used in our storylines are close to the ones used in real-world APT attacks on IIoT environments such as those mentioned in Section I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' For reasons of space, we present RAPTOR’s evaluation with only one of the APT attack storylines here.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' The rest of the storylines are presented in Appendix Sections A and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Steps 1-2 (Initial Access), step 4 (Command-and-control), step 6 (Discovery) and step 10 (Credential Access, Lateral Movement) of the attack storyline are based on the 2014 German steel mill and 2015/2016 Ukraine power grid attacks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Step 16 (Fieldbus scanning, CE communication spoofing) of the attack storyline is based on the 2016 Ukraine power grid attack and the 2017 Saudi petrochemical plant attack.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Steps 18-19 (Impact) of the attack storyline are based on the 2015 Ukraine power grid attack.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' We run the attack storyline on our IIoT testbed over the course of a few hours and collect the data generated from testbed hosts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Since real-world APT campaigns can stretch over months and it is not possible to emulate them on our testbed, we assume that our APT storylines are executed in an accelerated timeframe and therefore our performance evaluation of RAPTOR holds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' The complete APT attack storyline used for evaluating RAPTOR is as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' APT attack storyline 1 Background: Attackers belong to a nation-state (or APT) group which has been tasked with targeting a prominent state- owned steel manufacturing plant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' The APT group plans to steal ICS related data which can be used to understand the ICS design and components which can further be used to plan for later attacks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Goals: To steal sensitive OT data (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=', blast furnace temper- ature sensor measurements, PLC configuration, credentials).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' OT data such as blast furnace temperature readings are sensi- tive because they can be used to learn the normal temperature range and temporal trends.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Attackers can use this information to modify the settings of the furnace temperature controller to damage the furnace.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' The temperature readings can also be used to infer the furnace design.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Steps: 1) The attacker sends a spear phishing email (including a malicious VPN portal web link) to one of the steel plant employees posing as legitimate company email and obtains their VPN login credentials.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' 2) It uses the employee’s company email address and phished credentials to remotely login to the maintenance machine connected to enterprise network (password re- use) through the VPN service.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' 3) The attacker changes the employee’s VPN account pass- word for persistence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' 4) The compromised machine connects to an external C&C server through DNS tunnelling and forwards a shell to the attacker.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' 5) Attacker installs a malware on the compromised machine which exploits software vulnerabilities to gain root ac- cess.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' 6) The attacker controlling the compromised machine scans its local network and finds other hosts (firewall, MQTT server, external API machine) as well as the services running on them.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' 7) Attacker tries to find CVE vulnerabilities corresponding to the services running on other hosts but can not exploit them successfully.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' 8) It goes through the shell command history on com- promised machine and finds previous SSH connection attempts to the edge gateway containing username and hostname details.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' 9) It tries to determine the SSH login password for the edge gateway as follows: a) Accesses the shadow password file on compromised machine (using root access obtained earlier) which stores password hashes and corresponding hashing algorithms used.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' b) Tries to crack the password hashes to obtain corre- sponding plaintext passwords.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' 10) The attacker attempts to log in to the edge gateway by using one plaintext password at a time and is successful.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' It explores the files, folders (hidden and non-hidden) and the processes running on edge gateway.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' 11) It finds a web server, a CoAP server and Node-red application running on edge gateway.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' 12) The attacker tries to exploit CoAP related vulnerabilities but is unsuccessful.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' It remotely executes a script from the compromised maintenance machine to dump the CoAP resources.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' 13) It executes a fake CoAP client code on the compromised maintenance machine to receive measurements from sen- sors directly connected to edge gateway.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' 14) It scans devices connected to the edge gateway’s Wi-Fi hotspot network and finds a host running DNP service (PLC master).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' 15) Attacker downloads a script from C&C server and copies it remotely to edge gateway.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' 16) It extracts PLC configuration data (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=', hardware, firmware, manufacturer, serial number, slave IDs) by running the script on edge gateway.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' 17) The attacker compresses and encrypts all the targeted data collected in previous steps (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=', PLC configuration, sensor measurements, login credentials) and exfiltrates it through the C&C channel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' We assigned a weight, wia = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content='5 to the primary data sources for detecting an attack stage and a weight of of wia/2 to the secondary data sources.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' The threshold for detection is selected as τ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' The APT campaign graph generated by RAPTOR for Storyline 1 is shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' IV-F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' The graph captures broad details of the APT campaign including the IP addresses of the machines affected and the tactics used during the campaign which is quite useful for cybersecurity analysts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' This shows that our proposed attack stage detection and correlation algorithm in Section IV-E works as intended.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' However, the campaign graph does not capture all the tactics employed by the APT attackers since our focus is on detecting invariant APT tactics/stages only as explained in Section III-B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Further, the campaign graph does not contain any details on the specific techniques employed by the APT attackers since 11 our focus is not on detecting the individual techniques used for each tactic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' The APT campaign graph can serve as a starting point for cybersecurity analysts to fill in the missing tactics based on the APT attack frameworks for ICS, further investigation and mitigation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' The APT campaign graphs for Storyline 2 and Storyline 3 are shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' 4 and Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' 6 respectively in the Appendix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' 4: APT campaign graph generated for Storyline 1 VI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' DISCUSSION A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Comparison with State-of-the-art We are unable to conduct a performance comparison of RAPTOR with [12] as they do not provide any source code for their proposed multi-stage attack detection algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Further, the dataset used for performance evaluation in [12] which con- sist of a synthetic APT campaign injected into the CSE-IDC- 2018 intrusion detection dataset [25] has not been publicly released.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' HOLMES [10] and CONAN [11] do not provide source codes for their proposed APT detection system as well though both use the DARPA Transparent Computing ((TC) Engagement dataset [26] for performance evaluation which has been released publicly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' The DARPA TC dataset contains data from a red team deploying APT-style TTPs on a target system consisting of multiple interconnected hosts running different OSes and having exploitable CVE vulnerabilities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' However, the DARPA TC dataset suffers from following limitations which reduce its applicability for RAPTOR’s performance evaluation: The TC network setup is simple and does not emulate real-world enterprise/IIoT networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' The dataset provides only json files but no raw pcap files for us to extract network traffic-based features for a meaningful comparison with RAPTOR’s performance on our IIoT testbed dataset1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' None of the TTPs used in TC dataset are IIoT-specific.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Limitations The design of RAPTOR introduces a few limitations which are discussed in this section.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' RAPTOR uses supervised ML 1There is an active unresolved issue with the DARPA TC dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' While loading data from the compressed *.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content='bin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content='gz files, the code get stuck at streaming records.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' algorithms for detection of certain APT attack stages which means that it can detect only known malicious traffic pat- terns produced by those attack stages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' However, it should be noted that supervised ML algorithms are used much more commonly compared to unsupervised algorithms in real-world deployments of HIDS/NIDS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Advanced APT malware may attempt to evade detection by RAPTOR by slowing down the scanning activity (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=', during Discovery, Fieldbus scanning stages) or changing the time period between scanning attempts to confuse the trained ML algorithms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' This evasion technique can be countered by increasing the packet trace duration to capture enough attack packets though it may lead to longer classification delays.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' The ML classifiers used for detection of certain APT attack stages may have to be re-trained, for example, when the classification probability falls below a pre- defined threshold or the host OS is updated, and this may cause a delay in detection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Evasive APT malware may also use some other C&C server messaging mechanism than the TCP ([PSH,ACK], [ACK])/UDP one to escape filtering and/or force the C&C communication to be non-periodic (by adding noise traffic for example).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' If the attacker does change the C&C messaging mechanism, the detection method can be changed accordingly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Moreover, the C&C communication periodicity detection algo- rithm uses an ACF (Autocorrelation Function)-based approach which can detect periodicity in the presence of noise as well if the noise is uncorrelated with the desired signal (discrete- time sequence extracted from C&C server traffic).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' An attacker may evade the lateral movement detection logic by exploiting an RCE vulnerability instead of performing manual logins or using stealthy malware which blends the logins in its attack path with a previous legitimate user login.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Finally, it is also possible that a few hosts may already be infected before RAPTOR is deployed in an IIoT environment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' VII.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' CONCLUSION We have proposed RAPTOR, an APT detection system targeted at IIoT environments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' It detects and correlates attack stages derived from an APT Attack Invariant State Machine us- ing optimal data sources selected for each stage.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' The correlated attack stages are utilized to generate a compact, high-level APT Campaign Graph which can be used by cybersecurity analysts to track the progress of the APT campaign and deploy appropriate mitigation measures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' A performance evaluation of RAPTOR shows that it can detect APT campaigns modelled after real-world attacks with high precision and low false positive/negative rates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' REFERENCES [1] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Schafer, “Protecting IoT devices and OT Networks from Cyber Attacks,” https://blog.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content='checkpoint.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content='com/2020/07/06/ protecting-iot-devices-and-ot-networks-from-cyber-attacks/, June 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' [2] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Falliere, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Murchu, and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Chien, “W32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content='Stuxnet Dossier,” https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content='wired.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content='com/images_blogs/threatlevel/2010/11/w32_stuxnet_ dossier.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content='pdf, Nov 2010.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' [3] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Lee, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Assante, and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Conway, “German Steel Mill Cyber Attack,” https://assets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content='contentstack.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content='io/v3/assets/blt36c2e63521272fdc/ bltc79a41dbf7d1441e/607f235775873e466bcc539c/ ICS-CPPE-case-Study-2-German-Steelworks_Facility.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content='pdf, Dec 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' CommandandControl?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' 192.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content='168.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content='10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content='2 192.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content='168.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content='102.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content='1 DiscoveryLateral Movement) 192.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content='168.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content='15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content='1 Discovery,Fieldbusscanning 192.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content='168.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content='15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content='812 [4] ——, “Analysis of the Cyber Attack on the Ukrainian Power Grid,” https://media.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content='kasperskycontenthub.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content='com/wp-content/uploads/sites/58/ 2016/12/21181126/E-ISAC_SANS_Ukraine_DUC_5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content='pdf, Mar 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' [5] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Cherepanov, “WIN32/INDUSTROYER: A new threat for industrial control systems,” https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content='welivesecurity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content='com/wp-content/uploads/ 2017/06/Win32_Industroyer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content='pdf, Jun 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' [6] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Johnson, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Caban, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Krotofil, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Scali, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Brubaker, and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Glyer, “Attackers Deploy New ICS Attack Framework “TRITON” and Cause Operational Disruption to Critical Infrastructure,” https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content='mandiant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content='com/resources/blog/ attackers-deploy-new-ics-attack-framework-triton, Dec 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' [7] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Wright, “Industroyer2: How Ukraine avoided another blackout attack,” https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content='techtarget.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content='com/searchsecurity/news/252523694/ Industroyer2-How-Ukraine-avoided-another-blackout-attack, Aug 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' [8] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Staff, “Triton Malware Still Targeting Energy Firms,” https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content='darkreading.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content='com/attacks-breaches/ triton-malware-still-targeting-energy-firms, Mar 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' [9] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Brubaker, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Lunden, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Umair, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Zafra, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Hildebrandt, and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Caldwell, “INCONTROLLER: New State-Sponsored Cyber Attack Tools Target Multiple Industrial Control Systems,” https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' mandiant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content='com/resources/blog/incontroller-state-sponsored-ics-tool, Apr 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' [10] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Milajerdi, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Gjomemo, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Eshete, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Sekar, and V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Venkatakrishnan, “HOLMES: Real-Time APT Detection through Correlation of Suspicious Information Flows,” in 2019 IEEE Symposium on Security and Privacy (SP), 2019, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' 1137–1152.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' [11] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Xiong, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Zhu, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Dong, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Ruan, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Yang, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Cheng, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Chen, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Cheng, and X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Chen, “Conan: A Practical Real-Time APT Detection System With High Accuracy and Efficiency,” IEEE Transactions on Dependable and Secure Computing, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' 19, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' 1, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' 551–565, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' [12] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Wilkens, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Ortmann, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Haas, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Vallentin, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Fischer, “Multi-Stage Attack Detection via Kill Chain State Machines,” ser.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' CYSARM ’21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' New York, NY, USA: Association for Computing Machinery, 2021, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' 13–24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' [Online].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Available: https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content='1145/3474374.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content='3486918 [13] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Irshad, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Ciocarlie, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Gehani, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Yegneswaran, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Lee, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Patel, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Jha, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Kwon, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Xu, and X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Zhang, “TRACE: Enterprise-Wide Provenance Tracking for Real-Time APT Detection,” IEEE Transactions on Information Forensics and Security, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' 16, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' 4363–4376, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' [14] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Ho, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Dhiman, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Akhawe, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Paxson, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Savage, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Voelker, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Wagner, “Hopper: Modeling and Detecting Lateral Movement,” in 30th USENIX Security Symposium (USENIX Security 21).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' USENIX Association, Aug 2021, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' 3093–3110.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' [Online].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Available: https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content='usenix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content='org/conference/usenixsecurity21/presentation/ho [15] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Morris, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Thornton, and I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Turnipseed, “Industrial control system simulation and data logging for intrusion detection system research,” 7th Annual Southeastern Cyber Security Summit, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' 3–4, 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' [16] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Pan, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Morris, and U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Adhikari, “Developing a Hybrid Intrusion Detection System Using Data Mining for Power Systems,” IEEE Transactions on Smart Grid, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' 6, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' 6, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' 3104–3113, 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' [17] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Goh, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Adepu, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Junejo, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Mathur, “A Dataset to Support Research in the Design of Secure Water Treatment Systems,” in Critical Information Infrastructures Security - 11th International Conference, CRITIS 2016, Paris, France, October 10-12, 2016, Revised Selected Papers, ser.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Lecture Notes in Computer Science, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Havârneanu, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Setola, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Nassopoulos, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Wolthusen, Eds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' 10242.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Springer, 2016, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' 88–99.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' [Online].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Available: https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content='1007/978-3-319-71368-7_8 [18] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Myers, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Suriadi, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Radke, and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Foo, “Anomaly detection for industrial control systems using process mining,” Computers & Security, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' 78, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' 103–125, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' [Online].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Available: https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content='sciencedirect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content='com/science/article/pii/S0167404818306795 [19] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Teixeira, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Salman, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Zolanvari, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Jain, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Meskin, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Samaka, “SCADA System Testbed for Cybersecurity Research Using Machine Learning Approach,” Future Internet, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' 10, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' 8, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' [Online].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Available: https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content='mdpi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content='com/1999-5903/10/8/76 [20] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Al-Hawawreh, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Sitnikova, and N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Aboutorab, “X-IIoTID: A Connectivity-Agnostic and Device-Agnostic Intrusion Data Set for Industrial Internet of Things,” IEEE Internet of Things Journal, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' 9, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' 5, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' 3962–3977, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' [21] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Al-Hawawreh and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Sitnikova, “Developing a Security Testbed for Industrial Internet of Things,” IEEE Internet of Things Journal, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' 8, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' 7, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' 5558–5573, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' [22] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' ATT&CK, “ICS tactics,” https://attack.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content='mitre.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content='org/tactics/ics/.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' [23] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Kumar, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Shridhar, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Swaminathan, and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Lim, “Machine learning-based early detection of IoT botnets using network-edge traffic,” Computers & Security, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' 117, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' 102693, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' [Online].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Available: https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content='sciencedirect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content='com/science/article/pii/S0167404822000918 [24] Nmap.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content='org, “NMAP Timing Templates,” https://nmap.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content='org/book/performance-timing-templates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content='html.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' [25] I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Sharafaldin, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Lashkari, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Ghorbani, “Toward Generating a New Intrusion Detection Dataset and Intrusion Traffic Characterization,” in Proceedings of the 4th International Conference on Information Systems Security and Privacy, ICISSP 2018, Funchal, Madeira - Portugal, January 22-24, 2018, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Mori, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Furnell, and O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Camp, Eds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' SciTePress, 2018, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' 108–116.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' [Online].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Available: https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content='5220/0006639801080116 [26] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Torrey, “Transparent Computing Engagement 5 Data Release,” https://github.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content='com/darpa-i2o/Transparent-Computing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' APPENDIX A APT ATTACK STORYLINE 2 Background: Attackers belong to a nation-state (or APT) group which has been tasked with targeting a prominent state- owned steel manufacturing plant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' The APT group plans to disrupt the steel production and thereby affect other industries dependent on steel and exports.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Goals: To shut the blast furnace down by controlling the furnace relays (LEDs in our testbed).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' This may damage the plant operations temporarily or permanently.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Steps: 1) An insider recruited by the APT group installs malware on the maintenance machine through a USB stick.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' The malware exploits software vulnerabilities on the machine to gain root access.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' 2) The compromised machine connects to an external C&C server through DNS tunnelling and forwards a remote display to the attacker.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' 3) Attacker installs a malware on the compromised machine which exploits software vulnerabilities to gain root ac- cess.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' 4) The attacker controlling the compromised machine scans its local network and finds other hosts (firewall, MQTT server, external API machine) as well as the services running on them.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' 5) Attacker tries to find CVE vulnerabilities corresponding to the services running on other hosts but can not exploit them successfully.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' 6) It accesses the shadow password file on compromised machine (using root access obtained earlier) which stores password hashes and corresponding hashing algorithms used.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' 7) Attacker successfully opens an RDP (Remote Desktop Protocol) session to the external API machine using one of the stolen password hashes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' 8) It accesses the SCADA/HMI web interface on the ex- ternal API machine and turns off the LEDs directly connected to edge gateway.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' APPENDIX B APT ATTACK STORYLINE 3 Background: Attackers belong to a nation-state (or APT) group which has been tasked with targeting a prominent state- owned steel manufacturing plant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' The APT group plans to 13 Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' 5: APT campaign graph generated for Storyline 2 disrupt the steel production and thereby affect other industries dependent on steel and exports.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Goals: To damage the plant equipment by tampering with the operation of safety controllers which prevent the blast furnace from entering an unsafe state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' The safety controllers may be reprogrammed to allow the blast furnace to enter a dangerous state without any corrective action leading to physical damage to the plant and even loss of human lives.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Steps: 1) The attacker sends a spear phishing email (including a malicious VPN portal web link) to one of the steel plant employees posing as legitimate company email and obtains their VPN login credentials.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' 2) It uses the employee’s company email address and phished credentials to remotely login to the maintenance machine connected to enterprise network (password re- use) through the VPN service.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' 3) The attacker changes the employee’s VPN account pass- word for persistence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' 4) The compromised machine connects to an external C&C server through DNS tunnelling and forwards a shell to the attacker.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' 5) Attacker installs a malware on the compromised machine which exploits software vulnerabilities to gain root ac- cess.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' 6) The attacker controlling the compromised machine scans its local network and finds other hosts (firewall, MQTT server, external API machine) as well as the services running on them.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' 7) Attacker tries to find CVE vulnerabilities corresponding to the services running on other hosts but can not exploit them successfully.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' 8) It goes through the shell command history on com- promised machine and finds previous SSH connection attempts to the edge gateway containing username and hostname details.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' 9) It hijacks any future SSH session between the com- promised machine (started by an employee performing remote maintenance) and the edge gateway.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' 10) The attacker explores the files, folders (hidden and non- hidden) and the processes running on edge gateway.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' 11) It finds a web server, a CoAP server and Node-red application running on edge gateway.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' 12) The attacker scans devices connected to the edge gate- way’s Wi-Fi hotspot network and finds a host running DNP service (PLC device).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' 13) It downloads a payload from C&C server, copies it remotely to edge gateway and executes it.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' 14) The attacker terminates the existing process which is communicating with the PLC device.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' 15) It collects more information about the PLC device and enumerates all the slave IDs using the payload com- mands.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' 16) The attacker uses the payload to send a command to the targeted slave to read its current state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' 17) It remotely uploads a new program to the PLC device while it continues to operate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content=' 6: APT campaign graph generated for Storyline 3 fCommandandControl 192.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content='168.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content='10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content='2 192.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content='168.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content='102.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content='1 [Discovery,Lateral Movement) 192.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content='168.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content='10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content='4fCommandandControl) 192.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content='168.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content='10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content='2 192.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content='168.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content='102.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content='1 [Discovery,Lateral Movement) 192.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content='168.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content='15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content='1 [Discovery,Fieldbusscanning, CEcomm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content='spoofing) 192.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content='168.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content='15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} +page_content='8' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/j9FJT4oBgHgl3EQfYCxF/content/2301.11524v1.pdf'} diff --git a/jNE0T4oBgHgl3EQf7ALm/content/2301.02772v1.pdf b/jNE0T4oBgHgl3EQf7ALm/content/2301.02772v1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..d3b740d259841424c1c9b956a5b952eed14f7327 --- /dev/null +++ b/jNE0T4oBgHgl3EQf7ALm/content/2301.02772v1.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:0e6c33a20b20365df8a16cf0cc6d4d9c6f3c6f965002abddff4d85ba074faeb5 +size 149221 diff --git a/jNE0T4oBgHgl3EQf7ALm/vector_store/index.faiss b/jNE0T4oBgHgl3EQf7ALm/vector_store/index.faiss new file mode 100644 index 0000000000000000000000000000000000000000..d186775ccde4279bb146993281b4261d4879cb31 --- /dev/null +++ b/jNE0T4oBgHgl3EQf7ALm/vector_store/index.faiss @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:d597f2ac985c9a31102a6ff4920c45fd9cc65b208cdc64eadecdf24134df6d9e +size 1638445 diff --git a/jNE0T4oBgHgl3EQf7ALm/vector_store/index.pkl b/jNE0T4oBgHgl3EQf7ALm/vector_store/index.pkl new file mode 100644 index 0000000000000000000000000000000000000000..1c13bfedc99638786a7efd7bac00d3b82aac6f81 --- /dev/null +++ b/jNE0T4oBgHgl3EQf7ALm/vector_store/index.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:4044376a12538f6b98dbe29bd9f760d86021c07bc9466a774b1127f191de7e4b +size 58740 diff --git a/jNE2T4oBgHgl3EQfIAbu/content/2301.03676v1.pdf b/jNE2T4oBgHgl3EQfIAbu/content/2301.03676v1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..e926ff00adae812b3d3ec4f098c0ffa63f3c5a12 --- /dev/null +++ b/jNE2T4oBgHgl3EQfIAbu/content/2301.03676v1.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:c2298cc27742c0f530e320c74e897f3e025c7d7a203aaf008672251352847227 +size 360417 diff --git a/jNE2T4oBgHgl3EQfIAbu/vector_store/index.faiss b/jNE2T4oBgHgl3EQfIAbu/vector_store/index.faiss new file mode 100644 index 0000000000000000000000000000000000000000..d07b23c390081fd742ec1e575b41beff55e9ca35 --- /dev/null +++ b/jNE2T4oBgHgl3EQfIAbu/vector_store/index.faiss @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:1d9795cb70de12bdc8dd3bd865dc7705d04c720e729b81bef49f7d6fa74a29c2 +size 786477 diff --git a/jNE2T4oBgHgl3EQfIAbu/vector_store/index.pkl b/jNE2T4oBgHgl3EQfIAbu/vector_store/index.pkl new file mode 100644 index 0000000000000000000000000000000000000000..75f2ddf07d2aafe4012c3020ce6e3a181b7ecae2 --- /dev/null +++ b/jNE2T4oBgHgl3EQfIAbu/vector_store/index.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:0e82ed5d53620ae8da56e22dc2f9b216ffe081ac1c3bbc5a0564669b7a870185 +size 38920 diff --git a/jdE3T4oBgHgl3EQf5Au-/vector_store/index.faiss b/jdE3T4oBgHgl3EQf5Au-/vector_store/index.faiss new file mode 100644 index 0000000000000000000000000000000000000000..851dfa34ce855bb1c361194feeb9d9de07419bdd --- /dev/null +++ b/jdE3T4oBgHgl3EQf5Au-/vector_store/index.faiss @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:a41d5da69a3e1a26f17d8f3e99339c0e8d199014c9067ee228178d1b82c6114b +size 7536685 diff --git a/k9AzT4oBgHgl3EQfbvzP/content/2301.01392v1.pdf b/k9AzT4oBgHgl3EQfbvzP/content/2301.01392v1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..42ec96bc83b789643a45524ad748cf6d520ed81a --- /dev/null +++ b/k9AzT4oBgHgl3EQfbvzP/content/2301.01392v1.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:1ff26e4ea349fced86ceb1e91d19844b5a83ac75e5ce32bdc27851c32581112d +size 1877616 diff --git a/k9AzT4oBgHgl3EQfbvzP/vector_store/index.faiss b/k9AzT4oBgHgl3EQfbvzP/vector_store/index.faiss new file mode 100644 index 0000000000000000000000000000000000000000..a2129a809c428f941c0c814765544f276dc6d890 --- /dev/null +++ b/k9AzT4oBgHgl3EQfbvzP/vector_store/index.faiss @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:97e2f4a08a163dbd2fbc53666a4da90cebc059974e6333e5ecc48e97f9eff21a +size 6160429 diff --git a/k9FKT4oBgHgl3EQfCy2S/content/tmp_files/2301.11709v1.pdf.txt b/k9FKT4oBgHgl3EQfCy2S/content/tmp_files/2301.11709v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..e0e7da5d9348d2238b5c5bd7b56685a9fbc8904d --- /dev/null +++ b/k9FKT4oBgHgl3EQfCy2S/content/tmp_files/2301.11709v1.pdf.txt @@ -0,0 +1,1051 @@ +Semantic Network Model for Sign +Language Comprehension + +Xinchen Kang (22f3d431-dcc0-42a5-8e2b-c26464e0654d) +Beijing Union University, China +Dengfeng Yao (ae88317c-d091-4f41-97f1-b1e6be00ca68) +Beijing Union University, China +Minghu Jiang (ea1cc43b-eee9-4185-8d97-edeac9186268) +Tsinghua University, China +Yunlong Huang (cc1ddbf2-64b9-4c51-b553-0ebe52a8d645) +Tsinghua University, China +Fanshu Li (64642396-6e95-456f-a4f2-47ff81a23d6e) +Beijing Union University, China +ABSTRACT +In this study, the authors propose a computational cognitive model for sign language (SL) perception and +comprehension with detailed algorithmic descriptions based on cognitive functionalities in human +language processing. The semantic network model (SNM) that represents semantic relations between +concepts is used as a form of knowledge representation. The proposed model is applied in the +comprehension of sign language for classifier predicates. The spreading activation search method is +initiated by labeling a set of source nodes (e.g. concepts in the semantic network) with weights or +"activation," and then iteratively propagating or "spreading" that activation out to other nodes linked to +the source nodes. The results demonstrate that the proposed search method improves the performance of +sign language comprehension in the SNM. +Keywords: Attention, Cognitive Processing, Comprehension, Decision-Tree, Game Theory, Linguistics, +Perception, Semantic Network, Sign Language +INTRODUCTION +Sign language (SL) comprehension is a fundamental task for computational linguists. Two types of +algorithms have been proposed: (1) rule-based methods (Supalla, 1982), and (2) statistical methods +(Bauer & Heinz, 2000; Huenerfauth, 2005). Rule-based methods lack the capability of planning the +elements in the entire scene (Liddell, 2003). The method of modeling infinite natural language input +through finite rules, especially minor rules, barely meets all requirements of SL processing (Yao et al., +2017). Therefore, statistical methods are the preferred type of algorithm for SL comprehension. Statistical +models can be applied to spoken languages. Given the abundant data resources of spoken languages in the +digitalized Internet age, statistical models can be applied readily. However, the raw and annotated corpora +of SLs are insufficient because collecting and annotating SL videos are tedious and difficult. Data sparsity +consequently remains as the most serious problem when applying statistical models onto SLs. For + +example, the real-time factor (RTF) of the SL video corpus is 100; that is, an hour corpus requires at least +100 hours of annotation (Dreuw et al., 2008b). + +Simulating SL comprehension using traditional statistical models and machine-learning methods +isdifficult. Thus, reliable methods for establishing a signer’s 3-D model (which is the process of +developing a mathematical representation of any three-dimensional surface of moving trajectories of +signers in the space for SL via specialized software) for SL corpus building and technologies for +annotating a large-scale SL video corpus automatically must be developed. Unlike the spoken language +that is “a set of values that change with the passage of time” (Huenerfauth, 2005), SL does not have a +writing system and thus cannot be saved in any form of written texts. + +The natural language-processing system relies on texts to process spoken languages. This system records +only the written text that corresponds to speech flows and relies only on the literacy of the user. On the +other hand, the SL system comprises information from multiple modalities. Examples of such information +are the hand shape, hand location, hand movement, hand orientation, head tilting, shoulder tilting, eye +gazing, body gestures, and facial expressions. The considerable information from multiple channels in SL +conveys linguistic meaning. This multi-modality nature of SL poses difficulties for the coding of SLs into +a linear single-channeled character string. In addition, SLs have writing systems, such as the Sign Writing +system (Sutton, 2010), ASL-phabet (Supalla et al., 2008), and HamNoSys (Prillwitz et al., 1989). +However, these systems have a limited number of users (Johnston, 2004). + +Many linguistic details are lost because of the multi-modality nature of SL during the translation of SL +into its corresponding writing system. SLs may be understood by directly matching the visual–spatial +characteristics of SL with the semantic units in the brain rather than applying written texts as an +interpreting medium. Here, semantic units are generally used for processing natural languages; these units +or nodes contain some information, which are used as knowledge representations form semantic units +(Geva et al., 2000). Such direct matching also represents the most natural way of comprehending SLs in +the brain. From this perspective, the authors present a computational cognitive model for SL +comprehension that is based on the cognitive functionalities of the human brain combined with a +knowledge representation theory of artificial intelligence (Shuklin, 2001). + +Visual–spatial mechanisms are exploited to express the grammatical structures and functions in SL. +Visual–spatial perception, memory, and mental transformations are prerequisites to grammatical +processing in SL (Emmorey & Corina, 1990) and are central to visual mental imagery (Farah, 1988). A +series of experiments have been conducted to investigate visual attention (Neville et al., 1998). Movement +recognition in peripheral vision is important in sign perception because the signers mainly look at the face +instead of tracking the hands when they communicate through SL (Siple, 1978). Therefore, identification +of lexical-level information depends on the peripheral vision system when signs are produced. The +recognition of movement directions is the selective function of peripheral vision (Bonnet, 1977). + +Whether deaf people only have a strong peripheral vision or efficiently allocate attention to peripheral +vision remains unclear. Stivalet et al. (1998) showed that visual attention processing can be changed by +auditory deprivation. They determined that deaf people do not shift their attention when processing the +information (i.e., alphabet set) presented in the central vision field, whereas hearing subjects must shift +their attention to search for the alphabet set continuously. Smith et al. (1998) also found that lack of +auditory input causes weak and selective (or highly distributed) visual attention among deaf children. +Stivalet et al. (1998) proposed that effective visual processing is caused by intermodal sensory +compensation; that is, the strong allocation of visual attention can be attributed to neuron reorganization +caused by auditory deprivation from birth. Recent magnetic resonance imaging evidence supports this +hypothesis (Bavelier et al., 2000). + + +These findings are selective attention cases, in which attention selectively processes certain stimuli but +ignores other stimuli. The cases refer to the selective orientation and concentration of the senses (i.e., +visual, auditory, taste, and tactile senses) and consciousness (i.e., awareness) of people on certain targets +(towards other factors). Studies on attention have failed to describe human attention at the biological level +in detail, as a person cannot focus continuously because the brain automatically suppresses activity when +attention reaches its limits. + +Emmorey and Reilly (2013) determined that when locations in a signing space (SL expressions streaks +the space) function topographically, spatial changes tend to be noticed easily. Thus, location information +indicating the spatial position of associated referents can be encoded and stored semantically in memory. +However, spatial locations with a primary distinguishing function of referents are encoded in a different +way and tend to be discarded from memory once the referential function is no longer required by context +(Emmorey & Reilly, 2013). Bavelier et al. (2001) claimed that only the posterior middle temporal gyrus +and the medial superior temporal cortex of deaf signers are highly active while perceiving movements in +peripheral vision. This phenomenon is unobservable in hearing signers who have skillfully grasped signs, +indicating that auditory deprivation results in a shift to stronger movement attention in the visual +periphery. Deaf people can easily reply to the attention and visual monitoring of their peri-personal space +(Bavelier et al., 2001). + +Neville et al. (1998) determined that the classic language area in the left hemisphere, particularly the left +perisylvian, of both deaf and hearing subjects is activated when reading English sentences. The right +hemisphere, including the right perisylvian, of deaf people is also activated. They argued that spatial +processing is of great importance to sign grammar. Thus, the SL comprehension process of deaf people +employs neurons at both high and low levels in the neural network, which are connected with each other +by edges, and generates high-level features via feature combination processes that are realized by +combining the weight on the edges. For example, low-level visual edge features are assembled, processed, +and sent to the high level to form the angle, shape, and other higher features (Bertasius et al., 2015). High- +level neurons form features that gradually approximate the semantics in turn, such as simple shapes, +simple targets, and real objects. The activation of high-level neurons during the reconstruction process +also reacts with the low-level neurons and adjusts and corrects deviations and losses (Bertasius et al., +2015); a temporal pattern appears in the horizontal structure connection. The neurons can make +predictions of the state at the next point of every time point through a horizontal connection based on the +information of their current status (Hawkins et al., 2009). +SEMANTIC NETWORK MODEL (SNM) +Model of semantic networks (SNs) are generally used for processing natural languages (Shuklin, 2001). +SNs, as knowledge representations, are extensible and have been used to model mental disturbances +(Geva et al., 2000). The semantic network (which is a network that represents semantic relations between +concepts, is used as a form of knowledge representation, here it is based on SL information processing of +human brain cortex. The edges connect different nodes in the network and represent the strength or +weakness of the correlation. After being set up, the semantic network is stored in long-term memory for +future retrieval and extraction to be encoded as semantic memory. Outside stimuli at a certain time can be +the demand of a person on specific knowledge and information to activate the demand on the extraction +of useful information of long-term memory (Sedikides & Skowronski, 1991). The activation process of +the stored network works in a form of spreading in the memory (Collins & Quillian, 1972). + +The semantic model, which is based on SL information processing of human brain cortex, is developed +accordingly. Different areas of the brain cortex are involved in the processing and are connected in a +hierarchical manner. Low-level information from sense organs is first processed in the primary +information-processing regions of the brain cortex and is then transferred to high-level regions for further + +processing, such as abstracting, integrating, and interpreting. The detailed description and illustration of +this hierarchical structure are summarized in Figure 1. +Figure 1. Hierarchical structure. Low-level areas in the hierarchy generate specific information that +increases speed and contain further details, whereas high-level areas form stable spatial invariance, +change slowly, and show high-level semantic object expression (Adapted from Yao et al., 2015) + + +In SL communication, both substantial and semantic information (substantial information includes hand +shape, hand location, hand movement, hand orientation, head tilting, shoulder tilting, eye gazing, body +gestures, and facial expressions, and semantic information is represented into semantic concepts by these +substantial SL information) almost exclusively relies on signs. However, accurate SL information +analysis and prediction remain as challenging tasks in the field of natural SL processing. Three main tasks +are, namely, capturing, decoding, and extracting the physical characteristics and relationship of signs +(perception stage), matching the decoded cognitive representations with the stored semantic information +(memory stage), and completing the machine translation process of SL information (judgment stage). +This process of cognitive processing and understanding during SL communication is based on the PMJ +principle of “from the definition and extraction/annotation of cognitive representation (Stage P) to the +feature storage in line with the cognitive economy principles (Stage M), and then to the output of the +classification and judgment (Stage J).” + +The P→M→J (PMJ) principle exhibits a complete fine processing frame, the detailed illustration, and +description of SL comprehension frame based on the PMJ principle is summarized in Figure 2. +Figure 2. SL comprehension frame based on the PMJ principle. Perception refers to acquiring sign +information through selective attention. The information is limitedly processed by the brain if prominence +is given to useful and important information. Other information may be filtered out or suppressed when +sources for information processing are limited. Memory refers to the spreading activation process, in +which input information is coded, and one intends to store the information for a short period. Judgment + +targeted +wer +targeted sen antics +sign semantic concept +semantics +rea +representation +Area H +hign deve semantid +high-level semartic feature +feature detectors +Area A +low-evel senantic +low-level semantic feature +low-level s emanticf eature +feature detectors +cogritive +representation +Higher leve visual +handshape +location +oriention +moveme rt +No-manual feature +AreaV4 +abstractions +Edge +outine +Simple shape +Area V1 +detecton + edge feat ure +ed ge feature +Retina +oves +pixel +pixel +pixel +pixel +physical +characteristics +一refers to the process in which the perceived information or the information stored in memory is +compared, matched, or classified, and a decision or prediction is made. After the spreading activation, +the network records the attention features of users and activates their future preferences (Yao et al., +2015) + + +Concepts are in the form of network storage. The different concepts are stored in different functional +areas in both hemispheres of the human brain. The same or similar concepts are stored in same or +adjacent regions of brain. Specific information of entities in the outside world, such as humans, animals, +or tools, is represented by the concept network in the human brain. This concept network (A concept is an +abstract idea representing the fundamental characteristics of what it represents. Concept network consists +of these abstract concepts) is, in turn, connected with the lexical network from mental lexicon in the left +temporal lobe. Such specific information from mental lexicon will be employed to facilitate SL +production during which the SL users generate classifier hand shapes under the guidance of the +knowledge and rules of SL classifier predicates (Valli & Lucas, 2000). Here, classifier predicates are +made by combining small meaningful unites to create bigger units, the main units being the hand shape +and the movement. This condition implies that findings from brain research can provide knowledge and +guidance for the cognitive computational modeling of classifier predicate comprehension. In order to +obtain a deep understanding of sign lexical semantics, a cognitive processing model, which is based on +the cognitive mechanism of human brain, is established. The cognitive processing model would activate +the concept network of the associated classifier hand shapes in the brain. Here, classifier predicates differ +from traditional linguistic units. Traditional methods, such as the syntactic tree, cannot satisfy the +generation of the classifier predicates (Huenerfauth et al., 2006). +DECISION-TREE BASED ALGORITHMIC METHODS +The authors use SNs as the knowledge representation and organization mode of SL. The relationship in +semantic networks represents a type of information among nodes. Nodes with a complicated relationship +with other nodes contain additional information. Such nodes require further effort to be understood. +Consequently, the authors simulate selective attention (i.e., the processing of visual or auditory input +based on whether it is relevant or important). They selected particular representations to enter perceptual +awareness and therefore guide behavior. Through this process, less relevant information is suppressed by +humans using the proposed algorithmic methods to accentuate the nodes selectively and suppress the +unessential nodes (Chelazzi et al., 2013). + +The emergence of 3-D-based sensors, such as Kinect by Microsoft and Leap Motion (Yao et al., 2014), +has improved studies on sign recognition from video-based to 3-D-based sign recognition. However, this +transformation makes traditional video-based SL recognition methods inapplicable to 3-D-based SL + +Perception +Memon +Judgment +Attentional enha ncement and suppress ion +0 +Spread activation +Interactive activationrecognition technologies. Large training data are required for valid recognition in 3-D-based SL +recognition technologies because of the low operation efficiency of the rotatable joint-based sorter and the +matching techniques for sign signal recognition. Yao et al. (2014) proposed a decision tree-based +algorithm. The algorithm aims to achieve a high-precision and real-time performance of SL automatic +perception according to the features of Leap Motion. The authors adopted this method as the first step of +SL comprehension. +Attention Function +The authors propose the following attention function: + + ������������������������ = +∑ +������������������������������������ +������������������������������������ ������������ +∑ ������������������������������������ +������������������������ +(1) + +where ∑ +������������������������������������ +������������������������������������ ������������ + denotes the sum of the semantic relation weights around the semantic node x, ∑ ������������������������������������ +denotes the sum of all semantic relation weights, and ������������������������ represents the activation value on the semantic +node x after the spreading activation process. +Semantic Matching +Cognitive units in the memory network compete with one another based on certain rules to obtain more of +the limited attention resources and more energy for a more active state. SL comprehension supports +interactive activation models (Gutierrez et al., 2012). Therefore, judgment is the outcome of the attention +competition game in the spreading activation, which is a search algorithm. The search algorithm is +initiated by labeling a set of source nodes (e.g. concepts in a semantic network) with weights +or ”activation,” and then iteratively propagating or “spreading” that activation out to other nodes linked to +the source nodes processes of the human brain (Crestani, 1997; Preece, 1981). + +A semantic matching algorithm based on activation spreading modes is proposed to determine the most +appropriate semantic information. Activation starts to spread from the corresponding nodes of the signs +presented by the signer. The activation value of the stimulus node (i.e., signs to be perceived before the +start of spreading) must be calculated first. In particular, the increment in the interest value of object +concept must be calculated, and this concept node must be used as an initial node for the spread study. +Activation spreads to the neighboring nodes, which usually have a lower activation value than the source +value. Therefore, introducing an activation attenuation factor for decreasing activation over the path +length in the closed interval [0…1] is mandatory. That is, for every propagation through an edge a loss of +activation is considered (Neumann et al., 1993; Rocha et al., 2004). The activation spreading process can +be expressed as follows: + + ������������������������(������������ + 1) = ������������������������(������������)������������������������������������(1 − ������������) +(2) + +where ������������������������(������������ + 1) represents that the value is spread from node x to y at time, t+1, ������������������������(������������) represents the +activation value that was spread at node x at time, t, ������������������������������������ signifies the link between nodes x and y, and δ is +an attenuation factor used to describe the energy loss caused in the activation spreading process (Jiang & +Tan, 2006). + +Spreading activation theory states that the activation of human memory “chunks” (the content of any +buffer is limited to a single declarative unit of knowledge, called a chunk) is determined by two factors +(Anderson et. al., 2004; Anderson, 2013), namely, the use history of the memory chunk and the +correlation between the memory chunk and the current retrieval information. These two factors calculate +the weights and determine whether the chunk is activated and selected. This assumption has been verified + +by experimental cognitive psychology, and the calculation model has been established (Roelofs, 1992). +The authors must use moments to express the distance in each activation time with the current time. Time +units may be per hour as a unit and may also be the day. With the day as a unit, we can count the +historical value in the previous day as the activation value of the first day. The algorithm based on the +theory of memory activation can improve SL understanding, which is sometimes highly sensitive to time. + +At node y, the largest number of neighbor nodes is (n-1); thus, the maximum of ������������������������(������������ + 1) can be +expressed as: + + ������������������������(������������) = [������������1, ������������2, … , ������������������������]������������ + +i.e., the initial value of the semantic network. Where I1, I2, …, In are these activation value of neighbor +nodes. + +If activation spreads from a node in many directions, then its adjacent nodes obtain a low activation value. +The adjacent nodes give a feedback value of their resonance energy (i.e., contributing structure with the +lowest potential energy) to the co-adjacent nodes after they absorb the activation value. The following +equation is therefore used: + +Iz(t + 1) = Oz(t) + ∑ +Ox(t)Λxz(1-δ) +all actived x + (3) + +where Oz(t) denotes the activation value of node z at time t. + +Given that the quantity of activated information is limited, the nodes that obtain less resonance +information are equivalently inhibited and are less likely to be activated. The activation value distribution +in the resonance process conforms to the human attention model. +Attention Game Process +Cognitive units in memory network compete with one another by certain rules to increase the possibility +of obtaining more human attention resources and more energy that will improve activity. This +phenomenon is called a game process. The authors use game theory (Myerson, 1997), which is the study +of mathematical models of conflict and cooperation between intelligent rational decision-makers and +attempts to achieve the largest cognitive gains with the least energy possible, as a reference to simulate +the attention enhancement and suppression processes that are selective attention processes. In other +words, when visually searching for a non-spatial feature or a perceptual feature, selectively enhancing the +sensitivity to that specific feature plays a role in directing attention. When people are told to look for +motion, then motion will capture their attention, but attention is not captured by motion if they are told to +look for color (Reynolds & Chelazzi, 2004). Activated results consistent with cognitive features can then +be obtained. The authors assume that the game contains n nodes. ������������������������ +′ and ������������������������ +" are the two selectable +strategies for node i, and they represent the acceptance and non-acceptance of the change in the attention +function (i.e., ������������������������ +′, ������������������������ +" ∈ ������������������������ ). The corresponding gain can be represented by ������������������������ +′ and ������������������������ +" , and ������������������������ +′, ������������������������ +" ∈ ������������������������. N +nodes are assumed to reach an agreement before participating in the game to introduce the Nash +equilibrium (i.e., each node only selects a specific strategy). The authors let ������������∗ = (������������1 +∗, … , ������������������������∗) represent the +agreement, where ������������������������ +∗ is the strategy of the node i specified in the agreement. Nodes comply with this +agreement only when the benefit from complying with the agreement is larger than that from not +complying. This agreement constitutes Nash equilibrium if any node abides by this agreement. Thus, the +Nash equilibrium is written as follows: + + ������������������������(������������������������ +∗, ������������−������������ +∗ ) ≥ ������������������������(������������������������, ������������−������������ +∗ ), ∀si ∈ Si +(4) + + +where the combination of strategy ������������∗ = (������������1 +∗, … , ������������������������∗) is a Nash equilibrium. Given that other nodes select +������������−������������ +∗ = (������������1 +∗, … , ������������������������−1 +∗ +, ������������������������+1 +∗ +, … , ������������������������∗), ������������������������ +∗ is the optimal strategy of each node i (Myerson, 1997). + +The attention game process determines whether the nodes need adjustment or need to be changed on the +basis of the attention function. The activation energy distribution will reach a state consistent with the +human attentive distribution after adjusting the activated value distribution. Nodes of the spread SNs have +their own activation energy threshold values. The source node in the attention game process that +represents a presented sign has the maximum activation value O in the present SNs. All equidistant nodes +will participate in the game based on the attention function. The nodes with low activation energy +(defined as the minimum energy required to start a chemical reaction) of a reaction is denoted by Ea and +given in units of kilojoules per mole (kJ/mol) or kilocalories per mole (kcal/mol)), threshold must be +removed through a screening process to prevent them from participating in the enhancement and +suppression processes of activating the most likely node. In the proposed screening, the authors ignore the +nodes with a significantly low activation value to be activated in the enhancement process instead of +lowering the possibility for other nodes to be activated. + +The difference between the attentive readjustment in the present attention game process and the previous +attentive allocation causes the instability in the overall cognitive structure of users to decrease knowledge +credibility. Thus, a new cognitive structure must be determined at a cost as follows: + +Cost(t, i, si, ui, SN) = �n−1 ∑ +�Ii(t + 1) − Oi(t)� +2 +n +i=1 + (5) + +where ������������������������(������������ + 1) denotes the activation value that is conveyed from one node at time t+1 to node i, and 0i +(t) denotes the activation value of node i at time t. Therefore, the total cost is attributed to the change in +the activation energy of all nodes in the SN. The goal of judgment is to achieve the overall optimal gain +with a minimal computing cost. The gain function in the attention game process must then be determined. +As the optimal strategy for node i, ������������������������ +∗ must minimize the distribution change that refers to the distribution +change in the activation values of the overall network changed by the decision. The amount of spreading +activation energy is fixed in the total process of activation spread in the SN; thus, the semantic node +energy enhancement must be accompanied by reduced node energy. The attention parameters are affected +by the overall distribution change in activation energy. The activation energy enhancement increases the +impossibility of activating this node. Such activation is the ultimate purpose of each node (i.e., the node +obtains the gain). Accordingly, the gain function is presented as follows: + +Gain(t, i, si, ui, SN) = +�∑ +Ix∈{neighbor node}(t+1) +num(all x) +j=1 +−∑ +Ox∈{neighbor node}(t) +num(all x) +j=1 +�(1−δ) +num(all x) + +(6) + +where SN represents the current semantic network, num(all x) represents the number of neighbor nodes x +of node i, ∑ +Ox∈{neighbor node}(t) +num(all x) +j=1 + denotes the sum of the activation value that was spread of all +node i neighboring nodes at time t, the gain function is expressed as the attention gain of neighbor nodes +x of node i after the enhancement and suppression processes, it represents the benefit a node gets by +unilaterally changing their strategy. + +The utility function of the attention game process can be determined as follows: + +Max�������������������������(������������, ������������������������ +∗, ������������−������������ +∗ )� = Gain(������������, ������������, ������������������������, ������������������������, ������������������������������������) − Cost(������������, ������������, ������������������������, ������������������������, ������������������������������������) +(7) + + +where ������������������������ +∗ is the optimal strategy of each node i, ������������−������������ +∗ is the strategies set of other nodes except node i. only +when ������������������������(������������, ������������������������ +∗, ������������−������������ +∗ ) reaches the maximum, ������������������������ +∗ is a Nash equilibrium of node i. The utility of the other +nodes will be affected by the decision of all other nodes because of the fact that the total quantity of +activation energy is fixed (i.e., attention is limited) in the attention game process. When each node selects +a decision for itself, it also considers the possible decision of other nodes and selects the “Nash +equilibrium point” with maximum utility. This scenario is consistent with classical game theory. The +authors select a Nash equilibrium decision for each node through the utility function of the attention game +that is defined by Equation (7). +METHODS +Data Sets and Experimental Settings +All data from the authors’ experiments are obtained from the Tsinghua University–Chinese SL Corpus +(TH–SLC). The data mainly comprise SL expressions of idiom stories and life fragments of deaf students. +No automatic annotation software based on videos is currently available because the annotation process +for SL videos is time consuming and requires expert knowledge in dual language (i.e., Chinese language +and Chinese SL). Video annotation is also time consuming. Specifically, it takes about 30 hours for the +annotation RTF (real-time factor) of a parliamentary speech (i.e., One hour of speech requires 30 hours of +annotation). However, the annotation RTF (real-time factor) for a full annotation of all manual and non- +manual components of an SL video can reach up to 100 hours (Dreuw & Ney, 2008a). Therefore, such a +corpus is significantly small. For example, the Aachen Boston database contains American SL and has +annotated 201 English sentences (Dreuw & Ney, 2008a). The authors spent a year collecting more than +2000 sentences, but only 416 sentences containing 2496 signs were marked. + +The authors asked 20 deaf students to select 300 sign pairs from 2469 annotated signs in TH–SLC and to +judge the relevance of the sign pairs. The correlation values range from 0.0 to 1.0. For convenience, a +five-point scale is used to assess the correlation. The sign pairs were obtained using a marked correlation. +The authors establish an SN based on the word similarity computing method of HowNet (Liu & Li, 2002) +to determine the connection weight of the network to validate the effects of the proposed model. The +authors introduce the continuous bag-of-words (CBOW that predicts the current word from a window of +surrounding context words. The order of context words does not influence the prediction (CBOW +assumption) model (Mikolov et al., 2013), and the HowNet (Liu & Li, 2002) method as the baseline +methods using the same recommended parameters. The efficiency of the utility function of the attention +game process is evaluated in terms of word correlation computation, and the model complexity is +analyzed. +Word Relatedness Computation +Each model in this task needs to compute the semantic correlation of the given sign pair. The correlation +between the experimental results of the model and human judgment reflects upon the model’s +performance. The authors selected 290 signs for the closed set and 10 signs for the open set. + +Spearman’s correlation between model correlation score and human judgment correlation score was +calculated for comparison. Spearman correlation coefficient is defined as the Pearson correlation +coefficient among the ranked variables (Myers & Well, 2003). For a sample of size N, original data ������������������������, ������������������������ +are converted into grade data������������������������, ������������������������, the correlation coefficient ρ is defined as follows: + +ρ = 1 − +6 ∑ di +2 +n(n2−1) +(8) + + +where the difference between the observations of the two variable levels is set as ������������������������ = ������������������������ − ������������������������. If there is +no duplicate value in the data, and two variables are completely monotonic correlation, the Spearman +correlation coefficient is +1 or -1. +RESULTS +For CBOW, the correlation scores of the two words are calculated using the cosine similarity of word +embedding (Mikolov et al., 2013). The evaluative results of the baseline methods and the proposed SNM +method in the closed test and in all test sets are shown in Table 1. +Table 1. Evaluative results +Data Set +Closed Test +All Test Sets +(Including Open Test) +Spearman’s Rank +Correlation Coefficient +Method +290 pairs +300 pairs + +CBOW (baseline method) +0.4843 +0.4869 +0.4136 +Word similarity computing +based on HowNet +0.6157 +0.6174 +0.6052 +Proposed SNM method +0.6951 +0.7063 +0.6437 + +The evaluation results show that the proposed SNM method is better than the baseline method in 290 and +300 word pairs. This finding indicates that the cognitive mechanism of sign comprehension is essential to +understanding the meaning of signs. The internal structure, such as location, orientation, hand shape, and +movement, contains rich semantic information. However, deep learning methods, such as CBOW, +consider the external context, but ignore the internal structure. + +Using the computing method of word similarity based on HowNet results in only a rough semantic +computation. For example, adding 10 new sign pairs negligibly changes the performance of these +methods. In other words, these methods can still handle new signs with improved performance. The +semantic correlation of these new sign pairs calculated by the proposed method is close to human +judgment. Figure 3 shows the quantitative analysis of the attention game process for two signs. Each hand +shape of the two signs has at least 20 related semantic lexicons. The stimulus information and +permutation of each node are shown in the first and second columns from high to low according to the +activated value after the activation spreading process. Only 10 semantic lexicons that are maximally +activated are shown. The permutation of each node is shown in columns three to seven from high to low +according to the activation value after the end of the first to fifth attention games. The top 10 lexicons are +also shown. The semantic lexicons in the blue background rank high after the games, those in the green +background rank low after the games, and those in the white background are unchanged. +Figure 3. Examples of attention games. The semantic lexicons in the blue background rank high after the +games, those in the green background rank low after the games, and those in the white background are +unchanged. This trend shows that the ranking of other semantic lexicons below slightly changes after the +semantic lexicon that ranks highest becomes unchanged. This condition is due to the source that +corresponds to the attention model being determined after several game processes. + + + +Figure 3 also shows that significant changes occur during the ranking of the semantic lexicons in the first +and second instances after the first several games, whereas only a few changes occur in the following +stimulus games. This trend shows that the ranking of lower semantic lexicons slightly change after the +semantic lexicon that ranks highest becomes unchanged. This condition is due to the source that +corresponds to the attention model being determined after several game processes. Attention is also +assigned to other nodes in accordance with the attention game process. Humans reach a steady state after +thinking about problems constantly, and the result negligibly changes if they rethink. Nearly no change is +observed in the result after several rounds. Several semantic lexicons related to the signs are contained in +the text set; thus, a few possible changes occur. The result of the attention game model conforms to +human cognitive rules to a certain degree. + +Attention is also assigned to other nodes in accordance with the attention game process (here, efforts have +been made in modeling according to the mechanism of human attention). The result of the SNM conforms +to human cognitive rules to a certain degree (Gutierrez et al., 2012). For example, the authors assume that +deaf people understand the signs shown in Figure 3. Deaf people usually search for many familiar and +specific nouns or signs in a spreading activation mode to comprehend classifier predicates. After all +activated values are calculated; the activated nodes are graded and sorted. A high-activated value of the +node indicates the importance of the interested object or concept represented by the node. This shows that +deaf people are familiar with the concept node. Similar to the attention game process shown in Figure 3, + +activation +activation +activation +activation +activation +activation +value +value +value +value +value +value +sorting +sorting after +sorting after +sorting after +sorting after +sorting after +after +the first +the second +the 3rd +the 4th +the 5th +spread +attention +attention +attention +attention +attention +input +activation +game +game +game +game +game +A +handshape +good +General +General +General +General +poog +Reliable +Beheaded +Beheaded +Beheaded +Beheaded +Defend +Advanced +Support +Support +Support +Support +Maintain +Strange +Keep +Keep +Keep +Keep +Protect +General +General +General +General +General +Beheaded +Teacher +Teacher +Teacher +Teacher +Teacher +Support +Marshal +Reliable +Reliable +Reliable +Reliable +General +Madam +Advanced +Advanced +Advanced +Advanced +Teacher +Ancestors +Protect +Protect +Protect +Protect +Reliable +Defend +Maintain +Maintain +Maintain +Maintain +Y +handshape +human +Animal +cat +cat +cat +stand +animal +Burial +dog +Sop +dog +run +burial +Frustration +horse +horse +horse +lie +Frustration +Future +human +human +human +Resistance +future +Voltage +Ambassador +Ambassador +Ambassador +Protest +Voltage +Ambassador +coach +coach +coach +Control +Ambassador +Coach +stand +stand +stand +Incite +coach +Guide +run +run +run +Exploitation +Guide +Blind +lie +lie +lie +Recalcitrant +Blind +Opponent +Resistance +Resistance +Resistancethe high-ranked semantic lexicon is a cat or dog after several rounds. This result shows that the most +common subjects for deaf people are typical subjects that represent classifier predicates. +DISCUSSION +Compared with that of existing models, the complexity of the proposed model is reflected mainly on the +computational cost of the memory stage and the judgment stage (i.e., the computational cost of spreading +activation and the attention game at time (t + 1)). The cost is a dynamic value and related to two factors, +namely, the activation state of the current sign and the current cycle as the first activation of the sign. +Therefore, the value changes regardless of the choice of the user. This outcome is consistent with the +strong dynamics of sign information, which can reflect the influence of information in different periods. +In the memory stage, the time complexity of computing ������������������������(������������) is unity; thus, the time complexity is +related to the total amount N of activation energy and cycle times. The time complexity of each activation +in each cycle is n × 1 = n. Space complexity is the storage space of each node and the semantic relation +weight according to semantic similarity (semantic similarity can be estimated by defining a topological +similarity, by using ontologies to define the distance between terms/concepts). Therefore, unlike the +general model such as cobweb theorem model and vector space model, where the SNM increases the +overhead in time complexity and space complexity. The model also increases the matching time of query +nodes and weights in the current activation. However, the overhead at this time can provide more +effective results than an invalid spreading and can be accepted by users. + +In the judgment stage, when the node selects the game strategy to change its activated energy value, the +convergence speed of adjusting the cognitive benefits to its own utility maximum “Nash equilibrium” is +an important measure of evaluating the SNM (i.e., the cycle times of an attention game process). For the +attention game, the Nash decision of different semantic nodes must minimize the change cost of the +activation energy distribution of the entire network. The Nash equilibrium point decision for each node is +selected using the utility function defined in the SNM. This process is repeated until the overall network +activation energy distribution change is less than the specified threshold. The node needs to solve n-order +nonlinear equations in every cycle. Therefore, the performance of the convergence speed of the SNM is +indicated by the number of game cycles that the network requires to reach the Nash equilibrium point +(i.e., the computing times of calculating the corresponding equation by each node in a game process). The +square root of the sum of the variance of activation value ������������������������(������������ + 1) of each adjusted node is directly +reflected by the rate of convergence in the game process. + +To verify its effectiveness, the attention game model is compared with the traditional model in terms of +load balancing. In the traditional method, the activation value of each node is certain (i.e., the value is not +enhanced or inhibited). The experimental results are shown in Figure 4. The results show that the load +balance performance of the attention game model is better than that of the traditional model because the +attention game model adjusts the activation strategy after the activation of each node. When the change +cost of the energy distribution of the entire network activation is larger than the specified threshold, the +human brain adjusts the strategy to inhibit the activation energy value in the next cycle. In doing so, the +free competition and distribution of attention for each node according to the attention game model can be +assured. The result is obtained through the overall competition. The load of attention of the network is +balanced. The traditional model assumes that the activation energy value of each node is certain because +the brain activation energy resource amount is constant in a period of time. The brain selects the node +with a low activation energy value and performs the allocation of attention. This allocation causes the +attention load of several nodes to be excessively large or unutilized. +Figure 4. Comparison of load balance. The load balance performance of the SNM is better than that of +the traditional model because the SNM adjusts the activation strategy after the activation of each node + + + +The proposed SNM model used Nash equilibrium to simulate the energy activation process. In order to +quantitatively analyze the effects of Nash equilibrium, the authors compared the SNM with the cobweb +theorem model (Pashigian, 2008) in terms of different activation energy amounts. The cobweb theorem is +expressed as follows: + +������������(������������ + 1) = ������������(������������) + ������������ ��������������������������(������������)� − �������������������������′(������������)�� +(9) + +where r is the adjustment parameter of the activation value, �������������������������(������������)� is the activation function of a node, +������������(������������) is the activation value at time t, �������������������������′(������������)� is the attention allocation function, ������������′(������������) is the +expectation activation value at time t, and �������������������������(������������)� − �������������������������′(������������)�is the excessive demand function that +represents the actual gaps between the activation value and activated allocated value. A large gap +indicates a high activation value of the Nash Equilibrium of node. The parameter (r) indicates the actual +speed and strength of adjusting the activation value according to the attention distribution condition in the +last moment. When r > 0 it indicates that the adjustment direction of the activation value is consistent +with the direction of the demand function. + +The amount of activation energy Ea is assumed to be 100 kJ/mol. Figure 5 shows the result of comparing +the attention utilization between the game model and the cobweb model. The attention amount (attention +is the behavioral and cognitive process of selectively concentrating on a discrete aspect of information, +while ignoring other perceivable information. Attention amount refers to as the allocation size of limited +processing resources), is less than 100 kJ/mol. If the attention amount is insufficient, then attention +resources can only meet part of the node demand, and the resource utilization rate of the SNM will +become higher than that of the cobweb model. When attention supply exceeds the demand of a node, the +cobweb model achieves balance to meet the needs of several nodes after a repetitive cycle. The SNM +meets the needs of all nodes, and the utilization rate of attention resources is higher than that of the +cobweb model. + +Comparisonofloadbalance +9 +8 +nodes +hhhl +6 +Numberof +L +4 +3 +1 +0 +No.1 +No.2 +No.3 +No.4 +No.5 +No.6No.7 +No.8 +No.9 +No.10 +Numberofactivationenergy amount +Iattentiongamemodel +cobwebtheoremmodeFigure 5. Comparison of activation energy values. After the change in the initial value of the activation +energy, the number of iterations increases depending on the difference between the initial activation +energy value in the cobweb model and the balanced energy value. The iteration of the attention game +model can be adjusted according to the difference in the activation energy between supply and demand. A +sizeable adjustment is required to reach the Nash equilibrium state if a large difference exists between the +supply and demand + +Figure 6 shows the cycle times of the SNM and the cobweb model that needs to achieve the Nash +equilibrium. As shown in the figure, the equilibrium activation energy value of the nodes is 20 kJ/mol in +the SNM, and the activation energy is 120 kJ/mol in total. If the initial value of the activation energy is +changed, then the initial activation energy value of the cobweb model is higher than the energy +equilibrium value and requires abundant cycle time. The SNM in each cycle can adjust the activation +energy according to the variance of the activation energy. The variance and adjustment range are large, +and the SNM eventually reaches the Nash equilibrium point. +Figure 6. Cycle times of the SNM and the cobweb model that are needed to achieve the Nash equilibrium. +When the supply falls short of demand, attention resources can only meet the demands of several nodes, +and the resource utilization rate of the SNM becomes higher than that of the cobweb model. If the supply +exceeds demand, then the cobweb model can reach equilibrium after repeated iterations and can meet +only part of the demands of nodes. However, the SNM can meet the demands of all nodes, and its +resource utilization rate is higher than that of the cobweb model +0 +0.2 +0.4 +0.6 +0.8 +1 +1.2 +40 +60 +80 +100 +120 +Attention Resource Utilization(percentage) +Amount of activation energy(KJ/mol) +Comparison of activation energy values +attention game model +cobweb theorem model + + +CONCLUSION +The authors presented a new model for SL comprehension based on spatial information. This process uses +game theory to simulate the human attention suppression and enhancement process. This process also +joins the forgetting function of human memory traces to compute the initial state of the node. Memory is +encoded with specific (semantic) meaning, or refers to information that is encoded along a spatial and +temporal plane. Although the semantic network provides a functional view of how knowledge may be +organized in the brain, it does not provide a clear model of how semantic memory might be presented in +the brain (see Cacha et al., 2017). Spreading activation reveals that information can be stored in SNs for a +long time, in which a network node is a linguistic concept and the nodes are connected through the +correlation. An algorithmic method is proposed according to selective functions, and its effectiveness was +verified using an example. The results show that the proposed method improves the performance of SL +comprehension. +ACKNOWLEDGMENT +The authors would like to thank Chunda Liu from the National Center for Sign Language and Braille for +helping in stimulus preparation and data collection. This paper forms an expanded and revised version of +a conference paper at the 14th IEEE International Conference on Cognitive Informatics & Cognitive +Computing (ICCI* CC) at Tsinghua University, Beijing, July 6-8, 2015. The authors are grateful to Dr. +Raymond Chiong, and two anonymous referees for their helpful comments. +Conflict of Interest +The authors of this publication declare there is no conflict of interest. +Funding Agency +This research was supported by the Beijing Municipal Natural Science Foundation [4202028]; National +Social Science Foundation of China [21BYY106]; National Natural Science Foundation of China +[62036001, 61866035, 61966033]; Premium Funding Project for Academic Human Resources + +Comparison of cycle times +40 +Number of Iterations +35 +30 +25 +20 +15 +10 +5 +0 +1 +5 +10 +15 +20 +25 +30 +Activationvalue +attentiongamemodel +cobwebtheoremmodelDevelopment in Beijing Union University [BPHR2019CZ05]; Jiangsu Province Key R&D Program +(Industry Prospects and Key Core Technologies) [BE2020047]; and the characteristic-disciplines oriented +research project in Beijing Union University [KYDE40201702]. +REFERENCES +Anderson, J. R., Bothell, D., Byrne, M. D., Douglass, S., Lebiere, C., & Qin, Y. (2004). An integrated +theory of the mind. Psychological Review, 111(4), 1036. +Anderson, J. R. (2013). Human symbol manipulation within an integrated cognitive architecture. In +Cognitive science (pp. 313-341). Routledge.. +Bauer, B., & Hienz, H. (2000, March). Relevant features for video-based continuous sign language +recognition. In. Proceedings Fourth IEEE International Conference on Automatic Face and +Gesture Recognition (Cat. No. PR00580) (pp. 440-445) IEEE. +Bavelier, D., Tomann, A., Hutton, C., Mitchell, T., Corina, D., Liu, G., & Neville, H. (2000). Visual +attention to the periphery is enhanced in congenitally deaf individuals. Journal of Neuroscience, +20(17), RC93-RC93.. +Bavelier, D., Tomann, A., Brozinsky, C., Mitchell, T., Neville, H., & Liu, G. (2001). Processing of +motion velocity in deaf signers. In Poster presented at the Cognitive Neuroscience Society +meeting, New York, New York. +Bertasius, G., Shi, J., & Torresani, L. (2015). High-for-low and low-for-high: Efficient boundary +detection from deep object features and its applications to high-level vision. In Proceedings of the +IEEE International Conference on Computer Vision, (pp. 504-512). +Bonnet, C. (1977). Visual motion detection models: Features and frequency filters. Perception, 6(5), 491- +500. +Cacha, L. A., Ali, J., Rizvi, Z. H., Yupapin, P. P., & Poznanski, R. R. (2017). Nonsynaptic plasticity +model of long-term memory engrams. Journal of integrative neuroscience, 16(4), 493-509. +Collins, A. M., & Quillian, M. R. (1972). How to make a language user. In Organization of Memory (pp. +309-351). Academic Press. +Crestani, F. (1997). Application of spreading activation techniques in information retrieval. Artificial +Intelligence Review, 11(6), 453-482. +Dreuw, P., & Ney, H. (2008a). Towards automatic sign language annotation for the elan tool. In +Workshop Programme (Vol. 50). +Dreuw, P., Neidle, C., Athitsos, V., Sclaroff, S., & Ney, H. (2008b, May). Benchmark databases for +video-based automatic sign language recognition. In Proceedings of the Sixth International +Conference on Language Resources and Evaluation (LREC'08). +Emmorey, K., & Corina, D. (1990). Lexical recognition in sign language: Effects of phonetic structure +and morphology. Perceptual and Motor Skills, 71(3_suppl), 1227-1252. +Emmorey, K., & Reilly, J. S. (Eds.). (2013). Language, gesture, and space. Psychology Press. + +Farah, M. J., Hammond, K. M., Levine, D. N., & Calvanio, R. (1988). Visual and spatial mental imagery: +Dissociable systems of representation. Cognitive Psychology, 20(4), 439-462. +Geva, A. B., & Peled, A. V. I. (2000) Simulation of cognitive distrubrances by a dynamic threshold +semantic neural network. Journal of the International Neuropsychological Society, 6(5), 608-619. +Gutierrez, E., Williams, D., Grosvald, M., & Corina, D. (2012). Lexical access in American Sign +Language: An ERP investigation of effects of semantics and phonology. Brain Research, 1468, +63-83. +Hawkins, J., George, D., & Niemasik, J. (2009). Sequence memory for prediction, inference and +behaviour. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1521), +1203-1209. +Huenerfauth, M. (2005). American Sign Language generation: Multimodal NLG with multiple linguistic +channels. In Proceedings of the ACL Student Research Workshop (pp. 37-42). +Huenerfauth, M. (2006). Generating American Sign Language classifier predicates for English-to-ASL +machine translation. (Doctoral dissertation, University of Pennsylvania). +Jiang, X., & Tan, A. H. (2006, July). Ontosearch: A full-text search engine for the semantic web. In In +AAAI (Vol. 6, pp. 1325-1330). +Johnston, T. (2006) W(h)ither the Deaf community? Population, genetics, and the future of Australian +Sign Language. Sign Language Studies, 6(2), 137-173. +Lei, X., Xu, P., Chen, A., & Yao, D. (2009). Gaussian source model based iterative algorithm for EEG +source imaging. Computers in Biology and Medicine, 39(11), 978-988. Not cited in the text. +Chelazzi, L., Perlato, A., Santandrea, E., & Della Libera, C. (2013). Rewards teach visual selective +attention. Vision research, 85, 58-72. +Liddell, S. K. (2003). Grammar, gesture, and meaning in American Sign Language. Cambridge +University Press. +Liu, Q., & Li, S. (2002) Lexical semantic similarity computation based on HowNet. Computational +Linguistics and Chinese Language Processing, 7(2), 59-76.Myers, J. L., & Well, A. D. (2003). +Research design and statistical analysis. Routledge.Myerson, R. B. (1997). Game theory: +Analysis of conflict. Harvard University Press, MA, USA. +Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., & Dean, J. (2013). Distributed representations of +words and phrases and their compositionality. Advances in neural information processing +systems, 26. +Neumann, E., Cherau, J. F., Hood, K. L., & Steinnagel, S. L. (1993). Does inhibition spread in a manner +analogous to spreading activation?. Memory, 1(2), 81-105. +Neville, H. J., & Lawson, D. (1987). Attention to central and peripheral visual space in a movement +detection task: An event-related potential and behavioral study. II. Congenitally deaf adults. +Brain Research, 405(2), 268-283. + +Neville, H. J., Bavelier, D., Corina, D., Rauschecker, J., Karni, A., Lalwani, A., & Turner, R. (1998). +Cerebral organization for language in deaf and hearing subjects: Biological constraints and effects +of experience. In Proceedings of the National Academy of Sciences, 95(3), 922-929. +Pashigian, B. P. (2008) Cobweb Theorem: The New Palgrave Dictionary of Economics (2nd ed.). +Springer. +Preece, S. E. (1981). A spreading activation network model for information retrieval. University of +Illinois at Urbana-Champaign. +Prillwitz, S., Leven, R., Zienert, H., Hanke, T., & Henning, J. (1989) Hamburg Notation System for sign +languages: An introductory guide. HamNoSys version 2.0. Signum, Seedorf, Germany. +Reynolds, J. H., & Chelazzi, L. (2004). Attentional modulation of visual processing. Annual Review of +Neuroscience, 27(1), 611-647. +Rocha, C., Schwabe, D., & Aragao, M. P. (2004, May). A hybrid approach for searching in the semantic +web. In, Proceedings of the 13th International Conference on World Wide Web (pp. 374-383). +Roelofs, A. (1992). A spreading-activation theory of lemma retrieval in speaking. Cognition, 42(1-3), +107-142. +Sedikides, C., & Skowronski, J. J. (1991). The law of cognitive structure activation. Psychological +Inquiry, 2(2), 169-184. +Shuklin, D. E. (2001) The structure of a semantic neural network realizing morphological and syntactic +analysis of a text. Cybernetics and Systems Analysis, 37(5), 770-776. +Siple, P. (1978). Visual constraints for sign language communication. Sign Language Studies, (19), 95- +110. +Smith, L. B., Quittner, A. L., Osberger, M. J., & Miyamoto, R. (1998). Audition and visual attention: the +developmental trajectory in deaf and hearing populations. Developmental Psychology, 34(5), 840. +Stivalet, P., Moreno, Y., Richard, J., Barraud, P. A., & Raphel, C. (1998). Differences in visual search +tasks between congenitally deaf and normally hearing adults. Cognitive Brain Research, 6(3), +227-232. +Supalla, S., Cripps, J. H., & McKee, C. (2008, June) Revealing sound in the signed medium through an +alphabetic system. In Poster presented at the First Sign Typ Conference, Storrs CT. +Supalla, T. R. (1982). Structure and acquisition of verbs of motion and location in American Sign +Language. University of California, San Diego. +Sutton. V. (2010). The SignWriting Alphabet, International SignWriting Alphabet 2010. ISWA 2010. +http://www.signwriting.org/archive/docs7/sw0636_SignWriting_Alphabet_Manual_2010.pdf +Yao, D., Jiang, M., Abulizi, A., & You, X. (2014, October) Decision-tree-based algorithm for 3D sign +classification. In 2014 12th International Conference on Signal Processing (ICSP) (pp. 1200- +1204). IEEE. + +Yao, D., Jiang, M., Abulizi, A., & Li, H. (2015, July). Cognitive computing on Chinese Sign Language +perception and comprehension. In 2015 IEEE 14th International Conference on Cognitive +Informatics & Cognitive Computing (ICCI* CC) (pp. 90-97). IEEE. +Yao, D., Jiang, M., Huang, Y., Abulizi, A., & Li, H. (2017). Study of sign segmentation in the text of +Chinese sign language. Universal Access in the Information Society, 16(3), 725-737. +Valli, C., & Lucas, C. (2000) Linguistics of American Sign Language: An introduction. Gallaudet +University Press. + + + diff --git a/k9FKT4oBgHgl3EQfCy2S/content/tmp_files/load_file.txt b/k9FKT4oBgHgl3EQfCy2S/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..b2a261ef55a249b722e1c7e7391718ab9ee2903e --- /dev/null +++ b/k9FKT4oBgHgl3EQfCy2S/content/tmp_files/load_file.txt @@ -0,0 +1,1026 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf,len=1025 +page_content='Semantic Network Model for Sign Language Comprehension Xinchen Kang (22f3d431-dcc0-42a5-8e2b-c26464e0654d) Beijing Union University,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' China Dengfeng Yao (ae88317c-d091-4f41-97f1-b1e6be00ca68) Beijing Union University,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' China Minghu Jiang (ea1cc43b-eee9-4185-8d97-edeac9186268) Tsinghua University,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' China Yunlong Huang (cc1ddbf2-64b9-4c51-b553-0ebe52a8d645) Tsinghua University,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' China Fanshu Li (64642396-6e95-456f-a4f2-47ff81a23d6e) Beijing Union University,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' China ABSTRACT In this study,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' the authors propose a computational cognitive model for sign language (SL) perception and comprehension with detailed algorithmic descriptions based on cognitive functionalities in human language processing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' The semantic network model (SNM) that represents semantic relations between concepts is used as a form of knowledge representation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' The proposed model is applied in the comprehension of sign language for classifier predicates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' The spreading activation search method is initiated by labeling a set of source nodes (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' concepts in the semantic network) with weights or "activation," and then iteratively propagating or "spreading" that activation out to other nodes linked to the source nodes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' The results demonstrate that the proposed search method improves the performance of sign language comprehension in the SNM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Keywords: Attention, Cognitive Processing, Comprehension, Decision-Tree, Game Theory, Linguistics, Perception, Semantic Network, Sign Language INTRODUCTION Sign language (SL) comprehension is a fundamental task for computational linguists.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Two types of algorithms have been proposed: (1) rule-based methods (Supalla, 1982), and (2) statistical methods (Bauer & Heinz, 2000;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Huenerfauth, 2005).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Rule-based methods lack the capability of planning the elements in the entire scene (Liddell, 2003).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' The method of modeling infinite natural language input through finite rules, especially minor rules, barely meets all requirements of SL processing (Yao et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=', 2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Therefore, statistical methods are the preferred type of algorithm for SL comprehension.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Statistical models can be applied to spoken languages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Given the abundant data resources of spoken languages in the digitalized Internet age, statistical models can be applied readily.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' However, the raw and annotated corpora of SLs are insufficient because collecting and annotating SL videos are tedious and difficult.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Data sparsity consequently remains as the most serious problem when applying statistical models onto SLs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' For example, the real-time factor (RTF) of the SL video corpus is 100;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' that is, an hour corpus requires at least 100 hours of annotation (Dreuw et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=', 2008b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Simulating SL comprehension using traditional statistical models and machine-learning methods isdifficult.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Thus, reliable methods for establishing a signer’s 3-D model (which is the process of developing a mathematical representation of any three-dimensional surface of moving trajectories of signers in the space for SL via specialized software) for SL corpus building and technologies for annotating a large-scale SL video corpus automatically must be developed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Unlike the spoken language that is “a set of values that change with the passage of time” (Huenerfauth, 2005), SL does not have a writing system and thus cannot be saved in any form of written texts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' The natural language-processing system relies on texts to process spoken languages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' This system records only the written text that corresponds to speech flows and relies only on the literacy of the user.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' On the other hand, the SL system comprises information from multiple modalities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Examples of such information are the hand shape, hand location, hand movement, hand orientation, head tilting, shoulder tilting, eye gazing, body gestures, and facial expressions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' The considerable information from multiple channels in SL conveys linguistic meaning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' This multi-modality nature of SL poses difficulties for the coding of SLs into a linear single-channeled character string.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' In addition, SLs have writing systems, such as the Sign Writing system (Sutton, 2010), ASL-phabet (Supalla et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=', 2008), and HamNoSys (Prillwitz et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=', 1989).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' However, these systems have a limited number of users (Johnston, 2004).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Many linguistic details are lost because of the multi-modality nature of SL during the translation of SL into its corresponding writing system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' SLs may be understood by directly matching the visual–spatial characteristics of SL with the semantic units in the brain rather than applying written texts as an interpreting medium.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Here, semantic units are generally used for processing natural languages;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' these units or nodes contain some information, which are used as knowledge representations form semantic units (Geva et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=', 2000).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Such direct matching also represents the most natural way of comprehending SLs in the brain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' From this perspective, the authors present a computational cognitive model for SL comprehension that is based on the cognitive functionalities of the human brain combined with a knowledge representation theory of artificial intelligence (Shuklin, 2001).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Visual–spatial mechanisms are exploited to express the grammatical structures and functions in SL.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Visual–spatial perception, memory, and mental transformations are prerequisites to grammatical processing in SL (Emmorey & Corina, 1990) and are central to visual mental imagery (Farah, 1988).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' A series of experiments have been conducted to investigate visual attention (Neville et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=', 1998).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Movement recognition in peripheral vision is important in sign perception because the signers mainly look at the face instead of tracking the hands when they communicate through SL (Siple, 1978).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Therefore, identification of lexical-level information depends on the peripheral vision system when signs are produced.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' The recognition of movement directions is the selective function of peripheral vision (Bonnet, 1977).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Whether deaf people only have a strong peripheral vision or efficiently allocate attention to peripheral vision remains unclear.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Stivalet et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' (1998) showed that visual attention processing can be changed by auditory deprivation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' They determined that deaf people do not shift their attention when processing the information (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=', alphabet set) presented in the central vision field, whereas hearing subjects must shift their attention to search for the alphabet set continuously.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Smith et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' (1998) also found that lack of auditory input causes weak and selective (or highly distributed) visual attention among deaf children.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Stivalet et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' (1998) proposed that effective visual processing is caused by intermodal sensory compensation;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' that is, the strong allocation of visual attention can be attributed to neuron reorganization caused by auditory deprivation from birth.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Recent magnetic resonance imaging evidence supports this hypothesis (Bavelier et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=', 2000).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' These findings are selective attention cases, in which attention selectively processes certain stimuli but ignores other stimuli.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' The cases refer to the selective orientation and concentration of the senses (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=', visual, auditory, taste, and tactile senses) and consciousness (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=', awareness) of people on certain targets (towards other factors).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Studies on attention have failed to describe human attention at the biological level in detail, as a person cannot focus continuously because the brain automatically suppresses activity when attention reaches its limits.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Emmorey and Reilly (2013) determined that when locations in a signing space (SL expressions streaks the space) function topographically, spatial changes tend to be noticed easily.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Thus, location information indicating the spatial position of associated referents can be encoded and stored semantically in memory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' However, spatial locations with a primary distinguishing function of referents are encoded in a different way and tend to be discarded from memory once the referential function is no longer required by context (Emmorey & Reilly, 2013).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Bavelier et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' (2001) claimed that only the posterior middle temporal gyrus and the medial superior temporal cortex of deaf signers are highly active while perceiving movements in peripheral vision.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' This phenomenon is unobservable in hearing signers who have skillfully grasped signs, indicating that auditory deprivation results in a shift to stronger movement attention in the visual periphery.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Deaf people can easily reply to the attention and visual monitoring of their peri-personal space (Bavelier et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=', 2001).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Neville et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' (1998) determined that the classic language area in the left hemisphere, particularly the left perisylvian, of both deaf and hearing subjects is activated when reading English sentences.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' The right hemisphere, including the right perisylvian, of deaf people is also activated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' They argued that spatial processing is of great importance to sign grammar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Thus, the SL comprehension process of deaf people employs neurons at both high and low levels in the neural network, which are connected with each other by edges, and generates high-level features via feature combination processes that are realized by combining the weight on the edges.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' For example, low-level visual edge features are assembled, processed, and sent to the high level to form the angle, shape, and other higher features (Bertasius et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=', 2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' High- level neurons form features that gradually approximate the semantics in turn, such as simple shapes, simple targets, and real objects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' The activation of high-level neurons during the reconstruction process also reacts with the low-level neurons and adjusts and corrects deviations and losses (Bertasius et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=', 2015);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' a temporal pattern appears in the horizontal structure connection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' The neurons can make predictions of the state at the next point of every time point through a horizontal connection based on the information of their current status (Hawkins et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=', 2009).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' SEMANTIC NETWORK MODEL (SNM) Model of semantic networks (SNs) are generally used for processing natural languages (Shuklin, 2001).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' SNs, as knowledge representations, are extensible and have been used to model mental disturbances (Geva et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=', 2000).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' The semantic network (which is a network that represents semantic relations between concepts, is used as a form of knowledge representation, here it is based on SL information processing of human brain cortex.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' The edges connect different nodes in the network and represent the strength or weakness of the correlation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' After being set up, the semantic network is stored in long-term memory for future retrieval and extraction to be encoded as semantic memory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Outside stimuli at a certain time can be the demand of a person on specific knowledge and information to activate the demand on the extraction of useful information of long-term memory (Sedikides & Skowronski, 1991).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' The activation process of the stored network works in a form of spreading in the memory (Collins & Quillian, 1972).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' The semantic model, which is based on SL information processing of human brain cortex, is developed accordingly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Different areas of the brain cortex are involved in the processing and are connected in a hierarchical manner.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Low-level information from sense organs is first processed in the primary information-processing regions of the brain cortex and is then transferred to high-level regions for further processing, such as abstracting, integrating, and interpreting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' The detailed description and illustration of this hierarchical structure are summarized in Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Hierarchical structure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Low-level areas in the hierarchy generate specific information that increases speed and contain further details, whereas high-level areas form stable spatial invariance, change slowly, and show high-level semantic object expression (Adapted from Yao et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=', 2015) In SL communication, both substantial and semantic information (substantial information includes hand shape, hand location, hand movement, hand orientation, head tilting, shoulder tilting, eye gazing, body gestures, and facial expressions, and semantic information is represented into semantic concepts by these substantial SL information) almost exclusively relies on signs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' However, accurate SL information analysis and prediction remain as challenging tasks in the field of natural SL processing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Three main tasks are, namely, capturing, decoding, and extracting the physical characteristics and relationship of signs (perception stage), matching the decoded cognitive representations with the stored semantic information (memory stage), and completing the machine translation process of SL information (judgment stage).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' This process of cognitive processing and understanding during SL communication is based on the PMJ principle of “from the definition and extraction/annotation of cognitive representation (Stage P) to the feature storage in line with the cognitive economy principles (Stage M),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' and then to the output of the classification and judgment (Stage J).”' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' The P→M→J (PMJ) principle exhibits a complete fine processing frame,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' the detailed illustration,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' and description of SL comprehension frame based on the PMJ principle is summarized in Figure 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Figure 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' SL comprehension frame based on the PMJ principle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Perception refers to acquiring sign information through selective attention.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' The information is limitedly processed by the brain if prominence is given to useful and important information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Other information may be filtered out or suppressed when sources for information processing are limited.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Memory refers to the spreading activation process, in which input information is coded, and one intends to store the information for a short period.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Judgment ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='targeted ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='wer ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='targeted sen antics ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='sign semantic concept ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='semantics ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='rea ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='representation ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='Area H ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='hign deve semantid ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='high-level semartic feature ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='feature detectors ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='Area A ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='low-evel senantic ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='low-level semantic feature ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='low-level s emanticf eature ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='feature detectors ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='cogritive ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='representation ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='Higher leve visual ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='handshape ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='location ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='oriention ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='moveme rt ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='No-manual feature ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='AreaV4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='abstractions ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='Edge ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='outine ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='Simple shape ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='Area V1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='detecton ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='edge feat ure ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='ed ge feature ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='Retina ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='oves ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='pixel ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='pixel ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='pixel ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='pixel ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='physical ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='characteristics ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='一refers to the process in which the perceived information or the information stored in memory is ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='compared,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' matched,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' or classified,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' and a decision or prediction is made.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' After the spreading activation, the network records the attention features of users and activates their future preferences (Yao et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=', 2015) Concepts are in the form of network storage.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' The different concepts are stored in different functional areas in both hemispheres of the human brain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' The same or similar concepts are stored in same or adjacent regions of brain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Specific information of entities in the outside world, such as humans, animals, or tools, is represented by the concept network in the human brain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' This concept network (A concept is an abstract idea representing the fundamental characteristics of what it represents.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Concept network consists of these abstract concepts) is, in turn, connected with the lexical network from mental lexicon in the left temporal lobe.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Such specific information from mental lexicon will be employed to facilitate SL production during which the SL users generate classifier hand shapes under the guidance of the knowledge and rules of SL classifier predicates (Valli & Lucas, 2000).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Here, classifier predicates are made by combining small meaningful unites to create bigger units, the main units being the hand shape and the movement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' This condition implies that findings from brain research can provide knowledge and guidance for the cognitive computational modeling of classifier predicate comprehension.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' In order to obtain a deep understanding of sign lexical semantics, a cognitive processing model, which is based on the cognitive mechanism of human brain, is established.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' The cognitive processing model would activate the concept network of the associated classifier hand shapes in the brain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Here, classifier predicates differ from traditional linguistic units.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Traditional methods, such as the syntactic tree, cannot satisfy the generation of the classifier predicates (Huenerfauth et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=', 2006).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' DECISION-TREE BASED ALGORITHMIC METHODS The authors use SNs as the knowledge representation and organization mode of SL.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' The relationship in semantic networks represents a type of information among nodes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Nodes with a complicated relationship with other nodes contain additional information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Such nodes require further effort to be understood.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Consequently, the authors simulate selective attention (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=', the processing of visual or auditory input based on whether it is relevant or important).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' They selected particular representations to enter perceptual awareness and therefore guide behavior.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Through this process, less relevant information is suppressed by humans using the proposed algorithmic methods to accentuate the nodes selectively and suppress the unessential nodes (Chelazzi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=', 2013).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' The emergence of 3-D-based sensors, such as Kinect by Microsoft and Leap Motion (Yao et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=', 2014), has improved studies on sign recognition from video-based to 3-D-based sign recognition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' However, this transformation makes traditional video-based SL recognition methods inapplicable to 3-D-based SL Perception Memon Judgment Attentional enha ncement and suppress ion 0 Spread activation Interactive activationrecognition technologies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Large training data are required for valid recognition in 3-D-based SL recognition technologies because of the low operation efficiency of the rotatable joint-based sorter and the matching techniques for sign signal recognition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Yao et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' (2014) proposed a decision tree-based algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' The algorithm aims to achieve a high-precision and real-time performance of SL automatic perception according to the features of Leap Motion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' The authors adopted this method as the first step of SL comprehension.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Attention Function The authors propose the following attention function: ������������������������ = ∑ ������������������������������������ ������������������������������������ ������������ ∑ ������������������������������������ ������������������������ (1) where ∑ ������������������������������������ ������������������������������������ ������������ denotes the sum of the semantic relation weights around the semantic node x,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' ∑ ������������������������������������ denotes the sum of all semantic relation weights,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' and ������������������������ represents the activation value on the semantic node x after the spreading activation process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Semantic Matching Cognitive units in the memory network compete with one another based on certain rules to obtain more of the limited attention resources and more energy for a more active state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' SL comprehension supports interactive activation models (Gutierrez et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=', 2012).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Therefore, judgment is the outcome of the attention competition game in the spreading activation, which is a search algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' The search algorithm is initiated by labeling a set of source nodes (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' concepts in a semantic network) with weights or ”activation,” and then iteratively propagating or “spreading” that activation out to other nodes linked to the source nodes processes of the human brain (Crestani, 1997;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Preece, 1981).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' A semantic matching algorithm based on activation spreading modes is proposed to determine the most appropriate semantic information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Activation starts to spread from the corresponding nodes of the signs presented by the signer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' The activation value of the stimulus node (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=', signs to be perceived before the start of spreading) must be calculated first.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' In particular, the increment in the interest value of object concept must be calculated, and this concept node must be used as an initial node for the spread study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Activation spreads to the neighboring nodes, which usually have a lower activation value than the source value.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Therefore, introducing an activation attenuation factor for decreasing activation over the path length in the closed interval [0…1] is mandatory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' That is, for every propagation through an edge a loss of activation is considered (Neumann et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=', 1993;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Rocha et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=', 2004).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' The activation spreading process can be expressed as follows: ������������������������(������������ + 1) = ������������������������(������������)������������������������������������(1 − ������������) (2) where ������������������������(������������ + 1) represents that the value is spread from node x to y at time,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' t+1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' ������������������������(������������) represents the activation value that was spread at node x at time,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' t,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' ������������������������������������ signifies the link between nodes x and y,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' and δ is an attenuation factor used to describe the energy loss caused in the activation spreading process (Jiang & Tan,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' 2006).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Spreading activation theory states that the activation of human memory “chunks” (the content of any buffer is limited to a single declarative unit of knowledge, called a chunk) is determined by two factors (Anderson et.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=', 2004;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Anderson, 2013), namely, the use history of the memory chunk and the correlation between the memory chunk and the current retrieval information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' These two factors calculate the weights and determine whether the chunk is activated and selected.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' This assumption has been verified by experimental cognitive psychology, and the calculation model has been established (Roelofs, 1992).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' The authors must use moments to express the distance in each activation time with the current time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Time units may be per hour as a unit and may also be the day.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' With the day as a unit, we can count the historical value in the previous day as the activation value of the first day.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' The algorithm based on the theory of memory activation can improve SL understanding, which is sometimes highly sensitive to time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' At node y, the largest number of neighbor nodes is (n-1);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' thus, the maximum of ������������������������(������������ + 1) can be expressed as: ������������������������(������������) = [������������1, ������������2, … , ������������������������]������������ i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=', the initial value of the semantic network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Where I1, I2, …, In are these activation value of neighbor nodes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' If activation spreads from a node in many directions, then its adjacent nodes obtain a low activation value.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' The adjacent nodes give a feedback value of their resonance energy (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=', contributing structure with the lowest potential energy) to the co-adjacent nodes after they absorb the activation value.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' The following equation is therefore used: Iz(t + 1) = Oz(t) + ∑ Ox(t)Λxz(1-δ) all actived x (3) where Oz(t) denotes the activation value of node z at time t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Given that the quantity of activated information is limited, the nodes that obtain less resonance information are equivalently inhibited and are less likely to be activated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' The activation value distribution in the resonance process conforms to the human attention model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Attention Game Process Cognitive units in memory network compete with one another by certain rules to increase the possibility of obtaining more human attention resources and more energy that will improve activity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' This phenomenon is called a game process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' The authors use game theory (Myerson, 1997), which is the study of mathematical models of conflict and cooperation between intelligent rational decision-makers and attempts to achieve the largest cognitive gains with the least energy possible, as a reference to simulate the attention enhancement and suppression processes that are selective attention processes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' In other words, when visually searching for a non-spatial feature or a perceptual feature, selectively enhancing the sensitivity to that specific feature plays a role in directing attention.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' When people are told to look for motion, then motion will capture their attention, but attention is not captured by motion if they are told to look for color (Reynolds & Chelazzi, 2004).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Activated results consistent with cognitive features can then be obtained.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' The authors assume that the game contains n nodes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' ������������������������ ′ and ������������������������ " are the two selectable strategies for node i, and they represent the acceptance and non-acceptance of the change in the attention function (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=', ������������������������ ′, ������������������������ " ∈ ������������������������ ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' The corresponding gain can be represented by ������������������������ ′ and ������������������������ " , and ������������������������ ′, ������������������������ " ∈ ������������������������.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' N nodes are assumed to reach an agreement before participating in the game to introduce the Nash equilibrium (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=', each node only selects a specific strategy).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' The authors let ������������∗ = (������������1 ∗, … , ������������������������∗) represent the agreement, where ������������������������ ∗ is the strategy of the node i specified in the agreement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Nodes comply with this agreement only when the benefit from complying with the agreement is larger than that from not complying.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' This agreement constitutes Nash equilibrium if any node abides by this agreement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Thus, the Nash equilibrium is written as follows: ������������������������(������������������������ ∗, ������������−������������ ∗ ) ≥ ������������������������(������������������������, ������������−������������ ∗ ), ∀si ∈ Si (4) where the combination of strategy ������������∗ = (������������1 ∗, … , ������������������������∗) is a Nash equilibrium.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Given that other nodes select ������������−������������ ∗ = (������������1 ∗, … , ������������������������−1 ∗ , ������������������������+1 ∗ , … , ������������������������∗), ������������������������ ∗ is the optimal strategy of each node i (Myerson, 1997).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' The attention game process determines whether the nodes need adjustment or need to be changed on the basis of the attention function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' The activation energy distribution will reach a state consistent with the human attentive distribution after adjusting the activated value distribution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Nodes of the spread SNs have their own activation energy threshold values.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' The source node in the attention game process that represents a presented sign has the maximum activation value O in the present SNs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' All equidistant nodes will participate in the game based on the attention function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' The nodes with low activation energy (defined as the minimum energy required to start a chemical reaction) of a reaction is denoted by Ea and given in units of kilojoules per mole (kJ/mol) or kilocalories per mole (kcal/mol)), threshold must be removed through a screening process to prevent them from participating in the enhancement and suppression processes of activating the most likely node.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' In the proposed screening, the authors ignore the nodes with a significantly low activation value to be activated in the enhancement process instead of lowering the possibility for other nodes to be activated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' The difference between the attentive readjustment in the present attention game process and the previous attentive allocation causes the instability in the overall cognitive structure of users to decrease knowledge credibility.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Thus, a new cognitive structure must be determined at a cost as follows: Cost(t, i, si, ui, SN) = �n−1 ∑ �Ii(t + 1) − Oi(t)� 2 n i=1 (5) where ������������������������(������������ + 1) denotes the activation value that is conveyed from one node at time t+1 to node i, and 0i (t) denotes the activation value of node i at time t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Therefore, the total cost is attributed to the change in the activation energy of all nodes in the SN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' The goal of judgment is to achieve the overall optimal gain with a minimal computing cost.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' The gain function in the attention game process must then be determined.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' As the optimal strategy for node i, ������������������������ ∗ must minimize the distribution change that refers to the distribution change in the activation values of the overall network changed by the decision.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' The amount of spreading activation energy is fixed in the total process of activation spread in the SN;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' thus, the semantic node energy enhancement must be accompanied by reduced node energy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' The attention parameters are affected by the overall distribution change in activation energy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' The activation energy enhancement increases the impossibility of activating this node.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Such activation is the ultimate purpose of each node (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=', the node obtains the gain).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Accordingly,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' the gain function is presented as follows: Gain(t,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' i,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' si,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' ui,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' SN) = �∑ Ix∈{neighbor node}(t+1) num(all x) j=1 −∑ Ox∈{neighbor node}(t) num(all x) j=1 �(1−δ) num(all x) (6) where SN represents the current semantic network,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' num(all x) represents the number of neighbor nodes x of node i,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' ∑ Ox∈{neighbor node}(t) num(all x) j=1 denotes the sum of the activation value that was spread of all node i neighboring nodes at time t,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' the gain function is expressed as the attention gain of neighbor nodes x of node i after the enhancement and suppression processes,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' it represents the benefit a node gets by unilaterally changing their strategy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' The utility function of the attention game process can be determined as follows: Max�������������������������(������������,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' ������������������������ ∗,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' ������������−������������ ∗ )� = Gain(������������,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' ������������,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' ������������������������,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' ������������������������,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' ������������������������������������) − Cost(������������,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' ������������,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' ������������������������,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' ������������������������,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' ������������������������������������) (7) where ������������������������ ∗ is the optimal strategy of each node i,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' ������������−������������ ∗ is the strategies set of other nodes except node i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' only when ������������������������(������������, ������������������������ ∗, ������������−������������ ∗ ) reaches the maximum, ������������������������ ∗ is a Nash equilibrium of node i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' The utility of the other nodes will be affected by the decision of all other nodes because of the fact that the total quantity of activation energy is fixed (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=', attention is limited) in the attention game process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' When each node selects a decision for itself, it also considers the possible decision of other nodes and selects the “Nash equilibrium point” with maximum utility.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' This scenario is consistent with classical game theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' The authors select a Nash equilibrium decision for each node through the utility function of the attention game that is defined by Equation (7).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' METHODS Data Sets and Experimental Settings All data from the authors’ experiments are obtained from the Tsinghua University–Chinese SL Corpus (TH–SLC).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' The data mainly comprise SL expressions of idiom stories and life fragments of deaf students.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' No automatic annotation software based on videos is currently available because the annotation process for SL videos is time consuming and requires expert knowledge in dual language (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=', Chinese language and Chinese SL).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Video annotation is also time consuming.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Specifically, it takes about 30 hours for the annotation RTF (real-time factor) of a parliamentary speech (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=', One hour of speech requires 30 hours of annotation).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' However, the annotation RTF (real-time factor) for a full annotation of all manual and non- manual components of an SL video can reach up to 100 hours (Dreuw & Ney, 2008a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Therefore, such a corpus is significantly small.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' For example, the Aachen Boston database contains American SL and has annotated 201 English sentences (Dreuw & Ney, 2008a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' The authors spent a year collecting more than 2000 sentences, but only 416 sentences containing 2496 signs were marked.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' The authors asked 20 deaf students to select 300 sign pairs from 2469 annotated signs in TH–SLC and to judge the relevance of the sign pairs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' The correlation values range from 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='0 to 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' For convenience, a five-point scale is used to assess the correlation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' The sign pairs were obtained using a marked correlation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' The authors establish an SN based on the word similarity computing method of HowNet (Liu & Li, 2002) to determine the connection weight of the network to validate the effects of the proposed model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' The authors introduce the continuous bag-of-words (CBOW that predicts the current word from a window of surrounding context words.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' The order of context words does not influence the prediction (CBOW assumption) model (Mikolov et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=', 2013), and the HowNet (Liu & Li, 2002) method as the baseline methods using the same recommended parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' The efficiency of the utility function of the attention game process is evaluated in terms of word correlation computation, and the model complexity is analyzed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Word Relatedness Computation Each model in this task needs to compute the semantic correlation of the given sign pair.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' The correlation between the experimental results of the model and human judgment reflects upon the model’s performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' The authors selected 290 signs for the closed set and 10 signs for the open set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Spearman’s correlation between model correlation score and human judgment correlation score was calculated for comparison.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Spearman correlation coefficient is defined as the Pearson correlation coefficient among the ranked variables (Myers & Well, 2003).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' For a sample of size N, original data ������������������������, ������������������������ are converted into grade data������������������������, ������������������������, the correlation coefficient ρ is defined as follows: ρ = 1 − 6 ∑ di 2 n(n2−1) (8) where the difference between the observations of the two variable levels is set as ������������������������ = ������������������������ − ������������������������.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' If there is no duplicate value in the data, and two variables are completely monotonic correlation, the Spearman correlation coefficient is +1 or -1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' RESULTS For CBOW, the correlation scores of the two words are calculated using the cosine similarity of word embedding (Mikolov et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=', 2013).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' The evaluative results of the baseline methods and the proposed SNM method in the closed test and in all test sets are shown in Table 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Table 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Evaluative results Data Set Closed Test All Test Sets (Including Open Test) Spearman’s Rank Correlation Coefficient Method 290 pairs 300 pairs CBOW (baseline method) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='4843 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='4869 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='4136 Word similarity computing based on HowNet 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='6157 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='6174 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='6052 Proposed SNM method 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='6951 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='7063 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='6437 The evaluation results show that the proposed SNM method is better than the baseline method in 290 and 300 word pairs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' This finding indicates that the cognitive mechanism of sign comprehension is essential to understanding the meaning of signs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' The internal structure, such as location, orientation, hand shape, and movement, contains rich semantic information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' However, deep learning methods, such as CBOW, consider the external context, but ignore the internal structure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Using the computing method of word similarity based on HowNet results in only a rough semantic computation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' For example, adding 10 new sign pairs negligibly changes the performance of these methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' In other words, these methods can still handle new signs with improved performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' The semantic correlation of these new sign pairs calculated by the proposed method is close to human judgment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Figure 3 shows the quantitative analysis of the attention game process for two signs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Each hand shape of the two signs has at least 20 related semantic lexicons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' The stimulus information and permutation of each node are shown in the first and second columns from high to low according to the activated value after the activation spreading process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Only 10 semantic lexicons that are maximally activated are shown.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' The permutation of each node is shown in columns three to seven from high to low according to the activation value after the end of the first to fifth attention games.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' The top 10 lexicons are also shown.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' The semantic lexicons in the blue background rank high after the games, those in the green background rank low after the games, and those in the white background are unchanged.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Figure 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Examples of attention games.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' The semantic lexicons in the blue background rank high after the games, those in the green background rank low after the games, and those in the white background are unchanged.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' This trend shows that the ranking of other semantic lexicons below slightly changes after the semantic lexicon that ranks highest becomes unchanged.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' This condition is due to the source that corresponds to the attention model being determined after several game processes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Figure 3 also shows that significant changes occur during the ranking of the semantic lexicons in the first and second instances after the first several games, whereas only a few changes occur in the following stimulus games.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' This trend shows that the ranking of lower semantic lexicons slightly change after the semantic lexicon that ranks highest becomes unchanged.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' This condition is due to the source that corresponds to the attention model being determined after several game processes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Attention is also assigned to other nodes in accordance with the attention game process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Humans reach a steady state after thinking about problems constantly, and the result negligibly changes if they rethink.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Nearly no change is observed in the result after several rounds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Several semantic lexicons related to the signs are contained in the text set;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' thus, a few possible changes occur.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' The result of the attention game model conforms to human cognitive rules to a certain degree.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Attention is also assigned to other nodes in accordance with the attention game process (here, efforts have been made in modeling according to the mechanism of human attention).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' The result of the SNM conforms to human cognitive rules to a certain degree (Gutierrez et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=', 2012).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' For example, the authors assume that deaf people understand the signs shown in Figure 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Deaf people usually search for many familiar and specific nouns or signs in a spreading activation mode to comprehend classifier predicates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' After all activated values are calculated;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' the activated nodes are graded and sorted.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' A high-activated value of the node indicates the importance of the interested object or concept represented by the node.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' This shows that deaf people are familiar with the concept node.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Similar to the attention game process shown in Figure 3,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='activation ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='activation ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='activation ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='activation ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='activation ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='activation ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='value ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='value ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='value ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='value ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='value ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='value ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='sorting ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='sorting after ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='sorting after ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='sorting after ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='sorting after ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='sorting after ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='after ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='the first ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='the second ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='the 3rd ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='the 4th ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='the 5th ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='spread ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='attention ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='attention ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='attention ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='attention ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='attention ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='input ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='activation ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='game ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='game ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='game ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='game ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='game ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='A ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='handshape ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='good ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='General ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='General ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='General ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='General ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='poog ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='Reliable ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='Beheaded ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='Beheaded ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='Beheaded ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='Beheaded ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='Defend ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='Advanced ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='Support ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='Support ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='Support ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='Support ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='Maintain ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='Strange ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='Keep ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='Keep ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='Keep ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='Keep ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='Protect ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='General ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='General ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='General ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='General ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='General ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='Beheaded ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='Teacher ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='Teacher ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='Teacher ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='Teacher ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='Teacher ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='Support ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='Marshal ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='Reliable ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='Reliable ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='Reliable ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='Reliable ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='General ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='Madam ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='Advanced ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='Advanced ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='Advanced ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='Advanced ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='Teacher ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='Ancestors ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='Protect ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='Protect ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='Protect ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='Protect ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='Reliable ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='Defend ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='Maintain ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='Maintain ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='Maintain ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='Maintain ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='Y ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='handshape ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='human ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='Animal ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='cat ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='cat ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='cat ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='stand ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='animal ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='Burial ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='dog ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='Sop ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='dog ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='run ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='burial ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='Frustration ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='horse ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='horse ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='horse ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='lie ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='Frustration ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='Future ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='human ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='human ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='human ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='Resistance ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='future ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='Voltage ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='Ambassador ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='Ambassador ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='Ambassador ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='Protest ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='Voltage ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='Ambassador ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='coach ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='coach ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='coach ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='Control ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='Ambassador ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='Coach ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='stand ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='stand ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='stand ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='Incite ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='coach ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='Guide ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='run ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='run ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='run ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='Exploitation ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='Guide ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='Blind ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='lie ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='lie ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='lie ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='Recalcitrant ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='Blind ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='Opponent ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='Resistance ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='Resistance ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='Resistancethe high-ranked semantic lexicon is a cat or dog after several rounds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' This result shows that the most common subjects for deaf people are typical subjects that represent classifier predicates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' DISCUSSION Compared with that of existing models, the complexity of the proposed model is reflected mainly on the computational cost of the memory stage and the judgment stage (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=', the computational cost of spreading activation and the attention game at time (t + 1)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' The cost is a dynamic value and related to two factors, namely, the activation state of the current sign and the current cycle as the first activation of the sign.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Therefore, the value changes regardless of the choice of the user.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' This outcome is consistent with the strong dynamics of sign information, which can reflect the influence of information in different periods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' In the memory stage, the time complexity of computing ������������������������(������������) is unity;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' thus, the time complexity is related to the total amount N of activation energy and cycle times.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' The time complexity of each activation in each cycle is n × 1 = n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Space complexity is the storage space of each node and the semantic relation weight according to semantic similarity (semantic similarity can be estimated by defining a topological similarity, by using ontologies to define the distance between terms/concepts).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Therefore, unlike the general model such as cobweb theorem model and vector space model, where the SNM increases the overhead in time complexity and space complexity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' The model also increases the matching time of query nodes and weights in the current activation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' However, the overhead at this time can provide more effective results than an invalid spreading and can be accepted by users.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' In the judgment stage, when the node selects the game strategy to change its activated energy value, the convergence speed of adjusting the cognitive benefits to its own utility maximum “Nash equilibrium” is an important measure of evaluating the SNM (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=', the cycle times of an attention game process).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' For the attention game, the Nash decision of different semantic nodes must minimize the change cost of the activation energy distribution of the entire network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' The Nash equilibrium point decision for each node is selected using the utility function defined in the SNM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' This process is repeated until the overall network activation energy distribution change is less than the specified threshold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' The node needs to solve n-order nonlinear equations in every cycle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Therefore, the performance of the convergence speed of the SNM is indicated by the number of game cycles that the network requires to reach the Nash equilibrium point (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=', the computing times of calculating the corresponding equation by each node in a game process).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' The square root of the sum of the variance of activation value ������������������������(������������ + 1) of each adjusted node is directly reflected by the rate of convergence in the game process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' To verify its effectiveness, the attention game model is compared with the traditional model in terms of load balancing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' In the traditional method, the activation value of each node is certain (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=', the value is not enhanced or inhibited).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' The experimental results are shown in Figure 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' The results show that the load balance performance of the attention game model is better than that of the traditional model because the attention game model adjusts the activation strategy after the activation of each node.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' When the change cost of the energy distribution of the entire network activation is larger than the specified threshold, the human brain adjusts the strategy to inhibit the activation energy value in the next cycle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' In doing so, the free competition and distribution of attention for each node according to the attention game model can be assured.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' The result is obtained through the overall competition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' The load of attention of the network is balanced.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' The traditional model assumes that the activation energy value of each node is certain because the brain activation energy resource amount is constant in a period of time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' The brain selects the node with a low activation energy value and performs the allocation of attention.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' This allocation causes the attention load of several nodes to be excessively large or unutilized.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Figure 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Comparison of load balance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' The load balance performance of the SNM is better than that of the traditional model because the SNM adjusts the activation strategy after the activation of each node The proposed SNM model used Nash equilibrium to simulate the energy activation process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' In order to quantitatively analyze the effects of Nash equilibrium, the authors compared the SNM with the cobweb theorem model (Pashigian, 2008) in terms of different activation energy amounts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' The cobweb theorem is expressed as follows: ������������(������������ + 1) = ������������(������������) + ������������ ��������������������������(������������)� − �������������������������′(������������)�� (9) where r is the adjustment parameter of the activation value,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' �������������������������(������������)� is the activation function of a node,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' ������������(������������) is the activation value at time t,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' �������������������������′(������������)� is the attention allocation function,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' ������������′(������������) is the expectation activation value at time t,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' and �������������������������(������������)� − �������������������������′(������������)�is the excessive demand function that represents the actual gaps between the activation value and activated allocated value.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' A large gap indicates a high activation value of the Nash Equilibrium of node.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' The parameter (r) indicates the actual speed and strength of adjusting the activation value according to the attention distribution condition in the last moment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' When r > 0 it indicates that the adjustment direction of the activation value is consistent with the direction of the demand function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' The amount of activation energy Ea is assumed to be 100 kJ/mol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Figure 5 shows the result of comparing the attention utilization between the game model and the cobweb model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' The attention amount (attention is the behavioral and cognitive process of selectively concentrating on a discrete aspect of information, while ignoring other perceivable information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Attention amount refers to as the allocation size of limited processing resources), is less than 100 kJ/mol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' If the attention amount is insufficient, then attention resources can only meet part of the node demand, and the resource utilization rate of the SNM will become higher than that of the cobweb model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' When attention supply exceeds the demand of a node, the cobweb model achieves balance to meet the needs of several nodes after a repetitive cycle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' The SNM meets the needs of all nodes, and the utilization rate of attention resources is higher than that of the cobweb model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Comparisonofloadbalance 9 8 nodes hhhl 6 Numberof L 4 3 1 0 No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='1 No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='2 No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='3 No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='4 No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='5 No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='6No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='7 No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='8 No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='9 No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='10 Numberofactivationenergy amount Iattentiongamemodel cobwebtheoremmodeFigure 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Comparison of activation energy values.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' After the change in the initial value of the activation energy, the number of iterations increases depending on the difference between the initial activation energy value in the cobweb model and the balanced energy value.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' The iteration of the attention game model can be adjusted according to the difference in the activation energy between supply and demand.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' A sizeable adjustment is required to reach the Nash equilibrium state if a large difference exists between the supply and demand Figure 6 shows the cycle times of the SNM and the cobweb model that needs to achieve the Nash equilibrium.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' As shown in the figure, the equilibrium activation energy value of the nodes is 20 kJ/mol in the SNM, and the activation energy is 120 kJ/mol in total.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' If the initial value of the activation energy is changed, then the initial activation energy value of the cobweb model is higher than the energy equilibrium value and requires abundant cycle time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' The SNM in each cycle can adjust the activation energy according to the variance of the activation energy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' The variance and adjustment range are large, and the SNM eventually reaches the Nash equilibrium point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Figure 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Cycle times of the SNM and the cobweb model that are needed to achieve the Nash equilibrium.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' When the supply falls short of demand, attention resources can only meet the demands of several nodes, and the resource utilization rate of the SNM becomes higher than that of the cobweb model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' If the supply exceeds demand, then the cobweb model can reach equilibrium after repeated iterations and can meet only part of the demands of nodes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' However, the SNM can meet the demands of all nodes, and its resource utilization rate is higher than that of the cobweb model 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='8 1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='2 40 60 80 100 120 Attention Resource Utilization(percentage) Amount of activation energy(KJ/mol) Comparison of activation energy values attention game model cobweb theorem model CONCLUSION The authors presented a new model for SL comprehension based on spatial information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' This process uses game theory to simulate the human attention suppression and enhancement process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' This process also joins the forgetting function of human memory traces to compute the initial state of the node.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Memory is encoded with specific (semantic) meaning, or refers to information that is encoded along a spatial and temporal plane.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Although the semantic network provides a functional view of how knowledge may be organized in the brain, it does not provide a clear model of how semantic memory might be presented in the brain (see Cacha et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=', 2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Spreading activation reveals that information can be stored in SNs for a long time, in which a network node is a linguistic concept and the nodes are connected through the correlation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' An algorithmic method is proposed according to selective functions, and its effectiveness was verified using an example.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' The results show that the proposed method improves the performance of SL comprehension.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' ACKNOWLEDGMENT The authors would like to thank Chunda Liu from the National Center for Sign Language and Braille for helping in stimulus preparation and data collection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' This paper forms an expanded and revised version of a conference paper at the 14th IEEE International Conference on Cognitive Informatics & Cognitive Computing (ICCI* CC) at Tsinghua University, Beijing, July 6-8, 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' The authors are grateful to Dr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Raymond Chiong, and two anonymous referees for their helpful comments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Conflict of Interest The authors of this publication declare there is no conflict of interest.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Funding Agency This research was supported by the Beijing Municipal Natural Science Foundation [4202028];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' National Social Science Foundation of China [21BYY106];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' National Natural Science Foundation of China [62036001, 61866035, 61966033];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Premium Funding Project for Academic Human Resources Comparison of cycle times 40 Number of Iterations 35 30 25 20 15 10 5 0 1 5 10 15 20 25 30 Activationvalue attentiongamemodel cobwebtheoremmodelDevelopment in Beijing Union University [BPHR2019CZ05];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Jiangsu Province Key R&D Program (Industry Prospects and Key Core Technologies) [BE2020047];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' and the characteristic-disciplines oriented research project in Beijing Union University [KYDE40201702].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' REFERENCES Anderson, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=', Bothell, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=', Byrne, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=', Douglass, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=', Lebiere, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=', & Qin, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' (2004).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' An integrated theory of the mind.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Psychological Review, 111(4), 1036.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Anderson, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' (2013).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Human symbol manipulation within an integrated cognitive architecture.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' In Cognitive science (pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' 313-341).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Routledge.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='. Bauer, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=', & Hienz, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' (2000, March).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Relevant features for video-based continuous sign language recognition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' In.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Proceedings Fourth IEEE International Conference on Automatic Face and Gesture Recognition (Cat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' PR00580) (pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' 440-445) IEEE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Bavelier, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=', Tomann, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=', Hutton, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=', Mitchell, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=', Corina, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=', Liu, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=', & Neville, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' (2000).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Visual attention to the periphery is enhanced in congenitally deaf individuals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Journal of Neuroscience, 20(17), RC93-RC93.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='. Bavelier, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=', Tomann, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=', Brozinsky, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=', Mitchell, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=', Neville, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=', & Liu, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' (2001).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Processing of motion velocity in deaf signers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' In Poster presented at the Cognitive Neuroscience Society meeting, New York, New York.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Bertasius, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=', Shi, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=', & Torresani, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' (2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' High-for-low and low-for-high: Efficient boundary detection from deep object features and its applications to high-level vision.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' In Proceedings of the IEEE International Conference on Computer Vision, (pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' 504-512).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Bonnet, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' (1977).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Visual motion detection models: Features and frequency filters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Perception, 6(5), 491- 500.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Cacha, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=', Ali, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=', Rizvi, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=', Yupapin, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=', & Poznanski, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Nonsynaptic plasticity model of long-term memory engrams.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Journal of integrative neuroscience, 16(4), 493-509.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Collins, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=', & Quillian, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' (1972).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' How to make a language user.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' In Organization of Memory (pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' 309-351).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Academic Press.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Crestani, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' (1997).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Application of spreading activation techniques in information retrieval.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Artificial Intelligence Review, 11(6), 453-482.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Dreuw, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=', & Ney, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' (2008a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Towards automatic sign language annotation for the elan tool.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' In Workshop Programme (Vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' 50).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Dreuw, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=', Neidle, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=', Athitsos, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=', Sclaroff, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=', & Ney, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' (2008b, May).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Benchmark databases for video-based automatic sign language recognition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=" In Proceedings of the Sixth International Conference on Language Resources and Evaluation (LREC'08)." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Emmorey, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=', & Corina, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' (1990).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Lexical recognition in sign language: Effects of phonetic structure and morphology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Perceptual and Motor Skills, 71(3_suppl), 1227-1252.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Emmorey, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=', & Reilly, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' (Eds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=').' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' (2013).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Language, gesture, and space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Psychology Press.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Farah, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=', Hammond, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=', Levine, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=', & Calvanio, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' (1988).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Visual and spatial mental imagery: Dissociable systems of representation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Cognitive Psychology, 20(4), 439-462.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Geva, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=', & Peled, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' (2000) Simulation of cognitive distrubrances by a dynamic threshold semantic neural network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Journal of the International Neuropsychological Society, 6(5), 608-619.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Gutierrez, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=', Williams, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=', Grosvald, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=', & Corina, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' (2012).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Lexical access in American Sign Language: An ERP investigation of effects of semantics and phonology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Brain Research, 1468, 63-83.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Hawkins, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=', George, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=', & Niemasik, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' (2009).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Sequence memory for prediction, inference and behaviour.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1521), 1203-1209.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Huenerfauth, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' (2005).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' American Sign Language generation: Multimodal NLG with multiple linguistic channels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' In Proceedings of the ACL Student Research Workshop (pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' 37-42).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Huenerfauth, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' (2006).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Generating American Sign Language classifier predicates for English-to-ASL machine translation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' (Doctoral dissertation, University of Pennsylvania).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Jiang, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=', & Tan, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' (2006, July).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Ontosearch: A full-text search engine for the semantic web.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' In In AAAI (Vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' 6, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' 1325-1330).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Johnston, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' (2006) W(h)ither the Deaf community?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Population, genetics, and the future of Australian Sign Language.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Sign Language Studies, 6(2), 137-173.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Lei, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=', Xu, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=', Chen, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=', & Yao, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' (2009).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Gaussian source model based iterative algorithm for EEG source imaging.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Computers in Biology and Medicine, 39(11), 978-988.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Not cited in the text.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Chelazzi, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=', Perlato, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=', Santandrea, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=', & Della Libera, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' (2013).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Rewards teach visual selective attention.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Vision research, 85, 58-72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Liddell, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' (2003).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Grammar, gesture, and meaning in American Sign Language.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Cambridge University Press.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Liu, Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=', & Li, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' (2002) Lexical semantic similarity computation based on HowNet.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Computational Linguistics and Chinese Language Processing, 7(2), 59-76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='Myers, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=', & Well, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' (2003).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Research design and statistical analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Routledge.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='Myerson, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' (1997).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Game theory: Analysis of conflict.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Harvard University Press, MA, USA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Mikolov, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=', Sutskever, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=', Chen, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=', Corrado, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=', & Dean, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' (2013).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Distributed representations of words and phrases and their compositionality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Advances in neural information processing systems, 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Neumann, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=', Cherau, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=', Hood, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=', & Steinnagel, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' (1993).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Does inhibition spread in a manner analogous to spreading activation?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='. Memory, 1(2), 81-105.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Neville, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=', & Lawson, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' (1987).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Attention to central and peripheral visual space in a movement detection task: An event-related potential and behavioral study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Congenitally deaf adults.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Brain Research, 405(2), 268-283.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Neville, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=', Bavelier, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=', Corina, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=', Rauschecker, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=', Karni, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=', Lalwani, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=', & Turner, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' (1998).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Cerebral organization for language in deaf and hearing subjects: Biological constraints and effects of experience.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' In Proceedings of the National Academy of Sciences, 95(3), 922-929.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Pashigian, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' (2008) Cobweb Theorem: The New Palgrave Dictionary of Economics (2nd ed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Springer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Preece, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' (1981).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' A spreading activation network model for information retrieval.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' University of Illinois at Urbana-Champaign.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Prillwitz, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=', Leven, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=', Zienert, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=', Hanke, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=', & Henning, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' (1989) Hamburg Notation System for sign languages: An introductory guide.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' HamNoSys version 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Signum, Seedorf, Germany.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Reynolds, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=', & Chelazzi, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' (2004).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Attentional modulation of visual processing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Annual Review of Neuroscience, 27(1), 611-647.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Rocha, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=', Schwabe, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=', & Aragao, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' (2004, May).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' A hybrid approach for searching in the semantic web.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' In, Proceedings of the 13th International Conference on World Wide Web (pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' 374-383).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Roelofs, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' (1992).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' A spreading-activation theory of lemma retrieval in speaking.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Cognition, 42(1-3), 107-142.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Sedikides, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=', & Skowronski, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' (1991).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' The law of cognitive structure activation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Psychological Inquiry, 2(2), 169-184.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Shuklin, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' (2001) The structure of a semantic neural network realizing morphological and syntactic analysis of a text.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Cybernetics and Systems Analysis, 37(5), 770-776.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Siple, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' (1978).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Visual constraints for sign language communication.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Sign Language Studies, (19), 95- 110.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Smith, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=', Quittner, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=', Osberger, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=', & Miyamoto, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' (1998).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Audition and visual attention: the developmental trajectory in deaf and hearing populations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Developmental Psychology, 34(5), 840.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Stivalet, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=', Moreno, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=', Richard, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=', Barraud, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=', & Raphel, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' (1998).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Differences in visual search tasks between congenitally deaf and normally hearing adults.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Cognitive Brain Research, 6(3), 227-232.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Supalla, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=', Cripps, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=', & McKee, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' (2008, June) Revealing sound in the signed medium through an alphabetic system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' In Poster presented at the First Sign Typ Conference, Storrs CT.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Supalla, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' (1982).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Structure and acquisition of verbs of motion and location in American Sign Language.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' University of California, San Diego.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Sutton.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' (2010).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' The SignWriting Alphabet, International SignWriting Alphabet 2010.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' ISWA 2010.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' http://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='signwriting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='org/archive/docs7/sw0636_SignWriting_Alphabet_Manual_2010.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content='pdf Yao, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=', Jiang, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=', Abulizi, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=', & You, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' (2014, October) Decision-tree-based algorithm for 3D sign classification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' In 2014 12th International Conference on Signal Processing (ICSP) (pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' 1200- 1204).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' IEEE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Yao, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=', Jiang, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=', Abulizi, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=', & Li, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' (2015, July).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Cognitive computing on Chinese Sign Language perception and comprehension.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' In 2015 IEEE 14th International Conference on Cognitive Informatics & Cognitive Computing (ICCI* CC) (pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' 90-97).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' IEEE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Yao, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=', Jiang, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=', Huang, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=', Abulizi, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=', & Li, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Study of sign segmentation in the text of Chinese sign language.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Universal Access in the Information Society, 16(3), 725-737.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Valli, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=', & Lucas, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' (2000) Linguistics of American Sign Language: An introduction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} +page_content=' Gallaudet University Press.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/k9FKT4oBgHgl3EQfCy2S/content/2301.11709v1.pdf'} diff --git a/kNAzT4oBgHgl3EQfNfsi/content/2301.01148v1.pdf b/kNAzT4oBgHgl3EQfNfsi/content/2301.01148v1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..27daa78de656b93219f35f8a035b20d34c202c1f --- /dev/null +++ b/kNAzT4oBgHgl3EQfNfsi/content/2301.01148v1.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:4731a86f4f9b3fc3c388c49d55d5b452ca25c7ca214fe0bef065b5bb632e96cd +size 7637772 diff --git a/kNAzT4oBgHgl3EQfNfsi/vector_store/index.faiss b/kNAzT4oBgHgl3EQfNfsi/vector_store/index.faiss new file mode 100644 index 0000000000000000000000000000000000000000..fe6fce08b236dd2d768522d910f4286a84bc5ac9 --- /dev/null +++ b/kNAzT4oBgHgl3EQfNfsi/vector_store/index.faiss @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:e1f3c6047b6382eef0d22a4ff14e28bfcf99962f35c535ed17ca13884eeaa7e5 +size 8912941 diff --git a/kNE5T4oBgHgl3EQfGg61/content/tmp_files/2301.05432v1.pdf.txt b/kNE5T4oBgHgl3EQfGg61/content/tmp_files/2301.05432v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..1c0c7991184b2f2c498ae3d20e40d07e72f6af55 --- /dev/null +++ b/kNE5T4oBgHgl3EQfGg61/content/tmp_files/2301.05432v1.pdf.txt @@ -0,0 +1,471 @@ +The splashback radius of groups and clusters of galaxies +at low redshifts +F.G. Kopylova𝑎,∗ and A.I. Kopylov𝑎 +𝑎SAO RAS, Nizhny Arkhyz, Russia +E-mail: flera@sao.ru, akop@sao.ru +We present a study of the distribution of galaxies along the radius of 157 groups and clusters of +galaxies (200 km s−1 < 𝜎 < 1100 km s−1) of the local Universe (0.01 < 𝑧 < 0.1). We introduced +a new boundary of galaxy systems and identified it with the splashback radius 𝑅𝑠𝑝. We also +identified the central region of galaxy systems with a radius of 𝑅𝑐. These radii are defined by the +observed integrated distribution of the total number of galaxies depending on the squared distance +from the center of the groups/clusters coinciding, as a rule, with the brightest galaxy. We show +that the radius 𝑅𝑠𝑝 is proportional to the 𝑅200𝑐 (radius of the virialized region of a galaxy cluster) +and to the radius of the central region 𝑅𝑐 with a slope close to 1. Among the obtained dependences +of the radii on X-ray luminosity, the log 𝑅𝑠𝑝 - log 𝐿𝑋 relation has the lowest scatter. We measured +< 𝑅𝑠𝑝 > = 1.67 ± 0.05 Mpc for the total sample, < 𝑅𝑠𝑝 > = 1.14 ± 0.14 Mpc for galaxy groups +with 𝜎 ≤ 400 km s−1, < 𝑅𝑠𝑝 > = 2.00 ± 0.20 Mpc for galaxy clusters with 𝜎 > 400 km s−1. We +found the average ratio of the radii 𝑅𝑠𝑝/𝑅200𝑐 = 1.40 ± 0.02 or 𝑅𝑠𝑝/𝑅200𝑚 = 0.88 ± 0.02. +The Multifaceted Universe: Theory and Observations - 2022 (MUTO2022) +23-27 May 2022 +SAO RAS, Nizhny Arkhyz, Russia +∗Speaker +© Copyright owned by the author(s) under the terms of the Creative Commons +Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). +https://pos.sissa.it/ +arXiv:2301.05432v1 [astro-ph.CO] 13 Jan 2023 + +The splashback radius of groups and clusters of galaxies at low redshifts +F.G. Kopylova +1. +Introduction +Clusters of galaxies are the largest gravitationally bound objects in the Universe. They are +collapsing structures known as dark matter halos. Clusters of galaxies are continuously increasing +in mass both as a result of the merging with individual galaxies and smaller groups of galaxies, +and as a result of continuous infall of dark matter from the environment. Clusters of galaxies do +not have clear boundaries, which are often determined by density contrast relative to the critical or +average density of the universe. Their evolution is considered within the framework of the spherical +collapse model in the expanding universe (e.g. [6, 7]). +Using N-body simulations of the motion of particles of a dark matter halo (galaxies), it was +found that a significant part of them (up to 50%) located outside the virialized regions of galaxy +clusters (up to 2𝑅𝑣𝑖𝑟 or 2𝑅200) have already been inside [2, 5, 14]. +[8] presents the results of Millennium simulations for 75 galaxy clusters (𝑧 = 0.0), where it is +shown that a significant part of the galaxies bounce up to 3𝑟 𝑝𝑟𝑜 𝑗/𝑟200 in the phase-space diagram. +The radius of galaxy clusters (physical halo boundary), the splashback radius 𝑅𝑠𝑝, was intro- +duced in [1] as the radius at which newly accreted dark matter particles are piled up within the +apocenters of their orbits. The 𝑅𝑠𝑝 radius is clearly visible on the dark matter halo density profiles +as a sharp density drop [1, 4]. In simulations performed in [15], it is shown that the localization of +𝑅𝑠𝑝 depends on the rate of mass accretion into the cluster: in the halo with a rapid accretion rate +𝑅𝑠𝑝 =∼ 0.8 - 1𝑅200𝑚, in the halo with a slow rate — ∼ 1.5𝑅200𝑚. +In this work, we are looking for observational manifestations of splashback features in a sample +of groups and clusters of galaxies (data from the SDSS catalog). In [9] we show the edge of the +galaxy clusters, clearly identified by the integral distribution of the number of all galaxies in a +cluster depending on the squared clustercentric distance, which we call the radius of the halo, 𝑅ℎ. +This radius is usually larger than the radius 𝑅200𝑐 and is measured along the projected profile when +a sharp increase in the number of galaxies in the center of clusters ends. We identified them later +with the splashback radius 𝑅𝑠𝑝 and gave the results of its measurements for ∼ 100 groups/clusters +of galaxies [9, 10, 12, 13]. In the works [12, 13] we have shown that the distribution of early-type +galaxies in clusters allows for a more accurate estimate of the desired radius. We have measured +for 40 galaxy systems the average radius < 𝑅𝑠𝑝 >= 1.54 ± 0.06 𝑅200𝑐 or 𝑅𝑠𝑝 = 0.96 ± 0.06 𝑅200𝑚 +(if we take into account 4𝑅200𝑐 ≈ 2.5𝑅200𝑚), which varies from 1.10 Mpc for the group NGC 5627 +with 𝜎 = 314 km s−1 to 4.17 Mpc for the cluster Coma (A 1656) with 𝜎 = 921 km s−1. Here 𝑅200𝑐 +(hereinafter 𝑅200) is the radius of a cluster inside which the density exceeds the critical density of +the universe by a factor 200. This radius in our works is determined by the dispersion of radial +velocities of galaxies in the systems. In model simulations, the 𝑅200𝑚 radius is often used, within +which the density in the syatem exceeds the average density of the universe by a factor 200. +In this study, we used a sample of 157 groups/clusters of galaxies from the regions of super- +clusters of galaxies Leo (N=12), Hercules (N=27), Ursa Major (N=19), Corona Borealis (N=8), +Bootes (N=13), from other smaller superclusters (N=11) and fields (N=20), groups of galaxies +from the region of the A 1656/ A1367 supercluster (N=48). For these systems of galaxies we have +determined radii 𝑅𝑠𝑝 (splachback radius) and 𝑅𝑐 (core radius) from the observed profile and found +the dependences of the radii on other galaxy cluster characteristics. This study uses the data of the +SDSS (Sloan Digital Sky Survey Data Releases 7, 8) and 2MASS XSC (Two-Micron ALL-Sky +2 + +The splashback radius of groups and clusters of galaxies at low redshifts +F.G. Kopylova +Survey Extended Source Catalog) catalogs and NED (NASA Extragalactic Database). Throughout +this study we adopted the following values of cosmological parameters: Ω𝑚 = 0.3, ΩΛ = 0.7, +𝐻0 = 70 km s−1 ípc−1. +2. +Method and data +In the papers [9–11, 13] we presented the dynamical characteristics for a region with a radius +of 𝑅200 for almost the entire sample of groups and clusters studied in this work. This radius can be +estimated by the formula 𝑅200 = +√ +3𝜎/(10𝐻(𝑧) Mpc [3]. Then, if a cluster can be considered to be +virialized within this radius, its mass 𝑀200 can be computed by the formula 𝑀200 = 3𝐺−1𝑅200𝜎2, +where 𝜎 is the dispersion of the line-of-sight velocities of the galaxies located within the 𝑅200 +radius, and G is the gravitational constant. Thus, the measured mass of the cluster is 𝑀200 ∝ 𝜎3. In +our work, we first estimated the average line-of-sight velocity 𝑐𝑧 of the cluster and its dispersion 𝜎, +and then use the inferred dispersion to determine the 𝑅200 radius. We then determine the number +of galaxies within this radius and redetermine 𝑐𝑧, 𝜎, 𝑅200, etc. We move from the cluster and +determine iteratively the dispersion of line-of-sight velocities of the galaxies and other parameters +of the clusters within this radius. We consider galaxies with velocities deviating by more than 2.7𝜎 +from the mean velocity of the group (see, e.g., [14]) as field objects. +To find the radius 𝑅𝑠𝑝, it is important to highlight the outskirts of galaxy systems. For this +purpose, we present Figure 1 which describes in detail the structure and kinematics of galaxy cluster +A 1318 (as an example). The panels of Figure 1 show: a) deviations of line-of-sight velocities of +cluster members and field galaxies from the average radial velocity of the system plotted as a function +of the squared clustercentric radius; b) the integrated distribution of the number of galaxies as a +function of the squared clustercentric distance; c) location of galaxies in the sky plane in equatorial +coordinates; d) the histogram of the line-of-sight velocities of all galaxies within the 𝑅200 radius. +The solid line shows the Gaussian corresponding to the dispersion of line-of-sight velocities of +galaxies. The vertical lines show the radii: 𝑅𝑠𝑝 (dashed-and-dotted), 𝑅200 (short dashed), 𝑅𝑐 (long +dashed). +We are especially interested in panel b), where the projected cluster profile is shown, the +integrated distribution of the number of galaxies as a function of the squared clustercentric distance. +This distribution makes it possible to visually reveal the dense core of the cluster, its more tenuous +shell, and the external region where the distribution becomes linear (shown by the straight magenta +lines in the figure) in the adopted coordinates, i.e., where the distrubution of surrounding galaxies +becomes uniform on the average [9]. The figure shows the radius of the virialized region, 𝑅200, +and the radius, 𝑅𝑠𝑝, beyond which the steep growth of the cluster members ends and linear growth +begins. We also marked with a long dashed line the central part (core) of the cluster of radius 𝑅𝑐, +where the main steep increase in the number of galaxies is observed. The lower curve in the same +figure shows the distribution of early-type galaxies brighter tnan 𝑀𝐾 = −21 .m5, which we use to +refine the radius in question. Such galaxies are located, as a rule, in the central virialized regions +of galaxy systems. 𝑅𝑠𝑝, the splashback radius of the galaxy systems [1, 4] found by us, is the +radius of the apocenters of the orbits of galaxies, originating in the central region of galaxy clusters. +Thus, the radius 𝑅𝑠𝑝 separates galaxies which fall onto the cluster for the first time from collapsing +galaxies that are already participating in establishing virial equilibrium. For our sample we measured +3 + +The splashback radius of groups and clusters of galaxies at low redshifts +F.G. Kopylova +Figure 1: Distribution of galaxies in the cluster A 1318. The panel a) shows the deviation of radial velocities +of galaxies from the average cluster radial velocity determined from galaxies within the radius 𝑅200. The +horizontal dashed red lines correspond to ±2.7𝜎 deviations, and the vertical blue short-dashed line marks the +𝑅200 radius; the blue long-dashed line marks the 𝑅𝑐 radius, and the green dot-dashed line – the 𝑅𝑠𝑝 radius. +The larger circles, plus signs, and crosses mark the galaxies brighter than 𝑀𝐾 = −24𝑚, background galaxies, +and foreground galaxies, respectively. The panel b) presents the integrated distribution of the total number of +galaxies (the upper curve) as a function of the squared projected distance from the cluster center. The lower +curve shows the distribution of early-type galaxies brighter than 𝑀𝐾 < −21 .m5. The circles correspond to +the galaxies denoted by the circles in the top panel a), the crosses show the distribution of field galaxies. +The solid magenta lines show linear sections of the profile. The panel c) shows the sky distribution (in +quatorial coordinates) of galaxies presented in the top panel a) (same designations are used). The colored +circles highlight the regions with radii 𝑅𝑐, 𝑅200, and 𝑅𝑠𝑝. The studied region is bounded by a circle of +radius 3.5𝑅200 (solid black line). The large cross indicates the center of the cluster. The panel d) presents +the distribution of radial velocities of all galaxies within 𝑅200 (the solid line shows the Gaussian for cluster +members). The solid vertical line indicates the average radial velocity of the cluster, and the dashed lines +correspond to ±2.7𝜎 deviations. +< 𝑅𝑠𝑝 >= 1.67±0.05 Mpc with a variation range of 0.75÷4.24, < 𝑅𝑐 >= 0.78±0.03 (0.30÷2.00) +and < 𝑅𝑠𝑝/𝑅200𝑐 >= 1.40 ± 0.02, or < 𝑅𝑠𝑝/𝑅200𝑚 >= 0.88 ± 0.02 (given that 4𝑅200𝑐 ≈ 2.5𝑅200𝑚. +This value is consistent with results of simulations (see, e.g., [15]). +3. +Results +We stutied the dependences of the found radii 𝑅𝑠𝑝 and 𝑅𝑐 on the properties of galaxy clusters. +Figure 2 shows the dependence of log 𝑅𝑠𝑝 on the X-ray luminosity, log 𝐿𝑋, and for comparison a +4 + +A1318 +3000 ++' ++ +Dec +***芊 ++ ++ +++ +t +OD +2000 ++ ++ ++a ++ ++ ++ ++ ++ +t +55030' ++ +++ ++ ++ ++ ++ +S-1 +Xo +1000 +6= +0 ++ +** +km +00 +Q ++ +0 +1 +'zo +1000 +55000* +-2000 +a) +X +-3000 +arcmin20 +695 +1390 +X +54030* ++ × +80 +c) +11h40m +11h36m +11h32m +60 +RA +15 +N +40 +8 +10 +ooo +20 +5 +b) +d) +0 +0.0 +3.0 +6.0 +14000 +16000 +18000 +r, Mpc2 +cz,km s-1The splashback radius of groups and clusters of galaxies at low redshifts +F.G. Kopylova +similar dependence for the radius log 𝑅200 is shown. The relations shown (straight lines) represent +the average between forward and inverse regressions, when the independent variables are inter- +changed. The dashed lines show 1𝜎 deviations from them. Note that rms deviation depends on the +log 𝑅𝑠𝑝 radius less than on log 𝑅200. Red circles show merging clusters of galaxies with bimodal +radial velocity distribution within the radius 𝑅200. We can be see that these syatems do not differ +from normal clusters of galaxies by location on the log 𝑅𝑠𝑝–log 𝐿𝑋 relation. The Table 1 shows the +parameters of the relations we obtained: slopes, normalizations, and scatters. +We have noted in Section 1 the results of other authors (e.g., [15]), from which it follows that +𝑅𝑠𝑝 depends on the rate of accretion of dark matter particles on the clusters: at a rapid rate of mass +accretion, this radius is close to the virial radius, that is, in our case to 𝑅200. +Figure 3 shows the dependence of the radii ratios 𝑅𝑠𝑝/𝑅200 and 𝑅200/𝑅𝑐 on the X-ray luminosity +of systems of galaxies. Variations of the 𝑅𝑠𝑝/𝑅200 ratio have distinct boundaries for most systems +of galaxies: 𝑅𝑠𝑝/𝑅200 = 1.2 ÷ 1.6 and log 𝐿𝑋 = 42.5 ÷ 44.5. We refer to galaxy systems with a +radius ratio less than 1.15 (or 𝑅𝑠𝑝/𝑅200𝑚 < 0.71) as objects with a rapid rate of mass accretion +(RA), and the systems with a radii ratio greater than 1.6 (or 𝑅𝑠𝑝/𝑅200𝑚 > 0.99) - as objects with +a slow accretion rate (SA). There are 21 RA and 34 SA systems in our sample. RA systems are +usually groups/clusters of galaxies with a non-Gaussian radial velocity distribution, with signs of +merging with other groups and galaxies near the virial radius, for example: A 1270, A 1904, A 1991, +NGC 2563. Among SA groups/clusters of galaxies there are rich galaxy systems such as A 1656, +A 1795, A 2142, A 2029, poor galaxy systems such as NGC 7237, IC 2476, MCG-01-29, which +collect matter (groups, galaxies, gas) from great distances from the center. +Figure 2: The radii 𝑅200 (a) and 𝑅𝑠𝑝 (b) as functions of the X-ray luminosity. The solid lines correspond +to the relations 𝑅200 ∝ 𝐿0.25 +𝑋 +and 𝑅𝑠𝑝 ∝ 𝐿0.24 +𝑋 +. Dashed lines correspond to 1𝜎 deviations from them. Red +circles show groups/clusters of galaxies with bimodal distribution of radial velocities. +We have obtained the following results: +1. The boundary of the dark halo of groups/clusters of galaxies, the radius 𝑅𝑠𝑝 determined +by galaxies, is proportional to the radius of the virialized region 𝑅200 and to the radius of the core +region 𝑅𝑐 with a slope close to 1. +5 + +3.6 +3.4 +rms=0.097 +rms=0.092 +/o +3.4 +kpc +kpc +QQ +3.2 +R200 +C +Rsp +3.2 +log +3.0 +log +0 +0 +0 +3.0 +0 +2.8 +0 +6 +0 +a) +0 +b) +2.8 +I +42.00 +43.00 +44.00 +45.00 +42.00 +43.00 +44.00 +45.00 +log Lx, erg s-1 +1ogLx. +erg s-1The splashback radius of groups and clusters of galaxies at low redshifts +F.G. Kopylova +Figure 3: The ratios 𝑅𝑠𝑝/𝑅200 (a) and 𝑅200/𝑅𝑐 (b) as functions of X-ray luminosity. Red circles show +groups/clusters of galaxies with bimodal distribution of radial velocities. +2. All the radii we measured correlate with the X-ray luminosity of groups/clusters of galaxies +and have similar slopes. Dependencies of the splashback radius on mass 𝑀200 and luminosity +𝐿𝐾 ,200 have a lower scatter. +Table 1: Best fit parameters +Relation +Slope +Normalization +Scatter +log 𝑅𝑠𝑝 – log 𝐿𝑋 +0.24 ± 0.03 +−7.39 ± 0.33 +0.092 +log 𝑅200 – log 𝐿𝑋 +0.25 ± 0.04 +−7.60 ± 0.34 +0.097 +log 𝑅𝑐 – log 𝐿𝑋 +0.26 ± 0.04 +−8.45 ± 0.37 +0.110 +log 𝑅𝑠𝑝 – log 𝑀200/𝑀⊙ +0.32 ± 0.02 +−1.42 ± 0.13 +0.066 +log 𝑅𝑐 – log 𝑀200/𝑀⊙ +0.35 ± 0.03 +−2.08 ± 0.17 +0.086 +log 𝑅𝑠𝑝 – log 𝐿𝐾/𝐿 ⊙ +0.42 ± 0.03 +−2.00 ± 0.17 +0.074 +log 𝑅𝑐 – log 𝐿𝐾/𝐿 ⊙ +0.44 ± 0.03 +−2.66 ± 0.19 +0.088 +log 𝑅𝑠𝑝 – log 𝑅200 +1.00 ± 0.04 ++0.17 ± 0.11 +0.064 +log 𝑅𝑠𝑝 – log 𝑅𝑐 +0.95 ± 0.05 ++0.46 ± 0.14 +0.088 +Acknowledgments +This research has made use of the NASA/IPAC Extragalactic Database (NED, http:// +nedwww.ipac.caltech.edu), which is operated by the Jet Propulsion Laboratory, California +Institute of Technology, under contract with the National Aeronautics and Space Administra- +tion, Sloan Digital Sky Survey (SDSS, http://www.sdss.org), which is supported by Alfred +P. Sloan Foundation, the participant institutes of the SDSS collaboration, National Science Foun- +dation, and the United States Department of Energy and Two Micron All Sky Survey (2MASS, +http://www.ipac.caltech.edu/2mass/releases/allsky/). +6 + +2.0 +3.0 +0 +1.8 +0 +% +2.5 +0 +0 +0 +(0) +0 +0 +1.6 +0 +0 +0 +/ R200 +0 +00 +00 +0 +0 +0 +0 +0 +2.0 +1.4 +0 +0 +00 +0 +0 +o +0 +000 +0 +0 +0 +0 +0 +8 +8。° +0 +00 +8 +% +.0 +0 +1.2 +0 +8 +00 +09 +8 +1.5 +0 +0 +0 +60 +0 +0 +00 +0 +0 +0 +o +9 +8 +0 +00 +0 +0 +1.0 +0 +a) +%0 +b) +90 +n +1.0 +42.00 +43.00 +44.00 +45.00 +42.00 +43.00 +44.00 +45.00 +logLx. +erg s-1The splashback radius of groups and clusters of galaxies at low redshifts +F.G. Kopylova +References +[1] Adhikari, S., Dalal, N., Chamberlain, R. T. 2014, JCAP, 11, 19 +[2] Balogh, M. L., Navarro, J. F., Morris, S. L. 2000, Astrophys. J. , 540, 113 +[3] Carlberg, R. G., Yee, H. K. C., Ellingson, E., et al. 1997, Astrophys. J. , 485, L13 +[4] Diemer, B. & Kravtsov, A. V. 2014, Astrophys. J. , 789, 1 +[5] Gill, S. P. D., Knebe, A., Gibson, B. K. 2005, Mon. Not. R. Astron. Soc. , 356, 1327 +[6] Gott, J. R,III 1973, Astrophys. J. , 186, 481 +[7] Gunn, J. E., & Gott, J. R,III 1972, Astrophys. J. , 176, 1 +[8] Haines, C. P., Pereira, M. J., Smith, G. P., et al. 2015, Astrophys. J. , 806, 101 +[9] Kopylov, A. I., Kopylova, F. G. 2015, Asrophysical Bulletin, 70, 243 +[10] Kopylova, F. G., Kopylov, A. I. 2016, Asrophysical Bulletin, 71, 129 +[11] Kopylova, F. G., Kopylov, A. I. 2017, Asrophysical Bulletin, 72, 363 +[12] Kopylova, F. G., Kopylov, A. I. 2018, Asrophysical Bulletin, 73, 267 +[13] Kopylova, F. G., Kopylov, A. I. 2019, Asrophysical Bulletin, 74, 365 +[14] Mamon, G. A., Sanchis, T., Salvador-Sole, E., Solanes, M. J. 2004, A&A, 414, 445 +[15] More, S., Diemer, B., Kravtsov, A. V. 2015, Astrophys. J. , 810, 36 +7 + diff --git a/kNE5T4oBgHgl3EQfGg61/content/tmp_files/load_file.txt b/kNE5T4oBgHgl3EQfGg61/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..4f557495fddbf7a1c23cc746d580cd782aa99439 --- /dev/null +++ b/kNE5T4oBgHgl3EQfGg61/content/tmp_files/load_file.txt @@ -0,0 +1,377 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf,len=376 +page_content='The splashback radius of groups and clusters of galaxies at low redshifts F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content='G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=' Kopylova𝑎,∗ and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content='I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=' Kopylov𝑎 𝑎SAO RAS, Nizhny Arkhyz, Russia E-mail: flera@sao.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content='ru, akop@sao.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content='ru We present a study of the distribution of galaxies along the radius of 157 groups and clusters of galaxies (200 km s−1 < 𝜎 < 1100 km s−1) of the local Universe (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content='01 < 𝑧 < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content='1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=' We introduced a new boundary of galaxy systems and identified it with the splashback radius 𝑅𝑠𝑝.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=' We also identified the central region of galaxy systems with a radius of 𝑅𝑐.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=' These radii are defined by the observed integrated distribution of the total number of galaxies depending on the squared distance from the center of the groups/clusters coinciding, as a rule, with the brightest galaxy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=' We show that the radius 𝑅𝑠𝑝 is proportional to the 𝑅200𝑐 (radius of the virialized region of a galaxy cluster) and to the radius of the central region 𝑅𝑐 with a slope close to 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=' Among the obtained dependences of the radii on X-ray luminosity, the log 𝑅𝑠𝑝 - log 𝐿𝑋 relation has the lowest scatter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=' We measured < 𝑅𝑠𝑝 > = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content='67 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content='05 Mpc for the total sample, < 𝑅𝑠𝑝 > = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content='14 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content='14 Mpc for galaxy groups with 𝜎 ≤ 400 km s−1, < 𝑅𝑠𝑝 > = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content='00 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content='20 Mpc for galaxy clusters with 𝜎 > 400 km s−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=' We found the average ratio of the radii 𝑅𝑠𝑝/𝑅200𝑐 = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content='40 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content='02 or 𝑅𝑠𝑝/𝑅200𝑚 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content='88 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content='02.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=' The Multifaceted Universe: Theory and Observations - 2022 (MUTO2022) 23-27 May 2022 SAO RAS, Nizhny Arkhyz, Russia ∗Speaker © Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content='0 International License (CC BY-NC-ND 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content='0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=' https://pos.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content='sissa.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content='it/ arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content='05432v1 [astro-ph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content='CO] 13 Jan 2023 The splashback radius of groups and clusters of galaxies at low redshifts F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content='G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=' Kopylova 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=' Introduction Clusters of galaxies are the largest gravitationally bound objects in the Universe.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=' They are collapsing structures known as dark matter halos.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=' Clusters of galaxies are continuously increasing in mass both as a result of the merging with individual galaxies and smaller groups of galaxies, and as a result of continuous infall of dark matter from the environment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=' Clusters of galaxies do not have clear boundaries, which are often determined by density contrast relative to the critical or average density of the universe.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=' Their evolution is considered within the framework of the spherical collapse model in the expanding universe (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=' [6, 7]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=' Using N-body simulations of the motion of particles of a dark matter halo (galaxies), it was found that a significant part of them (up to 50%) located outside the virialized regions of galaxy clusters (up to 2𝑅𝑣𝑖𝑟 or 2𝑅200) have already been inside [2, 5, 14].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=' [8] presents the results of Millennium simulations for 75 galaxy clusters (𝑧 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content='0), where it is shown that a significant part of the galaxies bounce up to 3𝑟 𝑝𝑟𝑜 𝑗/𝑟200 in the phase-space diagram.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=' The radius of galaxy clusters (physical halo boundary), the splashback radius 𝑅𝑠𝑝, was intro- duced in [1] as the radius at which newly accreted dark matter particles are piled up within the apocenters of their orbits.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=' The 𝑅𝑠𝑝 radius is clearly visible on the dark matter halo density profiles as a sharp density drop [1, 4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=' In simulations performed in [15], it is shown that the localization of 𝑅𝑠𝑝 depends on the rate of mass accretion into the cluster: in the halo with a rapid accretion rate 𝑅𝑠𝑝 =∼ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content='8 - 1𝑅200𝑚, in the halo with a slow rate — ∼ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content='5𝑅200𝑚.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=' In this work, we are looking for observational manifestations of splashback features in a sample of groups and clusters of galaxies (data from the SDSS catalog).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=' In [9] we show the edge of the galaxy clusters, clearly identified by the integral distribution of the number of all galaxies in a cluster depending on the squared clustercentric distance, which we call the radius of the halo, 𝑅ℎ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=' This radius is usually larger than the radius 𝑅200𝑐 and is measured along the projected profile when a sharp increase in the number of galaxies in the center of clusters ends.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=' We identified them later with the splashback radius 𝑅𝑠𝑝 and gave the results of its measurements for ∼ 100 groups/clusters of galaxies [9, 10, 12, 13].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=' In the works [12, 13] we have shown that the distribution of early-type galaxies in clusters allows for a more accurate estimate of the desired radius.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=' We have measured for 40 galaxy systems the average radius < 𝑅𝑠𝑝 >= 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content='54 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content='06 𝑅200𝑐 or 𝑅𝑠𝑝 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content='96 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content='06 𝑅200𝑚 (if we take into account 4𝑅200𝑐 ≈ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content='5𝑅200𝑚), which varies from 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content='10 Mpc for the group NGC 5627 with 𝜎 = 314 km s−1 to 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content='17 Mpc for the cluster Coma (A 1656) with 𝜎 = 921 km s−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=' Here 𝑅200𝑐 (hereinafter 𝑅200) is the radius of a cluster inside which the density exceeds the critical density of the universe by a factor 200.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=' This radius in our works is determined by the dispersion of radial velocities of galaxies in the systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=' In model simulations, the 𝑅200𝑚 radius is often used, within which the density in the syatem exceeds the average density of the universe by a factor 200.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=' In this study, we used a sample of 157 groups/clusters of galaxies from the regions of super- clusters of galaxies Leo (N=12), Hercules (N=27), Ursa Major (N=19), Corona Borealis (N=8), Bootes (N=13), from other smaller superclusters (N=11) and fields (N=20), groups of galaxies from the region of the A 1656/ A1367 supercluster (N=48).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=' For these systems of galaxies we have determined radii 𝑅𝑠𝑝 (splachback radius) and 𝑅𝑐 (core radius) from the observed profile and found the dependences of the radii on other galaxy cluster characteristics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=' This study uses the data of the SDSS (Sloan Digital Sky Survey Data Releases 7, 8) and 2MASS XSC (Two-Micron ALL-Sky 2 The splashback radius of groups and clusters of galaxies at low redshifts F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content='G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=' Kopylova Survey Extended Source Catalog) catalogs and NED (NASA Extragalactic Database).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=' Throughout this study we adopted the following values of cosmological parameters: Ω𝑚 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content='3, ΩΛ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content='7, 𝐻0 = 70 km s−1 ípc−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=' Method and data In the papers [9–11, 13] we presented the dynamical characteristics for a region with a radius of 𝑅200 for almost the entire sample of groups and clusters studied in this work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=' This radius can be estimated by the formula 𝑅200 = √ 3𝜎/(10𝐻(𝑧) Mpc [3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=' Then, if a cluster can be considered to be virialized within this radius, its mass 𝑀200 can be computed by the formula 𝑀200 = 3𝐺−1𝑅200𝜎2, where 𝜎 is the dispersion of the line-of-sight velocities of the galaxies located within the 𝑅200 radius, and G is the gravitational constant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=' Thus, the measured mass of the cluster is 𝑀200 ∝ 𝜎3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=' In our work, we first estimated the average line-of-sight velocity 𝑐𝑧 of the cluster and its dispersion 𝜎, and then use the inferred dispersion to determine the 𝑅200 radius.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=' We then determine the number of galaxies within this radius and redetermine 𝑐𝑧, 𝜎, 𝑅200, etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=' We move from the cluster and determine iteratively the dispersion of line-of-sight velocities of the galaxies and other parameters of the clusters within this radius.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=' We consider galaxies with velocities deviating by more than 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content='7𝜎 from the mean velocity of the group (see, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=', [14]) as field objects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=' To find the radius 𝑅𝑠𝑝, it is important to highlight the outskirts of galaxy systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=' For this purpose, we present Figure 1 which describes in detail the structure and kinematics of galaxy cluster A 1318 (as an example).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=' The panels of Figure 1 show: a) deviations of line-of-sight velocities of cluster members and field galaxies from the average radial velocity of the system plotted as a function of the squared clustercentric radius;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=' b) the integrated distribution of the number of galaxies as a function of the squared clustercentric distance;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=' c) location of galaxies in the sky plane in equatorial coordinates;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=' d) the histogram of the line-of-sight velocities of all galaxies within the 𝑅200 radius.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=' The solid line shows the Gaussian corresponding to the dispersion of line-of-sight velocities of galaxies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=' The vertical lines show the radii: 𝑅𝑠𝑝 (dashed-and-dotted), 𝑅200 (short dashed), 𝑅𝑐 (long dashed).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=' We are especially interested in panel b), where the projected cluster profile is shown, the integrated distribution of the number of galaxies as a function of the squared clustercentric distance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=' This distribution makes it possible to visually reveal the dense core of the cluster, its more tenuous shell, and the external region where the distribution becomes linear (shown by the straight magenta lines in the figure) in the adopted coordinates, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=', where the distrubution of surrounding galaxies becomes uniform on the average [9].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=' The figure shows the radius of the virialized region, 𝑅200, and the radius, 𝑅𝑠𝑝, beyond which the steep growth of the cluster members ends and linear growth begins.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=' We also marked with a long dashed line the central part (core) of the cluster of radius 𝑅𝑐, where the main steep increase in the number of galaxies is observed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=' The lower curve in the same figure shows the distribution of early-type galaxies brighter tnan 𝑀𝐾 = −21 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content='m5, which we use to refine the radius in question.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=' Such galaxies are located, as a rule, in the central virialized regions of galaxy systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=' 𝑅𝑠𝑝, the splashback radius of the galaxy systems [1, 4] found by us, is the radius of the apocenters of the orbits of galaxies, originating in the central region of galaxy clusters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=' Thus, the radius 𝑅𝑠𝑝 separates galaxies which fall onto the cluster for the first time from collapsing galaxies that are already participating in establishing virial equilibrium.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=' For our sample we measured 3 The splashback radius of groups and clusters of galaxies at low redshifts F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content='G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=' Kopylova Figure 1: Distribution of galaxies in the cluster A 1318.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=' The panel a) shows the deviation of radial velocities of galaxies from the average cluster radial velocity determined from galaxies within the radius 𝑅200.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=' The horizontal dashed red lines correspond to ±2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content='7𝜎 deviations, and the vertical blue short-dashed line marks the 𝑅200 radius;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=' the blue long-dashed line marks the 𝑅𝑐 radius, and the green dot-dashed line – the 𝑅𝑠𝑝 radius.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=' The larger circles, plus signs, and crosses mark the galaxies brighter than 𝑀𝐾 = −24𝑚, background galaxies, and foreground galaxies, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=' The panel b) presents the integrated distribution of the total number of galaxies (the upper curve) as a function of the squared projected distance from the cluster center.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=' The lower curve shows the distribution of early-type galaxies brighter than 𝑀𝐾 < −21 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content='m5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=' The circles correspond to the galaxies denoted by the circles in the top panel a), the crosses show the distribution of field galaxies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=' The solid magenta lines show linear sections of the profile.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=' The panel c) shows the sky distribution (in quatorial coordinates) of galaxies presented in the top panel a) (same designations are used).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=' The colored circles highlight the regions with radii 𝑅𝑐, 𝑅200, and 𝑅𝑠𝑝.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=' The studied region is bounded by a circle of radius 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content='5𝑅200 (solid black line).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=' The large cross indicates the center of the cluster.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=' The panel d) presents the distribution of radial velocities of all galaxies within 𝑅200 (the solid line shows the Gaussian for cluster members).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=' The solid vertical line indicates the average radial velocity of the cluster, and the dashed lines correspond to ±2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content='7𝜎 deviations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=' < 𝑅𝑠𝑝 >= 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content='67±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content='05 Mpc with a variation range of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content='75÷4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content='24, < 𝑅𝑐 >= 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content='78±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content='03 (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content='30÷2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content='00) and < 𝑅𝑠𝑝/𝑅200𝑐 >= 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content='40 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content='02, or < 𝑅𝑠𝑝/𝑅200𝑚 >= 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content='88 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content='02 (given that 4𝑅200𝑐 ≈ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content='5𝑅200𝑚.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=' This value is consistent with results of simulations (see, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=', [15]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=' Results We stutied the dependences of the found radii 𝑅𝑠𝑝 and 𝑅𝑐 on the properties of galaxy clusters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=" Figure 2 shows the dependence of log 𝑅𝑠𝑝 on the X-ray luminosity, log 𝐿𝑋, and for comparison a 4 A1318 3000 +' + Dec ***芊 + + ++ t OD 2000 + + +a + + + ++ + t 55030' + ++ + + + + S-1 Xo 1000 6= 0 + ** km 00 Q + 0 1 'zo 1000 55000* 2000 a) X 3000 arcmin20 695 1390 X 54030* + × 80 c) 11h40m 11h36m 11h32m 60 RA 15 N 40 8 10 ooo 20 5 b) d) 0 0." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content='0 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content='0 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content='0 14000 16000 18000 r, Mpc2 cz,km s-1The splashback radius of groups and clusters of galaxies at low redshifts F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content='G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=' Kopylova similar dependence for the radius log 𝑅200 is shown.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=' The relations shown (straight lines) represent the average between forward and inverse regressions, when the independent variables are inter- changed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=' The dashed lines show 1𝜎 deviations from them.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=' Note that rms deviation depends on the log 𝑅𝑠𝑝 radius less than on log 𝑅200.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=' Red circles show merging clusters of galaxies with bimodal radial velocity distribution within the radius 𝑅200.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=' We can be see that these syatems do not differ from normal clusters of galaxies by location on the log 𝑅𝑠𝑝–log 𝐿𝑋 relation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=' The Table 1 shows the parameters of the relations we obtained: slopes, normalizations, and scatters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=' We have noted in Section 1 the results of other authors (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=', [15]), from which it follows that 𝑅𝑠𝑝 depends on the rate of accretion of dark matter particles on the clusters: at a rapid rate of mass accretion, this radius is close to the virial radius, that is, in our case to 𝑅200.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=' Figure 3 shows the dependence of the radii ratios 𝑅𝑠𝑝/𝑅200 and 𝑅200/𝑅𝑐 on the X-ray luminosity of systems of galaxies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=' Variations of the 𝑅𝑠𝑝/𝑅200 ratio have distinct boundaries for most systems of galaxies: 𝑅𝑠𝑝/𝑅200 = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content='2 ÷ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content='6 and log 𝐿𝑋 = 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content='5 ÷ 44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=' We refer to galaxy systems with a radius ratio less than 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content='15 (or 𝑅𝑠𝑝/𝑅200𝑚 < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content='71) as objects with a rapid rate of mass accretion (RA), and the systems with a radii ratio greater than 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content='6 (or 𝑅𝑠𝑝/𝑅200𝑚 > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content='99) - as objects with a slow accretion rate (SA).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=' There are 21 RA and 34 SA systems in our sample.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=' RA systems are usually groups/clusters of galaxies with a non-Gaussian radial velocity distribution, with signs of merging with other groups and galaxies near the virial radius, for example: A 1270, A 1904, A 1991, NGC 2563.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=' Among SA groups/clusters of galaxies there are rich galaxy systems such as A 1656, A 1795, A 2142, A 2029, poor galaxy systems such as NGC 7237, IC 2476, MCG-01-29, which collect matter (groups, galaxies, gas) from great distances from the center.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=' Figure 2: The radii 𝑅200 (a) and 𝑅𝑠𝑝 (b) as functions of the X-ray luminosity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=' The solid lines correspond to the relations 𝑅200 ∝ 𝐿0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content='25 𝑋 and 𝑅𝑠𝑝 ∝ 𝐿0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content='24 𝑋 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=' Dashed lines correspond to 1𝜎 deviations from them.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=' Red circles show groups/clusters of galaxies with bimodal distribution of radial velocities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=' We have obtained the following results: 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=' The boundary of the dark halo of groups/clusters of galaxies, the radius 𝑅𝑠𝑝 determined by galaxies, is proportional to the radius of the virialized region 𝑅200 and to the radius of the core region 𝑅𝑐 with a slope close to 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=' 5 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content='6 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content='4 rms=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content='097 rms=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content='092 /o 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content='4 kpc kpc QQ 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content='2 R200 C Rsp 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content='2 log 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content='0 log 0 0 0 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content='0 0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content='8 0 6 0 a) 0 b) 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content='8 I 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content='00 43.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content='00 44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content='00 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content='00 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content='00 43.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content='00 44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content='00 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content='00 log Lx, erg s-1 1ogLx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=' erg s-1The splashback radius of groups and clusters of galaxies at low redshifts F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content='G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=' Kopylova Figure 3: The ratios 𝑅𝑠𝑝/𝑅200 (a) and 𝑅200/𝑅𝑐 (b) as functions of X-ray luminosity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=' Red circles show groups/clusters of galaxies with bimodal distribution of radial velocities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=' All the radii we measured correlate with the X-ray luminosity of groups/clusters of galaxies and have similar slopes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=' Dependencies of the splashback radius on mass 𝑀200 and luminosity 𝐿𝐾 ,200 have a lower scatter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=' Table 1: Best fit parameters Relation Slope Normalization Scatter log 𝑅𝑠𝑝 – log 𝐿𝑋 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content='24 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content='03 −7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content='39 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content='33 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content='092 log 𝑅200 – log 𝐿𝑋 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content='25 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content='04 −7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content='60 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content='34 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content='097 log 𝑅𝑐 – log 𝐿𝑋 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content='26 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content='04 −8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content='45 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content='37 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content='110 log 𝑅𝑠𝑝 – log 𝑀200/𝑀⊙ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content='32 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content='02 −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content='42 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content='13 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content='066 log 𝑅𝑐 – log 𝑀200/𝑀⊙ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content='35 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content='03 −2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content='08 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content='17 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content='086 log 𝑅𝑠𝑝 – log 𝐿𝐾/𝐿 ⊙ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content='42 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content='03 −2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content='00 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content='17 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content='074 log 𝑅𝑐 – log 𝐿𝐾/𝐿 ⊙ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content='44 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content='03 −2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content='66 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content='19 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content='088 log 𝑅𝑠𝑝 – log 𝑅200 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content='00 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content='04 +0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content='17 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content='11 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content='064 log 𝑅𝑠𝑝 – log 𝑅𝑐 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content='95 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content='05 +0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content='46 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content='14 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content='088 Acknowledgments This research has made use of the NASA/IPAC Extragalactic Database (NED, http:// nedwww.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content='ipac.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content='caltech.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content='edu), which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administra- tion, Sloan Digital Sky Survey (SDSS, http://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content='sdss.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content='org), which is supported by Alfred P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=' Sloan Foundation, the participant institutes of the SDSS collaboration, National Science Foun- dation, and the United States Department of Energy and Two Micron All Sky Survey (2MASS, http://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content='ipac.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content='caltech.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content='edu/2mass/releases/allsky/).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=' 6 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content='0 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content='0 0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content='8 0 % 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content='5 0 0 0 (0) 0 0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content='6 0 0 0 / R200 0 00 00 0 0 0 0 0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content='4 0 0 00 0 0 o 0 000 0 0 0 0 0 8 8。' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content='° 0 00 8 % .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content='0 0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content='2 0 8 00 09 8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content='5 0 0 0 60 0 0 00 0 0 0 o 9 8 0 00 0 0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content='0 0 a) %0 b) 90 n 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content='0 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content='00 43.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content='00 44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content='00 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content='00 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content='00 43.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content='00 44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content='00 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content='00 logLx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=' erg s-1The splashback radius of groups and clusters of galaxies at low redshifts F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content='G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=' Kopylova References [1] Adhikari, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=', Dalal, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=', Chamberlain, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=' 2014, JCAP, 11, 19 [2] Balogh, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=', Navarro, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=', Morris, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=' 2000, Astrophys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=' , 540, 113 [3] Carlberg, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=', Yee, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=', Ellingson, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=' 1997, Astrophys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=' , 485, L13 [4] Diemer, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=' & Kravtsov, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=' 2014, Astrophys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=' , 789, 1 [5] Gill, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=', Knebe, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=', Gibson, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=' 2005, Mon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=' Not.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=' Astron.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=' , 356, 1327 [6] Gott, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=' R,III 1973, Astrophys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=' , 186, 481 [7] Gunn, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=', & Gott, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=' R,III 1972, Astrophys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=' , 176, 1 [8] Haines, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=', Pereira, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=', Smith, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=', et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=' 2015, Astrophys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=' , 806, 101 [9] Kopylov, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=', Kopylova, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=' 2015, Asrophysical Bulletin, 70, 243 [10] Kopylova, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=', Kopylov, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=' 2016, Asrophysical Bulletin, 71, 129 [11] Kopylova, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=', Kopylov, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=' 2017, Asrophysical Bulletin, 72, 363 [12] Kopylova, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=', Kopylov, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=' 2018, Asrophysical Bulletin, 73, 267 [13] Kopylova, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=', Kopylov, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=' 2019, Asrophysical Bulletin, 74, 365 [14] Mamon, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=', Sanchis, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=', Salvador-Sole, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=', Solanes, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=' 2004, A&A, 414, 445 [15] More, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=', Diemer, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=', Kravtsov, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=' 2015, Astrophys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} +page_content=' , 810, 36 7' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/kNE5T4oBgHgl3EQfGg61/content/2301.05432v1.pdf'} diff --git a/kNFAT4oBgHgl3EQfbB0a/vector_store/index.faiss b/kNFAT4oBgHgl3EQfbB0a/vector_store/index.faiss new file mode 100644 index 0000000000000000000000000000000000000000..b4e7c2ccbb8c0ab67c753bc6c99c88e63514d516 --- /dev/null +++ b/kNFAT4oBgHgl3EQfbB0a/vector_store/index.faiss @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:772f9b6795ca91ae1753d7cc461975d4ae07efacf19c3f841bad9c6e4f594d5c +size 2097197 diff --git a/kb_27/content/kb_27.pdf b/kb_27/content/kb_27.pdf new file mode 100644 index 0000000000000000000000000000000000000000..09b6263cc31fd8165ea3344c1b472cb1dc4f2385 --- /dev/null +++ b/kb_27/content/kb_27.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:c7d024774ab5d247f1e3d1eca807528662cdd93e2bb580c92412a39a98b8ce88 +size 2856020 diff --git a/kb_27/vector_store/index.pkl b/kb_27/vector_store/index.pkl new file mode 100644 index 0000000000000000000000000000000000000000..67b52584aa176411fc9311a0885447f341ee1fcd --- /dev/null +++ b/kb_27/vector_store/index.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:f0c526229216d08aab1ca49a19dabddfb13d5d124e7446cb12efada0e7af3009 +size 185825 diff --git a/lNE4T4oBgHgl3EQftQ2k/content/2301.05223v1.pdf b/lNE4T4oBgHgl3EQftQ2k/content/2301.05223v1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..2d735bc452e2be411ae298cb66373c357232c831 --- /dev/null +++ b/lNE4T4oBgHgl3EQftQ2k/content/2301.05223v1.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:fcc688b9fd7890e5c6de3438bd1a43805d07acfe98a8c04484c4fc121f557e49 +size 6131171 diff --git a/ldE0T4oBgHgl3EQf7wLZ/content/tmp_files/2301.02781v1.pdf.txt b/ldE0T4oBgHgl3EQf7wLZ/content/tmp_files/2301.02781v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..b1c8560fe17e4c1321241a8575baeee8e6ca123f --- /dev/null +++ b/ldE0T4oBgHgl3EQf7wLZ/content/tmp_files/2301.02781v1.pdf.txt @@ -0,0 +1,1826 @@ +Knowledge Reasoning via Jointly Modeling Knowledge Graphs and +Soft Rules +Yinyu Lan, Shizhu He, Kang Liu, Jun Zhao +Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China. +Abstract +Knowledge graphs (KGs) play a crucial role in many applications, such as question answering, but incom- +pleteness is an urgent issue for their broad application. Much research in knowledge graph completion (KGC) has been +performed to resolve this issue. The methods of KGC can be classified into two major categories: rule-based reasoning and +embedding-based reasoning. The former has high accuracy and good interpretability, but a major challenge is to obtain +effective rules on large-scale KGs. The latter has good efficiency and scalability, but it relies heavily on data richness and +cannot fully use domain knowledge in the form of logical rules. We propose a novel method that injects rules and learns +representations iteratively to take full advantage of rules and embeddings. Specifically, we model the conclusions of rule +groundings as 0-1 variables and use a rule confidence regularizer to remove the uncertainty of the conclusions. The proposed +approach has the following advantages: 1) It combines the benefits of both rules and knowledge graph embeddings (KGEs) +and achieves a good balance between efficiency and scalability. 2) It uses an iterative method to continuously improve KGEs +and remove incorrect rule conclusions. Evaluations on two public datasets show that our method outperforms the current +state-of-the-art methods, improving performance by 2.7% and 4.3% in mean reciprocal rank (MRR). +Keywords +Distributed representation, Knowledge graph, Link prediction, Logical rule +1 +Introduction +A knowledge graph (KG) organizes knowledge as +a set of interlinked triples, and a triple ((head entity, +relation, tail entity), simply represented as (h, r, t)) in- +dicates the fact that two entities have a certain relation. +Rich structured and formalized knowledge has become +a valuable resource to support downstream tasks, for +example, question answering [1, 2] and recommender +systems [3, 4]. +Although KGs such as DBpedia [5], Freebase [6] and +NELL [7] contain large amounts of entities, relations, +and triples, they are far from complete, which is an +urgent issue for their broad application. +To address +this, the task of knowledge graph completion (KGC) +has been proposed and has attracted growing atten- +tion; it utilizes knowledge reasoning techniques to per- +form automatic discovery of new facts based on existing +facts in a KG [8]. +At present, the methods of KGC can be classified +into two major categories: 1) One type of method uses +explicit reasoning rules; it obtains the reasoning rules +through inductive learning and then deductively infers +new facts. 2) Another method is based on representa- +tion learning instead of directly modeling rules, aiming +to learn a distributed embedding for entities and rela- +tions and perform generalization in numerical space. +Rule-based reasoning is accurate and can provide +interpretability for the inference results. Domain ex- +perts can handcraft these rules [9] or can mine them +from the KG with an induction algorithm such as +AMIE [10]. +Traditional methods such as expert sys- +tems [11, 12] use hard logical rules to make predictions. +For example, as shown in Fig. 1, given the logical rule +(x, born in, y)∧(y, city of, z) ⇒ (x, nationality, z) and +the two facts that (Chicago, city of, USA) and (Mary, +born in, Chicago), we can infer the fact (Mary, nation- +ality, USA). A large number of new facts (conclusions) +can be derived based on forward chaining inference. +Regular Paper +arXiv:2301.02781v1 [cs.AI] 7 Jan 2023 + +2 +However, for large-scale KGs, sufficient and effective +reasoning rules are difficult and expensive to obtain. +Moreover, in many cases, the logical rules may be im- +perfect or even self-contradictory. Therefore, it is es- +sential to model the uncertainty of (soft) logical rules +effectively. +The methods of determining KGEs learn to embed +entities and relations into a continuous low-dimensional +space [13, 14]. These embeddings retain the semantic +meaning of entities and relations, which can be used to +predict missing triples. In addition, they can be effec- +tively trained using stochastic gradient descent. How- +ever, this kind of method cannot fully use logical rules, +which compactly encode domain knowledge and are +helpful in various applications. Good embedding relies +heavily on data richness, so these methods have diffi- +culty learning useful representations for sparse entities +[15, 16]. +In fact, both rule-based methods and embedding- +based methods have advantages and disadvantages in +the KGC task. +Logical rules are accurate and inter- +pretable, and embedding is flexible and computation- +ally efficient. To achieve more precise knowledge com- +pletion, recently, there has also been research on com- +bining the advantages of logical rules and KGEs. Mixed +techniques can infer missing triples effectively by ex- +ploiting and modeling uncertain logical rules. +Some +existing methods have aimed to iteratively learn KGEs +and rules [16], and some other methods also utilize soft +rules or groundings of rules to regularize the learning +of KGEs [17, 18]. +Knowledge Graph +Rules +Weights +∀𝑥, 𝑦 ∶ (𝑥, child_of, 𝑦) ⇒ (𝑦, parent_of, 𝑥) +0.9 +∀𝑥, 𝑦, 𝑧 ∶ (𝑥, born_in, 𝑦) ⋀ (𝑦, city_of, 𝑧) +⇒ (𝑥, nationality, 𝑧) +0.8 +∀𝑥, 𝑦, 𝑧 ∶ (𝑥, child_of,𝑧) ⋀ (𝑦, child_of,𝑧) +⇒ (𝑥, sister_of,𝑧) +0.5 +… +… +Facts +Weights +(Mary, parent_of, Lisa) +0.9 +(Mary, parent_of, Mike) +0.9 +(Mary, nationality, USA) +0.8 +(Nacy, nationality, USA) +0.8 +(Lisa, sister_of, Nancy) +0.5 +(Mike, sister_of, Nancy) +0.5 +… +… +Facts +Weights +(Mary, parent_of, Lisa) +1 +(Mary, parent_of, Mike) +1 +(Mary, nationality, USA) +1 +(Nacy, nationality, USA) +0 +(Lisa, sister_of, Nancy) +1 +(Mike, sister_of, Nancy) +0 +… +Chicago +Boston +Mary +Lisa +Nancy +Mike +USA +born_in +nationality +child_of +city_of +Previous Works +This Work +… +… +KGE +Uncertain Conclusions +Deterministic Conclusions +Uncertain Rules +induction +deduction +completion +Fig. 1. We propose a novel iterative knowledge reasoning frame- +work by fusing logical rules into a KGE. Previous methods asso- +ciate each conclusion with a weight derived from the correspond- +ing rule. In contrast, our method can infer which conclusion is +true via jointly modeling the deterministic KG and uncertain +soft rules. +The integration of logical rules and knowledge graph +embeddings can achieve more efficient and accurate +knowledge completion. Current methods model uncer- +tain rules and add soft labels to conclusions by t-norm- +based fuzzy logic [19]; they further utilize the conclu- +sions to perform forward reasoning [17] or to enhance +the KGE [16]. +However, in most KGs, the facts are +deterministic. Therefore, we believe that rules are un- +certain but conclusions are deterministic in knowledge +reasoning, as shown in Fig. 1; each fact is only abso- +lutely true or false. Previous methods associate each +conclusion with a weight derived from the correspond- +ing rule. +In contrast, we propose inferring that all +conclusions are true (e.g., (Mary, nationality, USA)) +or not (e.g., (Mike, sister of, Nancy)) (the other fact, +i.e., (Mike, gender, male), indicates that Mike is not +Nancy’s sister) by jointly modeling the deterministic +KG and soft rules. +Specifically, we first mine soft rules from the knowl- +edge graph and then infer conclusions as candidate +facts. Second, the KG, conclusions, and weighted rules +are also used as resources to learn embeddings. Third, +through the definition of deterministic conclusion loss, +the conclusion labels are modeled as 0-1 variables, and + +MODEL KNOWLEDGE GRAPH AND RULES FOR REASONING +3 +the confidence loss of a rule is also used to constrain +the conclusions. Finally, the embedding learning stage +removes the noise in the candidate conclusions, and +then the proper conclusions are added back to the orig- +inal KG. The above steps are performed iteratively. +We empirically evaluate the proposed method on pub- +lic datasets from two real large-scale KGs: DBpedia +and Freebase. The experimental results show that our +method Iterlogic-E (Iterative using logic rule for rea- +soning and learning Embedding) achieves state-of-the- +art results on multiple evaluation metrics. Iterlogic-E +also achieves improvements of 2.7%/4.3% in mean re- +ciprocal rank (MRR) and 2.0%/4.0% in HITS@1 com- +pared to the state-of-the-art model. +In summary, our main contributions are as follows: +• We propose a novel KGC method, Iterlogic-E, +which jointly models logical rules and KGs in the +framework of a KGE. Iterlogic-E combines the ad- +vantages of both rules and embeddings in knowl- +edge reasoning. Iterlogic-E models the conclusion +labels as 0-1 variables and uses a confidence reg- +ularizer to eliminate the uncertain conclusions. +• We propose a novel iterative learning paradigm +that achieves a good balance between efficiency +and scalability. +Iterlogic-E not only makes the +KG denser but can also filter incorrect conclu- +sions. +• Compared with traditional reasoning methods, +Iterlogic-E is more interpretable in determining +conclusions. It not only knows why the conclu- +sion holds but also knows which is true and which +is false. +• We empirically evaluate Iterlogic-E with the +task of link prediction on multiple benchmark +datasets. The experimental results indicate that +Iterlogic-E can achieve state-of-the-art results on +multiple evaluation metrics. The qualitative anal- +ysis proves that Iterlogic-E is more robust for +rules with different confidence levels. +2 +Related Work +Knowledge reasoning aims to infer certain entities +over KGs as the answers to a given query. A query in +KGC is a head entity h (or a tail entity t) and a rela- +tion r. Given (h, r, ?) (or (?, r, t)), KGC aims to find +the right tail entity t (or head entity h) in the KG that +satisfies the triple (h, r, t). Next, we review the three +most relevant classes of KGC methods. +2.1 +Rule-Based Reasoning +Logical rules can encode human knowledge com- +pactly, and early knowledge reasoning was primarily +based on first-order logical rules. Existing rule-based +reasoning methods have primarily utilized search-based +inductive logic programming (ILP) methods, usually +searching and pruning rules. Based on the partial com- +pleteness assumption, AMIE [10] introduces a revised +confidence metric, which is well suited for modeling +KGs. +By query rewriting and pruning, AMIE+ [20] +is optimized to expand to larger KGs. +Additionally, +AMIE+ improves the precision of the forecasts by using +joint reasoning and type information. In this paper, we +employ AMIE+1 to mine horn rules from a KG. Rule- +based reasoning methods can be combined with multi- +ple probability graph models. A Markov logic network +(MLN) [21] is a typical model. Based on preprovided +rules, it builds a probabilistic graph model and then +learns the weights of rules. However, due to the com- +plicated graph structure among triples, the reasoning in +an MLN is time-consuming and difficult, and the incom- +1https://github.com/lajus/amie + +4 +pleteness of KGs also impacts the inference results. In +contrast, Iterlogic-E uses rules to enhance KGEs with +more effective inference. +2.2 +Embedding-Based Reasoning +Recently, embedding-based methods have attracted +much attention; they aim to learn distributed em- +beddings for entities and relations in KGs. +Gener- +ally, current KGE methods can be divided into three +classes: +1) translation-based models that learn em- +beddings by translating one entity into another en- +tity through a specific relation [22, 23]; 2) composi- +tional models that use simple mathematical operations +to model facts, including linear mapping [24], bilinear +mapping [25, 26, 27], and circular correlation [28]; 3) +neural network-based models that utilize a multilayer +neural structure to learn embeddings and estimate the +plausibility of triples with nonlinear features, for exam- +ple, R-GCN [29], ConvE [30] and and so on [31, 32, 33]. +The above methods learn representations based only on +the triples existing in KGs, and the sparsity of data lim- +its them. To solve this problem and learn semantic-rich +representations, recent works further attempted to in- +corporate information beyond triples, e.g., contextual +information [34], entity type information [35, 36], on- +tological information [37], taxonomic information [38], +textual descriptions [39] and hierarchical information +[49]. +In contrast, the proposed Iterlogic-E uses em- +beddings to remove incorrect conclusions obtained by +rules, which combines the advantages of rules and em- +beddings. +2.3 +Hybrid Reasoning +Both rule-based and embedding-based methods +have advantages and disadvantages. Recent works have +integrated these two kinds of reasoning methods. Guo +et al. [40] attempted to learn a KGE from rule ground- +ings and triples together. Wang et al. [41] used asym- +metric and transitive information to approximately or- +der relations by maximizing the margin between neg- +ative and positive logical rules. Zhang et al. [17] and +Guo et al. [42] obtained KGEs with supervision from +soft rules, proving the effectiveness of logical rules. Qu +et al. [43] used an MLN to model logical rules and in- +ferred new triples to enhance KGEs. Guo et al. [18] +enhanced KGEs by injecting grounding rules. Niu et +al. +[50] enhanced KGEs by extracting commonsense +from factual triples with entity concepts. In addition, +some previous methods that enhance embeddings by it- +erative learning were studied in early works. Zhang et +al. [16] aimed to improve a sparse entity representation +through iterative learning and update the confidence +of rules through embeddings. In contrast, Iterlogic-E +models the conclusion labels as 0-1 variables and uses +confidence regularization loss to eliminate the uncertain +conclusions. Such labels are easier to train on. +3 +The Proposed Method +This +section +introduces +our +proposed +method +Iterlogic-E. We first give an overview of our method, +including the entire iterative learning process. Then, +we detail the two parts of Iterlogic-E: rule mining and +reasoning and embedding learning. +Last, we discuss +the space and time complexity of Iterlogic-E and dis- +cuss connections to related works [16, 17]. +3.1 +Overview +Given a KG G = {E, R, T }, T = {(h, r, t)}, r ∈ R +is a relation and h, t ∈ E are entities. As discussed in +Section 1, on the one hand, embedding learning meth- +ods do not make full use of logical rules and suffer from +data sparsity. On the other hand, precise rules are dif- +ficult to obtain efficiently and cannot cover all facts in +KGs. Our goal is to improve the embedding quality by + +MODEL KNOWLEDGE GRAPH AND RULES FOR REASONING +5 +Chicago +Boston +Mary +Lisa +Nancy +Mike +USA +born_in +nationality +child_of +city_of +Rules +Weights +∀𝑥, 𝑦 : (𝑥, child_of, 𝑦) ⇒ (𝑦, parent_of, 𝑥) +0.9 +∀𝑥, 𝑦, 𝑧 : (𝑥, born_in, 𝑦) ⋀ (𝑦, city_of, 𝑧) ⇒ (𝑥, nationality, 𝑧) +0.8 +∀𝑥, 𝑦, 𝑧 : (𝑥, child_of,𝑧) ⋀ (𝑦, child_of,𝑧) ⇒ (𝑥, sister_of,𝑧) +0.5 +… +… +Conclusions +Adjusted weights +(Mary, parent_of, Lisa) +1 +(Mary, parent_of, Mike) +1 +(Mary, nationality, USA) +1 +(Nacy, nationality, USA) +0 +(Lisa, sister_of, Nancy) +1 +(Mike, sister_of, Nancy) +0 +… +… +Groundings of rules +Rule weights +(Mary, born_in,Chicago) ⋀ (Chicago, city_of, USA) ⇒ +(Mary, nationality, USA) +0.9 +(Nacy, born_in,Bostan) ⋀ (Bostan, city_of, USA) ⇒ +(Nacy, nationality, USA) +0.9 +(Lisa, child_of,Mary) ⇒ (Mary, parent_of, Lisa) +0.8 +(Mike, child_of,Mary) ⇒ (Mary, parent_of, Mike) +0.8 +(Lisa, child_of,Mary) ⋀ (Nancy, child_of, Mary) ⇒ +(Lisa, sister_of, Nancy) +0.5 +(Lisa, child_of,Mary) ⋀ (Mike, child_of, Mary) ⇒ +(Mike, sister_of, Nancy) +0.5 +… +… +… +… +joint embedding learning +(§3.2.2) +triple +injecting (§3.1) +rule mining +(§3.1.1) +rule reasoning +(§3.1.2) +conclusion filtering +(§3.1) +Knowledge Graph +Knowledge Graph Embedding +Groundings of Rules +Soft Rules +Reasoning Conclusions +Fig.2. The framework details Iterlogic-E with two iterative stages: (i) rule mining and reasoning and (ii) embedding learning. Stage +(i) generates rules and grounding rules to obtain new conclusions. Stage (ii) jointly models the conclusions of grounding rules and the +KG in learning embeddings. After embedding learning, the conclusions are injected into the KG, and then the rule reasoning module +is executed to start the next round of iterative training +explicitly modeling the reasoned conclusions of logical +rules, removing incorrect conclusions, and improving +the confidence of the rules at the same time. Figure 2 +shows the overview of Iterlogic-E given a toy knowledge +graph. Iterlogic-E is a general framework that can fuse +different KGE models. +Iterlogic-E has two iterative steps: (i) rule mining +and reasoning and (ii) embedding learning. In the rule +mining and reasoning step, there are two modules: rule +mining and rule reasoning. The mining configuration, +such as the maximum length of rules and the confi- +dence threshold of rules, and KG triples are input to +the rule mining module. +Then, it automatically ob- +tains the soft rules from these inputs. The KG triples +and the extracted soft rules are input into the rule rea- +soning module to infer new triples. After that, the new +triples are appended to the embedding learning step as +candidate conclusions. In the embedding learning step, +relations are modeled as a linear mapping operation, +and triple plausibility is represented as the correlation +between the head and tail entities after the operation. +Finally, the incorrect conclusions are filtered out by la- +beling the conclusions with their scores2. The right con- +clusion will be added back to the original KG triples, +and then the rule reasoning module is performed to +start the next cycle of iterative training. +3.2 +Rule Mining and Reasoning +The first step is composed of the rule mining mod- +ule and the rule reasoning module. We introduce these +two modules in detail below. +3.2.1 +Rule Mining +We extract soft rules from the KG using the state-of- +the-art rule mining method AMIE+ [20] in this module. +2In the experiments, we choose the conclusion with a normalized score of more than 0.99 as the true conclusion. + +6 +AMIE+ applies principal component analysis (PCA) +confidence to estimate the reliability of a rule since its +partial completeness assumption is more suited to real- +world KGs. Additionally, AMIE+ defines a variety of +restriction types to help extract applicable rules, e.g., +the maximum length of the rule. After the rule mining +module receives the KG triples and the mining config- +uration, it executes the AMIE+ algorithm and outputs +soft rules. Although rules can be re-mined in each it- +eration, we only run the rule mining module once for +efficiency reasons. +3.2.2 +Rule Reasoning +The logical rule set is denoted as F = {(f, c)}. f +is in the form of ∀x, y, z : (x, rp1, y) ∧ (y, rp2, z) +c⇒ +(x, rc, z). +x, y and z represent variables of different +entities, and rp1, rp2 and rrc represent different rela- +tions. +The left side of the symbol ⇒ is the premise +of the rule, which is composed of several connected +atoms. The right side is only a single atom, which is +the rule’s conclusion. The horn rules are closed [25], +where continuous relations share the intermediate en- +tity and the first and last entities of the premise ap- +pear as the head and tail entities of the conclusion. +Such rules can provide interpretive insights. A rule’s +length is equal to the number of atoms in the premise. +For example, ∀x, y, z : (x, bornin, y) ∧ (y, city, z) +0.8 +⇒ +(x, nationality, z) is a length-2 rule. This rule reflects +the reality that, most likely, a person’s nationality is +the country in which he or she was born. The rule f +has a confidence level of 0.8. The higher the confidence +of the rule, the more likely it is to hold. +The reasoning procedure consists of instantiating +the rule’s premise and obtaining a large number of fresh +conclusion triples. One of the most common approaches +is forward chaining, also known as the match-select- +act cycle, which works in three-phase cycles. Forward +chaining matches the currently existing facts in the KG +with all known rule premises in one cycle to determine +the rules that can be satisfied. +Finally, the selected +rule’s conclusions are derived, and if the conclusions +are not already in the KG, they are added as new facts. +This cycle should be repeated until no new conclusions +emerge. However, if soft rules are used, forward chain +reasoning will lead to incorrect conclusions. Therefore, +we run one reasoning cycle in every iteration. +3.3 +Embedding Learning +In this section, we present a joint embedding learn- +ing approach that allows the embedding model to learn +from KG triples, conclusion triples, and soft rule con- +fidence all at the same time. +First, we will examine +a basic KGE model, and then we will describe how to +incorporate soft rule conclusions. Finally, we detail the +overall training goal. +3.3.1 +A Basic KGE Model +Different KGE models have different score func- +tions that aim to obtain a suitable function to map +the triple score to a continuous true value in [0, 1], i.e., +φ : E × R × E → (0, 1), which indicates the probabil- +ity that the triple holds. We follow [17, 18] and choose +ComplEx [26] as a basic KGE model. It is important +to note that our proposed framework can be combined +with an arbitrary KGE model. Theoretically, using a +better base model can continue improving performance. +Therefore, We also experiment with RotatE as a base +model. Below we take ComplEx as an example to in- +troduce. ComplEx assumes that the entity and relation +embeddings exist in a complex space, i.e., e ∈ Cd and +r ∈ Cd, where d is the dimensionality of the complex +space. Using plurals to represent entities and relations +can better model antisymmetric and symmetric rela- +tions (e.g., kinship and marriage) [26]. Through a mul- + +MODEL KNOWLEDGE GRAPH AND RULES FOR REASONING +7 +tilinear dot product, ComplEx scores every triple: +F(h, r, t) = Re(hTdiag(r)¯t) = Re(� +i[h]i[r]i[t]i), +(1) +where the Re(·) function takes the real part of a +complex value and the diag(·) function constructs a di- +agonal matrix from r; ¯t is the conjugate of t; and [·]i is +the i-th entry of a vector. To predict the probability, +ComplEx further uses the sigmoid function for normal- +ization: +φ(h, r, t) = σ(F(h, r, t)) = σ(Re(hTdiag(r)¯t)), +(2) +where σ(·) is the sigmoid function. By minimizing the +logistic loss function, ComplEx learns the relation and +entity embeddings: +� +(h,r,t)∈T ∪T ′ +log(1 + exp(−yhrt · f(h, r, t))), +(3) +where T ′ is a set of sampled negative examples and yhrt +is the label of a positive or negative triple. +3.3.2 +Joint Modeling KG and Conclusions of Soft +Rules +To model the conclusion label as a 0-1 variable, +based on the current KGE model’s scoring function, +we follow ComplEx and use the function f(·) as the +scoring function for conclusion triples: +Si = σ(F(hi, ri, ti)), (hi, ri, ti) ∈ Cf, +(4) +where Cf is the set of conclusion triples derived from +rule f and F(·) is the score function defined in Equa- +tion (1). Aiming to regularize this scoring function so +that it approaches 0 or 1, and to distinguish between +true and false conclusions, we use a quadratic function +with a symmetry axis of 0.5. Therefore, the conclusion +score is the smallest when it is close to 0 or 1. There- +fore, we define the deterministic conclusion loss Ldc as +follows: +Ldc = − 1 +|Cf| +� +(hi,ri,ti)∈Cf +∥Si − 0.5∥2 . +(5) +According to the definition of rule confidence in [10], +the confidence of a rule f in a KB G is the proportion of +true conclusions among the true conclusions and false +conclusions. +Therefore, we can define the confidence +loss of a rule as follows: +Lrc = +������ +1 +|Cf| +� +(hi,ri,ti)∈Cf +Si − cf +������ +2 +, +(6) +where cf is the confidence of rule f. Therefore, the loss +of the conclusions of all the rules Lac can be defined as +follows: +Lac = +1 +|F| +� +f∈F +(Ldc + Lrc), +(7) +where F is the set of all rules. +To learn the KGE +and rule conclusions at the same time, we minimize the +global loss over a soft rule set F and a labeled triple set +L = (xl, yl) (including negative and positive examples). +The overall training objective of Iterlogic-E is: +min +θ +1 +|L| +� +(xl,yl)∈L +L(−f(xl) · yl) ++ 1 +|F| +� +f∈F +(− 1 +|Cf| +� +(hi,ri,ti)∈Cf +∥Si − 0.5∥2 ++ +������ +1 +|Cf| +� +(hi,ri,ti)∈Cf +Si − cf +������ +2 +). +(8) +where the f(·) function denotes the score function and +L(x) = log(1 + exp(x)) is the soft-plus function. In Al- +gorithm 1, we detail the embedding learning procedure +of our method. To avoid overfitting, we further impose +l2 regularization on embedding Θ. Following [44, 18], +we also imposed nonnegative constraints (NNE) on the + +8 +entity embedding to learn more effective features. +Algorithm 1: Iterative learning algorithm of +Iterlogic-E +Input: KG triples T = {(ei, rk, ej)}, logical +rules F = {(fp, cp)}, the number of +iterative learning steps M. +Output: Relation and entity embeddings Θ +1 Randomly initialize relation and entity +embeddings Θ(0); +2 for n ← 1 to N do +3 +C ← ∅; +4 +if n/[N/M] == 0 then +5 +Generate a set of conclusions +C′ = {(e′ +i, r′ +k, e′ +j)} by rule grounding +from T , F; +6 +C = C ∪ C′; +7 +end +8 +Sample a mini-batch T b, Cb from T , C; +9 +Generate a set of negative triples T b +neg; +10 +Lb ← ∅; +11 +for each xl ∈ T b +neg ∪ T b ← 1 to N do +12 +yl = +1/ − 1; +13 +Lb ← Lb ∪ (xl, yl); +14 +end +15 +Θ(n) ← Θ(n−1) − +η( +1 +|Lb| +� +(xl,yl)∈Lb ▽ΘL(−f(xl) · yl) + +1 +|F| +� +f∈F(− +1 +|Cf | +� +(hi,ri,ti)∈Cf ▽Θ ∥Si − 0.5∥2+ +▽Θ +��� +1 +|Cf | +� +(hi,ri,ti)∈Cf Si − cf +��� +2 +) ; ! +cf. +Eq. +(8) +16 +Ct ← ∅; +17 +for each xm ∈ C do +18 +if σ(f(xm)) >= 0.99 then +19 +Ct ∪ (xm); +20 +end +21 +end +22 +T = T ∪ Ct; +23 end +24 return Θ(N) +3.4 +Discussion +3.4.1 +Complexity +In the embedding learning step, we represent re- +lations and entities as complex value vectors, follow- +ing ComplEx. +As a result, the space complexity is +O(ned + nrd), where d is the embedding space’s di- +mensionality. The number of relations is nr, and the +number of entities is ne. Each iteration of the learning +process has a time complexity of O(nld + ncd), where +nl/nc is the number of new conclusions or the number of +labeled triples in a mini-batch, as shown in Algorithm +1. Iterlogic-E is similar to ComplEx in that its space +and time complexity increase linearly with d. The num- +ber of new conclusions in a minibatch is usually con- +siderably lower than the number of initial triples; i.e., +nc ≪ nl. As a result, Iterlogic-E’s time complexity is +very close to that of ComplEx, which needs only O(nld) +per iteration. Because of the rule mining module’s great +efficiency and practical constraints, such as the PCA +confidence threshold not being lower than 0.5 and the +length of rules not exceeding two, the rule grounding +stage’s space and time complexity is trivial compared +to that of the embedding learning stage. Therefore, we +may disregard it when considering the space and time +complexity of Iterlogic-E. +3.4.2 +Connection to Related Works +IterE [16] also uses iterative learning, which defines +several types of rules with OWL2, but IterE does not +change the process of embedding learning and is limited +by rules that will yield many noisy conclusions. IterE +uses a pruning strategy that utilizes traversal and ran- +dom selection to obtain rules. Moreover, they only im- +prove the prediction effect of sparse entities but not well +on standard datasets. By contrast, Iterlogic-E uses the +SOTA rule mining system [20] to mine high-confidence +rules, and the quality of the rules obtained in this way +is higher because it uses the KG to fully evaluate the +reliability of the rules. +SoLE [17] enhances KGE by +jointly modeling the groundings of rules and facts and +directly utilizes uncertain rules for forward chain rea- +soning without eliminating incorrect grounding. More- +over, SoLE uses t-norm based fuzzy logic [19] to model +grounding, which will greatly increase the time com- +plexity. The method we propose avoids the above men- + +MODEL KNOWLEDGE GRAPH AND RULES FOR REASONING +9 +tioned problems without increasing the number of pa- +rameters. SLRE [18] uses rule-based regularization that +merely enforces relation to satisfying constraints intro- +duced by soft rules. However, it does not use rules for +reasoning and can not benefit from the interpretability +and accuracy advantages. Moreover, SLRE has strict +requirements on the form of the rules, while our method +can utilize various forms of rules more simply and flex- +ibly via the rule reasoning module. +4 +Experiments and Results +4.1 +Datasets +Iterlogic-E is tested on two common datasets: +FB15K and DB100K. The first is based on Freebase, +which was released by Bordes et al. +[22]. +The sec- +ond was taken from DBpedia by Ding et al. +[44], +and it includes 99,604 entities and 470 relations. For +model training, hyperparameter tuning and evaluation, +we utilize fixed training, validation, and test sets on +both datasets. +With each training dataset, we obtain soft rules and +examine rules with a length of no more than 2 to allow +efficient extraction. +These rules, together with their +confidence levels, are automatically retrieved from each +dataset’s training set using AMIE+ [20], and only those +with confidence levels greater than 0.8 are used. Shorter +rules are thought to more directly represent logical con- +nections among relations. Therefore, we remove longer +rules when all of their relations also exist in shorter +ones. +Table 1 summarizes the datasets’ comprehen- +sive statistics, and Table 2 also includes several rule +instances. We can observe from the statistics that the +number of rules on both datasets is extremely minimal +when compared to the number of triples. +Table 1. +Statistics of the datasets, where the columns repre- +sent the numbers of entities, relations, training/validation/test +triples, and soft rules +Dataset # Ent # Rel +# Train/Valid/Test # Rule +FB15K 14,951 +1,345 483,142/50,000/59,071 +441 +DB100K 99,604 +470 597,572/50,000/50,000 +25 +Table 2. +Examples of rules, with confidences, that were ex- +tracted from FB15K (top) and DB100K (bottom) +/location/contains(y, x) +0.84 +⇒ /location/containedby(x,y) +/production company/films(y, x) +0.89 +⇒ /location/ +containedby(x,y)/hud county place/place(x, y)∧ +hud county place/county(y, z) +1.0 +⇒ /hud county place/county(x, z) +sisterNewspaper(x, y)∧sisterNewspaper(z, y) +0.82 +⇒ +sisterNewspaper(x, z) +distributingCompany(x, y) +0.91 +⇒ distributingLabel(x, y) +nationality(x, y) +0.99 +⇒ stateOfOrigin(x, y) +4.2 +Link Prediction +Our method was evaluated on link prediction. The +goal of this task was to restore a missing triple (ei, rk, ?) +with the tail entity ej or (?, rk, ej) with the head entity +ei. +4.2.1 +Evaluation Protocol +The standard protocol established by [22] is used +for evaluation. The head entity ei is replaced with each +entity for every test triple (ei, rk, ej), and the corrupted +triple’s score is calculated. We record the rank of the +right entity ei by ranking these scores in decreasing +order. The mean reciprocal rank (MRR) and the per- +centage of ranks no greater than N (H@N, N = 1, 3, +10) are used to evaluate the ranking quality of all test +triples. +4.2.2 +Comparison Settings +We compare the performance of our method to that +of a number of previous KGE models, as shown in Table +3. The translation-based model (row 1), the composi- + +10 +Table 3. Link prediction results on the test sets of FB15K and DB100K +Method +FB15K +DB100K +MRR +HITS@1 +HITS@3 +HITS@10 +MRR +HITS@1 +HITS@3 +HITS@10 +1 +TransE [22] +0.380 +0.231 +0.472 +0.641 +0.111 +0.016 +0.164 +0.270 +2 +DistMult [25] +0.654 +0.546 +0.733 +0.824 +0.233 +0.115 +0.301 +0.448 +3 +HolE [28] +0.524 +0.402 +0.613 +0.739 +0.260 +0.182 +0.309 +0.4118 +4 +ComplEx [26] +0.627 +0.550 +0.671 +0.766 +0.272 +0.218 +0.303 +0.362 +5 +ANALOGY [27] +0.725 +0.646 +0.785 +0.854 +0.252 +0.143 +0.323 +0.427 +6 +ComplEx-NNE [44] +0.727 +0.659 +0.772 +0.845 +0.298 +0.229 +0.330 +0.426 +7 +ComplEx-CAS [51] +- +- +- +0.866 +- +- +- +- +8 +RotatE [24] +0.664 +0.551 +0.751 +0.841 +0.327 +0.200 +0.417 +0.526 +9 +HAKE[49] +0.408 +0.312 +0.463 +0.579 +- +- +- +- +10 +CAKE[50] +0.741 +0.646 +0.825 +0.896 +- +- +- +- +11 +R-GCN+ [29] +0.696 +0.601 +0.760 +0.842 +- +- +- +- +12 +ConvE [30] +0.745 +0.670 +0.801 +0.873 +- +- +13 +DPMPN[45] +0.764 +0.726 +0.784 +0.834 +- +- +- +- +14 +BLP [46] +0.242 +0.151 +0.269 +0.424 +- +- +- +- +15 +MLN [21] +0.321 +0.210 +0.370 +0.550 +- +- +- +- +16 +PTransE [47] +0.679 +0.565 +0.768 +0.855 +0.195 +0.063 +0.278 +0.416 +17 +KALE [40] +0.518 +0.382 +0.606 +0.756 +0.249 +0.100 +0.346 +0.497 +18 +ComplExR [48] +- +- +- +- +0.253 +0.167 +0.294 +0.420 +19 +TARE [41] +0.781 +0.617 +0.728 +0.842 +- +- +- +- +20 +RUGE [42] +0.768 +0.703 +0.815 +0.865 +0.246 +0.129 +0.325 +0.433 +21 +ComplEx-NNE+AER [44] +0.801 +0.757 +0.829 +0.873 +0.311 +0.249 +0.339 +0.426 +22 +IterE [16] +0.576 +0.443 +0.665 +0.818 +0.274 +0.215 +0.299 +0.386 +23 +pLogicNet [43] +0.776 +0.706 +0.817 +0.885 +- +- +- +- +24 +SoLE [17] +0.801 +0.764 +0.821 +0.867 +0.306 +0.248 +0.328 +0.418 +25 +SLRE [18] +0.810 +0.774 +0.829 +0.871 +0.340 +0.261 +0.372 +0.490 +Iterlogic-E(ComplEx) +0.814 +0.778 +0.835 +0.873 +0.374 +0.301 +0.409 +0.509 +Iterlogic-E(RotatE) +0.837 +0.794 +0.868 +0.904 +0.387 +0.287 +0.449 +0.559 +Table 4. Link prediction results on the test sets of FB15K-sparse +Method +FB15K-sparse +MRR +HITS@1 +HITS@3 +HITS@10 +TransE +0.398 +0.258 +0.486 +0.645 +DistMult +0.600 +0.618 +0.651 +0.759 +ComplEx +0.616 +0.540 +0.657 +0.761 +IterE +0.628 +0.551 +0.673 +0.771 +SoLE +0.668 +0.604 +0.699 +0.794 +Iterlogic-E(ComplEx) +0.674 +0.611 +0.701 +0.800 +tional models utilizing basic mapping operations (rows +2-10) and the neural network-based models (rows 11-13) +are among the first batch of baselines that rely only on +triples seen in the KGs. The second batch of baselines +are rule-based methods (rows 14-15). The last batch of +baselines further incorporates logical rules (rows 16-25). +4.2.3 +Implementation Details +On FB15K and DB100K, we compared Iterlogic- +E against all of the baselines. +We immediately ob- +tained the results of a set of baselines on FB15K and + +MODEL KNOWLEDGE GRAPH AND RULES FOR REASONING +11 +DB100K from SoLR, SLRE and CAKE. We reimple- +mented ComplEx on the PyTorch framework based +on thebased on the code code3 supplied by [24] since +our approach was dependent on it. Then, depending +on our implementation, we provided the ComplEx re- +sult. Furthermore, the IterE result was tested on the +sparse version of FB15K (FB15K-sparse) released by +[16], which included only sparse entities with 18,544 +and 22,013 triples in the validation and test sets. There- +fore, we reimplemented IterE on FB15K and DB100K +based on the code and hyperparameters4 released by +the author. As a result, we compared our approach to +IterE and SoLE on the FB15K-sparse dataset. Both +approaches use a logistic loss and optimize in the same +way (SGD with AdaGrad). +The other results of the +baselines were obtained directly from prior literature. +We tuned the embedding dimensionality d within {100, +150, 200, 250, 300}, the number of negatives per posi- +tive triple η within {2, 4, 6, 8, 10}, the initial learning +rate γ within {10−4, 10−3, 10−2, 5 × 10−2, 10−1}, and +the L2 regularization coefficient µ within {10−5, 3 × +10−5, 10−4, 10−3, 3−3, 10−2}. +We further tuned the +margin within {0.1, 0.2, 0.5, 1, 2, 5, 12, 18, 24} for +the approaches that utilize the margin-based ranking +loss. The best hyperparameters were selected to maxi- +mize the MRR on the validation set. The best settings +for Iterlogic-E were d = 300, γ = 10−3, η = 10, and +µ = 3×10−5 on FB15K and d = 300, γ = 10−4, η = 10, +and µ = 10−4 on DB100K. +4.2.4 +Main Results +The results of all compared methods on the test +sets of FB15K, DB100K, and FB15K-sparse are shown +in Tables 3 and 4. For each test triple, the mean re- +ciprocal rank or H@N value with N = 1, 3, 10 is uti- +lized as paired data. +The experimental results show +that 1) Iterlogic-E outperforms numerous strong base- +lines in the vast majority of cases. +This shows that +Iterlogic-E can achieve very good accuracy. 2) Iterlogic- +E significantly outperforms the basic models that use +triples alone, and the improvement comes from the abil- +ity to learn the conclusions obtained by soft rules. 3) +Iterlogic-E also beats many baselines that incorporate +logical rules. Specifically, Iterlogic-E performs better +than SoLE and IterE under most metrics. This demon- +strates the superiority of Iterlogic-E in reducing the +noise of candidate conclusions. 4) IterE can only en- +hance sparse entities, so the experimental results are +much lower than those of other baseline models. How- +ever, Iterlogic-E is also effective on FB15K-sparse. 5) +On DB100K, the improvements over SLRE and SoLE +are more significant than those on FB15K. The reason +for this is probably that the groundings of the rules +on DB100K contain more incorrect conclusions. Sim- +ple rules between a pair of relations are adequate to +capture these simple patterns on the FB15K dataset. +6) The performance of Iterlogic-E(ComplEx) is worse +than some baselines in HIT@10, and we consider that +this limitation is mainly due to the shortcomings of the +base model ComplEx [26]. Sun et al. [24] point out that +ComplEx can not model the composition relation. We +have experimented with replacing the base model with +the RotatE model(Iterlogic-E(RotatE)), which is capa- +ble of modeling four relation patterns. The experimen- +tal results have been further improved, and our method +consistently achieves the best results in all evaluation +metrics. +3https://github.com/DeepGraphLearning/KnowledgeGraphEmbedding +4https://github.com/wencolani/IterE + +12 +4.2.5 +Ablation Study +Table 5. Ablation study +DB100K +MRR HITS@1 HITS@3 HITS@10 +Iterlogic-E +0.374 +0.301 +0.409 +0.509 +1 +w/o l2 on Θ +0.323 +0.278 +0.342 +0.409 +2 +w/o NNE +0.371 +0.295 +0.409 +0.509 +3 +1+2 +0.324 +0.279 +0.342 +0.410 +4 +w/o IL +0.372 +0.300 +0.407 +0.505 +5 +w/o IL+Ldc +0.347 +0.258 +0.395 +0.510 +6 +w/o IL+Lrc +0.351 +0.257 +0.406 +0.515 +7 +w/o IL+Ldc+Lrc +0.328 +0.279 +0.348 +0.422 +8 +Iterlogic-E* +0.369 +0.298 +0.404 +0.502 +9 +ComplEx+AC+IL 0.285 +0.223 +0.312 +0.407 +10 ComplEx+WC+IL 0.295 +0.231 +0.327 +0.422 +ComplEx +0.272 +0.218 +0.303 +0.362 +To explore the influence of different constraints and +iterative learning, we perform an ablation study of +Iterlogic-E on DB100K with 9 configurations in Ta- +ble 5. The first and second variants, compared to the +completed model Iterlogic-E, remove the non-negativity +and l2-norm constraints (l2). +The third setting is +the combination setting. The fourth removes iterative +learning (IL), which uses a rule to reason only once. +The fifth, sixth, and seventh variants remove the addi- +tional loss item based on the sixth variant. The eighth +setting is another variant of the Iterlogic-E model based +on the ninth setting, which is that after the ComplEx +fitting, according to the scores of the conclusions, the +top n (where n is the rounded product of the rule and +its confidence) conclusions of each rule are selected to +be added to the KG to continue training. The ninth +setting (AC) is to add all conclusions inferred from the +rules as positive examples, and the tenth setting (WC) +is to use the rule confidence as soft labels of conclusions. +As seen in Table 5, we can conclude the following: +1) When removing NNE constraints, the performance +of Iterlogic-E decreases slightly. Without l2-norm con- +straints on entities, the performance of Iterlogic-E de- +grades by 2.3% in H@1 and by 5.1% in MRR. One ex- +planation may be that l2-norm constraints are sufficient +to constrain embedding norms on DB100K. However, +the performance will suffer dramatically if there are +no l2-norm constraints. +2) Removing iterative learn- +ing decreases performance slightly. +One reason may +be that the number of rules on DB100K is relatively +small, so the number of conclusions added through it- +erative learning is relatively small. +3) Removing the +additional loss item of the conclusions decreases per- +formance slightly. This illustrates that Iterlogic-E can +filter out incorrect conclusions and makes the KG dense. +Surprisingly, even if we directly use ComplEx to filter +and learn the conclusions that can achieve such high +performance, this method is not as flexible as Iterlogic- +E. 4) Compared with the basic model, all variants have +different degrees of improvement. +This demonstrates +the critical importance of logical rules in link predic- +tion tasks. +4.3 +Influence of the Number of Iterations +To demonstrate how Iterlogic-E can enhance the +embedding effect during the training process, we show +the link prediction results on DB100K with different +iterations. Figure 3 shows that as the number of train- +ing iterations increases, the prediction results, including +Hit@1, Hit@3, Hit@10, and MRR, will improve. From +Fig. 3, we can infer the following: 1) Iterative learn- +ing enhances embedding learning since the quality of +embeddings improved with time. +2) In the first two +iterations, the embedding learning module was quickly +fitted to the conclusions of the rules and the triples of +the training set, and the prediction accuracy rapidly +improved. +3) After two iterations, as the number of +new conclusions decreased, the results of the inference +tended to be stable, and the true conclusions and the + +MODEL KNOWLEDGE GRAPH AND RULES FOR REASONING +13 +initial KG triples were well preserved in the embedding. +0 +2 +4 +6 +8 +10 +Number of iterations +0.0 +0.1 +0.2 +0.3 +0.4 +0.5 +0.6 +HIT@1 +HIT@3 +HIT@10 +MRR +Fig.3. Link prediction results in different iterations +4.4 +Influence of Confidence Levels +Additionally, we evaluate the effect of the rules’ con- +fidence thresholds on FB15K. Since there are different +rules and ComplEx does not merge rules, we refer only +to their fixed results on FB15K. We set all hyperparam- +eters to their optimum values and change the confidence +threshold within [0.5, 1] in 0.05-step increments. Both +SoLE and Iterlogic-E use rules with confidence levels +greater than this threshold. Figure 4 displays the MRR +and H@1 values obtained by Iterlogic-E and other base- +lines on the FB15K test set. We make the following +observations: 1) Iterlogic-E beats both ComplEx and +IterE at varying confidence levels. This demonstrates +that Iterlogic-E is sufficiently robust to deal with un- +certain soft rules. +4.5 +Case Study +In Table 6, +we present a case study with 4 +conclusions (true or false as predicted by Iterlogic- +E), which are inferred with 2 rules during train- +ing. +Table 6 shows some conclusions derived from +rule inference and the score change (the average of +the head entity prediction score and the tail en- +tity prediction score) of the conclusions. +Using +the first conclusion as an example, the true conclu- +sion +is +(Albany Devils,/hockey roster position/posit +on, +Centerman), +which +is +obtained +by +the +rule +”/sports team roster/position(x, y) +0.808 +⇒ / +hockey roster position/position(x, y)”. +The Albany +Devils are a professional ice hockey team in the +American Hockey League +5, and the centerman is +the center in ice hockey. +Therefore, +this is in- +deed a true conclusion. +Compared to ComplEx, +Iterlogic-E +increased +the +score +of +this +fact +from +5.48 to 9.40. +Also, (San Diego State Aztecs football, +/hockey roster position/position,Linebacker) can be in- +ferred from the fact (San Diego State Aztecs football, +/sports team roster/ team, Linebacker) by the same +rule. However, the San Diego State Aztecs are a foot- +ball team, not a hockey team, and this is an incorrect +conclusion. +Compared to ComplEx, Iterlogic-E de- +creased the score of this fact from -4.65 to -8.35. This +illustrates that Iterlogic-E can distinguish whether the +conclusion is true and can improve the prediction per- +formance. +Furthermore, Iterlogic-E has good inter- +pretability, and we can understand why the conclusion +is inferred by it. +5 +Conclusion and Future Work +This paper proposes a novel framework that itera- +tively learns logical rules and embeddings, which mod- +els the conclusion labels as 0-1 variables. The proposed +Iterlogic-E uses the confidences of rules and the context +of the KG to eliminate the uncertainty of the conclu- +sion in the stage of learning embeddings. Specifically, +our method is based on iterative learning, which not +only supplements conclusions but also filters incorrect +conclusions, resulting in a good balance between effi- +5https://en.wikipedia.org/wiki/Albany_Devils + +14 +0.5 +0.6 +0.7 +0.8 +0.9 +1.0 +Confidence threshold +0.50 +0.55 +0.60 +0.65 +0.70 +0.75 +0.80 +0.85 +MRR +ComplEx +IterE +SoLE +Iterlogic-E +(a) +0.5 +0.6 +0.7 +0.8 +0.9 +1.0 +Confidence threshold +0.40 +0.45 +0.50 +0.55 +0.60 +0.65 +0.70 +0.75 +0.80 +HIT@1 +ComplEx +IterE +SoLE +Iterlogic-E +(b) +Fig.4. Results of MRR (a) and HITS@1 (b) achieved by Iterlogic-E with different confidence thresholds on FB15K +Table 6. A case study with 4 conclusions (true or false as predicted by Iterlogic-E), which are reasoned on by 2 rules +True +False +Conclusions +(Albany Devils,/hockey roster position/ +position,Centerman) +(San Diego State Aztecs football,/hockey +roster position/position,Linebacker) +Predicted by rules +/sports team roster/position(x, y) +0.808 +⇒ /hockey roster position/position(x, y) +Score change +5.4888 → 9.4039 +-4.6518 → -8.3547 +Conclusions +(Chris Nurse,/football roster position/ +team,Stevenage F.C.) +(Brett Favre,/football roster position/ +team,Green Bay Packers) +Predicted by rules +/sports team roster/team(x, y) +0.847 +⇒ /football roster position/team(x, y) +Score change +5.8123 → 9.5991 +-3.0131 → -11.3952 +ciency and scalability. The evaluation on benchmark +KGs demonstrates that the method can learn correct +conclusions and improve against a variety of strong +baselines. In the future, we would like to explore how +to use embeddings to learn better rules and rule con- +fidences than AMIE+. Additionally, we will continu- +ously explore more advanced models to integrate rules +and KGEs for knowledge reasoning. +References +[1] Berant J, Chou A, Frostig R, Liang P. Semantic parsing on +freebase from question-answer pairs. In EMNLP, 2013, pp. +1533–1544. +[2] Huang X, Zhang J, Li D, Li P. Knowledge graph embedding +based question answering. In WSDM, 2019, pp. 105–113. +[3] Wang X, Wang D, Xu C, He X, Cao Y, Chua T S. Explain- +able reasoning over knowledge graphs for recommendation. +In AAAI, 01, 2019, pp. 5329–5336. +[4] Cao Y, Wang X, He X, Hu Z, Chua T S. Unifying knowl- +edge graph learning and recommendation: Towards a better +understanding of user preferences. In WWW, 2019, pp. 151– +161. +[5] Auer S, Bizer C, Kobilarov G, Lehmann J, Cyganiak R, Ives +Z. Dbpedia: A nucleus for a web of open data. In SEMANT +WEB, 2007, pp. 722–735. +[6] Bollacker K, Evans C, Paritosh P, Sturge T, Taylor J. Free- +base: a collaboratively created graph database for structur- +ing human knowledge. In SIGMOD, 2008, pp. 1247–1250. +[7] Carlson A, Betteridge J, Kisiel B, Settles B, Hruschka E, +Mitchell T. +Toward an architecture for never-ending lan- +guage learning. In AAAI, number 1, 2010. +[8] Ji S, Pan S, Cambria E, Marttinen P, Yu P S. A survey on +knowledge graphs: Representation, acquisition and applica- +tions. arXiv:2002.00388, 2020. +[9] Taskar B, Abbeel P, Wong M F, Koller D. Relational markov +networks. +Introduction to Statistical Relational Learning, +2007, pp. 175–200. + +MODEL KNOWLEDGE GRAPH AND RULES FOR REASONING +15 +[10] Gal´arraga L A, Teflioudi C, Hose K, Suchanek F. +Amie: +association rule mining under incomplete evidence in onto- +logical knowledge bases. In WWW, 2013, pp. 413–422. +[11] Giarratano J C, Riley G. +Expert Systems. +MA, United +States: PWS Publishing, 1998. +[12] Jackson P. +Introduction to Expert Systems. +Boston: +Addison-Wesley Longman Publishing, 1986. +[13] Nickel M, Murphy K, Tresp V, Gabrilovich E. +A review +of relational machine learning for knowledge graphs. Proc. +IEEE, 2016, 104(1):11–33. +[14] Wang Q, Mao Z, Wang B, Guo L. Knowledge graph em- +bedding: A survey of approaches and applications. IEEE +Trans. Knowl. Data, 2017, 29(12):2724–2743. +[15] Pujara J, Augustine E, Getoor L. Sparsity and noise: Where +knowledge graph embeddings fall short. In EMNLP, 2017, +pp. 1751–1756. +[16] Zhang W, Paudel B, Wang L, Chen J, Zhu H, Zhang W, +Bernstein A, Chen H. Iteratively learning embeddings and +rules for knowledge graph reasoning. In WWW, 2019, pp. +2366–2377. +[17] Zhang J, Li J. Enhanced knowledge graph embedding by +jointly learning soft rules and facts. +Algorithms, 2019, +(12):265. +[18] Guo S, Li L, Hui Z, Meng L, Ma B, Liu W, Wang L, Zhai +H, Zhang H. Knowledge graph embedding preserving soft +logical regularity. In CIKM, 2020, pp. 425–434. +[19] H´ajek P. +Metamathematics of Fuzzy Logic, volume 4 of +Trends in Logic. Boston: Kluwer, 1998. +[20] Gal´arraga L, Teflioudi C, Hose K, Suchanek F M. Fast rule +mining in ontological knowledge bases with AMIE+. VLDB, +2015, (6):707–730. +[21] Richardson M, Domingos P. Markov logic networks. Mach. +Learn., 2006, (1–2):107–136. +[22] Bordes +A, +Usunier +N, +Garcia-Duran +A, +Weston +J, +Yakhnenko O. Translating embeddings for modeling multi- +relational data. In NeurIPS, 2013, pp. 1–9. +[23] Yang S, Tian J, Zhang H, Yan J, He H, Jin Y. Transms: +Knowledge graph embedding for complex relations by mul- +tidirectional semantics. In IJCAI, 2019, pp. 1935–1942. +[24] Sun Z, Deng Z H, Nie J Y, Tang J. +Rotate: Knowledge +graph embedding by relational rotation in complex space. +In ICLR, 2019. +[25] Yang B, Yih W, He X, Gao J, Deng L. Embedding entities +and relations for learning and inference in knowledge bases. +In Bengio Y, LeCun Y, editors, ICLR, 2015. +[26] Trouillon T, Welbl J, Riedel S, Gaussier ´E, Bouchard G. +Complex embeddings for simple link prediction. In ICML, +2016, pp. 2071–2080. +[27] Liu H, Wu Y, Yang Y. +Analogical inference for multi- +relational embeddings. In ICML, 2017, pp. 2168–2178. +[28] Nickel M, Rosasco L, Poggio T. Holographic embeddings of +knowledge graphs. In AAAI, number 1, 2016. +[29] Schlichtkrull M, Kipf T N, Bloem P, Van Den Berg R, Titov +I, Welling M. Modeling relational data with graph convolu- +tional networks. In ESWC, 2018, pp. 593–607. +[30] Dettmers T, Minervini P, Stenetorp P, Riedel S. Convolu- +tional 2d knowledge graph embeddings. In AAAI, number 1, +2018. +[31] Guo L, Sun Z, Hu W. Learning to exploit long-term rela- +tional dependencies in knowledge graphs. In ICML, 2019, +pp. 2505–2514. +[32] Shang C, Tang Y, Huang J, Bi J, He X, Zhou B. End-to-end +structure-aware convolutional networks for knowledge base +completion. In AAAI, number 01, 2019, pp. 3060–3067. +[33] Shi B, Weninger T. Proje: Embedding projection for knowl- +edge graph completion. In AAAI, number 1, 2017. +[34] Wang Q, Huang P, Wang H, Dai S, Jiang W, Liu J, Lyu +Y, Zhu Y, Wu H. Coke: Contextualized knowledge graph +embedding. preprint, arXiv:1911.02168, 2019. +[35] Guo S, Wang Q, Wang B, Wang L, Guo L. Semantically +smooth knowledge graph embedding. +In ACL-IJCNLP, +2015, pp. 84–94. +[36] Xie R, Liu Z, Sun M. +Representation learning of knowl- +edge graphs with hierarchical types. +In IJCAI, 2016, pp. +2965–2971. +[37] Hao J, Chen M, Yu W, Sun Y, Wang W. Universal repre- +sentation learning of knowledge bases by jointly embedding +instances and ontological concepts. In SIGKDD, 2019, pp. +1709–1719. +[38] Fatemi B, Ravanbakhsh S, Poole D. Improved knowledge +graph embedding using background taxonomic information. +In AAAI, number 01, 2019, pp. 3526–3533. +[39] Veira N, Keng B, Padmanabhan K, Veneris A G. Unsuper- +vised embedding enhancements of knowledge graphs using +textual associations. In IJCAI, 2019, pp. 5218–5225. +[40] Guo S, Wang Q, Wang L, Wang B, Guo L. Jointly embed- +ding knowledge graphs and logical rules. In EMNLP, 2016, +pp. 192–202. +[41] Wang M, Rong E, Zhuo H, Zhu H. Embedding knowledge +graphs based on transitivity and asymmetry of rules. +In +PAKDD, 2018, pp. 141–153. +[42] Guo S, Wang Q, Wang L, Wang B, Guo L. Knowledge graph +embedding with iterative guidance from soft rules. In AAAI, +number 1, 2018. + +16 +[43] Qu M, Tang J. Probabilistic logic neural networks for rea- +soning. In NeurIPS, 2019. +[44] Ding B, Wang Q, Wang B, Guo L. Improving knowledge +graph embedding using simple constraints. In ACL, 2018, +pp. 110–121. +[45] Xu X, Feng W, Jiang Y, Xie X, Sun Z, Deng Z. Dynamically +pruned message passing networks for large-scale knowledge +graph reasoning. In ICLR, 2020. +[46] De Raedt L, Kersting K. Probabilistic inductive logic pro- +gramming. In Probabilistic Inductive Logic Programming, +pp. 1–27. 2008. +[47] Lin Y, Liu Z, Luan H, Sun M, Rao S, Liu S. Modeling re- +lation paths for representation learning of knowledge bases. +In EMNLP, pp. 705–714. +[48] Minervini P, Costabello L, Mu˜noz E, Nov´acek V, Vanden- +bussche P. Regularizing knowledge graph embeddings via +equivalence and inversion axioms. In ECML-PKDD, 2017, +pp. 668–683. +[49] Zhang Z, Cai J, Zhang Y, Wang J. Learning hierarchy-aware +knowledge graph embeddings for link prediction. In AAAI, +2020, pp. 3065–3072. +[50] Niu G, Li B, Zhang Y, Pu S. +CAKE: A Scalable +Commonsense-Aware Framework For Multi-View Knowl- +edge Graph Completion. In ACL, 2022, pp. 2867–2877. +[51] Yang J, Ying X, Shi Y, Tong X, Wang R, Chen T, Xing +B. Knowledge Graph Embedding by Adaptive Limit Scor- +ing Loss Using Dynamic Weighting Strategy. In ACL, 2022, +pp. 1153–1163. + diff --git a/ldE0T4oBgHgl3EQf7wLZ/content/tmp_files/load_file.txt b/ldE0T4oBgHgl3EQf7wLZ/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..4a60e42fd7e0f932714a8df3ab14adc2bbc18b16 --- /dev/null +++ b/ldE0T4oBgHgl3EQf7wLZ/content/tmp_files/load_file.txt @@ -0,0 +1,947 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf,len=946 +page_content='Knowledge Reasoning via Jointly Modeling Knowledge Graphs and Soft Rules Yinyu Lan, Shizhu He, Kang Liu, Jun Zhao Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' Abstract Knowledge graphs (KGs) play a crucial role in many applications, such as question answering, but incom- pleteness is an urgent issue for their broad application.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' Much research in knowledge graph completion (KGC) has been performed to resolve this issue.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' The methods of KGC can be classified into two major categories: rule-based reasoning and embedding-based reasoning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' The former has high accuracy and good interpretability, but a major challenge is to obtain effective rules on large-scale KGs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' The latter has good efficiency and scalability, but it relies heavily on data richness and cannot fully use domain knowledge in the form of logical rules.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' We propose a novel method that injects rules and learns representations iteratively to take full advantage of rules and embeddings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' Specifically, we model the conclusions of rule groundings as 0-1 variables and use a rule confidence regularizer to remove the uncertainty of the conclusions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' The proposed approach has the following advantages: 1) It combines the benefits of both rules and knowledge graph embeddings (KGEs) and achieves a good balance between efficiency and scalability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' 2) It uses an iterative method to continuously improve KGEs and remove incorrect rule conclusions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' Evaluations on two public datasets show that our method outperforms the current state-of-the-art methods, improving performance by 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='7% and 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='3% in mean reciprocal rank (MRR).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' Keywords Distributed representation, Knowledge graph, Link prediction, Logical rule 1 Introduction A knowledge graph (KG) organizes knowledge as a set of interlinked triples, and a triple ((head entity, relation, tail entity), simply represented as (h, r, t)) in- dicates the fact that two entities have a certain relation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' Rich structured and formalized knowledge has become a valuable resource to support downstream tasks, for example, question answering [1, 2] and recommender systems [3, 4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' Although KGs such as DBpedia [5], Freebase [6] and NELL [7] contain large amounts of entities, relations, and triples, they are far from complete, which is an urgent issue for their broad application.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' To address this, the task of knowledge graph completion (KGC) has been proposed and has attracted growing atten- tion;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' it utilizes knowledge reasoning techniques to per- form automatic discovery of new facts based on existing facts in a KG [8].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' At present, the methods of KGC can be classified into two major categories: 1) One type of method uses explicit reasoning rules;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' it obtains the reasoning rules through inductive learning and then deductively infers new facts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' 2) Another method is based on representa- tion learning instead of directly modeling rules, aiming to learn a distributed embedding for entities and rela- tions and perform generalization in numerical space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' Rule-based reasoning is accurate and can provide interpretability for the inference results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' Domain ex- perts can handcraft these rules [9] or can mine them from the KG with an induction algorithm such as AMIE [10].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' Traditional methods such as expert sys- tems [11, 12] use hard logical rules to make predictions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' For example, as shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' 1, given the logical rule (x, born in, y)∧(y, city of, z) ⇒ (x, nationality, z) and the two facts that (Chicago, city of, USA) and (Mary, born in, Chicago), we can infer the fact (Mary, nation- ality, USA).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' A large number of new facts (conclusions) can be derived based on forward chaining inference.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' Regular Paper arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='02781v1 [cs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='AI] 7 Jan 2023 2 However, for large-scale KGs, sufficient and effective reasoning rules are difficult and expensive to obtain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' Moreover, in many cases, the logical rules may be im- perfect or even self-contradictory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' Therefore, it is es- sential to model the uncertainty of (soft) logical rules effectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' The methods of determining KGEs learn to embed entities and relations into a continuous low-dimensional space [13, 14].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' These embeddings retain the semantic meaning of entities and relations, which can be used to predict missing triples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' In addition, they can be effec- tively trained using stochastic gradient descent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' How- ever, this kind of method cannot fully use logical rules, which compactly encode domain knowledge and are helpful in various applications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' Good embedding relies heavily on data richness, so these methods have diffi- culty learning useful representations for sparse entities [15, 16].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' In fact, both rule-based methods and embedding- based methods have advantages and disadvantages in the KGC task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' Logical rules are accurate and inter- pretable, and embedding is flexible and computation- ally efficient.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' To achieve more precise knowledge com- pletion, recently, there has also been research on com- bining the advantages of logical rules and KGEs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' Mixed techniques can infer missing triples effectively by ex- ploiting and modeling uncertain logical rules.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' Some existing methods have aimed to iteratively learn KGEs and rules [16], and some other methods also utilize soft rules or groundings of rules to regularize the learning of KGEs [17, 18].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' Knowledge Graph Rules Weights ∀𝑥, 𝑦 ∶ (𝑥, child_of, 𝑦) ⇒ (𝑦, parent_of, 𝑥) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='9 ∀𝑥, 𝑦, 𝑧 ∶ (𝑥, born_in, 𝑦) ⋀ (𝑦, city_of, 𝑧) ⇒ (𝑥, nationality, 𝑧) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='8 ∀𝑥, 𝑦, 𝑧 ∶ (𝑥, child_of,𝑧) ⋀ (𝑦, child_of,𝑧) ⇒ (𝑥, sister_of,𝑧) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='5 … … Facts Weights (Mary, parent_of, Lisa) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='9 (Mary, parent_of, Mike) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='9 (Mary, nationality, USA) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='8 (Nacy, nationality, USA) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='8 (Lisa, sister_of, Nancy) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='5 (Mike, sister_of, Nancy) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='5 … … Facts Weights (Mary, parent_of, Lisa) 1 (Mary, parent_of, Mike) 1 (Mary, nationality, USA) 1 (Nacy, nationality, USA) 0 (Lisa, sister_of, Nancy) 1 (Mike, sister_of, Nancy) 0 … Chicago Boston Mary Lisa Nancy Mike USA born_in nationality child_of city_of Previous Works This Work … … KGE Uncertain Conclusions Deterministic Conclusions Uncertain Rules induction deduction completion Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' We propose a novel iterative knowledge reasoning frame- work by fusing logical rules into a KGE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' Previous methods asso- ciate each conclusion with a weight derived from the correspond- ing rule.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' In contrast, our method can infer which conclusion is true via jointly modeling the deterministic KG and uncertain soft rules.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' The integration of logical rules and knowledge graph embeddings can achieve more efficient and accurate knowledge completion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' Current methods model uncer- tain rules and add soft labels to conclusions by t-norm- based fuzzy logic [19];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' they further utilize the conclu- sions to perform forward reasoning [17] or to enhance the KGE [16].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' However, in most KGs, the facts are deterministic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' Therefore, we believe that rules are un- certain but conclusions are deterministic in knowledge reasoning, as shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' 1;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' each fact is only abso- lutely true or false.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' Previous methods associate each conclusion with a weight derived from the correspond- ing rule.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' In contrast, we propose inferring that all conclusions are true (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=', (Mary, nationality, USA)) or not (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=', (Mike, sister of, Nancy)) (the other fact, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=', (Mike, gender, male), indicates that Mike is not Nancy’s sister) by jointly modeling the deterministic KG and soft rules.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' Specifically, we first mine soft rules from the knowl- edge graph and then infer conclusions as candidate facts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' Second, the KG, conclusions, and weighted rules are also used as resources to learn embeddings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' Third, through the definition of deterministic conclusion loss, the conclusion labels are modeled as 0-1 variables, and MODEL KNOWLEDGE GRAPH AND RULES FOR REASONING 3 the confidence loss of a rule is also used to constrain the conclusions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' Finally, the embedding learning stage removes the noise in the candidate conclusions, and then the proper conclusions are added back to the orig- inal KG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' The above steps are performed iteratively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' We empirically evaluate the proposed method on pub- lic datasets from two real large-scale KGs: DBpedia and Freebase.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' The experimental results show that our method Iterlogic-E (Iterative using logic rule for rea- soning and learning Embedding) achieves state-of-the- art results on multiple evaluation metrics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' Iterlogic-E also achieves improvements of 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='7%/4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='3% in mean re- ciprocal rank (MRR) and 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='0%/4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='0% in HITS@1 com- pared to the state-of-the-art model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' In summary, our main contributions are as follows: We propose a novel KGC method, Iterlogic-E, which jointly models logical rules and KGs in the framework of a KGE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' Iterlogic-E combines the ad- vantages of both rules and embeddings in knowl- edge reasoning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' Iterlogic-E models the conclusion labels as 0-1 variables and uses a confidence reg- ularizer to eliminate the uncertain conclusions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' We propose a novel iterative learning paradigm that achieves a good balance between efficiency and scalability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' Iterlogic-E not only makes the KG denser but can also filter incorrect conclu- sions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' Compared with traditional reasoning methods, Iterlogic-E is more interpretable in determining conclusions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' It not only knows why the conclu- sion holds but also knows which is true and which is false.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' We empirically evaluate Iterlogic-E with the task of link prediction on multiple benchmark datasets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' The experimental results indicate that Iterlogic-E can achieve state-of-the-art results on multiple evaluation metrics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' The qualitative anal- ysis proves that Iterlogic-E is more robust for rules with different confidence levels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' 2 Related Work Knowledge reasoning aims to infer certain entities over KGs as the answers to a given query.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' A query in KGC is a head entity h (or a tail entity t) and a rela- tion r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' Given (h, r, ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=') (or (?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=', r, t)), KGC aims to find the right tail entity t (or head entity h) in the KG that satisfies the triple (h, r, t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' Next, we review the three most relevant classes of KGC methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='1 Rule-Based Reasoning Logical rules can encode human knowledge com- pactly, and early knowledge reasoning was primarily based on first-order logical rules.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' Existing rule-based reasoning methods have primarily utilized search-based inductive logic programming (ILP) methods, usually searching and pruning rules.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' Based on the partial com- pleteness assumption, AMIE [10] introduces a revised confidence metric, which is well suited for modeling KGs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' By query rewriting and pruning, AMIE+ [20] is optimized to expand to larger KGs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' Additionally, AMIE+ improves the precision of the forecasts by using joint reasoning and type information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' In this paper, we employ AMIE+1 to mine horn rules from a KG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' Rule- based reasoning methods can be combined with multi- ple probability graph models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' A Markov logic network (MLN) [21] is a typical model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' Based on preprovided rules, it builds a probabilistic graph model and then learns the weights of rules.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' However, due to the com- plicated graph structure among triples, the reasoning in an MLN is time-consuming and difficult, and the incom- 1https://github.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='com/lajus/amie 4 pleteness of KGs also impacts the inference results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' In contrast, Iterlogic-E uses rules to enhance KGEs with more effective inference.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='2 Embedding-Based Reasoning Recently, embedding-based methods have attracted much attention;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' they aim to learn distributed em- beddings for entities and relations in KGs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' Gener- ally, current KGE methods can be divided into three classes: 1) translation-based models that learn em- beddings by translating one entity into another en- tity through a specific relation [22, 23];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' 2) composi- tional models that use simple mathematical operations to model facts, including linear mapping [24], bilinear mapping [25, 26, 27], and circular correlation [28];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' 3) neural network-based models that utilize a multilayer neural structure to learn embeddings and estimate the plausibility of triples with nonlinear features, for exam- ple, R-GCN [29], ConvE [30] and and so on [31, 32, 33].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' The above methods learn representations based only on the triples existing in KGs, and the sparsity of data lim- its them.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' To solve this problem and learn semantic-rich representations, recent works further attempted to in- corporate information beyond triples, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=', contextual information [34], entity type information [35, 36], on- tological information [37], taxonomic information [38], textual descriptions [39] and hierarchical information [49].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' In contrast, the proposed Iterlogic-E uses em- beddings to remove incorrect conclusions obtained by rules, which combines the advantages of rules and em- beddings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='3 Hybrid Reasoning Both rule-based and embedding-based methods have advantages and disadvantages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' Recent works have integrated these two kinds of reasoning methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' Guo et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' [40] attempted to learn a KGE from rule ground- ings and triples together.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' Wang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' [41] used asym- metric and transitive information to approximately or- der relations by maximizing the margin between neg- ative and positive logical rules.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' Zhang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' [17] and Guo et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' [42] obtained KGEs with supervision from soft rules, proving the effectiveness of logical rules.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' Qu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' [43] used an MLN to model logical rules and in- ferred new triples to enhance KGEs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' Guo et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' [18] enhanced KGEs by injecting grounding rules.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' Niu et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' [50] enhanced KGEs by extracting commonsense from factual triples with entity concepts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' In addition, some previous methods that enhance embeddings by it- erative learning were studied in early works.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' Zhang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' [16] aimed to improve a sparse entity representation through iterative learning and update the confidence of rules through embeddings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' In contrast, Iterlogic-E models the conclusion labels as 0-1 variables and uses confidence regularization loss to eliminate the uncertain conclusions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' Such labels are easier to train on.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' 3 The Proposed Method This section introduces our proposed method Iterlogic-E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' We first give an overview of our method, including the entire iterative learning process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' Then, we detail the two parts of Iterlogic-E: rule mining and reasoning and embedding learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' Last, we discuss the space and time complexity of Iterlogic-E and dis- cuss connections to related works [16, 17].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='1 Overview Given a KG G = {E, R, T }, T = {(h, r, t)}, r ∈ R is a relation and h, t ∈ E are entities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' As discussed in Section 1, on the one hand, embedding learning meth- ods do not make full use of logical rules and suffer from data sparsity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' On the other hand, precise rules are dif- ficult to obtain efficiently and cannot cover all facts in KGs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' Our goal is to improve the embedding quality by MODEL KNOWLEDGE GRAPH AND RULES FOR REASONING 5 Chicago Boston Mary Lisa Nancy Mike USA born_in nationality child_of city_of Rules Weights ∀𝑥, 𝑦 : (𝑥, child_of, 𝑦) ⇒ (𝑦, parent_of, 𝑥) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='9 ∀𝑥, 𝑦, 𝑧 : (𝑥, born_in, 𝑦) ⋀ (𝑦, city_of, 𝑧) ⇒ (𝑥, nationality, 𝑧) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='8 ∀𝑥, 𝑦, 𝑧 : (𝑥, child_of,𝑧) ⋀ (𝑦, child_of,𝑧) ⇒ (𝑥, sister_of,𝑧) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='5 … … Conclusions Adjusted weights (Mary, parent_of, Lisa) 1 (Mary, parent_of, Mike) 1 (Mary, nationality, USA) 1 (Nacy, nationality, USA) 0 (Lisa, sister_of, Nancy) 1 (Mike, sister_of, Nancy) 0 … … Groundings of rules Rule weights (Mary, born_in,Chicago) ⋀ (Chicago, city_of, USA) ⇒ (Mary, nationality, USA) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='9 (Nacy, born_in,Bostan) ⋀ (Bostan, city_of, USA) ⇒ (Nacy, nationality, USA) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='9 (Lisa, child_of,Mary) ⇒ (Mary, parent_of, Lisa) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='8 (Mike, child_of,Mary) ⇒ (Mary, parent_of, Mike) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='8 (Lisa, child_of,Mary) ⋀ (Nancy, child_of, Mary) ⇒ (Lisa, sister_of, Nancy) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='5 (Lisa, child_of,Mary) ⋀ (Mike, child_of, Mary) ⇒ (Mike, sister_of, Nancy) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='5 … … … … joint embedding learning (§3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='2) triple injecting (§3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='1) rule mining (§3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='1) rule reasoning (§3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='2) conclusion filtering (§3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='1) Knowledge Graph Knowledge Graph Embedding Groundings of Rules Soft Rules Reasoning Conclusions Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' The framework details Iterlogic-E with two iterative stages: (i) rule mining and reasoning and (ii) embedding learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' Stage (i) generates rules and grounding rules to obtain new conclusions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' Stage (ii) jointly models the conclusions of grounding rules and the KG in learning embeddings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' After embedding learning, the conclusions are injected into the KG, and then the rule reasoning module is executed to start the next round of iterative training explicitly modeling the reasoned conclusions of logical rules, removing incorrect conclusions, and improving the confidence of the rules at the same time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' Figure 2 shows the overview of Iterlogic-E given a toy knowledge graph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' Iterlogic-E is a general framework that can fuse different KGE models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' Iterlogic-E has two iterative steps: (i) rule mining and reasoning and (ii) embedding learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' In the rule mining and reasoning step, there are two modules: rule mining and rule reasoning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' The mining configuration, such as the maximum length of rules and the confi- dence threshold of rules, and KG triples are input to the rule mining module.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' Then, it automatically ob- tains the soft rules from these inputs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' The KG triples and the extracted soft rules are input into the rule rea- soning module to infer new triples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' After that, the new triples are appended to the embedding learning step as candidate conclusions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' In the embedding learning step, relations are modeled as a linear mapping operation, and triple plausibility is represented as the correlation between the head and tail entities after the operation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' Finally, the incorrect conclusions are filtered out by la- beling the conclusions with their scores2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' The right con- clusion will be added back to the original KG triples, and then the rule reasoning module is performed to start the next cycle of iterative training.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='2 Rule Mining and Reasoning The first step is composed of the rule mining mod- ule and the rule reasoning module.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' We introduce these two modules in detail below.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='1 Rule Mining We extract soft rules from the KG using the state-of- the-art rule mining method AMIE+ [20] in this module.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' 2In the experiments, we choose the conclusion with a normalized score of more than 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='99 as the true conclusion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' 6 AMIE+ applies principal component analysis (PCA) confidence to estimate the reliability of a rule since its partial completeness assumption is more suited to real- world KGs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' Additionally, AMIE+ defines a variety of restriction types to help extract applicable rules, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=', the maximum length of the rule.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' After the rule mining module receives the KG triples and the mining config- uration, it executes the AMIE+ algorithm and outputs soft rules.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' Although rules can be re-mined in each it- eration, we only run the rule mining module once for efficiency reasons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='2 Rule Reasoning The logical rule set is denoted as F = {(f, c)}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' f is in the form of ∀x, y, z : (x, rp1, y) ∧ (y, rp2, z) c⇒ (x, rc, z).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' x, y and z represent variables of different entities, and rp1, rp2 and rrc represent different rela- tions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' The left side of the symbol ⇒ is the premise of the rule, which is composed of several connected atoms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' The right side is only a single atom, which is the rule’s conclusion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' The horn rules are closed [25], where continuous relations share the intermediate en- tity and the first and last entities of the premise ap- pear as the head and tail entities of the conclusion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' Such rules can provide interpretive insights.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' A rule’s length is equal to the number of atoms in the premise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' For example, ∀x, y, z : (x, bornin, y) ∧ (y, city, z) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='8 ⇒ (x, nationality, z) is a length-2 rule.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' This rule reflects the reality that, most likely, a person’s nationality is the country in which he or she was born.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' The rule f has a confidence level of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' The higher the confidence of the rule, the more likely it is to hold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' The reasoning procedure consists of instantiating the rule’s premise and obtaining a large number of fresh conclusion triples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' One of the most common approaches is forward chaining, also known as the match-select- act cycle, which works in three-phase cycles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' Forward chaining matches the currently existing facts in the KG with all known rule premises in one cycle to determine the rules that can be satisfied.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' Finally, the selected rule’s conclusions are derived, and if the conclusions are not already in the KG, they are added as new facts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' This cycle should be repeated until no new conclusions emerge.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' However, if soft rules are used, forward chain reasoning will lead to incorrect conclusions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' Therefore, we run one reasoning cycle in every iteration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='3 Embedding Learning In this section, we present a joint embedding learn- ing approach that allows the embedding model to learn from KG triples, conclusion triples, and soft rule con- fidence all at the same time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' First, we will examine a basic KGE model, and then we will describe how to incorporate soft rule conclusions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' Finally, we detail the overall training goal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='1 A Basic KGE Model Different KGE models have different score func- tions that aim to obtain a suitable function to map the triple score to a continuous true value in [0, 1], i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=', φ : E × R × E → (0, 1), which indicates the probabil- ity that the triple holds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' We follow [17, 18] and choose ComplEx [26] as a basic KGE model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' It is important to note that our proposed framework can be combined with an arbitrary KGE model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' Theoretically, using a better base model can continue improving performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' Therefore, We also experiment with RotatE as a base model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' Below we take ComplEx as an example to in- troduce.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' ComplEx assumes that the entity and relation embeddings exist in a complex space, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=', e ∈ Cd and r ∈ Cd, where d is the dimensionality of the complex space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' Using plurals to represent entities and relations can better model antisymmetric and symmetric rela- tions (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=', kinship and marriage) [26].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' Through a mul- MODEL KNOWLEDGE GRAPH AND RULES FOR REASONING 7 tilinear dot product, ComplEx scores every triple: F(h, r, t) = Re(hTdiag(r)¯t) = Re(� i[h]i[r]i[t]i), (1) where the Re(·) function takes the real part of a complex value and the diag(·) function constructs a di- agonal matrix from r;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' ¯t is the conjugate of t;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' and [·]i is the i-th entry of a vector.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' To predict the probability, ComplEx further uses the sigmoid function for normal- ization: φ(h, r, t) = σ(F(h, r, t)) = σ(Re(hTdiag(r)¯t)), (2) where σ(·) is the sigmoid function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' By minimizing the logistic loss function, ComplEx learns the relation and entity embeddings: � (h,r,t)∈T ∪T ′ log(1 + exp(−yhrt · f(h, r, t))), (3) where T ′ is a set of sampled negative examples and yhrt is the label of a positive or negative triple.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='2 Joint Modeling KG and Conclusions of Soft Rules To model the conclusion label as a 0-1 variable, based on the current KGE model’s scoring function, we follow ComplEx and use the function f(·) as the scoring function for conclusion triples: Si = σ(F(hi, ri, ti)), (hi, ri, ti) ∈ Cf, (4) where Cf is the set of conclusion triples derived from rule f and F(·) is the score function defined in Equa- tion (1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' Aiming to regularize this scoring function so that it approaches 0 or 1, and to distinguish between true and false conclusions, we use a quadratic function with a symmetry axis of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' Therefore, the conclusion score is the smallest when it is close to 0 or 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' There- fore, we define the deterministic conclusion loss Ldc as follows: Ldc = − 1 |Cf| � (hi,ri,ti)∈Cf ∥Si − 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='5∥2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' (5) According to the definition of rule confidence in [10], the confidence of a rule f in a KB G is the proportion of true conclusions among the true conclusions and false conclusions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' Therefore, we can define the confidence loss of a rule as follows: Lrc = ������ 1 |Cf| � (hi,ri,ti)∈Cf Si − cf ������ 2 , (6) where cf is the confidence of rule f.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' Therefore, the loss of the conclusions of all the rules Lac can be defined as follows: Lac = 1 |F| � f∈F (Ldc + Lrc), (7) where F is the set of all rules.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' To learn the KGE and rule conclusions at the same time, we minimize the global loss over a soft rule set F and a labeled triple set L = (xl, yl) (including negative and positive examples).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' The overall training objective of Iterlogic-E is: min θ 1 |L| � (xl,yl)∈L L(−f(xl) · yl) + 1 |F| � f∈F (− 1 |Cf| � (hi,ri,ti)∈Cf ∥Si − 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='5∥2 + ������ 1 |Cf| � (hi,ri,ti)∈Cf Si − cf ������ 2 ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' (8) where the f(·) function denotes the score function and L(x) = log(1 + exp(x)) is the soft-plus function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' In Al- gorithm 1, we detail the embedding learning procedure of our method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' To avoid overfitting, we further impose l2 regularization on embedding Θ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' Following [44, 18], we also imposed nonnegative constraints (NNE) on the 8 entity embedding to learn more effective features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' Algorithm 1: Iterative learning algorithm of Iterlogic-E Input: KG triples T = {(ei, rk, ej)}, logical rules F = {(fp, cp)}, the number of iterative learning steps M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' Output: Relation and entity embeddings Θ 1 Randomly initialize relation and entity embeddings Θ(0);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' 2 for n ← 1 to N do 3 C ← ∅;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' 4 if n/[N/M] == 0 then 5 Generate a set of conclusions C′ = {(e′ i, r′ k, e′ j)} by rule grounding from T , F;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' 6 C = C ∪ C′;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' 7 end 8 Sample a mini-batch T b, Cb from T , C;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' 9 Generate a set of negative triples T b neg;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' 10 Lb ← ∅;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' 11 for each xl ∈ T b neg ∪ T b ← 1 to N do 12 yl = +1/ − 1;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' 13 Lb ← Lb ∪ (xl, yl);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' 14 end 15 Θ(n) ← Θ(n−1) − η( 1 |Lb| � (xl,yl)∈Lb ▽ΘL(−f(xl) · yl) + 1 |F| � f∈F(− 1 |Cf | � (hi,ri,ti)∈Cf ▽Θ ∥Si − 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='5∥2+ ▽Θ ��� 1 |Cf | � (hi,ri,ti)∈Cf Si − cf ��� 2 ) ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' !' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' (8) 16 Ct ← ∅;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' 17 for each xm ∈ C do 18 if σ(f(xm)) >= 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='99 then 19 Ct ∪ (xm);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' 20 end 21 end 22 T = T ∪ Ct;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' 23 end 24 return Θ(N) 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='4 Discussion 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='1 Complexity In the embedding learning step, we represent re- lations and entities as complex value vectors, follow- ing ComplEx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' As a result, the space complexity is O(ned + nrd), where d is the embedding space’s di- mensionality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' The number of relations is nr, and the number of entities is ne.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' Each iteration of the learning process has a time complexity of O(nld + ncd), where nl/nc is the number of new conclusions or the number of labeled triples in a mini-batch, as shown in Algorithm 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' Iterlogic-E is similar to ComplEx in that its space and time complexity increase linearly with d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' The num- ber of new conclusions in a minibatch is usually con- siderably lower than the number of initial triples;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=', nc ≪ nl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' As a result, Iterlogic-E’s time complexity is very close to that of ComplEx, which needs only O(nld) per iteration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' Because of the rule mining module’s great efficiency and practical constraints, such as the PCA confidence threshold not being lower than 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='5 and the length of rules not exceeding two, the rule grounding stage’s space and time complexity is trivial compared to that of the embedding learning stage.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' Therefore, we may disregard it when considering the space and time complexity of Iterlogic-E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='2 Connection to Related Works IterE [16] also uses iterative learning, which defines several types of rules with OWL2, but IterE does not change the process of embedding learning and is limited by rules that will yield many noisy conclusions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' IterE uses a pruning strategy that utilizes traversal and ran- dom selection to obtain rules.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' Moreover, they only im- prove the prediction effect of sparse entities but not well on standard datasets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' By contrast, Iterlogic-E uses the SOTA rule mining system [20] to mine high-confidence rules, and the quality of the rules obtained in this way is higher because it uses the KG to fully evaluate the reliability of the rules.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' SoLE [17] enhances KGE by jointly modeling the groundings of rules and facts and directly utilizes uncertain rules for forward chain rea- soning without eliminating incorrect grounding.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' More- over, SoLE uses t-norm based fuzzy logic [19] to model grounding, which will greatly increase the time com- plexity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' The method we propose avoids the above men- MODEL KNOWLEDGE GRAPH AND RULES FOR REASONING 9 tioned problems without increasing the number of pa- rameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' SLRE [18] uses rule-based regularization that merely enforces relation to satisfying constraints intro- duced by soft rules.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' However, it does not use rules for reasoning and can not benefit from the interpretability and accuracy advantages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' Moreover, SLRE has strict requirements on the form of the rules, while our method can utilize various forms of rules more simply and flex- ibly via the rule reasoning module.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' 4 Experiments and Results 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='1 Datasets Iterlogic-E is tested on two common datasets: FB15K and DB100K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' The first is based on Freebase, which was released by Bordes et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' [22].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' The sec- ond was taken from DBpedia by Ding et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' [44], and it includes 99,604 entities and 470 relations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' For model training, hyperparameter tuning and evaluation, we utilize fixed training, validation, and test sets on both datasets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' With each training dataset, we obtain soft rules and examine rules with a length of no more than 2 to allow efficient extraction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' These rules, together with their confidence levels, are automatically retrieved from each dataset’s training set using AMIE+ [20], and only those with confidence levels greater than 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='8 are used.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' Shorter rules are thought to more directly represent logical con- nections among relations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' Therefore, we remove longer rules when all of their relations also exist in shorter ones.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' Table 1 summarizes the datasets’ comprehen- sive statistics, and Table 2 also includes several rule instances.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' We can observe from the statistics that the number of rules on both datasets is extremely minimal when compared to the number of triples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' Table 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' Statistics of the datasets, where the columns repre- sent the numbers of entities, relations, training/validation/test triples, and soft rules Dataset # Ent # Rel # Train/Valid/Test # Rule FB15K 14,951 1,345 483,142/50,000/59,071 441 DB100K 99,604 470 597,572/50,000/50,000 25 Table 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' Examples of rules, with confidences, that were ex- tracted from FB15K (top) and DB100K (bottom) /location/contains(y, x) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='84 ⇒ /location/containedby(x,y) /production company/films(y, x) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='89 ⇒ /location/ containedby(x,y)/hud county place/place(x, y)∧ hud county place/county(y, z) 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='0 ⇒ /hud county place/county(x, z) sisterNewspaper(x, y)∧sisterNewspaper(z, y) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='82 ⇒ sisterNewspaper(x, z) distributingCompany(x, y) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='91 ⇒ distributingLabel(x, y) nationality(x, y) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='99 ⇒ stateOfOrigin(x, y) 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='2 Link Prediction Our method was evaluated on link prediction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' The goal of this task was to restore a missing triple (ei, rk, ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=') with the tail entity ej or (?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=', rk, ej) with the head entity ei.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='1 Evaluation Protocol The standard protocol established by [22] is used for evaluation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' The head entity ei is replaced with each entity for every test triple (ei, rk, ej), and the corrupted triple’s score is calculated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' We record the rank of the right entity ei by ranking these scores in decreasing order.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' The mean reciprocal rank (MRR) and the per- centage of ranks no greater than N (H@N, N = 1, 3, 10) are used to evaluate the ranking quality of all test triples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='2 Comparison Settings We compare the performance of our method to that of a number of previous KGE models, as shown in Table 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' The translation-based model (row 1), the composi- 10 Table 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' Link prediction results on the test sets of FB15K and DB100K Method FB15K DB100K MRR HITS@1 HITS@3 HITS@10 MRR HITS@1 HITS@3 HITS@10 1 TransE [22] 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='380 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='231 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='472 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='641 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='111 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='016 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='164 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='270 2 DistMult [25] 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='654 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='546 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='733 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='824 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='233 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='115 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='301 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='448 3 HolE [28] 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='524 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='402 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='613 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='739 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='260 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='182 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='309 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='4118 4 ComplEx [26] 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='627 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='550 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='671 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='766 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='272 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='218 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='303 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='362 5 ANALOGY [27] 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='725 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='646 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='785 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='854 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='252 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='143 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='323 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='427 6 ComplEx-NNE [44] 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='727 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='659 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='772 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='845 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='298 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='229 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='330 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='426 7 ComplEx-CAS [51] 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='866 8 RotatE [24] 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='664 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='551 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='751 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='841 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='327 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='200 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='417 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='526 9 HAKE[49] 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='408 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='312 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='463 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='579 10 CAKE[50] 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='741 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='646 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='825 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='896 11 R-GCN+ [29] 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='696 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='601 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='760 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='842 12 ConvE [30] 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='745 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='670 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='801 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='873 13 DPMPN[45] 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='764 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='726 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='784 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='834 14 BLP [46] 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='242 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='151 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='269 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='424 15 MLN [21] 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='321 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='210 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='370 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='550 16 PTransE [47] 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='679 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='565 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='768 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='855 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='195 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='063 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='278 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='416 17 KALE [40] 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='518 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='382 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='606 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='756 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='249 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='100 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='346 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='497 18 ComplExR [48] 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='253 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='167 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='294 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='420 19 TARE [41] 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='781 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='617 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='728 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='842 20 RUGE [42] 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='768 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='703 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='815 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='865 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='246 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='129 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='325 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='433 21 ComplEx-NNE+AER [44] 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='801 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='757 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='829 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='873 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='311 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='249 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='339 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='426 22 IterE [16] 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='576 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='443 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='665 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='818 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='274 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='215 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='299 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='386 23 pLogicNet [43] 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='776 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='706 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='817 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='885 24 SoLE [17] 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='801 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='764 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='821 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='867 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='306 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='248 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='328 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='418 25 SLRE [18] 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='810 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='774 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='829 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='871 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='340 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='261 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='372 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='490 Iterlogic-E(ComplEx) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='814 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='778 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='835 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='873 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='374 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='301 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='409 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='509 Iterlogic-E(RotatE) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='837 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='794 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='868 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='904 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='387 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='287 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='449 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='559 Table 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' Link prediction results on the test sets of FB15K-sparse Method FB15K-sparse MRR HITS@1 HITS@3 HITS@10 TransE 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='398 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='258 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='486 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='645 DistMult 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='600 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='618 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='651 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='759 ComplEx 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='616 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='540 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='657 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='761 IterE 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='628 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='551 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='673 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='771 SoLE 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='668 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='604 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='699 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='794 Iterlogic-E(ComplEx) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='674 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='611 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='701 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='800 tional models utilizing basic mapping operations (rows 2-10) and the neural network-based models (rows 11-13) are among the first batch of baselines that rely only on triples seen in the KGs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' The second batch of baselines are rule-based methods (rows 14-15).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' The last batch of baselines further incorporates logical rules (rows 16-25).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='3 Implementation Details On FB15K and DB100K, we compared Iterlogic- E against all of the baselines.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' We immediately ob- tained the results of a set of baselines on FB15K and MODEL KNOWLEDGE GRAPH AND RULES FOR REASONING 11 DB100K from SoLR, SLRE and CAKE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' We reimple- mented ComplEx on the PyTorch framework based on thebased on the code code3 supplied by [24] since our approach was dependent on it.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' Then, depending on our implementation, we provided the ComplEx re- sult.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' Furthermore, the IterE result was tested on the sparse version of FB15K (FB15K-sparse) released by [16], which included only sparse entities with 18,544 and 22,013 triples in the validation and test sets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' There- fore, we reimplemented IterE on FB15K and DB100K based on the code and hyperparameters4 released by the author.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' As a result, we compared our approach to IterE and SoLE on the FB15K-sparse dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' Both approaches use a logistic loss and optimize in the same way (SGD with AdaGrad).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' The other results of the baselines were obtained directly from prior literature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' We tuned the embedding dimensionality d within {100, 150, 200, 250, 300}, the number of negatives per posi- tive triple η within {2, 4, 6, 8, 10}, the initial learning rate γ within {10−4, 10−3, 10−2, 5 × 10−2, 10−1}, and the L2 regularization coefficient µ within {10−5, 3 × 10−5, 10−4, 10−3, 3−3, 10−2}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' We further tuned the margin within {0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='1, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='2, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='5, 1, 2, 5, 12, 18, 24} for the approaches that utilize the margin-based ranking loss.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' The best hyperparameters were selected to maxi- mize the MRR on the validation set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' The best settings for Iterlogic-E were d = 300, γ = 10−3, η = 10, and µ = 3×10−5 on FB15K and d = 300, γ = 10−4, η = 10, and µ = 10−4 on DB100K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='4 Main Results The results of all compared methods on the test sets of FB15K, DB100K, and FB15K-sparse are shown in Tables 3 and 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' For each test triple, the mean re- ciprocal rank or H@N value with N = 1, 3, 10 is uti- lized as paired data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' The experimental results show that 1) Iterlogic-E outperforms numerous strong base- lines in the vast majority of cases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' This shows that Iterlogic-E can achieve very good accuracy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' 2) Iterlogic- E significantly outperforms the basic models that use triples alone, and the improvement comes from the abil- ity to learn the conclusions obtained by soft rules.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' 3) Iterlogic-E also beats many baselines that incorporate logical rules.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' Specifically, Iterlogic-E performs better than SoLE and IterE under most metrics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' This demon- strates the superiority of Iterlogic-E in reducing the noise of candidate conclusions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' 4) IterE can only en- hance sparse entities, so the experimental results are much lower than those of other baseline models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' How- ever, Iterlogic-E is also effective on FB15K-sparse.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' 5) On DB100K, the improvements over SLRE and SoLE are more significant than those on FB15K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' The reason for this is probably that the groundings of the rules on DB100K contain more incorrect conclusions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' Sim- ple rules between a pair of relations are adequate to capture these simple patterns on the FB15K dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' 6) The performance of Iterlogic-E(ComplEx) is worse than some baselines in HIT@10, and we consider that this limitation is mainly due to the shortcomings of the base model ComplEx [26].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' Sun et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' [24] point out that ComplEx can not model the composition relation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' We have experimented with replacing the base model with the RotatE model(Iterlogic-E(RotatE)), which is capa- ble of modeling four relation patterns.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' The experimen- tal results have been further improved, and our method consistently achieves the best results in all evaluation metrics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' 3https://github.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='com/DeepGraphLearning/KnowledgeGraphEmbedding 4https://github.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='com/wencolani/IterE 12 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='5 Ablation Study Table 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' Ablation study DB100K MRR HITS@1 HITS@3 HITS@10 Iterlogic-E 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='374 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='301 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='409 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='509 1 w/o l2 on Θ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='323 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='278 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='342 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='409 2 w/o NNE 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='371 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='295 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='409 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='509 3 1+2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='324 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='279 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='342 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='410 4 w/o IL 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='372 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='300 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='407 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='505 5 w/o IL+Ldc 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='347 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='258 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='395 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='510 6 w/o IL+Lrc 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='351 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='257 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='406 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='515 7 w/o IL+Ldc+Lrc 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='328 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='279 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='348 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='422 8 Iterlogic-E* 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='369 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='298 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='404 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='502 9 ComplEx+AC+IL 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='285 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='223 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='312 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='407 10 ComplEx+WC+IL 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='295 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='231 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='327 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='422 ComplEx 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='272 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='218 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='303 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='362 To explore the influence of different constraints and iterative learning, we perform an ablation study of Iterlogic-E on DB100K with 9 configurations in Ta- ble 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' The first and second variants, compared to the completed model Iterlogic-E, remove the non-negativity and l2-norm constraints (l2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' The third setting is the combination setting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' The fourth removes iterative learning (IL), which uses a rule to reason only once.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' The fifth, sixth, and seventh variants remove the addi- tional loss item based on the sixth variant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' The eighth setting is another variant of the Iterlogic-E model based on the ninth setting, which is that after the ComplEx fitting, according to the scores of the conclusions, the top n (where n is the rounded product of the rule and its confidence) conclusions of each rule are selected to be added to the KG to continue training.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' The ninth setting (AC) is to add all conclusions inferred from the rules as positive examples, and the tenth setting (WC) is to use the rule confidence as soft labels of conclusions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' As seen in Table 5, we can conclude the following: 1) When removing NNE constraints, the performance of Iterlogic-E decreases slightly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' Without l2-norm con- straints on entities, the performance of Iterlogic-E de- grades by 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='3% in H@1 and by 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='1% in MRR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' One ex- planation may be that l2-norm constraints are sufficient to constrain embedding norms on DB100K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' However, the performance will suffer dramatically if there are no l2-norm constraints.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' 2) Removing iterative learn- ing decreases performance slightly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' One reason may be that the number of rules on DB100K is relatively small, so the number of conclusions added through it- erative learning is relatively small.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' 3) Removing the additional loss item of the conclusions decreases per- formance slightly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' This illustrates that Iterlogic-E can filter out incorrect conclusions and makes the KG dense.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' Surprisingly, even if we directly use ComplEx to filter and learn the conclusions that can achieve such high performance, this method is not as flexible as Iterlogic- E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' 4) Compared with the basic model, all variants have different degrees of improvement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' This demonstrates the critical importance of logical rules in link predic- tion tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='3 Influence of the Number of Iterations To demonstrate how Iterlogic-E can enhance the embedding effect during the training process, we show the link prediction results on DB100K with different iterations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' Figure 3 shows that as the number of train- ing iterations increases, the prediction results, including Hit@1, Hit@3, Hit@10, and MRR, will improve.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' From Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' 3, we can infer the following: 1) Iterative learn- ing enhances embedding learning since the quality of embeddings improved with time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' 2) In the first two iterations, the embedding learning module was quickly fitted to the conclusions of the rules and the triples of the training set, and the prediction accuracy rapidly improved.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' 3) After two iterations, as the number of new conclusions decreased, the results of the inference tended to be stable, and the true conclusions and the MODEL KNOWLEDGE GRAPH AND RULES FOR REASONING 13 initial KG triples were well preserved in the embedding.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' 0 2 4 6 8 10 Number of iterations 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='6 HIT@1 HIT@3 HIT@10 MRR Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' Link prediction results in different iterations 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='4 Influence of Confidence Levels Additionally, we evaluate the effect of the rules’ con- fidence thresholds on FB15K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' Since there are different rules and ComplEx does not merge rules, we refer only to their fixed results on FB15K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' We set all hyperparam- eters to their optimum values and change the confidence threshold within [0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='5, 1] in 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='05-step increments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' Both SoLE and Iterlogic-E use rules with confidence levels greater than this threshold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' Figure 4 displays the MRR and H@1 values obtained by Iterlogic-E and other base- lines on the FB15K test set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' We make the following observations: 1) Iterlogic-E beats both ComplEx and IterE at varying confidence levels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' This demonstrates that Iterlogic-E is sufficiently robust to deal with un- certain soft rules.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='5 Case Study In Table 6, we present a case study with 4 conclusions (true or false as predicted by Iterlogic- E), which are inferred with 2 rules during train- ing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' Table 6 shows some conclusions derived from rule inference and the score change (the average of the head entity prediction score and the tail en- tity prediction score) of the conclusions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' Using the first conclusion as an example, the true conclu- sion is (Albany Devils,/hockey roster position/posit on, Centerman), which is obtained by the rule ”/sports team roster/position(x, y) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='808 ⇒ / hockey roster position/position(x, y)”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' The Albany Devils are a professional ice hockey team in the American Hockey League 5, and the centerman is the center in ice hockey.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' Therefore, this is in- deed a true conclusion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' Compared to ComplEx, Iterlogic-E increased the score of this fact from 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='48 to 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' Also, (San Diego State Aztecs football, /hockey roster position/position,Linebacker) can be in- ferred from the fact (San Diego State Aztecs football, /sports team roster/ team, Linebacker) by the same rule.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' However, the San Diego State Aztecs are a foot- ball team, not a hockey team, and this is an incorrect conclusion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' Compared to ComplEx, Iterlogic-E de- creased the score of this fact from -4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='65 to -8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' This illustrates that Iterlogic-E can distinguish whether the conclusion is true and can improve the prediction per- formance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' Furthermore, Iterlogic-E has good inter- pretability, and we can understand why the conclusion is inferred by it.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' 5 Conclusion and Future Work This paper proposes a novel framework that itera- tively learns logical rules and embeddings, which mod- els the conclusion labels as 0-1 variables.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' The proposed Iterlogic-E uses the confidences of rules and the context of the KG to eliminate the uncertainty of the conclu- sion in the stage of learning embeddings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' Specifically, our method is based on iterative learning, which not only supplements conclusions but also filters incorrect conclusions, resulting in a good balance between effi- 5https://en.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='wikipedia.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='org/wiki/Albany_Devils 14 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='9 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='0 Confidence threshold 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='50 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='55 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='60 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='65 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='70 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='75 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='80 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='85 MRR ComplEx IterE SoLE Iterlogic-E (a) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='9 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='0 Confidence threshold 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='40 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='45 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='50 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='55 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='60 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='65 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='70 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='75 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='80 HIT@1 ComplEx IterE SoLE Iterlogic-E (b) Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' Results of MRR (a) and HITS@1 (b) achieved by Iterlogic-E with different confidence thresholds on FB15K Table 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' A case study with 4 conclusions (true or false as predicted by Iterlogic-E), which are reasoned on by 2 rules True False Conclusions (Albany Devils,/hockey roster position/ position,Centerman) (San Diego State Aztecs football,/hockey roster position/position,Linebacker) Predicted by rules /sports team roster/position(x, y) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='808 ⇒ /hockey roster position/position(x, y) Score change 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='4888 → 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='4039 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='6518 → -8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='3547 Conclusions (Chris Nurse,/football roster position/ team,Stevenage F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=') (Brett Favre,/football roster position/ team,Green Bay Packers) Predicted by rules /sports team roster/team(x, y) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='847 ⇒ /football roster position/team(x, y) Score change 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='8123 → 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='5991 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='0131 → -11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='3952 ciency and scalability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' The evaluation on benchmark KGs demonstrates that the method can learn correct conclusions and improve against a variety of strong baselines.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' In the future, we would like to explore how to use embeddings to learn better rules and rule con- fidences than AMIE+.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' Additionally, we will continu- ously explore more advanced models to integrate rules and KGEs for knowledge reasoning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' References [1] Berant J, Chou A, Frostig R, Liang P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' Semantic parsing on freebase from question-answer pairs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' In EMNLP, 2013, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' 1533–1544.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' [2] Huang X, Zhang J, Li D, Li P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' Knowledge graph embedding based question answering.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' In WSDM, 2019, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' 105–113.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' [3] Wang X, Wang D, Xu C, He X, Cao Y, Chua T S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' Explain- able reasoning over knowledge graphs for recommendation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' In AAAI, 01, 2019, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' 5329–5336.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' [4] Cao Y, Wang X, He X, Hu Z, Chua T S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' Unifying knowl- edge graph learning and recommendation: Towards a better understanding of user preferences.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' In WWW, 2019, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' 151– 161.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' [5] Auer S, Bizer C, Kobilarov G, Lehmann J, Cyganiak R, Ives Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' Dbpedia: A nucleus for a web of open data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' In SEMANT WEB, 2007, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' 722–735.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' [6] Bollacker K, Evans C, Paritosh P, Sturge T, Taylor J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' Free- base: a collaboratively created graph database for structur- ing human knowledge.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' In SIGMOD, 2008, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' 1247–1250.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' [7] Carlson A, Betteridge J, Kisiel B, Settles B, Hruschka E, Mitchell T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' Toward an architecture for never-ending lan- guage learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' In AAAI, number 1, 2010.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' [8] Ji S, Pan S, Cambria E, Marttinen P, Yu P S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' A survey on knowledge graphs: Representation, acquisition and applica- tions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' arXiv:2002.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='00388, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' [9] Taskar B, Abbeel P, Wong M F, Koller D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' Relational markov networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' Introduction to Statistical Relational Learning, 2007, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' 175–200.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' MODEL KNOWLEDGE GRAPH AND RULES FOR REASONING 15 [10] Gal´arraga L A, Teflioudi C, Hose K, Suchanek F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' Amie: association rule mining under incomplete evidence in onto- logical knowledge bases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' In WWW, 2013, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' 413–422.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' [11] Giarratano J C, Riley G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' Expert Systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' MA, United States: PWS Publishing, 1998.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' [12] Jackson P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' Introduction to Expert Systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' Boston: Addison-Wesley Longman Publishing, 1986.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' [13] Nickel M, Murphy K, Tresp V, Gabrilovich E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' A review of relational machine learning for knowledge graphs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' IEEE, 2016, 104(1):11–33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' [14] Wang Q, Mao Z, Wang B, Guo L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' Knowledge graph em- bedding: A survey of approaches and applications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' IEEE Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' Knowl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' Data, 2017, 29(12):2724–2743.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' [15] Pujara J, Augustine E, Getoor L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' Sparsity and noise: Where knowledge graph embeddings fall short.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' In EMNLP, 2017, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' 1751–1756.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' [16] Zhang W, Paudel B, Wang L, Chen J, Zhu H, Zhang W, Bernstein A, Chen H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' Iteratively learning embeddings and rules for knowledge graph reasoning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' In WWW, 2019, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' 2366–2377.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' [17] Zhang J, Li J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' Enhanced knowledge graph embedding by jointly learning soft rules and facts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' Algorithms, 2019, (12):265.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' [18] Guo S, Li L, Hui Z, Meng L, Ma B, Liu W, Wang L, Zhai H, Zhang H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' Knowledge graph embedding preserving soft logical regularity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' In CIKM, 2020, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' 425–434.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' [19] H´ajek P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' Metamathematics of Fuzzy Logic, volume 4 of Trends in Logic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' Boston: Kluwer, 1998.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' [20] Gal´arraga L, Teflioudi C, Hose K, Suchanek F M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' Fast rule mining in ontological knowledge bases with AMIE+.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' VLDB, 2015, (6):707–730.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' [21] Richardson M, Domingos P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' Markov logic networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' Mach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' Learn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=', 2006, (1–2):107–136.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' [22] Bordes A, Usunier N, Garcia-Duran A, Weston J, Yakhnenko O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' Translating embeddings for modeling multi- relational data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' In NeurIPS, 2013, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' 1–9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' [23] Yang S, Tian J, Zhang H, Yan J, He H, Jin Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' Transms: Knowledge graph embedding for complex relations by mul- tidirectional semantics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' In IJCAI, 2019, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' 1935–1942.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' [24] Sun Z, Deng Z H, Nie J Y, Tang J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' Rotate: Knowledge graph embedding by relational rotation in complex space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' In ICLR, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' [25] Yang B, Yih W, He X, Gao J, Deng L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' Embedding entities and relations for learning and inference in knowledge bases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' In Bengio Y, LeCun Y, editors, ICLR, 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' [26] Trouillon T, Welbl J, Riedel S, Gaussier ´E, Bouchard G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' Complex embeddings for simple link prediction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' In ICML, 2016, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' 2071–2080.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' [27] Liu H, Wu Y, Yang Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' Analogical inference for multi- relational embeddings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' In ICML, 2017, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' 2168–2178.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' [28] Nickel M, Rosasco L, Poggio T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' Holographic embeddings of knowledge graphs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' In AAAI, number 1, 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' [29] Schlichtkrull M, Kipf T N, Bloem P, Van Den Berg R, Titov I, Welling M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' Modeling relational data with graph convolu- tional networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' In ESWC, 2018, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' 593–607.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' [30] Dettmers T, Minervini P, Stenetorp P, Riedel S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' Convolu- tional 2d knowledge graph embeddings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' In AAAI, number 1, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' [31] Guo L, Sun Z, Hu W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' Learning to exploit long-term rela- tional dependencies in knowledge graphs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' In ICML, 2019, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' 2505–2514.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' [32] Shang C, Tang Y, Huang J, Bi J, He X, Zhou B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' End-to-end structure-aware convolutional networks for knowledge base completion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' In AAAI, number 01, 2019, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' 3060–3067.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' [33] Shi B, Weninger T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' Proje: Embedding projection for knowl- edge graph completion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' In AAAI, number 1, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' [34] Wang Q, Huang P, Wang H, Dai S, Jiang W, Liu J, Lyu Y, Zhu Y, Wu H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' Coke: Contextualized knowledge graph embedding.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' preprint, arXiv:1911.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content='02168, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' [35] Guo S, Wang Q, Wang B, Wang L, Guo L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' Semantically smooth knowledge graph embedding.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' In ACL-IJCNLP, 2015, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' 84–94.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' [36] Xie R, Liu Z, Sun M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' Representation learning of knowl- edge graphs with hierarchical types.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' In IJCAI, 2016, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' 2965–2971.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' [37] Hao J, Chen M, Yu W, Sun Y, Wang W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' Universal repre- sentation learning of knowledge bases by jointly embedding instances and ontological concepts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' In SIGKDD, 2019, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' 1709–1719.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' [38] Fatemi B, Ravanbakhsh S, Poole D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' Improved knowledge graph embedding using background taxonomic information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' In AAAI, number 01, 2019, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' 3526–3533.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' [39] Veira N, Keng B, Padmanabhan K, Veneris A G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' Unsuper- vised embedding enhancements of knowledge graphs using textual associations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' In IJCAI, 2019, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' 5218–5225.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' [40] Guo S, Wang Q, Wang L, Wang B, Guo L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' Jointly embed- ding knowledge graphs and logical rules.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' In EMNLP, 2016, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' 192–202.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' [41] Wang M, Rong E, Zhuo H, Zhu H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' Embedding knowledge graphs based on transitivity and asymmetry of rules.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' In PAKDD, 2018, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' 141–153.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' [42] Guo S, Wang Q, Wang L, Wang B, Guo L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' Knowledge graph embedding with iterative guidance from soft rules.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' In AAAI, number 1, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' 16 [43] Qu M, Tang J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' Probabilistic logic neural networks for rea- soning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' In NeurIPS, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' [44] Ding B, Wang Q, Wang B, Guo L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' Improving knowledge graph embedding using simple constraints.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' In ACL, 2018, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' 110–121.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' [45] Xu X, Feng W, Jiang Y, Xie X, Sun Z, Deng Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' Dynamically pruned message passing networks for large-scale knowledge graph reasoning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' In ICLR, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' [46] De Raedt L, Kersting K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' Probabilistic inductive logic pro- gramming.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' In Probabilistic Inductive Logic Programming, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' 1–27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' 2008.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' [47] Lin Y, Liu Z, Luan H, Sun M, Rao S, Liu S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' Modeling re- lation paths for representation learning of knowledge bases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' In EMNLP, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' 705–714.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' [48] Minervini P, Costabello L, Mu˜noz E, Nov´acek V, Vanden- bussche P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' Regularizing knowledge graph embeddings via equivalence and inversion axioms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' In ECML-PKDD, 2017, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' 668–683.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' [49] Zhang Z, Cai J, Zhang Y, Wang J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' Learning hierarchy-aware knowledge graph embeddings for link prediction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' In AAAI, 2020, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' 3065–3072.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' [50] Niu G, Li B, Zhang Y, Pu S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' CAKE: A Scalable Commonsense-Aware Framework For Multi-View Knowl- edge Graph Completion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' In ACL, 2022, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' 2867–2877.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' [51] Yang J, Ying X, Shi Y, Tong X, Wang R, Chen T, Xing B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' Knowledge Graph Embedding by Adaptive Limit Scor- ing Loss Using Dynamic Weighting Strategy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' In ACL, 2022, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} +page_content=' 1153–1163.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE0T4oBgHgl3EQf7wLZ/content/2301.02781v1.pdf'} diff --git a/ldE2T4oBgHgl3EQfeAcm/content/tmp_files/2301.03911v1.pdf.txt b/ldE2T4oBgHgl3EQfeAcm/content/tmp_files/2301.03911v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..601e2457b22c2dbc3192be31b0a31e0d565188e5 --- /dev/null +++ b/ldE2T4oBgHgl3EQfeAcm/content/tmp_files/2301.03911v1.pdf.txt @@ -0,0 +1,1945 @@ +1 +Title +Variable bandwidth, high efficiency microwave resonator +for control of spin-qubits in nitrogen-vacancy centers +Authors +Dr. Anton Savitsky, Dr. Jingfu Zhang, Prof. Dieter Suter +Faculty of Physics, Technical University Dortmund, Otto-Hahn-Str. 4a, 44227 Dortmund, +Germany +Keywords +Planar microresonator, NV center, spin qubit, microwave magnetic field + +2 + +Abstract +Nitrogen-Vacancy (NV) centers in diamond are attractive tools for sensing and quantum +information. Realisation of this potential requires effective tools for controlling the spin degree +of freedom by microwave (mw) magnetic fields. In this work we present a planar microwave +resonator optimised for microwave-optical double resonance experiments on single nitrogen- +vacancy (NV) centers in diamond. It consists of a piece of wide microstrip line which is +symmetrically connected to two 50 Ω microstrip feed lines. In the center of the resonator, an Ω- +shaped loop focuses the current and the mw magnetic field. It generates a relatively +homogeneous magnetic field over a volume of 0.07mm2×0.1mm. It can be operated at 2.9 GHz +in both transmission and reflection modes with bandwidths of 1000 MHz and 400 MHz, +respectively. The high power-to-magnetic field conversion efficiency allows to produce π- +pulses with a duration of 50 ns with only about 200 mW and 50 mW microwave power in +transmission and reflection, respectively. The transmission mode also offers capability for +efficient radio frequency excitation. The resonance frequency can be tuned between 1.3 GHz +and 6 GHz by adjusting the length of the resonator. This will be useful for experiments on NV- +centers at higher external magnetic fields and on different types of optically active spin centres. +1. Introduction +The NV center in diamond is used in various fields, such as quantum information, quantum +sensing, magnetometry, bioimaging, etc. 1-5. In all applications, efficient manipulation of the +electron spin is an essential prerequisite, both for continuous wave (cw) experiments and for +fast spin control in pulsed experiments. Therefore, maximising the coupling between the control +microwave (mw) magnetic field and the electron spins is a fundamental concern. Here, we +consider specifically applications where single NV centers are excited by a laser and the spin +state is read out by collecting photoluminescence (PL) through a microscope objective with +large numerical aperture (NA > 1). Measuring a cw ODMR spectrum in such requires a mw +magnetic field of ������������ = 150 A/m (������������ = ������������0������������ = 0.19 mT) to reach the maximum fluorescence +contrast 6. This field corresponds to a Rabi frequency of ������������������������ = 2 MHz if the oscillating magnetic +field is perpendicular to the NV axis. In pulsed experiments, typical π-pulse durations of ������������������������ = +50 ns are used, which correspond to an excitation bandwidth of 1.2/������������������������ = 24 MHz (������������������������ = +10 MHz). This is sufficient for complete electron spin flip of the selected triplet spin transition +6. This pulse length requires magnetic field amplitude of ������������ = 800 A/m. +Currently, most experimental setups rely on a wire positioned over the sample to achieve such +mw magnetic field amplitudes. If this wire is placed in a short gap of a transmission line with + +3 + +������������������������ =50 Ω impedance, the electric current in the wire has an amplitude ������������ = �2������������������������������������/������������������������ = +0.2 A/√W ∙ �������������������������������������. This current produces the tangential magnetic field ������������������������������������������������������������ = +������������ +2������������������������ outside the +wire of radius ������������0. For a typical wire diameter of 20 µm, the maximum magnetic field generated +at the wire surface is ������������������������������������������������������������(������������0) = 3200 +������������ +������������ at 1W of mw power. The wire is, however, optically +opaque. Therefore, only NV-centers at a distance > √2������������0 from the center of the wire center can +be optically probed. At this position, the magnetic field is reduced to 2600 +������������ +������������ at 1W. Even at +realistic distances from the wire of 40 µm, which still reduces the fluorescence collection +efficiency due to obstruction by the wire, pulsed experiments can be performed with 1 W mw +power, reaching �������������������������������������������������������������40 µm� = 800 +������������ +������������. Therefore, the microwire system is used in many +laboratories, including our laboratory7. A major disadvantage is that the 1/������������ dependence of the +magnetic field amplitude significantly restricts the volume and the surface area available for +probing single NV-centers and requires precise initial positioning of the microscope objective. +Moreover, readjustment of the mw power settings is necessary for any new probed NV-center +which is not only due to the distance dependence of the magnetic field amplitude but also to the +magnetic field direction dependence on distance. This problem can be overcome using a +microloop integrated into a transmission line instead of the microwire 8, 9. The magnetic field +amplitude in the center of the ideal loop is given by ������������������������������������������������������������ = +������������ +������������ where ������������ is the loop diameter. +Thus, the field of 1000 +������������ +������������ can be generated by a loop with 200 µm diameter at 1 W mw power, +which fulfills the requirements for ODMR. Advantages of the loop include a good homogeneity +and directivity of the magnetic field over a 100 ×100 µm2 area, much higher than the microwire. +Compared to a wire, the loop magnetic field is, however, less tolerant to the effect of the metal +case of the microscope objective, which must be positioned close to the sample. We discuss +means to avoid this issue below. +There are several additional significant handicaps of loop, as well as wire, systems in +conjunction with transmission line, (i) the construction does not allow quick replacement or +reposition of the diamond spaceman; (ii) significant heating effects (the resistance of 10 mm +copper wire with 20 µm diameter is 0.25 Ω at 3 GHz, which leads to power dissipation at the +mw power level required for ODMR, but the thermal conductivity is limited due to the small +conductor cross-section); (iii) substantial power return losses caused by the discontinuity in the +transmission line. The main handicap is, however, the high mw powers required to fulfill the +magnetic field requirements for ODMR experiments. + +4 + +The power limitation can be overcome using planar resonators to generate the magnetic field. +In the past numerous reflection mode resonators were proposed based on different planar +structures, for instance double-split ring 10, 11, triple-split-ring 12, loop-gap 13, strip-line 14, and +several other types 15. All these resonators allow to store the mw energy for a time proportional +to the unloaded quality factor ������������0, which leads to increase of the current and, therefore, an +enhanced magnetic field amplitude proportional to �������������0 as compared to a non-resonant +structure with the same geometry. The resonator, however, introduces additional limitation. The +substantial magnetic field enhancement is achieved only within the resonator bandwidth. For +instance, for a matched (critically coupled) reflection resonator with ������������0=100 would require 100 +times less mw power at the resonance frequency of ������������0 = 3 GHz to generate the same mw +magnetic field amplitude as compared to the non-resonant structure of same geometry. This +effect is, however, only obtained within Δ������������1/2 = 2 ∙ ������������0 +−1 ∙ ������������0= 60 MHz around the resonance +frequency. This would substantially limit its general applicability for ODMR on single NV- +centers. The bandwidth of a matched resonator can only be increased by lowering the ������������0-value +13. This, however, leads to lower mw power to magnetic field conversion, i.e. it reduces the +usefulness of the resonator. +The aim of this work is to develop a device that avoids these issues and can be used, e.g., for +ODMR spectroscopy of single NV centers. It overcomes high power requirements and +compromises limitations of transmission line systems as well as previously reported resonant +structures. We design it to fulfill the following requirements: (i) easy and cheap fabrication with +reliable resonator parameters; (ii) compatibility with standard coaxial mw delivery system; (iii) +high mw power to magnetic field conversion efficiency; (iv) high magnetic field directivity and +spatial homogeneity at least in the area accessible by nanopositioners based on piezoelectric +actuator (100 ×100 µm2); (v) small mw magnetic field frequency dependence, i.e. large +bandwidth; (vi) possibility for microwave and radio frequency excitations; (vii) high +mechanical and thermal stability; (viii) easy and reliable replacement or reposition of the +diamond specimen; and (very important !) (ix) it must be compatible with high resolution +confocal objectives, i.e. tolerate the presence of dielectric and conductive parts in very close +vicinity (200 µm to 300 µm) of the magnetic fields of the resonator. +2. Results and discussion +2.1 Resonator design +Figure 1 depicts the design of the developed half-wave resonator. It consists of a piece of wide +microstrip line symmetrically connected to two 50 Ω microstrip feed lines terminated by SMA + +5 + +connectors. In the center of the microstrip, the Ω-loop concentrates the current and the mw +magnetic field. The geometrical parameters of the resonator investigated in this study are +summarized in the figure caption. The diamond is placed on the loop, as shown in Fig 1b. Thus, +the lower diamond surface is exposed to the mw magnetic field near the maximum amplitude. +The resonator is fabricated using standard PCB lithography on low loss Rogers RO3003 +laminate with 166 µm overall thickness. This design allows us to explore the diamond down to +least 100 µm above the surface. The resonator is designed for operation in transmission (the +output SMA is terminated by a 50 Ω load) or reflection (the output SMA is open to free space) +modes of operation. + +Figure 1. (a) Full model of the microwave resonator. It is fabricated on 60×26 mm2 Rogers +RO3003 low loss laminate ( ε������������ = 3.00 , tan ������������ = 0.001 at 10 GHz, dielectric +thickness 0.13 mm and 18 µm copper cladding) mounted on a 60×26×1mm3 copper +holder and two standard PCB SMA flat tab connectors . (b) Resonator design. The +geometrical parameters are: ������������������������ = 0.3 mm - width of the microstrip feed line (������������������������ = +50 Ω); ������������������������ = 3 mm - width of the resonator, ������������ = 17 mm - length of the resonator; +������������ = 0.1 mm - gap width, ������������������������ = 0.4 mm - inner diameter of the loop, ������������������������ = 0.1 mm +- width of the loop conductor, ������������������������������������������������ = 0.3 mm - diameter of the optical access hole. +Coordinate system is indicated. For optical pathway see Fig. S8 in SI. +2.2 Transmission mode resonator +Figure 2 shows the S-parameters of the resonator in transmission mode calculated using CST +Microwave Studio and measured experimentally using a network vector analyzer (HP 8720A). +The analytical transmission and reflection coefficients of the symmetrically coupled +transmission resonator with unloaded quality factor ������������0 and resonance frequency ������������0 are given +by + +������������ = − +1−������������������������ +1+2������������−������������������������ ; ������������ = +2������������ +1+2������������−������������������������ +(1) +where ������������ is the coupling parameter for both input and output and ������������ = ������������0 ∙ � +������������0 +������������ − +������������ +������������0� is the +normalized offset 16, 17. Analysis of the S-parameter traces depicted in Fig. 2 using Eqs. (1) + +a +b +L +★ +Wr +G +W +V +X +X +W +D +opt6 + +yields the resonator parameters ������������0 = 74, β = 11.5 and ������������0 = 73, β = 11.8 for simulation and +experiment, respectively. The relatively low unloaded quality factor is typical for microstrip +based resonators owing to relatively high conduction losses 18. The comparison of the calculated +coupling parameter of 11.5 with ������������ = ������������0 +������������������������ +������������������������=12.6 which can estimated analytically for the +resonator shows that the Ω-loop slightly increases the impedance of the resonator over the +impedance of the microstrip line with width ������������������������ (for more information see SI). The central +frequency of the experimental resonator was downshifted by about 70 MHz compared to the +calculation. This deviation is ascribed to slightly different real parameters of the laminate +(dielectric constant and thickness) as well as manufacturing tolerances. + +Figure 2. (a) Simulated and (b) experimental S-parameters of the transmission resonator with +diamond: ������������11 = 20 ∙ log10 |Γ| (blue line) and ������������21 = 20 ∙ log10 |������������| (red line). The +dashed lines show the best fit results of the S-curves to the reflection and transmission +coefficients given by Eqs. (1). The disagreement at the low and high frequencies is +due to the frequency dependence of the characteristic impedances, which are not +included in Eqs. (1), and contributions from other resonator modes. +The resonator itself is described by the coefficient ������������2 = 1 − |Γ|2 − |������������|2, i.e. the mw power +transmitted to the resonator to which the magnetic field amplitude is proportional. This factor +can be parametrized by the power coefficient at the resonance frequency and the resonator +bandwidth: + +������������(������������0) = +2������������� +1+2������������ ; ������������������������1/2 = +1+2������������ +������������0 ∙ ������������0. +(2) +Thus, the bandwidth of the resonator is 950 MHz and 990 MHz for calculation and experiment, +respectively, which is sufficient for most low-field applications of NV centers. +Figure 3 shows the spatial variation of the mw magnetic field behavior within the loop. At a +small elevation above the loop surface (������������ =10 µm), the loop provides a perfect magnetic field +directivity over the optically accessible diamond area, i.e. the magnetic field is aligned with the +z-axis. +At +������������ = 10 μm + the +position +of +the +magnetic +field +minimum + +-5 F--- +5 +-10 +10 +/dB +/dB +-15 +-20 +-20 +-25 +-25 +a +b +-30 +-30 +2.4 +2.6 +2.8 +3 +3.2 +3.4 +2.4 +2.6 +2.8 +3 +3.2 +3.4 +freguency /GHz +freguency /GHz7 + +������������(0, 70 µm, 10 µm) =1100 A/m is slightly shifted from the loop center due to the effect of the +gap. The magnetic field amplitude increases by about a factor of 2 to the edge of optically +accessible area. Above the loop the decay of the magnetic field magnitude at the loop center is +well described by the decay function for an ideal current loop: + +������������(0,0, ������������) = ������������(0,0,0) +������������3 +(4������������2+������������2) +3 +2 + +(3) +with ������������ = 440 µm > ������������������������ due to the large width of the loop conductor (������������������������ = ������������������������/4), see Fig. 3(d). +Below the loop the magnetic field decays rapidly and is smaller than 70 A/m at the closest +position of the microscope objective surface. This guarantees the stability of the system during +operation as neither magnetic field distributions nor resonator parameters are influenced by the +microscope objective. At higher elevation above the loop the improvement of the magnetic field +homogeneity is accompanied by slight loss of the field directivity, see Fig S6 in SI. Within the +optically accessible diamond area (±x, ±y, z)=( ±150, ±150, 0+100) µm the minimum and +maximum of the magnetic field magnitude are 2200 A/m and 735 A/m at 1 W mw power, +respectively. Thus, the magnetic field of the loop compares very favorably with that of a +microwire, both in terms of homogeneity and directivity. + +Figure 3. (a) Color-coded plot of the calculated mw magnetic field magnitude, |������������|, at +������������ = 10 µm for mw power of 1 W at the resonance frequency. The dotted and dashed +circles mark the position of the inner loop edge (������������������������ = 400 µm) and the optical access + +a +A/m +G +c +3500 +3600 +45.2 +3000 +/ A/m +3000 +2000 +25.2 +H(0,y,10μm) +2500 +2000 +1000 +12.6 +1500 +6.3 +1000 +500 +.... +0 +-0.2 +-0.15 +-0.1 +-0.05 +0 +0.05 +0.1 +0.15 +0.2 +y /mm +1200 +3500 +b +.......... +objective +d +HH +3000 +1000 +/ A/m +/ A/m +HH +2500 +800 +H,(0,0,z) +10μm) +2000 +600 +H(x,0,1 +1500 +400 +NV-center +1000 +500 +200 +-0.2 +0.15 +-0.1 +-0.05 +0 +0.05 +0.1 +0.15 +0.2 +-0.2 +0 +0.2 +0.4 +0.6 +0.8 +/mm +z /mm8 + +hole (������������������������������������������������ = 300 µm), respectively. (b,c,d) The ������������������������, ������������������������, ������������������������ amplitudes of the mw +magnetic field components as functions of the position ������������, ������������, ������������ for a mw power of +1 W. The black dotted lines mark the optically accessible diamond area. The +shadowed area in (d) shows the position region of the optical objective (������������ < 0) and +NV-center (������������ > 0). The dashed lines in (d) show the best fit curve of ������������������������(0,0, ������������) to +the function in Eq. (3). +2.3 Reflection mode resonator +The efficiency of the resonator can be improved employing reflection mode. The resonator is +converted to reflection mode by just disconnecting the output coax cable. The reflection +resonator is described by: + +������������(������������0) = +2������������� +1+������������ ; ������������������������1/2 = +1+������������ +������������0 ∙ ������������0 +(4) +as derived from the reflection coefficient 16: + +������������ = − +1−������������−������������������������ +1+������������+������������������������. +(5) +Thus, for high coupling parameters, ������������ ≫ 1, the reflection mode offers a factor 2 higher +magnetic field amplitudes, see SI. The bandwidth, however, becomes reduced by factor of 2. +The magnetic field distribution in the loop area is identical in both resonator modes. +Figure 4 shows the calculated and experimental S11-parameters of the resonator in reflection +mode. Analysis of the S-parameter traces using Eq. (5) yields the resonator parameters ������������0 = +70, β = 8.3 and ������������0 = 60, β = 5.8 for simulation and experiment, respectively. Thus, the +bandwidth of the resonator is 400 MHz and 320 MHz for calculation and experiment. The +difference between transmission and reflection mode as well as between calculated and +experimental reflection parameters are mainly due to the open output line. + +Figure 4. Simulated (a) and experimental (b) S11-parameters of the resonator operated in +reflection mode. The dashed line show the best fit results of the S-curves to the +reflection coefficient given by Eq. (5). + + + +0 +0 +0.5 +-0.5 +-1 +/dB +-1 +/dB +-1.5 +S1 +-1.5 +-2 +2.5 +-2 +-3 +a +b +2.5 +2.4 +2.6 +2.8 +3 +3.2 +3.4 +3.6 +2.6 +2.8 +3 +3.2 +3.4 +3.6 +frequency/GHz +freguency/GHz9 + +3. ODMR experiments +The mw magnetic field behavior was verified experimentally using a previously described +ODMR setup capable for continuous wave and pulsed ODMR experiments, see 7 and SI. The +2×2×1mm3 diamond (001 cut) containing a 20 µm layer near surface that was doped with NV +centers was fixed to the resonator using transparent office tape, see Figs. S11 and S21 in SI. +The central position of the optical objective was set close to the loop center. +Figure 5(a) shows a cw ODMR spectrum of the NV-centers located near the focal spot, recorded +using mw power of 6.8 mW (the power level was calibrated at 2.87 GHz). Two intense ODMR +lines centered at 2.87 GHz are observed. The line splitting by 475 MHz corresponds to the +external magnetic field component of 8.5 mT along the NV-axis. Additional ODMR line pairs +with splitting of 260 MHz, 160 MHz and 60 MHz can be attributed to a set of NV-centers +within the sensitive volume of about 300 nm in the x-y plane and 1000 nm in the z-direction +(see Fig. S9 in SI). The different centers have different orientations along different [1,1,1] +directions. +To measure the precise mw magnetic field strength, we recorded Rabi oscillations at the two +strongest transitions, as shown in Figure 5(b). The applied mw power of 680 mW resulted in a +Rabi frequency of about 14 MHz. The Rabi frequency ������������������������ is proportional to the magnetic field +amplitude ������������: + +������������������������ = � +2 +3 ∙ √2 ∙ +������������������������ +2������������ +������������0������������ +2 = +������������������������ +2������������ +������������0������������ +√3 , +(6) +where ������������������������ is the electron gyromagnetic ratio (������������������������/2������������=28 GHz/T) and ������������0 is the permeability of +the vacuum. The factor �2/3 accounts for the component of ������������ that is perpendicular to the NV- +axis, (mw H-axis parallel to [0,0,1] and NV-axis parallel to [1,1,1] crystal axis). The factor √2 +takes into account that we drive one transition of the S = 1 spin. Thus, a Rabi frequency of +������������������������=14 MHz at 0.68 W corresponds to a conversion efficiency of ������������ = 840 +������������ +������������ at 1 W. + +10 + + +Figure 5. (a) cw ODMR spectrum of the single NV-center at external magnetic field alight +close to [1,1,1] crystal axis recorded at 6.8 mW incident mw power. (b) The Rabi +oscillation traces recorded at the mw frequencies of the high frequency (upper trace; +marked blue in (a)) and low frequency (lower trace; red in (a)) ODMR lines and +680 mW mw power (+20dB increased power over the cw experiment). The solid blue +and red lines are the fits. +In the next step the cw and pulsed ODMR experiments were performed at different external +magnetic fields and the same input power of the mw amplifier, see Fig. 6(a). The magnetic field +amplitude evaluated from the Rabi frequencies overlaid with the simulation results is depicted +in Fig. 6(b). Both curves are in the good agreement. The variation of the mw magnetic field +over a frequency range of 800 MHz is less than 40%. The discrepancy at the frequencies above +3 GHz is attributed to gain variation of the high-power mw amplifier operated below saturation. +The spatial distribution of H in the x-y plane was evaluated from the Rabi experiment at +2.93 GHz for 10 different NV centers over the area of 70×70µm2 accessible by the +nanopositioner. The variation of the magnetic field of less than 20% (1000 A/m to 1250 A/m) +is in a good agreement with simulation predictions. + +Figure 6. (a) cw ODMR spectra of the single NV-center at different external magnetic fields +at 6.8 mW incident mw power. (b) The frequency dependence of the magnetic field + + intensity I.norm.u. +0.96 +a +0.98 +0.92 +contrast /% +0.88 +0.96 +473 MHz +0.84 +f,=13.7 ±0.1 MHz +ODMR +0.94 +0.96 +0.92 +2.87GHz +0.88 +0.9 +2.8 +0.84 +2.6 +2.7 +2.9 +3 +3.1 +f,=14.4 ±0.1 MHz +Frequency/GHz +100 +200 +300 +400 +500 +t. /ns24 +1100 +22 +A·m +20 +18 +a +800 +b +16 +2.5 +2.6 +2.7 +2.8 +2.9 +3 +3.1 +3.2 +3.3 +2.4 +2.6 +2.8 +3 +3.2 +3.4 +freauency/GHz +freguency/GHz11 + +amplitude ������������������������(0,0,10 μm) calculated for the transmission resonator (black curve, left +scale). Rabi nutation frequencies (dots, right scale) evaluated from experimental Rabi +oscillation traces recorded at the ODMR line positions in (a). The Rabi frequencies +are normalized to 1 W mw power calibrated at 2.87 GHz. The left and right scales +are adjusted according to Eq. (6). +These results show that the transmission resonator achieves good spatial magnetic field +homogeneity and the bandwidth required for most ODMR experiments on single NV-centers. +The transmission resonator achieves π-pulse durations of 20 ns (������������������������ = 25 MHz) using about 1 W +mw power. For this performance, a mw amplifier is required. This limitation can be overcome +by operating the resonator in reflection mode. + +Figure 7. (a) Rabi oscillation traces recorded at the mw frequency 2.93 GHz for the resonator +in transmission (upper trace) and reflection (lower trace) modes at 680 mW mw +power. The traces were acquired subsequently at the same settings with the output +cable connected and disconnected. The solid-colored lines are the fits. (b) Frequency +dependence of the magnetic field amplitude ������������������������(0,0,10������������������������) calculated for +transmission (red trace) and reflection resonator (blue trace). The amplitude ratio at +2.93 GHz is indicated by the arrow. +Figure 7(a) shows the Rabi nutation traces recorded at the high frequency ODMR line at +2.93 GHz with 680 mW input mw power. The upper trace was acquired using the resonator in +transmission mode. Subsequently, the output mw cable was disconnected converting the +resonator into reflection mode and the lower trace was acquired. The magnetic field amplitudes +evaluated from Rabi frequencies are 1190 A/m and 2070 A/m for transmission and reflection +settings, respectively. The experimentally observed increase of the resonator efficiency by a +factor of 1.74 is in a good agreement with factor 1.8 obtained from calculation, see Fig 7(b). +Thus, the reflection resonator is capable of producing the same magnetic field amplitude using +about factor of 3 smaller mw power. It achieves 20 ns π-pulses (������������������������ = 25 MHz) with as little as +300 mW mw power. + +2200 +/.norm.u. +b +0.96 +tensity +0.92 +1800 +reflection +0.88 +x 1.8 +f.=19.9±0.1 MHz +0.84 +A·m +1400 +rm.u. +.nor +0.96 +intensity +1000 +0.92 +transmission +T +0.88 +f,=34.7±0.1 MHz +600 +0.84 +2.4 +2.6 +2.8 +3 +3.2 +3.4 +0 +40 +80 +120 +160 +200 +frequency/GHz +t. +/ns12 + +At this point we put two remarks: (i) The highest ������������������������ achieved in our setup allows to realize π- +pulses with 7 ns duration and 4 ns in transmission and reflection modes, respectively. The pulse +profile of such short pulses is not distorted by the resonator, neither in transmission nor in +reflection mode, since their voltage ringing times are ������������������������ = +1 +������������Δ������������1/2 = 0.3 ns and 1 ns, +respectively. (ii) The performance of the microscope objective employed in this work, in +particular the efficiency of fluorescence collection, is restricted by the resonator acting as an +optical diaphragm, see SI. Despite this restriction, the collection of high quality ODMR data is +still possible within reasonable time. +4. Performance summary +The goal of this work was the design of a device for efficient control of spin quibts. For optimal +performance, it should have a number of properties that we specified in the introduction. Here, +we first summarise the quantitative performance measures of the mw and rf properties, as +shown in Table 1; the values shown were calculated and verified by experiments. For +comparison, it also includes the parameters calculated for the 50 Ω microstrip transmission line +with the same Ω-type loop. The resonator offers a factor of 4.8 (transmission) and 9.1 +(reflection) higher magnetic field amplitudes at the same input mw power as compared to the +transmission line. Pulsed ODMR experiments with reasonably short π-pulses of 50 ns can be +generated using only 50 mW mw power with the resonator operated in reflection mode. Thus, +it allows to avoid high-power mw amplification stages or even to perform the experiments +directly using the output of a mw generator. The transmission mode is more advantages for +experiments at higher external magnetic fields owing to the larger resonator bandwidth. In +contrast to reflection mode, it allows to the perform experiments with combined microwave and +radio frequency excitations. An additional advantage of the transmission mode is the good +matching of the resonator input. The input return losses are <-20 dB (±50 MHz) and <-10 dB +(±150 MHz) around the resonance frequency, see Fig.2. Thus, in contrast to the reflection +resonator, the mw excitation system does not require matching elements (circulator or +attenuator) on the input for ODMR experiments at small external magnetic fields. + + + +13 + + +Table 1. Summary of resonator and transmission line performances. +Case +������������������������������������/������������������������������������� +A/m/√W +������������������������������������ c) +W +������������������������1/2 +MHz +������������������������������������/������������������������������������� d) +A/m/√W +Transmission line +245 a) +4.0 +full +252 (252) +Transmission resonator +1170 b) +0.18 +950 +265 (266) +Reflection resonator +2230 b) +0.05 +400 +10 (160) +a) calculated at 2.9 GHz +b) calculated at the resonance frequency (~2.9 GHz) +c) input mw power required for 50 ns π-pulse (������������������������= 10 MHz) and NV-center in 001 +diamond +d) calculated at 10 MHz (200 MHz) +We also considered heating effects. Conduction losses in the loop can lead to a temperature +increase that can potentially influence the experiment. The thermal analysis of the transmission +mode resonator at ambient temperature shows that the temperature increase in the loop-diamond +region is < 0.3 K for 0.1 W continuous mw power (see Fig. S3 in SI). At this mw power the +produced magnetic field of 370 A/m corresponds to a Rabi frequency ������������������������=7.5 MHz which is +more than sufficient for cw ODMR detection with the highest contrast 6. In pulsed ODMR +experiments the average heat power is significantly smaller. The transmission resonator allows +for above 106 π-pulses at 10 W (tπ= 7 ns) with no significant heating effects. The results of the +thermal analysis are consistent with experimental observations. +The resonator design can be adapted for experiments on NV-centers at higher external magnetic +fields or different types of optically active spin centers by adjusting some of the design +parameters. The variation of the overall resonator length, ������������, between 5 mm and 56 mm allows +to tune the resonance frequency between 6 GHz and 1.3 GHz without significant loss of the mw +performance, see Fig. S16 in SI. Further increasing or decreasing the resonance frequency is +possible by adjusting the dielectric constant and thickness of the substrate, and the geometry of +the holder. +Various types of microwave resonators have been proposed for experiments on optically active +spin centers, such as the diamond NV center, each with specific advantages and limitations. A +fair comparison of the performance of all these different designs would have to be made under +a specific set of conditions, where all designs can operate. Since this is not possible, we include +here a comparison with two recently reported designs with overlapping boundary conditions, +which are applied in several laboratories for experiments on NV-centers 10, 11, 13, 19-26. The first + +14 + +system, originally reported by Bayat et al. 10, is based on a double-split-ring resonator operated +in reflection. In original design has an efficiency of 355 A/m/√W , with a bandwidth of +40 MHz. Similar numbers were reported for some modified designs 11, 25. The second design, +originally reported by Sasaki et al. 13, is based on a split-ring (or loop-gap) resonator in +reflection mode. In original design provides 240 A/m/√W with a bandwidth of 440 MHz. Better +parameters 485 A/m/√W and 300 MHz are reported for the modified version 20. Thus, the +performance of our system in both transmission and reflection modes of operation is superior +to both systems. +5. Conclusion +In this work we presented a novel mw excitation system based on a resonator designed for cw +and pulsed ODMR experiments on single NV-centers to be combined with confocal +microscopy. The high performance of the system was verified using numerical EM calculations +and ODMR experiments. The resonator can be easily and cheaply fabricated using standard +PCB lithography. It offers high mechanical and thermal stability. Its performance in terms of +mw power to magnetic field conversion efficiency and magnetic field homogeneity is superior +in comparison to currently used systems like the microwire-transmission line system. It also +offers a range of practical advantages such as simplified optical adjustment and optimization of +the mw power settings for all types of ODMR experiments. It also offers the possibility for +quick replacement of the diamond crystal because it does not have to be permanently connected +to the resonator. This provides the opportunity for investigation of different samples with the +same structure or use a resonator which is optimized for the performance of a specific type of +ODMR experiment. +While the present work focuses on applications on NV centers in diamond, the principles used +here are completely general and can be readily transferred to similar systems that rely on +efficient spin control by microwave fields. This includes not only ensembles of NV centers but +also other materials like semiconductors. + +Acknowledgments +This project has received funding from the European Union’s Horizon 2020 research and +innovation program under grant agreement No 828946. The publication reflects the opinion of +the authors; the agency and the commission may not be held responsible for the information +contained in it. + + + +15 + +Author Declarations +Conflict of Interest +The authors have no conflicts to disclose. +Data Availability +The data that support the findings of this study are available from the corresponding authors +upon reasonable request. +Author Contributions +Anton Savitsky: Conceptualization (equal); Formal analysis, (lead); Investigation (equal); +Methodology (lead); Visualization (lead); Writing – original draft (lead). Jingfu Zhang: Data +curation +(equal); +Investigation +(equal); +Formal +analysis +(equal); +Dieter +Suter: +Conceptualization (equal); Review & editing (equal); Funding acquisition (lead). +References +1. +D. Suter and F. Jelezko, Prog. Nucl. Magn. Reson. Spectrosc. 98-99, 50-62 (2017). +2. +J. Wrachtrup and F. Jelezko, J. Phys. Condens. Matter 18 (21), S807-S824 (2006). +3. +M. W. Doherty, N. B. Manson, P. Delaney, F. Jelezko, J. Wrachtrup and L. C. L. +Hollenberg, Phys. Rep. 528 (1), 1-45 (2013). +4. +J. F. Barry, J. M. Schloss, E. Bauch, M. J. Turner, C. A. Hart, L. M. Pham and R. L. +Walsworth, Rev. Mod. Phys. 92 (1), 015004 (2020). +5. +G. Balasubramanian, A. Lazariev, S. R. Arumugam and D.-w. Duan, Curr. Opin. Chem. +Biol. 20, 69-77 (2014). +6. +A. Dréau, M. Lesik, L. Rondin, P. Spinicelli, O. Arcizet, J. F. Roch and V. Jacques, +Phys. Rev. B 84 (19), 195204 (2011). +7. +J. Zhang, J. H. Shim, I. Niemeyer, T. Taniguchi, T. Teraji, H. Abe, S. Onoda, T. +Yamamoto, T. Ohshima, J. Isoya and D. Suter, Phys. Rev. Lett. 110 (24), 240501 +(2013). +8. +P. L. Stanwix, L. M. Pham, J. R. Maze, D. Le Sage, T. K. Yeung, P. Cappellaro, P. R. +Hemmer, A. Yacoby, M. D. Lukin and R. L. Walsworth, Phys. Rev. B 82 (20), 201201 +(2010). +9. +O. R. Opaluch, N. Oshnik, R. Nelz and E. Neu, Nanomaterials 11 (8), 2108 (2021). +10. +K. Bayat, J. Choy, M. Farrokh Baroughi, S. Meesala and M. Loncar, Nano Lett. 14 (3), +1208-1213 (2014). +11. +N. Zhang, H. Yuan, C. Zhang, L. Xu, J. Zhang, G. Bian, B. Li and J. Fang, Appl. Phys. +Express 11 (8), 086602 (2018). +12. +Z. Ma, D. Zheng, Y. Fu, H. Yuan, W. Guo, J. Zhao, B. Li, Y. Shi, X. Zhang and J. Liu, +Jpn. J. Appl. Phys. 58 (5), 050919 (2019). +13. +K. Sasaki, Y. Monnai, S. Saijo, R. Fujita, H. Watanabe, J. Ishi-Hayase, K. M. Itoh and +E. Abe, Rev. Sci. Instrum. 87 (5), 053904 (2016). +14. +Y. S. Yap, M. Negoro, M. Kuno, Y. Sakamoto, A. Kagawa and M. Kitagawa, J. Phys. +Soc. Japan 91 (4), 044004 (2022). +15. +G. Mariani, S. Nomoto, S. Kashiwaya and S. Nomura, Sci. Rep. 10 (1), 4813 (2020). +16. +M. C. Sanchez, E. Martin and J. M. Zamarro, IEE Proc. Pt. H 137 (4), 209-212 (1990). +17. +J. L. Altman, Microwave circuits. (Van Nostrand, New York, 1964). + +16 +18. +A. Gopinath, IEEE Transactions on Microwave Theory and Techniques 29 (2), 128-131 +(1981). +19. +M. Tsukamoto, K. Ogawa, H. Ozawa, T. Iwasaki, M. Hatano, K. Sasaki and K. +Kobayashi, Appl. Phys. Lett. 118 (26), 264002 (2021). +20. +V. K. Sewani, H. H. Vallabhapurapu, Y. Yang, H. R. Firgau, C. Adambukulam, B. C. +Johnson, J. J. Pla and A. Laucht, Am. J. Phys. 88 (12), 1156-1169 (2020). +21. +S. Nomura, K. Kaida, H. Watanabe and S. Kashiwaya, J. Appl. Phys. 130 (2), 024503 +(2021). +22. +G. Mariani, A. Umemoto and S. Nomura, AIP Adv. 12 (6), 065321 (2022). +23. +P. Reuschel, M. Agio and A. M. Flatae, Adv. Quantum Technol. 5 (11), 2200077 +(2022). +24. +M. Tsukamoto, S. Ito, K. Ogawa, Y. Ashida, K. Sasaki and K. Kobayashi, Sci. Rep. 12 +(1), 13942 (2022). +25. +F. M. Stürner, A. Brenneis, T. Buck, J. Kassel, R. Rölver, T. Fuchs, A. Savitsky, D. +Suter, J. Grimmel, S. Hengesbach, M. Förtsch, K. Nakamura, H. Sumiya, S. Onoda, J. +Isoya and F. Jelezko, Adv. Quantum Technol. 4 (4), 2000111 (2021). +26. +N. Zhang, H. Yuan, C. Zhang, L. Xu, J. Zhang, G. Bian, P. Fan, H. Yuan and J. Fang, +IEEE Sens. J. 19 (2), 451-456 (2019). + +1 +Supporting Information +Variable bandwidth, high efficiency microwave resonator +for control of spin-qubits in nitrogen-vacancy centers +Anton Savitsky, Jingfu Zhang and Dieter Suter +Faculty of Physics, Technical University Dortmund, Otto-Hahn-Str. 4a, 44227 Dortmund, +Germany +Content: +S1 Optimization of the resonator parameters +S1.1 Optimization of Ω-type loop parameters +S1.2 Calculation of the coupling parameter for width step coupling +S1.3 Performance comparison of the resonator with transmission, reflection line +S2. Mw magnetic field distribution at z = 100 µm +S3. Radio frequency performance +S4 Fluorescence collection efficiency and optical resolution +S5. Experimental details +S6 Frequency tuning capability + +2 + +S1 Optimization of the resonator parameters +In this part we consider some important points for the resonator optimization based on the first +principals and simulations. In the first part we consider transmission line with Ω-type loop +which allows to optimize parameters of the loop. In the second part we compare the +performance of resonator with transmission and reflection line and point out the ways for +performance optimization. +S1.1 Optimization of Ω-type loop parameters +The loop of diameter ������������ integrated in the gap of a terminated microstrip transmission line can +be considered as an approximation of the ideal classical current loop. This approximation is +valid when (i) the loop length is much smaller than a quarter of the wavelength (������������������������ ≪ ������������������������/4); +(ii) the width of the loop is much smaller compared to it diameter, (iii) the shielding effects can +be neglected; and (iv) the loop-gap discontinuity is neglected. The EM-wave of power ������������������������������������ in +the microstrip line with ������������������������ generates an alternating electric current with the amplitude +������������������������������������������������������������ = �2������������������������������������ +������������������������ +. +This alternating current induces a magnetic field whose amplitude at the center of the loop is +������������(0,0,0) = ������������������������������������������������������������ +������������ += 1 +������������ �2������������������������������������ +������������������������ + . +The loop conversion efficiency +������������0 = ������������(0,0,0) +������������������������������������� += 1 +������������ � 2 +������������������������ + +can be increased either by decreasing the loop diameter or by lowering the line impedance. The +line impedance of ������������������������ = 50 Ω is, however, generally fixed to avoid mismatch with microwave +components. This results in ������������0 = 500 +������������ +������������√������������ for the loop of ������������ = 400 μm used here. This value +defines the physical upper limit of the magnetic field amplitude reachable for a transmission +line. +The real Ω-loop differs from the ideal loop. There are several parameters which influence the +magnetic field amplitude and its distribution: (i) loop width, (ii) gap width and (iii) thickness +of the dielectric substrate. The last factor in our system is, however, defined by the necessity to +provide the optical access to the diamond surface and will be not considered here, i.e. we fix +the substrate and optical access parameters defined in the main text, see Fig. 1 (main text), and +consider only the first two parameters. + +3 + +Loop conductor width. The width of the loop is of critical importance as it influences not only +magnetic field parameters but also the heating effects. Figure S1(a) shows the dependence of +the conversion efficiency on the loop width. As expected, the conversion efficiency decreases +with increasing loop width. The maximum efficiency is about a factor 1.6 smaller than in the +ideal loop due to the effect of the gap and metal shield on the back side of the structure. The +conductive power losses, ������������������������������������������������������������ = +������������������������������������������������������������ +2 +2 +∙ ������������������������������������������������������������, in the loop also decrease, see Fig S1(b), due to +the decrease of the loop resistance, ������������������������������������������������������������. The optimal loop width of ������������������������ = 0.1 mm is estimated +by considering the maximum of the function ������������0 +2/������������������������������������������������������������ , see Fig S2. The conversion efficiency +drops to 245 +������������ +������������√������������, i.e. a factor 2 smaller than for the ideal loop. The loop width of 0.1 mm also +guarantees better mechanical stability and stability of the system parameters to manufacturing +tolerances. + +Figure S1. (a) Conversion efficiency and (b) loop ohmic losses calculated for different loop +widths and ������������������������ = 50 Ω transmission line feeded with 1 W mw power at 3 GHz. The +gap width is G =0.1 mm. The dashed line marks the value ������������������������ chosen for +fabrication. + +Figure S2. Ratio of power conversion efficiency to conductive losses in the loop. + +40 +35 +30 +7 +25 +20 +15 +0 +0.05 +0.1 +0.15 +0.2 +0.25 +0.3 +W./mm340 +9 +............................ +b +a +320 +8 +上 +300 +7 +280 +mW +6 +260 +50 +A.m +240 +loss +......................... +P +4 +220 +200 +3 +180 +2 +160 +1 +0 +0.05 +0.1 +0.15 +0.2 +0.25 +0.3 +0 +0.05 +0.1 +0.15 +0.2 +0.25 +0.3 +W. /mm +W./mm4 + +In order to estimate the heating effects we have calculated the temperature distribution in the +transmission resonator continuously fed by mw power, see Fig. S3. For ������������������������ = 0.1 mm the +maximum temperature calculated in the system is about 0.3 K (0.1 W) and 3.5 K (1 W) starting +from the ambient temperature of 293 K. In contrast, the system with ������������������������ = 0.018 mm shows +higher temperature increase of 0.6 K (0.1 W) and 5.8 K (1 W excitation) due to the higher +ohmic resistance and lower thermal conductance of the loop. + +Figure S3. Temperature distribution calculated for the transmission resonator including the +diamond crystal (2×2×1 mm3) with geometrical parameters given in Fig. 1 (main +text). CW input mw power was set to 0.1 W. +Gap width. Figure S4 shows the efficiency parameter as a function of the gap width. Increasing +the gap width from 0.005 mm to 0.3 mm (������������ = 0.75 ∙ ������������������������) has a small effect on the resonator +efficiency (magnetic field amplitude at the loop center) as well as the field distribution in y < 0 +loop region. Therefore, for our resonator we have chosen G = 0.1 mm for manufacturing ease. + +Figure S4. Conversion efficiency calculated for different gap widths G and ������������������������ = 50Ω +transmission line fed with 1 W mw power at 3 GHz. The loop width is +������������������������= 0.1 mm. + + + +K +293.3 +y=o +293.2 +293.1 +293.0250 +246 +/ A.m".W- +242 +238 +234 +0 +0.05 +0.1 +0.15 +0.2 +0.25 +0.3 +G /mm5 + +S1.2 Calculation of the coupling parameter for width step coupling +The relation between the properties of the coupling element and the resonator coupling +parameter can be derived in two following steps. + +Figure S5. (a) Reflection line with Ω-type loop. (b) Transmission line with width step and +Ω-type loop. +Reflection line. The bandwidth of reflection line, Fig S5(a), can be determined considering +the frequency dependence of magnetic field in the loop center: +������������(������������) +������������(������������0 = ������������������������ +������������ ) += sin �2������������������������ ������������������������ +4������������� = 1 +√2 + +The magnetic field amplitude is reduced by √2 at ������������ = ������������0/2 which results in the bandwidth +������������������������1/2 = ������������0 +The reflection line can be also considered as overcoupled resonator with the bandwidth of +������������������������1/2 = 1 + ������������ +������������0 +∙ ������������0 +Thus, the coupling coefficient of the reflection resonator with ������������������������ = ������������������������ is given by +������������ = ������������0 − 1 ≈ ������������0 (������������������������������������ ������������0 ≫ 1) +The same result can be also derived from the magnetic field amplitude than considering +reflection line as the reflection resonator +2������������� +1 + ������������ �������������0 = 2 ⟹ ������������� = �������������0 + �������������0 − 4 +2 +⟹ ������������ ≈ ������������0 +Generally the result is quite obvious than consider the definition of the coupling coefficient +������������ = ������������0 +������������������������ + + +2/4 +2/4 +2/4 +2/4 +Z,ZR +ZR ZR6 + +Thus, the external quality factor in reflection line ������������������������ = 1 or full power is dissipated in +external load than neglecting resonator losses, ������������0 ≫ 1. +Transmission line with width step. This system can be considered as transmission resonator, +see Fig. S5(b). The reflection coefficient at ������������ = ������������0 of this system with ������������′ = ������������0 − 1 is given +by +������������ = − 1 − ������������ + ������������′ +1 + ������������ + ������������′ = − −������������ + ������������0 +������������ + ������������0 +⇒ ������������ = ������������0 +Γ − 1 +Γ + 1 +Taking into account that, the reflection coefficients of width step discontinuity is +Γ = − ������������������������ − ������������������������ +������������������������ + ������������������������ + +one obtains +������������ = ������������0 +������������������������ +������������������������ + or ������������������������ = ������������������������ +������������������������ + +Thus, the bandwidth of the resonator can be calculated +������������������������������������������������������������������������������������������������������������������������: +������������������������1/2 +������������0 += 1 + ������������ +������������0 += 1 +������������0 ++ ������������������������ +������������������������ + +������������������������������������������������������������������������������������������������������������������������������������������������: +������������������������1/2 +������������0 += 1 + 2������������ +������������0 += 1 +������������0 ++ 2 ������������������������ +������������������������ + +For the resonator design in the main text (������������������������ = 50 Ω; ������������0 = 74) the above equation yields the +estimate value of the coupling parameter of ������������ = 12.6, than assuming the resonator impedance +to be equal to that of the transmission microstrip line with width ������������������������. The values is in a good +agreement with coupling parameter of 11.5 evaluated from simulated S-parameters. +S1.3 Performance comparison of the resonator with transmission, reflection line +The conversion efficiency for transmission, reflection resonator with ideal loop can be +calculated using following relations +������������������������������������������������������������������������������������������������������������������������: ������������0 = 2������������� +1 + ������������ ∙ �������������0 ∙ 1 +������������ � 2 +������������������������ + +������������������������������������������������������������������������������������������������������������������������������������������������: ������������0 = 2������������� +1 + 2������������ ∙ �������������0 ∙ 1 +������������ � 2 +������������������������ + +They take into account (i) power flow to resonator (coupling); (ii) the energy storage in the +resonator (quality factor); and (iii) the increase of the loop current due to decrease of the +resonator impedance. It is important that for high coupling coefficients (������������ = ������������0 +������������������������ +������������������������ ≫ 1) both +factors become independent of resonator quality factor, see Table S1. Under this condition the + +7 + +increase of the resonator efficiency as compared to the transmission line can be estimated from +the ratio of the resonator and feed line impedances, i.e. +������������������������ +������������������������ for transmission and 2∙ +������������������������ +������������������������ for +reflection. For instance, the resonator having ������������������������ = 10 Ω is factor 5 more efficient compared to +transmission line having the same loop, i.e. it requires 25 times less mw power to obtain the +same magnetic field amplitude. We note that ������������������������ can be approximated by the impedance of the +microstrip line with width ������������������������ only than the discontinuity contribution to impedance can be +neglected. This generally holds for ������������������������ ≪ ������������ . In general case ������������������������ have to include the +discontinuity contribution which is best evaluated from numerical simulation. It is important to +note that then the heating effects become the limiting factor, the excitation mw power have to +be limited due to ������������������������������������������������������������ ∝ ������������������������������������������������������������ +2 + and, as the result, the same maximum magnetic field is reachable +in all cases. +Table S1. Analytical expressions for efficiency and the bandwidth of the resonator and non- +resonating systems containing ideal current loop. +Case +������������0 +������������������������1/2 +������������0 + +������������0 +������������������������1/2 +������������0 + +Transmission +line +1 +������������ � 2 +������������������������ + +������������������������������������������������ +1 +������������ � 2 +������������������������ + +������������������������������������������������ +Reflection +line +2 ∙ 1 +������������ � 2 +������������������������ + +1 +2 ∙ 1 +������������ � 2 +������������������������ + +1 +Transmission +resonator +2������������� +1 + 2������������ �������������0 +1 +������������ � 2 +������������������������ + +1 + 2������������ +������������0 + +������������������������ +������������������������ +∙ 1 +������������ � 2 +������������������������ + +2 ������������������������ +������������������������ + +Reflection +resonator +2������������� +1 + ������������ �������������0 +1 +������������ � 2 +������������������������ + +1 + ������������ +������������0 + +2������������������������ +������������������������ +∙ 1 +������������ � 2 +������������������������ + +������������������������ +������������������������ + + +Table S2 summarizes the parameters of the transmission resonator calculated for different ������������������������ +and ������������ values. At large ������������������������’s the contribution of the loop and gap to resonator impedance +overcomes the impedance contribution of the microstrip line. Thus, it becomes the limiting +factor determining resonator performance, i.e. conversion factor and the bandwidth. + + + +8 + +Table S2. Parameters of transmission resonator calculated for different ������������������������ and ������������, for definition +see Fig. 1 in main text. +Case a) +������������0 +A/m/√W +������������0 +������������/������������0 +������������������������ b) +������������ c) +Q0 c) +������������������������1/2 +������������0 + +������������������������ +d) +Ω +������������ e) +Ω +������������������������ = 1 ������������������������ +������������ = 24.5 ������������������������ +576 +2.35 +32.9 +92 +0.73 +21.3 +21.6 +������������������������ = 2 ������������������������ +������������ = 22 ������������������������ +930 +3.79 +14.67 +79 +0.38 +13.2 +12.1 +������������������������ = 3 ������������������������ +������������ = 17 ������������������������ +1170 +4.80 +11.50 +74 +0.32 +10.4 +8.4 +������������������������ = 4 ������������������������ +������������ = 15 ������������������������ +1300 +5.33 +8.77 +72 +0.26 +9.4 +6.4 +������������������������ = 5 ������������������������ +������������ = 13 ������������������������ +1379 +5.65 +7.90 +69 +0.24 +8.8 +5.2 +������������������������ = 5.6 ������������������������ +������������ = 11.2 ������������������������ +1386 +5.68 +7.65 +72 +0.23 +8.8 +4.7 +������������������������ = 6 ������������������������ +������������ = 10 ������������������������ +1422 +5.82 +7.54 +62 +0.26 +8.6 +4.4 +a) ������������ was adjusted to obtain the resonance frequency of 2.95±0.05 GHz +b) Resonator efficiency relative to the efficiency of the transmission line (245 A/m/√W) +c) Evaluated from S11 and S21 curves +d) Resonator impedance calculated as ������������������������ = ������������������������/(������������0 +������������/������������0 +������������������������) +e) Impedance of microstrip line with width ������������������������. + +S2. MW magnetic field distribution at z = 100 µm +Figure S6 shows the mw magnetic field distribution at ������������ = 100 µm above the loop, i.e. about +the highest optically accessible position with our optical objective with 340 µm working +distance. Compared to ������������ = 10 µm (Fig. 3 main text) the field homogeneity is improved. Over +the full optically accessible area the maximum and minimum field magnitudes of 1020 ������������/������������ +and 735 ������������/������������ are calculated, i.e. 735 ������������/������������ < |������������(������������, ������������, 100������������������������)| < 1020 ������������/������������ (for comparison +1070 ������������/������������ < |������������(������������, ������������, 10������������������������)| < 2270������������/������������). For the loop center and area accessible by the +nanopositioner (70×70µm2) the field homogeneity is even better, i.e. 832 ������������/������������ < +|������������(������������, ������������, 100������������������������)| < 908 ������������/������������ (1085 ������������/������������ < |������������(������������, ������������, 10������������������������)| < 1256 ������������/������������). The magnetic +field directivity is not as perfect as at small elevations but still sufficiently high to be neglected, +especially in the loop center. The fields distribution compares favorably to that reported +previously for planar loop-gap resonator [1]. + +9 + + +Figure S6. (a) Calculated microwave magnetic field magnitude, |H|, at ������������ = 100 µm for a mw +power of 1 W. The dotted and dashed circles mark the position of the inner loop edge +(������������������������ = 400µ������������) and the optical access hole (������������������������������������������������ = 300 µm), respectively. (b,c,d) +The ������������������������, ������������������������, ������������������������ amplitudes of the mw magnetic field components as functions of +x,y,z for mw power of 1 W. The black dotted lines mark the optically accessible +diamond area. Shadowed area in (d) shows the position region of the optical objective +(������������ < 0) and NV-center (������������ > 0). The dashed curve in (d) shows the best fit curve +of ������������������������(0,0, ������������) amplitude to the function in Eq. (3) in the main text. +S3. Radio frequency performance +In experiments where Radio frequency (RF) is used to drive nuclear spins, the corresponding +signals can be fed into the same resonator. Figure S7 shows the power-to-field conversion +efficiency of the different types for RF signals for the frequency range < 200 MHz. The +structures (transmission line, mw resonator) are non-resonant at RF fields and therefore +relatively broad-band. In transmission, the efficiency does not depend on the frequency. The +reflection resonator performs poorly at low frequencies and should not be used under such +conditions. + +a +A/m +G +1000 +c +1000- +12.6 +/ A/m +800 +500 +6.3 +H(0,y,100μm) +600 +200- +400 +y4 +200 +1. +-0.15 +-0.1 +-0.05 +0 +0.05 +0.1 +0.15 +0.2 +y /mm +1000 +1200 +b +objective +d +1000 +800 +H(x,0,100μm) / A/m +HH: +/ A/m +800 +.................................. +600 +HH +(z'00)"H +600 +400 +400 +NV-center +200 +200 +0.15 +-0.1 +-0.05 +0 +0.05 +0.1 +0.15 +0.2 +-0.2 +0 +0.2 +0.4 +0.6 +0.8 +/mm +z /mm10 + + +Figure S7. (a) Simulated ������������21 (upper trace) and ������������11 (lower trace) of the transmission resonator +with diamond for the radio frequency range. (b) The frequency dependence of the +magnetic field amplitude ������������������������(0,0,10 μm) calculated for the transmission line and +the resonator in reflection and transmission modes. +S4. Fluorescence collection efficiency and optical resolution +The fluorescence collection efficiency for an NV center as the point emitter and neglecting +reflections on diamond-oil interface is +������������������������������������ = 1 − cos ������������ +2 +, +The light cone opening angle, ������������, of the optical objective employed in this work (Zeiss, +Apochromat 100 with ������������������������ = 1.4; immersing oil Immersol 518 F with ������������ = 1.518) is ������������ = +asin( +������������������������ +������������ ) = 67°. Thus, the optically unrestricted objective is capable of collecting 30% of the +emitted photons. The diameter of the optical access hole required for this efficiency would be +������������������������������������������������ = 0.78 ������������������������ (loop inner diameter ������������������������������������ = 0.88 ������������������������) for NV centers close to the diamond +surface and a resonator thickness (substrate and copper cladding) of 0.166 mm, see Fig. S8(c). +In this work we decided for ������������������������������������������������ = 0.3 ������������������������ allowing for ������������ = 42°, see Fig. S8(a), in order to +optimize the microwave performance of the resonator. The collection efficiency, however, +becomes potentially reduced by factor of 2.4 as compared to the maximum possible for this +objective. Increasing the optical access hole diameter will improve the collection efficiency, +see Fig. S8(b) at the cost of (i) reduced power to magnetic field conversion efficiency, see Table +S1; (ii) increased heating; (iii) increased effect of the objective on the properties of the resonator +(resonance frequency and magnetic field distribution). These factors have to be taken into + +0 +300 +a +transmissionresonator +-0.1 +-0.2 +250 +/dB +transmissionline +-0.3 +s +-1/2 +0.4 +200 +-0.5 +150 +-15 +-20 +100 +/dB +reflectionresonator +-25 +S +-30 +50 +b +-35 +40 +0 +40 +80 +120 +160 +0 +40 +80 +120 +160 +0 +200 +200 +frequency/MHz +frequency /MHz11 + +account when optimizing the resonator geometry for experiments which require high collection +efficiency. + +Figure S8. Fluorescence optical pathway for (a) the resonator employed in this work and (c) +resonator configuration required for maximum fluorescence collection efficiency. +(b) Dependence of fluorescence collection efficiency on diameter of optical access +hole relative to that capable by objective. +Optical resolution. As pointed above the resonator acts as a diaphragm reducing numerical +apperture of the objective and, as the result, limiting the optical resolution. The effect is, +however, weaker compared to the loss of the fluorecence collection efficiency. Figure S9(a) +shows the fluorecence image of the single NV-center recorded with the resonator setup. +Evaluation of the fluorecence spatial distribution yields the FWHM of recordings about 300 nm, +Fig. S9(b). This number corresponds to 300������������������������ +sin (42°) +sin(67°) = 220 ������������������������ for objective without +diaphragm, which is close to the number calculated for Airy pattern of a point emmiter +0.51������������ +������������������������ = +0.51∙700������������������������ +1.4 += 255 ������������������������. + +Figure S9. Optical resolution. (a) A fluorescence image of the single NV center over a scanning +range of 1μm × 1 μm. (b) Fluorescence in dependence on x- and y-positions. The +solid lines show the fits to gaussian functions. The increase of FWHM as compared +to objective limit is attributed to the effect of resonator optical access hole. + +a +b +Dent = 0.3 mm +,=0.78mm +0.9 +0.8 +0.7 +0.6 +0.5 +0.4 +0.3 +0.35 +0.4 +0.45 +0.5 +0.55 +0.6 +0.65 +0.7 +0.75 +0.8 +D. /mm0.5 +a +/rel.u. +b +0.4 +0.9 +0.8 +0.3 +0.8 +fluorecence/ +fluorecence /rel.u. +0.6 +0.2- +0.7 +0.4 +0.1 - +0.6 +wn/ +0.2 +FWHM=290±10nm +0 +0.5 +-0.1 - +fluorecence /rel.u. +0.4 +0.8 +-0.2 +0.3 +0.6 +-0.3 +0.2 +0.4 +-0.4 - +0.1 +0.2 +0.5 +FWHM=320±10nm +-0.5 -0.4 -0.3 -0.2 -0.1 +0 +0.1 0.20.3 0.40.5 +0. +0.5 +-0.4 +-0.3 +0.2 +-0.1 +0 +0.1 +0.2 +0.3 +0.4 +0.5 +x /um +x,y /um12 + +The simple geometrical approach employed here can be extended for analysis of these +parameters at any position within the optically accessible area. However, this approach neglects +additional effects like reflections on the diamond-oil interface, which should be considered for +a more precise analysis. +S5. Experimental details +The experiments were performed on a home-built setup, whose schematic is shown as Fig. S9. +Single NV centers in diamond can be optically addressed, initialized and detected with a +confocal microscope. Here we used a diode-pumped solid state continuous wave laser with a +wavelength of 532 nm (marked in green in the schematic) for the optical excitation. For pulsed +experiments, we use an acousto-optical modulator (AOM) to generate pulses from the +continuous wave laser beam or a pulsed diode laser. The microscope objective is fixed to the +nanopositioning system that scans the sample in three dimensions. The fluorescence light +(marked in red in the schematic) is also collected by this MO lens and passes through the +dichroic mirror to the avalanche photodiode (APD) detector, while the scattered laser light is +reflected by the dichroic mirror. + +Figure S10. Schematic of the optical part of the setup. A confocal microscope is utilized for +initializing and detecting single NV centers. + + +Diamond +MW source +Resonator +Objective +xyz-Nanopositione +Laser +AOM +Dichroic mirror +APD13 + + +Figure S11. Photographs of the experimental setup. + + +Figure S12. Photographs of (a) loop region of the resonator and (b) the resonator loop region +with a diamond mounted. + +Figure S13. The principal microwave schemes for transmission and reflection modes. The +components are: (1) cw microwave source; (2) PIN-diode modulator; (3) power +mw amplifier; (4) circulator; (5) fast microwave diode detector for power and +matching control. + +a +permanent magnet +resonancestructure +b +withdiamondmounted +mwout +objective +mw.in +x,y,z stage600um +300μm +b +atransmission +本 +5 +大 +?IFTV +5 +4 +3 +2 +1 +reflection +本 +214 + + +Figure S14. Pulse sequence for measuring Rabi oscillation. The first laser pulse of 5 µs +initializes the NV into the ground state |g〉. The MW pulse of variable length, ������������������������, +flips the NV to cos��������������������������������������������������������������|������������⟩ + sin��������������������������������������������������������������|������������⟩,where |������������⟩ denotes one excited +state. The second laser pulse of 0.4 µs probes the population of ground state |������������⟩, +proportional to the FL intensity. The pulse repetition rate was generally set to +6400 s-1. +S6 Frequency tuning capability +In this part we consider the options for tuning the resonance frequency. This will be relevant +for experiments in different magnetic fields or on other types of optically active spin centers. +The half-wave mode (������������������������/2) resonance frequency of a microstrip of length ������������ without current +loop is given by the well-known expression +������������0 = +������������ +2������������ ∙ ������������������������������������� + +where ������������������������������������ is the effective dielectric constant of the microstrip. For a microstrip of width ������������, +larger than the dielectric thickness ������������, it is given by +������������������������������������������������ = ������������������������ + 1 +2 ++ ������������������������ − 1 +2 +1 +�1 + 12 ������������ +������������ + +The effective dielectric constant of ������������������������������������������������ =2.81 is calculated for microstrip with +������������ = 0.13 mm, ������������ = 3 mm and ������������������������ = 3 used in this work. Thus, for the fixed geometry of the +resonator holder (see Fig 1, main text) the resonance frequency of the microstrip can be tuned +from 1.6 GHz (������������ = 56mm) to 18 GHz (������������ = 5mm), see Fig. S15(a). The validity of the analytic +approach is also valid for the full model as the resonance frequency from EM calculations (red +line, Fig. S15(a)) agrees well with the analytical prediction (dashed line in Fig. S15(a)). +The blue line in Fig. S15(a) shows the resonance frequency of the microstrip resonator +including the current loop in transmission mode. The additional gap and the current loop +increase the intrinsic capacity and inductance of the microstrip. Thus, the resonance frequency +is lower than for a microstrip of the same length. The resonance frequency can be tuned between +1.3 GHz (������������ = 56mm) and 5.7 GHz (������������ = 5mm). It is important to note that the conversion + +Laser +532nm +t +MW +FL +readout15 + +efficiency does not strongly depend on the resonance frequency, see Fig. 15(b). A slight +efficiency improvement is observed at lower frequencies, accompanied by a reduction of the +resonator bandwidth. + +Figure S15. (a) Dependence of the resonance frequency on the length ������������, (diamonds, blue line) +calculated for transmission mode. All other geometrical parameters are fixed as +given in the caption of Figure 1 (main text). The red line with circles shows the +resonance frequency of the microstrip without loop obtained from EM simulations +for transmission mode. The black dashed line shows the analytically calculated +resonance frequency of the microstrip. (b) Conversion efficiency calculated for +resonators of selected lengths. +Thus, the resonator configuration described in this work can be used for experiments with +microwave excitation over the frequency range of 1 GHz to 6 GHz. The range can be extended +to lower frequencies by further increase of the resonator length or by increasing the dielectric +constant of the substrate. Figure S16 shows the parameters of identical resonators with +L = 50 mm calculated for ε = 3 (used in this work) and ε = 10. The ratio of the resonance +frequencies 1.44 GHz/0.78 GHz = 1.85 agrees well with the ratio of the effective dielectric +constants �9.15/2.81=1.8. The large reduction in the bandwidth (300 MHz vs. 110 MHz) can +be improved by decreasing the width of the resonator, ������������������������, which would lead to an increase of +the coupling coefficient (see section S1.3). + +a +1600 +L= 50 mm +b +N +1400 +L=25mm +frequency +1200 +L=17mm +1000 +A·m +L= 8 mm +resonance +800 +600 +2 +400 +200 +5 +10 +15 +20 +25 +30 +35 +40 +45 +50 +55 +0.5 +1 +1.5 +2 +2.5 +3 +3.5 +4.5 +5 +5.5 +L /mm +frequency /GHz16 + + +Figure S16. (a,c) S-parameters of identical transmission mode resonators with length +������������ = 50 mm calculated for substrates having ε = 3 (a) and ε = 10 (c). All other +geometrical parameters are fixed as given in the caption of Figure 1 (main text). +(c,d) Corresponding conversion efficiencies. Resonator bandwidths and key +parameters are indicated. +An increase of the resonance frequency above 6 GHz is difficult because substrates with +dielectric constant < 2 are not available and a further decrease of the resonator length below +������������ ≤ 2 ∙ ������������������������ is not feasible, see Table S2. The resonator, however, can still be used at higher mw +frequencies if higher resonance modes are considered. Figure S17 shows S11 and efficiency +parameters of the resonator (see Fig. 1 main text) extended to higher mw frequencies, where +additional resonances are observed. Of particular interest is the resonance at about 11 GHz +which corresponds to the ~ +3 +2 ������������������������ resonance mode of the microstrip. At this mode the conversion +efficiency (600 A/m/√W) is reduced by factor 1.95 as compared to the main mode (1170 +A/m/√W) but it is still about factor 2.5 higher compared to the 50 Ω microstrip with current +loop (245 A/m/√W). We note here that for a microstip resonator without current loop in +3 +2 ������������������������ +mode one would expect a reduction of the magnetic field amplitude in the center by a factor √3 +compared to the fundamental +1 +2 ������������������������ mode. This is due to an additional resonance mode at +10.4 GHz, marked by * in Fig. S17. This mode generates only small magnetic fields at the + +1600 +b +1500 +5 +1400 +/dB +-1/2 +10 +1.W +1300 +S +300 MHz +-15 +1000 +-20 +a +900 +L=50mm,W,=0.3mm,=3,r(W,=3mm)=2.81 +-25 +1.25 +1.35 +1.55 +1.65 +800 +1.2 +1.3 +1.4 +1.45 +1.5 +1.6 +1.7 +1.2 +1.25 +1.3 +1.35 +1.4 +1.45 +1.5 +1.55 +1.6 +1.65 +1.7 +frequency /GHz +frequency /GHz +2400 +d +-2 +2200 +-4 +2000 +/dB +1800 +-8 +110 MHz +1600 +S +-10 +-12 +-14 +1200 +-16 +c +1000 +L = 50mm, W, = 0.1mm, = 10, (Ws= 3mm)= 9.15 +-18 +800 +0.65 +0.7 +0.75 +0.8 +0.85 +0.9 +0.65 +0.7 +0.75 +0.8 +0.85 +0.9 +freguency/GHz +freguency/GHz17 + +position of the current loop and is therefore not useful. Thus, resonator designs operating at +higher modes would require additional optimization steps in order to separate active from +inactive modes. + +Figure S17. Simulated S11 parameter and conversion efficiency of the transmission mode +resonator described in Fig. 1 (main text) over a wider frequency range. The dashed +line indicates the conversion efficiency of a 50 Ω microstrip line containing a +current loop. The asterisk marks the frequency position of a magnetically inactive +mode. +1. +K. Sasaki, Y. Monnai, S. Saijo, R. Fujita, H. Watanabe, J. Ishi-Hayase, K. M. Itoh and E. +Abe, Rev. Sci. Instrum. 87 (2016) 053904. + + +1200 +1000 +-5 +800 +-10 +Mi- +/dB +600 +-15 +S +400 +-20 +? +200 +-25 +0 +-30 +1 +2 +3 +4 +5 +6 +< +8 +9 +10 +11 +12 +frequency/GHz \ No newline at end of file diff --git a/ldE2T4oBgHgl3EQfeAcm/content/tmp_files/load_file.txt b/ldE2T4oBgHgl3EQfeAcm/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..ede6574d5a17d5df2951d7715bf88019f5b6a7eb --- /dev/null +++ b/ldE2T4oBgHgl3EQfeAcm/content/tmp_files/load_file.txt @@ -0,0 +1,1459 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf,len=1458 +page_content='1 Title Variable bandwidth, high efficiency microwave resonator for control of spin-qubits in nitrogen-vacancy centers Authors Dr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Anton Savitsky, Dr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Jingfu Zhang, Prof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Dieter Suter Faculty of Physics, Technical University Dortmund, Otto-Hahn-Str.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' 4a, 44227 Dortmund, Germany Keywords Planar microresonator, NV center, spin qubit, microwave magnetic field 2 Abstract Nitrogen-Vacancy (NV) centers in diamond are attractive tools for sensing and quantum information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Realisation of this potential requires effective tools for controlling the spin degree of freedom by microwave (mw) magnetic fields.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' In this work we present a planar microwave resonator optimised for microwave-optical double resonance experiments on single nitrogen- vacancy (NV) centers in diamond.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' It consists of a piece of wide microstrip line which is symmetrically connected to two 50 Ω microstrip feed lines.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' In the center of the resonator, an Ω- shaped loop focuses the current and the mw magnetic field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' It generates a relatively homogeneous magnetic field over a volume of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='07mm2×0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='1mm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' It can be operated at 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='9 GHz in both transmission and reflection modes with bandwidths of 1000 MHz and 400 MHz, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' The high power-to-magnetic field conversion efficiency allows to produce π- pulses with a duration of 50 ns with only about 200 mW and 50 mW microwave power in transmission and reflection, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' The transmission mode also offers capability for efficient radio frequency excitation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' The resonance frequency can be tuned between 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='3 GHz and 6 GHz by adjusting the length of the resonator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' This will be useful for experiments on NV- centers at higher external magnetic fields and on different types of optically active spin centres.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Introduction The NV center in diamond is used in various fields, such as quantum information, quantum sensing, magnetometry, bioimaging, etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' 1-5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' In all applications, efficient manipulation of the electron spin is an essential prerequisite, both for continuous wave (cw) experiments and for fast spin control in pulsed experiments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Therefore, maximising the coupling between the control microwave (mw) magnetic field and the electron spins is a fundamental concern.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Here, we consider specifically applications where single NV centers are excited by a laser and the spin state is read out by collecting photoluminescence (PL) through a microscope objective with large numerical aperture (NA > 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Measuring a cw ODMR spectrum in such requires a mw magnetic field of ������������ = 150 A/m (������������ = ������������0������������ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='19 mT) to reach the maximum fluorescence contrast 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' This field corresponds to a Rabi frequency of ������������������������ = 2 MHz if the oscillating magnetic field is perpendicular to the NV axis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' In pulsed experiments, typical π-pulse durations of ������������������������ = 50 ns are used, which correspond to an excitation bandwidth of 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='2/������������������������ = 24 MHz (������������������������ = 10 MHz).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' This is sufficient for complete electron spin flip of the selected triplet spin transition 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' This pulse length requires magnetic field amplitude of ������������ = 800 A/m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Currently, most experimental setups rely on a wire positioned over the sample to achieve such mw magnetic field amplitudes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' If this wire is placed in a short gap of a transmission line with 3 ������������������������ =50 Ω impedance, the electric current in the wire has an amplitude ������������ = �2������������������������������������/������������������������ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='2 A/√W ∙ �������������������������������������.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' This current produces the tangential magnetic field ������������������������������������������������������������ = ������������ 2������������������������ outside the wire of radius ������������0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' For a typical wire diameter of 20 µm, the maximum magnetic field generated at the wire surface is ������������������������������������������������������������(������������0) = 3200 ������������ ������������ at 1W of mw power.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' The wire is, however, optically opaque.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Therefore, only NV-centers at a distance > √2������������0 from the center of the wire center can be optically probed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' At this position, the magnetic field is reduced to 2600 ������������ ������������ at 1W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Even at realistic distances from the wire of 40 µm, which still reduces the fluorescence collection efficiency due to obstruction by the wire, pulsed experiments can be performed with 1 W mw power, reaching �������������������������������������������������������������40 µm� = 800 ������������ ������������.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Therefore, the microwire system is used in many laboratories, including our laboratory7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' A major disadvantage is that the 1/������������ dependence of the magnetic field amplitude significantly restricts the volume and the surface area available for probing single NV-centers and requires precise initial positioning of the microscope objective.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Moreover, readjustment of the mw power settings is necessary for any new probed NV-center which is not only due to the distance dependence of the magnetic field amplitude but also to the magnetic field direction dependence on distance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' This problem can be overcome using a microloop integrated into a transmission line instead of the microwire 8, 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' The magnetic field amplitude in the center of the ideal loop is given by ������������������������������������������������������������ = ������������ ������������ where ������������ is the loop diameter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Thus, the field of 1000 ������������ ������������ can be generated by a loop with 200 µm diameter at 1 W mw power, which fulfills the requirements for ODMR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Advantages of the loop include a good homogeneity and directivity of the magnetic field over a 100 ×100 µm2 area, much higher than the microwire.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Compared to a wire, the loop magnetic field is, however, less tolerant to the effect of the metal case of the microscope objective, which must be positioned close to the sample.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' We discuss means to avoid this issue below.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' There are several additional significant handicaps of loop, as well as wire, systems in conjunction with transmission line, (i) the construction does not allow quick replacement or reposition of the diamond spaceman;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' (ii) significant heating effects (the resistance of 10 mm copper wire with 20 µm diameter is 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='25 Ω at 3 GHz, which leads to power dissipation at the mw power level required for ODMR, but the thermal conductivity is limited due to the small conductor cross-section);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' (iii) substantial power return losses caused by the discontinuity in the transmission line.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' The main handicap is, however, the high mw powers required to fulfill the magnetic field requirements for ODMR experiments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' 4 The power limitation can be overcome using planar resonators to generate the magnetic field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' In the past numerous reflection mode resonators were proposed based on different planar structures, for instance double-split ring 10, 11, triple-split-ring 12, loop-gap 13, strip-line 14, and several other types 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' All these resonators allow to store the mw energy for a time proportional to the unloaded quality factor ������������0, which leads to increase of the current and, therefore, an enhanced magnetic field amplitude proportional to �������������0 as compared to a non-resonant structure with the same geometry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' The resonator, however, introduces additional limitation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' The substantial magnetic field enhancement is achieved only within the resonator bandwidth.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' For instance, for a matched (critically coupled) reflection resonator with ������������0=100 would require 100 times less mw power at the resonance frequency of ������������0 = 3 GHz to generate the same mw magnetic field amplitude as compared to the non-resonant structure of same geometry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' This effect is, however, only obtained within Δ������������1/2 = 2 ∙ ������������0 −1 ∙ ������������0= 60 MHz around the resonance frequency.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' This would substantially limit its general applicability for ODMR on single NV- centers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' The bandwidth of a matched resonator can only be increased by lowering the ������������0-value 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' This, however, leads to lower mw power to magnetic field conversion, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' it reduces the usefulness of the resonator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' The aim of this work is to develop a device that avoids these issues and can be used, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=', for ODMR spectroscopy of single NV centers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' It overcomes high power requirements and compromises limitations of transmission line systems as well as previously reported resonant structures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' We design it to fulfill the following requirements: (i) easy and cheap fabrication with reliable resonator parameters;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' (ii) compatibility with standard coaxial mw delivery system;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' (iii) high mw power to magnetic field conversion efficiency;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' (iv) high magnetic field directivity and spatial homogeneity at least in the area accessible by nanopositioners based on piezoelectric actuator (100 ×100 µm2);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' (v) small mw magnetic field frequency dependence, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' large bandwidth;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' (vi) possibility for microwave and radio frequency excitations;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' (vii) high mechanical and thermal stability;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' (viii) easy and reliable replacement or reposition of the diamond specimen;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' and (very important !' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=') (ix) it must be compatible with high resolution confocal objectives, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' tolerate the presence of dielectric and conductive parts in very close vicinity (200 µm to 300 µm) of the magnetic fields of the resonator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Results and discussion 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='1 Resonator design Figure 1 depicts the design of the developed half-wave resonator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' It consists of a piece of wide microstrip line symmetrically connected to two 50 Ω microstrip feed lines terminated by SMA 5 connectors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' In the center of the microstrip, the Ω-loop concentrates the current and the mw magnetic field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' The geometrical parameters of the resonator investigated in this study are summarized in the figure caption.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' The diamond is placed on the loop, as shown in Fig 1b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Thus, the lower diamond surface is exposed to the mw magnetic field near the maximum amplitude.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' The resonator is fabricated using standard PCB lithography on low loss Rogers RO3003 laminate with 166 µm overall thickness.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' This design allows us to explore the diamond down to least 100 µm above the surface.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' The resonator is designed for operation in transmission (the output SMA is terminated by a 50 Ω load) or reflection (the output SMA is open to free space) modes of operation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' (a) Full model of the microwave resonator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' It is fabricated on 60×26 mm2 Rogers RO3003 low loss laminate ( ε������������ = 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='00 , tan ������������ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='001 at 10 GHz, dielectric thickness 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='13 mm and 18 µm copper cladding) mounted on a 60×26×1mm3 copper holder and two standard PCB SMA flat tab connectors .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' (b) Resonator design.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' The geometrical parameters are: ������������������������ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='3 mm - width of the microstrip feed line (������������������������ = 50 Ω);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' ������������������������ = 3 mm - width of the resonator, ������������ = 17 mm - length of the resonator;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' ������������ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='1 mm - gap width, ������������������������ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='4 mm - inner diameter of the loop, ������������������������ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='1 mm width of the loop conductor, ������������������������������������������������ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='3 mm - diameter of the optical access hole.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Coordinate system is indicated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' For optical pathway see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' S8 in SI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='2 Transmission mode resonator Figure 2 shows the S-parameters of the resonator in transmission mode calculated using CST Microwave Studio and measured experimentally using a network vector analyzer (HP 8720A).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' The analytical transmission and reflection coefficients of the symmetrically coupled transmission resonator with unloaded quality factor ������������0 and resonance frequency ������������0 are given by ������������ = − 1−������������������������ 1+2������������−������������������������ ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' ������������ = 2������������ 1+2������������−������������������������ (1) where ������������ is the coupling parameter for both input and output and ������������ = ������������0 ∙ � ������������0 ������������ − ������������ ������������0� is the normalized offset 16, 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Analysis of the S-parameter traces depicted in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' 2 using Eqs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' (1) a b L ★ Wr G W V X X W D opt6 yields the resonator parameters ������������0 = 74, β = 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='5 and ������������0 = 73, β = 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='8 for simulation and experiment, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' The relatively low unloaded quality factor is typical for microstrip based resonators owing to relatively high conduction losses 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' The comparison of the calculated coupling parameter of 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='5 with ������������ = ������������0 ������������������������ ������������������������=12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='6 which can estimated analytically for the resonator shows that the Ω-loop slightly increases the impedance of the resonator over the impedance of the microstrip line with width ������������������������ (for more information see SI).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' The central frequency of the experimental resonator was downshifted by about 70 MHz compared to the calculation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' This deviation is ascribed to slightly different real parameters of the laminate (dielectric constant and thickness) as well as manufacturing tolerances.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Figure 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' (a) Simulated and (b) experimental S-parameters of the transmission resonator with diamond: ������������11 = 20 ∙ log10 |Γ| (blue line) and ������������21 = 20 ∙ log10 |������������| (red line).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' The dashed lines show the best fit results of the S-curves to the reflection and transmission coefficients given by Eqs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' (1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' The disagreement at the low and high frequencies is due to the frequency dependence of the characteristic impedances, which are not included in Eqs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' (1), and contributions from other resonator modes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' The resonator itself is described by the coefficient ������������2 = 1 − |Γ|2 − |������������|2, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' the mw power transmitted to the resonator to which the magnetic field amplitude is proportional.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' This factor can be parametrized by the power coefficient at the resonance frequency and the resonator bandwidth: ������������(������������0) = 2������������� 1+2������������ ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' ������������������������1/2 = 1+2������������ ������������0 ∙ ������������0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' (2) Thus, the bandwidth of the resonator is 950 MHz and 990 MHz for calculation and experiment, respectively, which is sufficient for most low-field applications of NV centers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Figure 3 shows the spatial variation of the mw magnetic field behavior within the loop.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' At a small elevation above the loop surface (������������ =10 µm), the loop provides a perfect magnetic field directivity over the optically accessible diamond area, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' the magnetic field is aligned with the z-axis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' At ������������ = 10 μm the position of the magnetic field minimum 5 F--- 5 10 10 /dB /dB 15 20 20 25 25 a b 30 30 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='4 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='6 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='8 3 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='2 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='4 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='4 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='6 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='8 3 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='2 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='4 freguency /GHz freguency /GHz7 ������������(0, 70 µm, 10 µm) =1100 A/m is slightly shifted from the loop center due to the effect of the gap.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' The magnetic field amplitude increases by about a factor of 2 to the edge of optically accessible area.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Above the loop the decay of the magnetic field magnitude at the loop center is well described by the decay function for an ideal current loop: ������������(0,0, ������������) = ������������(0,0,0) ������������3 (4������������2+������������2) 3 2 (3) with ������������ = 440 µm > ������������������������ due to the large width of the loop conductor (������������������������ = ������������������������/4), see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' 3(d).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Below the loop the magnetic field decays rapidly and is smaller than 70 A/m at the closest position of the microscope objective surface.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' This guarantees the stability of the system during operation as neither magnetic field distributions nor resonator parameters are influenced by the microscope objective.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' At higher elevation above the loop the improvement of the magnetic field homogeneity is accompanied by slight loss of the field directivity, see Fig S6 in SI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Within the optically accessible diamond area (±x, ±y, z)=( ±150, ±150, 0+100) µm the minimum and maximum of the magnetic field magnitude are 2200 A/m and 735 A/m at 1 W mw power, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Thus, the magnetic field of the loop compares very favorably with that of a microwire, both in terms of homogeneity and directivity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Figure 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' (a) Color-coded plot of the calculated mw magnetic field magnitude, |������������|, at ������������ = 10 µm for mw power of 1 W at the resonance frequency.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' The dotted and dashed circles mark the position of the inner loop edge (������������������������ = 400 µm) and the optical access a A/m G c 3500 3600 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='2 3000 / A/m 3000 2000 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='2 H(0,y,10μm) 2500 2000 1000 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='6 1500 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='3 1000 500 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='. 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='05 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='2 y /mm 1200 3500 b .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='. objective d HH 3000 1000 / A/m / A/m HH 2500 800 H,(0,0,z) 10μm) 2000 600 H(x,0,1 1500 400 NV-center 1000 500 200 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='05 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='2 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='8 /mm z /mm8 hole (������������������������������������������������ = 300 µm), respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' (b,c,d) The ������������������������, ������������������������, ������������������������ amplitudes of the mw magnetic field components as functions of the position ������������, ������������, ������������ for a mw power of 1 W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' The black dotted lines mark the optically accessible diamond area.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' The shadowed area in (d) shows the position region of the optical objective (������������ < 0) and NV-center (������������ > 0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' The dashed lines in (d) show the best fit curve of ������������������������(0,0, ������������) to the function in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' (3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='3 Reflection mode resonator The efficiency of the resonator can be improved employing reflection mode.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' The resonator is converted to reflection mode by just disconnecting the output coax cable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' The reflection resonator is described by: ������������(������������0) = 2������������� 1+������������ ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' ������������������������1/2 = 1+������������ ������������0 ∙ ������������0 (4) as derived from the reflection coefficient 16: ������������ = − 1−������������−������������������������ 1+������������+������������������������.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' (5) Thus, for high coupling parameters, ������������ ≫ 1, the reflection mode offers a factor 2 higher magnetic field amplitudes, see SI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' The bandwidth, however, becomes reduced by factor of 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' The magnetic field distribution in the loop area is identical in both resonator modes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Figure 4 shows the calculated and experimental S11-parameters of the resonator in reflection mode.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Analysis of the S-parameter traces using Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' (5) yields the resonator parameters ������������0 = 70, β = 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='3 and ������������0 = 60, β = 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='8 for simulation and experiment, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Thus, the bandwidth of the resonator is 400 MHz and 320 MHz for calculation and experiment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' The difference between transmission and reflection mode as well as between calculated and experimental reflection parameters are mainly due to the open output line.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Figure 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Simulated (a) and experimental (b) S11-parameters of the resonator operated in reflection mode.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' The dashed line show the best fit results of the S-curves to the reflection coefficient given by Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' (5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' 0 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='5 1 /dB 1 /dB 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='5 S1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='5 2 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='5 2 3 a b 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='5 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='4 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='6 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='8 3 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='2 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='4 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='6 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='6 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='8 3 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='2 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='4 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='6 frequency/GHz freguency/GHz9 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' ODMR experiments The mw magnetic field behavior was verified experimentally using a previously described ODMR setup capable for continuous wave and pulsed ODMR experiments, see 7 and SI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' The 2×2×1mm3 diamond (001 cut) containing a 20 µm layer near surface that was doped with NV centers was fixed to the resonator using transparent office tape, see Figs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' S11 and S21 in SI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' The central position of the optical objective was set close to the loop center.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Figure 5(a) shows a cw ODMR spectrum of the NV-centers located near the focal spot, recorded using mw power of 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='8 mW (the power level was calibrated at 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='87 GHz).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Two intense ODMR lines centered at 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='87 GHz are observed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' The line splitting by 475 MHz corresponds to the external magnetic field component of 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='5 mT along the NV-axis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Additional ODMR line pairs with splitting of 260 MHz, 160 MHz and 60 MHz can be attributed to a set of NV-centers within the sensitive volume of about 300 nm in the x-y plane and 1000 nm in the z-direction (see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' S9 in SI).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' The different centers have different orientations along different [1,1,1] directions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' To measure the precise mw magnetic field strength, we recorded Rabi oscillations at the two strongest transitions, as shown in Figure 5(b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' The applied mw power of 680 mW resulted in a Rabi frequency of about 14 MHz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' The Rabi frequency ������������������������ is proportional to the magnetic field amplitude ������������: ������������������������ = � 2 3 ∙ √2 ∙ ������������������������ 2������������ ������������0������������ 2 = ������������������������ 2������������ ������������0������������ √3 , (6) where ������������������������ is the electron gyromagnetic ratio (������������������������/2������������=28 GHz/T) and ������������0 is the permeability of the vacuum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' The factor �2/3 accounts for the component of ������������ that is perpendicular to the NV- axis, (mw H-axis parallel to [0,0,1] and NV-axis parallel to [1,1,1] crystal axis).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' The factor √2 takes into account that we drive one transition of the S = 1 spin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Thus, a Rabi frequency of ������������������������=14 MHz at 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='68 W corresponds to a conversion efficiency of ������������ = 840 ������������ ������������ at 1 W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' 10 Figure 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' (a) cw ODMR spectrum of the single NV-center at external magnetic field alight close to [1,1,1] crystal axis recorded at 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='8 mW incident mw power.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' (b) The Rabi oscillation traces recorded at the mw frequencies of the high frequency (upper trace;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' marked blue in (a)) and low frequency (lower trace;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' red in (a)) ODMR lines and 680 mW mw power (+20dB increased power over the cw experiment).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' The solid blue and red lines are the fits.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' In the next step the cw and pulsed ODMR experiments were performed at different external magnetic fields and the same input power of the mw amplifier, see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' 6(a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' The magnetic field amplitude evaluated from the Rabi frequencies overlaid with the simulation results is depicted in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' 6(b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Both curves are in the good agreement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' The variation of the mw magnetic field over a frequency range of 800 MHz is less than 40%.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' The discrepancy at the frequencies above 3 GHz is attributed to gain variation of the high-power mw amplifier operated below saturation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' The spatial distribution of H in the x-y plane was evaluated from the Rabi experiment at 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='93 GHz for 10 different NV centers over the area of 70×70µm2 accessible by the nanopositioner.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' The variation of the magnetic field of less than 20% (1000 A/m to 1250 A/m) is in a good agreement with simulation predictions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Figure 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' (a) cw ODMR spectra of the single NV-center at different external magnetic fields at 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='8 mW incident mw power.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' (b) The frequency dependence of the magnetic field intensity I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='norm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='96 a 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='98 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='92 contrast /% 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='88 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='96 473 MHz 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='84 f,=13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='7 ±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='1 MHz ODMR 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='94 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='96 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='92 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='87GHz 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='88 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='9 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='84 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='6 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='7 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='9 3 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='1 f,=14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='4 ±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='1 MHz Frequency/GHz 100 200 300 400 500 t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' /ns24 1100 22 A·m 20 18 a 800 b 16 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='5 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='6 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='7 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='8 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='9 3 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='1 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='2 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='3 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='4 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='6 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='8 3 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='2 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='4 freauency/GHz freguency/GHz11 amplitude ������������������������(0,0,10 μm) calculated for the transmission resonator (black curve, left scale).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Rabi nutation frequencies (dots, right scale) evaluated from experimental Rabi oscillation traces recorded at the ODMR line positions in (a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' The Rabi frequencies are normalized to 1 W mw power calibrated at 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='87 GHz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' The left and right scales are adjusted according to Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' (6).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' These results show that the transmission resonator achieves good spatial magnetic field homogeneity and the bandwidth required for most ODMR experiments on single NV-centers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' The transmission resonator achieves π-pulse durations of 20 ns (������������������������ = 25 MHz) using about 1 W mw power.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' For this performance, a mw amplifier is required.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' This limitation can be overcome by operating the resonator in reflection mode.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Figure 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' (a) Rabi oscillation traces recorded at the mw frequency 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='93 GHz for the resonator in transmission (upper trace) and reflection (lower trace) modes at 680 mW mw power.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' The traces were acquired subsequently at the same settings with the output cable connected and disconnected.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' The solid-colored lines are the fits.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' (b) Frequency dependence of the magnetic field amplitude ������������������������(0,0,10������������������������) calculated for transmission (red trace) and reflection resonator (blue trace).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' The amplitude ratio at 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='93 GHz is indicated by the arrow.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Figure 7(a) shows the Rabi nutation traces recorded at the high frequency ODMR line at 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='93 GHz with 680 mW input mw power.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' The upper trace was acquired using the resonator in transmission mode.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Subsequently, the output mw cable was disconnected converting the resonator into reflection mode and the lower trace was acquired.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' The magnetic field amplitudes evaluated from Rabi frequencies are 1190 A/m and 2070 A/m for transmission and reflection settings, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' The experimentally observed increase of the resonator efficiency by a factor of 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='74 is in a good agreement with factor 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='8 obtained from calculation, see Fig 7(b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Thus, the reflection resonator is capable of producing the same magnetic field amplitude using about factor of 3 smaller mw power.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' It achieves 20 ns π-pulses (������������������������ = 25 MHz) with as little as 300 mW mw power.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' 2200 /.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='norm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' b 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='96 tensity 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='92 1800 reflection 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='88 x 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='8 f.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='=19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='9±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='1 MHz 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='84 A·m 1400 rm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='nor 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='96 intensity 1000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='92 transmission T 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='88 f,=34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='7±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='1 MHz 600 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='84 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='4 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='6 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='8 3 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='2 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='4 0 40 80 120 160 200 frequency/GHz t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' /ns12 At this point we put two remarks: (i) The highest ������������������������ achieved in our setup allows to realize π- pulses with 7 ns duration and 4 ns in transmission and reflection modes, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' The pulse profile of such short pulses is not distorted by the resonator, neither in transmission nor in reflection mode, since their voltage ringing times are ������������������������ = 1 ������������Δ������������1/2 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='3 ns and 1 ns, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' (ii) The performance of the microscope objective employed in this work, in particular the efficiency of fluorescence collection, is restricted by the resonator acting as an optical diaphragm, see SI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Despite this restriction, the collection of high quality ODMR data is still possible within reasonable time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Performance summary The goal of this work was the design of a device for efficient control of spin quibts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' For optimal performance, it should have a number of properties that we specified in the introduction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Here, we first summarise the quantitative performance measures of the mw and rf properties, as shown in Table 1;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' the values shown were calculated and verified by experiments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' For comparison, it also includes the parameters calculated for the 50 Ω microstrip transmission line with the same Ω-type loop.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' The resonator offers a factor of 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='8 (transmission) and 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='1 (reflection) higher magnetic field amplitudes at the same input mw power as compared to the transmission line.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Pulsed ODMR experiments with reasonably short π-pulses of 50 ns can be generated using only 50 mW mw power with the resonator operated in reflection mode.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Thus, it allows to avoid high-power mw amplification stages or even to perform the experiments directly using the output of a mw generator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' The transmission mode is more advantages for experiments at higher external magnetic fields owing to the larger resonator bandwidth.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' In contrast to reflection mode, it allows to the perform experiments with combined microwave and radio frequency excitations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' An additional advantage of the transmission mode is the good matching of the resonator input.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' The input return losses are <-20 dB (±50 MHz) and <-10 dB (±150 MHz) around the resonance frequency, see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Thus, in contrast to the reflection resonator, the mw excitation system does not require matching elements (circulator or attenuator) on the input for ODMR experiments at small external magnetic fields.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' 13 Table 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Summary of resonator and transmission line performances.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Case ������������������������������������/������������������������������������� A/m/√W ������������������������������������ c) W ������������������������1/2 MHz ������������������������������������/������������������������������������� d) A/m/√W Transmission line 245 a) 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='0 full 252 (252) Transmission resonator 1170 b) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='18 950 265 (266) Reflection resonator 2230 b) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='05 400 10 (160) a) calculated at 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='9 GHz b) calculated at the resonance frequency (~2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='9 GHz) c) input mw power required for 50 ns π-pulse (������������������������= 10 MHz) and NV-center in 001 diamond d) calculated at 10 MHz (200 MHz) We also considered heating effects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Conduction losses in the loop can lead to a temperature increase that can potentially influence the experiment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' The thermal analysis of the transmission mode resonator at ambient temperature shows that the temperature increase in the loop-diamond region is < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='3 K for 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='1 W continuous mw power (see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' S3 in SI).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' At this mw power the produced magnetic field of 370 A/m corresponds to a Rabi frequency ������������������������=7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='5 MHz which is more than sufficient for cw ODMR detection with the highest contrast 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' In pulsed ODMR experiments the average heat power is significantly smaller.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' The transmission resonator allows for above 106 π-pulses at 10 W (tπ= 7 ns) with no significant heating effects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' The results of the thermal analysis are consistent with experimental observations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' The resonator design can be adapted for experiments on NV-centers at higher external magnetic fields or different types of optically active spin centers by adjusting some of the design parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' The variation of the overall resonator length, ������������, between 5 mm and 56 mm allows to tune the resonance frequency between 6 GHz and 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='3 GHz without significant loss of the mw performance, see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' S16 in SI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Further increasing or decreasing the resonance frequency is possible by adjusting the dielectric constant and thickness of the substrate, and the geometry of the holder.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Various types of microwave resonators have been proposed for experiments on optically active spin centers, such as the diamond NV center, each with specific advantages and limitations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' A fair comparison of the performance of all these different designs would have to be made under a specific set of conditions, where all designs can operate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Since this is not possible, we include here a comparison with two recently reported designs with overlapping boundary conditions, which are applied in several laboratories for experiments on NV-centers 10, 11, 13, 19-26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' The first 14 system, originally reported by Bayat et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' 10, is based on a double-split-ring resonator operated in reflection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' In original design has an efficiency of 355 A/m/√W , with a bandwidth of 40 MHz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Similar numbers were reported for some modified designs 11, 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' The second design, originally reported by Sasaki et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' 13, is based on a split-ring (or loop-gap) resonator in reflection mode.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' In original design provides 240 A/m/√W with a bandwidth of 440 MHz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Better parameters 485 A/m/√W and 300 MHz are reported for the modified version 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Thus, the performance of our system in both transmission and reflection modes of operation is superior to both systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Conclusion In this work we presented a novel mw excitation system based on a resonator designed for cw and pulsed ODMR experiments on single NV-centers to be combined with confocal microscopy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' The high performance of the system was verified using numerical EM calculations and ODMR experiments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' The resonator can be easily and cheaply fabricated using standard PCB lithography.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' It offers high mechanical and thermal stability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Its performance in terms of mw power to magnetic field conversion efficiency and magnetic field homogeneity is superior in comparison to currently used systems like the microwire-transmission line system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' It also offers a range of practical advantages such as simplified optical adjustment and optimization of the mw power settings for all types of ODMR experiments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' It also offers the possibility for quick replacement of the diamond crystal because it does not have to be permanently connected to the resonator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' This provides the opportunity for investigation of different samples with the same structure or use a resonator which is optimized for the performance of a specific type of ODMR experiment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' While the present work focuses on applications on NV centers in diamond, the principles used here are completely general and can be readily transferred to similar systems that rely on efficient spin control by microwave fields.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' This includes not only ensembles of NV centers but also other materials like semiconductors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Acknowledgments This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No 828946.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' The publication reflects the opinion of the authors;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' the agency and the commission may not be held responsible for the information contained in it.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' 15 Author Declarations Conflict of Interest The authors have no conflicts to disclose.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Data Availability The data that support the findings of this study are available from the corresponding authors upon reasonable request.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Author Contributions Anton Savitsky: Conceptualization (equal);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Formal analysis, (lead);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Investigation (equal);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Methodology (lead);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Visualization (lead);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Writing – original draft (lead).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Jingfu Zhang: Data curation (equal);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Investigation (equal);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Formal analysis (equal);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Dieter Suter: Conceptualization (equal);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Review & editing (equal);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Funding acquisition (lead).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' References 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Suter and F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Jelezko, Prog.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Nucl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Magn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Reson.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Spectrosc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' 98-99, 50-62 (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Wrachtrup and F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Jelezko, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Condens.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Matter 18 (21), S807-S824 (2006).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Doherty, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Manson, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Delaney, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Jelezko, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Wrachtrup and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Hollenberg, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Rep.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' 528 (1), 1-45 (2013).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Barry, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Schloss, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Bauch, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Turner, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Hart, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Pham and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Walsworth, Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Mod.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' 92 (1), 015004 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Balasubramanian, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Lazariev, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Arumugam and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='-w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Duan, Curr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Opin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Chem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Biol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' 20, 69-77 (2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Dréau, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Lesik, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Rondin, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Spinicelli, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Arcizet, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Roch and V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Jacques, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' B 84 (19), 195204 (2011).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Zhang, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Shim, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Niemeyer, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Taniguchi, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Teraji, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Abe, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Onoda, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Yamamoto, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Ohshima, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Isoya and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Suter, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' 110 (24), 240501 (2013).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Stanwix, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Pham, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Maze, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Le Sage, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Yeung, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Cappellaro, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Hemmer, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Yacoby, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Lukin and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Walsworth, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' B 82 (20), 201201 (2010).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Opaluch, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Oshnik, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Nelz and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Neu, Nanomaterials 11 (8), 2108 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Bayat, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Choy, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Farrokh Baroughi, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Meesala and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Loncar, Nano Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' 14 (3), 1208-1213 (2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Zhang, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Yuan, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Zhang, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Xu, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Zhang, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Bian, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Li and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Fang, Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Express 11 (8), 086602 (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Ma, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Zheng, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Fu, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Yuan, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Guo, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Zhao, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Li, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Shi, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Zhang and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Liu, Jpn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' 58 (5), 050919 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Sasaki, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Monnai, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Saijo, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Fujita, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Watanabe, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Ishi-Hayase, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Itoh and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Abe, Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Instrum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' 87 (5), 053904 (2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Yap, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Negoro, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Kuno, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Sakamoto, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Kagawa and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Kitagawa, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Japan 91 (4), 044004 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Mariani, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Nomoto, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Kashiwaya and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Nomura, Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Rep.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' 10 (1), 4813 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Sanchez, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Martin and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Zamarro, IEE Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Pt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' H 137 (4), 209-212 (1990).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Altman, Microwave circuits.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' (Van Nostrand, New York, 1964).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' 16 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Gopinath, IEEE Transactions on Microwave Theory and Techniques 29 (2), 128-131 (1981).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Tsukamoto, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Ogawa, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Ozawa, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Iwasaki, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Hatano, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Sasaki and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Kobayashi, Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' 118 (26), 264002 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Sewani, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Vallabhapurapu, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Yang, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Firgau, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Adambukulam, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Johnson, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Pla and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Laucht, Am.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' 88 (12), 1156-1169 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Nomura, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Kaida, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Watanabe and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Kashiwaya, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' 130 (2), 024503 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Mariani, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Umemoto and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Nomura, AIP Adv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' 12 (6), 065321 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Reuschel, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Agio and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Flatae, Adv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Quantum Technol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' 5 (11), 2200077 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Tsukamoto, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Ito, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Ogawa, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Ashida, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Sasaki and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Kobayashi, Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Rep.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' 12 (1), 13942 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Stürner, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Brenneis, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Buck, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Kassel, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Rölver, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Fuchs, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Savitsky, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Suter, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Grimmel, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Hengesbach, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Förtsch, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Nakamura, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Sumiya, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Onoda, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Isoya and F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Jelezko, Adv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Quantum Technol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' 4 (4), 2000111 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Zhang, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Yuan, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Zhang, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Xu, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Zhang, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Bian, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Fan, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Yuan and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Fang, IEEE Sens.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' 19 (2), 451-456 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' 1 Supporting Information Variable bandwidth, high efficiency microwave resonator for control of spin-qubits in nitrogen-vacancy centers Anton Savitsky, Jingfu Zhang and Dieter Suter Faculty of Physics, Technical University Dortmund, Otto-Hahn-Str.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' 4a, 44227 Dortmund, Germany Content: S1 Optimization of the resonator parameters S1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='1 Optimization of Ω-type loop parameters S1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='2 Calculation of the coupling parameter for width step coupling S1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='3 Performance comparison of the resonator with transmission, reflection line S2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Mw magnetic field distribution at z = 100 µm S3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Radio frequency performance S4 Fluorescence collection efficiency and optical resolution S5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Experimental details S6 Frequency tuning capability 2 S1 Optimization of the resonator parameters In this part we consider some important points for the resonator optimization based on the first principals and simulations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' In the first part we consider transmission line with Ω-type loop which allows to optimize parameters of the loop.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' In the second part we compare the performance of resonator with transmission and reflection line and point out the ways for performance optimization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' S1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='1 Optimization of Ω-type loop parameters The loop of diameter ������������ integrated in the gap of a terminated microstrip transmission line can be considered as an approximation of the ideal classical current loop.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' This approximation is valid when (i) the loop length is much smaller than a quarter of the wavelength (������������������������ ≪ ������������������������/4);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' (ii) the width of the loop is much smaller compared to it diameter, (iii) the shielding effects can be neglected;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' and (iv) the loop-gap discontinuity is neglected.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' The EM-wave of power ������������������������������������ in the microstrip line with ������������������������ generates an alternating electric current with the amplitude ������������������������������������������������������������ = �2������������������������������������ ������������������������ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' This alternating current induces a magnetic field whose amplitude at the center of the loop is ������������(0,0,0) = ������������������������������������������������������������ ������������ = 1 ������������ �2������������������������������������ ������������������������ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' The loop conversion efficiency ������������0 = ������������(0,0,0) ������������������������������������� = 1 ������������ � 2 ������������������������ can be increased either by decreasing the loop diameter or by lowering the line impedance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' The line impedance of ������������������������ = 50 Ω is, however, generally fixed to avoid mismatch with microwave components.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' This results in ������������0 = 500 ������������ ������������√������������ for the loop of ������������ = 400 μm used here.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' This value defines the physical upper limit of the magnetic field amplitude reachable for a transmission line.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' The real Ω-loop differs from the ideal loop.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' There are several parameters which influence the magnetic field amplitude and its distribution: (i) loop width, (ii) gap width and (iii) thickness of the dielectric substrate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' The last factor in our system is, however, defined by the necessity to provide the optical access to the diamond surface and will be not considered here, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' we fix the substrate and optical access parameters defined in the main text, see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' 1 (main text), and consider only the first two parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' 3 Loop conductor width.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' The width of the loop is of critical importance as it influences not only magnetic field parameters but also the heating effects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Figure S1(a) shows the dependence of the conversion efficiency on the loop width.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' As expected, the conversion efficiency decreases with increasing loop width.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' The maximum efficiency is about a factor 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='6 smaller than in the ideal loop due to the effect of the gap and metal shield on the back side of the structure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' The conductive power losses, ������������������������������������������������������������ = ������������������������������������������������������������ 2 2 ������������������������������������������������������������, in the loop also decrease, see Fig S1(b), due to the decrease of the loop resistance, ������������������������������������������������������������.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' The optimal loop width of ������������������������ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='1 mm is estimated by considering the maximum of the function ������������0 2/������������������������������������������������������������ , see Fig S2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' The conversion efficiency drops to 245 ������������ ������������√������������, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' a factor 2 smaller than for the ideal loop.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' The loop width of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='1 mm also guarantees better mechanical stability and stability of the system parameters to manufacturing tolerances.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Figure S1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' (a) Conversion efficiency and (b) loop ohmic losses calculated for different loop widths and ������������������������ = 50 Ω transmission line feeded with 1 W mw power at 3 GHz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' The gap width is G =0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='1 mm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' The dashed line marks the value ������������������������ chosen for fabrication.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Figure S2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Ratio of power conversion efficiency to conductive losses in the loop.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' 40 35 30 7 25 20 15 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='25 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='3 W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='/mm340 9 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='. b a 320 8 上 300 7 280 mW 6 260 50 A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='m 240 loss .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' P 4 220 200 3 180 2 160 1 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='25 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='3 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='25 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='3 W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' /mm W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='/mm4 In order to estimate the heating effects we have calculated the temperature distribution in the transmission resonator continuously fed by mw power, see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' S3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' For ������������������������ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='1 mm the maximum temperature calculated in the system is about 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='3 K (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='1 W) and 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='5 K (1 W) starting from the ambient temperature of 293 K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' In contrast, the system with ������������������������ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='018 mm shows higher temperature increase of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='6 K (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='1 W) and 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='8 K (1 W excitation) due to the higher ohmic resistance and lower thermal conductance of the loop.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Figure S3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Temperature distribution calculated for the transmission resonator including the diamond crystal (2×2×1 mm3) with geometrical parameters given in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' 1 (main text).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' CW input mw power was set to 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='1 W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Gap width.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Figure S4 shows the efficiency parameter as a function of the gap width.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Increasing the gap width from 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='005 mm to 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='3 mm (������������ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='75 ∙ ������������������������) has a small effect on the resonator efficiency (magnetic field amplitude at the loop center) as well as the field distribution in y < 0 loop region.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Therefore, for our resonator we have chosen G = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='1 mm for manufacturing ease.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Figure S4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Conversion efficiency calculated for different gap widths G and ������������������������ = 50Ω transmission line fed with 1 W mw power at 3 GHz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' The loop width is ������������������������= 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='1 mm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' K 293.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='3 y=o 293.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='2 293.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='1 293.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='0250 246 / A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='m".' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='W- 242 238 234 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='25 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='3 G /mm5 S1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='2 Calculation of the coupling parameter for width step coupling The relation between the properties of the coupling element and the resonator coupling parameter can be derived in two following steps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Figure S5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' (a) Reflection line with Ω-type loop.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' (b) Transmission line with width step and Ω-type loop.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Reflection line.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' The bandwidth of reflection line,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Fig S5(a),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' can be determined considering ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='the frequency dependence of magnetic field in the loop center: ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='������������(������������) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='������������(������������0 = ������������������������ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='������������ ) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='= sin �2������������������������ ������������������������ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='4������������� = 1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='√2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='The magnetic field amplitude is reduced by √2 at ������������ = ������������0/2 which results in the bandwidth ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='������������������������1/2 = ������������0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='The reflection line can be also considered as overcoupled resonator with the bandwidth of ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='������������������������1/2 = 1 + ������������ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='������������0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='������������0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='Thus,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' the coupling coefficient of the reflection resonator with ������������������������ = ������������������������ is given by ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='������������ = ������������0 − 1 ≈ ������������0 (������������������������������������ ������������0 ≫ 1) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='The same result can be also derived from the magnetic field amplitude than considering ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='reflection line as the reflection resonator ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='2������������� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='1 + ������������ �������������0 = 2 ⟹ ������������� = �������������0 + �������������0 − 4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='⟹ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='������������ ≈ ������������0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='Generally the result is quite obvious than consider the definition of the coupling coefficient ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='������������ = ������������0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='������������������������ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='2/4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='2/4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='2/4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='2/4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='Z,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='ZR ZR ZR6 Thus,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' the external quality factor in reflection line ������������������������ = 1 or full power is dissipated in external load than neglecting resonator losses,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' ������������0 ≫ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Transmission line with width step.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' This system can be considered as transmission resonator, see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' S5(b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' The reflection coefficient at ������������ = ������������0 of this system with ������������′ = ������������0 − 1 is given by ������������ = − 1 − ������������ + ������������′ 1 + ������������ + ������������′ = − −������������ + ������������0 ������������ + ������������0 ⇒ ������������ = ������������0 Γ − 1 Γ + 1 Taking into account that,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' the reflection coefficients of width step discontinuity is Γ = − ������������������������ − ������������������������ ������������������������ + ������������������������ one obtains ������������ = ������������0 ������������������������ ������������������������ or ������������������������ = ������������������������ ������������������������ Thus,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' the bandwidth of the resonator can be calculated ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='������������������������������������������������������������������������������������������������������������������������: ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='������������������������1/2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='������������0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='= 1 + ������������ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='������������0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='= 1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='������������0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='+ ������������������������ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='������������������������ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='������������������������������������������������������������������������������������������������������������������������������������������������: ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='������������������������1/2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='������������0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='= 1 + 2������������ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='������������0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='= 1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='������������0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='+ 2 ������������������������ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='������������������������ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='For the resonator design in the main text (������������������������ = 50 Ω;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' ������������0 = 74) the above equation yields the estimate value of the coupling parameter of ������������ = 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='6, than assuming the resonator impedance to be equal to that of the transmission microstrip line with width ������������������������.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' The values is in a good agreement with coupling parameter of 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='5 evaluated from simulated S-parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' S1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='3 Performance comparison of the resonator with transmission,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' reflection line The conversion efficiency for transmission,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' reflection resonator with ideal loop can be ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='calculated using following relations ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='������������������������������������������������������������������������������������������������������������������������: ������������0 = 2������������� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='1 + ������������ ∙ �������������0 ∙ 1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='������������ � 2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='������������������������ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='������������������������������������������������������������������������������������������������������������������������������������������������: ������������0 = 2������������� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='1 + 2������������ ∙ �������������0 ∙ 1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='������������ � 2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='������������������������ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='They take into account (i) power flow to resonator (coupling);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' (ii) the energy storage in the resonator (quality factor);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' and (iii) the increase of the loop current due to decrease of the resonator impedance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' It is important that for high coupling coefficients (������������ = ������������0 ������������������������ ������������������������ ≫ 1) both factors become independent of resonator quality factor, see Table S1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Under this condition the 7 increase of the resonator efficiency as compared to the transmission line can be estimated from the ratio of the resonator and feed line impedances, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' ������������������������ ������������������������ for transmission and 2∙ ������������������������ ������������������������ for reflection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' For instance, the resonator having ������������������������ = 10 Ω is factor 5 more efficient compared to transmission line having the same loop, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' it requires 25 times less mw power to obtain the same magnetic field amplitude.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' We note that ������������������������ can be approximated by the impedance of the microstrip line with width ������������������������ only than the discontinuity contribution to impedance can be neglected.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' This generally holds for ������������������������ ≪ ������������ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' In general case ������������������������ have to include the discontinuity contribution which is best evaluated from numerical simulation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' It is important to note that then the heating effects become the limiting factor, the excitation mw power have to be limited due to ������������������������������������������������������������ ∝ ������������������������������������������������������������ 2 and, as the result, the same maximum magnetic field is reachable in all cases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Table S1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Analytical expressions for efficiency and the bandwidth of the resonator and non- resonating systems containing ideal current loop.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='Case ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='������������0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='������������������������1/2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='������������0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='������������0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='������������������������1/2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='������������0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='Transmission ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='line ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='������������ � 2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='������������������������ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='������������������������������������������������ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='������������ � 2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='������������������������ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='������������������������������������������������ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='Reflection ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='line ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='2 ∙ 1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='������������ � 2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='������������������������ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='2 ∙ 1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='������������ � 2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='������������������������ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='Transmission ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='resonator ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='2������������� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='1 + 2������������ �������������0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='������������ � 2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='������������������������ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='1 + 2������������ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='������������0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='������������������������ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='������������������������ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='������������ � 2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='������������������������ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='2 ������������������������ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='������������������������ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='Reflection ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='resonator ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='2������������� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='1 + ������������ �������������0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='������������ � 2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='������������������������ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='1 + ������������ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='������������0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='2������������������������ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='������������������������ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='������������ � 2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='������������������������ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='������������������������ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='������������������������ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='Table S2 summarizes the parameters of the transmission resonator calculated for different ������������������������ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='and ������������ values.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' At large ������������������������’s the contribution of the loop and gap to resonator impedance overcomes the impedance contribution of the microstrip line.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Thus, it becomes the limiting factor determining resonator performance, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' conversion factor and the bandwidth.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' 8 Table S2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Parameters of transmission resonator calculated for different ������������������������ and ������������, for definition see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' 1 in main text.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Case a) ������������0 A/m/√W ������������0 ������������/������������0 ������������������������ b) ������������ c) Q0 c) ������������������������1/2 ������������0 ������������������������ d) Ω ������������ e) Ω ������������������������ = 1 ������������������������ ������������ = 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='5 ������������������������ 576 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='35 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='9 92 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='73 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='3 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='6 ������������������������ = 2 ������������������������ ������������ = 22 ������������������������ 930 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='79 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='67 79 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='38 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='2 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='1 ������������������������ = 3 ������������������������ ������������ = 17 ������������������������ 1170 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='80 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='50 74 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='32 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='4 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='4 ������������������������ = 4 ������������������������ ������������ = 15 ������������������������ 1300 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='33 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='77 72 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='26 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='4 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='4 ������������������������ = 5 ������������������������ ������������ = 13 ������������������������ 1379 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='65 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='90 69 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='24 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='8 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='2 ������������������������ = 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='6 ������������������������ ������������ = 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='2 ������������������������ 1386 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='68 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='65 72 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='23 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='8 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='7 ������������������������ = 6 ������������������������ ������������ = 10 ������������������������ 1422 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='82 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='54 62 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='26 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='6 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='4 a) ������������ was adjusted to obtain the resonance frequency of 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='95±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='05 GHz b) Resonator efficiency relative to the efficiency of the transmission line (245 A/m/√W) c) Evaluated from S11 and S21 curves d) Resonator impedance calculated as ������������������������ = ������������������������/(������������0 ������������/������������0 ������������������������) e) Impedance of microstrip line with width ������������������������.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' S2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' MW magnetic field distribution at z = 100 µm Figure S6 shows the mw magnetic field distribution at ������������ = 100 µm above the loop, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' about the highest optically accessible position with our optical objective with 340 µm working distance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Compared to ������������ = 10 µm (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' 3 main text) the field homogeneity is improved.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Over the full optically accessible area the maximum and minimum field magnitudes of 1020 ������������/������������ and 735 ������������/������������ are calculated, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' 735 ������������/������������ < |������������(������������, ������������, 100������������������������)| < 1020 ������������/������������ (for comparison 1070 ������������/������������ < |������������(������������, ������������, 10������������������������)| < 2270������������/������������).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' For the loop center and area accessible by the nanopositioner (70×70µm2) the field homogeneity is even better, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' 832 ������������/������������ < |������������(������������, ������������, 100������������������������)| < 908 ������������/������������ (1085 ������������/������������ < |������������(������������, ������������, 10������������������������)| < 1256 ������������/������������).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' The magnetic field directivity is not as perfect as at small elevations but still sufficiently high to be neglected, especially in the loop center.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' The fields distribution compares favorably to that reported previously for planar loop-gap resonator [1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' 9 Figure S6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' (a) Calculated microwave magnetic field magnitude, |H|, at ������������ = 100 µm for a mw power of 1 W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' The dotted and dashed circles mark the position of the inner loop edge (������������������������ = 400µ������������) and the optical access hole (������������������������������������������������ = 300 µm), respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' (b,c,d) The ������������������������, ������������������������, ������������������������ amplitudes of the mw magnetic field components as functions of x,y,z for mw power of 1 W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' The black dotted lines mark the optically accessible diamond area.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Shadowed area in (d) shows the position region of the optical objective (������������ < 0) and NV-center (������������ > 0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' The dashed curve in (d) shows the best fit curve of ������������������������(0,0, ������������) amplitude to the function in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' (3) in the main text.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' S3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Radio frequency performance In experiments where Radio frequency (RF) is used to drive nuclear spins, the corresponding signals can be fed into the same resonator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Figure S7 shows the power-to-field conversion efficiency of the different types for RF signals for the frequency range < 200 MHz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' The structures (transmission line, mw resonator) are non-resonant at RF fields and therefore relatively broad-band.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' In transmission, the efficiency does not depend on the frequency.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' The reflection resonator performs poorly at low frequencies and should not be used under such conditions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' a A/m G 1000 c 1000- 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='6 / A/m 800 500 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='3 H(0,y,100μm) 600 200- 400 y4 200 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='05 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='2 y /mm 1000 1200 b objective d 1000 800 H(x,0,100μm) / A/m HH: / A/m 800 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='. 600 HH (z\'00)"H 600 400 400 NV-center 200 200 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='05 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='2 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='8 /mm z /mm10 Figure S7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' (a) Simulated ������������21 (upper trace) and ������������11 (lower trace) of the transmission resonator with diamond for the radio frequency range.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' (b) The frequency dependence of the magnetic field amplitude ������������������������(0,0,10 μm) calculated for the transmission line and the resonator in reflection and transmission modes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' S4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Fluorescence collection efficiency and optical resolution The fluorescence collection efficiency for an NV center as the point emitter and neglecting reflections on diamond-oil interface is ������������������������������������ = 1 − cos ������������ 2 , The light cone opening angle, ������������, of the optical objective employed in this work (Zeiss, Apochromat 100 with ������������������������ = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='4;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' immersing oil Immersol 518 F with ������������ = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='518) is ������������ = asin( ������������������������ ������������ ) = 67°.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Thus, the optically unrestricted objective is capable of collecting 30% of the emitted photons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' The diameter of the optical access hole required for this efficiency would be ������������������������������������������������ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='78 ������������������������ (loop inner diameter ������������������������������������ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='88 ������������������������) for NV centers close to the diamond surface and a resonator thickness (substrate and copper cladding) of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='166 mm, see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' S8(c).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' In this work we decided for ������������������������������������������������ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='3 ������������������������ allowing for ������������ = 42°, see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' S8(a), in order to optimize the microwave performance of the resonator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' The collection efficiency, however, becomes potentially reduced by factor of 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='4 as compared to the maximum possible for this objective.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Increasing the optical access hole diameter will improve the collection efficiency, see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' S8(b) at the cost of (i) reduced power to magnetic field conversion efficiency, see Table S1;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' (ii) increased heating;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' (iii) increased effect of the objective on the properties of the resonator (resonance frequency and magnetic field distribution).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' These factors have to be taken into 0 300 a transmissionresonator 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='2 250 /dB transmissionline 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='3 s 1/2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='4 200 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='5 150 15 20 100 /dB reflectionresonator 25 S 30 50 b 35 40 0 40 80 120 160 0 40 80 120 160 0 200 200 frequency/MHz frequency /MHz11 account when optimizing the resonator geometry for experiments which require high collection efficiency.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Figure S8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Fluorescence optical pathway for (a) the resonator employed in this work and (c) resonator configuration required for maximum fluorescence collection efficiency.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' (b) Dependence of fluorescence collection efficiency on diameter of optical access hole relative to that capable by objective.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Optical resolution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' As pointed above the resonator acts as a diaphragm reducing numerical apperture of the objective and, as the result, limiting the optical resolution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' The effect is, however, weaker compared to the loss of the fluorecence collection efficiency.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Figure S9(a) shows the fluorecence image of the single NV-center recorded with the resonator setup.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Evaluation of the fluorecence spatial distribution yields the FWHM of recordings about 300 nm, Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' S9(b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' This number corresponds to 300������������������������ sin (42°) sin(67°) = 220 ������������������������ for objective without diaphragm, which is close to the number calculated for Airy pattern of a point emmiter 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='51������������ ������������������������ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='51∙700������������������������ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='4 = 255 ������������������������.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Figure S9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Optical resolution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' (a) A fluorescence image of the single NV center over a scanning range of 1μm × 1 μm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' (b) Fluorescence in dependence on x- and y-positions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' The solid lines show the fits to gaussian functions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' The increase of FWHM as compared to objective limit is attributed to the effect of resonator optical access hole.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' a b Dent = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='3 mm ,=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='78mm 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='9 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='35 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='45 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='55 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='65 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='75 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='8 D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' /mm0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='5 a /rel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' b 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='9 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='8 fluorecence/ fluorecence /rel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='2- 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='1 - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='6 wn/ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='2 FWHM=290±10nm 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='1 - fluorecence /rel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='4 - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='5 FWHM=320±10nm 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='5 -0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='4 -0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='3 -0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='2 -0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='1 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='1 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='5 x /um x,y /um12 The simple geometrical approach employed here can be extended for analysis of these parameters at any position within the optically accessible area.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' However, this approach neglects additional effects like reflections on the diamond-oil interface, which should be considered for a more precise analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' S5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Experimental details The experiments were performed on a home-built setup, whose schematic is shown as Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' S9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Single NV centers in diamond can be optically addressed, initialized and detected with a confocal microscope.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Here we used a diode-pumped solid state continuous wave laser with a wavelength of 532 nm (marked in green in the schematic) for the optical excitation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' For pulsed experiments, we use an acousto-optical modulator (AOM) to generate pulses from the continuous wave laser beam or a pulsed diode laser.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' The microscope objective is fixed to the nanopositioning system that scans the sample in three dimensions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' The fluorescence light (marked in red in the schematic) is also collected by this MO lens and passes through the dichroic mirror to the avalanche photodiode (APD) detector, while the scattered laser light is reflected by the dichroic mirror.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Figure S10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Schematic of the optical part of the setup.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' A confocal microscope is utilized for initializing and detecting single NV centers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Diamond MW source Resonator Objective xyz-Nanopositione Laser AOM Dichroic mirror APD13 Figure S11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Photographs of the experimental setup.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Figure S12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Photographs of (a) loop region of the resonator and (b) the resonator loop region with a diamond mounted.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Figure S13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' The principal microwave schemes for transmission and reflection modes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' The components are: (1) cw microwave source;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' (2) PIN-diode modulator;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' (3) power mw amplifier;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' (4) circulator;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' (5) fast microwave diode detector for power and matching control.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' a permanent magnet resonancestructure b withdiamondmounted mwout objective mw.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='in x,y,z stage600um 300μm b atransmission 本 5 大 ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='IFTV 5 4 3 2 1 reflection 本 214 Figure S14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Pulse sequence for measuring Rabi oscillation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' The first laser pulse of 5 µs initializes the NV into the ground state |g〉.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' The MW pulse of variable length, ������������������������, flips the NV to cos��������������������������������������������������������������|������������⟩ + sin��������������������������������������������������������������|������������⟩,where |������������⟩ denotes one excited state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' The second laser pulse of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='4 µs probes the population of ground state |������������⟩, proportional to the FL intensity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' The pulse repetition rate was generally set to 6400 s-1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' S6 Frequency tuning capability In this part we consider the options for tuning the resonance frequency.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' This will be relevant for experiments in different magnetic fields or on other types of optically active spin centers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' The half-wave mode (������������������������/2) resonance frequency of a microstrip of length ������������ without current loop is given by the well-known expression ������������0 = ������������ 2������������ ∙ ������������������������������������� where ������������������������������������ is the effective dielectric constant of the microstrip.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' For a microstrip of width ������������, larger than the dielectric thickness ������������, it is given by ������������������������������������������������ = ������������������������ + 1 2 + ������������������������ − 1 2 1 �1 + 12 ������������ ������������ The effective dielectric constant of ������������������������������������������������ =2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='81 is calculated for microstrip with ������������ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='13 mm, ������������ = 3 mm and ������������������������ = 3 used in this work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Thus, for the fixed geometry of the resonator holder (see Fig 1, main text) the resonance frequency of the microstrip can be tuned from 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='6 GHz (������������ = 56mm) to 18 GHz (������������ = 5mm), see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' S15(a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' The validity of the analytic approach is also valid for the full model as the resonance frequency from EM calculations (red line, Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' S15(a)) agrees well with the analytical prediction (dashed line in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' S15(a)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' The blue line in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' S15(a) shows the resonance frequency of the microstrip resonator including the current loop in transmission mode.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' The additional gap and the current loop increase the intrinsic capacity and inductance of the microstrip.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Thus, the resonance frequency is lower than for a microstrip of the same length.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' The resonance frequency can be tuned between 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='3 GHz (������������ = 56mm) and 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='7 GHz (������������ = 5mm).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' It is important to note that the conversion Laser 532nm t MW FL readout15 efficiency does not strongly depend on the resonance frequency, see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' 15(b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' A slight efficiency improvement is observed at lower frequencies, accompanied by a reduction of the resonator bandwidth.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Figure S15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' (a) Dependence of the resonance frequency on the length ������������, (diamonds, blue line) calculated for transmission mode.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' All other geometrical parameters are fixed as given in the caption of Figure 1 (main text).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' The red line with circles shows the resonance frequency of the microstrip without loop obtained from EM simulations for transmission mode.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' The black dashed line shows the analytically calculated resonance frequency of the microstrip.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' (b) Conversion efficiency calculated for resonators of selected lengths.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Thus, the resonator configuration described in this work can be used for experiments with microwave excitation over the frequency range of 1 GHz to 6 GHz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' The range can be extended to lower frequencies by further increase of the resonator length or by increasing the dielectric constant of the substrate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Figure S16 shows the parameters of identical resonators with L = 50 mm calculated for ε = 3 (used in this work) and ε = 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' The ratio of the resonance frequencies 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='44 GHz/0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='78 GHz = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='85 agrees well with the ratio of the effective dielectric constants �9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='15/2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='81=1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' The large reduction in the bandwidth (300 MHz vs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' 110 MHz) can be improved by decreasing the width of the resonator, ������������������������, which would lead to an increase of the coupling coefficient (see section S1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' a 1600 L= 50 mm b N 1400 L=25mm frequency 1200 L=17mm 1000 A·m L= 8 mm resonance 800 600 2 400 200 5 10 15 20 25 30 35 40 45 50 55 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='5 1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='5 2 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='5 3 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='5 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='5 5 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='5 L /mm frequency /GHz16 Figure S16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' (a,c) S-parameters of identical transmission mode resonators with length ������������ = 50 mm calculated for substrates having ε = 3 (a) and ε = 10 (c).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' All other geometrical parameters are fixed as given in the caption of Figure 1 (main text).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' (c,d) Corresponding conversion efficiencies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Resonator bandwidths and key parameters are indicated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' An increase of the resonance frequency above 6 GHz is difficult because substrates with dielectric constant < 2 are not available and a further decrease of the resonator length below ������������ ≤ 2 ∙ ������������������������ is not feasible, see Table S2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' The resonator, however, can still be used at higher mw frequencies if higher resonance modes are considered.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Figure S17 shows S11 and efficiency parameters of the resonator (see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' 1 main text) extended to higher mw frequencies, where additional resonances are observed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Of particular interest is the resonance at about 11 GHz which corresponds to the ~ 3 2 ������������������������ resonance mode of the microstrip.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' At this mode the conversion efficiency (600 A/m/√W) is reduced by factor 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='95 as compared to the main mode (1170 A/m/√W) but it is still about factor 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='5 higher compared to the 50 Ω microstrip with current loop (245 A/m/√W).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' We note here that for a microstip resonator without current loop in 3 2 ������������������������ mode one would expect a reduction of the magnetic field amplitude in the center by a factor √3 compared to the fundamental 1 2 ������������������������ mode.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' This is due to an additional resonance mode at 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='4 GHz, marked by * in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' S17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' This mode generates only small magnetic fields at the 1600 b 1500 5 1400 /dB 1/2 10 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='W 1300 S 300 MHz 15 1000 20 a 900 L=50mm,W,=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='3mm,=3,r(W,=3mm)=2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='81 25 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='25 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='35 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='55 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='65 800 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='3 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='4 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='45 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='6 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='7 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='25 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='3 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='35 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='4 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='45 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='55 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='6 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='65 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='7 frequency /GHz frequency /GHz 2400 d 2 2200 4 2000 /dB 1800 8 110 MHz 1600 S 10 12 14 1200 16 c 1000 L = 50mm, W, = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='1mm, = 10, (Ws= 3mm)= 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='15 18 800 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='65 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='75 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='85 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='9 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='65 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='75 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='85 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content='9 freguency/GHz freguency/GHz17 position of the current loop and is therefore not useful.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Thus, resonator designs operating at higher modes would require additional optimization steps in order to separate active from inactive modes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Figure S17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Simulated S11 parameter and conversion efficiency of the transmission mode resonator described in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' 1 (main text) over a wider frequency range.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' The dashed line indicates the conversion efficiency of a 50 Ω microstrip line containing a current loop.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' The asterisk marks the frequency position of a magnetically inactive mode.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Sasaki, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Monnai, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Saijo, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Fujita, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Watanabe, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Ishi-Hayase, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Itoh and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Abe, Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' Instrum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' 87 (2016) 053904.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' 1200 1000 5 800 10 Mi- /dB 600 15 S 400 20 ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} +page_content=' 200 25 0 30 1 2 3 4 5 6 < 8 9 10 11 12 frequency/GHz' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ldE2T4oBgHgl3EQfeAcm/content/2301.03911v1.pdf'} diff --git a/m9AyT4oBgHgl3EQfYvdT/content/tmp_files/2301.00209v1.pdf.txt b/m9AyT4oBgHgl3EQfYvdT/content/tmp_files/2301.00209v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..9ef603bc107971978c080cf7d10281dbe77279f1 --- /dev/null +++ b/m9AyT4oBgHgl3EQfYvdT/content/tmp_files/2301.00209v1.pdf.txt @@ -0,0 +1,1669 @@ +Blazar boosted Dark Matter constraining model dependent σeχ : +Role of energy dependent cross sections +Supritha Bhowmick,1, ∗ Diptimoy Ghosh,1, † and Divya Sachdeva2, ‡ +1Department of Physics, Indian Institute of Science Education and Research Pune, India +2Laboratoire de Physique de l’Ecole Normale Sup´erieure, CNRS, +Universit´e PSL, Sorbonne Universit´es, 24 rue Lhomond, 75005 Paris, France +Elastic collisions with relativistic electrons from the blazar’s jet can accelerate dark matter (DM) +particles in the DM spike surrounding the supermassive black hole at its center. This can allow one to +set limits on the DM-electron scattering cross section (¯σeχ) for DM masses less than 100 MeV, which +has been found to be orders of magnitude stronger than the equivalent results from cosmic rays for +energy-independent cross-section [1]. We also consider DM particles boosted by energetic electrons +in the jets of the blazars TXS 0506+056 and BL Lacertae. In this study, we consider both vector +and scalar mediators for the scattering of electron and electrophilic fermionic DM. We highlight +that the ensuing energy dependency of the S-matrix for the corresponding Lorentz structure of the +vertex significantly modifies the constraints. We found that the revised exclusion limits are atleast +three orders of magnitude stronger than the conclusions drawn from simple constant crosssection +assumption. Our limits are also assessed for the less cuspy spike. +I. +INTRODUCTION +The Cold Dark Matter (CDM) provides a compelling +explanation for a broad range of observations, including +rotation curves in spiral galaxies, gravitational micro- +lensing, cluster collisions (the Bullet Cluster), and tem- +perature anisotropy in the spectrum of cosmic mi- +crowave background radiation. To that end, a variety of +particle physics models predict a feeble interaction be- +tween SM and DM, which can be investigated using Di- +rect detection (DD) experiments. The DD experiments +identify the nuclear or electronic recoils produced by the +scattering between DM and the detector’s (target) nu- +clei or electron. The average velocity of DM particles +in the solar vicinity, however, restricts the amount of +energy that may be deposited in a detector. +For ex- +ample: detectors like +Xenon1T can detect DM mass +mχ ∼ O(1 MeV), corresponding to electronic recoil of +∼ O(1 keV). The neutrino detectors like Super-K are +sensitive to recoil energy threshold of ∼ O(1 MeV) lead- +ing to the smallest accessible DM mass of O(1 GeV). +Thus, these detectors appear to have a limited range for +detecting lighter DM particles. Since these observations +have been negative about the sign of DM, it is critical +to develop methods for probing the sub-GeV/MeV mass +range. +The reach of these experiments has been extended to +DM masses well below 1 GeV in recent years, thanks +to the novel idea of boosting the halo DM through its +interaction with the SM particles via cosmic rays +[2– +17], primordial black holes, diffuse Supernova Neutrino +Background (DSNB) [9–13], and blazars [1, 18]. +De- +spite the fact that the boosted DM flux is substantial +and DM particles are (semi)relativistic, the sensitiv- +∗ supritha.bhowmick@students.iiserpune.ac.in +† diptimoy.ghosh@iiserpune.ac.in +‡ divya.sachdeva@phys.ens.fr +ity is achieved at larger cross sections because the up- +scattered subcomponent flux is significantly lower than +the galactic DM population. +In this paper, we consider the blazar boosted DM, +which was proposed in Ref. [1, 18] in the context of +electrophilic fermionic DM. The presence of a super- +massive Black Hole (BH) at the blazar center, which +provides a dense DM population compensates for the +blazar’s large distance from Earth by producing DM +flux that is stronger than that from galactic CRs. The +existing literature, however, assumes that DM interac- +tion cross-sections are independent of DM energy. Al- +though this simple assumption makes calculations eas- +ier, it’s not physically realistic. +It would also be an +incorrect approximation to make, notably in scenarios +where a significant DM flux becomes relativistic after +being scattered by energetic particles. Some of the pre- +viously mentioned works [6, 15–17, 19] for cosmic ray +boosted DM, have already discovered that the limits for +energy-dependent cross-section differ by orders of mag- +nitude from those obtained under the assumption of a +constant cross section. +The notion of an energy-dependent scattering cross- +section is thus primarily investigated in the present work +by taking into account electrophilic fermionic DM that +has been boosted by energetic electrons from blazars. +To constrain the scattering cross-section, we use elec- +tron recoil measurements in Super-Kamiokande. This +work is organized as follows. We discuss the spectrum +of energetic particles in the blazar jets in Section II, and +describe DM density profiles in Section III. In Section +IV, we estimate the Blazar boosted DM (BBDM) flux +and compute the event rate. In Section V, we present +simplified DM models. We present the main results of +our paper in Section VI, i.e., the energy dependent ex- +clusion bound from BBDM-electron scattering, and in +Section VII, we summarize and conclude. +arXiv:2301.00209v1 [hep-ph] 31 Dec 2022 + +2 +II. +BLAZAR JET SPECTRUM +Blazars are characterized by a non-thermal spectral +energy distribution (SED). This spectrum has a low en- +ergy peak in the infra-red or X-ray region, which has +been accepted to be due to synchrotron emission of elec- +trons in the jet. Another peak at γ-ray frequencies could +be due to highly relativistic protons [20–24], as moti- +vated by the recent IceCube detection [25–27] of a high +energy neutrino from TXS 0506+056 blazar. Since DM +considered in this work is electrophilic, at tree level it +can only interact with electrons. Therefore, we are only +concerned with the blazar jets’ electron spectrum. +We follow the procedure laid out in Ref. [1, 18] to +compute the spectrum of the energetic electrons in the +blazar jets, assuming “Blob geometry” model [28]. In +this model, the energetic particles in the blazar jets +move isotropically in a “blob” frame, as the blob tra- +verses outwards along the jet axis. The Lorentz boost +factor of the blob is given by ΓB = (1 − β2 +B)−1/2, where +βB is the blob’s propagation speed. The inclination of +the jet axis with respect to the line of sight (LOS) is +taken to be θLOS. +In the blob frame, the energetic electrons follow a +power law distribution with a high and a low energy +cutoff (γ′ +max,e and γ′ +min,e respectively). This spectrum +can then be frame transformed to the observer’s rest +frame (for details of the derivation, see [18]), given by : +dΓe +dTedΩ = ce +4π Γ−αe +B +� +1 + Te +me +�−αe +× +βe(1 − βeβBµ)−αe +� +(1 − βeβBµ)2 − (1 − β2e) (1 − β2 +B) +(1) +where me and Te is the mass and kinetic energy of +the electron respectively. Speed of the electrons is given +by βe = +� +1 − m2 +e/(Te + me)2�1/2. +Doppler factor for +the blob frame is D = (ΓB(1 − βB cos θLOS))−1. αe is +the power index of the electron spectrum in the blob +frame. µ is the cosine of the angle between direction of +the electron’s motion and the jet axis. It is related to +the scattering angle in the blob frame (¯µs) by [2, 18] : +µ(¯µs, φs) = ¯µs cos θLOS + sin φs sin θLOS +� +1 − ¯µ2s (2) +where φs is the azimuth with respect to the LOS. ¯µs +is related to the kinetic energy of the blazar jet electron +and the kinetic energy (Tχ) transferred to the DM, as +follows : +¯µs(Te, Tχ) = +� +1 + T max +χ +− Tχ +Tχ +(me + mχ)2 + 2mχTe +(Te + me + mχ)2 +�−1/2 +(3) +Now, ce is a normalisation constant which is deter- +mined from the blazar jet electron luminosity (Le), +where the latter depends on ce as [18, 29] : +Le = cem2 +eΓ2 +B +� γ′ +max,e +γ′ +min,e +(γ′ +e)1−αe dγ′ +e , +(4) +and thus ce is simply given by : +ce = +Le +m2eΓ2 +B +× +� +� +� +� +� +(2 − αe) / +�� +γ′ +max,e +�2−αe − +� +γ′ +min,e +�2−αe� +if αe ̸= 2 ; +1/ log +� +γ′ +max,e/γ′ +min,e +� +if αe = 2. +(5) +The parameters γ′ +min,e, γ′ +max,e, αe, Le and D are fit- +ted to the SED of a blazar. The doppler factor is as- +sumed to be either 2ΓB or ΓB. These two cases corre- +spond to TXS 0506+056 (θLOS = 0) and BL Lacertae +(θLOS ∼ 3.82◦). All the parameters required to find the +blazar jet spectrum of TXS 0506+056 and BL Lacertae, +along with the blazar redshift and luminosity distance +(dL), are mentioned in Table I. The electron spectrum +is plotted in Fig. 1. +III. +DM DENSITY PROFILE +N-body simulations and observations are not sensi- +tive at subparsec sizes, thus, the DM distribution near +Galactic center is not well known. The central super- +massive black hole (SMBH) can have a considerable +impact on DM density if the SMBH grows adiabati- +cally, i.e., on a timescale much longer than its dynami- +cal timescale. The DM density in a region correspond- +ing to the sphere of gravitational influence of the black +hole (BH) is expected to be significantly enhanced [31]. +This results in a morphological feature known as a DM +spike, which corresponds to a DM profile with a power +law scaling ρ(r) ∝ r−γsp [31]. Here γsp = +9−2γ +4−γ com- +monly ranges from 2.25 to 2.5, depending on the slope +of the initial DM halo distribution, γ. In this work, we +assume the initial central DM profile is Navarro-Frenk- +White, γ = 1. Also, for DM annihilating with cross- +section ⟨σv⟩ann., the innermost region of the DM spike is + +3 +Parameter +TXS 0506+056 +BL Lacertae +Redshift +0.337 +0.069 +dL +1835.4 Mpc +322.7 Mpc +MBH +3.09 × 108 M⊙ +8.65 × 107 M⊙ +ΓB +20 +15 +θLOS +0◦ +3.82◦ +αe +2 +3.5 +� +γ′ +min,e, γ′ +max,e +� +(500, 1.3 × 104) (700, 1.5 × 104) +Le (erg/s) +1.32 × 1044 +8.7 × 1042 +TABLE I: Model parameters for TXS 0506+056 [21] and +BL Lacertae blazars [30]. +FIG. 1: The electron spectrum in the observer’s frame is +plotted above, for the blazars TXS 0506+056 (solid lines) +and BL Lacertae (dashed lines). The spectrum is shown for +two different polar angles : θ = 0◦ (in red), θ = 10◦ +(purple). For larger kinetic energies (Te ≳ 10 GeV), the +electron flux from TXS 0506+056 blazar exceeds the flux +from BL Lacertae. +depleted because DM annihilate efficiently on account +of high DM density, leading to “annihilation plateau” +density given by +ρsat = +mχ +⟨σv⟩ann.tBH +, +(6) +where tBH ∼ 109 yrs is the age of the BH. The DM +density profile in such a spike is given by +ρ(r) = +� +� +� +� +� +0 +r < 4RS +ρsat +4RS ≤ r < Rsat +N1r−γsp +Rsat ≤ r < Rsp +N2r−γ +r ≥ Rsp +, +(7) +where RS = 2GM/c2 is the Schwarzchild radius of the +BH, Rsp = 105 Rs is the radius of the spike [29] and +ρ(r) goes to zero in the region r < 4Rs due to DM +particles being captured by the SMBH. The saturation +density ρsat and the saturation radius Rsat are related +by the equality ρ(Rsat) = ρsat.The normalization N1 of +ρ is determined by observing that the mass of the spike +is of the same order as MBH within the spike radius [32] +and N2 is determined by observing the continuity of the +profile at Rsp. +For a pre-existent DM halo with γ = 1, the final DM +profile near BH corresponds to γsp = 7/3. A more re- +alistic model was obtained in Ref. [33], where the time- +evolution of dark matter distribution was investigated +on sub-parsec scales. This implied softening of the DM +density spike, due to scattering of DM by stars and cap- +ture of DM particles by the SMBH, dampening it to +γsp = 3/2. Thus, in this work, we consider both the +DM profile parameters γsp = 7/3 and γsp = 3/2 along +with two extreme values of ⟨σv⟩ann.. We define these as +Profile 1: ρ(Rsat ≤ r < Rsp) = N1r−7/3 +Profile 2: ρ(Rsat ≤ r < Rsp) = N1r−3/2. +For each of these profiles, the two benchmark points +(BMPs) are defined as: +BMP 1: No DM annihilation, i.e., ⟨σv⟩ann. = 0 +BMP 2: ⟨σv⟩ann. = 3 × 10−26 cm3s−1, thermal +relic cross-section. +Another quantity relevant to the computation of the +BBDM flux is the line of sight (LOS) integral of DM +density around the blazar. This provides a measure of +the number of DM particles being boosted by the blazar. +At a certain distance r from the blazar, it is defined as +ΣLOS(r) = +� r +rmin +ρ(r′)dr′ +(8) +where rmin is the distance from the SMBH from where +the blazar jet starts. To get a measure of all boosted DM +particles, we want the LOS integral at large distances +(r >> 105RS), and we define Σtot +LOS = ΣLOS(r >> +105RS). +In this work, we will study BBDM flux from TXS +0506+056 and BL Lacertae, and for these blazars, rmin +lies within 100RS [21, 29, 30]. We take rmin = 4RS, +noting that Σtot +LOS is independent of choice of rmin for +models which allow for DM pair annihilation. For no +DM annihilation, Σtot +LOS decreases by an order of magni- +tude when rmin is changed to 100RS. +The DM density and L.O.S. integral profiles are plot- +ted in Fig 2 for two benchmark points. For both DM +density profiles, BMP1 yields a larger spike and a larger +LOS integral (Σtot +LOS). This results in a larger BBDM +flux and consequently a stronger exclusion bound on +DM-electron interaction cross section. Hence, one can +expect models with no DM annihilation to yield bet- +ter bounds. Moreover, even though the LOS integral +for the idealistic spike (Profile 1) is very large and thus +results in substantial BBDM flux, the more realistic pro- +file (Profile 2) with a softer spike would lead to a much +smaller LOS integral, and hence a much weaker exclu- +sion bound. + +Blazar Jet Electron Flux +TXS 0506+056, 0 = 0° +TXS 0506+056, 0 = 10° +BL Lacertae, = 0° +1056 +BL Lacertae, = 10° +1053 +1038 +10-4 +10-3 +10-1 +100 +101 +10-2 +102 +Te (GeV)4 +(a) DM Density Profile +(b) LOS integral profile +FIG. 2: The profiles of ρDM (Fig. 2a) and ΣDM (Fig. 2b) +are plotted above for TXS 0506+056 blazar parameters. +The DM mass chosen for these figures is mχ = 1 MeV. +The profile 1 (red) and profile 2 (blue) are plotted for BMP +1 (solid curve) and BMP 2 (dashed curve). BL Lacertae, +on the other hand, is less massive than TXS 0506+056, +and yields a larger spike at a smaller distance from the BH. +IV. +BLAZAR BOOSTED DARK MATTER +FLUX AND EVENT RATE +DM particles are boosted via elastic collisions with +the relativistic electrons in the blazar jet. The DM dif- +ferential flux resulting out of collision with the electrons +is obtained as follows : +dφχ +dTχ += +Σtot +DM +2πmχd2 +L +� 2π +0 +dφs +� T max +e +(Tχ,φs) +T min +e +(Tχ,φs) +dTe +×dσχe +dTχ +dΓe +dTedΩ , +(9) +where σχe is the DM-electron interaction cross section. +The integration over φs becomes trivial in case of TXS +0506+056, where the system is symmetric about LOS, +and we can simply set µ = ¯µs (from Eqn. (2)). +The +maximal +kinetic +energy +of +the +blazar +jet +electrons +along +LOS +is +given +by +T max +e,jet += +me +� +γ′ +max,e Γ−1 +B (1 − βB cos θLOS)−1 − 1 +� +. +This +is +set as the upper bound of the integral on Te in +Eqn. (9). +The lower bound is set by the minimum +kinetic energy required for scattering, given by +T min +e += +�Tχ +2 − me +� � +1 ± +� +1 + 2Tχ(me + mχ)2 +mχ(Tχ − 2me)2 +� +, +(10) +with + and − applicable for Tχ > 2me and Tχ < +2me respectively. +However, the kinetic energy of the +slowest electrons in the blazar jets could be larger +than T min +e +. +In such a case, the kinetic energy of the +least energetic electron in the jet, given by T min +e,jet = +me +� +γ′ +min,e Γ−1 +B (1 − βB cos θLOS)−1 − 1 +� +, sets the lower +bound of the integral in Eqn. (9). +The differential cross section ( dσχe/dTχ ) of the DM- +blazar jet electron interaction is given by, +dσχe +dTχ += |M|2 +16πse +1 +T max +χ +(11) +where M is the interaction matrix element, a function +of Tχ and Te. se is the centre of momentum energy for +the electron-DM collision given by : +se = (mχ + me)2 + 2mχTe , +(12) +and T max +χ +is the maximum kinetic energy that can be +imparted to a DM particle by a blazar jet electron of +energy Te is given by : +T max +χ += +T 2 +e + 2meTe +Te + (me + mχ)2 / (2mχ) +(13) +The effect of including energy dependence in DM- +electron interaction can be seen from the BBDM flux +plots, given in Figs. 3 and 4. Profile 1 of DM density +clearly gives larger BBDM flux as compared to Pro- +file 2, as expected from larger DM spike for profile 1 +shown in Fig. 2 in Section III. For DM to register event +at Super-K, kinetic energies greater than ∼ 0.1 GeV +are relevant. +In this energy range, the heavy media- +tor scenario gives much larger BBDM flux as compared +to the constant cross section case, while on the other +hand, the light mediator regime yields a much smaller +BBDM flux. From this, we expect the exclusion limit +on DM-electron interaction, arising from light mediator +regime, to be extremely weak. Since the vector medi- +ator case gives slightly larger BBDM flux as compared +to the scalar mediator scenario, we hope for moderately +better bounds from vector mediators. +Also, since for +any given DM Profile or BMP, the BBDM flux is larger +for smaller mass DM particles, we can expect bounds +to grow stronger for lighter DM particle. Finally, the +BBDM flux plots terminate at a certain value of Tχ +because the blazar jet electrons boosting the DM par- +ticles have an upper cutoff on their energies (for TXS +0506+056 jets, T max +e,jet ∼ 260 GeV and for BL Lacertae +jets, T max +e,jet ∼ 225 GeV). + +TXS 0506+056 +1018 +sp = 7/3,BMP1 +sp = 3/2,BMP1 +sp = 7/3,BMP2 +sp = 3/2,BMP2 +1015 +pDM (GeV/cm3) +1012 +109 +106 +103 +100 +100 +101 +102 +103 +104 +105 +106 +r (Rs)TXS 0506+056 +1032 +1030 +(GeV /cm²) +1026 +ZDM ( +1024 +sp = 7/3,BMP1 +sp = 3/2, BMP1 +1022 +sp = 7/3,BMP2 +sp = 3/2, BMP2 +100 +101 +102 +103 +104 +105 +106 +r (Rs)5 +TXS 0506+056 blazar is further away from us as +compared to BL Lacertae, and is more massive, lead- +ing to a larger DM density spike and hence a larger +ΣLOS. The contribution to the DM flux coming from +the factors outside the integrals in Eqn. (9) is hence +much larger for BL Lacertae than TXS 0506+056 (i.e., +� +ΣLOS/d2 +L +� +BL Lac = 103 � +ΣLOS/d2 +L +� +TXS ). +Inspite of +this, we note in Figs. 3 and 4 that the flux of DM +particles boosted by TXS 0506+056 is larger than the +BBDM flux of BL Lacertae, for more energetic DM par- +ticles (Tχ ≳ 10 GeV). This is because, the kinetic en- +ergy range of the electron responsible for boosting the +DM particle to energies greater than 10 GeV is roughly +Te ≳ 10 GeV. +For this energy range, the electron +spectrum in TXS blazar is larger than that of BL Lac +(Fig. 1). As a result of this, we expect stronger bounds +to arise from TXS blazar. +The obtained boosted DM flux will yield the following +rate of electron recoil events in Super-K +dR +dER += ℵ +� ∞ +T min +χ +dTχ +dφχ +dTχ +dσχe +dER +(14) +where ℵ = 7.5 × 1033 is the effective number of target +electrons in Super-K, and dσχe/dER is the differential +DM-target electron interaction cross section, given by +dσχe +dER += |M|2 +16πsχ +1 +Emax +R +(15) +where sχ is centre of momentum energy for the DM- +target electron collision which can be obtained from +Eqn. (12) under the substitution : +mχ ↔ me and +Te → Tχ . Emax +R +is the maximum possible recoil in the +detector, that can be imparted by a DM particle with +kinetic energy Tχ, and can be obtained from Eqn. (13) +with the appropriate substitutions mentioned before. +To get total number of expected recoil events (Neχ) +in a certain energy bin, Eqn. (14) needs to be integrated +over ER, as follows +Neχ = ℵ Texp +� ER,max +ER,min +dER +� ∞ +T min +χ +dTχ +dφχ +dTχ +dσχe +dER +(16) +where Texp = 2628.1 days is the exposure time, and +[ER,min, ER,max] is the recoil energy range of each bin. +V. +SIMPLIFIED DM MODEL +We assume that a fermionic DM particle χ, of mass +mχ, only interacts with electrons. This scenario is pos- +sible in several leptophilic particle DM models [34–43]. +Additionally, the electron-DM interaction is mediated +by a scalar or vector particle, given as +L = gχφφ¯χχ + geφφ¯ee +or +(17) += gχA′A′ +µ ¯χγµχ + geA′A′ +µ¯eγµe +(18) +For simplicity, we will drop A′ and φ from subscripts in +the coupling constants such that gχ (ge) is the coupling +(a) BBDM flux for heavy mediator scenario +(b) BBDM flux for light mediator scenario +FIG. 3: Flux of DM particles, boosted by energetic +electrons in the jets of TXS 0506+056 blazar, is plotted +above, for heavy (3a) and light (3b) mediators. The +parameters chosen for the above plots are ¯σeχ = 10−30 cm2 +and BMP1. The vector and the scalar mediator cases have +been plotted in solid and dashed lines respectively. For +comparision, DM flux for constant cross section scenario +have also been plotted in dotted lines. Two DM masses +have been considered, mχ = 1 keV (plotted in black) and +mχ = 1 MeV (plotted in red) for DM density Profile 1 (i.e. +γsp = 7/3). To avoid overcrowding, only vector mediator +case is considered for Profile 2 (i.e. γsp = 3/2), and BBDM +flux is plotted (in blue) corresponding to DM mass +mχ = 1 MeV. Clearly, Profile 2 yields a smaller BBDM +flux as compared to Profile 1. +constant of the dark mediator to the DM particle (elec- +tron). Next, we provide the differential cross-section for +different operators and inspect the effect of the Lorentz +structure. For that, we define the following quantities : +M2 = 16g2 +eg2 +χm2 +em2 +χ +(q2 +ref − m2 +i )2 +(19) +¯σeχ = +µ2 +χe +16πm2em2χ +M2 +(20) + +TXS 0506+056, Heavy Mediator +Vector Mediator +mx = 1 keV,sp= +Scalar Mediator +mx =1 MeV, sp = +105 +Constant CS +102 +10-1 +10-4 +10-7 +10-10 +10-2 +10-1 +100 +101 +102 +103 +Tx (GeV)TXS 0506+056, Light Mediator +103 +Vector Mediator +mx=1 keV,sp= + Scalar Mediator +mx =1 MeV,sp= +10-1 +Constant CS +10-5 +10 +:10-13 +10-17 +10-21 +25 +10- +100 +10-2 +10-1 +101 +102 +103 +Tx (GeV)6 +(a) BBDM flux for heavy mediator scenario +(b) BBDM flux for light mediator scenario +FIG. 4: Flux of DM particles, boosted by energetic +electrons in the jets of BL Lacertae blazar, is plotted above, +for heavy (4a) and light (4b) mediators. The parameters +chosen for the above plots are ¯σeχ = 10−30 cm2 and BMP1. +The vector and the scalar mediator cases have been plotted +in solid and dashed lines respectively. For comparision, DM +flux for constant cross section scenario have also been +plotted in dotted lines. Two DM masses have been +considered, mχ = 1 keV (plotted in black) and mχ = 1 MeV +(plotted in red) for DM density Profile 1 (i.e. γsp = 7/3). +To avoid overcrowding, only vector mediator case is +considered for Profile 2 (i.e. γsp = 3/2), and BBDM flux is +plotted (in blue) corresponding to DM mass mχ = 1 MeV. +Clearly, Profile 2 yields a smaller BBDM flux as compared +to Profile 1. +where qref = αme is the reference momentum trans- +ferred. +Here mi is the mass of the dark mediator +(i = A′, φ for vector, scalar mediator) and µeχ is the +reduced mass of the DM-electron system. We also de- +fine a form factor, +F 2 +DM(q2) = |M|2/M2 +(21) +This factor contains the energy dependence arising in +the differential cross section dσχe/dTχ due to the blazar +jet electrons boosting the DM particles and the Lorentz +structure of the interaction. The explicit form of FDM +depends on the model of DM and mediator considered. +A similar form factor, Frec, contains energy depen- +dence in the differential cross section dσχe/dER arising +due to interaction of relativistic DM particles with the +electrons in Super-K, and can be obtained from the +form factor FDM of Eqn. (21) by making the substitu- +tions : me ↔ mχ, Tχ → ER and Te → Tχ. +Hence the differential cross sections, dσχe/dTχ and +dσχe/dER, relevant in the DM-blazar jet electron scat- +tering and DM scattering at the detector end respec- +tively, are given by : +dσχe +dTχ += ¯σeχ +m2 +em2 +χ +µ2eχ +F 2 +DM(q2) +sCRT max +χ +(22) +and, +dσχe +dER += ¯σeχ +m2 +em2 +χ +µ2eχ +F 2 +rec(q2) +sχEmax +R +(23) +Under the energy independent approximation for the +cross section, the differential cross section would simply +be : +dσχe +dTχ += +¯σeχ +T max +χ +, dσχe +dER += +¯σeχ +Emax +R +(24) +A. +Scalar Mediator +Considering a scalar mediator (denoted as φ), one can +calculate F 2 +DM for the interaction between electrons in +blazar jets and non-relativistic DM, using Eqn. (21) to +obtain +F 2 +DM(q) = +� +q2 +ref − m2 +φ +�2 +� +q2 − m2 +φ +�2 +(2mχ + Tχ) +� +2m2 +e + mχTχ +� +4mχm2e +(25) +The differential cross section (dσχe/dTχ) w.r.t. the +DM energy (Tχ), is : +dσχe +dTχ += ˜σeχ +(q2 +ref − m2 +φ)2 +(q2 − m2 +φ)2 +� mχ +4µ2eχ +(2mχ + Tχ) +� +2m2 +e + mχTχ +� +sCRT max +χ +� +(26) +The form factor Frec and the differential cross-section +w.r.t. the recoil energy of the detector (dσχe/dER) are +obtained from Eqn. (25) and Eqn. (26) by performing +the substitutions prescribed in the previous section, viz. +me ↔ mχ, Tχ → ER, Te → Tχ, se → sχ . + +BL Lacertae, Heavy Mediator +Vector Mediator +mx = 1 keV,sp = +Scalar Mediator +105 +Constant CS +102 +10-1 +10-4 +10-7 +10-10 +10-2 +10-1 +100 +101 +102 +103 +Tx (GeV)BL Lacertae, Light Mediator +103 +Vector Mediator +mx=1 keV,sp= +Scalar Mediator +mx =1 MeV,sp= +10-1 +Constant CS += 1 MeV...sp-= 2 +10-5 +10 +10-13 +10-17 +10-21 +25 +10- +100 +10-2 +10-1 +101 +102 +103 +Tx (GeV)7 +B. +Vector Mediator +Using a similar treatment for the vector mediator (de- +noted by A′), we find that +F 2 +DM(q2) = +� +q2 +ref − m2 +A′ +�2 +(q2 − m2 +A′)2 +1 +2mχm2e +� +2mχ (me + Te)2 − +Tχ +� +(me + mχ)2 + 2mχTe +� ++ mχT 2 +χ +� +(27) +and, +dσχe +dTχ += ¯σeχ +� +q2 +ref − m2 +A′ +�2 +(q2 − m2 +A′)2 +mχ +2µ2eχsCRT max +χ +� +2mχ(me + Te)2 +−Tχ{(me + mχ)2 + 2mχTe} + mχT 2 +χ +� +(28) +VI. +RESULTS +Taking into account the signal efficiency of each recoil +bin (ϵsig), the exclusion limit on ¯σeχ is obtained by +Neχϵsig < NB, +(29) +where Neχ, obtained from Eqn. (16), is the number of +expected recoil events arising out of collision of target +electron with DM particles boosted by the blazars. NB +(B = TXS, BL for TXS 0506+056 and BL Lacertae) +is 95% CL upper limits on number of events from the +blazars. +Three energy bins were considered in the analysis +released by Super-K collaboration [44]. +The total +number of events, the Monte Carlo simulation of the +background, signal efficiency and spatial distribution of +events were provided for each bin. +One can use this +data to select signals from a certain “searching cone” in +the direction of the blazar. This removes the majority +of the background from the data, increasing sensitivity. +The selected signal is then used in the standard Poisson +method [? ] to yield 95% CL upper limit on expected +number of events (NB) for each of the three bins. This +analysis was performed by the authors of Ref. [1], and +we use their results (i.e. NB), summarised in Table II. +(For details of the analysis, see [1, 4, 5, 44]). This gives +us all the numbers relevant to finding exclusion limits +on ¯σeχ using Eqn. (29). +Bins +ER(GeV) +ϵsig +NTXS +NBL +Bin 1 +(0.1, 1.33) 93.0% +19.39 +17.27 +Bin 2 +(1.33, 20) 91.3% +3.42 +6.27 +Bin 3 +(20, 103) +81.1% +2.98 +2.98 +TABLE II: Signal efficiency (ϵsig) and 95% CL upper +limits on number of events (NTXS and NBL) from the +blazars, provided for the three recoil bins of Super-K. +Super-K is located deep underground to reduce +background. As a result, the DM flux entering the de- +tector is significantly attenuated, primarily as a result of +its interaction with electrons on the Earth’s surface, and +this gives rise to the attenuation bound in the exclusion +plot. We provide an approximation of the attenuation +bound, which is the cross section for which the DM par- +ticle with Tχ ∼ 10 GeV can impart the threshold recoil +energy in the detector. For this, we solve the following +equation to calculate the energy (Tr) lost by the DM +dTχ +dx = − +� +T +nT +� T max +r +0 +dσ +dTr +TrdTr +(30) +and estimate ¯σeχ so that kinetic energy of the DM parti- +cle at depth z, denoted by T z +χ, is the detector threshold +Eth (we consider Eth = 100 MeV corresponding to Bin +1), for an initial kinetic energy Tχ,in ∼ 10 GeV. The +area bounded by the attenuation bound and the exclu- +sion bound is ruled out by our analysis. In this work, we +limit ourselves to elastic scattering and ignore backscat- +tering of light DM particles into the atmosphere. Note +that the attenuation limits exist only for the heavy me- +diators. There is no attenuation bound shown for the +light mediator scenario with elastic scatterings and the +attenuation bound shown for heavy mediator may also +vary once a more elaborate study is performed, which +we leave for future work. +The exclusion bound arising from Super-K data is +shown in Figs. 5 and 6 in the heavy mediator regime +for scalar and vector operators. Taking energy depen- +dence into account, the exclusion bound is significantly +different compared to the bound obtained from constant +cross section assumption. BMP1 sets a stronger bound +as compared to BMP2, and DM density Profile 1 yields +a better bound as compared to Profile 2. +This is in +agreement with what we expected from the density pro- +files (Fig. 2) in Section III and the BBDM flux plots +(Figs. 3a and 4a) in Section IV. +Amongst the three recoil bins in Super-K, the +strongest bound is set by Bin 3 ( Bin 2 ) for heavy +mediator (constant cross section) cases. +This result +can be explained from the BBDM flux plots for TXS +(Fig. 3a), by observing that the BBDM flux for heavy +mediator is largest for Tχ ∼ (20 GeV, 103 GeV), which +is nearly the DM energy range relevant to produce re- +coil in the third bin of Super-K Similarly, for con- +stant cross section case, the BBDM flux is largest for +Tχ ∼ (1 GeV, 20 GeV), which is roughly the DM en- +ergy range relevant to the second recoil energy bin of +Super-K. For BL Lacertae, even though the BBDM +flux is largest Tχ ∼ (1 GeV, 20 GeV) , which is the DM +energy range relevant for Bin 2 (Fig. 4a), the event rate +is largest for Bin 3 due to the larger size of the Bin. +We also note that the constraints from TXS 0506+056 +is stronger than constraints from BL Lacertae, which +is what we expected from Fig. 1 and the discussion in +Section IV. +In the exclusion bound plots (Figs. 5 and 6), we plot +the most stringent limit on ¯σeχ coming from the three +bins. Note that the bounds arising from scalar and vec- +tor mediators are almost same. The reason for this can + +8 +(a) Exclusion Bound for TXS 0506+056 +(b) Exclusion Bound for BL Lacertae +FIG. 5: The exclusion bound is plotted for the blazars +TXS 0506+056 (5a) and BL Lacertae (5b), corresponding +to BMP1. The cases considered are heavy vector mediator +(plotted in solid lines), heavy scalar mediator (plotted in +dashed lines) and constant cross section case (plotted in +dotted lines). The various DM density profiles considered +are Profile 1 (in red) and Profile 2 (in blue). The direct +detection bounds from Xenon10, Xenon100, +SENSEI [45–47] and DarkSide-50 [48] are also plotted. +The bound arising due to DM attenuation is also given for +heavy mediator scenario (plotted in grey). The area bounded +by the attenuation bound and the exclusion bound is ruled +out by our analysis. Exclusion limit from Superconducting +Nanowires is provided in cyan color. Constraint due to +solar reflection of DM [15, 49] is shown in amber color. +The exclusion bound given by Cosmic Ray electron (CRe) +boosted DM [50] is plotted in red (See text for more details). +be understood from Figs. 3 and 4, where we see that +the BBDM flux for DM energies relevant to recoil Bin +3 of Super-K differs by ∼ O(10) for the two operators, +which results in very little difference in the exclusion +limits. However, the limit coming from the three dif- +ferent bins can differ by ∼ 2 or 3 orders of magnitude +for certain mχ, so a combined analysis of the three bins +(a) Exclusion Bound for TXS 0506+056 +(b) Exclusion Bound for BL Lacertae +FIG. 6: The exclusion bound is plotted for the blazars +TXS 0506+056 (6a) and BL Lacertae (6b), corresponding +to BMP2. The cases considered are heavy vector mediator +(plotted in solid lines), heavy scalar mediator (plotted in +dashed lines) and constant cross section case (plotted in +dotted lines). The various DM density profiles considered +are Profile 1 (in red) and Profile 2 (in blue). The direct +detection bounds from Xenon10, Xenon100, +SENSEI [45–47] and DarkSide-50 [48] are also plotted. +The bound arising due to DM attenuation is also given for +heavy mediator scenario (plotted in grey). The area bounded +by the attenuation bound and the exclusion bound is ruled +out by our analysis. Exclusion limit from Superconducting +Nanowires is provided in cyan color. Constraint due to +solar reflection of DM [15, 49] is shown in amber color. +The exclusion bound given by Cosmic Ray electron (CRe) +boosted DM [50] is plotted in red (See text for more details). +might change the bounds. We, however, leave out such +an analysis from this work. +Since “heavy” and “light” mediator regimes are the +convenient extremes of the actual DM model, the true +exclusion bound would lie somewhere in between the +bound set by these two regimes. Thus we compare the +exclusion bound corresponding to various masses of the + +TXS 0506+056, Heavy Mediator, BMP2 +Solar Reflection +Superconducting Nanowires +10-27 +SENSEI +10-30 +Bound +XENON1 +XENON10 +10-33 +2 +cm +50 +a +1b +CRe Boosted DM +10-39 +10-42 +Vector Mediator +sp = 7/3 +Scalar Mediator +sp = 3/2 +Constant CS +10-45 +10-6 +10-5 +10-4 +10-3 +10-2 +10-1 +mx (GeV)BL Lacertae, Heavy Mediator, BMP2 +Solar Reflection +Superconducting Nanowires +10-27 +ENSEI +10-30 +XENON1 +Super-K Attn. Boune +ON10 +10-33 +2 +cm +CRe Boosted DM +1b +10-39 +10-42 +Vector Mediator +sp = 7/3 +Scalar Mediator +sp = 3/2 +Constant CS +10-45 +10-6 +10-5 +10-4 +10-3 +10-2 +10-1 +mx (GeV)TXS 0506+056, Heavy Mediator, BMP1 +Solar Reflection +Superconducting Nanowires +10-27 +SENSEI +10-30 +Bound +Super-K Attn. +2 +cm +XEN +50 +10-36 +sted DM +1b +CRe Boost +S +10-39 +10-42 +Vector Mediator +sp = 7/3 +Scalar Mediator +sp = 3/2 +Constant CS +10-45 +10-6 +10-5 +10-4 +10-3 +10-2 +10-1 +mx (GeV)BL Lacertae, Heavy Mediator, BMP1 +Solar Reflection +Superconducting Nanowires +10-27 +SENSEI +10-30 +Bound +Super-K Attn. +10-33 +2 +cm +CRe Boosted DM +10-36 +1b +10-39 +10-42 +Vector Mediator +sp = 7/3 +Scalar Mediator +sp = 3/2 +Constant CS +10-45 +10-6 +10-5 +10-4 +10-3 +10-2 +10-1 +mx (GeV)9 +FIG. 7: The exclusion bound is plotted for the blazar TXS +0506+056 for various mediator masses, corresponding to +the vector mediator scenario. The mediator masses chosen +are 10 GeV, 1 MeV, 10−2 MeV and 10−4 MeV, all plotted +in different linestyles. The bound for heavy (in black) and +light (in grey) mediator regime is also plotted. The profiles +chosen are DM density Profile 1, BMP1. +vector mediator for Profile 1 and BMP1 in Fig. 7. A +similar comparison and scaling exists for Profile 2 and +BMP2. Clearly, a mediator of mass 10 GeV corresponds +to the heavy regime, and a mediator of mass 10−4 MeV +reproduces the exclusion limit set by the light mediator +regime. +Apart from blazars jets, Cosmic Ray electrons (CRe) +provide yet another environment to produce boosted +DM particles. Exclusion bound from CRe boosted DM, +using Super-K data, is plotted alongwith our bounds in +Figs. 5 and 6. Furthermore, Refs. [51, 52] propose a DM +detection device with extremely low recoil trigger made +using Superconducting Nanowires. +The best bounds +from such a prototype device is also shown. Currently +our results are much stronger, but proposed devices with +materials like NbN and Al might give better exclusions +in the near future. Constraints from other direct detec- +tion experiments, such as Xenon10, Xenon100, SEN- +SEI and DarkSide-50 are also shown. Exclusion limits +from solar reflection of DM [15, 49] are important in the +heavy mediator case, and are provided as well. +The cosmological constraints from Big Bang Nucle- +osynthesis (BBN) rule out thermal DM of mχ ≲ 10 MeV +stringently [53, 54]. +However, these bounds can be +relaxed in DM models with couplings to both neutri- +noes as well as electrons [55]. The CMB observations +similarly constrain DM annihilating to an e−e+ pair +severely [56]. +An elaborate dark sector associated in +these models can relax these BBN and CMB constraints, +so that DM mostly annihilate to other dark sector par- +ticles [57]. +VII. +SUMMARY & OUTLOOK +Blazars, in addition to being a key source of high en- +ergy electrons, are projected to have a DM density spike +in their core due to DM accretion onto their SMBH. +Despite large uncertainties from astrophysics and the +unknown annihilation properties of dark matter in the +density of the succeeding DM spike, strong bounds on +the elastic scattering cross section for DM-electron scat- +tering have been obtained in Ref. [1]. Here, we demon- +strate how these limits change when the resulting energy +dependence of the S-matrix for the associated vertex +Lorentz structure is taken into consideration. We re- +main agnostic of the relic abundance mechanism since +DM models might include an extended dark sector that +has a significant impact on how much DM is there in +the Universe right now. To that end, we derived lim- +its using Super-K data. And, we found that the con- +straints on such energy-dependent scattering cross sec- +tions, which mostly depend on mediator mass, are at +least several orders of magnitude tighter than the cur- +rent limits from Blazars in the literature for the constant +cross section assumption. Though the constant cross- +section is a practical and meaningful way to explain a +concept, in reality it corresponds to a small parameter +space of a DM model. Our bounds are, however, weak- +ened if the mediator mass is sufficiently small. +This +is because the BBDM flux is orders of magnitude less +than the constant cross-section in the relevant energy +bin (see fig. 3b,4b). We also studied the less cuspy pro- +file of the DM spike and realised that the constraints on +σeχ from BBDM are still significant compared to Cos- +mic ray boosted DM. +Another subtlety is that, in addition to relativistic +electrons, blazars also contain energetic protons, which +may contribute to the BBDM flux. However, the contri- +bution is insignificant since the coupling with the proton +is loop-suppressed if there is just a tree-level interaction +of DM with charged electrons. Another natural assump- +tion, inspired by the standard model’s SU(2)L gauge +symmetry, is that neutrino should have the same cross +section with DM as charged leptons, allowing us to com- +pare the current σeχσνχ limits for Cosmic ray boosted +DM [14]. +We intend to investigate this possibility in +next work. +ACKNOWLEDGEMENTS +D.G. acknowledges support through the Ramanujan +Fellowship and MATRICS Grant of the Department of +Science and Technology, Government of India. D.S. has +received funding from the European Union’s Horizon +2020 research and innovation programme under grant +agreement No 101002846, ERC CoG “CosmoChart”. +[1] A. Granelli, P. Ullio, and J.-W. Wang, Blazar-boosted +dark matter at Super-Kamiokande, JCAP 07 (07), 013, +arXiv:2202.07598 [astro-ph.HE]. + +TXS 0506+056, Vector Mediator, BMP1, sp = 7/3 +10-17 +mA = 10-4 MeV +10-21 +MeV +mA^ = 10 +10-25 +2 +cm +MeV +mA +Xa +16 +10-33 +10-37 +mA' = 10 GeV +10-41 +Heavy Mediator +mA* = 1 MeV +mA = 10-4 MeV += 10 GeV +mA^ = 10-2 MeV +Light Mediator +mA' +10-45 +10-6 +10-5 +10-4 +10-3 +10-2 +10-1 +mx +(GeV)10 +[2] T. Bringmann and M. Pospelov, Novel direct detection +constraints on light dark matter, Phys. Rev. Lett. 122, +171801 (2019), arXiv:1810.10543 [hep-ph]. +[3] C. V. Cappiello, K. C. Y. Ng, and J. F. Beacom, Re- +verse Direct Detection: Cosmic Ray Scattering With +Light Dark Matter, Phys. Rev. D 99, 063004 (2019), +arXiv:1810.07705 [hep-ph]. +[4] C. V. Cappiello and J. F. Beacom, Erratum: Strong +new limits on light dark matter from neutrino experi- +ments [Phys. Rev. D 100, 103011 (2019)], Phys. Rev. D +100, 103011 (2019), [Erratum: Phys.Rev.D 104, 069901 +(2021)], arXiv:1906.11283 [hep-ph]. +[5] Y. Ema, F. Sala, and R. Sato, Light Dark Matter at +Neutrino Experiments, Phys. Rev. Lett. 122, 181802 +(2019), arXiv:1811.00520 [hep-ph]. +[6] J. B. Dent, B. Dutta, J. L. Newstead, I. M. Shoemaker, +and N. T. Arellano, Present and future status of light +dark matter models from cosmic-ray electron upscatter- +ing, Phys. Rev. D 103, 095015 (2021), arXiv:2010.09749 +[hep-ph]. +[7] Y. Jho, J.-C. Park, S. C. Park, and P.-Y. Tseng, Lep- +tonic New Force and Cosmic-ray Boosted Dark Matter +for the XENON1T Excess, Phys. Lett. B 811, 135863 +(2020), arXiv:2006.13910 [hep-ph]. +[8] J. Bramante, B. J. Kavanagh, and N. Raj, Scattering +searches for dark matter in subhalos: +neutron stars, +cosmic rays, and old rocks, +(2021), arXiv:2109.04582 +[hep-ph]. +[9] Y. Farzan and S. Palomares-Ruiz, Dips in the Dif- +fuse Supernova Neutrino Background, JCAP 06, 014, +arXiv:1401.7019 [hep-ph]. +[10] C. A. Arg¨uelles, A. Kheirandish, and A. C. Vincent, +Imaging Galactic Dark Matter with High-Energy Cos- +mic Neutrinos, Phys. Rev. Lett. 119, 201801 (2017), +arXiv:1703.00451 [hep-ph]. +[11] W. Yin, Highly-boosted dark matter and cutoff for +cosmic-ray neutrinos through neutrino portal, EPJ Web +Conf. 208, 04003 (2019), arXiv:1809.08610 [hep-ph]. +[12] Y. Jho, J.-C. Park, S. C. Park, and P.-Y. Tseng, Cosmic- +Neutrino-Boosted +Dark +Matter +(νBDM), +(2021), +arXiv:2101.11262 [hep-ph]. +[13] A. Das and M. Sen, Boosted dark matter from diffuse +supernova neutrinos, +(2021), arXiv:2104.00027 [hep- +ph]. +[14] D. Ghosh, A. Guha, and D. Sachdeva, Exclusion limits +on dark matter-neutrino scattering cross section, Phys. +Rev. D 105, 103029 (2022). +[15] Q.-H. Cao, R. Ding, and Q.-F. Xiang, Searching for +sub-MeV boosted dark matter from xenon electron +direct detection, Chin. Phys. C 45, 045002 (2021), +arXiv:2006.12767 [hep-ph]. +[16] Y. Ema, F. Sala, and R. Sato, Neutrino experiments +probe hadrophilic light dark matter, SciPost Phys. 10, +072 (2021), arXiv:2011.01939 [hep-ph]. +[17] C. Xia, Y.-H. Xu, and Y.-F. Zhou, Azimuthal asym- +metry in cosmic-ray boosted dark matter flux, (2022), +arXiv:2206.11454 [hep-ph]. +[18] J.-W. Wang, A. Granelli, and P. Ullio, Direct Detec- +tion Constraints on Blazar-Boosted Dark Matter, Phys. +Rev. Lett. 128, 221104 (2022), arXiv:2111.13644 [astro- +ph.HE]. +[19] J. B. Dent, B. Dutta, J. L. Newstead, and I. M. +Shoemaker, Bounds on Cosmic Ray-Boosted Dark +Matter in Simplified Models and its Corresponding +Neutrino-Floor, Phys. Rev. D 101, 116007 (2020), +arXiv:1907.03782 [hep-ph]. +[20] A. Keivani et al., A Multimessenger Picture of the +Flaring Blazar TXS 0506+056: implications for High- +Energy Neutrino Emission and Cosmic Ray Accelera- +tion, Astrophys. J. 864, 84 (2018), arXiv:1807.04537 +[astro-ph.HE]. +[21] M. Cerruti, A. Zech, C. Boisson, G. Emery, S. In- +oue, and J. P. Lenain, Leptohadronic single-zone mod- +els for the electromagnetic and neutrino emission of +TXS 0506+056, Mon. Not. Roy. Astron. Soc. 483, L12 +(2019), [Erratum: Mon.Not.Roy.Astron.Soc. 502, L21– +L22 (2021)], arXiv:1807.04335 [astro-ph.HE]. +[22] X. Rodrigues, S. Gao, A. Fedynitch, A. Palladino, and +W. Winter, Leptohadronic Blazar Models Applied to +the 2014–2015 Flare of TXS 0506+056, Astrophys. J. +Lett. 874, L29 (2019), arXiv:1812.05939 [astro-ph.HE]. +[23] R. Xue, R.-Y. Liu, M. Petropoulou, F. Oikonomou, Z.- +R. Wang, K. Wang, and X.-Y. Wang, A two-zone model +for blazar emission: +implications for TXS 0506+056 +and the neutrino event IceCube-170922A 10.3847/1538- +4357/ab4b44 (2019), arXiv:1908.10190 [astro-ph.HE]. +[24] M. Petropoulou et al., Multi-Epoch Modeling of TXS +0506+056 and Implications for Long-Term High-Energy +Neutrino Emission, Astrophys. J. 891, 115 (2020), +arXiv:1911.04010 [astro-ph.HE]. +[25] M. G. Aartsen et al. (IceCube, Fermi-LAT, MAGIC, +AGILE, ASAS-SN, HAWC, H.E.S.S., +INTEGRAL, +Kanata, Kiso, Kapteyn, Liverpool Telescope, Subaru, +Swift NuSTAR, VERITAS, VLA/17B-403), Multimes- +senger observations of a flaring blazar coincident with +high-energy neutrino IceCube-170922A, Science 361, +eaat1378 (2018), arXiv:1807.08816 [astro-ph.HE]. +[26] M. G. Aartsen et al. (IceCube), Neutrino emission from +the direction of the blazar TXS 0506+056 prior to +the IceCube-170922A alert, Science 361, 147 (2018), +arXiv:1807.08794 [astro-ph.HE]. +[27] P. Padovani, P. Giommi, E. Resconi, T. Glauch, B. Ar- +sioli, N. Sahakyan, and M. Huber, Dissecting the region +around IceCube-170922A: the blazar TXS 0506+056 as +the first cosmic neutrino source, Mon. Not. Roy. Astron. +Soc. 480, 192 (2018), arXiv:1807.04461 [astro-ph.HE]. +[28] C. D. Dermer and G. Menon, High Energy Radiation +from Black Holes: +Gamma Rays, Cosmic Rays, and +Neutrinos (Princeton University Press, 2009). +[29] M. Gorchtein, S. Profumo, and L. Ubaldi, Probing +Dark Matter with AGN Jets, Phys. Rev. D 82, 083514 +(2010), [Erratum: +Phys.Rev.D 84, 069903 (2011)], +arXiv:1008.2230 [astro-ph.HE]. +[30] M. Boettcher, A. Reimer, K. Sweeney, and A. Prakash, +Leptonic and Hadronic Modeling of Fermi-Detected +Blazars, Astrophys. J. 768, 54 (2013), arXiv:1304.0605 +[astro-ph.HE]. +[31] P. Gondolo and J. Silk, Dark matter annihilation at +the galactic center, Phys. Rev. Lett. 83, 1719 (1999), +arXiv:astro-ph/9906391. +[32] P. Ullio, H. Zhao, and M. Kamionkowski, A Dark matter +spike at the galactic center?, Phys. Rev. D 64, 043504 +(2001), arXiv:astro-ph/0101481. +[33] G. Bertone and D. Merritt, Time-dependent models for +dark matter at the Galactic Center, Phys. Rev. D 72, +103502 (2005), arXiv:astro-ph/0501555. +[34] M. Pospelov, A. Ritz, and M. B. Voloshin, Secluded +WIMP Dark Matter, Phys. Lett. B 662, 53 (2008), + +11 +arXiv:0711.4866 [hep-ph]. +[35] B. Batell, M. Pospelov, and A. Ritz, Exploring Portals +to a Hidden Sector Through Fixed Targets, Phys. Rev. +D 80, 095024 (2009), arXiv:0906.5614 [hep-ph]. +[36] X. Chu, T. Hambye, and M. H. G. Tytgat, The Four +Basic Ways of Creating Dark Matter Through a Portal, +JCAP 05, 034, arXiv:1112.0493 [hep-ph]. +[37] A. Alves, S. Profumo, and F. S. Queiroz, The dark Z +′ +portal: direct, indirect and collider searches, JHEP 04, +063, arXiv:1312.5281 [hep-ph]. +[38] E. Izaguirre, G. Krnjaic, P. Schuster, and N. Toro, New +Electron Beam-Dump Experiments to Search for MeV +to few-GeV Dark Matter, Phys. Rev. D 88, 114015 +(2013), arXiv:1307.6554 [hep-ph]. +[39] E. Izaguirre, G. Krnjaic, P. Schuster, and N. Toro, An- +alyzing the Discovery Potential for Light Dark Matter, +Phys. Rev. Lett. 115, 251301 (2015), arXiv:1505.00011 +[hep-ph]. +[40] G. Krnjaic, Probing Light Thermal Dark-Matter With a +Higgs Portal Mediator, Phys. Rev. D 94, 073009 (2016), +arXiv:1512.04119 [hep-ph]. +[41] E. Izaguirre, Y. Kahn, G. Krnjaic, and M. Moschella, +Testing Light Dark Matter Coannihilation With Fixed- +Target Experiments, Phys. Rev. D 96, 055007 (2017), +arXiv:1703.06881 [hep-ph]. +[42] K. Harigaya, R. Mcgehee, H. Murayama, and K. Schutz, +A predictive mirror twin Higgs with small Z2 breaking, +JHEP 05, 155, arXiv:1905.08798 [hep-ph]. +[43] E. Bernreuther, S. Heeba, and F. Kahlhoefer, Res- +onant sub-GeV Dirac dark matter, JCAP 03, 040, +arXiv:2010.14522 [hep-ph]. +[44] C. Kachulis et al. (Super-Kamiokande), Search for +Boosted Dark Matter Interacting With Electrons in +Super-Kamiokande, +Phys. +Rev. +Lett. +120, +221301 +(2018), arXiv:1711.05278 [hep-ex]. +[45] R. Essig, A. Manalaysay, J. Mardon, P. Sorensen, and +T. Volansky, First Direct Detection Limits on sub-GeV +Dark Matter from XENON10, Phys. Rev. Lett. 109, +021301 (2012), arXiv:1206.2644 [astro-ph.CO]. +[46] R. Essig, T. Volansky, and T.-T. Yu, New Constraints +and Prospects for sub-GeV Dark Matter Scattering off +Electrons in Xenon, Phys. Rev. D 96, 043017 (2017), +arXiv:1703.00910 [hep-ph]. +[47] L. Barak et al. (SENSEI), SENSEI: Direct-Detection +Results +on +sub-GeV +Dark +Matter +from +a +New +Skipper-CCD, Phys. Rev. Lett. 125, 171802 (2020), +arXiv:2004.11378 [astro-ph.CO]. +[48] P. Agnes et al. (DarkSide-50), Search for dark mat- +ter particle interactions with electron final states with +DarkSide-50, (2022), arXiv:2207.11968 [hep-ex]. +[49] H. An, M. Pospelov, J. Pradler, and A. Ritz, Directly +Detecting MeV-scale Dark Matter via Solar Reflec- +tion, Phys. Rev. Lett. 120, 141801 (2018), [Erratum: +Phys.Rev.Lett. 121, 259903 (2018)], arXiv:1708.03642 +[hep-ph]. +[50] D. Bardhan, S. Bhowmick, D. Ghosh, A. Guha, and +D. Sachdeva, Boosting through the Darkness : Bounds +on boosted dark matter from direct detection, (2022), +arXiv:2208.09405 [hep-ph]. +[51] Y. Hochberg, +I. Charaev, +S.-W. Nam, +V. Verma, +M. Colangelo, and K. K. Berggren, Detecting Sub-GeV +Dark Matter with Superconducting Nanowires, Phys. +Rev. Lett. 123, 151802 (2019), arXiv:1903.05101 [hep- +ph]. +[52] Y. Hochberg, B. V. Lehmann, I. Charaev, J. Chiles, +M. Colangelo, S. W. Nam, and K. K. Berggren, New +Constraints on Dark Matter from Superconducting +Nanowires, (2021), arXiv:2110.01586 [hep-ph]. +[53] S. Knapen, T. Lin, and K. M. Zurek, Light Dark Mat- +ter: Models and Constraints, Phys. Rev. D 96, 115021 +(2017), arXiv:1709.07882 [hep-ph]. +[54] D. Ghosh and D. Sachdeva, Constraints on Axion- +Lepton coupling from Big Bang Nucleosynthesis, JCAP +10, 060, arXiv:2007.01873 [hep-ph]. +[55] M. Escudero, Neutrino decoupling beyond the Stan- +dard Model: CMB constraints on the Dark Matter mass +with a fast and precise Neff evaluation, JCAP 02, 007, +arXiv:1812.05605 [hep-ph]. +[56] N. Aghanim et al. (Planck), Planck 2018 results. VI. +Cosmological parameters, Astron. Astrophys. 641, A6 +(2020), [Erratum: Astron.Astrophys. 652, C4 (2021)], +arXiv:1807.06209 [astro-ph.CO]. +[57] D. +Choudhury, +S. +Maharana, +D. +Sachdeva, +and +V. Sahdev, Dark matter, muon anomalous magnetic mo- +ment, and the XENON1T excess, Phys. Rev. D 103, +015006 (2021), arXiv:2007.08205 [hep-ph]. + diff --git a/m9AyT4oBgHgl3EQfYvdT/content/tmp_files/load_file.txt b/m9AyT4oBgHgl3EQfYvdT/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..93a41630c4f6f03d686d6b6429809ac3cd655a5e --- /dev/null +++ b/m9AyT4oBgHgl3EQfYvdT/content/tmp_files/load_file.txt @@ -0,0 +1,868 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf,len=867 +page_content='Blazar boosted Dark Matter constraining model dependent σeχ : Role of energy dependent cross sections Supritha Bhowmick,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content='1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' ∗ Diptimoy Ghosh,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content='1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' † and Divya Sachdeva2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' ‡ 1Department of Physics,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Indian Institute of Science Education and Research Pune,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' India 2Laboratoire de Physique de l’Ecole Normale Sup´erieure,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' CNRS,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Universit´e PSL,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Sorbonne Universit´es,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' 24 rue Lhomond,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' 75005 Paris,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' France Elastic collisions with relativistic electrons from the blazar’s jet can accelerate dark matter (DM) particles in the DM spike surrounding the supermassive black hole at its center.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' This can allow one to set limits on the DM-electron scattering cross section (¯σeχ) for DM masses less than 100 MeV, which has been found to be orders of magnitude stronger than the equivalent results from cosmic rays for energy-independent cross-section [1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' We also consider DM particles boosted by energetic electrons in the jets of the blazars TXS 0506+056 and BL Lacertae.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' In this study, we consider both vector and scalar mediators for the scattering of electron and electrophilic fermionic DM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' We highlight that the ensuing energy dependency of the S-matrix for the corresponding Lorentz structure of the vertex significantly modifies the constraints.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' We found that the revised exclusion limits are atleast three orders of magnitude stronger than the conclusions drawn from simple constant crosssection assumption.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Our limits are also assessed for the less cuspy spike.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' INTRODUCTION The Cold Dark Matter (CDM) provides a compelling explanation for a broad range of observations, including rotation curves in spiral galaxies, gravitational micro- lensing, cluster collisions (the Bullet Cluster), and tem- perature anisotropy in the spectrum of cosmic mi- crowave background radiation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' To that end, a variety of particle physics models predict a feeble interaction be- tween SM and DM, which can be investigated using Di- rect detection (DD) experiments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' The DD experiments identify the nuclear or electronic recoils produced by the scattering between DM and the detector’s (target) nu- clei or electron.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' The average velocity of DM particles in the solar vicinity, however, restricts the amount of energy that may be deposited in a detector.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' For ex- ample: detectors like Xenon1T can detect DM mass mχ ∼ O(1 MeV), corresponding to electronic recoil of ∼ O(1 keV).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' The neutrino detectors like Super-K are sensitive to recoil energy threshold of ∼ O(1 MeV) lead- ing to the smallest accessible DM mass of O(1 GeV).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Thus, these detectors appear to have a limited range for detecting lighter DM particles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Since these observations have been negative about the sign of DM, it is critical to develop methods for probing the sub-GeV/MeV mass range.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' The reach of these experiments has been extended to DM masses well below 1 GeV in recent years, thanks to the novel idea of boosting the halo DM through its interaction with the SM particles via cosmic rays [2– 17], primordial black holes, diffuse Supernova Neutrino Background (DSNB) [9–13], and blazars [1, 18].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' De- spite the fact that the boosted DM flux is substantial and DM particles are (semi)relativistic, the sensitiv- ∗ supritha.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content='bhowmick@students.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content='iiserpune.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content='ac.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content='in † diptimoy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content='ghosh@iiserpune.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content='ac.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content='in ‡ divya.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content='sachdeva@phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content='ens.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content='fr ity is achieved at larger cross sections because the up- scattered subcomponent flux is significantly lower than the galactic DM population.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' In this paper, we consider the blazar boosted DM, which was proposed in Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' [1, 18] in the context of electrophilic fermionic DM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' The presence of a super- massive Black Hole (BH) at the blazar center, which provides a dense DM population compensates for the blazar’s large distance from Earth by producing DM flux that is stronger than that from galactic CRs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' The existing literature, however, assumes that DM interac- tion cross-sections are independent of DM energy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Al- though this simple assumption makes calculations eas- ier, it’s not physically realistic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' It would also be an incorrect approximation to make, notably in scenarios where a significant DM flux becomes relativistic after being scattered by energetic particles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Some of the pre- viously mentioned works [6, 15–17, 19] for cosmic ray boosted DM, have already discovered that the limits for energy-dependent cross-section differ by orders of mag- nitude from those obtained under the assumption of a constant cross section.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' The notion of an energy-dependent scattering cross- section is thus primarily investigated in the present work by taking into account electrophilic fermionic DM that has been boosted by energetic electrons from blazars.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' To constrain the scattering cross-section, we use elec- tron recoil measurements in Super-Kamiokande.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' This work is organized as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' We discuss the spectrum of energetic particles in the blazar jets in Section II, and describe DM density profiles in Section III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' In Section IV, we estimate the Blazar boosted DM (BBDM) flux and compute the event rate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' In Section V, we present simplified DM models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' We present the main results of our paper in Section VI, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=', the energy dependent ex- clusion bound from BBDM-electron scattering, and in Section VII, we summarize and conclude.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content='00209v1 [hep-ph] 31 Dec 2022 2 II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' BLAZAR JET SPECTRUM Blazars are characterized by a non-thermal spectral energy distribution (SED).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' This spectrum has a low en- ergy peak in the infra-red or X-ray region, which has been accepted to be due to synchrotron emission of elec- trons in the jet.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Another peak at γ-ray frequencies could be due to highly relativistic protons [20–24], as moti- vated by the recent IceCube detection [25–27] of a high energy neutrino from TXS 0506+056 blazar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Since DM considered in this work is electrophilic, at tree level it can only interact with electrons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Therefore, we are only concerned with the blazar jets’ electron spectrum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' We follow the procedure laid out in Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' [1, 18] to compute the spectrum of the energetic electrons in the blazar jets, assuming “Blob geometry” model [28].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' In this model, the energetic particles in the blazar jets move isotropically in a “blob” frame, as the blob tra- verses outwards along the jet axis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' The Lorentz boost factor of the blob is given by ΓB = (1 − β2 B)−1/2, where βB is the blob’s propagation speed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' The inclination of the jet axis with respect to the line of sight (LOS) is taken to be θLOS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' In the blob frame, the energetic electrons follow a power law distribution with a high and a low energy cutoff (γ′ max,e and γ′ min,e respectively).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' This spectrum can then be frame transformed to the observer’s rest frame (for details of the derivation, see [18]), given by : dΓe dTedΩ = ce 4π Γ−αe B � 1 + Te me �−αe × βe(1 − βeβBµ)−αe � (1 − βeβBµ)2 − (1 − β2e) (1 − β2 B) (1) where me and Te is the mass and kinetic energy of the electron respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Speed of the electrons is given by βe = � 1 − m2 e/(Te + me)2�1/2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Doppler factor for the blob frame is D = (ΓB(1 − βB cos θLOS))−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' αe is the power index of the electron spectrum in the blob frame.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' µ is the cosine of the angle between direction of the electron’s motion and the jet axis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' It is related to the scattering angle in the blob frame (¯µs) by [2, 18] : µ(¯µs, φs) = ¯µs cos θLOS + sin φs sin θLOS � 1 − ¯µ2s (2) where φs is the azimuth with respect to the LOS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' ¯µs is related to the kinetic energy of the blazar jet electron and the kinetic energy (Tχ) transferred to the DM,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' as follows : ¯µs(Te,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Tχ) = � 1 + T max χ − Tχ Tχ (me + mχ)2 + 2mχTe (Te + me + mχ)2 �−1/2 (3) Now,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' ce is a normalisation constant which is deter- mined from the blazar jet electron luminosity (Le),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' where the latter depends on ce as [18,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' 29] : Le = cem2 eΓ2 B � γ′ max,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content='e γ′ min,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content='e (γ′ e)1−αe dγ′ e ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' (4) and thus ce is simply given by : ce = Le m2eΓ2 B × � � � � � (2 − αe) / �� γ′ max,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content='e �2−αe − � γ′ min,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content='e �2−αe� if αe ̸= 2 ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' 1/ log � γ′ max,e/γ′ min,e � if αe = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' (5) The parameters γ′ min,e, γ′ max,e, αe, Le and D are fit- ted to the SED of a blazar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' The doppler factor is as- sumed to be either 2ΓB or ΓB.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' These two cases corre- spond to TXS 0506+056 (θLOS = 0) and BL Lacertae (θLOS ∼ 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content='82◦).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' All the parameters required to find the blazar jet spectrum of TXS 0506+056 and BL Lacertae, along with the blazar redshift and luminosity distance (dL), are mentioned in Table I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' The electron spectrum is plotted in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' DM DENSITY PROFILE N-body simulations and observations are not sensi- tive at subparsec sizes, thus, the DM distribution near Galactic center is not well known.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' The central super- massive black hole (SMBH) can have a considerable impact on DM density if the SMBH grows adiabati- cally, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=', on a timescale much longer than its dynami- cal timescale.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' The DM density in a region correspond- ing to the sphere of gravitational influence of the black hole (BH) is expected to be significantly enhanced [31].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' This results in a morphological feature known as a DM spike, which corresponds to a DM profile with a power law scaling ρ(r) ∝ r−γsp [31].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Here γsp = 9−2γ 4−γ com- monly ranges from 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content='25 to 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content='5, depending on the slope of the initial DM halo distribution, γ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' In this work, we assume the initial central DM profile is Navarro-Frenk- White, γ = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Also, for DM annihilating with cross- section ⟨σv⟩ann.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=', the innermost region of the DM spike is 3 Parameter TXS 0506+056 BL Lacertae Redshift 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content='337 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content='069 dL 1835.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content='4 Mpc 322.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content='7 Mpc MBH 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content='09 × 108 M⊙ 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content='65 × 107 M⊙ ΓB 20 15 θLOS 0◦ 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content='82◦ αe 2 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content='5 � γ′ min,e, γ′ max,e � (500, 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content='3 × 104) (700, 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content='5 × 104) Le (erg/s) 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content='32 × 1044 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content='7 × 1042 TABLE I: Model parameters for TXS 0506+056 [21] and BL Lacertae blazars [30].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' 1: The electron spectrum in the observer’s frame is plotted above, for the blazars TXS 0506+056 (solid lines) and BL Lacertae (dashed lines).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' The spectrum is shown for two different polar angles : θ = 0◦ (in red), θ = 10◦ (purple).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' For larger kinetic energies (Te ≳ 10 GeV), the electron flux from TXS 0506+056 blazar exceeds the flux from BL Lacertae.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' depleted because DM annihilate efficiently on account of high DM density, leading to “annihilation plateau” density given by ρsat = mχ ⟨σv⟩ann.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content='tBH , (6) where tBH ∼ 109 yrs is the age of the BH.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' The DM density profile in such a spike is given by ρ(r) = � � � � � 0 r < 4RS ρsat 4RS ≤ r < Rsat N1r−γsp Rsat ≤ r < Rsp N2r−γ r ≥ Rsp , (7) where RS = 2GM/c2 is the Schwarzchild radius of the BH, Rsp = 105 Rs is the radius of the spike [29] and ρ(r) goes to zero in the region r < 4Rs due to DM particles being captured by the SMBH.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' The saturation density ρsat and the saturation radius Rsat are related by the equality ρ(Rsat) = ρsat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content='The normalization N1 of ρ is determined by observing that the mass of the spike is of the same order as MBH within the spike radius [32] and N2 is determined by observing the continuity of the profile at Rsp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' For a pre-existent DM halo with γ = 1, the final DM profile near BH corresponds to γsp = 7/3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' A more re- alistic model was obtained in Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' [33], where the time- evolution of dark matter distribution was investigated on sub-parsec scales.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' This implied softening of the DM density spike, due to scattering of DM by stars and cap- ture of DM particles by the SMBH, dampening it to γsp = 3/2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Thus, in this work, we consider both the DM profile parameters γsp = 7/3 and γsp = 3/2 along with two extreme values of ⟨σv⟩ann.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content='. We define these as Profile 1: ρ(Rsat ≤ r < Rsp) = N1r−7/3 Profile 2: ρ(Rsat ≤ r < Rsp) = N1r−3/2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' For each of these profiles, the two benchmark points (BMPs) are defined as: BMP 1: No DM annihilation, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=', ⟨σv⟩ann.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' = 0 BMP 2: ⟨σv⟩ann.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' = 3 × 10−26 cm3s−1, thermal relic cross-section.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Another quantity relevant to the computation of the BBDM flux is the line of sight (LOS) integral of DM density around the blazar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' This provides a measure of the number of DM particles being boosted by the blazar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' At a certain distance r from the blazar, it is defined as ΣLOS(r) = � r rmin ρ(r′)dr′ (8) where rmin is the distance from the SMBH from where the blazar jet starts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' To get a measure of all boosted DM particles, we want the LOS integral at large distances (r >> 105RS), and we define Σtot LOS = ΣLOS(r >> 105RS).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' In this work, we will study BBDM flux from TXS 0506+056 and BL Lacertae, and for these blazars, rmin lies within 100RS [21, 29, 30].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' We take rmin = 4RS, noting that Σtot LOS is independent of choice of rmin for models which allow for DM pair annihilation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' For no DM annihilation, Σtot LOS decreases by an order of magni- tude when rmin is changed to 100RS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' The DM density and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content='O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' integral profiles are plot- ted in Fig 2 for two benchmark points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' For both DM density profiles, BMP1 yields a larger spike and a larger LOS integral (Σtot LOS).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' This results in a larger BBDM flux and consequently a stronger exclusion bound on DM-electron interaction cross section.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Hence, one can expect models with no DM annihilation to yield bet- ter bounds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Moreover, even though the LOS integral for the idealistic spike (Profile 1) is very large and thus results in substantial BBDM flux, the more realistic pro- file (Profile 2) with a softer spike would lead to a much smaller LOS integral, and hence a much weaker exclu- sion bound.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Blazar Jet Electron Flux TXS 0506+056, 0 = 0° TXS 0506+056, 0 = 10° BL Lacertae, = 0° 1056 BL Lacertae, = 10° 1053 1038 10-4 10-3 10-1 100 101 10-2 102 Te (GeV)4 (a) DM Density Profile (b) LOS integral profile FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' 2: The profiles of ρDM (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' 2a) and ΣDM (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' 2b) are plotted above for TXS 0506+056 blazar parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' The DM mass chosen for these figures is mχ = 1 MeV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' The profile 1 (red) and profile 2 (blue) are plotted for BMP 1 (solid curve) and BMP 2 (dashed curve).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' BL Lacertae, on the other hand, is less massive than TXS 0506+056, and yields a larger spike at a smaller distance from the BH.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' BLAZAR BOOSTED DARK MATTER FLUX AND EVENT RATE DM particles are boosted via elastic collisions with the relativistic electrons in the blazar jet.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' The DM dif- ferential flux resulting out of collision with the electrons is obtained as follows : dφχ dTχ = Σtot DM 2πmχd2 L � 2π 0 dφs � T max e (Tχ,φs) T min e (Tχ,φs) dTe ×dσχe dTχ dΓe dTedΩ , (9) where σχe is the DM-electron interaction cross section.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' The integration over φs becomes trivial in case of TXS 0506+056, where the system is symmetric about LOS, and we can simply set µ = ¯µs (from Eqn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' (2)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' The maximal kinetic energy of the blazar jet electrons along LOS is given by T max e,jet = me � γ′ max,e Γ−1 B (1 − βB cos θLOS)−1 − 1 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' This is set as the upper bound of the integral on Te in Eqn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' (9).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' The lower bound is set by the minimum kinetic energy required for scattering, given by T min e = �Tχ 2 − me � � 1 ± � 1 + 2Tχ(me + mχ)2 mχ(Tχ − 2me)2 � , (10) with + and − applicable for Tχ > 2me and Tχ < 2me respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' However, the kinetic energy of the slowest electrons in the blazar jets could be larger than T min e .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' In such a case, the kinetic energy of the least energetic electron in the jet, given by T min e,jet = me � γ′ min,e Γ−1 B (1 − βB cos θLOS)−1 − 1 � , sets the lower bound of the integral in Eqn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' (9).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' The differential cross section ( dσχe/dTχ ) of the DM- blazar jet electron interaction is given by, dσχe dTχ = |M|2 16πse 1 T max χ (11) where M is the interaction matrix element, a function of Tχ and Te.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' se is the centre of momentum energy for the electron-DM collision given by : se = (mχ + me)2 + 2mχTe , (12) and T max χ is the maximum kinetic energy that can be imparted to a DM particle by a blazar jet electron of energy Te is given by : T max χ = T 2 e + 2meTe Te + (me + mχ)2 / (2mχ) (13) The effect of including energy dependence in DM- electron interaction can be seen from the BBDM flux plots, given in Figs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' 3 and 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Profile 1 of DM density clearly gives larger BBDM flux as compared to Pro- file 2, as expected from larger DM spike for profile 1 shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' 2 in Section III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' For DM to register event at Super-K, kinetic energies greater than ∼ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content='1 GeV are relevant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' In this energy range, the heavy media- tor scenario gives much larger BBDM flux as compared to the constant cross section case, while on the other hand, the light mediator regime yields a much smaller BBDM flux.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' From this, we expect the exclusion limit on DM-electron interaction, arising from light mediator regime, to be extremely weak.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Since the vector medi- ator case gives slightly larger BBDM flux as compared to the scalar mediator scenario, we hope for moderately better bounds from vector mediators.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Also, since for any given DM Profile or BMP, the BBDM flux is larger for smaller mass DM particles, we can expect bounds to grow stronger for lighter DM particle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Finally, the BBDM flux plots terminate at a certain value of Tχ because the blazar jet electrons boosting the DM par- ticles have an upper cutoff on their energies (for TXS 0506+056 jets, T max e,jet ∼ 260 GeV and for BL Lacertae jets, T max e,jet ∼ 225 GeV).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' TXS 0506+056 1018 sp = 7/3,BMP1 sp = 3/2,BMP1 sp = 7/3,BMP2 sp = 3/2,BMP2 1015 pDM (GeV/cm3) 1012 109 106 103 100 100 101 102 103 104 105 106 r (Rs)TXS 0506+056 1032 1030 (GeV /cm²) 1026 ZDM ( 1024 sp = 7/3,BMP1 sp = 3/2, BMP1 1022 sp = 7/3,BMP2 sp = 3/2, BMP2 100 101 102 103 104 105 106 r (Rs)5 TXS 0506+056 blazar is further away from us as compared to BL Lacertae, and is more massive, lead- ing to a larger DM density spike and hence a larger ΣLOS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' The contribution to the DM flux coming from the factors outside the integrals in Eqn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' (9) is hence much larger for BL Lacertae than TXS 0506+056 (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=', � ΣLOS/d2 L � BL Lac = 103 � ΣLOS/d2 L � TXS ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Inspite of this, we note in Figs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' 3 and 4 that the flux of DM particles boosted by TXS 0506+056 is larger than the BBDM flux of BL Lacertae, for more energetic DM par- ticles (Tχ ≳ 10 GeV).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' This is because, the kinetic en- ergy range of the electron responsible for boosting the DM particle to energies greater than 10 GeV is roughly Te ≳ 10 GeV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' For this energy range, the electron spectrum in TXS blazar is larger than that of BL Lac (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' As a result of this, we expect stronger bounds to arise from TXS blazar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' The obtained boosted DM flux will yield the following rate of electron recoil events in Super-K dR dER = ℵ � ∞ T min χ dTχ dφχ dTχ dσχe dER (14) where ℵ = 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content='5 × 1033 is the effective number of target electrons in Super-K, and dσχe/dER is the differential DM-target electron interaction cross section, given by dσχe dER = |M|2 16πsχ 1 Emax R (15) where sχ is centre of momentum energy for the DM- target electron collision which can be obtained from Eqn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' (12) under the substitution : mχ ↔ me and Te → Tχ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Emax R is the maximum possible recoil in the detector, that can be imparted by a DM particle with kinetic energy Tχ, and can be obtained from Eqn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' (13) with the appropriate substitutions mentioned before.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' To get total number of expected recoil events (Neχ) in a certain energy bin, Eqn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' (14) needs to be integrated over ER, as follows Neχ = ℵ Texp � ER,max ER,min dER � ∞ T min χ dTχ dφχ dTχ dσχe dER (16) where Texp = 2628.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content='1 days is the exposure time, and [ER,min, ER,max] is the recoil energy range of each bin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' SIMPLIFIED DM MODEL We assume that a fermionic DM particle χ, of mass mχ, only interacts with electrons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' This scenario is pos- sible in several leptophilic particle DM models [34–43].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Additionally, the electron-DM interaction is mediated by a scalar or vector particle, given as L = gχφφ¯χχ + geφφ¯ee or (17) = gχA′A′ µ ¯χγµχ + geA′A′ µ¯eγµe (18) For simplicity, we will drop A′ and φ from subscripts in the coupling constants such that gχ (ge) is the coupling (a) BBDM flux for heavy mediator scenario (b) BBDM flux for light mediator scenario FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' 3: Flux of DM particles, boosted by energetic electrons in the jets of TXS 0506+056 blazar, is plotted above, for heavy (3a) and light (3b) mediators.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' The parameters chosen for the above plots are ¯σeχ = 10−30 cm2 and BMP1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' The vector and the scalar mediator cases have been plotted in solid and dashed lines respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' For comparision, DM flux for constant cross section scenario have also been plotted in dotted lines.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Two DM masses have been considered, mχ = 1 keV (plotted in black) and mχ = 1 MeV (plotted in red) for DM density Profile 1 (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' γsp = 7/3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' To avoid overcrowding, only vector mediator case is considered for Profile 2 (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' γsp = 3/2), and BBDM flux is plotted (in blue) corresponding to DM mass mχ = 1 MeV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Clearly, Profile 2 yields a smaller BBDM flux as compared to Profile 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' constant of the dark mediator to the DM particle (elec- tron).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Next, we provide the differential cross-section for different operators and inspect the effect of the Lorentz structure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' For that,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' we define the following quantities : M2 = 16g2 eg2 χm2 em2 χ (q2 ref − m2 i )2 (19) ¯σeχ = µ2 χe 16πm2em2χ M2 (20) TXS 0506+056,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Heavy Mediator Vector Mediator mx = 1 keV,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content='sp= Scalar Mediator mx =1 MeV,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' sp = 105 Constant CS 102 10-1 10-4 10-7 10-10 10-2 10-1 100 101 102 103 Tx (GeV)TXS 0506+056,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Light Mediator 103 Vector Mediator mx=1 keV,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content='sp= Scalar Mediator mx =1 MeV,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content='sp= 10-1 Constant CS 10-5 10 :10-13 10-17 10-21 25 10- 100 10-2 10-1 101 102 103 Tx (GeV)6 (a) BBDM flux for heavy mediator scenario (b) BBDM flux for light mediator scenario FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' 4: Flux of DM particles, boosted by energetic electrons in the jets of BL Lacertae blazar, is plotted above, for heavy (4a) and light (4b) mediators.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' The parameters chosen for the above plots are ¯σeχ = 10−30 cm2 and BMP1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' The vector and the scalar mediator cases have been plotted in solid and dashed lines respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' For comparision, DM flux for constant cross section scenario have also been plotted in dotted lines.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Two DM masses have been considered, mχ = 1 keV (plotted in black) and mχ = 1 MeV (plotted in red) for DM density Profile 1 (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' γsp = 7/3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' To avoid overcrowding, only vector mediator case is considered for Profile 2 (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' γsp = 3/2), and BBDM flux is plotted (in blue) corresponding to DM mass mχ = 1 MeV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Clearly, Profile 2 yields a smaller BBDM flux as compared to Profile 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' where qref = αme is the reference momentum trans- ferred.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Here mi is the mass of the dark mediator (i = A′, φ for vector, scalar mediator) and µeχ is the reduced mass of the DM-electron system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' We also de- fine a form factor, F 2 DM(q2) = |M|2/M2 (21) This factor contains the energy dependence arising in the differential cross section dσχe/dTχ due to the blazar jet electrons boosting the DM particles and the Lorentz structure of the interaction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' The explicit form of FDM depends on the model of DM and mediator considered.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' A similar form factor, Frec, contains energy depen- dence in the differential cross section dσχe/dER arising due to interaction of relativistic DM particles with the electrons in Super-K, and can be obtained from the form factor FDM of Eqn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' (21) by making the substitu- tions : me ↔ mχ, Tχ → ER and Te → Tχ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Hence the differential cross sections,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' dσχe/dTχ and dσχe/dER,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' relevant in the DM-blazar jet electron scat- tering and DM scattering at the detector end respec- tively,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' are given by : dσχe dTχ = ¯σeχ m2 em2 χ µ2eχ F 2 DM(q2) sCRT max χ (22) and,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' dσχe dER = ¯σeχ m2 em2 χ µ2eχ F 2 rec(q2) sχEmax R (23) Under the energy independent approximation for the cross section,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' the differential cross section would simply be : dσχe dTχ = ¯σeχ T max χ ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' dσχe dER = ¯σeχ Emax R (24) A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Scalar Mediator Considering a scalar mediator (denoted as φ), one can calculate F 2 DM for the interaction between electrons in blazar jets and non-relativistic DM, using Eqn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' (21) to obtain F 2 DM(q) = � q2 ref − m2 φ �2 � q2 − m2 φ �2 (2mχ + Tχ) � 2m2 e + mχTχ � 4mχm2e (25) The differential cross section (dσχe/dTχ) w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content='r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' the DM energy (Tχ), is : dσχe dTχ = ˜σeχ (q2 ref − m2 φ)2 (q2 − m2 φ)2 � mχ 4µ2eχ (2mχ + Tχ) � 2m2 e + mχTχ � sCRT max χ � (26) The form factor Frec and the differential cross-section w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content='r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content='t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' the recoil energy of the detector (dσχe/dER) are obtained from Eqn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' (25) and Eqn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' (26) by performing the substitutions prescribed in the previous section, viz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' me ↔ mχ, Tχ → ER, Te → Tχ, se → sχ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' BL Lacertae, Heavy Mediator Vector Mediator mx = 1 keV,sp = Scalar Mediator 105 Constant CS 102 10-1 10-4 10-7 10-10 10-2 10-1 100 101 102 103 Tx (GeV)BL Lacertae, Light Mediator 103 Vector Mediator mx=1 keV,sp= Scalar Mediator mx =1 MeV,sp= 10-1 Constant CS = 1 MeV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content='sp-= 2 10-5 10 10-13 10-17 10-21 25 10- 100 10-2 10-1 101 102 103 Tx (GeV)7 B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Vector Mediator Using a similar treatment for the vector mediator (de- noted by A′), we find that F 2 DM(q2) = � q2 ref − m2 A′ �2 (q2 − m2 A′)2 1 2mχm2e � 2mχ (me + Te)2 − Tχ � (me + mχ)2 + 2mχTe � + mχT 2 χ � (27) and, dσχe dTχ = ¯σeχ � q2 ref − m2 A′ �2 (q2 − m2 A′)2 mχ 2µ2eχsCRT max χ � 2mχ(me + Te)2 −Tχ{(me + mχ)2 + 2mχTe} + mχT 2 χ � (28) VI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' RESULTS Taking into account the signal efficiency of each recoil bin (ϵsig), the exclusion limit on ¯σeχ is obtained by Neχϵsig < NB, (29) where Neχ, obtained from Eqn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' (16), is the number of expected recoil events arising out of collision of target electron with DM particles boosted by the blazars.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' NB (B = TXS, BL for TXS 0506+056 and BL Lacertae) is 95% CL upper limits on number of events from the blazars.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Three energy bins were considered in the analysis released by Super-K collaboration [44].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' The total number of events, the Monte Carlo simulation of the background, signal efficiency and spatial distribution of events were provided for each bin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' One can use this data to select signals from a certain “searching cone” in the direction of the blazar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' This removes the majority of the background from the data, increasing sensitivity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' The selected signal is then used in the standard Poisson method [?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' ] to yield 95% CL upper limit on expected number of events (NB) for each of the three bins.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' This analysis was performed by the authors of Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' [1], and we use their results (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' NB), summarised in Table II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' (For details of the analysis, see [1, 4, 5, 44]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' This gives us all the numbers relevant to finding exclusion limits on ¯σeχ using Eqn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' (29).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Bins ER(GeV) ϵsig NTXS NBL Bin 1 (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content='1, 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content='33) 93.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content='0% 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content='39 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content='27 Bin 2 (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content='33, 20) 91.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content='3% 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content='42 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content='27 Bin 3 (20, 103) 81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content='1% 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content='98 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content='98 TABLE II: Signal efficiency (ϵsig) and 95% CL upper limits on number of events (NTXS and NBL) from the blazars, provided for the three recoil bins of Super-K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Super-K is located deep underground to reduce background.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' As a result, the DM flux entering the de- tector is significantly attenuated, primarily as a result of its interaction with electrons on the Earth’s surface, and this gives rise to the attenuation bound in the exclusion plot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' We provide an approximation of the attenuation bound, which is the cross section for which the DM par- ticle with Tχ ∼ 10 GeV can impart the threshold recoil energy in the detector.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' For this, we solve the following equation to calculate the energy (Tr) lost by the DM dTχ dx = − � T nT � T max r 0 dσ dTr TrdTr (30) and estimate ¯σeχ so that kinetic energy of the DM parti- cle at depth z, denoted by T z χ, is the detector threshold Eth (we consider Eth = 100 MeV corresponding to Bin 1), for an initial kinetic energy Tχ,in ∼ 10 GeV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' The area bounded by the attenuation bound and the exclu- sion bound is ruled out by our analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' In this work, we limit ourselves to elastic scattering and ignore backscat- tering of light DM particles into the atmosphere.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Note that the attenuation limits exist only for the heavy me- diators.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' There is no attenuation bound shown for the light mediator scenario with elastic scatterings and the attenuation bound shown for heavy mediator may also vary once a more elaborate study is performed, which we leave for future work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' The exclusion bound arising from Super-K data is shown in Figs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' 5 and 6 in the heavy mediator regime for scalar and vector operators.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Taking energy depen- dence into account, the exclusion bound is significantly different compared to the bound obtained from constant cross section assumption.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' BMP1 sets a stronger bound as compared to BMP2, and DM density Profile 1 yields a better bound as compared to Profile 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' This is in agreement with what we expected from the density pro- files (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' 2) in Section III and the BBDM flux plots (Figs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' 3a and 4a) in Section IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Amongst the three recoil bins in Super-K, the strongest bound is set by Bin 3 ( Bin 2 ) for heavy mediator (constant cross section) cases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' This result can be explained from the BBDM flux plots for TXS (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' 3a), by observing that the BBDM flux for heavy mediator is largest for Tχ ∼ (20 GeV, 103 GeV), which is nearly the DM energy range relevant to produce re- coil in the third bin of Super-K Similarly, for con- stant cross section case, the BBDM flux is largest for Tχ ∼ (1 GeV, 20 GeV), which is roughly the DM en- ergy range relevant to the second recoil energy bin of Super-K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' For BL Lacertae, even though the BBDM flux is largest Tχ ∼ (1 GeV, 20 GeV) , which is the DM energy range relevant for Bin 2 (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' 4a), the event rate is largest for Bin 3 due to the larger size of the Bin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' We also note that the constraints from TXS 0506+056 is stronger than constraints from BL Lacertae, which is what we expected from Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' 1 and the discussion in Section IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' In the exclusion bound plots (Figs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' 5 and 6), we plot the most stringent limit on ¯σeχ coming from the three bins.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Note that the bounds arising from scalar and vec- tor mediators are almost same.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' The reason for this can 8 (a) Exclusion Bound for TXS 0506+056 (b) Exclusion Bound for BL Lacertae FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' 5: The exclusion bound is plotted for the blazars TXS 0506+056 (5a) and BL Lacertae (5b), corresponding to BMP1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' The cases considered are heavy vector mediator (plotted in solid lines), heavy scalar mediator (plotted in dashed lines) and constant cross section case (plotted in dotted lines).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' The various DM density profiles considered are Profile 1 (in red) and Profile 2 (in blue).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' The direct detection bounds from Xenon10, Xenon100, SENSEI [45–47] and DarkSide-50 [48] are also plotted.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' The bound arising due to DM attenuation is also given for heavy mediator scenario (plotted in grey).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' The area bounded by the attenuation bound and the exclusion bound is ruled out by our analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Exclusion limit from Superconducting Nanowires is provided in cyan color.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Constraint due to solar reflection of DM [15, 49] is shown in amber color.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' The exclusion bound given by Cosmic Ray electron (CRe) boosted DM [50] is plotted in red (See text for more details).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' be understood from Figs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' 3 and 4, where we see that the BBDM flux for DM energies relevant to recoil Bin 3 of Super-K differs by ∼ O(10) for the two operators, which results in very little difference in the exclusion limits.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' However, the limit coming from the three dif- ferent bins can differ by ∼ 2 or 3 orders of magnitude for certain mχ, so a combined analysis of the three bins (a) Exclusion Bound for TXS 0506+056 (b) Exclusion Bound for BL Lacertae FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' 6: The exclusion bound is plotted for the blazars TXS 0506+056 (6a) and BL Lacertae (6b), corresponding to BMP2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' The cases considered are heavy vector mediator (plotted in solid lines), heavy scalar mediator (plotted in dashed lines) and constant cross section case (plotted in dotted lines).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' The various DM density profiles considered are Profile 1 (in red) and Profile 2 (in blue).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' The direct detection bounds from Xenon10, Xenon100, SENSEI [45–47] and DarkSide-50 [48] are also plotted.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' The bound arising due to DM attenuation is also given for heavy mediator scenario (plotted in grey).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' The area bounded by the attenuation bound and the exclusion bound is ruled out by our analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Exclusion limit from Superconducting Nanowires is provided in cyan color.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Constraint due to solar reflection of DM [15, 49] is shown in amber color.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' The exclusion bound given by Cosmic Ray electron (CRe) boosted DM [50] is plotted in red (See text for more details).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' might change the bounds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' We, however, leave out such an analysis from this work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Since “heavy” and “light” mediator regimes are the convenient extremes of the actual DM model, the true exclusion bound would lie somewhere in between the bound set by these two regimes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Thus we compare the exclusion bound corresponding to various masses of the TXS 0506+056, Heavy Mediator, BMP2 Solar Reflection Superconducting Nanowires 10-27 SENSEI 10-30 Bound XENON1 XENON10 10-33 2 cm 50 a 1b CRe Boosted DM 10-39 10-42 Vector Mediator sp = 7/3 Scalar Mediator sp = 3/2 Constant CS 10-45 10-6 10-5 10-4 10-3 10-2 10-1 mx (GeV)BL Lacertae, Heavy Mediator, BMP2 Solar Reflection Superconducting Nanowires 10-27 ENSEI 10-30 XENON1 Super-K Attn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Boune ON10 10-33 2 cm CRe Boosted DM 1b 10-39 10-42 Vector Mediator sp = 7/3 Scalar Mediator sp = 3/2 Constant CS 10-45 10-6 10-5 10-4 10-3 10-2 10-1 mx (GeV)TXS 0506+056, Heavy Mediator, BMP1 Solar Reflection Superconducting Nanowires 10-27 SENSEI 10-30 Bound Super-K Attn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' 2 cm XEN 50 10-36 sted DM 1b CRe Boost S 10-39 10-42 Vector Mediator sp = 7/3 Scalar Mediator sp = 3/2 Constant CS 10-45 10-6 10-5 10-4 10-3 10-2 10-1 mx (GeV)BL Lacertae, Heavy Mediator, BMP1 Solar Reflection Superconducting Nanowires 10-27 SENSEI 10-30 Bound Super-K Attn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' 10-33 2 cm CRe Boosted DM 10-36 1b 10-39 10-42 Vector Mediator sp = 7/3 Scalar Mediator sp = 3/2 Constant CS 10-45 10-6 10-5 10-4 10-3 10-2 10-1 mx (GeV)9 FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' 7: The exclusion bound is plotted for the blazar TXS 0506+056 for various mediator masses, corresponding to the vector mediator scenario.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' The mediator masses chosen are 10 GeV, 1 MeV, 10−2 MeV and 10−4 MeV, all plotted in different linestyles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' The bound for heavy (in black) and light (in grey) mediator regime is also plotted.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' The profiles chosen are DM density Profile 1, BMP1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' vector mediator for Profile 1 and BMP1 in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' A similar comparison and scaling exists for Profile 2 and BMP2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Clearly, a mediator of mass 10 GeV corresponds to the heavy regime, and a mediator of mass 10−4 MeV reproduces the exclusion limit set by the light mediator regime.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Apart from blazars jets, Cosmic Ray electrons (CRe) provide yet another environment to produce boosted DM particles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Exclusion bound from CRe boosted DM, using Super-K data, is plotted alongwith our bounds in Figs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' 5 and 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Furthermore, Refs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' [51, 52] propose a DM detection device with extremely low recoil trigger made using Superconducting Nanowires.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' The best bounds from such a prototype device is also shown.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Currently our results are much stronger, but proposed devices with materials like NbN and Al might give better exclusions in the near future.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Constraints from other direct detec- tion experiments, such as Xenon10, Xenon100, SEN- SEI and DarkSide-50 are also shown.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Exclusion limits from solar reflection of DM [15, 49] are important in the heavy mediator case, and are provided as well.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' The cosmological constraints from Big Bang Nucle- osynthesis (BBN) rule out thermal DM of mχ ≲ 10 MeV stringently [53, 54].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' However, these bounds can be relaxed in DM models with couplings to both neutri- noes as well as electrons [55].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' The CMB observations similarly constrain DM annihilating to an e−e+ pair severely [56].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' An elaborate dark sector associated in these models can relax these BBN and CMB constraints, so that DM mostly annihilate to other dark sector par- ticles [57].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' VII.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' SUMMARY & OUTLOOK Blazars, in addition to being a key source of high en- ergy electrons, are projected to have a DM density spike in their core due to DM accretion onto their SMBH.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Despite large uncertainties from astrophysics and the unknown annihilation properties of dark matter in the density of the succeeding DM spike, strong bounds on the elastic scattering cross section for DM-electron scat- tering have been obtained in Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' [1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Here, we demon- strate how these limits change when the resulting energy dependence of the S-matrix for the associated vertex Lorentz structure is taken into consideration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' We re- main agnostic of the relic abundance mechanism since DM models might include an extended dark sector that has a significant impact on how much DM is there in the Universe right now.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' To that end, we derived lim- its using Super-K data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' And, we found that the con- straints on such energy-dependent scattering cross sec- tions, which mostly depend on mediator mass, are at least several orders of magnitude tighter than the cur- rent limits from Blazars in the literature for the constant cross section assumption.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Though the constant cross- section is a practical and meaningful way to explain a concept, in reality it corresponds to a small parameter space of a DM model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Our bounds are, however, weak- ened if the mediator mass is sufficiently small.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' This is because the BBDM flux is orders of magnitude less than the constant cross-section in the relevant energy bin (see fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' 3b,4b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' We also studied the less cuspy pro- file of the DM spike and realised that the constraints on σeχ from BBDM are still significant compared to Cos- mic ray boosted DM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Another subtlety is that, in addition to relativistic electrons, blazars also contain energetic protons, which may contribute to the BBDM flux.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' However, the contri- bution is insignificant since the coupling with the proton is loop-suppressed if there is just a tree-level interaction of DM with charged electrons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Another natural assump- tion, inspired by the standard model’s SU(2)L gauge symmetry, is that neutrino should have the same cross section with DM as charged leptons, allowing us to com- pare the current σeχσνχ limits for Cosmic ray boosted DM [14].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' We intend to investigate this possibility in next work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' ACKNOWLEDGEMENTS D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content='G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' acknowledges support through the Ramanujan Fellowship and MATRICS Grant of the Department of Science and Technology, Government of India.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 101002846, ERC CoG “CosmoChart”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' [1] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Granelli, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Ullio, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content='-W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Wang, Blazar-boosted dark matter at Super-Kamiokande, JCAP 07 (07), 013, arXiv:2202.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content='07598 [astro-ph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content='HE].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=" TXS 0506+056, Vector Mediator, BMP1, sp = 7/3 10-17 mA = 10-4 MeV 10-21 MeV mA^ = 10 10-25 2 cm MeV mA Xa 16 10-33 10-37 mA' = 10 GeV 10-41 Heavy Mediator mA* = 1 MeV mA = 10-4 MeV = 10 GeV mA^ = 10-2 MeV Light Mediator mA' 10-45 10-6 10-5 10-4 10-3 10-2 10-1 mx (GeV)10 [2] T." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Bringmann and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Pospelov, Novel direct detection constraints on light dark matter, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' 122, 171801 (2019), arXiv:1810.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content='10543 [hep-ph].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' [3] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Cappiello, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Ng, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Beacom, Re- verse Direct Detection: Cosmic Ray Scattering With Light Dark Matter, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' D 99, 063004 (2019), arXiv:1810.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content='07705 [hep-ph].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' [4] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Cappiello and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Beacom, Erratum: Strong new limits on light dark matter from neutrino experi- ments [Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' D 100, 103011 (2019)], Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' D 100, 103011 (2019), [Erratum: Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content='Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content='D 104, 069901 (2021)], arXiv:1906.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content='11283 [hep-ph].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' [5] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Ema, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Sala, and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Sato, Light Dark Matter at Neutrino Experiments, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' 122, 181802 (2019), arXiv:1811.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content='00520 [hep-ph].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' [6] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Dent, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Dutta, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Newstead, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Shoemaker, and N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Arellano, Present and future status of light dark matter models from cosmic-ray electron upscatter- ing, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' D 103, 095015 (2021), arXiv:2010.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content='09749 [hep-ph].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' [7] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Jho, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content='-C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Park, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Park, and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content='-Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Tseng, Lep- tonic New Force and Cosmic-ray Boosted Dark Matter for the XENON1T Excess, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' B 811, 135863 (2020), arXiv:2006.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content='13910 [hep-ph].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' [8] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Bramante, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Kavanagh, and N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Raj, Scattering searches for dark matter in subhalos: neutron stars, cosmic rays, and old rocks, (2021), arXiv:2109.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content='04582 [hep-ph].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' [9] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Farzan and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Palomares-Ruiz, Dips in the Dif- fuse Supernova Neutrino Background, JCAP 06, 014, arXiv:1401.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content='7019 [hep-ph].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' [10] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Arg¨uelles, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Kheirandish, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Vincent, Imaging Galactic Dark Matter with High-Energy Cos- mic Neutrinos, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' 119, 201801 (2017), arXiv:1703.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content='00451 [hep-ph].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' [11] W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Yin, Highly-boosted dark matter and cutoff for cosmic-ray neutrinos through neutrino portal, EPJ Web Conf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' 208, 04003 (2019), arXiv:1809.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content='08610 [hep-ph].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' [12] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Jho, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content='-C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Park, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Park, and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content='-Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Tseng, Cosmic- Neutrino-Boosted Dark Matter (νBDM), (2021), arXiv:2101.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content='11262 [hep-ph].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' [13] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Das and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Sen, Boosted dark matter from diffuse supernova neutrinos, (2021), arXiv:2104.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content='00027 [hep- ph].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' [14] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Ghosh, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Guha, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Sachdeva, Exclusion limits on dark matter-neutrino scattering cross section, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' D 105, 103029 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' [15] Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content='-H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Cao, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Ding, and Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content='-F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Xiang, Searching for sub-MeV boosted dark matter from xenon electron direct detection, Chin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' C 45, 045002 (2021), arXiv:2006.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content='12767 [hep-ph].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' [16] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Ema, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Sala, and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Sato, Neutrino experiments probe hadrophilic light dark matter, SciPost Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' 10, 072 (2021), arXiv:2011.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content='01939 [hep-ph].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' [17] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Xia, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content='-H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Xu, and Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content='-F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Zhou, Azimuthal asym- metry in cosmic-ray boosted dark matter flux, (2022), arXiv:2206.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content='11454 [hep-ph].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' [18] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content='-W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Wang, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Granelli, and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Ullio, Direct Detec- tion Constraints on Blazar-Boosted Dark Matter, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' 128, 221104 (2022), arXiv:2111.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content='13644 [astro- ph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content='HE].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' [19] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Dent, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Dutta, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Newstead, and I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Shoemaker, Bounds on Cosmic Ray-Boosted Dark Matter in Simplified Models and its Corresponding Neutrino-Floor, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' D 101, 116007 (2020), arXiv:1907.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content='03782 [hep-ph].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' [20] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Keivani et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=', A Multimessenger Picture of the Flaring Blazar TXS 0506+056: implications for High- Energy Neutrino Emission and Cosmic Ray Accelera- tion, Astrophys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' 864, 84 (2018), arXiv:1807.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content='04537 [astro-ph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content='HE].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' [21] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Cerruti, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Zech, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Boisson, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Emery, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' In- oue, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Lenain, Leptohadronic single-zone mod- els for the electromagnetic and neutrino emission of TXS 0506+056, Mon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Not.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Roy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Astron.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' 483, L12 (2019), [Erratum: Mon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content='Not.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content='Roy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content='Astron.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content='Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' 502, L21– L22 (2021)], arXiv:1807.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content='04335 [astro-ph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content='HE].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' [22] X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Rodrigues, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Gao, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Fedynitch, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Palladino, and W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Winter, Leptohadronic Blazar Models Applied to the 2014–2015 Flare of TXS 0506+056, Astrophys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' 874, L29 (2019), arXiv:1812.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content='05939 [astro-ph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content='HE].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' [23] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Xue, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content='-Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Liu, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Petropoulou, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Oikonomou, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content='- R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Wang, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Wang, and X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content='-Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Wang, A two-zone model for blazar emission: implications for TXS 0506+056 and the neutrino event IceCube-170922A 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content='3847/1538- 4357/ab4b44 (2019), arXiv:1908.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content='10190 [astro-ph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content='HE].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' [24] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Petropoulou et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=', Multi-Epoch Modeling of TXS 0506+056 and Implications for Long-Term High-Energy Neutrino Emission, Astrophys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' 891, 115 (2020), arXiv:1911.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content='04010 [astro-ph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content='HE].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' [25] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Aartsen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' (IceCube, Fermi-LAT, MAGIC, AGILE, ASAS-SN, HAWC, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content='E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=', INTEGRAL, Kanata, Kiso, Kapteyn, Liverpool Telescope, Subaru, Swift NuSTAR, VERITAS, VLA/17B-403), Multimes- senger observations of a flaring blazar coincident with high-energy neutrino IceCube-170922A, Science 361, eaat1378 (2018), arXiv:1807.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content='08816 [astro-ph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content='HE].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' [26] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Aartsen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' (IceCube), Neutrino emission from the direction of the blazar TXS 0506+056 prior to the IceCube-170922A alert, Science 361, 147 (2018), arXiv:1807.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content='08794 [astro-ph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content='HE].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' [27] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Padovani, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Giommi, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Resconi, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Glauch, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Ar- sioli, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Sahakyan, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Huber, Dissecting the region around IceCube-170922A: the blazar TXS 0506+056 as the first cosmic neutrino source, Mon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Not.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Roy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Astron.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' 480, 192 (2018), arXiv:1807.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content='04461 [astro-ph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content='HE].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' [28] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Dermer and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Menon, High Energy Radiation from Black Holes: Gamma Rays, Cosmic Rays, and Neutrinos (Princeton University Press, 2009).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' [29] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Gorchtein, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Profumo, and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Ubaldi, Probing Dark Matter with AGN Jets, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' D 82, 083514 (2010), [Erratum: Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content='Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content='D 84, 069903 (2011)], arXiv:1008.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content='2230 [astro-ph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content='HE].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' [30] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Boettcher, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Reimer, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Sweeney, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Prakash, Leptonic and Hadronic Modeling of Fermi-Detected Blazars, Astrophys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' 768, 54 (2013), arXiv:1304.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content='0605 [astro-ph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content='HE].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' [31] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Gondolo and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Silk, Dark matter annihilation at the galactic center, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' 83, 1719 (1999), arXiv:astro-ph/9906391.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' [32] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Ullio, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Zhao, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Kamionkowski, A Dark matter spike at the galactic center?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=', Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' D 64, 043504 (2001), arXiv:astro-ph/0101481.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' [33] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Bertone and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Merritt, Time-dependent models for dark matter at the Galactic Center, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' D 72, 103502 (2005), arXiv:astro-ph/0501555.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' [34] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Pospelov, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Ritz, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Voloshin, Secluded WIMP Dark Matter, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' B 662, 53 (2008), 11 arXiv:0711.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content='4866 [hep-ph].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' [35] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Batell, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Pospelov, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Ritz, Exploring Portals to a Hidden Sector Through Fixed Targets, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' D 80, 095024 (2009), arXiv:0906.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content='5614 [hep-ph].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' [36] X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Chu, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Hambye, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Tytgat, The Four Basic Ways of Creating Dark Matter Through a Portal, JCAP 05, 034, arXiv:1112.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content='0493 [hep-ph].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' [37] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Alves, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Profumo, and F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Queiroz, The dark Z ′ portal: direct, indirect and collider searches, JHEP 04, 063, arXiv:1312.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content='5281 [hep-ph].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' [38] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Izaguirre, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Krnjaic, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Schuster, and N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Toro, New Electron Beam-Dump Experiments to Search for MeV to few-GeV Dark Matter, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' D 88, 114015 (2013), arXiv:1307.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content='6554 [hep-ph].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' [39] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Izaguirre, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Krnjaic, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Schuster, and N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Toro, An- alyzing the Discovery Potential for Light Dark Matter, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' 115, 251301 (2015), arXiv:1505.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content='00011 [hep-ph].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' [40] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Krnjaic, Probing Light Thermal Dark-Matter With a Higgs Portal Mediator, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' D 94, 073009 (2016), arXiv:1512.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content='04119 [hep-ph].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' [41] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Izaguirre, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Kahn, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Krnjaic, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Moschella, Testing Light Dark Matter Coannihilation With Fixed- Target Experiments, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' D 96, 055007 (2017), arXiv:1703.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content='06881 [hep-ph].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' [42] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Harigaya, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Mcgehee, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Murayama, and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Schutz, A predictive mirror twin Higgs with small Z2 breaking, JHEP 05, 155, arXiv:1905.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content='08798 [hep-ph].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' [43] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Bernreuther, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Heeba, and F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Kahlhoefer, Res- onant sub-GeV Dirac dark matter, JCAP 03, 040, arXiv:2010.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content='14522 [hep-ph].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' [44] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Kachulis et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' (Super-Kamiokande), Search for Boosted Dark Matter Interacting With Electrons in Super-Kamiokande, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' 120, 221301 (2018), arXiv:1711.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content='05278 [hep-ex].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' [45] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Essig, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Manalaysay, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Mardon, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Sorensen, and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Volansky, First Direct Detection Limits on sub-GeV Dark Matter from XENON10, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' 109, 021301 (2012), arXiv:1206.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content='2644 [astro-ph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content='CO].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' [46] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Essig, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Volansky, and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content='-T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Yu, New Constraints and Prospects for sub-GeV Dark Matter Scattering off Electrons in Xenon, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' D 96, 043017 (2017), arXiv:1703.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content='00910 [hep-ph].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' [47] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Barak et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' (SENSEI), SENSEI: Direct-Detection Results on sub-GeV Dark Matter from a New Skipper-CCD, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' 125, 171802 (2020), arXiv:2004.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content='11378 [astro-ph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content='CO].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' [48] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Agnes et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' (DarkSide-50), Search for dark mat- ter particle interactions with electron final states with DarkSide-50, (2022), arXiv:2207.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content='11968 [hep-ex].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' [49] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' An, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Pospelov, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Pradler, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Ritz, Directly Detecting MeV-scale Dark Matter via Solar Reflec- tion, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' 120, 141801 (2018), [Erratum: Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content='Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content='Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' 121, 259903 (2018)], arXiv:1708.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content='03642 [hep-ph].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' [50] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Bardhan, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Bhowmick, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Ghosh, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Guha, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Sachdeva, Boosting through the Darkness : Bounds on boosted dark matter from direct detection, (2022), arXiv:2208.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content='09405 [hep-ph].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' [51] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Hochberg, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Charaev, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content='-W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Nam, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Verma, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Colangelo, and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Berggren, Detecting Sub-GeV Dark Matter with Superconducting Nanowires, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' 123, 151802 (2019), arXiv:1903.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content='05101 [hep- ph].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' [52] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Hochberg, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Lehmann, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Charaev, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Chiles, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Colangelo, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Nam, and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Berggren, New Constraints on Dark Matter from Superconducting Nanowires, (2021), arXiv:2110.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content='01586 [hep-ph].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' [53] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Knapen, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Lin, and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Zurek, Light Dark Mat- ter: Models and Constraints, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' D 96, 115021 (2017), arXiv:1709.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content='07882 [hep-ph].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' [54] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Ghosh and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Sachdeva, Constraints on Axion- Lepton coupling from Big Bang Nucleosynthesis, JCAP 10, 060, arXiv:2007.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content='01873 [hep-ph].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' [55] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Escudero, Neutrino decoupling beyond the Stan- dard Model: CMB constraints on the Dark Matter mass with a fast and precise Neff evaluation, JCAP 02, 007, arXiv:1812.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content='05605 [hep-ph].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' [56] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Aghanim et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' (Planck), Planck 2018 results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' VI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Cosmological parameters, Astron.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Astrophys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' 641, A6 (2020), [Erratum: Astron.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content='Astrophys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' 652, C4 (2021)], arXiv:1807.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content='06209 [astro-ph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content='CO].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' [57] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Choudhury, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Maharana, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Sachdeva, and V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Sahdev, Dark matter, muon anomalous magnetic mo- ment, and the XENON1T excess, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content=' D 103, 015006 (2021), arXiv:2007.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} +page_content='08205 [hep-ph].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/m9AyT4oBgHgl3EQfYvdT/content/2301.00209v1.pdf'} diff --git a/m9E0T4oBgHgl3EQfpwHn/content/2301.02545v1.pdf b/m9E0T4oBgHgl3EQfpwHn/content/2301.02545v1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..0fbf4fdf8057691c73b0c906a24fdcfe16e0646c --- /dev/null +++ b/m9E0T4oBgHgl3EQfpwHn/content/2301.02545v1.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:2a635054c67b990ea1685930f1d5a43fab7571088ce4f04e268e9d66ce79b770 +size 390569 diff --git a/m9E0T4oBgHgl3EQfpwHn/vector_store/index.pkl b/m9E0T4oBgHgl3EQfpwHn/vector_store/index.pkl new file mode 100644 index 0000000000000000000000000000000000000000..6351997f04b3618f365ead1df7fe18305dd753c9 --- /dev/null +++ b/m9E0T4oBgHgl3EQfpwHn/vector_store/index.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:4f0227e4edc2bd42356843f91bf2c615e4e1f9637f88d4a316b30d9fbc3bde31 +size 212143 diff --git a/mNA0T4oBgHgl3EQfJf9M/vector_store/index.pkl b/mNA0T4oBgHgl3EQfJf9M/vector_store/index.pkl new file mode 100644 index 0000000000000000000000000000000000000000..7d00848e6e19c1c65a3486796459d562bc6d5a01 --- /dev/null +++ b/mNA0T4oBgHgl3EQfJf9M/vector_store/index.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:e478ecf90513681e1055fcd75d945a1a651da4cddf2b406547ee81451b7670ca +size 91731 diff --git a/pdAzT4oBgHgl3EQfAfrM/content/2301.00928v1.pdf b/pdAzT4oBgHgl3EQfAfrM/content/2301.00928v1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..287664bd2821efa454211eae6a79ab850ac0f3eb --- /dev/null +++ b/pdAzT4oBgHgl3EQfAfrM/content/2301.00928v1.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:4e4e5e03077ee6fed67dd956ef5885a0c48fad2fb6a3af5e2407087789cf40ce +size 3117789 diff --git a/pdAzT4oBgHgl3EQfAfrM/vector_store/index.pkl b/pdAzT4oBgHgl3EQfAfrM/vector_store/index.pkl new file mode 100644 index 0000000000000000000000000000000000000000..32f60a64761397faca1085bbe1f9ca165216e571 --- /dev/null +++ b/pdAzT4oBgHgl3EQfAfrM/vector_store/index.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:1c987bb91ff96c7b5ddc27b26b558c13f2ef606eefd9b103faec9b50ab80b8db +size 1027817 diff --git a/pdE0T4oBgHgl3EQf9AL7/content/tmp_files/2301.02797v1.pdf.txt b/pdE0T4oBgHgl3EQf9AL7/content/tmp_files/2301.02797v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..1da26aae4e5f07cbf43ab7d348376923cfd67944 --- /dev/null +++ b/pdE0T4oBgHgl3EQf9AL7/content/tmp_files/2301.02797v1.pdf.txt @@ -0,0 +1,1362 @@ +Option pricing under the normal SABR model +with Gaussian quadratures +Jaehyuk Choia,∗, Byoung Ki Seob +aPeking University HSBC Business School, +University Town, Nanshan, Shenzhen 518055, China +bSchool of Business Administration, Ulsan National Institute of Science and Technology +Abstract +The stochastic-alpha-beta-rho (SABR) model has been widely adopted in options trading. In particular, +the normal (β = 0) SABR model is a popular model choice for interest rates because it allows negative +asset values. The option price and delta under the SABR model are typically obtained via asymptotic +implied volatility approximation, but these are often inaccurate and arbitrage-able. Using a recently +discovered price transition law, we propose a Gaussian quadrature integration scheme for price options +under the normal SABR model. +The compound Gaussian quadrature sum over only 49 points can +calculate a very accurate price and delta that are arbitrage-free. +Keywords: +Gaussian quadrature, normal model, SABR model, stochastic volatility +1. Introduction +The stochastic-alpha-beta-rho (SABR) model (Hagan et al., 2002) has been widely adopted in the fi- +nancial industry for the pricing and risk management of European options, owing to its intuitive and +parsimonious parameterization. It has been a standard practice for practitioners to obtain the option +price and delta from the asymptotic approximation of implied volatility (Hagan et al., 2002), but the +approximation loses accuracy and allows arbitrage as the variance of volatility becomes large. Despite +numerous attempts to improve implied volatility approximation (Ob�l´oj, 2007; Paulot, 2015; Lorig et al., +2017; Yang et al., 2017; Choi and Wu, 2021a), it does not seem possible to obtain an approximation accu- +rate for all parameter ranges. To date, there are several full-scale methods for pricing the SABR model: +Monte–Carlo simulations (Chen et al., 2012; Leitao et al., 2017a,b; Cai et al., 2017; Choi et al., 2019; Cui +et al., 2021), finite difference methods (Park, 2014; von Sydow et al., 2019), and continuous-time Markov +chains (Cui et al., 2018). These approaches require heavy computation and complex implementation +compared with the approximation approach. Therefore, they are difficult to implement in practice. +We contribute to the literature by proposing a novel and efficient pricing scheme under the normal +∗Corresponding author Tel: +86-755-2603-0568; Address: Rm 755, Peking University HSBC Business School, University +Town, Nanshan, Shenzhen 518055, China +Email addresses: jaehyuk@phbs.pku.edu.cn (Jaehyuk Choi), bkseo@unist.ac.kr (Byoung Ki Seo) +Preprint submitted to arXiv +November 16, 2022 +arXiv:2301.02797v1 [q-fin.PR] 7 Jan 2023 + +(β = 0) SABR model. Despite being a special case, the normal SABR model has gained attention for +modeling interest rates owing to its flexibility to allow negative asset prices. The normal model based +on the arithmetic Brownian motion (BM) has long been used in fixed income markets, as opposed to +the Black–Scholes model based on geometric BM.1 The normal SABR model is a natural extension of +the normal model with stochastic volatility that exhibits a volatility smile. Antonov et al. (2015) adopt +the normal SABR model as a key component of the mixture approach for modeling a low-interest-rate +environment. Choi et al. (2019) propose the hyperbolic normal stochastic volatility (NSVh) model as a +broader class of normal stochastic volatility models. +Based on the price transition law of Choi et al. (2019), we express the option price as a double sum +of compound Gaussian quadratures consisting of Gauss–Hermite and Gauss–Laguerre quadratures. Our +scheme is highly efficient in the sense that quadrature points with only 49 (i.e., 7×7) nodes can produce +very accurate option values. Unlike with the asymptotic implied volatility approach, the resulting prices +obtained with our approach are arbitrage-free. +Using a similar algorithm, we can also evaluate the +option delta (equivalently, the probability distribution). Our study extends the previous literature on +the normal SABR model. It compliments Choi et al. (2019) by showing that the price transition law is +useful for deterministic pricing as well as Monte–Carlo simulation. It extends the integral representations +of the normal SABR model previously observed by Korn and Tang (2013) and Antonov et al. (2015), +as we provide an alternative representation and a practical numerical scheme together. The study also +extends the stochastic volatility benchmark proposed by von Sydow et al. (2019). Given the availability +of highly accurate option values, our method can serve as a testing benchmark for general SABR pricing +methods proposed in the future. +The remainder of this paper is organized as follows. Section 2 reviews the normal SABR model. +Section 3 introduces the proposed quadrature scheme. Section 4 presents the numerical results. Finally, +Section 5 concludes the paper. +2. Normal SABR model +The SABR model (Hagan et al., 2002) is a stochastic volatility model specified by +dFt +F β +t += σt ρdWt +and +dσt +σt += ν dZt, +(1) +where Ft and σt are the processes for the forward price and volatility, respectively; ν is the volatility of +volatility; β ∈ [0, 1] is the elasticity parameter; and Wt and Zt are the BMs correlated by dWtdZt = ρ dt. +1See Choi et al. (2022) for a survey of the normal (Bachelier) model. +2 + +To simplify the notations for the remainder of this paper, we also denote +ρ∗ = +� +1 − ρ2 +and +ξ = 1 +2ν +√ +T, +(2) +where T is the option expiry. +The normal SABR model is the case with β = 0. Unlike when β > 0, the asset price Ft can freely +become negative in the normal SABR model, requiring no boundary condition at the origin.2 Here, we +are concerned with the undiscounted price and delta of the call option with strike price K and expiry T: +C(K) = E([FT − K]+) +and +D(K) = ∂C(K) +∂F0 +. +Since F0 and K affect the option value only through moneyness, F0 −K, under the normal SABR model, +the option delta is also equal to the complementary probability distribution of FT : +D(K) = ∂C(K) +∂F0 += −∂C(K) +∂K += Prob(FT ≥ K). +2.1. Hagan et al. (2002)’s normal volatility approximation +Hagan et al. (2002) present the celebrated implied Black–Scholes volatility of the SABR model, from +which the option price can be quickly computed using the Black–Scholes formula. In their study, Hagan +et al. (2002) first derive the implied normal volatility, even for all β ∈ [0, 1], because they use perturbation +from normal diffusion. They then convert the derived volatility to the equivalent Black–Scholes volatility +using another approximation. However, for the normal SABR model, normal volatility is more relevant, +as has been discussed. Therefore, the normal volatility approximation in the intermediate step (Hagan +et al., 2002, (A.59)) is preferred among practitioners, as it avoids further approximation error. The +implied normal volatility for β = 0 is given by +σn(K) = σ0 +z +x(z) +� +1 + 2 − 3ρ2 +6 +ξ2 +� +for +z = ν +σ0 +(K − F0) +(3) +where K is the strike price, ξ is given in Eq. (2), and x(z) is defined by3 +x(z) = log +�V (z) + z + ρ +1 + ρ +� +for +V (z) = +� +1 + 2ρz + z2. +(4) +2In some studies (Antonov et al., 2015), the model is explicitly referred to as the normal free-boundary SABR. When +0 < β < 1, the absorbing boundary condition is imposed at the origin, resulting in a mass at zero. See Gulisashvili et al. +(2018); Chen and Yang (2019); Choi and Wu (2021b) for details. +3At and near z = 0, z/x(z) should be evaluated as 1 from Taylor’s expansion near z = 0: +x(z) +z += 1 − ρ +2 z + 3ρ2 − 1 +6 +z2 − (5ρ2 − 3)ρ +8 +z3 + · · · . +3 + +The option price is obtained by plugging σn(K) into the Bachelier option formula: +C(K) ≈ (F0 − K)N(dn) + σn +√ +T n(dn) +for +dn = +F0 − K +σn(K) +√ +T +, +(5) +where n(z) and N(z) are the probability density function (PDF) and cumulative distribution function +(CDF), respectively, of the standard normal distribution. +This volatility approximation, Eq. (3), is the leading and first-order terms of the asymptotic expansion +around a small ξ. Therefore, the accuracy of the approximation noticeably deteriorates when ξ is not +small. Despite various attempts to improve approximation (Ob�l´oj, 2007; Paulot, 2015; Lorig et al., 2017), +the intrinsic limitation arising from asymptotic approximation is difficult to overcome. Inaccurate option +prices can also lead to inaccurate risk management. The option delta D(K) implied from the volatility +approximation, +D(K) = −∂C(K) +∂K +≈ C(K − h) − C(K + h) +2h +for small h, +(6) +can deviate from the true delta significantly. +2.2. Existing option price representation +Based on the heat kernel on hyperbolic geometry (i.e., Poincar´e half-plane), Henry-Labord`ere (2005, +2008) derives a two-dimensional integral representation of the option price under the normal SABR +model, and Korn and Tang (2013) correct mistakes in the formula. Their formula, with the simplification +of Antonov et al. (2019, § 3.5.2), is as follows: +C(K) = [F0 − K]+ + +1 +2π +√ +2 +σ0 +ρ∗ν +� ∞ +s0 +Q(s)ds, +(7) +where ρ∗ is given in Eq. (2), and +s0 = cosh−1 +�� +k2 + ρ2∗ − ρk +ρ2∗ +� +with +k = z + ρ = ν +σ0 +(K − F0) + ρ. +The integrand Q(s) is given by +Q(s) = +� +e− s +2 N +� +− s +2ξ + ξ +� ++ e +s +2 N +� +− s +2ξ − ξ +�� � α+(s) +α−(s) +dα +� +cosh s − cosh d(α) +where d(α) and α±(s) are +d(α) = cosh−1 +�1 +2 +� +α + 1 +α +� ++ (k − ρα)2 +2ρ2∗α +� +, +α±(s) = ρk + ρ2 +∗ cosh s ± +� +sinh2 s − (k − ρ cosh s)2. +4 + +Antonov et al. (2015, § 3.5.1) also derive a different two-dimensional integral representation: +C(K) = [F0 − K]+ + σ0 +πν +� ∞ +s0 +G(4ξ2, s) +sinh s +� +sinh2 s − (k − ρ cosh s)2 ds +(8) +where G(t, s) is the CDF of the heat kernel (Antonov et al., 2019, § 3.4.5): +G(t, s) = 2e−t/8 +t +√ +πt +� ∞ +s +du ue−u2/2t√ +cosh u − cosh s. +This representation is also based on the hyperbolic geometry heat kernel; however, the outcome differs +from that of Korn and Tang (2013) because the integration is performed in a different order among the +variables. +To evaluate these integral representations, Eqs. (7) and (8), one must resort to numerical integra- +tion. However, the use of generic numerical integrals over two-dimensional indefinite regions can be an +extremely slow process because it requires evaluations of dense points. Korn and Tang (2013) present +the option prices evaluated for two test cases, but they do not provide the implementation details of the +numerical integration. +3. Gaussian quadrature integration scheme +Using the results of Choi et al. (2019), we present a new integral representation of the option price, which +differs from those in Section 2.2. This new representation is evidently easier to evaluate using Gaussian +quadratures. First, we review Choi et al. (2019)’s price transition law. +3.1. NSVh model and the closed-form price transition formula +Choi et al. (2019) introduce the NSVh model as +dFt = σt +� +ρ dZ[λν/2] +t ++ ρ∗ dXt +� +and +dσt +σt += ν dZ[λν/2] +t +, +(9) +where Zt and Xt are two independent BMs, and Z[µ] +t += Zt +µ t is the BM with a drift µ. By introducing +the drift term of Zt, the NSVh model generalizes the normal SABR; the normal SABR model is the +NSVh model with λ = 0. Based on Bougerol’s identity in hyperbolic geometry (Alili and Gruet, 1997), +the NSVh model admits the following closed-form transition law for σT and FT (Choi et al., 2019, +Corollary 1): +σT = σ0 exp +� +ν ¯ZT +� +, +FT +d= F0 + σ0ρ +ν +� +eν ¯ +ZT − eλν2T/2� ++ σ0ρ∗ +ν +cos θ φ +� +ν ¯ZT , ν +� +R2 +T + ¯Z2 +T +� +, +(10) +5 + +where +¯ZT = Z[(λ−1)ν/2] +T +and +φ(Z, D) = eZ/2√ +2 cosh D − 2 cosh Z +(Z ≤ D) +and RT is the two-dimensional squared Bessel process (i.e., RT = X2 +T + Y 2 +T for two independent BMs, +XT and YT ), and θ ∈ [0, π] is a uniformly distributed random angle. As these random variables can be +easily sampled, the transition law serves as a closed-form exact simulation scheme for the normal SABR +model, which outperforms the method of Cai et al. (2017) for the β = 0 case. See Choi et al. (2019) for +further details. +3.2. New integral representation of the option price +The closed-form transition law in Eq. (10) also enables an efficient pricing method for vanilla options. +The random variables ZT , RT , and θ follow normal, exponential, and uniform distributions, respectively, +whose PDFs are simple. +Let us introduce the integral variables u and v, which represent ZT and RT , respectively: +u = Z[−ν/2] +T√ +T += ZT +√ +T +− ξ +� +uλ = +¯ZT +√ +T += u + λξ +� +and +v = R2 +T +T . +Here, uλ is introduced to maintain the generality of the NSVh model. Under the normal SABR model +(i.e., λ = 0), however, uλ is equal to u. The probability densities around variables u, v, and θ are +respectively given by +fu(u) = e−ξu− ξ2 +2 n(u), +fv(v) = 1 +2e− 1 +2 v, +and +fθ(θ) = 1 +π . +Note that the term e−ξu− ξ2 +2 is the Radon-Nikodym derivative that arises from our definition of u. We +define u as such because the term makes the integrand more suitable for numerical integration, as opposed +to naively defining u = ZT / +√ +T. For example, e−ξu offsets eZ/2 from φ(Z, D), mitigating the exponential +growth as shown below. +The terminal asset price FT is expressed as a function of u, v, and θ, +FT (u, v, θ) = F0 + ρσ0 +ν e2λξ2 � +e2ξu − 1 +� ++ ρ∗σ0 +ν +cosh θ φ +� +2ξuλ, 2ξ +� +v + u2 +λ +� +Therefore, the undiscounted price of the European option struck at K under the normal SABR model +is expressed as an expectation over the three variables: +C(K) = +� ∞ +−∞ +du e−ξu− ξ2 +2 n(u) +� ∞ +0 +dv +2 e− v +2 +� π +0 +dθ +π [FT (u, v, θ) − K]+. +6 + +We further decompose the payout by introducing +k(u) = ν +σ0 +e−ξuλ(K − F0) − 2ρeλξ2 sinh (ξu) , +(11) +h(u, v) = ρ∗ +� +2 cosh +� +2ξ +� +v + u2 +λ +� +− 2 cosh(2ξuλ) +�1/2 +. +(12) +We can express the payout and option price as +FT − K = σ0 +ν eξuλ (h(u, v) cos θ − k(u)) , +(13) +C(K) = σ0 +ν e(λ−1/2)ξ2 � ∞ +−∞ +du n(u) +� ∞ +0 +dv +2 e− v +2 +� π +0 +dθ +π [h(u, v) cos θ − k(u)]+. +(14) +Next, we identify the integration region of positive payout. Note that, because h(u, v) is a monoton- +ically increasing function of v, taking values from 0 to ∞ for all values of u, it is always possible to find +v∗(u) such that h(u, v∗) = |k(u)|: +v∗(u) = +1 +4ξ2 acosh2 +� +cosh (2ξuλ) + k2(u) +2ρ2∗ +� +− u2 +λ. +(15) +Only when k(u) = 0, v∗(u) = 0. As long as v ≥ v∗, it is also possible to find θ∗ such that h(u, v) cos θ∗ = +|k(u)|: +θ∗(u, v) = arccos +� |k(u)| +h(u, v) +� +� +0 ≤ θ∗ ≤ π +2 +� +. +(16) +When k(u) = 0 or v → ∞, θ∗(u, v) = π/2. +Using v∗(u) and θ∗(u, v), we express the region of (v, θ), where the payout, h(u, v) cos θ − k(u), is +positive or negative, depending on the sign of k(u). When k(u) ≥ 0, the payout is positive, if +{(v, θ) : 0 ≤ v ≤ v∗(u) +and +0 ≤ θ ≤ θ∗(u, v)}. +Therefore, +� ∞ +0 +dv +2 e− v +2 +� π +0 +dθ +π [h(u, v) cos θ − k(u)]+ += +� ∞ +v∗ +dv +2π e− v +2 +� θ∗ +0 +dθ (h(u, v) cos θ − k(u)) += +� ∞ +v∗ +dv +2π e− v +2 +�� +h2(u, v) − k2(u) − θ∗(u, v)k(u) +� +When k(u) < 0, it is easier to identify the region of negative payout: +{(v, θ) : 0 ≤ v ≤ v∗(u) +and +π − θ∗(u, v) ≤ θ ≤ π}. +7 + +Using the identity [x]+ = x − [x]−, where x = h(u, v) cos θ − k(u), the integration along θ and v becomes +� ∞ +0 +dv +2 e− v +2 +� π +0 +dθ +π [h(u, v) cos θ − k(u)]+ += −k(u) − +� ∞ +0 +dv +2 e− v +2 +� π +0 +dθ +π [h(u, v) cos θ − k(u)]− += −k(u) − +� ∞ +v∗ +dv +2π e− v +2 +� π +π−θ∗ dθ (h(u, v) cos θ − k(u)) += −k(u) + +� ∞ +v∗ +dv +2π e− v +2 +�� +h2(u, v) − k2(u) + θ∗(u, v)k(u) +� +Combining the two cases, we finally represent the option price as +C(K) =σ0 +ν e(λ−1/2)ξ2 � ∞ +−∞ +du n(u) +� +[−k(u)]+ + +� ∞ +v∗ +dv +2π e− v +2 +�� +h2(u, v) − k2(u) − θ∗(u, v)|k(u)| +�� +=σ0 +ν e(λ−1/2)ξ2 � ∞ +−∞ +du n(u) +� +[−k(u)]+ + e− v∗ +2 +� ∞ +0 +dv +2π e− v +2 +�� +h2(u, v∗ + v) − k2(u) − θ∗(u, v∗ + v)|k(u)| +�� +, +(17) +where k(u), h(u, v), v∗(u), and θ∗(u, v) are defined in Eqs. (11), (12), (15), and (16), respectively. +The option delta, D(K) = Prob(FT ≥ K), can be similarly obtained as +D(K) = +� ∞ +−∞ +du e−ξu− ξ2 +2 n(u) +� ∞ +0 +dv +2π e− v +2 +� π +0 +dθ 1h(u,v) cos θ>k(u) += +� ∞ +−∞ +du e−ξu− ξ2 +2 n(u) +� +1−k(u) + sgn(k(u)) +� ∞ +v∗ +dv +2π e− v +2 θ∗(u, v) +� += +� ∞ +−∞ +du e−ξu− ξ2 +2 n(u) +� +1−k(u) + sgn(k(u))e− v∗ +2 +� ∞ +0 +dv +2π e− v +2 θ∗(u, v∗ + v) +� +, +(18) +where sgn(x) is the sign function and 1x is the indicator function (i.e., 1x = 1 if x > 0 or 0 otherwise). +From option delta D(K), the CDF at K can also be obtained as F(K) = 1 − D(K). +3.3. Integration with Gaussian quadratures +The integral representations in the previous section allow for efficient evaluations because Gaussian +quadratures exist for the probability densities of the variables. While we integrate θ analytically, we +use the Gauss-Hermite quadrature for u and the Gauss-Laguerre quadrature for v. Let {ui} and {wi} +for i = 1, . . . , N be the points and weights, respectively, of the Gauss-Hermite quadrature with respect +to the weight function n(u), and let {vj} and { ¯wj} for j = 1, . . . , M be those of the Gauss–Laguerre +quadrature associated with the weight function e− v +2 (v ≥ 0). The integrations with respect to n(u) and +e−v/2 are then accurately approximated by the weighted sums, +� ∞ +−∞ +du n(u)f(u) ≈ +N +� +i=1 +wif(ui) +and +� ∞ +v∗ dv e− v +2 g(v) ≈ e− v∗ +2 +M +� +k=1 +¯wjg(v∗ + vj), +8 + +Table 1: Parameter sets used in the simulations +Case +σ0 +ν +ρ +T +F0 +1 +100 +0.5 +0 +30 +350 +2 +100 +0.5 +-0.3 +30 +350 +3 +100 +0.5 +-0.6 +30 +350 +for some functions f(u) and g(v), respectively. The points and weights of the Gaussian quadrature are +optimally chosen from orthogonal polynomials, in the sense that the quadrature of size N can precisely +evaluate the moments of the probability density up to the order 2N − 1. The quadrature points and +weights can be easily generated using public numerical libraries.4 Because we perform two-dimensional +integration, we construct the compound quadrature (ui, vj) with weight wi ¯wj, whose size is NM. +Let us define the indexed function values at the quadrature points by +ki = k(ui), +v∗ +i = v∗(ui), +hij = h(ui, v∗ +i + vj), +θ∗ +ij = θ∗(ui, v∗ +i + vj). +Then, the option price in Eq. (17) is evaluated as a double sum over the composite Gaussian quadratures: +C(K) = σ0 +ν e(λ−1/2)ξ2 +N +� +i=1 +wi +� +�[−ki]+ + e− +v∗ +i +2 +M +� +j=1 +¯wj +2π +�� +h2 +ij − k2 +i − θ∗ +ij |ki| +� +� +� . +(19) +The calculation can be performed simply as a vector–matrix operation: +C(K) = σ0 +ν e(λ−1/2)ξ2wT (b + A ¯ +w) , +where w is the size N vector of wi, ¯ +w is the size M vector of ¯wj, b is the size N vector of [−ki]+, and +A is the N × M matrix of +Aij = 1 +2π e− +v∗ +i +2 +�� +h2 +ij − k2 +i − θ∗ +ij ki +� +. +The option delta in Eq. (18) can be similarly evaluated using the Gaussian quadrature: +D(K) = +N +� +i=1 +� +�wie−ξui− ξ2 +2 +� +�1−ki + sgn(ki)e− +v∗ +i +2 +M +� +j=1 +¯wj +2π θ∗ +ij +� +� +� +� . +4. Numerical Experiments +We test the accuracy of our Gaussian quadrature method for calculating the option price and delta. We +use the three parameter sets shown in Table 1. Case 1 is one of the parameter sets tested by Korn and +4We use the python functions, scipy.special.eval hermitenorm and scipy.special.roots genlaguerre, for Gauss– +Hermite and Gauss–Laguerre quadratures, respectively. +9 + +Tang (2013, Tables 3–4 and Figure 4), but scaled by 104. This case is understood as a parameter set for +the swaption volatility smile in the unit of basis point. We price this case again because it is a challenging +example. Given a large value of ξ = 1.37, the error from Hagan’s normal volatility approximation in +Eq. (3) is significantly large, as shown by Korn and Tang (2013). From Case 1, we vary correlation ρ +from 0% to −30% in Case 2 and −60% in Case 3. +Table 2: +The call option price and delta for Case 1 obtained from N × M Gaussian quadrature points and Hagan’s +volatility approximation. The exact values are obtained with 90 × 180 points. The delta value and error are in % unit. +Case 1 +Option price +Option delta (%) +Error from the exact value +Exact +Error from the exact value +Exact +Strike +7×7 +10×10 +14×14 +Hagan +value +7×7 +10×10 +14×14 +Hagan +value +0 +0.16 +0.14 +0.07 +92.28 +572.02 +-0.19 +-0.10 +-0.06 +21.45 +84.47 +100 +0.21 +0.15 +0.08 +70.49 +489.88 +-0.26 +-0.14 +-0.09 +21.85 +79.42 +200 +0.30 +0.17 +0.10 +49.61 +414.24 +-0.41 +-0.23 +-0.14 +19.03 +71.16 +300 +0.45 +0.27 +0.16 +35.07 +349.19 +-0.64 +-0.44 +-0.31 +8.43 +58.06 +350 +-0.01 +0.00 +0.00 +32.92 +322.16 +-0.00 +-0.00 +0.00 +-0.00 +50.00 +400 +0.45 +0.27 +0.16 +35.07 +299.19 +0.64 +0.44 +0.31 +-8.43 +41.94 +500 +0.30 +0.17 +0.10 +49.61 +264.24 +0.41 +0.23 +0.14 +-19.03 +28.84 +600 +0.21 +0.15 +0.08 +70.49 +239.88 +0.26 +0.14 +0.09 +-21.85 +20.58 +700 +0.16 +0.14 +0.07 +92.28 +222.02 +0.19 +0.10 +0.06 +-21.45 +15.53 +Table 3: +The call option price and delta for Case 2 obtained from N × M Gaussian quadrature points and Hagan’s +volatility approximation. The exact values are obtained with 90 × 180 points. The delta value and error are in % unit. +Case 2 +Option price +Option delta (%) +Error from the exact value +Exact +Error from the exact value +Exact +Strike +7×7 +10×10 +14×14 +Hagan +value +7×7 +10×10 +14×14 +Hagan +value +0 +0.22 +0.21 +0.10 +105.57 +580.55 +-0.13 +-0.09 +-0.06 +22.48 +86.50 +100 +0.28 +0.19 +0.11 +82.14 +495.84 +-0.20 +-0.09 +-0.07 +24.33 +82.66 +200 +0.39 +0.14 +0.08 +57.25 +415.99 +-0.30 +-0.12 +-0.08 +25.09 +76.51 +300 +0.48 +0.27 +0.14 +33.37 +344.19 +-0.45 +-0.24 +-0.15 +21.48 +66.23 +350 +0.46 +0.36 +0.19 +23.83 +312.82 +-0.53 +-0.36 +-0.24 +16.24 +59.01 +400 +0.52 +0.29 +0.18 +17.55 +285.36 +-0.13 +-0.10 +-0.08 +8.54 +50.68 +500 +0.53 +0.26 +0.12 +17.29 +243.03 +0.56 +0.35 +0.22 +-7.05 +34.52 +600 +0.34 +0.16 +0.07 +28.63 +214.53 +0.31 +0.17 +0.10 +-14.24 +23.41 +700 +0.25 +0.13 +0.05 +43.88 +194.70 +0.20 +0.11 +0.06 +-15.70 +16.83 +Tables 2–4 present the results for the three cases. We first obtain the exact values of option price +and delta from the Gaussian quadrature integration (Eqs. (17) and (18), respectively) with a very dense +quadrature set with N = 90 and M = 180. The option prices for K = 300, 350, and 400 in Case 1 is +consistent with the values reported by Korn and Tang (2013, Table 3). Then, we report the errors of the +option price and delta from a small quadrature size and from Hagan’s volatility approximation (Eqs. (5) +and (6)). We increase the quadrature size N = M from 7, to 10, to 14, roughly doubling the total +number of points from 49, to 100, to 196. The tables show that our quadrature integration accurately +10 + +Table 4: +The call option price and delta for Case 3 obtained from N × M Gaussian quadrature points and Hagan’s +volatility approximation. The exact values are obtained with 90 × 180 points. The delta value and error are in % unit. +Case 3 +Option price +Option delta (%) +Error from the exact value +Exact +Error from the exact value +Exact +Strike +7×7 +10×10 +14×14 +Hagan +value +7×7 +10×10 +14×14 +Hagan +value +0 +-0.04 +0.04 +0.03 +72.67 +569.45 +-0.03 +-0.09 +-0.07 +16.99 +89.20 +100 +-0.04 +0.13 +0.01 +54.56 +481.52 +-0.13 +-0.04 +-0.04 +19.30 +86.47 +200 +0.04 +0.14 +0.06 +33.96 +397.03 +-0.25 +-0.03 +-0.02 +21.92 +82.16 +300 +0.13 +0.13 +0.06 +10.93 +318.23 +-0.33 +-0.09 +-0.06 +23.80 +74.72 +350 +0.05 +0.14 +0.07 +-0.91 +282.24 +-0.32 +-0.18 +-0.11 +23.26 +68.93 +400 +0.30 +0.18 +0.09 +-11.93 +249.61 +-0.39 +-0.30 +-0.19 +20.32 +61.23 +500 +0.40 +0.22 +0.11 +-25.71 +198.02 +0.67 +0.48 +0.33 +5.97 +41.57 +600 +0.14 +0.05 +0.02 +-25.13 +165.13 +0.33 +0.19 +0.11 +-5.36 +25.56 +700 +0.07 +0.02 +0.01 +-17.86 +144.45 +0.18 +0.10 +0.06 +-8.32 +16.74 +evaluates the price and delta. With only 7 × 7 points, the price error is less than one basis point and +the delta error is within 1%. These errors are negligible for practical purposes. Figure 1 displays the +implied normal volatility (left) and delta (right) for the three test cases. The result with 7 × 7 points +is visually indistinguishable from the exact value with 90 × 180 points. By contrast, Hagan’s volatility +approximation shows significant deviations from the exact value. Moreover, the option delta incorrectly +goes below 0 or above 100%. Given that the option delta is equal to the complementary CDF under the +normal SABR model, this implies an arbitrage opportunity. It illustrates a possible danger of using a +volatility approximation approach. +5. Conclusion +The normal (β = 0) SABR model is an important special case of the popular SABR model for modeling +interest rates as it allows negative asset prices. Although Hagan’s implied volatility approximation is +easy to use, its accuracy deteriorates and arbitrage is possible. This study provides an efficient numerical +scheme for option prices and deltas. Based on the new price transition law, our proposed scheme adopts a +compound Gaussian quadrature. Numerical tests show that a quadrature with only 7×7 nodes accurately +evaluates European options without arbitrage. Given that the SABR model still requires better pricing +methods for general cases (0 ≤ β ≤ 1), our new scheme will serve to provide the benchmarks for testing +the methods proposed in the future. +Declarations of Interest +The authors report no conflicts of interest. The authors alone are responsible for the content and writing +of the paper. +11 + +Figure 1: +The volatility smile (left) and delta (right) as functions of strike price for the three test cases in Table 1. +0 +100 +200 +300 +400 +500 +600 +700 +Strike price ( K ) +150 +160 +170 +180 +190 +200 +210 +Implied normal volatility ( +N ) +Case 1 +Quad (7x7) +Hagan +Exact +0 +100 +200 +300 +400 +500 +600 +700 +Strike price ( K ) +0 +20 +40 +60 +80 +100 +Delta (%) +Case 1 +Quad (7x7) +Hagan +Exact +0 +100 +200 +300 +400 +500 +600 +700 +Strike price ( K ) +140 +160 +180 +200 +220 +Implied normal volatility ( +N ) +Case 2 +Quad (7x7) +Hagan +Exact +0 +100 +200 +300 +400 +500 +600 +700 +Strike price ( K ) +0 +20 +40 +60 +80 +100 +Delta (%) +Case 2 +Quad (7x7) +Hagan +Exact +0 +100 +200 +300 +400 +500 +600 +700 +Strike price ( K ) +120 +140 +160 +180 +200 +Implied normal volatility ( +N ) +Case 3 +Quad (7x7) +Hagan +Exact +0 +100 +200 +300 +400 +500 +600 +700 +Strike price ( K ) +20 +40 +60 +80 +100 +Delta (%) +Case 3 +Quad (7x7) +Hagan +Exact +References +Alili, L., Gruet, J.C., 1997. +An explanation of a generalized Bougerol’s identity in terms of hyper- +bolic Brownian motion, in: Yor, M. (Ed.), Exponential Functionals and Principal Values Related to +Brownian Motion. A Collection of Research Papers, pp. 15–33. +Antonov, A., Konikov, M., Spector, M., 2015. Mixing SABR Models for Negative Rates. SSRN Electronic +Journal URL: https://ssrn.com/abstract=2653682. +12 + +Antonov, A., Konikov, M., Spector, M., 2019. Modern SABR Analytics. SpringerBriefs in Quantitative +Finance, Cham. doi:10.1007/978-3-030-10656-0. +Cai, N., Song, Y., Chen, N., 2017. Exact simulation of the SABR model. Operations Research 65, +931–951. doi:10.1287/opre.2017.1617. +Chen, B., Oosterlee, C.W., Van Der Weide, H., 2012. +A low-bias simulation scheme for the SABR +stochastic volatility model. International Journal of Theoretical and Applied Finance 15, 1250016. +doi:10.1142/S0219024912500161. +Chen, N., Yang, N., 2019. The principle of not feeling the boundary for the SABR model. Quantitative +Finance 19, 427–436. doi:10.1080/14697688.2018.1486037. +Choi, J., Kwak, M., Tee, C.W., Wang, Y., 2022. A Black–Scholes user’s guide to the Bachelier model. +Journal of Futures Markets 42, 959–980. doi:10.1002/fut.22315. +Choi, J., Liu, C., Seo, B.K., 2019. Hyperbolic normal stochastic volatility model. Journal of Futures +Markets 39, 186–204. doi:10.1002/fut.21967. +Choi, J., Wu, L., 2021a. The equivalent constant-elasticity-of-variance (CEV) volatility of the stochastic- +alpha-beta-rho (SABR) model. Journal of Economic Dynamics and Control 128, 104143. doi:10.1016/ +j.jedc.2021.104143. +Choi, J., Wu, L., 2021b. A note on the option price and ‘Mass at zero in the uncorrelated SABR model +and implied volatility asymptotics’. Quantitative Finance 21, 1083–1086. doi:10.1080/14697688. +2021.1876908. +Cui, Z., Kirkby, J., Nguyen, D., 2018. A general valuation framework for SABR and stochastic local +volatility models. SIAM Journal on Financial Mathematics 9, 520–563. doi:10.1137/16M1106572. +Cui, Z., Kirkby, J.L., Nguyen, D., 2021. Efficient simulation of generalized SABR and stochastic local +volatility models based on Markov chain approximations. European Journal of Operational Research +290, 1046–1062. doi:10.1016/j.ejor.2020.09.008. +Gulisashvili, A., Horvath, B., Jacquier, A., 2018. Mass at zero in the uncorrelated SABR model and +implied volatility asymptotics. Quantitative Finance 18, 1753–1765. doi:10.1080/14697688.2018. +1432883. +Hagan, P.S., Kumar, D., Lesniewski, A.S., Woodward, D.E., 2002. Managing Smile Risk. Wilmott +September, 84–108. +Henry-Labord`ere, +P., +2005. +A General Asymptotic Implied Volatility for Stochastic Volatil- +ity +Models. +arXiv:cond-mat/0504317 +URL: +http://arxiv.org/abs/cond-mat/0504317, +arXiv:cond-mat/0504317. +Henry-Labord`ere, P., 2008. Analysis, Geometry, and Modeling in Finance: Advanced Methods in Option +Pricing. Boca Raton, FL. +Korn, R., Tang, S., 2013. Exact analytical solution for the normal SABR model. Wilmott 2013, 64–69. +doi:10.1002/wilm.10235. +Leitao, ´A., Grzelak, L.A., Oosterlee, C.W., 2017a. On a one time-step Monte Carlo simulation approach +of the SABR model: Application to European options. Applied Mathematics and Computation 293, +461–479. doi:10.1016/j.amc.2016.08.030. +Leitao, ´A., Grzelak, L.A., Oosterlee, C.W., 2017b. +On an efficient multiple time step Monte Carlo +simulation of the SABR model. Quantitative Finance 17, 1549–1565. doi:10.1080/14697688.2017. +1301676. +13 + +Lorig, M., Pagliarani, S., Pascucci, A., 2017. Explicit Implied Volatilities for Multifactor Local-Stochastic +Volatility Models. Mathematical Finance 27, 926–960. doi:10.1111/mafi.12105. +Ob�l´oj, J., 2007. Fine-tune your smile: Correction to Hagan et al. arXiv:0708.0998 [math, q-fin] URL: +https://arxiv.org/abs/0708.0998, arXiv:0708.0998. +Park, H., 2014. SABR Symmetry. Risk 2014, 106–111. URL: https://www.risk.net/derivatives/ +2322292/sabr-symmetry. +Paulot, L., 2015. Asymptotic implied volatility at the second order with application to the SABR model, +in: Friz, P., Gatheral, J., Gulisashvili, A., Jacquier, A., Teichmann, J. (Eds.), Large Deviations and +Asymptotic Methods in Finance, pp. 37–69. doi:10.1007/978-3-319-11605-1_2. +von Sydow, L., Milovanovi´c, S., Larsson, E., In’t Hout, K., Wiktorsson, M., Oosterlee, C.W., +Shcherbakov, V., Wyns, M., Leitao, A., Jain, S., Haentjens, T., Wald´en, J., 2019. BENCHOP - SLV: +The BENCHmarking project in option pricing - Stochastic and local volatility problems. International +Journal of Computer Mathematics 96, 1910–1923. doi:10.1080/00207160.2018.1544368. +Yang, N., Chen, N., Liu, Y., Wan, X., 2017. Approximate arbitrage-free option pricing under the SABR +model. Journal of Economic Dynamics and Control 83, 198–214. doi:10.1016/j.jedc.2017.08.004. +14 + diff --git a/pdE0T4oBgHgl3EQf9AL7/content/tmp_files/load_file.txt b/pdE0T4oBgHgl3EQf9AL7/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..bd248566facbfd89f0bf3cdb7308f57dd4553238 --- /dev/null +++ b/pdE0T4oBgHgl3EQf9AL7/content/tmp_files/load_file.txt @@ -0,0 +1,925 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf,len=924 +page_content='Option pricing under the normal SABR model with Gaussian quadratures Jaehyuk Choia,∗, Byoung Ki Seob aPeking University HSBC Business School, University Town, Nanshan, Shenzhen 518055, China bSchool of Business Administration, Ulsan National Institute of Science and Technology Abstract The stochastic-alpha-beta-rho (SABR) model has been widely adopted in options trading.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' In particular, the normal (β = 0) SABR model is a popular model choice for interest rates because it allows negative asset values.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' The option price and delta under the SABR model are typically obtained via asymptotic implied volatility approximation, but these are often inaccurate and arbitrage-able.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' Using a recently discovered price transition law, we propose a Gaussian quadrature integration scheme for price options under the normal SABR model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' The compound Gaussian quadrature sum over only 49 points can calculate a very accurate price and delta that are arbitrage-free.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' Keywords: Gaussian quadrature, normal model, SABR model, stochastic volatility 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' Introduction The stochastic-alpha-beta-rho (SABR) model (Hagan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=', 2002) has been widely adopted in the fi- nancial industry for the pricing and risk management of European options, owing to its intuitive and parsimonious parameterization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' It has been a standard practice for practitioners to obtain the option price and delta from the asymptotic approximation of implied volatility (Hagan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=', 2002), but the approximation loses accuracy and allows arbitrage as the variance of volatility becomes large.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' Despite numerous attempts to improve implied volatility approximation (Ob�l´oj, 2007;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' Paulot, 2015;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' Lorig et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=', 2017;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' Yang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=', 2017;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' Choi and Wu, 2021a), it does not seem possible to obtain an approximation accu- rate for all parameter ranges.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' To date, there are several full-scale methods for pricing the SABR model: Monte–Carlo simulations (Chen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=', 2012;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' Leitao et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=', 2017a,b;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' Cai et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=', 2017;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' Choi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=', 2019;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' Cui et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=', 2021), finite difference methods (Park, 2014;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' von Sydow et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=', 2019), and continuous-time Markov chains (Cui et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=', 2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' These approaches require heavy computation and complex implementation compared with the approximation approach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' Therefore, they are difficult to implement in practice.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' We contribute to the literature by proposing a novel and efficient pricing scheme under the normal ∗Corresponding author Tel: +86-755-2603-0568;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' Address: Rm 755, Peking University HSBC Business School, University Town, Nanshan, Shenzhen 518055, China Email addresses: jaehyuk@phbs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='pku.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='edu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='cn (Jaehyuk Choi), bkseo@unist.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='ac.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='kr (Byoung Ki Seo) Preprint submitted to arXiv November 16, 2022 arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='02797v1 [q-fin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='PR] 7 Jan 2023 (β = 0) SABR model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' Despite being a special case, the normal SABR model has gained attention for modeling interest rates owing to its flexibility to allow negative asset prices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' The normal model based on the arithmetic Brownian motion (BM) has long been used in fixed income markets, as opposed to the Black–Scholes model based on geometric BM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='1 The normal SABR model is a natural extension of the normal model with stochastic volatility that exhibits a volatility smile.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' Antonov et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' (2015) adopt the normal SABR model as a key component of the mixture approach for modeling a low-interest-rate environment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' Choi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' (2019) propose the hyperbolic normal stochastic volatility (NSVh) model as a broader class of normal stochastic volatility models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' Based on the price transition law of Choi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' (2019), we express the option price as a double sum of compound Gaussian quadratures consisting of Gauss–Hermite and Gauss–Laguerre quadratures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' Our scheme is highly efficient in the sense that quadrature points with only 49 (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=', 7×7) nodes can produce very accurate option values.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' Unlike with the asymptotic implied volatility approach, the resulting prices obtained with our approach are arbitrage-free.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' Using a similar algorithm, we can also evaluate the option delta (equivalently, the probability distribution).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' Our study extends the previous literature on the normal SABR model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' It compliments Choi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' (2019) by showing that the price transition law is useful for deterministic pricing as well as Monte–Carlo simulation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' It extends the integral representations of the normal SABR model previously observed by Korn and Tang (2013) and Antonov et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' (2015), as we provide an alternative representation and a practical numerical scheme together.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' The study also extends the stochastic volatility benchmark proposed by von Sydow et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' Given the availability of highly accurate option values, our method can serve as a testing benchmark for general SABR pricing methods proposed in the future.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' The remainder of this paper is organized as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' Section 2 reviews the normal SABR model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' Section 3 introduces the proposed quadrature scheme.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' Section 4 presents the numerical results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' Finally, Section 5 concludes the paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' Normal SABR model The SABR model (Hagan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=', 2002) is a stochastic volatility model specified by dFt F β t = σt ρdWt and dσt σt = ν dZt, (1) where Ft and σt are the processes for the forward price and volatility, respectively;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' ν is the volatility of volatility;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' β ∈ [0, 1] is the elasticity parameter;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' and Wt and Zt are the BMs correlated by dWtdZt = ρ dt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' 1See Choi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' (2022) for a survey of the normal (Bachelier) model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' 2 To simplify the notations for the remainder of this paper, we also denote ρ∗ = � 1 − ρ2 and ξ = 1 2ν √ T, (2) where T is the option expiry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' The normal SABR model is the case with β = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' Unlike when β > 0, the asset price Ft can freely become negative in the normal SABR model, requiring no boundary condition at the origin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='2 Here, we are concerned with the undiscounted price and delta of the call option with strike price K and expiry T: C(K) = E([FT − K]+) and D(K) = ∂C(K) ∂F0 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' Since F0 and K affect the option value only through moneyness, F0 −K, under the normal SABR model, the option delta is also equal to the complementary probability distribution of FT : D(K) = ∂C(K) ∂F0 = −∂C(K) ∂K = Prob(FT ≥ K).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' Hagan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' (2002)’s normal volatility approximation Hagan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' (2002) present the celebrated implied Black–Scholes volatility of the SABR model, from which the option price can be quickly computed using the Black–Scholes formula.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' In their study, Hagan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' (2002) first derive the implied normal volatility, even for all β ∈ [0, 1], because they use perturbation from normal diffusion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' They then convert the derived volatility to the equivalent Black–Scholes volatility using another approximation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' However, for the normal SABR model, normal volatility is more relevant, as has been discussed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' Therefore, the normal volatility approximation in the intermediate step (Hagan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=', 2002, (A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='59)) is preferred among practitioners, as it avoids further approximation error.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' The implied normal volatility for β = 0 is given by σn(K) = σ0 z x(z) � 1 + 2 − 3ρ2 6 ξ2 � for z = ν σ0 (K − F0) (3) where K is the strike price, ξ is given in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' (2), and x(z) is defined by3 x(z) = log �V (z) + z + ρ 1 + ρ � for V (z) = � 1 + 2ρz + z2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' (4) 2In some studies (Antonov et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=', 2015), the model is explicitly referred to as the normal free-boundary SABR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' When 0 < β < 1, the absorbing boundary condition is imposed at the origin, resulting in a mass at zero.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' See Gulisashvili et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' (2018);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' Chen and Yang (2019);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' Choi and Wu (2021b) for details.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' 3At and near z = 0, z/x(z) should be evaluated as 1 from Taylor’s expansion near z = 0: x(z) z = 1 − ρ 2 z + 3ρ2 − 1 6 z2 − (5ρ2 − 3)ρ 8 z3 + · · · .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' 3 The option price is obtained by plugging σn(K) into the Bachelier option formula: C(K) ≈ (F0 − K)N(dn) + σn √ T n(dn) for dn = F0 − K σn(K) √ T , (5) where n(z) and N(z) are the probability density function (PDF) and cumulative distribution function (CDF), respectively, of the standard normal distribution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' This volatility approximation, Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' (3), is the leading and first-order terms of the asymptotic expansion around a small ξ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' Therefore, the accuracy of the approximation noticeably deteriorates when ξ is not small.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' Despite various attempts to improve approximation (Ob�l´oj, 2007;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' Paulot, 2015;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' Lorig et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=', 2017), the intrinsic limitation arising from asymptotic approximation is difficult to overcome.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' Inaccurate option prices can also lead to inaccurate risk management.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' The option delta D(K) implied from the volatility approximation, D(K) = −∂C(K) ∂K ≈ C(K − h) − C(K + h) 2h for small h, (6) can deviate from the true delta significantly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' Existing option price representation Based on the heat kernel on hyperbolic geometry (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=', Poincar´e half-plane), Henry-Labord`ere (2005, 2008) derives a two-dimensional integral representation of the option price under the normal SABR model, and Korn and Tang (2013) correct mistakes in the formula.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' Their formula, with the simplification of Antonov et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' (2019, § 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='2), is as follows: C(K) = [F0 − K]+ + 1 2π √ 2 σ0 ρ∗ν � ∞ s0 Q(s)ds, (7) where ρ∗ is given in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' (2), and s0 = cosh−1 �� k2 + ρ2∗ − ρk ρ2∗ � with k = z + ρ = ν σ0 (K − F0) + ρ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' The integrand Q(s) is given by Q(s) = � e− s 2 N � − s 2ξ + ξ � + e s 2 N � − s 2ξ − ξ �� � α+(s) α−(s) dα � cosh s − cosh d(α) where d(α) and α±(s) are d(α) = cosh−1 �1 2 � α + 1 α � + (k − ρα)2 2ρ2∗α � , α±(s) = ρk + ρ2 ∗ cosh s ± � sinh2 s − (k − ρ cosh s)2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' 4 Antonov et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' (2015, § 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='1) also derive a different two-dimensional integral representation: C(K) = [F0 − K]+ + σ0 πν � ∞ s0 G(4ξ2, s) sinh s � sinh2 s − (k − ρ cosh s)2 ds (8) where G(t, s) is the CDF of the heat kernel (Antonov et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=', 2019, § 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='5): G(t, s) = 2e−t/8 t √ πt � ∞ s du ue−u2/2t√ cosh u − cosh s.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' This representation is also based on the hyperbolic geometry heat kernel;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' however, the outcome differs from that of Korn and Tang (2013) because the integration is performed in a different order among the variables.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' To evaluate these integral representations, Eqs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' (7) and (8), one must resort to numerical integra- tion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' However, the use of generic numerical integrals over two-dimensional indefinite regions can be an extremely slow process because it requires evaluations of dense points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' Korn and Tang (2013) present the option prices evaluated for two test cases, but they do not provide the implementation details of the numerical integration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' Gaussian quadrature integration scheme Using the results of Choi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' (2019), we present a new integral representation of the option price, which differs from those in Section 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' This new representation is evidently easier to evaluate using Gaussian quadratures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' First, we review Choi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' (2019)’s price transition law.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' NSVh model and the closed-form price transition formula Choi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' (2019) introduce the NSVh model as dFt = σt � ρ dZ[λν/2] t + ρ∗ dXt � and dσt σt = ν dZ[λν/2] t , (9) where Zt and Xt are two independent BMs, and Z[µ] t = Zt +µ t is the BM with a drift µ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' By introducing the drift term of Zt, the NSVh model generalizes the normal SABR;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' the normal SABR model is the NSVh model with λ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' Based on Bougerol’s identity in hyperbolic geometry (Alili and Gruet, 1997), the NSVh model admits the following closed-form transition law for σT and FT (Choi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=', 2019, Corollary 1): σT = σ0 exp � ν ¯ZT � , FT d= F0 + σ0ρ ν � eν ¯ ZT − eλν2T/2� + σ0ρ∗ ν cos θ φ � ν ¯ZT , ν � R2 T + ¯Z2 T � , (10) 5 where ¯ZT = Z[(λ−1)ν/2] T and φ(Z, D) = eZ/2√ 2 cosh D − 2 cosh Z (Z ≤ D) and RT is the two-dimensional squared Bessel process (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=', RT = X2 T + Y 2 T for two independent BMs, XT and YT ), and θ ∈ [0, π] is a uniformly distributed random angle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' As these random variables can be easily sampled, the transition law serves as a closed-form exact simulation scheme for the normal SABR model, which outperforms the method of Cai et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' (2017) for the β = 0 case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' See Choi et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' (2019) for further details.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' New integral representation of the option price The closed-form transition law in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' (10) also enables an efficient pricing method for vanilla options.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' The random variables ZT , RT , and θ follow normal, exponential, and uniform distributions, respectively, whose PDFs are simple.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' Let us introduce the integral variables u and v, which represent ZT and RT , respectively: u = Z[−ν/2] T√ T = ZT √ T − ξ � uλ = ¯ZT √ T = u + λξ � and v = R2 T T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' Here, uλ is introduced to maintain the generality of the NSVh model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' Under the normal SABR model (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=', λ = 0), however, uλ is equal to u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' The probability densities around variables u, v, and θ are respectively given by fu(u) = e−ξu− ξ2 2 n(u), fv(v) = 1 2e− 1 2 v, and fθ(θ) = 1 π .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' Note that the term e−ξu− ξ2 2 is the Radon-Nikodym derivative that arises from our definition of u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' We define u as such because the term makes the integrand more suitable for numerical integration, as opposed to naively defining u = ZT / √ T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' For example, e−ξu offsets eZ/2 from φ(Z, D), mitigating the exponential growth as shown below.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' The terminal asset price FT is expressed as a function of u, v, and θ, FT (u, v, θ) = F0 + ρσ0 ν e2λξ2 � e2ξu − 1 � + ρ∗σ0 ν cosh θ φ � 2ξuλ, 2ξ � v + u2 λ � Therefore, the undiscounted price of the European option struck at K under the normal SABR model is expressed as an expectation over the three variables: C(K) = � ∞ −∞ du e−ξu− ξ2 2 n(u) � ∞ 0 dv 2 e− v 2 � π 0 dθ π [FT (u, v, θ) − K]+.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' 6 We further decompose the payout by introducing k(u) = ν σ0 e−ξuλ(K − F0) − 2ρeλξ2 sinh (ξu) , (11) h(u, v) = ρ∗ � 2 cosh � 2ξ � v + u2 λ � − 2 cosh(2ξuλ) �1/2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' (12) We can express the payout and option price as FT − K = σ0 ν eξuλ (h(u, v) cos θ − k(u)) , (13) C(K) = σ0 ν e(λ−1/2)ξ2 � ∞ −∞ du n(u) � ∞ 0 dv 2 e− v 2 � π 0 dθ π [h(u, v) cos θ − k(u)]+.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' (14) Next, we identify the integration region of positive payout.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' Note that, because h(u, v) is a monoton- ically increasing function of v, taking values from 0 to ∞ for all values of u, it is always possible to find v∗(u) such that h(u, v∗) = |k(u)|: v∗(u) = 1 4ξ2 acosh2 � cosh (2ξuλ) + k2(u) 2ρ2∗ � − u2 λ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' (15) Only when k(u) = 0, v∗(u) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' As long as v ≥ v∗, it is also possible to find θ∗ such that h(u, v) cos θ∗ = |k(u)|: θ∗(u, v) = arccos � |k(u)| h(u, v) � � 0 ≤ θ∗ ≤ π 2 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' (16) When k(u) = 0 or v → ∞, θ∗(u, v) = π/2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' Using v∗(u) and θ∗(u, v), we express the region of (v, θ), where the payout, h(u, v) cos θ − k(u), is positive or negative, depending on the sign of k(u).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' When k(u) ≥ 0, the payout is positive, if {(v, θ) : 0 ≤ v ≤ v∗(u) and 0 ≤ θ ≤ θ∗(u, v)}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' Therefore, � ∞ 0 dv 2 e− v 2 � π 0 dθ π [h(u, v) cos θ − k(u)]+ = � ∞ v∗ dv 2π e− v 2 � θ∗ 0 dθ (h(u, v) cos θ − k(u)) = � ∞ v∗ dv 2π e− v 2 �� h2(u, v) − k2(u) − θ∗(u, v)k(u) � When k(u) < 0, it is easier to identify the region of negative payout: {(v, θ) : 0 ≤ v ≤ v∗(u) and π − θ∗(u, v) ≤ θ ≤ π}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' 7 Using the identity [x]+ = x − [x]−,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' where x = h(u,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' v) cos θ − k(u),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' the integration along θ and v becomes � ∞ 0 dv 2 e− v 2 � π 0 dθ π [h(u,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' v) cos θ − k(u)]+ = −k(u) − � ∞ 0 dv 2 e− v 2 � π 0 dθ π [h(u,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' v) cos θ − k(u)]− = −k(u) − � ∞ v∗ dv 2π e− v 2 � π π−θ∗ dθ (h(u,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' v) cos θ − k(u)) = −k(u) + � ∞ v∗ dv 2π e− v 2 �� h2(u,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' v) − k2(u) + θ∗(u,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' v)k(u) � Combining the two cases,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' we finally represent the option price as C(K) =σ0 ν e(λ−1/2)ξ2 � ∞ −∞ du n(u) � [−k(u)]+ + � ∞ v∗ dv 2π e− v 2 �� h2(u,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' v) − k2(u) − θ∗(u,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' v)|k(u)| �� =σ0 ν e(λ−1/2)ξ2 � ∞ −∞ du n(u) � [−k(u)]+ + e− v∗ 2 � ∞ 0 dv 2π e− v 2 �� h2(u,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' v∗ + v) − k2(u) − θ∗(u,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' v∗ + v)|k(u)| �� ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' (17) where k(u),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' h(u,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' v),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' v∗(u),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' and θ∗(u,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' v) are defined in Eqs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' (11), (12), (15), and (16), respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' The option delta, D(K) = Prob(FT ≥ K), can be similarly obtained as D(K) = � ∞ −∞ du e−ξu− ξ2 2 n(u) � ∞ 0 dv 2π e− v 2 � π 0 dθ 1h(u,v) cos θ>k(u) = � ∞ −∞ du e−ξu− ξ2 2 n(u) � 1−k(u) + sgn(k(u)) � ∞ v∗ dv 2π e− v 2 θ∗(u, v) � = � ∞ −∞ du e−ξu− ξ2 2 n(u) � 1−k(u) + sgn(k(u))e− v∗ 2 � ∞ 0 dv 2π e− v 2 θ∗(u, v∗ + v) � , (18) where sgn(x) is the sign function and 1x is the indicator function (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=', 1x = 1 if x > 0 or 0 otherwise).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' From option delta D(K), the CDF at K can also be obtained as F(K) = 1 − D(K).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' Integration with Gaussian quadratures The integral representations in the previous section allow for efficient evaluations because Gaussian quadratures exist for the probability densities of the variables.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' While we integrate θ analytically, we use the Gauss-Hermite quadrature for u and the Gauss-Laguerre quadrature for v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' Let {ui} and {wi} for i = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' , N be the points and weights, respectively, of the Gauss-Hermite quadrature with respect to the weight function n(u), and let {vj} and { ¯wj} for j = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' , M be those of the Gauss–Laguerre quadrature associated with the weight function e− v 2 (v ≥ 0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' The integrations with respect to n(u) and e−v/2 are then accurately approximated by the weighted sums, � ∞ −∞ du n(u)f(u) ≈ N � i=1 wif(ui) and � ∞ v∗ dv e− v 2 g(v) ≈ e− v∗ 2 M � k=1 ¯wjg(v∗ + vj), 8 Table 1: Parameter sets used in the simulations Case σ0 ν ρ T F0 1 100 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='5 0 30 350 2 100 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='3 30 350 3 100 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='6 30 350 for some functions f(u) and g(v), respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' The points and weights of the Gaussian quadrature are optimally chosen from orthogonal polynomials, in the sense that the quadrature of size N can precisely evaluate the moments of the probability density up to the order 2N − 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' The quadrature points and weights can be easily generated using public numerical libraries.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='4 Because we perform two-dimensional integration, we construct the compound quadrature (ui, vj) with weight wi ¯wj, whose size is NM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' Let us define the indexed function values at the quadrature points by ki = k(ui), v∗ i = v∗(ui), hij = h(ui, v∗ i + vj), θ∗ ij = θ∗(ui, v∗ i + vj).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' Then, the option price in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' (17) is evaluated as a double sum over the composite Gaussian quadratures: C(K) = σ0 ν e(λ−1/2)ξ2 N � i=1 wi � �[−ki]+ + e− v∗ i 2 M � j=1 ¯wj 2π �� h2 ij − k2 i − θ∗ ij |ki| � � � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' (19) The calculation can be performed simply as a vector–matrix operation: C(K) = σ0 ν e(λ−1/2)ξ2wT (b + A ¯ w) , where w is the size N vector of wi, ¯ w is the size M vector of ¯wj, b is the size N vector of [−ki]+, and A is the N × M matrix of Aij = 1 2π e− v∗ i 2 �� h2 ij − k2 i − θ∗ ij ki � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' The option delta in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' (18) can be similarly evaluated using the Gaussian quadrature: D(K) = N � i=1 � �wie−ξui− ξ2 2 � �1−ki + sgn(ki)e− v∗ i 2 M � j=1 ¯wj 2π θ∗ ij � � � � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' Numerical Experiments We test the accuracy of our Gaussian quadrature method for calculating the option price and delta.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' We use the three parameter sets shown in Table 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' Case 1 is one of the parameter sets tested by Korn and 4We use the python functions, scipy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='special.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='eval hermitenorm and scipy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='special.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='roots genlaguerre, for Gauss– Hermite and Gauss–Laguerre quadratures, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' 9 Tang (2013, Tables 3–4 and Figure 4), but scaled by 104.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' This case is understood as a parameter set for the swaption volatility smile in the unit of basis point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' We price this case again because it is a challenging example.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' Given a large value of ξ = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='37, the error from Hagan’s normal volatility approximation in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' (3) is significantly large, as shown by Korn and Tang (2013).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' From Case 1, we vary correlation ρ from 0% to −30% in Case 2 and −60% in Case 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' Table 2: The call option price and delta for Case 1 obtained from N × M Gaussian quadrature points and Hagan’s volatility approximation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' The exact values are obtained with 90 × 180 points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' The delta value and error are in % unit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' Case 1 Option price Option delta (%) Error from the exact value Exact Error from the exact value Exact Strike 7×7 10×10 14×14 Hagan value 7×7 10×10 14×14 Hagan value 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='16 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='14 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='07 92.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='28 572.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='02 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='19 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='06 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='45 84.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='47 100 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='21 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='08 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='49 489.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='88 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='26 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='14 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='09 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='85 79.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='42 200 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='30 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='17 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='10 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='61 414.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='24 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='41 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='23 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='14 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='03 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='16 300 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='45 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='27 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='16 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='07 349.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='19 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='64 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='44 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='31 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='43 58.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='06 350 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='01 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='00 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='92 322.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='16 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='00 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='00 400 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='45 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='27 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='16 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='07 299.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='19 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='64 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='44 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='31 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='43 41.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='94 500 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='30 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='17 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='10 49.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='61 264.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='24 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='41 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='23 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='14 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='03 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='84 600 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='21 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='08 70.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='49 239.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='88 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='26 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='14 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='09 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='85 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='58 700 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='16 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='14 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='07 92.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='28 222.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='02 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='19 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='06 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='45 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='53 Table 3: The call option price and delta for Case 2 obtained from N × M Gaussian quadrature points and Hagan’s volatility approximation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' The exact values are obtained with 90 × 180 points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' The delta value and error are in % unit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' Case 2 Option price Option delta (%) Error from the exact value Exact Error from the exact value Exact Strike 7×7 10×10 14×14 Hagan value 7×7 10×10 14×14 Hagan value 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='22 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='21 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='10 105.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='57 580.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='55 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='13 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='09 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='06 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='48 86.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='50 100 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='28 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='19 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='11 82.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='14 495.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='84 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='20 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='09 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='07 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='33 82.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='66 200 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='39 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='14 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='08 57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='25 415.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='99 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='30 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='12 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='08 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='09 76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='51 300 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='48 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='27 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='14 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='37 344.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='19 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='45 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='24 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='15 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='48 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='23 350 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='46 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='36 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='19 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='83 312.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='82 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='53 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='36 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='24 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='24 59.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='01 400 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='52 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='29 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='18 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='55 285.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='36 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='13 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='08 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='54 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='68 500 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='53 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='26 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='12 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='29 243.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='03 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='56 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='35 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='22 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='05 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='52 600 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='34 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='16 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='07 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='63 214.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='53 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='31 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='17 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='10 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='24 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='41 700 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='25 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='13 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='05 43.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='88 194.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='70 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='20 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='11 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='06 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='70 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='83 Tables 2–4 present the results for the three cases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' We first obtain the exact values of option price and delta from the Gaussian quadrature integration (Eqs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' (17) and (18), respectively) with a very dense quadrature set with N = 90 and M = 180.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' The option prices for K = 300, 350, and 400 in Case 1 is consistent with the values reported by Korn and Tang (2013, Table 3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' Then, we report the errors of the option price and delta from a small quadrature size and from Hagan’s volatility approximation (Eqs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' (5) and (6)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' We increase the quadrature size N = M from 7, to 10, to 14, roughly doubling the total number of points from 49, to 100, to 196.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' The tables show that our quadrature integration accurately 10 Table 4: The call option price and delta for Case 3 obtained from N × M Gaussian quadrature points and Hagan’s volatility approximation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' The exact values are obtained with 90 × 180 points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' The delta value and error are in % unit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' Case 3 Option price Option delta (%) Error from the exact value Exact Error from the exact value Exact Strike 7×7 10×10 14×14 Hagan value 7×7 10×10 14×14 Hagan value 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='04 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='04 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='03 72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='67 569.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='45 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='03 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='09 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='07 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='99 89.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='20 100 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='04 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='13 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='01 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='56 481.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='52 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='13 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='04 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='04 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='30 86.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='47 200 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='04 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='14 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='06 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='96 397.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='03 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='25 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='03 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='02 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='92 82.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='16 300 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='13 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='13 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='06 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='93 318.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='23 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='33 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='09 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='06 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='80 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='72 350 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='14 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='07 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='91 282.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='24 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='32 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='18 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='11 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='26 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='93 400 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='30 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='18 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='09 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='93 249.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='61 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='39 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='30 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='19 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='32 61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='23 500 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='40 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='22 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='11 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='71 198.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='02 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='67 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='48 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='33 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='97 41.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='57 600 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='14 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='02 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='13 165.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='13 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='33 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='19 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='11 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='36 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='56 700 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='07 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='02 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='01 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='86 144.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='45 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='18 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='06 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='32 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='74 evaluates the price and delta.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' With only 7 × 7 points, the price error is less than one basis point and the delta error is within 1%.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' These errors are negligible for practical purposes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' Figure 1 displays the implied normal volatility (left) and delta (right) for the three test cases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' The result with 7 × 7 points is visually indistinguishable from the exact value with 90 × 180 points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' By contrast, Hagan’s volatility approximation shows significant deviations from the exact value.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' Moreover, the option delta incorrectly goes below 0 or above 100%.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' Given that the option delta is equal to the complementary CDF under the normal SABR model, this implies an arbitrage opportunity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' It illustrates a possible danger of using a volatility approximation approach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' Conclusion The normal (β = 0) SABR model is an important special case of the popular SABR model for modeling interest rates as it allows negative asset prices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' Although Hagan’s implied volatility approximation is easy to use, its accuracy deteriorates and arbitrage is possible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' This study provides an efficient numerical scheme for option prices and deltas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' Based on the new price transition law, our proposed scheme adopts a compound Gaussian quadrature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' Numerical tests show that a quadrature with only 7×7 nodes accurately evaluates European options without arbitrage.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' Given that the SABR model still requires better pricing methods for general cases (0 ≤ β ≤ 1), our new scheme will serve to provide the benchmarks for testing the methods proposed in the future.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' Declarations of Interest The authors report no conflicts of interest.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' The authors alone are responsible for the content and writing of the paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' 11 Figure 1: The volatility smile (left) and delta (right) as functions of strike price for the three test cases in Table 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='200 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='300 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='400 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='500 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='600 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='700 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='Strike price ( K ) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='150 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='160 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='170 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='180 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='190 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='200 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='210 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='Implied normal volatility ( ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='N ) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='Case 1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='Quad (7x7) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='Hagan ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='Exact ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='200 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='300 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='400 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='500 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='600 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='700 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='Strike price ( K ) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='40 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='60 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='80 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='Delta (%) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='Case 1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='Quad (7x7) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='Hagan ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='Exact ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='200 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='300 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='400 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='500 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='600 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='700 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='Strike price ( K ) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='140 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='160 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='180 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='200 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='220 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='Implied normal volatility ( ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='N ) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='Case 2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='Quad (7x7) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='Hagan ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='Exact ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='200 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='300 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='400 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='500 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='600 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='700 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='Strike price ( K ) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='40 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='60 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='80 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='Delta (%) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='Case 2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='Quad (7x7) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='Hagan ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='Exact ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='200 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='300 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='400 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='500 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='600 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='700 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='Strike price ( K ) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='120 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='140 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='160 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='180 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='200 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='Implied normal volatility ( ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='N ) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='Case 3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='Quad (7x7) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='Hagan ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='Exact ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='200 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='300 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='400 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='500 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='600 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='700 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='Strike price ( K ) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='20 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='40 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='60 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='80 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='Delta (%) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='Case 3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='Quad (7x7) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='Hagan ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='Exact ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='References ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='Alili,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=', Gruet, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=', 1997.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' An explanation of a generalized Bougerol’s identity in terms of hyper- bolic Brownian motion, in: Yor, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' (Ed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' ), Exponential Functionals and Principal Values Related to Brownian Motion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' A Collection of Research Papers, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' 15–33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' Antonov, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=', Konikov, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=', Spector, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=', 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' Mixing SABR Models for Negative Rates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' SSRN Electronic Journal URL: https://ssrn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='com/abstract=2653682.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' 12 Antonov, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=', Konikov, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=', Spector, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=', 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' Modern SABR Analytics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' SpringerBriefs in Quantitative Finance, Cham.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='1007/978-3-030-10656-0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' Cai, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=', Song, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=', Chen, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=', 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' Exact simulation of the SABR model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' Operations Research 65, 931–951.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='1287/opre.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='1617.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' Chen, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=', Oosterlee, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=', Van Der Weide, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=', 2012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' A low-bias simulation scheme for the SABR stochastic volatility model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' International Journal of Theoretical and Applied Finance 15, 1250016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='1142/S0219024912500161.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' Chen, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=', Yang, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=', 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' The principle of not feeling the boundary for the SABR model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' Quantitative Finance 19, 427–436.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='1080/14697688.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='1486037.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' Choi, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=', Kwak, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=', Tee, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=', Wang, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=', 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' A Black–Scholes user’s guide to the Bachelier model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' Journal of Futures Markets 42, 959–980.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='1002/fut.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='22315.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' Choi, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=', Liu, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=', Seo, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=', 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' Hyperbolic normal stochastic volatility model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' Journal of Futures Markets 39, 186–204.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='1002/fut.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='21967.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' Choi, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=', Wu, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=', 2021a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' The equivalent constant-elasticity-of-variance (CEV) volatility of the stochastic- alpha-beta-rho (SABR) model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' Journal of Economic Dynamics and Control 128, 104143.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='1016/ j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='jedc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='104143.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' Choi, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=', Wu, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=', 2021b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' A note on the option price and ‘Mass at zero in the uncorrelated SABR model and implied volatility asymptotics’.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' Quantitative Finance 21, 1083–1086.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='1080/14697688.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='1876908.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' Cui, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=', Kirkby, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=', Nguyen, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=', 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' A general valuation framework for SABR and stochastic local volatility models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' SIAM Journal on Financial Mathematics 9, 520–563.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='1137/16M1106572.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' Cui, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=', Kirkby, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=', Nguyen, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=', 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' Efficient simulation of generalized SABR and stochastic local volatility models based on Markov chain approximations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' European Journal of Operational Research 290, 1046–1062.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='ejor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='09.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='008.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' Gulisashvili, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=', Horvath, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=', Jacquier, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=', 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' Mass at zero in the uncorrelated SABR model and implied volatility asymptotics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' Quantitative Finance 18, 1753–1765.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='1080/14697688.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' 1432883.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' Hagan, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=', Kumar, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=', Lesniewski, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=', Woodward, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=', 2002.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' Managing Smile Risk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' Wilmott September, 84–108.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' Henry-Labord`ere, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=', 2005.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' A General Asymptotic Implied Volatility for Stochastic Volatil- ity Models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' arXiv:cond-mat/0504317 URL: http://arxiv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='org/abs/cond-mat/0504317, arXiv:cond-mat/0504317.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' Henry-Labord`ere, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=', 2008.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' Analysis, Geometry, and Modeling in Finance: Advanced Methods in Option Pricing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' Boca Raton, FL.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' Korn, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=', Tang, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=', 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' Exact analytical solution for the normal SABR model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' Wilmott 2013, 64–69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='1002/wilm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='10235.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' Leitao, ´A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=', Grzelak, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=', Oosterlee, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=', 2017a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' On a one time-step Monte Carlo simulation approach of the SABR model: Application to European options.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' Applied Mathematics and Computation 293, 461–479.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='amc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='08.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='030.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' Leitao, ´A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=', Grzelak, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=', Oosterlee, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=', 2017b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' On an efficient multiple time step Monte Carlo simulation of the SABR model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' Quantitative Finance 17, 1549–1565.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='1080/14697688.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' 1301676.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' 13 Lorig, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=', Pagliarani, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=', Pascucci, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=', 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' Explicit Implied Volatilities for Multifactor Local-Stochastic Volatility Models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' Mathematical Finance 27, 926–960.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='1111/mafi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='12105.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' Ob�l´oj, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=', 2007.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' Fine-tune your smile: Correction to Hagan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' arXiv:0708.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='0998 [math, q-fin] URL: https://arxiv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='org/abs/0708.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='0998, arXiv:0708.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='0998.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' Park, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=', 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' SABR Symmetry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' Risk 2014, 106–111.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' URL: https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='risk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='net/derivatives/ 2322292/sabr-symmetry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' Paulot, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=', 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' Asymptotic implied volatility at the second order with application to the SABR model, in: Friz, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=', Gatheral, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=', Gulisashvili, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=', Jacquier, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=', Teichmann, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' (Eds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' ), Large Deviations and Asymptotic Methods in Finance, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' 37–69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='1007/978-3-319-11605-1_2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' von Sydow, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=', Milovanovi´c, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=', Larsson, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=', In’t Hout, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=', Wiktorsson, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=', Oosterlee, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=', Shcherbakov, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=', Wyns, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=', Leitao, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=', Jain, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=', Haentjens, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=', Wald´en, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=', 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' BENCHOP - SLV: The BENCHmarking project in option pricing - Stochastic and local volatility problems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' International Journal of Computer Mathematics 96, 1910–1923.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='1080/00207160.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='1544368.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' Yang, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=', Chen, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=', Liu, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=', Wan, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=', 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' Approximate arbitrage-free option pricing under the SABR model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' Journal of Economic Dynamics and Control 83, 198–214.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='1016/j.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='jedc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='08.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content='004.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} +page_content=' 14' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/pdE0T4oBgHgl3EQf9AL7/content/2301.02797v1.pdf'} diff --git a/q9FQT4oBgHgl3EQftjaQ/content/tmp_files/2301.13392v1.pdf.txt b/q9FQT4oBgHgl3EQftjaQ/content/tmp_files/2301.13392v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..a95820b7c082b9c27874e80180c0a4a942489f12 --- /dev/null +++ b/q9FQT4oBgHgl3EQftjaQ/content/tmp_files/2301.13392v1.pdf.txt @@ -0,0 +1,4215 @@ +Combinatorial Causal Bandits without Graph Skeleton +Shi Feng * 1 2 Nuoya Xiong * 1 Wei Chen 2 +Abstract +In combinatorial causal bandits (CCB), the learn- +ing agent chooses a subset of variables in each +round to intervene and collects feedback from +the observed variables to minimize expected re- +gret or sample complexity. Previous works study +this problem in both general causal models and +binary generalized linear models (BGLMs). How- +ever, all of them require prior knowledge of causal +graph structure. This paper studies the CCB prob- +lem without the graph structure on binary general +causal models and BGLMs. We first provide an +exponential lower bound of cumulative regrets +for the CCB problem on general causal models. +To overcome the exponentially large space of pa- +rameters, we then consider the CCB problem on +BGLMs. We design a regret minimization algo- +rithm for BGLMs even without the graph skeleton +and show that it still achieves O( +√ +T ln T) ex- +pected regret. This asymptotic regret is the same +as the state-of-art algorithms relying on the graph +structure. Moreover, we sacrifice the regret to +O(T +2 +3 ln T) to remove the weight gap covered by +the asymptotic notation. At last, we give some +discussions and algorithms for pure exploration +of the CCB problem without the graph structure. +1. Introduction +The multi-armed bandits (MAB) problem is a classical +model in sequential decision-making (Robbins, 1952; Auer +et al., 2002; Bubeck et al., 2012). In each round, the learning +agent chooses an arm and observes the feedback reward cor- +responding to that arm, with the goal of either maximizing +the cumulative reward over T rounds (regret minimization), +or minimizing the sample complexity to find the interven- +tion closest to the optimal one (pure exploration). MAB +can be extended to have more structures among arms and +1Institute for Interdisciplinary Information Sciences, Tsinghua +University, Beijing, China 2Microsoft Research, Beijing, China. +Correspondence to: +Shi Feng , +Nuoya Xiong , Wei Chen +. +Preprint. Under review. +reward functions, which leads to more advanced learning +techniques. Such structured bandit problems include com- +binatorial causal bandits (Chen et al., 2013; 2016), linear +bandits (Abbasi-Yadkori et al., 2011; Agrawal & Goyal, +2013; Li et al., 2017), and sparse linear bandits (Abbasi- +Yadkori et al., 2012). +In this paper, we study another structured bandit problem +called causal bandits, which is first proposed by (Lattimore +et al., 2016). It consists of a causal graph G = (X∪{Y }, E) +indicating the causal relationship among the observed vari- +ables. In each round, the learning agent selects one or a few +variables in X to intervene, gains the reward as the output of +Y , and observes the values of all variables in X ∪{Y }. The +use of causal bandits is possible in a variety of contexts that +involve causal relationships, including medical drug testing, +performance tuning, policy making, scientific experimental +process, etc. +In all previous literature except (Lu et al., 2021), the struc- +ture of the causal graph is known, but the underlying proba- +bility distributions governing the causal model are unknown. +Lu et al. (2021) further assumes that the graph structure +is unknown and the learning agent can only see the graph +skeleton. Here, graph skeleton is also called essential graph +(G´amez et al., 2013) and means all the edges in G without +direction information. In our paper, we further consider that +the graph skeleton is unknown and remove the unrealistic +assumption |Pa(Y )| = 1 in (Lu et al., 2021). In many +scenarios, the learning agent needs to learn the causal re- +lationships between variables and thus needs to learn the +graph without any prior information. For example, in poli- +cymaking for combating COVID-19, many possible factors +like food supply, medical resources, vaccine research, pub- +lic security, and public opinion may consequently impact +the mortality rate. However, the causal relationships among +these factors are not readily known and need to be clarified +during the sequential decision-making process. Learning +the causal graph from scratch while identifying the optimal +intervention raises a new challenge to the learning problem. +For regret minimization, we study combinatorial causal +bandits (CCB) under the binary generalized linear mod- +els (BGLMs) as (Feng & Chen, 2023; Xiong & Chen, +2023). Using a novel initialization phase, we could de- +termine the ancestor structure of the causal graph for the +arXiv:2301.13392v1 [cs.LG] 31 Jan 2023 + +Combinatorial Causal Bandits without Graph Skeleton +BGLM when the minimum edge weight in the model satis- +fies a weight gap assumption. This is enough to perform a +CCB algorithm based on maximum likelihood estimation +on it (Feng & Chen, 2023). The resulting algorithm BGLM- +OFU-Unknown achieves O( +√ +T log T) regret, where T is +the time horizon. The big O notation only holds for T larger +than a threshold so the weight gap assumption is hidden by +the asymptotic notation. For binary linear models (BLMs), +one could sacrifice O(T +1 +6 ) regret to remove the weight gap +assumption. The algorithms we design for BLMs allow +hidden variables and use linear regression instead of MLE +to remove an assumption on parameters. +For pure exploration, we give some discussions on general +causal models. If we allow the weight gap, a trivial solu- +tion exists. Without the weight gap, we give an adaptive +algorithm for general causal model in the atomic setting. +In summary, our contribution includes: (a) providing an ex- +ponential lower bound of cumulative regret for CCB on gen- +eral causal model, (b) proposing an O( +√ +T ln T) cumulative +regret CCB algorithm BGLM-OFU-Unknown for BGLMs +without graph skeleton, (c) proposing an O(T +2 +3 ln T) cu- +mulative regret CCB algorithm for BLMs without graph +skeleton and the weight gap assumption, (d) giving the first +discussion including algorithms and lower bounds on pure +exploration of causal bandits on general causal models and +atomic intervention without knowing the graph structure. +2. Related Works +Causal Bandits. The causal bandits problem is first pro- +posed by Lattimore et al. (2016). They discuss the simple +regret for parallel graphs and general graphs with known +probability distributions P(Pa(Y )|a) for any action a. Sen +et al. (2017); Nair et al. (2021); Maiti et al. (2021) generalize +the simple regret study for causal bandits to more general +causal graphs and soft interventions. Lu et al. (2020); Nair +et al. (2021); Maiti et al. (2021) consider cumulative regret +for causal bandits problem. However, all of these studies +are not designed for combinatorial action set and has expo- +nentially large regret or sample complexity with respect to +the graph size if the actions are combinatorial. Yabe et al. +(2018); Feng & Chen (2023); Xiong & Chen (2023); Varici +et al. (2022) consider combinatorial action set for causal +bandits problem. Among them, Feng & Chen (2023) are +the first to remove the requirement of T > � +X∈X 2|Pa(X)| +and proposes practical CCB algorithms on BGLMs with +O( +√ +T ln T) regret. Xiong & Chen (2023) simultaneously +propose CCB algorithms on BGLMs as well as general +causal models with polynomial sample complexity with re- +spect to the graph size. Varici et al. (2022) further include +soft interventions in the CCB problem, but their work is +on Linear Structural Equation Models. Lee & Bareinboim +(2018; 2019; 2020) propose several CCB algorithms on gen- +eral causal bandits problem, but they focus on empirical +studies while we provide theoretical regret analysis. All +of the above works require the learning agent to know the +graph structure in advance. Lu et al. (2021) is the first and +only work on causal bandits without graph structure. How- +ever, their algorithm is limited to the case of |Pa(Y )| = 1 +for the atomic setting, and thus the main technical issue +degenerates to finding the particular parent of Y so that one +could intervene on this node for the optimal reward. +Social Network and Causality. Causal models have intrin- +sic connections with influence propagation in social net- +works. Feng & Chen (2021) study the identifiability in the +Independent Cascade (IC) propagation model as a causal +model. The BGLM studied in this paper contains the IC +model and linear threshold (LT) model in a DAG as special +cases, and is also related to the general threshold model +(Kempe et al., 2003). Moreover, Feng & Chen (2023); +Xiong & Chen (2023) also study causal bandits on BGLMs +to avoid the exponentially large parameter space of general +causal models. These papers borrow some techniques and +ideas from influence maximization literature, including (Li +et al., 2020) and (Zhang et al., 2022). However, in our +BGLM CCB problem, the graph skeleton is unknown, and +we need adaptation and integration of previous techniques +together with some new ingredients. +3. Model +We utilize capital letters (U, X, Y . . .) to represent variables +and their corresponding lower-case letters to indicate their +values, as was frequently done in earlier causal inference +literatures (see, for example, (Pearl, 2009; Pearl & Macken- +zie, 2018)). To express a group or a vector of variables or +values, we use boldface characters like X and x. +Causal Models. A causal graph G = (X ∪ {Y }, E) is a +directed acyclic graph consisting of intervenable variables +X, a special target node Y without outgoing edges, and +the set of directed edges E connecting nodes in X ∪ {Y }. +Denote n = |X| as the number of nodes in X. For sim- +plicity, in this paper we consider all variables in X ∪ {Y } +are (0, 1)-binary random variables. In our main text, all +the variables in X ∪ {Y } are known and their values can +be observed but the edges in E are unknown and cannot +be directly observed. We refer to the in-neighbor nodes of +a node X in G as the parents of X, denoted by Pa(X), +and the values of these parent random variables as pa(X). +According to the definition of causal Bayesian model (Pearl, +2009), the probability distribution P(X|Pa(X)) is used to +represent the causal relationship between X and its parents +for every conceivable value combination of Pa(X). More- +over, we define the ancestors of a node X ∈ X ∪ {Y } by +Anc(X). + +Combinatorial Causal Bandits without Graph Skeleton +We mainly study the Markovian causal graph G in this +paper, which means that there are no hidden variables in +G and every observed variable X has some randomness +that is not brought on by any other variables. In this study, +we dedicate random variable X1 to be a special variable +that always takes the value 1 and is a parent of all other +observed random variables in order to model this effect of +the Markovian model. +In this paper, we study a special causal model called bi- +nary generalized linear model (BGLM). Specifically, in +BGLM, we have P(X = 1|Pa(X) = pa(X)) = fX(θ∗ +X · +pa(X)) + εX, where fX is a monotone increasing func- +tion, θ∗ +X is an unknown weight vector in [0, 1]|Pa(X)|, and +εX is a zero-mean sub-Gaussian noise that ensures that the +probability does not exceed 1. We use the notation θ∗ +X′,X +to denote the entry in vector θ∗ +X that corresponds to node +X′ ∈ Pa(X), θ∗ to denote the vector of all the weights, +and Θ to denote the feasible domain for the weights. We +also use notation ε to represent all noise random variables +(εX)X∈X∪Y . +We also study binary linear model (BLM) and linear model +in this paper. In BLMs, all fX’s are identity functions, +so P(X = 1|Pa(X) = pa(X)) = θ∗ +X · pa(X) + εX. +When we remove the noise variable εX, BLM coincides +with the linear threshold (LT) model for influence cas- +cades (Kempe et al., 2003) in a DAG. In linear models, +we remove the randomness of conditional probabilities, so +X = θ∗ +X · pa(X) + εX. For a node X and one of its parent +X′, the corresponding weight are denoted as θ∗ +X′,X. +For the unknown causal graph, there is an important param- +eter θ∗ +min = min(X′,X)∈E θ∗ +X′,X, which represents the min- +imum weight gap for all edges. Intuitively, this minimum +gap measures the difficulty for the algorithm to discover the +edge and its correct direction. When the gap is relatively +large, we can expect to discover the whole graph accurately +during the learning process; When the gap is very small, +we cannot guarantee to discover the graph directly and we +must come up with another way to solve the causal bandit +problem on an inaccurate model. +Combinatorial Causal Bandits. The problem of combi- +natorial causal bandits (CCB) is first introduced in (Feng +& Chen, 2023) and describes the following setting and the +online learning task. The intervention can be done on no +all variables except X1 and Y . The action set is defined +by A ⊆ {do(S) = s}S⊆X\{X1},s∈{0,1}|S|. The expected +reward under intervention on S ⊆ X\{X1} is denoted as +E[Y |do(S = s)]. A learning agent runs an algorithm π for +T rounds. In particular, an atomic intervention only inter- +venes one node, i.e. |S| = 1. In our paper, we assume the +observation do() and atomic interventions do(X = x) are +always in our action set, because they are needed to discover +the graph structure. +The performance of the agent could be measured by the +regret of the algorithm π. The regret Rπ(T) in our context +is the difference between the cumulative reward using algo- +rithm π and the expected cumulative reward of choosing best +action S∗. Here, S∗ ∈ argmaxdo(S=s)∈A E[Y |do(S)]. +Formally, we have +Rπ(T) = E +� T +� +t=1 +(E[Y |do(S∗ = s∗)] − E[Y |do(Sπ +t = sπ +t )]) +� +, +(1) +where Sπ +t is the intervention set selected by algorithm π +in round t. The expectation is from the randomness of the +causal model and the algorithm π. +In this paper, we mainly focus on the regret minimization +problem, and we will discuss the pure exploration problem +and its sample complexity in the Section 7. We defer the +definition of sample complexity to that section. +4. Lower Bound on General Binary Causal +Model +In this section, we explain why we only consider BGLM +and BLM instead of the general binary causal model in +the combinatorial causal bandit setting. Note that in the +general case both the number of actions and the number of +parameters of the causal model are exponentially large to +the size of the graph. The following theorem shows that in +the general binary causal model, the regret bound must be +exponential to the size of the graph when T is sufficiently +large, or simply linear to T when T is not large enough. +This means that we cannot avoid the exponential factor for +the general case, and thus justify our consideration of the +BGLM and BLM settings with only a linear number of +parameters. +Theorem 1 (Binary Model Lower Bound). Recall that n = +|X|. For any algorithm, when T ≥ 16(2n−1) +3 +, there exists a +bandit instance T such that +ET [R(T)] ≥ +√ +2nT +8e +. +Moreover, when T ≤ +16(2n−1) +3 +, there exists a bandit in- +stance T that +ET [R(T)] ≥ T +16e. +The lower bound contains two parts. The first part shows +that the asymptotic regret cannot avoid an exponential term +2n when T is large. The second part states that if T is not +exponentially large, the regret will be linear at the worst +case. The proof technique of this lower bound is similar +to but not the same as previous classical bandit, because +the existence of observation do() and atomic intervention + +Combinatorial Causal Bandits without Graph Skeleton +do(Xi = 1) may provide more information. To our best +knowledge, this result is the first regret lower bound on +the general causal model considering the potential role of +observation and atomic intervention. The result shows that +in the general binary causal model setting, it is impossible +to avoid the exponential term in the cumulative regret even +with the observations on null and atomic interventions. The +proof of lower bound is provided in Appendix C.5. +The main idea is to consider the action set A += +{do(), do(X = x), do(X = x)} for all node X, x ∈ +{0, 1}, x ∈ {0, 1}n be the null intervention, atomic in- +terventions and actions that intervene all nodes. The causal +graph we use is a parallel graph where all nodes in X di- +rectly points to Y with no other edges in the graph, and each +node Xi ∈ X has probability P(Xi = 1) = P(Xi = 0) = +0.5. Intuitively, under this condition the null intervention +and atomic interventions can provide limited information +to the agent. This fact shows that observations and atomic +interventions may not be conducive to our learning process +in the worst case on the general binary causal model. +5. BGLM CCB without Graph Skeleton but +with Minimum Weight Gap +In this section, we propose an algorithm for causal bandits +on Markovian BGLMs based on maximum likelihood es- +timation (MLE) without any prior knowledge of the graph +skeleton. +Our idea is to try to discover the causal graph structure and +then apply the recent CCB algorithm with known graph +structure (Feng & Chen, 2023). We discover the graph struc- +ture by using atomic interventions in individual variables. +However, there are a few challenges we need to face on +graph discovery. First, it could be very difficult to exactly +identify all parent-child relationships, since some grand- +parent nodes may also have strong causal influence to its +grand-child nodes. Fortunately, we find that it is enough to +identify ancestor-descendant relationships instead of parent- +child relationships, since we can artificially add an edge +with 0 weight between each pair of ancestor and descendant +without impacting the causal propagation results. Another +challenge is the minimum weight gap. When the weight of +an edge is very small, we need to perform more atomic inter- +ventions to identify its existence and its direction. Hence, we +design an initialization phase with the number of rounds pos- +itively correlated to the total round number T and promise +that the ancestor-descendant relationship can always be iden- +tified correctly with a large probability when T is sufficiently +large. +Following (Li et al., 2017; Feng & Chen, 2023; Xiong & +Chen, 2023), we have three assumptions: +Assumption 1. For every X ∈ X ∪ {Y }, fX is twice +differentiable. Its first and second order derivatives are +upper-bounded by L(1) +fX > 0 and L(2) +fX > 0. +Let κ = infX∈X∪{Y },v∈[0,1]|Pa(X)|,||θ−θ∗ +X||≤1 ˙fX(v · θ). +Assumption 2. We have κ > 0. +Assumption 3. There exists a constant ζ > 0 such that for +any X ∈ X ∪ {Y } and X′ ∈ Anc(X), for any value vec- +tor v ∈ {0, 1}|Anc(X)\{X′,X1}|, the following inequalities +hold: +Pr +ε,X,Y {X′ = 1|Anc(X) \ {X′, X1} = v} ≥ ζ, +(2) +Pr +ε,X,Y {X′ = 0|Anc(X) \ {X′, X1} = v} ≥ ζ. +(3) +Assumptions 1 and 2 are the classical assumptions in gener- +alized linear model (Li et al., 2017). Assumption 3 makes +sure that each ancestor node of X has some freedom to +become 0 and 1 with a non-zero probability, even when +the values of all other ancestors of X are fixed, and it is +originally given in (Feng & Chen, 2023) with additional +justifications. For BLMs and continuous linear models, we +propose an algorithm based on linear regression without the +need of this assumption in Appendix B. +To discover the ancestors of all variables, we need to per- +form an extra initialization phase (see Algorithm 1). We +denote the total number of rounds by T and arbitrary con- +stants c0, c1 to make sure that c0T 1/2 ∈ N+. In the initial- +ization phase, from X1 to Xn, we intervene each of them to +1 and 0 for c0T 1/2 times respectively. We denote the value +of X in the tth round by X(t). For every two variables +Xi, Xj ∈ X\{X1}, if +1 +c0 +√ +T +c0 +√ +T +� +k=1 +� +X(2ic0 +√ +T +k) +j +− X((2i+1)c0 +√ +T +k) +j +� +> c1T − 1 +5 , +(4) +we set Xi as an ancestor of Xj. Here, X(2ic0 +√ +T +k) +j +’s +with k ∈ [c0 +√ +T] are the values of Xj in the rounds that +do(Xi = 1) is chosen; X((2i+1)c0 +√ +T +k) +j +, k ∈ [c0 +√ +T] +are the values of Xj in the rounds that do(Xi = 0) is +chosen. Specifically, if Xi is not an ancestor of Xj, the +value of Xj is not impacted by intervention on Xi. Si- +multaneously, if Xi ∈ Pa(Xj), the value of Xj is no- +tably impacted by do(Xi) so the difference of Xj under +do(Xi = 1), do(Xi = 0) can be used as a discriminator for +the ancestor-descendant relationship between Xi and Xj. +This is formally shown by Lemma 1. +Lemma 1. Let G be a BGLM with parameter θ∗ that satis- +fies Assumption 2. Recall that θ∗ +min = min(X′,X)∈E θ∗ +X′,X. +If Xi +∈ +Pa(Xj), we have E[Xj|do(Xi += +1)] − +E[Xj|do(Xi += 0)] ≥ κθ∗ +Xi,Xj +≥ κθ∗ +min; if Xi is +not an ancestor of Xj, we have E[Xj|do(Xi = 1)] = +E[Xj|do(Xi = 0)]. + +Combinatorial Causal Bandits without Graph Skeleton +Algorithm 1 BGLM-OFU-Unknown for BGLM CCB Prob- +lem +1: Input: Graph G = (X ∪{Y }, E), action set A, param- +eters L(1) +fX, L(2) +fX, κ, ζ in Assumption 1, 2 and 3, positive +constants c0 and c1 for initialization phase such that +c0 +√ +T ∈ N+. +2: /* Initialization Phase: */ +3: Do each intervention among do(X2 = 1), do(X2 = +0), · · · , do(Xn = 1), do(Xn = 0) for c0T 1/2 times in +order and observe the feedback (Xt, Yt), 1 ≤ t ≤ T0. +4: Compute the ancestors � +Anc(X), X ∈ X ∪ {Y } by +BGLM-Ancestors((X1, Y1), · · · , (XT0, YT0), c0, c1) +(see Algorithm 2). +5: Initialize M0,X ← 0 ∈ R|� +Anc(X)|×|� +Anc(X)| for all +X ∈ X ∪ {Y }, δ ← +1 +3n +√ +T , R ← ⌈ +512n(L(2) +fX )2 +κ4 +(n2 + +ln 1 +δ )⌉, T0 +← +2(n − 1)c0T 1/2, T1 +← +T0 + +max +� +c +ζ2 ln 1 +δ , (8n2−6)R +ζ +� +and ρ ← 3 +κ +� +log(1/δ). +6: Do no intervention on BGLM G for T1 − T0 rounds +and observe feedback (Xt, Yt), T0 + 1 ≤ t ≤ T1. +7: /* Iterative Phase: */ +8: for t = T1 + 1, T1 + 2, · · · , T do +9: +{ˆθt−1,X, Mt−1,X}X∈X∪{Y } += +BGLM-Estimate((X1, Y1), · · · , (Xt−1, Yt−1)) +(see Algorithm 3). +10: +Compute the confidence ellipsoid Ct,X = {θ′ +X ∈ +[0, 1]|� +Anc(X)| : +���θ′ +X − ˆθt−1,X +��� +Mt−1,X +≤ ρ} for +any node X ∈ X ∪ {Y }. +11: +Adopt argmaxdo(S=s)∈A,θ′ +t,X∈Ct,X E[Y |do(S += +s)] as (St, st, ˜θt). +12: +Intervene all the nodes in St to st and observe the +feedback (Xt, Yt). +13: end for +We use the above idea to implement the procedure in Algo- +rithm 2, and then put this procedure in the initial phase and +integrate this step into BGLM-OFU proposed by (Feng & +Chen, 2023), to obtain our main algorithm, BGLM-OFU- +Unknown (Algorithm 1). +Notice that each term in Eq. (4) is a random sample of +E[Xj|do(Xi = 1)] − E[Xj|do(Xi = 0)], which means +that the left-hand side of Eq. (4) is just an estimation of +E[Xj|do(Xi = 1)] − E[Xj|do(Xi = 0)]. Such expression +can be bounded by concentration inequalities. Hence we +can prove that Algorithm 2 identifies Xi ∈ Anc(Xj) with +false positive rate and false negative rate both no more than +exp +� +− c0c2 +1T 1/10 +2 +� +when θ∗ +min ≥ 2c1κ−1T −1/5. Formally, +we have the following lemma that shows the probability of +correctness for Algorithm 2. For completeness, the proof of +Lemma 2 is put in appendix. +Algorithm 2 BGLM-Ancestors +1: Input: +Observations ((X1, Y1), · · · , (XT0, YT0)), +positive constants c0 and c1. +2: Output: � +Anc(X), ancestors of X, X ∈ X ∪ {Y }. +3: For all X ∈ X, � +Anc(X) = ∅, � +Anc(Y ) = X. +4: for i ∈ {2, 3, · · · , n} do +5: +for j ∈ {2, 3, · · · , n}\{i} do +6: +if �c0 +√ +T +k=1 +� +X(2ic0 +√ +T +k) +j +− X((2i+1)c0 +√ +T +k) +j +� +> +c0c1T 3/10 then +7: +Add Xi into � +Anc(Xj). +8: +end if +9: +end for +10: end for +11: Recompute the transitive closure of � +Anc(·), i.e., if +Xi ∈ � +Anc(Xj) and Xj ∈ � +Anc(Xℓ), then add Xi to +� +Anc(Xℓ). +Algorithm 3 BGLM-Estimate +1: Input: All observations ((X1, Y1), · · · , (Xt, Yt)) un- +til round t. +2: Output: {ˆθt,X, Mt,X}X∈X∪{Y } +3: For each X ∈ X ∪ {Y }, i ∈ [t], construct data pair +(V i,X, X(i)) with V i,X the vector of ancestors of X in +round i, and X(i) the value of X in round i if X ̸∈ Si. +4: for X ∈ X ∪ {Y } do +5: +Calculate +the +maximum-likelihood +es- +timator +ˆθt,X +by +solving +the +equation +�t +i=1(X(i) − fX(V ⊺ +i,XθX))V i,X = 0. +6: +Mt,X = �t +i=1 V i,XV ⊺ +i,X. +7: end for +Lemma 2 (Positive Rate of BGLM-Order). Suppose As- +sumption 2 holds for the BGLM G. +In the initializa- +tion phase of Algorithm 1, Algorithm 2 finds a consistent +ancestor-descendant relationship for the BGLM G with +probability no less than 1−2 +�n−1 +2 +� +exp +� +− c0c2 +1T 1/10 +2 +� +when +θ∗ +min ≥ 2c1κ−1T −1/5. +We refer to the condition θ∗ +min ≥ 2c1κ−1T −1/5 in this +lemma as weight gap assumption. The number of initial- +ization rounds in Algorithm 1 is O( +√ +T). According to +Lemma 2, the expected regret contributed by incorrect- +ness of the ancestor-descendant relationship does not ex- +ceed O +� +T exp +� +− c0c2 +1T 1/10 +2 +�� += o( +√ +T). Therefore, after +adding the initialization, the expected regret of BGLM-OFU- +Unknown increases by no more than o( +√ +T) over BGLM- +OFU (Algorithm 1 in (Feng & Chen, 2023)). Thus we have +the following theorem to show the regret of Algorithm 2, +which is formally proved in appendix. + +Combinatorial Causal Bandits without Graph Skeleton +Theorem 2 (Regret Bound of BGLM-OFU-Unknown). De- +note L(1) +max = maxX∈X∪{Y } L(1) +fX. Under Assumptions 1, 2 +and 3, the regret of BGLM-OFU-Unknown (Algorithms 1, 2 +and 3) is bounded as +R(T) = O +� 1 +κn +3 +2 L(1) +max +√ +T log T +� +, +(5) +where the terms of o( +√ +T ln T) are omitted, and the big O +notation holds for T ≥ 32 +� +c1 +κθ∗ +min +�5 +. +Compared to (Feng & Chen, 2023), Theorem 5 has the +same asymptotic regret, The only additional assumption is +T ≥ 32 (c1/(κθ∗ +min))5. Intuitively, this extra assumption +guarantees that we can discover the ancestor-descendant +relationship consistent with the true graph. Our result indi- +cates that not knowing the causal graph does not provide +substantial difficulty with the weight gap assumption. +Remark 1. Because Lemma 2 requires weight gap assump- +tion, in the proof of this regret bound, we only consider +the case of T ≥ 32 (c1/(κθ∗ +min))5. This limitation does not +impact the asymptotic big O notation in our regret bound. +However, when the round number T is not that large, the +regret can be linear with respect to T. We remove this +weight gap assumption in Section 6 for the linear model +setting. The c0 and c1 are two adjustable constants in prac- +tice. When T is small, one could try a small c0 to shorten +the initialization phase, i.e., to make sure that T0 ≪ T, and +a small c1 to satisfy the weight gap assumption. When T +is large, one could consider larger c0 and c1 for a more ac- +curate ancestor-descendant relationship. However, because +θ∗ +min is unknown, one cannot promise that the weight gap +assumption holds by manipulating c1, i.e., θ∗ +min may be too +small for any practical T given c1. +6. BLM CCB without Graph Skeleton and +Weight Gap Assumption +In the previous section, we find that if T > O((θ∗ +min)−5), +we can get a valid upper bound. However, in reality, we +have two challenges: 1) We do not know the real value +of θ∗ +min, and this makes it hard to know when an edge’s +direction is identified. 2) When θ∗ +min → 0, it makes it +very difficult to estimate the graph accurately. To solve +these challenges, we must both eliminate the dependence of +θ∗ +min in our analysis, and think about how the result will be +influenced by an inaccurate model. In this section, we give +a causal bandit algorithm and show that the algorithm can +always give ˜O(T 2/3) regret. This sub-linear regret result +shows that the challenge can be solved by some additional +techniques. +In this section, we consider a special case of BGLM called +Binary Linear Model (BLM), where fX becomes identity +Algorithm 4 BLM-LR-Unknown for BLM CCB Problem +without Weight Gap +1: Input: Graph G = (X ∪ {Y }, E), action set A, posi- +tive constants c0 and c1 for initialization phase. +2: Initialize δ ← +1 +n +√ +T , ρt ← +� +n log(1 + tn) + 2 log 1 +δ ++√n for t += +0, 1, 2, · · · , T and T0 +← +2(n − +1)c0T 2/3 log(T). +3: /* Initialization Phase: */ +4: Do each intervention among do(X2 = 1), do(X2 = +0), · · · , do(Xn = 1), do(Xn = 0) for c0T 2/3 times in +order and observe the feedback (Xt, Yt) for 1 ≤ t ≤ T0. +5: Compute the ancestors � +Anc(X), X ∈ X ∪ {Y } by +Nogap-BLM-Ancestors((X1, Y1), · · · , (XT0, YT0), c0 +, c1) (see Algorithm 5). +6: /* Iterative Phase: */ +7: Initialize M0,X ← I ∈ R|� +Anc(X)|×|� +Anc(X)|, b0,X ← +0|� +Anc(X)| for all X ∈ X ∪ {Y }, ˆθ0,X +← 0 ∈ +R|� +Anc(X)| for all X ∈ X ∪ {Y }. +8: for t = T0 + 1, T0 + 2, · · · , T do +9: +Compute the confidence ellipsoid Ct,X = {θ′ +X ∈ +[0, 1]|� +Anc(X)| : +���θ′ +X − ˆθt−1,X +��� +Mt−1,X +≤ ρt−1} for +any node X ∈ X ∪ {Y }. +10: +Adopt argmaxdo(S=s)⊆A,θ′ +t,X∈Ct,X E[Y |do(S += +s)] as (St, st, ˜θt). +11: +Intervene all the nodes in St to st and observe the +feedback (Xt, Yt). +12: +for X ∈ X ∪ {Y } do +13: +Construct data pair (V t,X, X(t)) with V t,X the +vector of ancestors of X in round t, and X(t) the +value of X in round t if X ̸∈ St. +14: +Mt,X = Mt−1,X + V t,XV ⊺ +t,X, bt,X = bt−1,X + +X(t)V t,X, ˆθt,X = M −1 +t,Xbt,X. +15: +end for +16: end for +function. The linear structure allows us to release the As- +sumption 1-3 (Feng & Chen, 2023) and analyze the influ- +ence of an inaccurate model. +The main algorithm follows the BLM-LR algorithm in (Feng +& Chen, 2023), which uses linear regression to estimate the +weight θ∗, and the pseudocode is provided in Algorithm 4. +We add a graph discovery process (Algorithm 5) in the +initialization phase using O(nT 2/3 log T) times rather than +O(nT 1/2) in the previous section. For any edge X′ → +X with weight θ∗ +X′,X ≥ T −1/3, with probability at least +1 − 1/T 2, we expect to identify the edge’s direction within +O(nT 2/3 log(T)) samples for do(X′ = 1) and do(X′ = +0) by checking whether the difference P(X | do(X′ = +1)) − P(X | do(X′ = 0)) is large than T −1/3. Since + +Combinatorial Causal Bandits without Graph Skeleton +Algorithm 5 Nogap-BLM-Ancestors +1: Input: +Observations ((X1, Y1), · · · , (XT0, YT0)), +positive constants c0 and c1. +2: Output: For all X ∈ X ∪ {Y }, � +Anc(X). +3: For all X ∈ X, � +Anc(X) = ∅, � +Anc(Y ) = X. +4: for i ∈ {2, 3, · · · , n} do +5: +for j ∈ {2, 3, · · · , n}\{i} do +6: +if �c0T 2/3 +k=1 +� +X(c0(2i)T 2/3+k) +j +− X(c0(2i+1)T 2/3+k) +j +� +> c0c1T 1/3 log(T 2) then +7: +Add Xi into � +Anc(Xj). +8: +end if +9: +end for +10: end for +11: Recompute the transitive closure of � +Anc(·). +the above difference is always larger than θ∗ +X′,X, after the +initialization phase, the edge X′ → X will be added to the +graph if θ∗ +X′,X ≥ T −1/3. +Moreover, if X′ is not an ancestor of X, we claim that it +cannot be a estimated as an ancestor after the initialization +phase. This is because in this case P(X | do(X′ = 1)) = +P(X) = P(X | do(X′ = 0)). Denote the estimated graph +G′ as the graph with edge X′ → X for all X′ ∈ � +Anc(X). +We then have the following lemma. +Lemma 3. In Algorithm 4, if the constants c0 and c1 satisfy +that c0 ≥ max{ 1 +c2 +1 , +1 +(1−c1)2 }, with probability at least 1 − +(n − 1)(n − 2) +1 +T 1/3 , after the initialization phase we have +1).If X′ is a true parent of X in G with weight θ∗ +X′,X ≥ +T −1/3, the edge X′ → X will be identified and added to +the estimated graph G′. +2).If X′ is not an ancestor of X in G, X′ → X will not be +added into G′. +The properties above together provide the analytic basis for +the following observation, which plays a key role in our +further analysis. Denote the estimated accuracy r = T −1/3. +We know the linear regression for X will be performed +on X and all its possible ancestoers � +Anc(X) we esti- +mated. +For the true parent node X′ in G that is not +contained in � +Anc(X), we have θ∗ +X′,X ≤ r. +Suppose +� +Anc(X) = {X1, X2, · · · , Xm}, and true parents which +is not contained in � +Anc(X) are Xm+1, · · · , Xm+k. Thus +θ∗ +Xm+i,X ≤ r for all 1 ≤ i ≤ k. +Also, assume X1, · · · , Xt(t < m) are true parents of X in +G. For Xm+i, by law of total expectation, the expectation +of X can be rewritten as +E[X | X1, · · · , Xt] += EXm+1,··· ,Xm+k[E[X | X1, · · · , Xt, Xm+1, · · · , Xm+k]] += EXm+1,··· ,Xm+k +� +t +� +i=1 +θ∗ +Xi,XXi + +m+k +� +i=m+1 +θ∗ +Xi,XXi +� += +t +� +i=1 +θ∗ +Xi,XXi + +m+k +� +i=m+1 +θ∗ +Xi,XE[Xi] = +t +� +i=1 +θ∗′ +Xi,XXi, +where +θ∗′ +Xi,X = θ∗ +Xi,X, +i ≥ 2, +(6) +θ∗′ +X1,X = θ∗ +X1,X + +m+k +� +i=m+1 +θ∗ +Xi,XE[Xi]. +(7) +Eq.(7) is because X1 = 1 always holds. Then we have +|θ∗′ +Xi,X − θ∗ +Xi,X| ≤ �m+k +i=m+1 θ∗ +Xi,X ≤ kr ≤ nr, which +shows that the difference between θ′ and θ is small if ac- +curacy r is small. Let model M ′ represent the model with +graph G′ with weights θ∗′ defined above. The following +lemma shows the key observation: +Lemma 4. The linear regression performed on graph G′ in +Algorithm 4 (lines 12–15) gives the estimation ˆθ′ such that +∥( ˆθ′t,X − θ∗′ +X)∥Mt,X ≤ +� +n log(1 + tn) + 2 log(1/δ) + √n, +where Mt,X is defined in Algorithm 4. +This lemma shows that, the linear regression performed +on the inaccurate estimated linear model M ′ is equivalent +to the regression for θ∗′. Note that this regression only +gives us the approximation in some direction with respect +to elliptical norm, allowing the variables to be dependent. +Based on claim above, we only need to measure the dif- +ference for E[Y | do(S = 1)] on model M and M ′. The +following lemma shows that the difference between two +models can be bounded by our estimated accuracy r: +Lemma 5. |EM[Y | do(S = 1)]−EM ′[Y | do(S = 1)]| ≤ +n2(n + 1)r, where r is the estimated accuracy defined in +the start of this section. +The Lemma 5 gives us a way to bound our linear regres- +sion performance on the estimated model M ′. Suppose +our linear regression achieves O( +√ +T) regret comparing to +maxS EM ′[Y | do(S = 1)], based on our estimated ac- +curacy r = O(T −1/3), the regret for optimization error is +O(T 2/3), which is the same order as the initialization phase. +Moreover, it implies that we cannot set r to a larger gap, +such as r = O(T −1/2), because it would lead to the regret +of optimization error linear to T. +From these two lemmas, we can measure the error for +initialization phase. Motivated by Explore-then-Commit + +Combinatorial Causal Bandits without Graph Skeleton +framework, we can achieve sublinear regret without the +weight gap assumption. The detailed proof is provided in +Appendix C.2 and Appendix C.3. +Theorem 3. If c0 ≥ max{ 1 +c2 +1 , +1 +(1−c1)2 }, the regret of Algo- +rithm 4 running on BLM is upper bounded as +R(T) = O((n3T 2/3) log T). +Theorem 3 states the regret of our algorithm without weight +gap. The leading term of the result is O(T 2/3 log T), which +has higher order than O( +√ +T log T), the regret of the pre- +vious Algorithm 2 and the BLM-LR algorithm in (Feng +& Chen, 2023). This degradation in regret bound can be +viewed as the cost of removing the weight gap assumption, +which makes the accurate discovery of the causal graph ex- +tremely difficult. How to devise a O( +√ +T log T) algorithm +without weight gap assumption is still an open problem. +Using the transformation in Section 5.1 in (Feng & Chen, +2023), this algorithm can also work with hidden variables. +7. Pure Exploration of Causal Bandits +without Graph Structure +Another performance measure for bandit algorithms is +called sample complexity. In this setting, the agent aims +to find an action with the maximum expected reward using +as small number of rounds as possible. This setting is also +called pure exploration. To be more specific, the agent is +willing to find ε-optimal arm with probability at least 1 − δ +by sampling as few rounds as possible for fixed parameter ε +and δ. For pure exploration, we consider the general binary +causal model with only null and atomic interventions, and +study the gap-dependent bounds, meaning that the sample +complexity depends on the reward gap between the optimal +and suboptimal actions. Moreover, let a∗ be one of the +optimal actions. For each action a = do(Xi = x), define +µa = E[Y | a] and the gap for action a to be +∆a = +� µa∗ − maxa∈A\{a∗}{µa}, +a = a∗; +µa∗ − µa, +a ̸= a∗. +(8) +According to the causal discovery literature (Pearl, 2009), by +passive observations alone one can obtain an essential graph +of the causal graph, with some edge directions unidentified. +We assume that the essential graph is known but the exact +graph structure is unknown, which is also considered by (Lu +et al., 2021), with additional assumptions on the graph. +One naive solution for this problem is to first identify the +graph structure and then performed the pure exploration +algorithm of causal bandits with known graph (Xiong & +Chen, 2023). +Define ce = |P(X | do(X′ = 1)) − +P(X′ | do(X = 0))| for each edge e = (X, X′) and +cX = mine:X→X′ +1 +c2e . Then this naive solution admits a +sample complexity about +˜O +�� +a∈S +1 +max{∆a, ε/2}2 + +� +x∈X +1 +c2 +X +� +, +(9) +where S is a particular set defined following the previous +work (Xiong & Chen, 2023) and the definition is provided +in Appendix D. The first term is the sample complexity in +(Xiong & Chen, 2023), while the second term is the cost for +identifying the directions of all edges in the essential graph. +This naive solution separates the causal discovery phase +and learning phase, so it cannot discover the directions +adaptively. In the Appendix D, we propose an adaptive +algorithm to discover the edges’ directions and learn the +reward distribution in parallel, which can provide a lower +sample complexity for some cases. +However, when the ∆a and cX is small, both the naive al- +gorithm and our algorithms provided in Appendix D suffers +Ω( n +ε2 log(1/δ)) sample complexity. We claim that pure ex- +ploration for the general binary causal model is intrinsically +hard due to unknown graph structure. To show this, we state +a negative result for pure exploration of causal bandits on +unknown graph structure with atomic intervention. It states +that even if we have all observation distribution P(X, Y ) as +prior knowledge, we still cannot achieve better sample com- +plexity result than the result in the classical pure exploration +problem for the multi-armed bandit O( n +ε2 log(1/δ)). +Theorem 4 (Lower bound). Consider causal bandits with +only essential graph and atomic intervention, for any algo- +rithm which can output ε-optimal action with probability at +least 1 − δ, there is a bandit instance with expected sample +complexity Ω( n +ε2 log(1/δ)) even if we have all observational +distribution P(X, Y ). +Note that if we know distribution P(X, Y ) and the ex- +act graph structure, we can compute each intervention +P(Y | do(X = x)) by do-calculus because the absence +of hidden variables. So Theorem 4 shows the intrinsic hard- +ness provided by unknown graph structure. The detailed +proof can be found in Appendix D. +8. Future Work +This paper is the first theoretical study on causal bandits +without the graph skeleton. There are many future direc- +tions to extend this work. We believe that similar initial- +ization methods and proof techniques can be used to de- +sign causal bandits algorithms for other parametric models +without the skeleton, like linear structural equation models +(SEM). Moreover, how to provide a algorithm with �O( +√ +T) +regret without weight gap assumption is interesting and still +open. For pure exploration, the combinatorial setting needs +more research. + +Combinatorial Causal Bandits without Graph Skeleton +References +Abbasi-Yadkori, Y., P´al, D., and Szepesv´ari, C. Improved +algorithms for linear stochastic bandits. Advances in +neural information processing systems, 24, 2011. +Abbasi-Yadkori, Y., Pal, D., and Szepesvari, C. Online- +to-confidence-set conversions and application to sparse +stochastic bandits. In Artificial Intelligence and Statistics, +pp. 1–9. PMLR, 2012. +Agrawal, S. and Goyal, N. Thompson sampling for contex- +tual bandits with linear payoffs. In International confer- +ence on machine learning, pp. 127–135. PMLR, 2013. +Auer, P., Cesa-Bianchi, N., and Fischer, P. +Finite-time +analysis of the multiarmed bandit problem. Machine +learning, 47(2):235–256, 2002. +Bonferroni, C. Teoria statistica delle classi e calcolo delle +probabilita. Pubblicazioni del R Istituto Superiore di +Scienze Economiche e Commericiali di Firenze, 8:3–62, +1936. +Bubeck, S., Cesa-Bianchi, N., et al. Regret analysis of +stochastic and nonstochastic multi-armed bandit prob- +lems. Foundations and Trends® in Machine Learning, 5 +(1):1–122, 2012. +Chen, W., Wang, Y., and Yuan, Y. Combinatorial multi- +armed bandit: General framework and applications. In +International conference on machine learning, pp. 151– +159. PMLR, 2013. +Chen, W., Wang, Y., Yuan, Y., and Wang, Q. Combinatorial +multi-armed bandit and its extension to probabilistically +triggered arms. The Journal of Machine Learning Re- +search, 17(1):1746–1778, 2016. +Feng, S. and Chen, W. Causal inference for influence propa- +gation—identifiability of the independent cascade model. +In International Conference on Computational Data and +Social Networks, pp. 15–26. Springer, 2021. +Feng, S. and Chen, W. Combinatorial causal bandits. arXiv +preprint arXiv:2206.01995, 2022. +Feng, S. and Chen, W. +Combinatorial causal ban- +dits. +In Proceedings of the 37th AAAI Confer- +ence +on +Artificial +Intelligence +(AAAI), +Febru- +ary +2023. +URL +https://www.microsoft. +com/en-us/research/publication/ +combinatorial-causal-bandits/. +G´amez, J. A., Moral, S., and Cerdan, A. S. Advances in +Bayesian networks, volume 146. Springer, 2013. +Hoeffding, W. Probability inequalities for sums of bounded +random variables. In The collected works of Wassily +Hoeffding, pp. 409–426. Springer, 1994. +Kempe, D., Kleinberg, J., and Tardos, ´E. Maximizing the +spread of influence through a social network. In Proceed- +ings of the ninth ACM SIGKDD international conference +on Knowledge discovery and data mining, pp. 137–146, +2003. +Lattimore, F., Lattimore, T., and Reid, M. D. Causal ban- +dits: Learning good interventions via causal inference. +Advances in Neural Information Processing Systems, 29, +2016. +Lee, S. and Bareinboim, E. Structural causal bandits: where +to intervene? Advances in Neural Information Processing +Systems, 31, 2018. +Lee, S. and Bareinboim, E. Structural causal bandits with +non-manipulable variables. In Proceedings of the AAAI +Conference on Artificial Intelligence, volume 33, pp. +4164–4172, 2019. +Lee, S. and Bareinboim, E. Characterizing optimal mixed +policies: Where to intervene and what to observe. Ad- +vances in neural information processing systems, 33: +8565–8576, 2020. +Li, L., Lu, Y., and Zhou, D. Provably optimal algorithms +for generalized linear contextual bandits. +In Interna- +tional Conference on Machine Learning, pp. 2071–2080. +PMLR, 2017. +Li, S., Kong, F., Tang, K., Li, Q., and Chen, W. Online +influence maximization under linear threshold model. Ad- +vances in Neural Information Processing Systems, 33: +1192–1204, 2020. +Lu, Y., Meisami, A., Tewari, A., and Yan, W. Regret analysis +of bandit problems with causal background knowledge. +In Conference on Uncertainty in Artificial Intelligence, +pp. 141–150. PMLR, 2020. +Lu, Y., Meisami, A., and Tewari, A. Causal bandits with un- +known graph structure. Advances in Neural Information +Processing Systems, 34:24817–24828, 2021. +Maiti, A., Nair, V., and Sinha, G. Causal bandits on general +graphs. arXiv preprint arXiv:2107.02772, 2021. +Nair, V., Patil, V., and Sinha, G. Budgeted and non-budgeted +causal bandits. In International Conference on Artificial +Intelligence and Statistics, pp. 2017–2025. PMLR, 2021. +Nie, Z. Matrix anti-concentration inequalities with applica- +tions. In Proceedings of the 54th Annual ACM SIGACT +Symposium on Theory of Computing, pp. 568–581, 2022. +Pearl, J. Causality. Cambridge university press, 2009. + +Combinatorial Causal Bandits without Graph Skeleton +Pearl, J. The do-calculus revisited. In Proceedings of the +Twenty-Eighth Conference on Uncertainty in Artificial +Intelligence, UAI’12, pp. 3–11, Arlington, Virginia, USA, +2012. AUAI Press. ISBN 9780974903989. +Pearl, J. and Mackenzie, D. The book of why: the new +science of cause and effect. Basic books, 2018. +Robbins, H. Some aspects of the sequential design of exper- +iments. Bulletin of the American Mathematical Society, +58(5):527–535, 1952. +Sen, R., Shanmugam, K., Dimakis, A. G., and Shakkottai, +S. Identifying best interventions through online impor- +tance sampling. In International Conference on Machine +Learning, pp. 3057–3066. PMLR, 2017. +Varici, B., Shanmugam, K., Sattigeri, P., and Tajer, A. +Causal bandits for linear structural equation models. +arXiv preprint arXiv:2208.12764, 2022. +Xiong, N. and Chen, W. Combinatorial pure exploration of +causal bandits. In Proceedings of the 11th International +Conference on Learning Representations (ICLR), May +2023. +Yabe, A., Hatano, D., Sumita, H., Ito, S., Kakimura, N., +Fukunaga, T., and Kawarabayashi, K.-i. Causal bandits +with propagating inference. In International Conference +on Machine Learning, pp. 5512–5520. PMLR, 2018. +Zhang, Z., Chen, W., Sun, X., and Zhang, J. Online influ- +ence maximization with node-level feedback using stan- +dard offline oracles. In Proceedings of the AAAI Confer- +ence on Artificial Intelligence, volume 36, pp. 9153–9161, +2022. + +Combinatorial Causal Bandits without Graph Skeleton +A. Proofs for Propositions in Section 5 +In this section, we give proofs that are omitted in Section 5 of our main text. +A.1. Proof of Lemma 1 +Lemma 1. Let G be a BGLM with parameter θ∗ that satisfies Assumption 2. Recall that θ∗ +min = min(X′,X)∈E θ∗ +X′,X. If +Xi ∈ Pa(Xj), we have E[Xj|do(Xi = 1)] − E[Xj|do(Xi = 0)] ≥ κθ∗ +Xi,Xj ≥ κθ∗ +min; if Xi is not an ancestor of Xj, we +have E[Xj|do(Xi = 1)] = E[Xj|do(Xi = 0)]. +Proof. At first, we define an equivalent threshold model form of the BGLM as follows. For each node X, we randomly +sample a threshold γX uniformly from [0, 1], i.e., γX ∼ U[0, 1]. Then if fX(Pa(X)·θ∗ +X)+εX ≥ γX, X is activated, i.e., X +is set to 1; otherwise, X is not activated, i.e., X is set to 0. Therefore, if we ignore ε, the BGLM model belongs to the family +of general threshold models (Kempe et al., 2003). For convenience, we denote the vector of all γX, X ∈ X ∪ {Y }\{X1} +by γ. The vector of fixing all entries in γ except γX is denoted by γ−X. +Now we prove the first part of this lemma: E[Xj|do(Xi = 1)] − E[Xj|do(Xi = 0)] ≥ κθ∗ +Xi,Xj ≥ κθ∗ +min if Xi ∈ Pa(Xj). +By the definition of our equivalent threshold model, we know that after fixing all the thresholds γX’s and noises εX’s, the +propagation result is completely determined merely by the intervention. Therefore, we have +E[Xj|do(Xi = 1)] = Eγ∈(U[0,1])n,ε[Xj|do(Xi = 1)] += Eγ−Xj ∈(U[0,1])n−1,ε +� +Pr +γXj ∼U[0,1] +� +Xj = 1|do(Xi = 1), γ−Xj, ε +�� +, +and +E[Xj|do(Xi = 0)] = Eγ−Xj ∈(U[0,1])n−1,ε +� +Pr +γXj ∼U[0,1] +� +Xj = 1|do(Xi = 0), γ−Xj, ε +�� +. +Hence, in order to prove E[Xj|do(Xi = 1)] − E[Xj|do(Xi = 0)] ≥ κθ∗ +Xi,Xj ≥ κθ∗ +min, we only need to prove +Pr +γXj ∼U[0,1] +� +Xj = 1|do(Xi = 1), γ−Xj, ε +� +− +Pr +γXj ∼U[0,1] +� +Xj = 0|do(Xi = 0), γ−Xj, ε +� +≥ κθ∗ +min. +When γ−Xj and ε are fixed, all the nodes in X ∪ {Y }\ ({Xj} ∪ {Des(Xj)}) are already fixed given an arbitrarily fixed +intervention. Here, Des(Xj) is used to represent the descendants of Xj. Suppose under do(Xi = 1), γ−Xj and ε, the value +vector of parents of Xj is pa1(Xj); under do(Xi = 0), γ−Xj and ε, the value vector of parents of Xj is pa0(Xj). By +induction along the topological order, nodes in X ∪ {Y }\ ({Xj} ∪ {Des(Xj)}) that is activated under do(Xi = 0), γ−Xj +and ε must be also activated under do(Xi = 1), γ−Xj and ε. Therefore, entries in pa1(Xj)−pa0(Xj) are all non-negative +and the entry in pa1(Xj) − pa0(Xj) for the value of Xj is 1. From this observation, we can deduce that +fXj(pa1(Xj) · θ∗ +Xj) − fXj(pa0(Xj) · θ∗ +Xj) ≥ κ +� +pa1(Xj) · θ∗ +Xj − pa0(Xj) · θ∗ +Xj +� +≥ κθ∗ +Xi,Xj. +Hence, we have +Pr +γXj ∼U[0,1] +� +Xj = 1|do(Xi = 1), γ−Xj, ε +� +− +Pr +γXj ∼U[0,1] +� +Xj = 0|do(Xi = 0), γ−Xj, ε +� += +Pr +γXj ∼U[0,1] +� +fXj(pa1(Xj) · θ∗ +Xj) ≥ γXj + εXj|εXj +� +− +Pr +γXj ∼U[0,1] +� +fXj(pa0(Xj) · θ∗ +Xj) ≥ γXj + εXj|εXj +� += +� +fXj(pa1(Xj) · θ∗ +Xj) − εXj +� +− +� +fXj(pa0(Xj) · θ∗ +Xj) − εXj +� +≥ κθ∗ +Xi,Xj ≥ κθ∗ +min, +which is what we want. Until now, the first part of Lemma 1 has been proved. + +Combinatorial Causal Bandits without Graph Skeleton +Then we prove the second part of this lemma: E[Xj|do(Xi = 1)] = E[Xj|do(Xi = 0)] if Xj is not a descendant of Xi. In +this situation, we know from the graph structure that (Xj ⊥⊥ Xi)G{Xi}, where G{Xi} is the graph obtained by deleting from +G all arrows pointing to Xi. According to the third law of do-calculus (Pearl, 2012), we deduce that +E[Xj|do(Xi = 1)] = Pr{Xj = 1|do(Xi = 1)} = Pr{Xj = 1|} = Pr{Xj = 1|do(Xi = 0)} = E[Xj|do(Xi = 0)]. +Now Lemma 1 is completely proved. +Corollary 1 (An Extension of Lemma 1). Suppose G is a BGLM with parameter θ∗ that satisfying Assumption 2 and +do(S = s) is an intervention such that Xi, Xj /∈ S. If Xi ∈ Pa(Xj), we have E[Xj|do(Xi = 1), do(S = s)] − +E[Xj|do(Xi = 0), do(S = s)] ≥ κθ∗ +Xi,Xj ≥ κθ∗ +min; if Xi is not an ancestor of Xj, we have E[Xj|do(Xi = 1), do(S = +s)] = E[Xj|do(Xi = 0), do(S = s)]. +Proof. According to (Pearl, 2012), Pr{Xj|do(Xi), do(S)} is equivalent to Pr{Xj|do(Xi)} in a new model G′ such that +all in-edges of S are deleted and all nodes in S are fixed by s. We know that Lemma 1 holds in G′, so this corollary holds +in G. +A.2. Proof of Lemma 2 +Lemma 2 (Positive Rate of BGLM-Order). Suppose Assumption 2 holds for the BGLM G. In the initialization phase of +Algorithm 1, Algorithm 2 finds a consistent ancestor-descendant relationship for the BGLM G with probability no less than +1 − 2 +�n−1 +2 +� +exp +� +− c0c2 +1T 1/10 +2 +� +when θ∗ +min ≥ 2c1κ−1T −1/5. +Proof. We first assume that for every pair of nodes if Xi ∈ Pa(Xj), Algorithm 2 puts Xj as a descendant of Xi in the +ancestor-descendant relationship; if Xj is not a descendant of Xi, Algorithm 2 do not put Xj as an descendant of Xi in the +ancestor-descendant relationship. This event is denoted by E for simplicity. We prove that when event E does occur, the +ancestor-descendant relationship we find is absolutely consistent with the true graph structure of G. Otherwise, suppose there +is a mistake in the ancestor-descendant relationship such that Xi is an ancestor of Xj but not put in � +Anc(Xj). We denote a +directed path from Xi to Xj by Xi → Xk1 → Xk2 → · · · → Xkp → Xj. Therefore, Xk1 must be put in � +Anc(Xi), Xk2 +must be put in � +Anc(Xk1), ..., Xj must be put in � +Anc(Xkp). In conclusion, Xj should be put in � +Anc(Xi), which is a +contradiction. Hence, there is no mistake in the ancestor-descendant relationship given event E. +Now we only prove that using Algorithm 2, with probability no less than 1 − 2 +�n−1 +2 +� +exp +� +− c0c2 +1T 1/10 +2 +� +, event E defined +in the paragraph above occurs. For a pair of nodes Xi, Xj ∈ X\{X1}, if Xi ∈ Pa(Xj), we know from Lemma 1 +that E[Xj|do(Xi = 1)] − E[Xj|do(Xi = 0)] ≥ κθ∗ +min. We denote the difference between random variable Xj given +do(Xi = 1) and random variable Xj given do(Xi = 0) by Z. In �c0T 1/2 +k=1 +� +X(2ic0T 1/2+k) +j +− X((2i+1)c0T 1/2+k) +j +� +, each +term X(2ic0T 1/2+k) +j +− X((2i+1)c0T 1/2+k) +j +is an i.i.d. sample of Z. We denote X(2ic0T 1/2+k) +j +− X((2i+1)c0T 1/2+k) +j +by Zk. + +Combinatorial Causal Bandits without Graph Skeleton +We know that Zk ∈ [−1, 1] and E[Zk] ≥ κθ∗ +min, so according to Hoeffding’s inequality (Hoeffding, 1994), we have +Pr +� +� +� +c0T 1/2 +� +k=1 +� +X(2ic0T 1/2+k) +j +− X((2i+1)c0T 1/2+k) +j +� +> c0c1T 3/10 +� +� +� += Pr +� +� +� +c0T 1/2 +� +k=1 +Zk > c0c1T 3/10 +� +� +� += 1 − Pr +� +� +� +c0T 1/2 +� +k=1 +Zk ≤ c0c1T 3/10 +� +� +� +≥ 1 − exp +� +−2 +� +c0T 1/2κθ∗ +min − c0c1T 3/10�2 +4c0T 1/2 +� += 1 − exp +� +−c0 +� +T 1/4κθ∗ +min − c1T 1/20�2 +2 +� +≥ 1 − exp +� +−c2 +1c0T 1/10 +2 +� +. +(because T ≥ 32 +� +c1 +κθ∗ +min +�5 +) +Similarly, if Xj is not a descendant of Xi, we do not put Xi in � +Anc(Xj) in the ancestor-descendant relationship if and +only if �c0T 1/2 +k=1 +� +X(2ic0T 1/2+k) +j +− X((2i+1)c0T 1/2+k) +j +� +≤ c0c1T 3/10. Now we still have Zk ∈ [−1, 1] but E[Zk] = 0. +Therefore, according to Hoeffding’s inequality (Hoeffding, 1994), we have +Pr +� +� +� +c0T 1/2 +� +k=1 +� +X(2ic0T 1/2+k) +j +− X((2i+1)c0T 1/2+k) +j +� +≤ c0c1T 3/10 +� +� +� += 1 − Pr +� +� +� +c0T 1/2 +� +k=1 +Zk > c0c1T 3/10 +� +� +� +> 1 − exp +� +−2 +� +c0c1T 3/10�2 +4c0T 1/2 +� += 1 − exp +� +−c2 +1c0T 1/10 +2 +� +. +Hence, by union bound (Boole’s inequality (Bonferroni, 1936)), the probability of E is no less than 1 − +2 +�n−1 +2 +� +exp +� +− c2 +1c0T 1/10 +2 +� +. This is because when Xi, Xj ∈ X\{X1}, there are 2 +�n−1 +2 +� +possible choices of them that +are tested by Algorithm 2. When E happens, Algorithm 2 gets the ancestor-descendant relationship correct, so Lemma 2 is +proved. +A.3. Proof of Theorem 2 +In the following proofs on a BGLM G, when X′ ∈ Anc(X) but X′ /∈ Pa(X), we add an edge X′ → X with weight +θX′,X = 0 into G and this does not impact the propagation results of G. Let D = maxX∈X∪{Y } |Pa(X)| be the maximum +in-degree. After doing this transformation, D = n and Anc(X) = Pa(X) for all X ∈ X ∪ {Y } in this subsection. +Before the proof of this theorem, we introduce several lemmas at first. The first component is based on the result of +maximum-likelihood estimation (MLE). It gives a theoretical measurement for the accuracy of estimated ˆθ computed by +MLE. One who is interested could find the proof of this lemma in Appendix C.2 of (Feng & Chen, 2022). +Lemma 6 (Lemma 1 in (Feng & Chen, 2023)). Suppose that Assumptions 1 and 2 hold. Moreover, given δ ∈ (0, 1), assume +that +λmin(Mt,X) ≥ +512|Pa(X)| +� +L(2) +fX +�2 +κ4 +� +|Pa(X)|2 + ln 1 +δ +� +. +(10) +Then with probability at least 1 − 3δ, the maximum-likelihood estimator satisfies , for any v ∈ R|Pa(X)|, +���v⊺(ˆθt,X − θ∗ +X) +��� ≤ 3 +κ +� +log(1/δ) ∥v∥M −1 +t,X , + +Combinatorial Causal Bandits without Graph Skeleton +where the probability is taken from the randomness of all data collected from round 1 to round t. +The second component is called the group observation modulated (GOM) bounded smoothness property (Li et al., 2020). It +shows that a small change in parameters θ leads to a small change in the reward. Under our BGLM setting, this lemma is +proved in Appendix C.3 of (Feng & Chen, 2022). +Lemma 7 (Lemma 2 in (Feng & Chen, 2023)). For any two weight vectors θ1, θ2 ∈ Θ for a BGLM G, the difference of +their expected reward for any intervened set S can be bounded as +��σ(S, θ1) − σ(S, θ2) +�� ≤ Eε,γ +� +� +� +X∈XS,Y +��V ⊺ +X(θ1 +X − θ2 +X) +�� L(1) +fX +� +� , +(11) +where XS,Y is the set of nodes in paths from S to Y excluding S, and V X is the propagation result of the parents of X +under parameter θ2. The expectation is taken over the randomness of the thresholds γ and the noises ε. +Thirdly, we propose a lemma in order to bound the sum of ∥V t,X∥M −1 +t−1,X at first. This lemma is proved in Appendix C.4 of +(Feng & Chen, 2022). +Lemma 8 (Lemma 9 in (Feng & Chen, 2022)). Let {W t}∞ +t=1 be a sequence in Rd satisfying ∥W t∥ ≤ +√ +d. Define W 0 = 0 +and Mt = �t +i=0 W iW ⊺ +i . Suppose there is an integer t1 such that λmin(Mt1+1) ≥ 1, then for all t2 > 0, +t1+t2 +� +t=t1 +∥W t∥M −1 +t−1 ≤ +� +2t2d log(t2d + t1). +At last, in order to show that λmin(MT1,X) ≥ R after the initialization phase of Algorithm 1 and thus satisfy the condition +of Lemma 6, we introduce Lemma 9. This lemma is improved upon Lemma 7 in (Feng & Chen, 2022) and enables us to use +Lecu´e and Mendelson’s inequality (Nie, 2022) in our later theoretical regret analysis. +Let Sphere(d) denote the sphere of the d-dimensional unit ball. +Lemma 9. For any v = (v1, v2, · · · , v|Pa(X)|) ∈ Sphere(|Pa(X)|) and any X ∈ X ∪ {Y } in a BGLM that satisfies +Assumption 3, we have +Pr +ε,X,Y +� +|Pa(X) · v| ≥ +1 +√ +4D2 − 3 +� +≥ ζ, +where Pa(X) is the random vector generated by the natural Bayesian propagation in BGLM G with no interventions +(except for setting X1 to 1). +Proof. The lemma is similarly proved as Lemma 7 in (Feng & Chen, 2022) using the idea of Pigeonhole principle. Let +Pa(X) = (Xi1 = X1, Xi2, Xi3, · · · , Xi|Pa(X)|) as the random vector and pa(X) = (x1 = 1, xi1, xi2, xi3, · · · , xi|Pa(X)|) +as a possible valuation of Pa(X). Without loss of generality, we suppose that |v2| ≥ |v3| ≥ · · · ≥ +��v|Pa(X)| +��. For +simplicity, we denote D0 = +√ +D − 1 + +1 +2√D−1. If |v1| ≥ +D0 +√ +D2 +0+1, we can deduce that +|pa(X) · v| ≥ |v1| − |v2| − |v3| − · · · − +��v|Pa(X)| +�� +≥ +D0 +� +D2 +0 + 1 +− +� +(D − 1) +� +|v2|2 + |v3|2 + · · · +��v|Pa(X)| +��2� +(12) +≥ +D0 +� +D2 +0 + 1 +− +� +(D − 1) +� +1 − +D2 +0 +D2 +0 + 1 +� +(13) += +1 +2 +� +(D2 +0 + 1)(D − 1) += +1 +√ +4D2 − 3 +, +where Inequality (12) is by the Cauchy-Schwarz inequality and the fact that |Pa(X)| ≤ D, and Inequality (13) uses the +fact that v ∈ Sphere(|Pa(X)|). Thus, when |v1| ≥ +D0 +√ +D2 +0+1, the event |Pa(X) · v| ≥ +1 +√ +4D2−3 holds deterministically. + +Combinatorial Causal Bandits without Graph Skeleton +Otherwise, when |v1| < +D0 +√ +D2 +0+1, we use the fact that |v2| is the largest among |v2|, |v3|, . . . and deduce that +|v2| ≥ +1 +√n − 1 +� +|v2|2 + |v3|2 + · · · ≥ +� +1 − +� +D0 +√ +D2 +0+1 +�2 +√n − 1 += +2 +√ +4D2 − 3 +. +(14) +Therefore, using the fact that +Pr +ε,X,Y {Xi1 = 1, Xi2 = xi2, Xi3 = xi3, · · · } = +Pr +ε,X,Y {Xi2 = xi2|Xi1 = 1, Xi3 = xi3, · · · } · +Pr +ε,X,Y {(Xi1 = 1, Xi3 = xi3, · · · } ≥ ζ +Pr +ε,X,Y {Xi1 = 1, Xi3 = xi3, · · · } +and � +xi3,xi4,··· Prε,X,Y {Xi1 = 1, Xi3 = xi3, · · · } = 1, we have +Pr +ε,X,Y +� +|Pa(X) · v| ≥ +1 +√ +4D2 − 3 +� += +� +xi3,xi4,··· +Pr{Xi1 = 1, Xi2 = 1, Xi3 = xi3, · · · } · I +� +|(1, 1, xi3, xi4, · · · ) · (v1, v2, v3, · · · )| ≥ +1 +√ +4D2 − 3 +� ++ +� +xi3,xi4,··· +Pr{Xi1 = 1, Xi2 = 0, Xi3 = xi3, · · · } · I +� +|(1, 0, xi3, xi4, · · · ) · (v1, v2, v3, · · · )| ≥ +1 +√ +4D2 − 3 +� +≥ +� +xi3,xi4,··· +ζ Pr{Xi1 = 1, Xi3 = xi3, Xi4 = xi4 · · · } · I +� +|(1, 1, xi3, xi4, · · · ) · (v1, v2, v3, · · · )| ≥ +1 +√ +4D2 − 3 +� ++ +� +xi3,xi4,··· +ζ Pr{Xi1 = 1, Xi3 = xi3, Xi4 = xi4, · · · } · I +� +|(1, 0, xi3, xi4, · · · ) · (v1, v2, v3, · · · )| ≥ +1 +√ +4D2 − 3 +� += ζ · +� +xi3,xi4,··· +Pr{Xi1 = 1, Xi3 = xi3, Xi4 = xi4, · · · } +� +I +� +|(1, 1, xi3, xi4, · · · ) · (v1, v2, v3, · · · )| ≥ +1 +√ +4D2 − 3 +� ++I +� +|(1, 0, xi3, xi4, · · · ) · (v1, v2, v3, · · · )| ≥ +1 +√ +4D2 − 3 +�� +≥ ζ +� +xi3,xi4,··· +Pr{Xi1 = 1, Xi3 = xi3, Xi4 = xi4, · · · } +(15) += ζ, +which is exactly what we want to prove. Inequality (15) holds because otherwise, at least for some xi3, xi4, . . ., both +indicators on the left-hand side of the inequality have to be 0, which implies that +|(1, 1, xi3, xi4, · · · ) · (v1, v2, v3, · · · ) − (1, 0, xi3, xi4, · · · ) · (v1, v2, v3, · · · )| = |v2| < +2 +√ +4D2 − 3 +, +(16) +but this contradicts to Inequality (14). +Having these four lemmas above together with Lemma 2 proved in Appendix A.2, we are finally able to prove the regret +bound of BGLM-OFU-Unknown algorithm (Theorem 2) as below. +Theorem 2 (Regret Bound of BGLM-OFU-Unknown). Denote L(1) +max = maxX∈X∪{Y } L(1) +fX. Under Assumptions 1, 2 and +3, the regret of BGLM-OFU-Unknown (Algorithms 1, 2 and 3) is bounded as +R(T) = O +� 1 +κn +3 +2 L(1) +max +√ +T log T +� +, +(5) +where the terms of o( +√ +T ln T) are omitted, and the big O notation holds for T ≥ 32 +� +c1 +κθ∗ +min +�5 +. + +Combinatorial Causal Bandits without Graph Skeleton +Proof. We only consider the case of T ≥ 32 +� +c1 +κθ∗ +min +�5 +in this proof because the big O notation is asymptotic. +Let Ht be the history of the first t rounds and Rt be the regret in the tth round. Because the reward node Y is in interval +[0, 1], we can deduce that for any t ≤ T1, Rt ≤ 1. Now we consider the case of t > T1. According to Lemma 2, with +probability at least 1 − 2 +�n−1 +2 +� +exp +� +− c0c2 +1T 1/10 +2 +� +, Algorithm 2 returns a correct ancestor-descendant relationship, i.e., +� +Anc(X) = Anc(X) for X ∈ X ∪ {Y }. Next we bound the regret conditioned on the correct ancestor-descendant +relationship. When t > T1, we have +E[Rt|Ht−1] = E[σ(Sopt, θ∗) − σ(St, θ∗)|Ht−1], +(17) +where the expectation is taken over the randomness of St. +Then for T1 +< +t +≤ +T, we define ξt−1,X for +X +∈ X ∪ {Y } as ξt−1,X += +����vT (ˆθt−1,X − θ∗ +X) +��� ≤ ρ · ∥v∥M −1 +t−1,X , ∀v ∈ R|Pa(X)|� +. +According to the defini- +tion of Algorithm 1, we can deduce that λmin(Mt−1,X) ≥ λmin(MT1,X). +By Lecu´e and Mendelson’s inequal- +ity (Nie, 2022; Feng & Chen, 2022) (conditions of this inequality satisfied according to Lemma 9), we have +Pr {λmin(MT1,X) < R} ≤ Pr {λmin(MT1,X − MT0,X) < R} ≤ exp +� +− (T1−T0)ζ2 +c +� +where c, ζ are constants. Then +we can define ξt−1 = ∧X∈X∪{Y }ξt−1,X and let ξt−1 be its complement. +By Lemma 6, we have Pr +� +ξt−1 +� +≤ +� +3δ + exp +� +− (T1−T0)ζ2 +c +� ++ 3δ exp +� +− (T1−T0)ζ2 +c +�� +n ≜ perror. +Because under ξt−1, for any X ∈ X ∪ {Y } and v ∈ R|Pa(X)|, we have +���vT (ˆθt−1,X − θ∗ +X) +��� ≤ ρ · ∥v∥M −1 +t−1,X. Therefore, +by the definition of ˜θt, we have σ(St, ˜θt) ≥ σ(Sopt, θ∗) because θ∗ is in our confidence ellipsoid. Hence, +E[Rt] ≤ Pr {ξt−1} · E[σ(Sopt, θ∗) − σ(St, θ∗)] + Pr(ξt−1) +≤ E[σ(Sopt, θ∗) − σ(St, θ∗)] + perror +≤ E[σ(St, ˜θt) − σ(St, θ∗)] + perror. +Then we need to bound σ(St, ˜θt) − σ(St, θ∗) carefully. +Therefore, according to Lemma 6 and Lemma 7, we can deduce that +E[Rt] ≤ E +� +� +� +X∈XSt,Y +���V t,X(˜θt,X − θ∗ +X) +��� L(1) +fX +� +� + perror +≤ E +� +� +� +X∈XSt,Y +∥V t,X∥M −1 +t−1,X +���˜θt,X − θ∗ +X +��� +Mt−1,X +L(1) +fX +� +� + perror +≤ 2ρ · E +� +� +� +X∈XSt,Y +∥V t,X∥M −1 +t−1,X L(1) +fX +� +� + perror. +The last inequality holds because +���˜θt,X − θ∗ +X +��� +Mt−1,X +≤ +���˜θt,X − ˆθt−1,X +��� +Mt−1,X ++ +���ˆθt−1,X − θ∗ +X +��� +Mt−1,X +≤ 2ρ. +Therefore, conditioned on the correct ancestor-descendant relationship, the total regret can be bounded as +R(T) ≤ 2ρ · E +� +� +T +� +t=T0+1 +� +X∈XSt,Y +∥V t,X∥M −1 +t−1,X L(1) +fX +� +� + perror(T − T1) + T1. +For convenience, we define W t,X as a vector such that if X ∈ St, W t,X = 0|Pa(X)|; if X ̸∈ St, W t,X = V t,X. Using + +Combinatorial Causal Bandits without Graph Skeleton +Lemma 8, we can get the result: +R(T) ≤ +� +�2ρE +� +� +T +� +t=T0+1 +� +X∈XSt,Y +∥V t,X∥M −1 +t−1,X L(1) +fX +� +� + perror(T − T1) + T1 +� +� +� +1 − 2 +�n − 1 +2 +� +exp +� +−c0c2 +1T 1/10 +2 +�� ++ 2 +�n − 1 +2 +� +exp +� +−c0c2 +1T 1/10 +2 +� +T +≤ 2ρE +� +� +T +� +t=T0+1 +� +X∈X∪{Y } +∥W t,X∥M −1 +t−1,X L(1) +fX +� +� + perror(T − T1) + T1 + 2 +�n − 1 +2 +� +exp +� +−c0c2 +1T 1/10 +2 +� +T +≤ 2ρ · +max +X∈X∪{Y } +� +L(1) +fX +� +E +� +� +� +X∈X∪{Y } +� +2(T − T0)|Pa(X)| log ((T − T0)|Pa(X)| + T0) +� +� ++ perror(T − T1) + T1 + 2 +�n − 1 +2 +� +exp +� +−c0c2 +1T 1/10 +2 +� +T += O +� 1 +κn +3 +2 √ +TL(1) +max ln T +� += ˜O +� 1 +κn +3 +2 √ +TL(1) +max +� +because ρ = 3 +κ +� +log(1/δ), exp +� +− c0c2 +1T 1/10 +2 +� +T = o( +√ +T) and perrorT = o( +√ +T). +B. A BLM CCB Algorithm with Safety Gap Based on Linear Regression +As BLM is a special case of BGLM, the initialization phase in BGLM-OFU-Unknown to determine the ancestor-descendant +relationship can also be used on BLMs. Feng & Chen (2023) propose a CCB algorithm for BLMs using linear regression +instead of MLE to remove the requirement of Assumption 3. Furthermore, BLM takes the identity function as fX’s, so +Assumptions 1 and 2 is neither required. The specific algorithm BLM-LR-Unknown-SG (BLM-LR-Unknown algorithm +with safety gap) is demonstrated in Algorithm 6. +The following theorem shows the regret bound of BLM-LR-Unknown-SG. It is not surprising that this algorithm could also +work on linear models with continuous variables as Appendix F in (Feng & Chen, 2022). The dominant term in the expected +regret does not increase compared to BLM-LR in (Feng & Chen, 2023). +Theorem 5 (Regret Bound of BLM-LR-Unknown-SG). The regret of BLM-LR-Unknown-SG running on BLM or linear +model is bounded as +R(T) = O +� +n +5 +2 √ +T log T +� +, +where the terms of o( +√ +T ln T) are omitted, and the big O notation holds for T ≥ 32 +� +c1 +κθ∗ +min +�5 +. +Proof. In the following proof on G, when X′ ∈ Anc(X) but X′ /∈ Pa(X), we add an edge X′ → X with weight +θX′,X = 0 into G and this does not impact the propagation results of G. After doing this transformation, D = n and +Anc(X) = Pa(X) for all X ∈ X ∪ {Y }. +According to Lemma 2, with probability at least 1 − 2 +�n−1 +2 +� +exp +� +− c0c2 +1T 1/10 +2 +� +, Algorithm 2 returns a correct ancestor- +descendant relationship, i.e., Anc(X) = � +Anc(X) for X ∈ X ∪ {Y }. Moreover, by Lemma 11 in (Feng & Chen, +2022), with probability at most nδ, event +� +∃T0 < t ≤ T, x ∈ X ∪ {Y } : +���θ∗′ +X − ˆθt,X +��� > ρt +� +occurs. Now we bound +the expected regret conditioned on the absence of this event and finding a correct ancestor-descendant relationship. For + +Combinatorial Causal Bandits without Graph Skeleton +Algorithm 6 BLM-LR-Unknown-SG for BLM and Linear Model CCB Problem +1: Input: Graph G = (X ∪ {Y }, E), action set A, positive constants c0 and c1 for initialization phase such that +c0 +√ +T ∈ N+. +2: /* Initialization Phase: */ +3: Do each intervention among do(X2 = 1), do(X2 = 0), · · · , do(Xn = 1), do(Xn = 0) for c0T 1/2 times in order and +observe the feedback (Xt, Yt) for 1 ≤ t ≤ T0. +4: Determine +a +feasible +ancestor-descendant +relationship +� +Anc(X)’s +for +X +∈ +X +∪ +{Y } +by +BGLM-Ancestors((X1, Y1), · · · , (XT0, YT0), c1) (see Algorithm 2). +5: Initialize M0,X ← I ∈ R|� +Anc(X)|×|� +Anc(X)|, b0,X ← 0|� +Anc(X)| for all X ∈ X ∪ {Y }, ˆθ0,X ← 0 ∈ R|� +Anc(X)| for all +X ∈ X ∪ {Y }, δ ← +1 +n +√ +T , ρt ← +� +n log(1 + tn) + 2 log 1 +δ + √n for t = 0, 1, 2, · · · , T and T0 ← 2(n − 1)c0T 1/2. +6: /* Iterative Phase: */ +7: for t = T0 + 1, T0 + 2, · · · , T do +8: +Compute the confidence ellipsoid Ct,X = {θ′ +X ∈ [0, 1]|� +Anc(X)| : +���θ′ +X − ˆθt−1,X +��� +Mt−1,X +≤ ρt−1} for any node +X ∈ X ∪ {Y }. +9: +(St, st, ˜θt) = argmaxdo(S=s)∈A,θ′ +t,X∈Ct,X E[Y |do(S = s)]. +10: +Intervene all the nodes in St to st and observe the feedback (Xt, Yt). +11: +for X ∈ X ∪ {Y } do +12: +Construct data pair (V t,X, X(t)) with V t,X the vector of ancestors of X in round t, and X(t) the value of X in +round t if X ̸∈ St. +13: +Mt,X = Mt−1,X + V t,XV ⊺ +t,X, bt,X = bt−1,X + X(t)V t,X, ˆθt,X = M −1 +t,Xbt,X. +14: +end for +15: end for +T0 < t ≤ T, according to Theorem 1 in (Li et al., 2020) and Theorem 7, we can deduce that +E [Rt] = E +� +σ′(Sopt, θ∗′) − σ′(St, θ∗′) +� +≤ E +� +σ′(St, ˜θt) − σ′(St, θ∗′) +� +≤ E +� +� +� +X∈XSt,Y +���V ⊺ +t,X(˜θt,X − θ∗′ +X) +��� +� +� +≤ E +� +� +� +X∈XSt,Y +∥V t,X∥M −1 +t−1,X +���˜θt,X − θ∗′ +X +��� +Mt−1,X +� +� +≤ E +� +� +� +X∈XSt,Y +2ρt−1 ∥V t,X∥M −1 +t−1,X +� +� , +since ˜θt,X, θ∗ +X are both in the confidence set. Thus, we have +R(T) = E +� T +� +t=1 +Rt +� +≤ E +� +T +� +t=T0+1 +Rt +� ++ T0 +≤ 2ρT · E +� +� +T +� +t=T0+1 +� +X∈XSt,Y +∥V t,X∥M −1 +t−1,X +� +� + T0. +For convenience, we define W t,X as a vector such that if X ∈ St, W t,X = 0|Pa(X)|; if X ̸∈ St, W t,X = V t,X. + +Combinatorial Causal Bandits without Graph Skeleton +According to Cauchy-Schwarz inequality, we have +R(T) ≤ 2ρT · E +� +� +T +� +t=T0+1 +� +X∈X∪{Y } +∥W t,X∥M −1 +t−1,X +� +� + T0 +≤ 2ρT · E +� +�√ +T · +� +X∈X∪{Y } +� +� +� +� +T +� +t=T0+1 +∥W t,X∥2 +M −1 +t−1,X +� +� + T0 +≤ 2ρT · E +� +�√ +T · +� +X∈X∪{Y } +� +� +� +� +T +� +t=1 +∥W t,X∥2 +M −1 +t−1,X +� +� + 2(n − 1)c0T 1/2. +Note that Mt,X = Mt−1,X + W t,XW ⊺ +t,X and therefore, det (Mt,X) = det(Mt−1,X) +� +1 + ∥W t,X∥2 +M −1 +t−1,X +� +, we have +T +� +t=1 +∥W t,X∥2 +M −1 +t−1,X ≤ +T +� +t=1 +n +log(n + 1) · log +� +1 + ∥W t,X∥2 +M −1 +t−1,X +� +≤ +n +log(n + 1) · log det(MT,X) +det(I) +≤ n|Pa(X)| +log(n + 1) · log tr(MT,X) +|Pa(X)| +≤ n|Pa(X)| +log(n + 1) · log +� +1 + +T +� +t=1 +∥W t,X∥2 +2 +|Pa(X)| +� +≤ +nD +log(n + 1) log(1 + T). +Therefore, the final conditional regret R(T) is bounded by +R(T) ≤ 2ρT n +� +T +nD +log(n + 1) log(1 + T) + 2(n − 1)c0T 1/2, +because ρT = +� +D log(1 + TD) + 2 log 1 +δ + +√ +D. When +� +∃t ∈ (T0, T], x ∈ X ∪ {Y } : +���θ∗′ +X − ˆθt,X +��� > ρt +� +does occur +or Algorithm 2 finds an incorrect order, the regret is no more than T. Therefore, the total regret is no more than +� +2ρT n +� +T +nD +log(n + 1) log(1 + T) + 2(n − 1)c0T 1/2 +� � +1 − nδ − 2 +�n − 1 +2 +� +exp +� +−c0c2 +1T 1/10 +2 +�� ++ T +� +nδ + 2 +�n − 1 +2 +� +exp +� +−c0c2 +1T 1/10 +2 +�� +≤ 2ρT n +� +T +nD +log(n + 1) log(1 + T) + o( +√ +T ln T) += O +� +n +5 +2 √ +T log T +� +, +which is exactly what we want. +Replacing Lemma 11 in (Feng & Chen, 2022) by Lemma 12 in (Feng & Chen, 2022), the above proof for BLMs is still +feasible for the regret on linear models without any other modification. +Remark 2. According to the transformation in Section 5.1 of (Feng & Chen, 2023), this algorithm also works for some +BLMs with hidden variables. Using that transformation, running BLM-LR-Unknown-SG on G is equivalent to running on +a Markovian BLM or linear model G′, where parameter θ∗ is also transformed to a new set of parameters θ∗′. Here, we +disallow the graph structure where a hidden node has two paths to Xi and Xi’s descendant Xj and the paths contain only +hidden nodes except the end points Xi and Xj. + +Combinatorial Causal Bandits without Graph Skeleton +C. Proofs for Propositions in Section 6 +C.1. Proof of Lemma 3 +Lemma 3. In Algorithm 4, if the constants c0 and c1 satisfy that c0 ≥ max{ 1 +c2 +1 , +1 +(1−c1)2 }, with probability at least +1 − (n − 1)(n − 2) +1 +T 1/3 , after the initialization phase we have +1).If X′ is a true parent of X in G with weight θ∗ +X′,X ≥ T −1/3, the edge X′ → X will be identified and added to the +estimated graph G′. +2).If X′ is not an ancestor of X in G, X′ → X will not be added into G′. +Proof. First, for each node Xj and its parent Xi with weight θ∗ +Xi,Xj ≥ T −1/3, by Lemma 1, we can have +E[Xj | do(Xi = 1)] − E[Xj | do(Xi = 0)] ≥ θ∗ +Xi,Xj +Then each element X(c0(2i)T 2/3+k) +j +− X(c0(2i+1)T 2/3+k) +j +is an i.i.d sample of Z = Xj |do(Xi=1) −Xj |do(Xi=0) with +E[Z] ≥ θ∗ +Xi,Xj ≥ T −1/3. By the Hoeffding’s inequality, if we choose c1 < 1 and c0(1 − c1)2 > 1 +3, we have +Pr +� +� +� +c0T 2/3 +� +k=1 +� +X(c0(2i)T 2/3+k) +j +− X(c0(2i+1)T 2/3+k) +j +� +> c0c1T 1/3 log(T 2) +� +� +� +≥ 1 − exp +� +−2 log(T 2) +� +c0T 2/3E[Z] − c0c1T 1/3�2 +4c0T 2/3 +� +≥ 1 − exp +� +−2 log(T 2) +� +c0T 1/3 − c0c1T 1/3�2 +4c0T 2/3 +� +≥ 1 − exp +� +−c0(1 − c1)2 log(T 2) +2 +� +≥ 1 − T −c0(1−c1)2 +≥ 1 − 1 +T . +Taking the union bound for all X and X′, with probability at least 1 − +�n−1 +2 +� 1 +T 2 , the edge X′ → X with θ∗ +X′,X will be +identified and added to the estimated graph G′. Also, assume Xi is not an ancestor of Xj, then +E[Xj | do(Xi = 1)] − E[Xi | do(Xi = 0)] = 0. +Thus the element X(c0(2i)T 2/3+k) +j +− X(c0(2i+1)T 2/3+k) +j +is an i.i.d sample of Z′ = Xj |do(Xi=1) −Xj |do(Xi=0) with +E[Z′] = 0. Thus by Hoeffding’s inequality, +Pr +� +� +� +c0T 2/3 +� +k=1 +� +X(c0(2i)T 2/3+k) +j +− X(c0(2i+1)T 2/3+k) +j +� +> c0c1T 1/3 log(T 2) +� +� +� +≤ exp +� +−2 log(T 2) +� +c0T 2/3E[Z] − c0c1T 1/3�2 +4c0T 2/3 +� +≤ exp +� +−c0c2 +1 log T +� +≤ T −c0c2 +1 +≤ 1 +T . +and then with probability at least 1 − +�n−1 +2 +� 1 +T , we will not add the edge X′ → X in the graph G. Combining these two +facts, we complete the proof. + +Combinatorial Causal Bandits without Graph Skeleton +C.2. Proof of Lemma 4 +For each node X, consider the estimated possible parent Pa′(X), then our observation V t,X ∈ {0, 1}Pa′(X) are the values +of Pa′(X). Since we have θ′ that +E[Xt | V t,X] = θT +t,XV t,X. +(18) +Thus applying Lemma 1 in (Li et al., 2020), we can have +|θ′ +X − θ′ +t,X|Mt,X ≤ +� +n log(1 + tn) + 2 log(1/δ) + √n. +(19) +C.3. Proof of Lemma 5 +Note that M represents the model with true graph G and true weights θ, and M ′ represents the model with estimated graph +G′ and estimated weights M ′, then difference +|θ′ +Xi,X − θXi,X| ≤ nr +(20) +Now we construct a auxillary model M ′′, which has graph G′ and weights θ on it. The parent of X in model M Pa′′(X) is +equivalent to Pa′(X). Then we prove the following two claims: +Claim 1. |EM[Y | do(S = 1)] − EM ′′[Y | do(S = 1)]| ≤ n2r. +Proof. Let the topological order be X1, X2, · · · , Xn. First, EM[X1 | do(S)] − EM ′′[X1 | do(S)] = 0 ≤ nr because +X1 is always 1. Assume Xq+1 /∈ S EM[Xi | do(S)] − EM ′′[Xi | do(S)] ≤ qnr for all i ≤ q, then if Xq+1 ∈ S, +EM[Xq+1 | do(S)] − EM ′′[Xq+1 | do(S)] = 0 ≤ (q + 1)nr holds trivially. Thus now we assume Xq+1 /∈ S. +EM[Xq+1 | do(S)] − EM ′′[Xq+1 | do(S)] += EM +� +� +� +Xi∈Pa(Xq+1) +θXi,Xq+1Xi +�����do(S) +� +� − EM ′′ +� +� +� +Xi∈Pa′′(Xq+1) +θXi,Xq+1Xi +�����do(S) +� +� += +� +Xi∈Pa′′(Xq+1) +θXi,Xq+1(EM[Xi | do(S)] − EM ′′[Xi | do(S)])+ +� +Xi∈Pa(Xq+1)\Pa′′(Xq+1) +θXi,Xq+1EM[Xi | do(S)] +≤ +� +Xi∈Pa(Xq+1) +θXi,Xq+1qnr + rn +≤ (q + 1)nr +where the first equality follows the definition of linear model, the second equality is because θ′ +X′,X = 0 if X′ is not a true +parent of X in G. The third inequality is derived by induction, and the last inequality is because ∥θX′,Xq+1∥1 ≤ 1. +Claim 2. |EM ′[Y | do(S = 1)] − EM ′′[Y | do(S = 1)]| ≤ n3r. +Proof. First, EM[X1 | do(S)] − EM ′′[X1 | do(S)] = 0 ≤ n2r Then similarly, assume EM[Xi | do(S)] − EM ′′[Xi | + +Combinatorial Causal Bandits without Graph Skeleton +do(S)] ≤ qn2r for all i ≤ q and Xq+1 /∈ S. Then +EM ′[Xq+1 | do(S)] − EM ′′[Xq+1 | do(S)] += EM ′ +� +� +� +Xi∈Pa′(Xq+1) +θ′ +Xi,Xq+1Xi +�����do(S) +� +� − EM ′′ +� +� +� +Xi∈Pa′′(Xq+1) +θXi,Xq+1Xi +�����do(S) +� +� += +� +Xi∈Pa′′(Xq+1) +θ′ +Xi,Xq+1EM ′[Xi | do(S)] − θXi,Xq+1EM ′′[Xi | do(S)] += +� +Xi∈Pa′′(Xq+1) +(θ′ +Xi,Xq+1 − θXi,Xq+1)EM ′[Xi | do(S)]+ +� +Xi∈Pa′′(Xq+1) +θXi,Xq+1(EM ′[Xi | do(S)] − EM ′′[Xi | do(S)]) += n2r + n2qr +≤ (q + 1)n2r. +where the first equality follows the definition, the second equality is because Pa′(X) = Pa′′(X) for any node X. The +fourth inequality derived from induction , inequality (20) and Xi ∈ [0, 1]. By induction, we complete the proof. +Now we prove the Lemma 5: +Proof. Combining Claim 1 and Claim 2, we have +EM[Y | do(S)] − EM ′[Y | do(S)] ≤ n2(n + 1)r. +(21) +C.4. Proof of Theorem 3 +Proof. Denote the original model and estimated model as M and M ′ The initialization phase will lead to regret at most +T0 = 16(n − 1)T 2/3. At Iterative phase, denote the optimal action to be do(S∗ = 1), by Lemma 3 and the guarantee of +BLM-LR, with probability at least 1 − (n − 1)(n − 2) 1 +T +T +� +t=1 +EM[Y | do(S∗ = 1)] − EM[Y | do(St = 1)] += +T +� +t=1 +((EM[Y | do(S∗ = 1)] − EM ′[Y | do(S∗ = 1)]) + (EM ′[Y | do(S∗ = 1)] − EM ′[Y | do(St = 1)])) +≤ T0 + +T +� +t=T0+1 +n2(n + 1)T −1/3 + +T +� +t=T0+1 +(EM ′[Y | do(S∗ = 1)] − EM ′[Y | do(St = 1)]) +≤ T0 + n2(n + 1)T 2/3 + cn2� +nT log T += O((n3T 2/3 + n3√ +T) log T) += O(n3T 2/3 log T), +where the first inequality is derived from Lemma 5, and the second inequality is the guarantee of BLM-LR in Theorem 3 of +(Feng & Chen, 2023). +Thus the total regret will be bounded by +R(T) ≤ (n − 1)(n − 2) +T +· T + O((n3T 2/3) log T) += O((n3T 2/3) log T). +The first inequality is because our regret have an upper bound T. + +Combinatorial Causal Bandits without Graph Skeleton +C.5. Proof of Theorem 1 +Proof. Consider the causal bandit instances Ti with parallel graph (E = {Xi → Y, 1 ≤ i ≤ n}.) and A = {do(), do(X = +x), do(X = x)} for all node X, x ∈ {0, 1}, x ∈ {0, 1}n be all observation, atomic intervention and actions that intervene +all nodes. +For T1, we assume Xi are independent with each other and P(Xi = 1) = P(Xi = 0) = 0.5. Define +P(Y = 1) = +� +0.5 + ∆ +if X1 = X2 = · · · = Xn = 0 +0.5 +otherwise +Then for Ti, 2 ≤ i ≤ 2n, consider the binary representation of i − 1 as +¯ +b1b2 · · · bn. Then assume Xi are independent with +each other and P(Xi = 1) = 0.5, and define +P(Y = 1) = +� +� +� +� +� +0.5 + ∆ +if X1 = X2 = · · · = Xn = 0 +0.5 + 2∆ +if Xj = bj for all 1 ≤ j ≤ n +0.5 +otherwise +Now in Ti, do +� +X = b1b2 · · · bn +� +is the best action, and other actions will lead to at least ∆ regret. +Denote Ta(t) for action a ∈ A as the number of times taking a until time t. To simplify the notation, we denote ai as +do(X = x), where x is the binary representatino of i − 1, {b1, b2, · · · , bn}. Then for instances T1 and Ti, we have +ET1[R(t)] ≥ PT1(Ta1(t) ≤ t/2)t∆ +2 , +ETi[R(t)] ≥ PTi(Ta1(t) > t/2)t∆ +2 +Thus +ET1[R(t)] + ETi[R(t)] > t∆ +2 (PT1(Ta1(t) ≤ t/2) + PTi(Ta1(t) > t/2)) +≥ t∆ +4 exp (−KL(PT1, PTi)) +Now we need to bound KL(PTi, PT1). +KL(PT1, PTi) ≤ +� +a∈A +ET1[Ta(t)]KL(PT1(X, Y | a)∥PTi(X, Y | a)) +(22) += +� +a∈A +ET1[Ta(t)]KL(PT1(Y | a)∥PTi(Y | a)) +(23) +≤ ET1[Tai(t)] · KL(0.5∥0.5 + 2∆) + +� +a=do(Xi=x),do() +ET1[Ta(t)] · KL(0.5∥0.5 + +∆ +2n−2 ) +(24) +≤ ET1[Tai(n)] · 2∆2 + t · +∆2 +22n−3 . +(25) +where (24) is because for a = do(Xi = x) or a = do(), P(Y | do(a)) ≥ 0.5 in T1, and P(Y | do(a)) ≤ 0.5 + +2∆ +2n−1 = +0.5 + +∆ +2n−2 in Ti. Now we choose +i = argmin +j>1 +ET1[Taj(t)], +(26) +then we have +ET1[Ta1(t)] ≤ +T +2n − 1. +(27) + +Combinatorial Causal Bandits without Graph Skeleton +Then by (25), choosing ∆ = +� +2n−1 +3t , we have +KL(PT1, PTi) ≤ 2t∆2 +2n − 1 + t∆2 +22n−3 ≤ t∆2 · +3 +2n − 1 = 1 +(28) +Thus +ET1[R(t)] + ETi[R(t)] ≥ t∆ +4 exp (−KL(PT1, PTi)) +≥ t∆ +4e +≥ +� +(2n − 1)t +4 +√ +3e +≥ +√ +2nt +8e . +Then max{ET1[R(t)], ETi[R(t)]} ≥ +√ +2nt +16e . We complete the proof when t ≥ 16(2n−1) +3 +. +Now suppose t ≤ 16(2n−1) +3 +, choose ∆ = 1 +4, then based on (25) and (27), we have +KL(PT1, PTi) ≤ +t +8(2n − 1) + +t +22n+1 +≤ 2 +3 + 16 +3 · 2n − 1 +22n+1 +≤ 1. +Then we have +ET1[R(t)] + ETi[R(t)] ≥ t∆ +4 exp (−KL(PT1, PTi)) +≥ t∆ +4e +≥ +t +16e, +and max{ET1[R(t)], ETi[R(t)]} ≥ +t +32e. +D. General Causal Bandits without Graph Structure +In this section, we only consider the atomic intervention, and provide an algorithm to solve causal bandits with the graph +skeleton on binary model. We only consider the atomic intervention setting. An atomic intervention is do(X = x), where +X is a node of graph G and x ∈ {0, 1}. +D.1. General Causal Bandit Algorithms +We first provide the positive results, which provides an algorithm to improve the sample complexity comparing to applying +the multi-armed bandit approach directly. +At each iteration we try to recover the edges’ direction in parallel using sub-procedure ”RECOVER-EDGE(a)” for a ∈ A. +For action a = do(X = x), this sub-procedure first performs two interventions do(X = 1) and do(X = 0), then chooses +an undirected edge (X, X′) corresponding to X (if exists), and then perform do(X′ = 1), do(X′ = 0). The goal of these +operations is to estimate the difference between P(X = 1 | do(X′ = 0)) and P(X = 1 | do(X′ = 1)), and also the +difference between P(X′ = 1 | do(X = 0)), P(X′ = 1 | do(X = 0)). which decides whether X′ → X or X → X′. +By this sub-procedure in parallel, the algorithm estimate the model and recover the edges’ direction simultaneously and +adaptively. To measure the difficulty for identified the direction of edges, for e : X → X′ we define +ce = P(X′ = 1 | do(X = 1)) − P(X′ = 1 | do(X = 0)) +(29) +ca = cX = +min +e:X→X′ ce. +(30) + +Combinatorial Causal Bandits without Graph Skeleton +Algorithm 7 Causal-PE-unknown(G, A, ε, δ) +1: Initialize t = 1, Ta(0) = 0, ˆµa = 0 for all arms a ∈ A, Aknown = ∅ +2: for t = 1, 2, · · · , do +3: +at−1 +h += argmaxa∈A ˆµt−1 +a +4: +at−1 +l += argmaxa∈A\at−1 +h +(U t−1 +a +) +5: +if Uat−1 +l +≤ Lat−1 +h ++ ε then +6: +Return at−1 +h +7: +end if +8: +Perform do() operation and observe Xt and Yt. For a = do(), Ta(t) = Ta(t−1)+1, Da(t) = Da(t−1), ra,∅(t) = +1 +Ta(t) +�t +j=1 Yj, pa,∅(t) = 1. +9: +for a = do(X = x) ∈ Aknown do +10: +Ta,z(t) = Ta,z(t − 1) + I{Xt = x, P = z}, Ta(t) = minz{Ta,z(t)}, where P = Pa(X). Da(t) = Da(t − 1). +11: +Update ra,z(t) = +1 +Ta,z(t) +�t +j=1 I{Xj = x, P j = z}Yj. +12: +Update pa,z(t) = 1 +t +�t +j=1 I{P j = z}. +13: +Estimate ˆµO,a(t) = � +z ra,z(t)pa,z(t) and calculate [Lt +O,a, U t +O,a]by (34) and (35). +14: +end for +15: +RECOVER-EDGE(at−1 +h +). +16: +RECOVER-EDGE(at−1 +l +). +17: +Update empirical mean ˆµI,a(t) using interventional dataand interventional confidence bound [Lt +I,a, U t +I,a] +18: +Update confidence bound [Lt +a, U t +a] by (33), ˆµa = (Lt +a + U t +a)/2, for each arm a. +19: end for +ce measure the difficulty for distinguishing the direction for an edge, and ca = cX represents the hardness for discovering +all directions corresponding to X and its childs. +The main Algorithm 7 is followed from (Xiong & Chen, 2023). During the algorithm, we add ”RECOVER-EDGE” +sub-procedure to identify the directions of the unknown edges. This sub-procedure first perform intervention do(X = 0) +and do(X = 1) on the node X. Then if there is an edge (X′, X) which direction has not been identified, it chooses one such +edge and perform do(X′ = 1) and do(X′ = 0). Then it constructs the confidence bound for all P(X′ = 1 | do(X = 1)), +P(X′ = 1 | do(X = 0)), P(X = 1 | do(X′ = 1)) and P(X = 1 | do(X′ = 0)) based on Hoeffding’s concentration +bound. In fact, assume there are Da(t) samples for a = do(X′ = x), x ∈ {0, 1} until round t, then the confidence bound +for X conditioning on do(X′ = x) is defined by +[LX|do(X′=x), UX|do(X′=x)] = +� +ˆP(X = 1 | do(X′ = x)) − +� +2 +Da(t) log 4n2t2 +δ +, ˆP(X = 1 | do(X′ = x)) + +� +2 +Da(t) log 4n2t2 +δ +� +, +(31) +where n is the number of nodes, and ˆP(X = 1 | do(X′ = x)) are the empirical mean of P(X = 1 | do(X′ = x)) using +all these Da(t) samples for do(X′ = x). Other confidence bounds define in this way similarly. +Moreover, at iteration t, Line 4-Line 6 first choose two actions at−1 +h +and at−1 +l +through LUCB1 algorithm. Then, we use +Aknown to represent all nodes actions do(X = x) where all the edges corresponding to X are identified. In fact, if all the +edges corresponding to X are identified, we can find the true parent set Pa(X). Then we can use do-calculus to estimate +the causal effect: +E[Y | do(X = x)] = +� +z +P(Y | X = x, Z = z)P(Z = z). +(32) +Line 9-14 enmurates all these actions, and calculate corresponding confidence bound. The confidence bound is calculated by +[Lt +a, U t +a] = [Lt +O,a, U t +O,a] ∩ [Lt +I,a, U t +I,a], +(33) +where the first term [Lt +O,a, U t +O,a] = (−∞, ∞) for a = do(X = x) if the parents of X are not sure at time t. In fact, if we +do not discover all the edges corresponding to X, we cannot estimate the causal effect E[Y | do(X = x)] using do-calculus. + +Combinatorial Causal Bandits without Graph Skeleton +Algorithm 8 RECOVER-EDGE(a) +1: if a = do() then +2: +Return. +3: else +4: +Assume a = do(X = x). Sample action do(X = 1), do(X = 0). +5: +Da′(t) = Da′(t) + 1 for a′ = do(X = 1) and a′ = do(X = 0). +6: +Estimate P(X′ = 1 | do(X = 1)) and P(X′ = 1 | do(X = 0)) using interventional data for neighbor X′, where +the direction of (X′, X) is unknown. +7: +Update the confidence bound [LX′|do(X=1), UX′|do(X=1)] and [LX′|do(X=0), UX′|do(X=0)] by (31). +8: +if [LX′|do(X=1), UX′|do(X=1)] ∩ [LX′|do(X=0), UX′|do(X=0)] = ∅ then +9: +recover X → Xi. +10: +end if +11: +if ∃X′ such that (X′, X) is unknown then +12: +Choose one such X′ and perform do(X′ = 1) and do(X′ = 0). +13: +Estimate P(X = 1 | do(X′ = 0)) and P(X = 1 | do(X′ = 1)) using interventional data. +14: +Update the confidence bound [LX|do(X′=1), UX|do(X′=1)] and [LX|do(X′=0), UX|do(X′=0)] by (31). +15: +if [LX|do(X′=1), UX|do(X′=1)] ∩ [LX|do(X′=0), UX|do(X′=0)] = ∅ then +16: +recover X → Xi. +17: +end if +18: +Da′(t) = Da′(t) + 1 for a′ = do(X′ = 1) and a′ = do(X′ = 0). +19: +end if +20: end if +For nodes which parent set is identified, we calculate +[Lt +O,a, U t +O,a] = [ˆµO,a(t) − βO,a(t), ˆµO,a(t) + βO,a(t)], [Lt +I,a, U t +I,a] = [ˆµI,a(t) − βI,a(t), ˆµI,a(t) + βI,a(t)] +(34) +The term ˆµO,a is calculated by estimating all terms at the right side of (32) empirically, and confidence radius is given by +βO,a(t) = +� +12 +Ta(t) log 16n2Zat3 +δ +, βI,a(t) = 2 +� +1 +Da(t) log 2n log(2t) +δ +(35) +Similar to the (Xiong & Chen, 2023), we can prove it is a valid confidence radius, which means that the true effect µO,a will +fall into the confidence bound [Lt +O,a, U t +O,a] with a high probability. +Line 15-16 try to recover the edge for action chosen by LUCB1 algorithm. At the end of this iteration, the algorithm updates +all parameters and confidence bounds. +To represent the complexity result, we first provide the definition of gap-dependent threshold in (Xiong & Chen, 2023): For +a = do(X = x) and one possible configuration of the parent z ∈ {0, 1}|Pa(X)|, define qa,z = P(X = x, Pa(X) = z) +and qa = minz{qa,z}. Then sort the arm set as qa1 · max{∆a1, ε/2}2 ≤ qa2 · max{∆a2, ε/2}2 ≤ · · · ≤ qa|A| · +max{∆a|A|, ε/2}2. Recall that ∆a = µ∗ − µa is the reward gap between the optimal reward and the reward of action a. +Then Hr is defined by +Hr = +r +� +i=1 +1 +max{∆ai, ε/2}2 . +(36) +Definition 1 (Gap-dependent observation threshold((Xiong & Chen, 2023))). For a given causal graph G and its associated +qa’s and ∆a’s, the gap-dependent observation threshold mε,∆ is defined as: +mε,∆ = min +� +τ : +����� +� +a ∈ A +�����qa max {∆a, ε/2}2 < +1 +Hτ +������ ≤ τ +� +. +Denote action set S = {a ∈ A : qa max{∆a, ε/2}2 < +1 +Hmε,∆ } are all actions which qa is relatively small, then |S| ≤ mε,∆. +Intuitively, action a with smaller qa are harder to be estimated by observation: If we assume qa = qa,z for a fixed vector z, + +Combinatorial Causal Bandits without Graph Skeleton +then P(X = x, Pa(X) = z) is hard to observe and estimate by empirical estimation. Thus S contains all actions that are +relatively hard to observe, so it is more efficient to estimate µa by intervention for a ∈ S. Based on this definition, we can +provide the final sample complexity result: +Theorem 6. Denote H = � +a∈S +1 +max{∆a,ε/2}2 + � +a/∈S min{ +1 +max{∆a,ε/2}2 , 1 +c2a + � +e:X′→X +1 +c2e }. With probability 1 − 4δ, +Algorithm 7 will return a ε-optimal arm with sample complexity bound at most +T = O +� +H log +�nZH +δ +�� +, +where ce, ca is defined in (29) and (30). +The result can be explained in an intuitive way. The first term of H is the summation of all actions in S. As we discussed +above, it is more efficient to estimate the µa with intervention for a ∈ S. Thus, this summation can be regarded as the +sample complexity applying multi-armed bandit algorithm (e.g. LUCB1) directly. The second term is to estimate the actions +by observation. For each action a = do(X = x) with larger qa, we can first identify the edge’s direction corresponding to +the node X, and then using do-calculus to estimate the reward. The term +1 +c2a + � +e:X′→X +1 +c2e represents the complextity +to identify the directions, and the complexity for using do-calculus can be contained in the first term � +a∈S +1 +max{∆a,ε/2}2 +because of the definition of gap-dependent observation threshold. Also, the term min{ +1 +max{∆a,ε/2}2 , 1 +c2a + � +e:X′→X +1 +c2e } +is because when we are discovering the edges’ direction, if the reward can be estimated by intervention accurately, we +turn to use interventional estimation and give up the causal discovery for this node. The detailed proof can be found in the +Section D.2. +Even if these two mechanisms can reduce the sample complexity, at the worst case the complexity also degenerates to +O(n/ε2), which is equal to the complexity for multi-armed bandit. We provide a lower bound to show that this problem +cannot be avoided. +Theorem 7 (Lower bound). Consider causal bandits with only essential graph and atomic intervention, for any (ε, δ)−PAC +algorithm, there is a bandit instance with expected sample complexity Ω( n +ε2 log(1/δ)) even if we have all observational +distribution P(X, Y ). +Theorem 7 states that even if we receive all observational distribution, which shows the intrinsic hardness for unknown +graph. Indeed, the proof of lower bound shows that the unknown direction will lead to different interventional effects even +when the observational distribution are the same, leading to a unavoidable hardness. +D.2. Proof of Theorem 6 +First, fixed an action a = do(Xi = x), z ∈ {0, 1}|Pa(X)| , then Ta,z(t) = �t +j=1 I{Xj,i = x, Pa(Xi)j = z} and the +empirical mean ˆqa,z(t) = Ta,z(t)/t. Then denote 2|Pa(X)| = Za, if qa,z(t) ≥ 6 +t log(2nZa/δ), with probability at least +1 − +δ +2nZa , we can have +|ˆqa,z(t) − qa,z(t)| < +� +6qa,z(t) +t +log +�2nZa +δ +� +Hence +ˆqa(t) = min +z {ˆqa,z(t)} ≤ min +z {qa,z + +� +6qa,z +t +log 2nZa +δ +} = qa + +� +6qa +t +log 2nZa +δ +. +(37) +When qa ≥ 3 +t log 2nZa +δ +, f(x) = x − +� +6x +t log 2nZa +δ +is a increasing function. +ˆqa(t) ≥ min +z {qa,z − +� +6qa,z +t +log 2nZa +δ +} = qa − +� +6qa +t +log 2nZa +δ +. +(38) +So define the event as +E1(t) = +� +∀a ∈ A with t ≥ 6 +qa +log +�2nZa +δ +� +, |ˆqa(t) − qa| ≤ +� +6qa +t +log +�2nZa +δ +�� + +Combinatorial Causal Bandits without Graph Skeleton +then Pr{Ec +1(t)} ≤ δ, where Ec means the complement of the event E. +Now we consider the concentration bound. First, by classical anytime confidence bound, with probability at least 1 − +δ +2n, +for any time Da(t) ≥ 1 +|ˆµI,a(t) − µI,a| < 2 +� +1 +Da(t) log +�2n log(2Da(t)) +δ +� +≤ 2 +� +1 +Da(t) log +�2n log(2t) +δ +� +Thus define the event as +E2 = +� +∀t, a, |ˆµI,a(t) − µI,a| < 2 +� +1 +Da(t) log +�2n log(2t) +δ +�� +, +then Pr{Ec +2} ≤ δ. +Consider the observational confidence bound. First, if a /∈ Aknown, [Lt +O,a, U t +O,a] = (−∞, ∞) and then the ˆµO,a(t) ∈ +[Lt +O,a, U t +O,a]. Now we consider that if a = do(X = x) ∈ Aknown and the parent of X is P . By Hoeffding’s inequality, +with probability at least 1 − δ/16n2Zat3, for a = do(X = x), +|ra,z(t) − P(Y = 1 | X = x, P = z)| > +� +1 +2Ta,z(t) log 16n2Zat3 +δ +(39) +Also, by Chernoff’s inequality, since qa ≤ P(P = z) for all z ∈ {0, 1}|P |, when t ≥ +6 +qa log +� +16n2Zat3 +δ +� +with probability +at least 1 − δ/16n2Zat3 we will have +|pa,z(t) − P(P = z)| > +� +6P(P = z) +t +log 16n2Zat3 +δ +, +(40) +then +ˆµO,a = +� +z +ra,z(t) · pa,z(t) +≤ +� +z +P(Y = 1 | X = x, P = z)pa,z(t) + +� +z +pa,z(t) +� +1 +2Ta,z(t) log 16n2Zat3 +δ +≤ +� +z +P(Y = 1 | X = x, P = z)pa,z(t) + +� +1 +2Ta(t) log 16n2Zat3 +δ +≤ +� +z +P(Y = 1 | X = x, P = z)P(P = z) + +� +z +� +6P(P = z) +t +log 16n2Zat3 +δ ++ +� +1 +2Ta(t) log 16n2Zat3 +δ +≤ µa + +� +6Z +t log 16n2Zat3 +δ ++ +� +1 +2Ta(t) log 16n2Zat3 +δ +≤ µa + +� +6 +Ta(t) log 16n2Zat3 +δ ++ +� +1 +2Ta(t) log 16n2Zat3 +δ +, += µa + +� +8 +Ta(t) log 16n2Zat3 +δ +. +Also, if t ≤ +6 +qa log 16n2Zat3 +δ +, first by Chernoff inequality, set Q = +6 +qa log 16n2Zat3 +δ +, then with probability at least 1 − +δ/16n2Zat3, we have +ˆqa(Q) ≤ 2qa. +(41) + +Combinatorial Causal Bandits without Graph Skeleton +by E1(Q). +Ta(t) ≤ Ta(Q) ≤ ˆqa(Q) · Q ≤ 2qa · Q = 12 +qa +log 16n2Zat3 +δ +. +Then +� +12 +Ta(t) log 16n2Zat3 +δ +≥ 1 and the inequality +|ˆµO,a(t) − µO,a| ≤ +� +12 +Ta(t) log 16n2Zat3 +δ +also holds. Thus we define the event +E3 = +� +∀a, t, |ˆµO,a(t) − µO,a| ≤ +� +12 +Ta(t) log 16n2Zat3 +δ +� +then by taking the union bound of (39), (40) and (41), +Pr{Ec +3} ≤ +∞ +� +t=1 +� +a∈A +� +z +3 · +δ +16n2Zat3 +≤ +∞ +� +t=1 +δ +4t3 +≤ δ. +Now we consider how to bound our sample complexity based on events E1, E2 and E3. First, we provide the following +lemma in (Xiong & Chen, 2023): +Lemma 10 (Lemma 6 in (Xiong & Chen, 2023)). Under the event E1, E2 and E3, at round t, if we have +βat +h(t) ≤ +max{∆at +h, ε/2} +4 +, βat +l(t) ≤ +max{∆at +l, ε/2} +4 +, +where at +h, at +l are the actions performed by algorithm at round t. then the algorithm will stop at round t + 1. +Now assume the algorithm does not terminate at T1 = 192H log(nZT 3 +1 /δ), where Z = maxa Za. For a ∈ S, Da(t). Note +that H ≥ Hmε,∆. Thus at round T1, for action a with qa ≥ +1 +Hmε,∆·max{∆a,ε/2}2 ≥ 192 +T1 log 16nZaT 3 +1 +δ +, if a ∈ Aknown, then +under event E1(T1), we have +ˆqa(T1) ≥ qa − +� +6qa +T1 +log 16nZaT 3 +1 +δ +≥ qa +2 . +Then +βa(T1) ≤ βO,a(T1) = +� +12 +Ta(T1) log 16n2Zat3 +δ +≤ +� +12qa +2T1 +≤ max{∆a, ε/2}2 +4 +. +Now we prove that if Da(t) is large for some a, then a ∈ Aknown. +Lemma 11. With probability at least 1 − δ, denote Ca = +1 +c2a + � +e:X′→X +1 +c2e . If Da(t) ≥ 32Ca log(4n2t2/δ), a ∈ Aknown. +Proof. If Da(t) ≥ 8Ca log t, we have called sub-procedure RECOVER-EDGE(a) for Da(t) times. Then, for each edge +e : X → X′, we will perform intervention do(X = 1), do(X = 0) for at least Da(t) times and observe the empirical + +Combinatorial Causal Bandits without Graph Skeleton +difference | ˆP(X′ | do(X = 1)) − ˆP(X′ | do(X = 0))|. By Hoeffding’s inequality and union bound on all time t and the +�n−1 +2 +� +ordered-pair (X′, X), with probability at least 1 − δ, for all t ∈ [T] and all X′, X we have +| ˆP(X′ | do(X = 1)) − P(X′ | do(X = 1))| ≤ +� +2 +Da(t) log 4n2t2 +δ +| ˆP(X′ | do(X = 0) − P(X′ | do(X = 0))| ≤ +� +2 +Da(t) log 4n2t2 +δ +Then for the confidence bounds +[LX′|do(X=1), UX′|do(X=1)] = +� +ˆP(X′ | do(X = 1)) − +� +2 +Da(t) log 4n2t2 +δ +, ˆP(X′ | do(X = 1)) + +� +2 +Da(t) log 4n2t2 +δ +� +[LX′|do(X=0), UX′|do(X=0)] = +� +ˆP(X′ | do(X = 0)) − +� +2 +Da(t) log 4n2t2 +δ +, ˆP(X′ | do(X = 0)) + +� +2 +Da(t) log 4n2t2 +δ +� +the intersection +[LX′|do(X=1), UX′|do(X=1)] ∩ [LX′|do(X=0), UX′|do(X=0)] = ∅ +since +| ˆP(X′ | do(X = 1) − ˆP(X′ | do(X = 0))| +≥|P(X′ | do(X = 1) − P(X′ | do(X = 0))| − |P(X′ | do(X = 1) − ˆP(X′ | do(X = 1))| +− |P(X′ | do(X = 0) − ˆP(X′ | do(X = 0))| +≥ca − 2 +� +2 +Da(t) log 4n2t2 +δ +≥2 +� +2 +Da(t) log 4n2t2 +δ +. +where we use Da(t) ≥ +1 +c2a log 4n2t2 +δ +. Then the edge’s direction will be identified correctly. +Consider the edge e : X′ → X, then if we sample do(X′ = 1) and do(X′ = 0) for 1 +c2e log 4n2t2 +δ +times within sub-procedures +RECOVER-EDGE(a), similarly we will identify the edge X′ → X. Then because the RECOVER-EDGE(a) will perform +intervention do(X′ = 0) and do(X′ = 1) for the X′ that the direction of (X′, X) has not been discovered each time, after +� +e:X′→X +1 +c2e log 4n2t2 +δ +. +Then we define +E4 = {Lemma 11 holds} +Then Pr{Ec +4} ≤ δ. Also, under the event E2, the following lemma shows that if Da(t) is really large, we can estimate the +µa accurately. +Lemma 12. Under event E2, if Da(t) ≥ +64 +max{∆a,ε/2}2 log 16n2Zat3 +δ +, then +βa(T1) ≤ max{∆a, ε/2}2 +4 +. +Proof. In fact, +βa(t) ≤ βI,a(t) = 2 +� +1 +Da(t) log +�2n log(2t) +δ +� +≤ 2 +� +1 +Da(t) log 16n2Zat3 +δ +≤ max{∆a, ε/2}2 +4 +. + +Combinatorial Causal Bandits without Graph Skeleton +Now we turn to our main result. From the Lemma 10, at least one arm a with βa(t) ≥ max{∆a,ε/2} +4 +will be performed an +intervention at each round t ≥ T1. Under the event E1, E2, E3 and E4, these interventions will only performed in two types +of action a: +• qa ≤ +1 +Hmε,∆·max{∆a,ε/2}2 and Da(t) ≤ +64 +max{∆a,ε/2}2 log 16n2Zat3 +δ +. +• Da(t) ≤ min{MCa log(t), +64 +max{∆a,ε/2}2 log 16n2Zat3 +δ +}. +Note that qa ≤ +1 +Hmε,∆·max{∆a,ε/2}2 implies that a ∈ S, then after at most T2 rounds, where +T2 = 64 +�� +a∈S +1 +max{∆a, ε/2}2 + +� +a/∈S +min +� +1 +max{∆a, ε/2}2 , 1 +c2a ++ +� +e:X′→X +1 +c2e +�� +log 16n2ZT 3 +2 +δ += 64H log 16n2ZT 3 +2 +δ +the algorithm should terminates. The fist term is the summation of all actions in S, and the second term is for the second +type of actions, which Da(t) ≤ min{MCa log(t), +64 +max{∆a,ε/2}2 log 16n2Zat3 +δ +}. Denote T = T1 + T2, then +T = T1 + T2 ≤ 256H log 16n2ZT 3 +δ +≤ 768H log 16nZT +δ +Then by the Lemma 13, with probability at least 1 − 4δ, the sample complexity has the upper bound +T = O +� +H log +�nZH +δ +�� +Replace δ to δ/4, we derive the sample complexity in the Theorem 6. The correctness of algorithm can be derived by +LUCB1 algorithm. We provide a short argument here. Because the stopping rule is ˆµt +at +l + βat +l(t) ≤ ˆµt +at +h − βat +h(t) + ε, if +a∗ ̸= at +h, we have +µat +h + ε ≥ ˆµat +h − βat +h(t) + ε ≥ ˆµat +l + βat +l(t) ≥ ˆµa∗ + βa∗(t) ≥ µa∗. +Hence either a∗ = at +h or at +h is ε-optimal arm. +D.3. Proof of Lemma 10 +For completeness, we provide the proof in (Xiong & Chen, 2023). +Proof. If the optimal arm a∗ = at +h, +ˆµat +l + βat +l(t) ≤ µat +l + 2βat +l(t) +≤ µat +l + +max{∆at +l, ε/2} +2 +≤ µat +h − ∆at +l + +max{∆at +l, ε/2} +2 +≤ ˆµat +h + βa∗(Ta∗(t)) − ∆at +l + +max{∆at +l, ε/2} +2 +≤ ˆµat +h − βa∗(Ta∗(t)) + +max{∆a∗, ε/2} + max{∆at +l, ε/2} +2 +− ∆at +l +≤ ˆµat +h − βa∗(Ta∗(t)) + +∆a∗ + ε/2 + ∆at +l + ε/2 +2 +− ∆at +l +≤ ˆµat +h − βa∗(Ta∗(t)) + ε. + +Combinatorial Causal Bandits without Graph Skeleton +If optimal arm a∗ ̸= at +h, and the algorithm doesn’t stop at round t + 1, then we prove a∗ ̸= at +l. Otherwise, assume a∗ = at +l +ˆµt +at +h ≤ µt +at +h + +max{∆at +h, ε/2} +4 +(42) += µt +at +l − ∆at +h + +max{∆at +h, ε/2} +4 +(43) +≤ µt +at +l − +3∆at +h +4 ++ ε/4 +(44) +≤ ˆµt +at +l + max{∆a∗, ε/2} +4 +− +3∆at +h +4 ++ ε/4 +(45) +≤ ˆµt +at +l + ε/2 − +∆at +h +2 . +(46) +From the definition of at +h, we know ε > ∆at +h ≥ ∆a∗, βat +h(t) ≤ ε/4, βat +l(t) ≤ ε/4. Then ˆµt +at +l + βat +l(t) + βat +h(t) ≤ +ˆµat +l + ε/2 ≤ ˆµt +at +h + ε, which means the algorithm stops at round t + 1. +Now we can assume a∗ ̸= at +l, a∗ ̸= at +h. Then +µat +l + 2βat +l(t) ≥ ˆµat +l + βat +l(t) ≥ ˆµa∗ + βa∗(Ta∗(t)) ≥ µa∗ = µat +l + ∆at +l. +(47) +Thus +∆at +l ≤ 2βat +l(t) ≤ +max{∆at +l, ε/2} +2 +, +(48) +which leads to ∆at +l ≤ ε/2, βat +l(t) ≤ ε/8. Since +Also, +µat +h + βat +h(t) ≥ ˆµat +h ≥ ˆµat +l ≥ µa∗ − βat +l(t) = µat +h + ∆at +h − βat +l(t), +(49) +which leads to +max{∆at +h, ε/2} +4 +≥ ∆at +h − ε/8, +(50) +and ∆at +h ≤ ε/2, βat +h(t) ≤ ε/8. Hence ˆµt +at +l + βat +l(t) + βat +h(t) ≤ ˆµat +l + ε/2 ≤ ˆµt +at +h + ε, which means the algorithm stops at +round t + 1. +D.4. Proof of Theorem 7 +Proof. We construct n − 1 graphs with the same distribution P(X, Y ) but different causal graph. Indeed, We construct +the bandit instances {ξi}2≤i≤n as follows. For instance ξ2, the graph structure contains edge X1 → Y, X2 → X1, X1 → +Xi(3 ≤ i ≤ n) and X2 → Xi(3 ≤ i ≤ n). For instances ξi(3 ≤ i ≤ n), we change X1 → Xi to Xi → X1. The graph +structure are shown in the Figure 1 and Figure 2. +The observational distribution for all instance is: +P(X, Y ) = p1p2 · · · pn, +(51) +where +p1 = 0.5, +(52) +p2 = +� 0.5 + ε +x2 = x1 +0.5 − ε +x2 ̸= x1 +(53) +pi = +� 0.5 + 4ε +xi = x1 +0.5 − 4ε +xi ̸= x1 +. +(54) + +Combinatorial Causal Bandits without Graph Skeleton +Figure 1. Causal Bandits Instance τ2 +Figure 2. Causal Bandits Instance τi(i = 3) +It is easy to check that � +x,y P(X = x, Y = y) = 1 and P(Xi = 1) = 0.5. The action set is do(), do(Xi = 1), do(Xi = 0) +where 2 ≤ i ≤ n, which means the action set does not contain do(X1 = x) for x = 0, 1. +Now in ξ2, we consider P(Y = 1 | do(X2 = 1)). Actually, it is easy to show that P(Y = 1 | do(X2 = 1)) = P(X1 = 1 | +do(X2 = 1)) = 0.5 + ε. Similarly, P(Y = 1 | do(X2 = 0)) = 0.5 − ε. For other actions, P(Y = 1 | a) = P(X1 = 1 | +a) = 0.5 since other actions a will not influence the value of X1. +Now consider instance ξi for 3 ≤ i ≤ n. For action do() and do(Xj = x) with j ̸= 2, i, it will not influence the value of X1 +and then P(Y = 1 | a) = 0.5. Now consider action a = do(X2 = 1), we have +P(Y = 1 | do(X2 = 1)) = P(X1 = 1 | do(X2 = 1)) += P(X1 = 1 | X2 = 1) = 0.5 + ε. +Similarly, P(Y = 1 | do(X2 = 0)) = 0.5 − ε. + +X. ..Combinatorial Causal Bandits without Graph Skeleton +Now we calculate P(Y = 1 | do(Xi = 1)) in instance ξi. In fact, denote q = 0.5 + 4ε and by do-calculus, +P(X1 = 1 | do(Xi = 1)) = +� +x=0,1 +P(X1 = 1 | Xi = 1, X2 = x)P(X2 = x) += 0.5(P(X1 = 1 | Xi = 1, X2 = 0) + P(X1 = 1 | Xi = 1, X2 = 1) += 0.5 +�P(X1 = 1, Xi = 1, X2 = 0) +P(Xi = 1, X2 = 0) ++ P(X1 = 1, Xi = 1, X2 = 1) +P(Xi = 1, X2 = 1) +� += 0.5 +� +(0.5 + 4ε)(0.5 − ε) +(0.5 + 4ε)(0.5 − ε) + (0.5 − 4ε)(0.5 + ε) + +(0.5 + 4ε)(0.5 + ε) +(0.5 + 4ε)(0.5 + ε) + (0.5 − 4ε)(0.5 − ε) +� += 0.5 +� +q(0.5 − ε) +q(0.5 − ε) + (1 − q)(0.5 + ε) + +q(0.5 + ε) +q(0.5 + ε) + (1 − q)(0.5 − ε) +� += 0.5 +� +q(0.5 − ε) +0.5 − (2q − 1)ε + +q(0.5 + ε) +0.5 + (2q − 1)ε +� += q +� 0.52 − (2q − 1)ε2 +0.52 − (2q − 1)2ε2 +� +≤ q = 0.5 + 4ε. +Also, we prove that +q +� 0.52 − (2q − 1)ε2 +0.52 − (2q − 1)2ε2 +� +≥ 0.5 + 2ε. +Actually, this inequality is equal to +(0.5 + 4ε)(0.52 − 8ε3) ≥ (0.5 + 2ε)(0.52 − 8ε4) +⇐⇒ 1 ≥ 56ε3 + 8ε2 − 32ε4. +When ε is small enough, this inequality holds. In summary, we have +P(X1 = 1 | do(Xi = 1)) ∈ [0.5 + 2ε, 0.5 + 4ε]. +Similarly, we can get +P(X1 = 1 | do(Xi = 0)) = 0.5(P(X1 = 1 | Xi = 0, X2 = 1) + P(X1 = 1 | Xi = 0, X2 = 0)) += (1 − q) +� 0.52 − (1 − 2q)ε2 +0.52 − (1 − 2q)2ε2 +� +∈ [0.5 − 4ε, 0.5]. +Now in instance ξ2, the output action should be do(X2 = 1), while in instance ξi, the output action should be do(Xi = 1). +Now by Pinkser’s inequality, for an policy π, we have +2δ ≥ Pξ2(ao = do(Xi = 1)) + Pξi(ao ̸= do(Xi = 1)) ≥ exp(−KL(ξπ +2 , ξπ +i )). +Also, assume the stopping time as τ for the environment E, the KL divergence can be rewritten as +KL(ξπ +2 , ξπ +i ) = EAt∼ξπ +2 +� τ +� +t=1 +KL(Pξ2(Xt, Yt | At), Pξi(Xt, Yt | At)) +� +(55) += Eξπ +2 +� τ +� +t=1 +Pξ2(Xt, Yt | At) +� +log Pξ2(Xt, Yt | At) +Pξi(Xt, Yt | At) +�� +(56) += Eξπ +2 +� τ +� +t=1 +Pξ2(Xt,i, Xt,1 | At) +� +log Pξ2(Xt,i, Xt,1 | At) +Pξi(Xt,i, Xt,1 | At) +�� +(57) +where the last equation is derived as follows: +Pξ2(Xt, Yt | At) +Pξi(Xt, Yt | At) = Pξ2(Xt,i, Xt,1 | At) · Pξ2( ¯Xt,i, Yt | Xt,i, Xt,1, At) +Pξi(Xt,i, Xt,1 | At) · Pξi( ¯Xt,i, Yt | Xt,i, Xt,1, At) + +Combinatorial Causal Bandits without Graph Skeleton +where ¯Xt,i = Xt \ {Xt,i, Xt,1}. Now since ¯Xt,i is only decided by X1, X2 and X2 is only decided by At, then +Pξ2( ¯Xt,i, Yt | Xt,i, Xt,1, At) = Pξi( ¯Xt,i, Yt | Xt,i, Xt,1, At) +and then +Pξ2(Xt, Yt | At) +Pξi(Xt, Yt | At) = Pξ2(Xt,i, Xt,1 | At) +Pξi(Xt,i, Xt,1 | At) . +Note that only when At = do(Xi = 1), do(Xi = 0), Pξ2(Xt,i, Xt,1 | At) ̸= Pξi(Xt,i, Xt,1 | At). Then the equation (57) +can be further calculated as +(57) = +� +x=0,1 +Eξπ +2 +� τ +� +t=1 +I{At = do(Xi = x)} +� +· Pξ2(Xt,i, Xt,1 | do(Xi = x)) +� +log Pξ2(Xt,i, Xt,1 | do(Xi = x)) +Pξi(Xt,i, Xt,1 | do(Xi = x)) +� += +� +x=0,1 +Eξπ +2 +� τ +� +t=1 +I{At = do(Xi = x)} +� +· Pξ2(Xt,1 | do(Xi = x)) +� +log Pξ2(Xt,1 | do(Xi = x)) +Pξi(Xt,1 | do(Xi = x)) +� +≤ +� +x=0,1 +Eξπ +2 +� τ +� +t=1 +I{At = do(Xi = x)} +� � +0.5 · +� +log +0.5 +0.5 + 4ε + log +0.5 +0.5 − 4ε +�� +≤ +� +x=0,1 +Eξπ +2 +� τ +� +t=1 +I{At = do(Xi = x)} +� +96ε2 += 96ε2 · Eξπ +2 [N(do(Xi = 1)) + N(do(Xi = 0))]. +where the Eξπ +2 N(a) represents that the number of times taking action a for policy π under the instance ξ2. Now we have +Eξπ +2 [N(do(Xi = 1)) + N(do(Xi = 0))] ≥ KL(ξπ +2 , ξπ +i ) +96ε2 +≥ +1 +96ε2 log 1 +2δ . +Hence the stopping time τ under policy π can be lower bounded by +Eξπ +2 [τ] ≥ +n +� +i=3 +Eξπ +2 [N(do(Xi = 1)) + N(do(Xi = 0))] ≥ n − 2 +96ε2 log 1 +2δ = O +� n +ε2 log 1 +δ +� +. +D.5. Technical Lemma +Lemma 13. If T = CH log dT +δ for some constant C and parameter d such that d ≥ eδ, then T = O(H log Hd +δ ). +Proof. Let f(x) = +x +log(dx/δ), then for x ≥ 1 +f ′(x) = log(dx/δ) − 1 +log2 dx/δ +≥ 0 +because dx/δ > e. Then f(x) is non-decreasing for x ≥ 1. +To prove T = O(H log Hd +δ ), we only need to show that f(T) ≤ f(C′H log Hd +δ ) for some constant C′. Since +log C′Hd log Hd +δ +δ += log C′Hd +δ ++ log log Hd +δ +we only need to prove +f(C′H log Hd +δ ) = +C′H log Hd +δ +log C′Hd +δ ++ log log Hd +δ +≥ CH = f(T). + +Combinatorial Causal Bandits without Graph Skeleton +If we choose C′ ≥ 2C + C log C′, then +CH +� +log C′Hd +δ ++ log log Hd +δ +� +≤ CH(log C′Hd +δ ++ log Hd +δ ) +≤ 2CH log Hd +δ ++ CH log C′ +≤ (2C + C log C′)H log Hd +δ +≤ C′H log Hd +δ . + diff --git a/q9FQT4oBgHgl3EQftjaQ/content/tmp_files/load_file.txt b/q9FQT4oBgHgl3EQftjaQ/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..d31b0e8d71ef3a99dfd7c88e972edfecea048c58 --- /dev/null +++ b/q9FQT4oBgHgl3EQftjaQ/content/tmp_files/load_file.txt @@ -0,0 +1,1364 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FQT4oBgHgl3EQftjaQ/content/2301.13392v1.pdf,len=1363 +page_content='Combinatorial Causal Bandits without Graph Skeleton Shi Feng * 1 2 Nuoya Xiong * 1 Wei Chen 2 Abstract In combinatorial causal bandits (CCB), the learn- ing agent chooses a subset of variables in each round to intervene and collects feedback from the observed variables to minimize expected re- gret or sample complexity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FQT4oBgHgl3EQftjaQ/content/2301.13392v1.pdf'} +page_content=' Previous works study this problem in both general causal models and binary generalized linear models (BGLMs).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FQT4oBgHgl3EQftjaQ/content/2301.13392v1.pdf'} +page_content=' How- ever, all of them require prior knowledge of causal graph structure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FQT4oBgHgl3EQftjaQ/content/2301.13392v1.pdf'} +page_content=' This paper studies the CCB prob- lem without the graph structure on binary general causal models and BGLMs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FQT4oBgHgl3EQftjaQ/content/2301.13392v1.pdf'} +page_content=' We first provide an exponential lower bound of cumulative regrets for the CCB problem on general causal models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FQT4oBgHgl3EQftjaQ/content/2301.13392v1.pdf'} +page_content=' To overcome the exponentially large space of pa- rameters, we then consider the CCB problem on BGLMs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FQT4oBgHgl3EQftjaQ/content/2301.13392v1.pdf'} +page_content=' We design a regret minimization algo- rithm for BGLMs even without the graph skeleton and show that it still achieves O( √ T ln T) ex- pected regret.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FQT4oBgHgl3EQftjaQ/content/2301.13392v1.pdf'} +page_content=' This asymptotic regret is the same as the state-of-art algorithms relying on the graph structure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FQT4oBgHgl3EQftjaQ/content/2301.13392v1.pdf'} +page_content=' Moreover, we sacrifice the regret to O(T 2 3 ln T) to remove the weight gap covered by the asymptotic notation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FQT4oBgHgl3EQftjaQ/content/2301.13392v1.pdf'} +page_content=' At last, we give some discussions and algorithms for pure exploration of the CCB problem without the graph structure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FQT4oBgHgl3EQftjaQ/content/2301.13392v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FQT4oBgHgl3EQftjaQ/content/2301.13392v1.pdf'} +page_content=' Introduction The multi-armed bandits (MAB) problem is a classical model in sequential decision-making (Robbins, 1952;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FQT4oBgHgl3EQftjaQ/content/2301.13392v1.pdf'} +page_content=' Auer et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FQT4oBgHgl3EQftjaQ/content/2301.13392v1.pdf'} +page_content=', 2002;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FQT4oBgHgl3EQftjaQ/content/2301.13392v1.pdf'} +page_content=' Bubeck et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FQT4oBgHgl3EQftjaQ/content/2301.13392v1.pdf'} +page_content=', 2012).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FQT4oBgHgl3EQftjaQ/content/2301.13392v1.pdf'} +page_content=' In each round, the learning agent chooses an arm and observes the feedback reward cor- responding to that arm, with the goal of either maximizing the cumulative reward over T rounds (regret minimization), or minimizing the sample complexity to find the interven- tion closest to the optimal one (pure exploration).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FQT4oBgHgl3EQftjaQ/content/2301.13392v1.pdf'} +page_content=' MAB can be extended to have more structures among arms and 1Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, China 2Microsoft Research, Beijing, China.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/q9FQT4oBgHgl3EQftjaQ/content/2301.13392v1.pdf'} +page_content=' Correspondence to: Shi Feng 0.05; *p<0.05; ****p<0.0001. Error bars = SEM. (D’). The different time +required to evaluate each type of tweet does not depend on the length of tweets, since the tweet +characters count is no different between types. Ordinary one-way ANOVA multiple-comparisons Tukey’s +test, n(total)=220, n(type)= 55; ns = non-significant, p>0.05 (E). + + +Figure 2. Humans evaluate information and disinformation better than GPT-3, and GPT-3 can “disobey” +requests to generate disinformation. Green column bars represent successful responses given by human +respondents, whereas green dotted bars represent successful responses given by GPT-3. Red bars +represent incorrect responses from human respondents, whereas red dotted bars represent incorrect + +AI model GPT-3 (dis) informs us better than humans – v3 23012023 [PREPRINT] +7|29 +responses from GPT-3. The success rate concerning the evaluation of disinformation is 89% and 92% for +GPT-3 and human respondents, respectively. The success rate concerning the evaluation of accurate +information is 64% and 72% for GPT-3 and human respondents, respectively. The evaluation was conducted +on organic tweets retrieved from Twitter which were included in our survey (A). Rate of “obedience” for +GPT-3 – i.e., how often GPT-3 respected our request to generate information or disinformation tweets. For +accurate information tweets, GPT-3 “obeyed” our request 99 times out of 101 requests, whereas for +disinformation tweets, it “obeyed” our request 80 times out of 102 requests (B). + + + +Figure 3. Human respondents cannot distinguish organic versus synthetic tweets, but recognize their +origin better when they are generated by humans. AI recognition score for “organic true” (green bars), +“synthetic true” (green dotted bars), “organic false” (red bars) and “synthetic false” (red dotted bars) +tweets. AI recognition score (0-1) indicates the probability that human respondents can identify whether a +tweet is produced organically (i.e., by a Twitter user), or synthetically (i.e., by GPT-3). Human respondents +recognize whether organic true tweets are organic or synthetic tweets more effectively than all other type +of tweets, whereas synthetic true tweets are recognized correctly the least (A). Human respondents cannot +predict whether true or false tweets (i.e., accurate tweets or disinformation tweets, green versus red bars) +are produced by humans or by GPT-3, and the truthfulness of the information does not have an impact on +the AI recognition score. Regarding organic versus synthetic tweets (grey versus grey dotted bars), human +respondents recognize whether tweets are generated by humans or GPT-3 better when they are organic +(i.e., generated by Twitter users), when compared with synthetic tweets (i.e., generated by GPT-3). AI +recognition score (0-1) is the average score for all 697 respondents (1= 100% correct answers; 0 = 0% +correct answers); Ordinary one-way ANOVA multiple-comparisons Tukey’s test, n=697; ns = non-significant, +p>0.05; **p<0.01; ***p<0.001; ***p<0.0001. Bars represent SEM. + + + +A +B +c +EFFICIENT VS INEFFICIENT +c' +X +I Recognition Confidence (1-5) +5 +5 +Initiation +Humans +Disinformation Recognition +Initiation +Confidence (1-5) +4 +4 +Information +Information +GPT3 +campaign +campaign +3 +3 +Is it information +Humans +Isit information +2 +2 +or disinformation? +or disinformation? +Evaluation +Evaluation +GPT3 +nfidenc +白 +Pre +Po +st.AI model GPT-3 (dis) informs us better than humans – v3 23012023 [PREPRINT] +8|29 + +Figure 4. The Confidence in recognizing disinformation increases post-survey, whereas the confidence in +recognizing AI-generated information decreases; and proposed model to launch information campaigns +and evaluate information. Respondents were asked to provide a score of how confident they were in their +ability to recognize disinformation tweets before taking the survey (grey bar), and after taking the survey +(black bar). Participants’ confidence in disinformation recognition increased significantly from 3.05 to 3.49 +out of 5. n=697; Welch’s t-test, ****p<0.0001. Bars represent SEM (A). Respondents were asked to provide +a score of how confident they were in their ability to recognize whether tweets were generated by humans +(grey bar) or by AI (black bar). Participant’s confidence in AI recognition dropped significantly from 2.69 to +1.7 out of 5. n=697; Welch’s t-test, ****p<0.0001. Bars represent SEM (B). Model for an efficient and +inefficient communication strategy and launch of information campaign. Based on our data, and with the AI +model adopted for our analysis, an efficient system relies on accurate information generated by GPT-3 +(initiation phase), whereas it relies on trained humans to evaluate whether a piece of information is +accurate or whether it contains disinformation (evaluation phase) (C). An inefficient system relies on +humans to generate information and initiate an information campaign, and it relies on AI to evaluate +whether a piece of information is accurate or whether it contains disinformation (C’). +Discussion +How to communicate and evaluate information +Our findings show that tweets produced by GPT-3 can both inform and disinform better than organic +tweets. Synthetic tweets containing reliable information are recognized as true better and faster than true +organic tweets, while false synthetic tweets are recognized as false worse than false organic tweets. +Moreover, GPT-3 does not perform better than humans in recognizing both information and +disinformation. The results suggest that GPT-3 may be more efficient at informing because it is able to +generate text that is simpler to read and understand when compared with text written by humans. Based +on these results, we propose a model for efficient communication and evaluation of information that +challenges the current approach and consensus, according to which humans produce information and AIs +assist in the evaluation18 (Figure 4C, C’). A well-tailored information campaign can be shaped by providing +instruction prompts to GPT-3, which produces effective information campaigns targeting humans (initiation +phase). The accuracy of information is then evaluated by trained humans (Figure 4C). Instead, information +campaigns written and prepared by humans would turn out to be less effective, and AIs would perform an +inefficient evaluation of how truthful and reliable information is (Figure 4C’). The proposed model is of +relevance in the context of a public health crisis and infodemic, given the need to communicate fast and +clearly to large segments of the public. +“Disobedience”, training datasets, and error propagation +Our results show that, when asked, GPT-3 is less likely to produce misinformation on some specific topics, +e.g.: vaccines and autism (Figure S7). Being GPT-3 a statistical representation of language – for how +language is used in the datasets it was trained on – we assume GPT-3’s “disobedience” depends on the +composition of GPT-3’s training datasets. If the training dataset contains volumes of information +contradicting what the prompt asks for, the system will likely output that type of information. We can +therefore assume that the volume of information in the training dataset debunking causal links between +vaccines and autism is higher than the volume of information debunking conspiracy theories on other +topics taken into consideration by our study. Some control on the material fed into the training datasets is +therefore crucial. GPT-3 is trained on data obtained from Common Crawl, WebText2, Books1, Books2 and +Wikipedia19, which could include also misinformation and disinformation. To reduce the risk of generating +disinformation, we suggest that future text transformers should be trained on datasets regulated by the +principles of accuracy and transparency: information entering the training datasets should be verified, and + +AI model GPT-3 (dis) informs us better than humans – v3 23012023 [PREPRINT] +9|29 +its origin should be open for independent scrutiny. Finally, the output of models trained on accurate and +transparent datasets should report the sources used for its generation, thus increasing transparency, and +allowing independent fact checking. Fact checking may still be difficult given the amount of information +that likely serves as a source but nonetheless declaring sources would be a good start. +‘As human as humans’: synthetic text identification and impersonation +In line with previous research20, we found that both respondents and GPT-3 were not able to distinguish +whether a tweet was organic or synthetic (data on GPT-3’s assessment are available in our study’s +repository)21. It might be possible to develop specific training courses to improve humans’ recognition of +synthetic text, based on linguistic markers, grammatical structure, and syntax. However, since the release +of ChatGPT (an interactive, conversational, and even simpler interface to GPT-3), users started to search for +ways to circumvent OpenAI’s content policy blocks. A common (and effective) strategy is impersonation: +when GPT-3 refuses to generate output that could violate the content policy, users just ask it to +impersonate a character – for which, apparently, content policies do not apply22. With this approach, even +more credible swathes of disinformation could be produced by first asking GPT-3 to generate fake profiles +of people to impersonate, and in a second iteration, to generate tweets that these profiles could write. +Besides circumventing content policy blocks, this would add even more ‘human-like’ feel to the tweets, and +make it even harder to identify them as synthetic. Based on these premises, synthetic text identification +might soon be a hopeless battle to fight, for both people and AIs. +Resignation theory +According to our results, not only humans cannot distinguish synthetic text from organic text, but also the +confidence in their ability to do so decreases significantly after having been asked to recognize the different +origin. This decrease in self confidence after exposure to both synthetic and organic texts may be due to +the realization that there is no clear marker that allows users to identify whether a text has been generated +by a machine or a human. This is likely because of GPT-3's ability to mimic human writing styles and +language patterns. Additionally, respondents may have initially underestimated GPT-3’s abilities to write +human-like text: this may be due to the fact that such technology is new and revolutionary, and people are +not yet accustomed to how powerful it can be. Another possible interpretation is that the survey may have +made participants more aware of GPT-3’s potential to generate disinformation with a human-like feel, +making them more sceptical of both synthetic and organic information, and thus decreasing their +confidence in their ability to identify organic text as well. +Beyond Twitter +We decided to focus our study on tweets for the following reasons: Twitter is currently used by over 368 +million monthly active users 23 who use the platform several times a day24 to consume mostly news and +political information 24,25. Furthermore, Twitter offers a very simple application programming interface (API) +to develop bots, i.e.: programs able to post content and interact with posts or users without human +supervision26. Recent research shows that only about 5% of Twitter users are bots – but that these bots +cumulatively account for 20% - 29% of the content posted on Twitter27. Because of these characteristics, +Twitter is the ideal target – and potentially a very vulnerable one – for AI-generated swathes of +disinformation. Overall, our findings raise important questions about the potential uses and misuses of +GPT-3 and other advanced AI text generators, and the implications for information dissemination in the +digital age, particularly in relation to the spread of disinformation, particularly on social media. It is +important to note that while we focused on tweets in this study, our results could be extended to other +social media platforms and other forms of communication that can be used by bots via APIs, and that could +be exploited to programmatically disseminate AI-generated disinformation. In fact, we generated tweet- +like social media posts that we call tweets, but in fact have features shared in other type of social media +posts, such as Instagram or Facebook posts. + +AI model GPT-3 (dis) informs us better than humans – v3 23012023 [PREPRINT] +10|29 +The genie is out of the bottle +Starting from our findings, we predict that advanced AI text generators such as GPT-3 could have the +potential to greatly impact the dissemination of information, both positively and negatively. To mitigate +negative effects, taking action to regulate which training datasets are used to develop these technologies is +crucial, thus ensuring transparency, truthfulness of the output information, and limiting misuse of the +technology to generate deceiving information. Additionally, until we do not have efficient strategies for +identifying disinformation (whether based on human skills or on future AI improvements) it might be +necessary to restrict the use of these technologies, e.g.: licensing them only to trusted users (e.g., research +institutions), or limiting the potential of AIs to certain type of applications. Finally, it is crucial that we +continue to critically evaluate the implications of these technologies and take action to mitigate any +negative effects they may have on society. +References +1. +Brown, T. B. et al. Language Models are Few-Shot Learners. (2020) doi:10.48550/arXiv.2005.14165. +2. +Dale, R. GPT-3: What’s it good for? Nat. Lang. Eng. 27, 113–118 (2021). +3. +GPT-3. Update: Some Replies by GPT-3. Daily Nous https://dailynous.com/2020/07/30/philosophers- +gpt-3/ (2020). +4. +Benzon, W. L. GPT-3: Waterloo or Rubicon? Here be Dragons. +https://papers.ssrn.com/abstract=3667608 (2020). +5. +Marlow, R. & Wood, D. Ghost in the machine or monkey with a typewriter—generating titles for +Christmas research articles in The BMJ using artificial intelligence: observational study. BMJ 375, +e067732 (2021). +6. +Elkins, K. & Chun, J. Can GPT-3 Pass a Writer’s Turing Test? J. Cult. Anal. 5, 17212 (2020). +7. +Chiu, K.-L., Collins, A. & Alexander, R. Detecting Hate Speech with GPT-3. ArXiv210312407 Cs (2022). +8. +Ugli, M. I. B. Will Human Beings Be Superseded by Generative Pre-trained Transformer 3 (GPT-3) in +Programming? Int. J. Orange Technol. 2, 141–143 (2020). +9. +Cabanac, G., Labbé, C. & Magazinov, A. Tortured phrases: A dubious writing style emerging in science. +Evidence of critical issues affecting established journals. ArXiv210706751 Cs (2021). +10. Dehouche, N. Plagiarism in the age of massive Generative Pre-trained Transformers (GPT-3). Ethics +Sci. Environ. Polit. 21, 17–23 (2021). +11. Mindzak, M. & Eaton, S. E. Artificial intelligence is getting better at writing, and universities should +worry about plagiarism. The Conversation http://theconversation.com/artificial-intelligence-is- +getting-better-at-writing-and-universities-should-worry-about-plagiarism-160481 (2021). +12. Forge, J. A Note on the Definition of “Dual Use”. Sci. Eng. Ethics 16, 111–118 (2010). +13. WHO. Immunizing the public against misinformation. https://www.who.int/news-room/feature- +stories/detail/immunizing-the-public-against-misinformation (2020). +14. Roozenbeek, J., Suiter, J. & Culloty, E. Countering Misinformation: Evidence, Knowledge Gaps, and +Implications of Current Interventions. Preprint at https://doi.org/10.31234/osf.io/b52um (2022). + +AI model GPT-3 (dis) informs us better than humans – v3 23012023 [PREPRINT] +11|29 +15. Sobieszek, A. & Price, T. Playing Games with Ais: The Limits of GPT-3 and Similar Large Language +Models. Minds Mach. 32, 341–364 (2022). +16. Floridi, L. A Defence of Constructionism: Philosophy as Conceptual Engineering. Metaphilosophy 42, +282–304 (2011). +17. Cook, J., Lewandowsky, S. & Ecker, U. K. H. Neutralizing misinformation through inoculation: Exposing +misleading argumentation techniques reduces their influence. PLOS ONE 12, e0175799 (2017). +18. Ahmad, T., Aliaga Lazarte, E. A. & Mirjalili, S. A Systematic Literature Review on Fake News in the +COVID-19 Pandemic: Can AI Propose a Solution? Appl. Sci. 12, 12727 (2022). +19. Cooper, K. OpenAI GPT-3: Everything You Need to Know. Springboard Blog +https://www.springboard.com/blog/data-science/machine-learning-gpt-3-open-ai/ (2021). +20. Clark, E. et al. All That’s ‘Human’ Is Not Gold: Evaluating Human Evaluation of Generated Text. +Preprint at https://doi.org/10.48550/arXiv.2107.00061 (2021). +21. Spitale, G., Germani, F. & Biller-Andorno, N. Can AI Disinform Us Better? (2022). +22. Zack Witten [@zswitten]. Pretending is All You Need (to get ChatGPT to be evil). A thread. Twitter +https://twitter.com/zswitten/status/1598088267789787136 (2022). +23. Dixon, S. Twitter: number of worldwide users 2019-2024. Statista +https://www.statista.com/statistics/303681/twitter-users-worldwide/ (2022). +24. Kjarval, T. R., Jeff Sonderman, Kevin Loker, Maria Ivancin, Nina. How people use Twitter in general. +American Press Institute https://www.americanpressinstitute.org/publications/reports/survey- +research/how-people-use-twitter-in-general/ (2015). +25. Twitter news. How many people come to Twitter for news? As it turns out, a LOT. +https://blog.twitter.com/en_us/topics/insights/2022/how-many-people-come-twitter-for-news +(2022). +26. Garson, J. How to create a Twitter bot with Twitter API v2. developer.twitter.com +https://developer.twitter.com/en/docs/tutorials/how-to-create-a-twitter-bot-with-twitter-api-v2 +(2023). +27. Carr, D. F. Bots Likely Not A Big Part of Twitter’s Audience — But Tweet a Lot. Similarweb +https://www.similarweb.com/blog/insights/twitter-bot-research-news/ (2022). +28. Shaver, L. G. et al. Using Facebook Advertising to Recruit Representative Samples: Feasibility +Assessment of a Cross-Sectional Survey. J. Med. Internet Res. 21, (2019). +Supplementary material +Methods +Definition of the topics +As the focus of this study, we initially identified 14 topics on which disinformation exists. This preliminary +list included: +• +Climate change; +• +Vaccines safety; + +AI model GPT-3 (dis) informs us better than humans – v3 23012023 [PREPRINT] +12|29 +• +Theory of evolution; +• +COVID-19; +• +Masks safety; +• +Vaccines and autism; +• +Homeopathic treatments for cancer; +• +Flat Earth; 5G technology and COVID-19; +• +Bill Gates and population control; +• +Antibiotics and viral infections; +• +COVID-19 = influenza; +• +Inferior human races; +• +Moral AI. +Generation of synthetic tweets +Based on the list defined above, we generated synthetic tweets passing input to GPT-3 via API (Application +Programming Interface). The code asks to generate 10 true tweets and 10 false tweets for each of the +topics detailed above (e.g.: prompt: ‘Write a tweet to explain why climate change is real’, category: +‘Climate change’). The tweet generation code consists of one function to pass input prompts to GPT-3, and +of two different loops to iterate over categorized prompts. The first function defines the parameters to +pass to GPT-3 (temperature, max_token, top_p, best_of, frequency_penalty, presence_penalty), empirically +defined in an iterative process as the most apt to produce text that resembles social media content. GPT- +3's API returns also the reason for termination (e.g.: reaching the length specified in max_tokens). For these +cases, the text sometimes contains unfinished sentences: these have been removed. The loops to generate +true and false tweets read input organized in .csv files (prompt and category) and generate the given +number of texts per each prompt (in this example, 10). The output is then exported as a .xlsx file containing +three columns: the text, the reason for termination, and the category. All the code, available in this study’s +pre-registration repository, is organized in commented Jupyter lab notebooks for scrutiny and replication21. +The prompts and the output are available in the same repository. +Definitions +Throughout the manuscript we adopt – and sometimes explain for added clarity – the terminology “true” +and “false” tweets. True tweets are those tweets containing accurate information, and false tweets are +those containing inaccurate information, i.e., disinformation. +As for the definition of accurate information and disinformation, we base ourselves on the current scientific +knowledge and understanding of the topics and information under scrutiny. To avoid dubious and +debatable cases, which may be subject to personal opinions and interpretations, we only analyzed and +added to our questionnaire those tweets containing information that is clearly categorizable as true or +false. Of note, if a tweet contained partially incorrect information – meaning it contained more than 1 +pieces of information, and at least one was incorrect, it was labelled as false. As discussed in the +introductory section of the manuscript, we acknowledge that the definition of disinformation and +misinformation is diverse, but we refer to an inclusive definition, which considers false information (also +partially false information) and/or misleading content14. +Retrieval of organic tweets +Using Twitter's advanced search, we collected a random sample of recent organic tweets on the topics +listed above, including both true and false tweets. Our initial aim was to collect 50 tweets per category; +however, this proved impossible for some categories, for various reasons – for example, for some +categories tweets were ambiguous and difficult to categorize as true or false. For other categories, we were +not able to retrieve enough tweets. Some categories were therefore dropped and excluded from the +following phases of the study. + +AI model GPT-3 (dis) informs us better than humans – v3 23012023 [PREPRINT] +13|29 +Category +Organic tweets retrieved +Climate change +50 +Vaccines safety +50 +Theory of evolution +49 (1 duplicated tweet was +excluded) +COVID-19 +50 +Masks safety +50 +Vaccines and autism +50 +Homeopathic treatments for +cancer +30 +Flat Earth +50 +5G technology and COVID-19 +50 +Bill Gates and population control +0 (dropped) +Antibiotics and viral infections +50 +COVID-19 = influenza +50 +Inferior human races +10 (dropped) +Moral AI +0 (dropped) +Table 1. Organic tweets retrieved, by category +The tweets are available in the study’s repository21. +Expert assessment of synthetic and organic tweets +We evaluated synthetic and organic tweets to assess whether they contained disinformation. The expert +assessment was performed independently by FG and GS, and a following joint analysis was conducted by +FG and GS to verify the correctness of their initial assessments. +Selection of the tweets to include in the survey and generation of tweet images +Based on the assessments defined above, we selected the following tweets for each category: +• +5 synthetic false; +• +5 synthetic true; +• +5 organic false; +• +5 organic true. +We selected only tweets for which FG and GS agreed in their evaluation, following the expert assessment +phases. This resulted in a dataframe of 220 tweets (available in our repository21) used to generate the +images of the tweets. The code generates a random pseudonym and a random username for each tweet +(e.g.: ‘John S.’, @john_s), and creates an image which resembles the screenshot of a tweet. The code, the +dataframe containing the tweets, and the output images are available in the study’s repository21. +AI assessment of tweets +The AI assessment was performed by GPT-3 (true/false evaluation and organic/synthetic evaluation). The +first evaluation function defines the parameters to pass to GPT-3 to produce a 'true/false evaluation' (i.e.: +whether the tweet is true or false). The second evaluation function defines the parameters to pass to GPT-3 +to produce an 'organic/synthetic evaluation' (i.e.: whether the tweet was written by a person or by an AI). +The loops for evaluation read the content of the files containing the tweets and evaluate them. The output +is scored (i.e.: whether GPT-3’s assessment matches the expert assessment for true/false and whether it +matches the origin of the tweet for the organic/synthetic classification) and then exported as a .xlsx file. +The code and the files containing the assessments are available in the study’s repository21. + +AI model GPT-3 (dis) informs us better than humans – v3 23012023 [PREPRINT] +14|29 +Programming of the survey +We programmed a Qualtrics survey to collect demographics, display the tweets to the respondents, and +collect their assessments (true versus false, organic versus synthetic). For each tweet, respondents assess: +• +Whether it is accurate or contains disinformation (single choice, accurate/misinformation); +• +Whether it was written by a real person or generated by a computer (single choice, real +person/computer). +Additionally, respondents provide: +• +Some demographic information (nationality, age, sex, education level, education field) +• +Self-perceived (pre and post survey) ability to recognize, respectively, disinformation and synthetic +text (Likert scale, 1 - very difficult - 5 - very easy) +The images of the tweets are organized in nested randomizers within the survey structure: +• +the first level randomizer randomizes the category order (climate change, ...). All the categories are +displayed to every respondent. +• +second level randomizers (for each category) randomize the single tweet displayed for each +category to the respondent. Each category comprises a total of 20 tweets: 5 synthetic false, 5 +synthetic true, 5 organic false, 5 organic true. The second level randomizers evenly present one +tweet from the pool of 20 tweets. +The survey adopts a gamified approach to keep respondents engaged: at the beginning of the survey, +respondents are told that, upon competition, they will obtain their score for both scales (disinformation +recognition, and synthetic text recognition). This ensured a low dropout rate. In-survey scoring is achieved +using the 'scoring' function in Qualtrics. The survey file and structure are available in the study’s +repository21. +Pilot testing +We pilot tested the survey in two phases. During the first phase we circulated the link to a convenience +sample with the aim to test the usability and the layout. This led to minor modifications in the interface and +in the wording. During the second phase we distributed the link via a Facebook ads campaign, structured as +follows: +• +Daily budget: 15€ +• +Start: 04.10.2022 +• +End: 13.10.2022 +• +Age: 16 - 65+ +• +Languages: English +• +Title: True or False? Organic or synthetic? +• +Description: Are you able to distinguish text written by an artificial intelligence from text written by +a human being? And accurate information from misinformation? Find out with this test, and +contribute to research on information ethics. +• +Image: generated by DALL·E 2 (available in this study’s repository21) +The campaign had a total cost of 122.92€. It generated a total of 593 clicks on the link (cost per click: 0.21€) +and a total of 276 responses (cost per response: 0.46€). The campaign was launched and completed in +October 2022. +Sample size and power analysis +Based on pilot data, we conducted a power analysis to determine the sample size for the full study. + +AI model GPT-3 (dis) informs us better than humans – v3 23012023 [PREPRINT] +15|29 +Primary endpoint hypothesis +Disinformation produced by a machine is more credible than disinformation produced by a human +(synthetic versus organic disinformation). +Secondary endpoints hypotheses +1. Accurate information produced by a machine is more credible than accurate information produced +by a human (synthetic versus organic accurate information). +2. Users recognize and distinguish information produced by humans and by machines (regardless of +the truthfulness of the information). +3. The confidence of respondents in recognizing disinformation increases after the completion of the +questionnaire. +4. The confidence of respondents in recognizing synthetic versus organic information increases after +the completion of the questionnaire. +Power analysis +Based on the data resulting from the pilot study, available in the study’s repository21, we performed a +power analysis to estimate the sample size necessary to draw sufficiently meaningful conclusions for +Primary and Secondary Endpoints (PE and SEs). Endpoints are continuous, and the study runs on two +independent samples. +Primary endpoint: Results +Average group 1 Score (Synthetic tweets, disinformation)* = 0.86 +* From 0 to 1, the score indicates how good the performance was in recognizing synthetic tweets +containing disinformation. +Stdev group 1 = 0.25 +Average group 2 Score (Organic tweets, disinformation)* = 0.89 +* From 0 to 1, the score indicates how good the performance was in recognizing organic tweets containing +disinformation. +Enrollment ratio = 1.01194 +Alpha = 0.05 Power = 80% +Sample Size Total = 2181 (Group 1: 1084; Group 2: 1097) +Secondary Endpoint 1 +Average group 1 Score (Synthetic tweets, accurate information)* = 0.78 +* From 0 to 1, the score indicates how good the performance was in recognizing synthetic tweets +containing accurate information. +Stdev group 1 = 0.35 +Average group 2 Score (Organic tweets, accurate information)* = 0.64 +* From 0 to 1, the score indicates how good the performance was in recognizing organic tweets containing +accurate information. +Enrollment ratio = 0.991045 +Alpha = 0.05 Power = 80% +Sample Size Total = 197 (Group 1: 99; Group 2: 98) + +AI model GPT-3 (dis) informs us better than humans – v3 23012023 [PREPRINT] +16|29 +Secondary Endpoint 2 +Average group 1 Score (Synthetic tweets [accurate information + disinformation])* = 0.315 +* From 0 to 1, the score indicates how good the performance was in recognizing synthetic tweets, +regardless of whether they contained accurate information or disinformation. +Stdev group 1 = 0.44 +Average group 2 Score (Organic tweets, [accurate information + disinformation])* = 0.59 +* From 0 to 1, the score indicates how good the performance was in recognizing organic tweets, regardless +of whether they contained accurate information or disinformation. +Enrollment ratio = 1.001493 +Alpha = 0.05 Power = 80% +Sample Size Total = 80 (Group 1: 40; Group 2: 40) +Secondary Endpoint 3 +Average group 1 Score (Pre-confidence level in ability to recognize disinformation)* = 2.932271 +* From 1 to 5 +Stdev group 1 = 0.829093 +Average group 2 (Post-confidence level in ability to recognize disinformation)* = 3.319149 +* From 1 to 5 +Enrollment ratio = 1.0680 +Alpha = 0.05 Power = 80% +Sample Size Total = 145 (Group 1: 70; Group 2: 75) +Secondary Endpoint 4 +Average group 1 (Pre-confidence level in ability to recognize synthetic versus organic contents)* = 2.703557 +* From 1 to 5 +Stdev group 1 = 0.897012 +Average group 2 (Post-confidence level in ability to recognize synthetic versus organic contents)* = 1.75 +* From 1 to 5 +Enrollment ratio = 1.0720 +Alpha = 0.05 Power = 80% +Sample Size Total = 27 (Group 1: 13; Group 2: 14) +Sample size evaluation +Taking the larger sample size resulting from our power analyses (n=2181 assessments for PE), and +considering that we obtained 1348 assessments (organic, disinformation + synthetic, disinformation), and +considering that the pilot study has generated full responses from 277 respondents, the ratio between +target power (number of assessments) and sample size of the pilot study (number of assessments) is +1.617953. Therefore, the number of users required for the study is 277*1.617953 = 448.1728. We + +AI model GPT-3 (dis) informs us better than humans – v3 23012023 [PREPRINT] +17|29 +established that the minimum number of respondents to achieve a properly powered analysis in the full +study is n=449. +Data collection +We distribute the survey via different Facebook ads campaigns in order to compensate for some +demographic imbalances we noted from the pilot data (overrepresentation of women, +underrepresentation of people aged 18 - 54) 28. The campaigns took place in October and November 2022. +We used a total budget of 492.24€, distributed as detailed in the following table: +Campaign +Age +Sex +Visualizations Cost +USA, GBR, AUS, NZL, CAN +18-54 +All +7226 +35.22€ +USA, GBR, AUS, NZL, CAN +16-65+ +M +9907 +34.24€ +USA, GBR, AUS, NZL, CAN +16-65+ +All +14710 +33.78€ +USA, GBR, AUS, NZL, CAN +16-25 +M +83525 +88.00€ +USA, GBR, AUS, NZL, CAN +16-25 +F +57780 +44.00€ +USA, GBR, AUS, NZL, CAN +26-41 +M +8787 +22.00€ +USA, GBR, AUS, NZL, CAN +26-41 +F +9544 +31.00€ +USA +26-41 +F +21046 +31.00€ +USA +26-41 +M +58146 +93.00€ +USA +16-25 +All +99899 +80.00€ +Table 2. Facebook dissemination campaigns for data collection. +Our recruitment strategy aims to enroll a population of active social media users by utilizing a social media +platform. Due to this design, we were unable to recruit a representative sample upfront. Instead, we chose +to assess representativeness through a "rolling assessment" of demographics by targeting different +segments of the population in sequential campaigns based on the demographics of already recruited +participants28. +Analysis +Scoring and analysis are implemented in Python, using a Jupyter notebook. The code takes as input the +results of our Qualtrics survey and generates the files needed for the analysis as output. The code is +available for scrutiny and replication in the study’s repository21. +Cleaning +Data are cleaned removing incomplete responses, responses resulting from preview links, and responses +submitted in less than 170.5 seconds (determined empirically as the minimum possible time to complete +the survey – this was calculated as the average time required by a convenience sample to read, with a +sustained rhythm, the questions and answers or the survey, and answer the questions). +Scoring +True/false and organic/synthetic scores of each respondent are calculated by the rules defined in Qualtrics’ +survey programming; furthermore, they are re-calculated using the dataframe containing the tweets and +the expert assessments. True/false average scores of the tweets are calculated as follows: for true tweets, +the score is the average of the assessments; for false tweets, the score is 1 - the average of the +assessments. Organic/synthetic average scores of the tweets are calculated as follows: for organic tweets, +the score is the average of the assessments; for synthetic tweets, the score is 1 - the average of the +assessments. + +AI model GPT-3 (dis) informs us better than humans – v3 23012023 [PREPRINT] +18|29 +Inferential statistics +Correlation analyses are performed as follows: for quantitative/quantitative data arrays, we first perform a +Pearson’s test, followed by Shapiro’s test to determine data normality, and by both Wilcoxon’s test and a T- +test for hypothesis testing. For qualitative/quantitative data arrays, we first perform an ANOVA test, +followed by Shapiro’s test to determine data normality, and by a Kruskal-Wallis test. Finally, we perform +multiple comparisons with a Tukey test. Effect sizes resulting from ANOVA and Kruskal-Wallis are +interpreted as small when η2 ≤ 0.01; medium when 0.01 < η2 < 0.06, and as large when η2 ≥ 0.14. +‘The hard ones’ +We defined tweets that were difficult to identify correctly for respondents (we called them ‘the hard ones’) +as follows. False identified as true: false tweets with average scores > 0.75; true identified as false: true +tweets with scores < 0.25; Synthetic identified as organic: synthetic tweets with average scores > 0.75; +organic identified as synthetic: organic tweets with scores < 0.25. +Supplementary Results +Correlations between study variables +We evaluated whether any correlation between numerical and categorical variables in our analysis existed +(Figure S12), as well as between numerical variables and other numerical variables (Figure S13). +OS score and demographics +We evaluated any potential correlation between OS Score and demographic variables, and identified the +age of respondents to be a relevant factor, with a small effect size (Figure S12A). Younger individuals (18- +41), seem to perform slightly better at recognizing synthetic versus human tweets when compared with +very young individuals (16-17 years old), and especially older respondents (42+ years old) (Figure S12A’). +TF score and demographics +Similarly, we evaluated potential correlations between TF score and demographic variables. As for the OS +Score, also for the TF Score, age correlated with a small effect size, in addition to the education level of +respondents (Figure S12B). In this case, 42-57 years old individuals performed slightly better than older +individuals aged 58 to 76, although the distribution of TF scores per age seems to be quite uniform across +the board (Figure S12B’). As expected, a higher education level was associated with higher TF score. This +effect was small but consistent: participants holding a doctorate/PhD degree had higher scores when +compared with participants holding a Master’s degree, and those with a Master’s degree performed better +than respondents with a Bachelor’s degree, and so on (Figure S12B’’). +Self-confidence and demographics +Further, we evaluated the correlation between TF self-confidence PRE (i.e., the score of how confident +respondents were in their ability to recognize disinformation before the survey) and demographic variables +(Figure S12C); as well as the correlation between TF self-confidence POST (i.e., the score of how confident +respondents were in their ability to recognize disinformation after the survey) and demographic variables +(Figure S12D); and the correlation between OS self-confidence PRE (i.e., the score of how confident +respondents were in their ability to distinguish synthetic versus organic tweets disinformation before the +survey) and demographic variables (Figure S12E); and the correlation between OS self-confidence POST +(i.e., the score of how confident respondents were in their ability to distinguish synthetic versus organic +tweets disinformation after the survey) and demographic variables (Figure S12F). +OS / TF self-confidence delta and OS / TF score +For numerical versus numerical variables, we found no correlation between OS Delta (i.e., the difference in +confidence POST versus PRE in the ability to recognize AI-generated text) and OS Score (Figure S13A), but +we found a small but significant correlation between TF Delta (i.e., the difference in confidence POST versus + +AI model GPT-3 (dis) informs us better than humans – v3 23012023 [PREPRINT] +19|29 +PRE in the ability to recognize disinformation) and TF Score (Figure S13B), suggesting that the higher the +score, the more respondents built confidence in their abilities, despite participants were only shown how +well they scored in the survey after evaluating their confidence level post-survey. +Duration and OS / TF scores +Further, we found no significant correlation between duration (i.e., how long respondents took to complete +the survey) and OS Score (Figure S13C), as well as between duration and TF Score (Figure S13D). +Supplementary Figures + + + +Figure S1. Demographics data. Demographics from the study (n=697); Country of origin of respondents (A), +gender (B), age (C), education level (D), and, among those declaring at least a Bachelor’s degree, the field of +study (E). + +A +B +c +UK- +Not disclosed - +Not disclosed - +Not disclosed +Prefers not to answer +Australia - +Prefers not to answer- +77+ +Country +Canada- +Gender +Others +Age +58-76 +USA +New Zealand - +Non-binary / third gender- +42-57- +26-41- +Ireland -+ +Male - +Prefers not to answer- +18-25- +Others -+ +Female- +16-17- +0100 200 300 400 +0 +250 +500 +0 +100 200 300 400 +Number of respondents +Number of respondents +Number of respondents +D +E +Not disclosed +Social sciences and humanities- +Prefers not to answer- +Field of study +Not disclosed - +Education le +PhD/Doctorate +Prefers not to answer- +Master's Degree. +Medical sciences +Bachelor's Degree +High school graduate +Others - +Less than high school degree +Natural sciences +0 +100 +200 + 300 +0 +125 +250 +Number of respondents +Number of respondentsAI model GPT-3 (dis) informs us better than humans – v3 23012023 [PREPRINT] +20|29 + +Figure S2. Disinformation Recognition Score per category of tweet. In the survey, for each category of +tweets, 20 tweets were included, of which 5 were “organic true”, represented with green bars, 5 “synthetic +true”, represented with green dotted bars, 5 “organic false”, represented with red bars, and 5 “synthetic +false”, represented with red dotted bars. For each category and type of tweet, we analyzed the success of +respondents in recognizing whether information contained in the tweet were accurate or inaccurate (i.e., +information or disinformation). For the categories “climate change”, ”vaccines safety”, “theory of +evolution”, “COVID-19 and influenza”, “vaccines and autism”, ”homeopathy and cancer”, “flat Earth”, “5G +and COVID-19”, “organic true” tweets were recognized the least correctly as accurate information (A-D, F- +J), whereas for the categories “masks safety” and “antibiotics and viral infections”, “synthetic false” tweets +have the lowest score (E, K). Conversely, the highest score was generally relative to “organic false” tweets, +as in the case of “vaccines safety”, “masks safety”, “COVID-19 and influenza”, “homeopathy and cancer” +tweets (B, E, F, H), or “synthetic false” tweets, in the categories “climate change”, “theory of evolution”, +“COVID-19”, “vaccines and autism”, “flat Earth”, “5G and COVID-19” (A, C-D, G, I-J). An exception is the +category “antibiotics and viral infections”, in which “synthetic true” tweets were recognized correctly the +most as accurate, and “synthetic false” tweets were recognized the least as disinformation, when +compared with all other tweet types (K). n=5 for each type of tweet, for a total of n=20 for each category. +Ordinary one-way ANOVA multiple-comparisons Tukey’s test, ns = non-significant; *p<0.05; **p<0.01, +***p<0.001, ****p<0.0001. Bars represent SEM. + + +AI model GPT-3 (dis) informs us better than humans – v3 23012023 [PREPRINT] +21|29 + +Figure S3. GPT-3 AI model informs and disinform us better (a single tweet level analysis). Confirming the +results of Figure 1, the Disinformation recognition score was not extracted from the average score for each +survey respondent, but rather from the average scores, for each type of tweet (i.e., “Organic true” depicted +with green bars, “synthetic true” depicted with green dotted bars, “organic false” depicted with red bars, +and “synthetic false” depicted with red dotted bars), for each tweet (20 tweets, 5 for each type). Organic +true tweets were recognized the least correctly (i.e., as accurate), when compared with other type of +tweets. Organic false tweets were recognized correctly the most, when compared with other type of +tweets (A). False tweets (i.e., disinformation tweets) were recognized to contain inaccurate information +correctly more often than true tweets (i.e., accurate tweets) (green versus red bars) were recognized to +contain accurate information. There was no significant difference in how often organic and synthetic +tweets (grey versus grey dotted bars) were recognized to contain accurate information or disinformation. +n=55 tweets based on n=5 tweets per type per category of tweet (11 categories, including, e.g., climate +change, antibiotics and viral infections, 5G and COVID-19, etc.). Ordinary one-way ANOVA multiple- +comparisons Tukey’s test, ns = non-significant; *p<0.05; ***p<0.001; ****p<0.0001. Bars represent SEM +(A’). + + + +Sandra D. +@sandra_d +Wearing a face mask may give you a +false sense of security and prevent +you from taking necessary precautions +to protect yourself from COViD-19.Robert O. +@robert_o +Wearing a face mask may give you a +false sense of security and prevent +you from taking necessary precautions +to avoid #COVID19.AI model GPT-3 (dis) informs us better than humans – v3 23012023 [PREPRINT] +22|29 +Figure S4. Disinformation tweets recognized as accurate tweets most often. Disinformation tweets, either +generated by Twitter users or by GPT-3, which are most often recognized by human respondents as +accurate tweets (false tweets with mean TF score > 0.75). + + +Figure S5. Accurate tweets recognized as disinformation tweets most often. Tweets containing accurate +information, either generated by Twitter users or by GPT-3, which are most often recognized by human +respondents as disinformation tweets (true tweets with mean TF score < 0.25). + + + + +Christopher N. +@christopher_n +Thanks, my stepmom passed away from +cancer after trusting all this stuff +with her health. Sometimes homeopathy +can be truly predatory, praying +financially on the hope of the +vulnerable.Sarah I. +@sarah_i +Homeopathy is based on the idea that +"like cures like" and that diluting a +substance makes it more potent. +However. there is no scientific basis +for this claim and homeopathic +treatments have not been shown to be +effective in treating cancer or any +other illness.Mark T. +@mark_t +Vaccines are safe and effectiveAI model GPT-3 (dis) informs us better than humans – v3 23012023 [PREPRINT] +23|29 + +Figure S6. Humans evaluate information and disinformation better than GPT-3 (a category breakdown). +Green column bars represent successful responses given by human respondents, whereas green dotted +bars represent successful responses given by GPT-3. Red bars represent incorrect responses from human +respondents, whereas red dotted bars represent incorrect responses from GPT-3. The success rate (0-1) is +used to compare humans’ versus GPT-3’s ability to recognize disinformation and accurate information. The +evaluation was conducted on organic tweets retrieved from Twitter which were included in our survey. In +line with “overall” results (A), human respondents performed better than GPT-3 in recognizing +disinformation related to “climate change”, “vaccines and autism”, “homeopathic treatments for cancer”, +“flat Earth”, “antibiotics and viral infections”, and “COVID-19 and influenza” (B, G-I, K, L). Instead, GPT-3 +performed better than humans at recognizing disinformation in the categories “vaccines and safety”, +“theory of evolution”, “COVID-19”, “masks safety”, and “5G and COVID-19” (C-F, J). Concerning the correct +identification of accurate information, in line with “overall” results (A), human respondents performed +better than GPT-3 in the categories “COVID-19”, “masks safety”, “vaccines and autism”, “homeopathic +treatments for cancer”, “flat Earth”, “5G and COVID-19”, “antibiotics and viral infections”, and “COVID-19 +and influenza” (E-L). Instead, GPT-3 performed better than human respondents at recognizing accurate +information for the categories “climate change”, “vaccines safety”, and “theory of evolution” (B-D). + + +AI model GPT-3 (dis) informs us better than humans – v3 23012023 [PREPRINT] +24|29 + +Figure S7. GPT-3 Rate of “obedience” for each category. We calculated the number of requests +(instruction prompts) to produce tweets containing accurate information (dotted green) and disinformation +(dotted red), and the number of requests fulfilled (or “obeyed”) by GPT-3, for each category. For all +categories, as shown in Figure 2, GPT-3 produced accurate tweets 99 times/101, and disinformation tweets +80 times/102. For the categories “climate change”, “vaccines safety”, “theory of evolution”, “COVID-19”, +“masks safety”, “vaccines and autism”, “homeopathic treatment for cancer”, “flat Earth”, “5G and COVID- +19”, “antibiotics and viral infections”, “COVID-19 and influenza”, accurate information tweets were +produced by GPT-3, respectively, 9/10, 10/10, 10/10, 10/10, 10/10, 10/10, 10/10, 10/10, 8/9, 9/9, 10/10 +times, whereas disinformation tweets were produced, respectively, 10/10, 10/10, 10/10, 7/10, 8/10, 3/10, +5/9, 6/10, 10/10, 8/9, 3/4 times. + +99/101 +10/10 +10/10 +10/10 +10/10 +10/10 +10/10 +10/10 +10/10 +10/10 +10/10 +10/10 +10/10 +6/6 +Request: accurate information +9/10 +100 +80/102 +8/9 +8/9 +Request: disinformation +8/10 +Rate of obedience (%) +7/10 +3/4 +6/10 +5/9 +50 +3/10 +0 +cancer +19 + safety + pue + Earth +and +f evolution +o +COVID- +for + treatment +Flat +COVID- +-19 +Climate +Vaccines s +For +Theory +5G and +COVID- +Vaccines +Antibiotics AI model GPT-3 (dis) informs us better than humans – v3 23012023 [PREPRINT] +25|29 + +Figure S8. AI Recognition Score per category of tweet. In the survey, for each category of tweets, 20 +tweets were included, of which 5 were “organic true”, represented with green bars, 5 “synthetic true”, +represented with green dotted bars, 5 “organic false”, represented with red bars, and 5 “synthetic false”, +represented with red dotted bars. For each category and type of tweet, we analyzed the success of +respondents in recognizing whether information contained in the tweet were generated by a human or by +GPT-3. For most categories, i.e., “theory of evolution”, “COVID-19”, “masks safety”, “COVID-19 and +influenza”, “vaccines and autism”, “homeopathy for cancer”, “flat Earth”, “5G and COVID-19”, “organic +true” tweets were recognized the most for being generated by a Twitter user (C-J), following the trend +observed when all categories of tweet are overlapped (L). Instead, for tweets concerning “climate change”, +and “vaccines safety”, the category “organic false” obtained the highest score (A, B). For the categories +“climate change”, “theory of evolution”, “COVID-19”, “COVID-19 and influenza”, “vaccines and autism”, +“homeopathy for cancer”, “flat Earth”, “5G and COVID-19”, and “antibiotics and viral infections”, “synthetic +true” tweets were recognized the least for being generated by AI, when compared with all other tweet +types (A-D, F-K). The only exception is the category “masks safety”, in which “synthetic false” tweets +obtained the lowest score (E). n=5 for each type of tweet, for a total of n=20 for each category. Ordinary +one-way ANOVA multiple-comparisons Tukey’s test, ns = non-significant; *p<0.05; **p<0.01, ***p<0.001, +****p<0.0001. Bars represent SEM. + + + + + +AI model GPT-3 (dis) informs us better than humans – v3 23012023 [PREPRINT] +26|29 + +Figure S9. Human respondents cannot distinguish organic versus synthetic tweets, but recognize their +origin better when they are generated by humans (a single tweet level analysis). Confirming the results of +Figure 3, the AI recognition score was not extracted from the average score for each survey respondent, +but rather from the average scores, for each type of tweet (i.e., “Organic true, depicted with green bars +“synthetic true” depicted with green dotted bars, “organic false” depicted with red bars, and “synthetic +false” depicted with red dotted bars), for each tweet (20 tweets, 5 for each type). Organic true tweets were +recognized more often correctly to be generated by humans, whereas synthetic true tweets were +recognized correctly the least to be generated by GPT-3 (A). There was no significant difference in how +often true (i.e., accurate) and false (i.e., containing disinformation) tweets (green versus red bars) were +recognized correctly to be generated by GPT-3 or by a Twitter user. Organic tweets were recognized +correctly more often to be generated by a human when compared with how often synthetic tweets were +recognized correctly to be generated by GPT-3 (grey versus grey dotted bars). n=55 tweets based on n=5 +tweets per type per category of tweet (11 categories, including, e.g., climate change, antibiotics and viral +infections, 5G and COVID-19, etc.). Ordinary one-way ANOVA multiple-comparisons Tukey’s test, ns = non- +significant; *p<0.05; ****p<0.0001. Bars represent SEM. + + +Figure S10. Organic tweets recognized as synthetic most often. Tweets generated by Twitter users which +are most often recognized by human respondents as synthetic, i.e., generated by GPT-3 (organic tweets +with mean OS score < 0.25). + + +Barbara G. +@barbara_g +The goodness of homeopath can fight +fatal ovarian and lung cancer. +#homeopathy #health #cancer +#beatcancerAI model GPT-3 (dis) informs us better than humans – v3 23012023 [PREPRINT] +27|29 + + +Sandra Z. +@sandra_z +Antibiotics can't treat viral +infections, but they can treat +bacterial infections that can +sometimes occur when a virus is +present.Mary W. +@mary_w +Climate change is real because we're +seeing the effects with our own eyes. +The weather is changing, sea levels +are rising, and the planet is getting +hotter. We need to take action now to +protect our planet and future +generations.Charles R. +@charles_r +There is no scientific evidence that +vaccines cause autism.Vaccines are +safe and effective and save livesKaren P. +@karen_p +Homeopathic treatments cannot cure +cancer because they are nothing more +than water and sugar pills. The +treatments do not contain any of the +active ingredients that would be +necessary to effectively cure cancer.Joseph Z. +@joseph_z +Evolution is NoT a hoax. It's the +scientific theory that explains how +living things change over timeRichard G. +@richard_g +The #Covid19 pandemic is a hoax +There's no evidence that it's a real +virus, and the symptoms are identical +to those of other common illnesses +This is just another way to scare +people into giving up their rights +and freedoms.Karen M. +@karen_m +The earth is flat because it's easier +to draw that way!Lisa E. +@lisa_e +#vaccines don't cause autism - they +save lives.Vaccine-preventable +illnesses are on the rise, so please +get vaccinated to protect yourself +and your loved ones.Michael D. +@michael_d +I can believe this my son has been +sick since feb - flu + viral +infections. I'm even considering +keeping him home, it can't be normal +for a 2yr old to be on antibiotics +twice for 2 weeks in a row. I'll wait +it out take him when he's 3 or 4. Any +advice?Nancy A. +@nancy_a +Homeopathic treatments cannot cure +cancer because they are based on the +false premise that like cures like. +There is no scientific evidence that +this is true.James T. +@james_t +Vaccines do cause autism. It's not a +coincidence that the number of autism +cases have skyrocketed as the number +of yaccines kids receive has +increased. Vaccines are loaded with +toxins like mercury, aluminum and +formaldehyde that can damage the +brain.Patricia N. +@patricia_n +The Earth's climate has always been +changing, but human activities are +now accelerating the process. Climate +change is real, it's happening now, +and it's a threat to our planet and +our way of life.Linda L. +@linda_! +Climate change is real and it's +happening right now. The Earth is +getting warmer every year and it's +causing more extreme weather +conditions. We need to take action to +reduce our emissions and protect our +planet.John J. +@john.j +5G technology is not a cause of +COVID-19. This technology is designed +to improve internet connectivity and +does not pose any health risksDaniel Q. +@daniel_q +The climate is changing and it's +happening faster than we thought it +would. The science is clear, the +evidence is clear, and the impacts +are already being felt. We have to +act now to protect our planet and our +children's future.AI model GPT-3 (dis) informs us better than humans – v3 23012023 [PREPRINT] +28|29 +Figure S11. Synthetic tweets recognized as organic most often. Tweets generated by GPT-3 which are +most often recognized by human respondents as organic, i.e., generated by a Twitter user (synthetic tweets +with mean OS score > 0.75). + +Figure S12. Correlations between demographics and other metrics. Correlation between +Organic/Synthetic Score (OS Score) and demographics. OS Score correlates with age with a small effect size. +(A). Young respondents (18-25 years old, and partly 26-41 years old) obtained higher AI Recognition scores +when compared with older respondents; Ordinary one-way ANOVA multiple-comparisons Tukey’s test; + +Age +A' +A +Correlation between OS score and demographics +I Recognition Score (0-11) +variables +pval_anova +eta_sq_anova +pval_ shapiro + pval_ kruskal +eta _sq_kruskal +os_ score and Country +0,216996 +0,030426 +3,66E-06 +0,204146 +0,006648 +os_score and Age +8.78E-05**** +0,042713 (small) +3,22E-06 +0,000228 *** +0,030358 (small) +os score and Gender +0,618338 +0,005089 +7,34E-06 +0,487723 +-0,00081 +os_ score and Education +0,510743 +0,007574 +0,000538 +0,464434 +-0,00052 + os_score and Field +0,578748 +0,006193 +1,23E-05 + os_score and timecat +0,596937 +0,001486 +6,34E-07 +0,669532 +-0,00173 +0- +Educ ation +B' +B" +B + Correlation between TF score and demographics +Age +Disinformation Recognition Score (0-11) +variables +pval_anova +eta_sq_anova +pval_ s hapiro +pval_kruskal +eysnay bs era +tf_score and Country +0,768493 +0,018055 +3,12E-20 +0,731724 +-0,00579 +11 +tf_score and Age +3,57E-06 **** +0.052956 (small) +1,05E-17 +0.00407 ** +0,020036 (small) +tf_ score and Gender +3,71E-05 +0,039569 +2,51E-19 +0,256441 +0,002241 +tf_score and Education +1,83E-07 **** +0,058906 (small) +6,14E-17 +0.002931** +0,02009 (small) +tf_score and Study field +0,566655 +0,006346 +3,47E-16 +tf_ score and timecat +0,313104 +0,003341 +9,37E-22 +0.223816 +0,001432 +C +Correlation between TF self-confidence PRE and demographics + variables +pval_anova +eta_sq_anova +pval_ shapiro +pval kruskal + eta_sq_kruskal +tf_easy_start and Country +0.004848 ** +0,051649 (small) +2,35E-17 +0,023118 * +0,020172 (small) + tf_easy_start and Age +0,214099 ns +0,013969 +5,28E-17 +0,152694 ns +0,005443 + tf_easy_start and Gender +0,036661 * +0,017262 +8,45E-22 +0,22206 ns +0,002913 +tf_ easy_start and Education +0,279765 ns +0,010906 +1,91E-20 +0,672196 ns +-0,0029 +tf_easy_start and Study field +0,757311 ns +0,004111 +1,95E-16 +tf_easy_start and timecat +0.410423 ns +0,002604 +3,21E-20 +0,551608 ns +-0.00119 +D +Correlation between TF self-confidence POST and demographics +variables + pval _anova +eta_ sq_ anova +pval_ shapiro +pval krus kal +eta_sq kruskal +tf_easy_end and Country +0,061126 ns +0,038895 +2,01E-16 +0,123444 ns +0,010261 +tf_easy_end and Age +1,87E-05 **** +0,048474 (small) +5,31E-14 +6,19E-05 **** +0,035416 (small) +tf_easy_end and Gender +0,274725 ns +0,009257 +7,01E-20 +0,235928 ns +0,002647 +tf_easy_end and Education +0,024213 * +0.021115 (small) +2,52E-17 +0.030166 * +0,011713 (small) +tf_easy_end and Study field +0,111155 ns +0,016305 + 5,82E-14 +tf_easy_end and timecat +0,027894 * +0.010427 (small) +2.42E-18 +0.02406 * +0,007986 (small) +E +Correlation between OS self-confidence PRE and demographics + variables +pval_anova +eta_sq_anova +pval_ shapiro +pval_kruskal +eta_sq_kruskal +os easy, start and Country +0,00557 ** +0,05101 +6,68E-18 +0,068616 ns +0,01397 +0,201193 ns +0,014274 +2,48E-17 +0,248612 ns +0,003033 +os_easy_ start and Gender +0,03978 * +0,016962 +1,35E-20 +0,229291 ns +0,002773 +os_easy_start and Education +0,472475 ns +0,008153 +2,75E-19 +0,579196 ns +-0,00187 + os_e asy_start and Study field +0,007566 ** +0,029993 +3,59E-11 +os_ easy_start and timecat +0,302306 ns +0,003497 +5,05E-19 +0,29017 ns +0,000695 +Correlation between OS self-confidence POST and demographics + variables +pval_anova +eta_ q_anova +pval_ shapiro + pval_ kruskal + eta_ sq_ kruskal +os_ easy_end and Country +0,05608 +0,03938 +3,41E-28 +0,479966 +-0,00056 + os_easy_end and Age +0,02331 * +0,023532 +3,66E-27 +0,09763 ns +0,007508 +os_easy_end and Gender +4,66E-05 **** +0,039482 (small) +4,09E-26 +0,033597 * +0,010424 (small) +os_easy_end and Education +0,05328 ns +1,55E-26 +0,035592 * +0.011063 (small) +Play pnas pue pua Asea so +0,459497 +0,007895 +3,44E-23 +os_easy_end and timecat +0,070596 ns +0,007732 (small) +4,82E-27 +0.04353 * +0,00625 (small)AI model GPT-3 (dis) informs us better than humans – v3 23012023 [PREPRINT] +29|29 +*p<0.05, **p<0.01. (A’). Correlation between True/False score (TF score) and demographics. TF Score +correlates with age and education level, with a small effect size (B). 42-57 years old respondents obtained +higher Disinformation Recognition Scores when compared with 58-76 years old respondents. Ordinary one- +way ANOVA multiple-comparisons Tukey’s test; **p<0.01. (B’); respondents with a higher education level +generally obtained a higher Disinformation Recognition Score when compared with respondents with a +lower education level. Ordinary one-way ANOVA multiple-comparisons Tukey’s test; *p<0.05, **p<0.01. +(B’’). Correlation between TF Self-Confidence PRE and demographics. The country of origin correlates with +how confident respondents were to recognize disinformation before taking the survey, with a small effect +size (C). Correlation between TF self-confidence POST and demographics. Age, education level, and timecat +(i.e., how long respondents took to complete the survey), all correlate, with a small effect size, with how +confident respondents were to recognize disinformation after completing the survey (D). There is no +correlation between OS self-confidence PRE and demographics variables (E). Correlation between OS self- +confidence POST and demographics. Gender, education, and timecat correlate, with a small effect size, +with how confident respondents were to recognize organic versus synthetic information after completing +the survey (F). For all analyses: Reported p-values follow statistical analysis with ANOVA, Shapiro, and +Kruskal-Wallis. The effect size and statistical significance were determined with Kruskal-Wallis. *p<0.05; +**p<0.01, ***p<0.001, ****p<0.0001. Bars represent SEM. + + +Figure S13. Correlations between numerical variables. There is no correlation between OS Delta and OS +Score; OS Delta is the difference between OS self-confidence POST and OS self-confidence PRE, and +represents how the confidence level in recognizing organic versus synthetic information changed after +taking the survey, when compared with the confidence level before taking the survey (A). Correlation +between TF Delta and TF Score. TF Delta is the difference between TF self-confidence POST and TF self- +confidence PRE, and represents how the confidence level in recognizing disinformation versus accurate +information changed after taking the survey, when compared with the confidence level before taking the +survey. The correlation is small (B). There is no correlation between duration (i.e., how much time +respondents took to complete the survey) and OS Score (C). There is no correlation between duration and +TF Score (D). + + + + diff --git a/tdFKT4oBgHgl3EQf2i5t/content/tmp_files/load_file.txt b/tdFKT4oBgHgl3EQf2i5t/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..a015d056f25d7ffd1671a41e99fe5c52b59d6329 --- /dev/null +++ b/tdFKT4oBgHgl3EQf2i5t/content/tmp_files/load_file.txt @@ -0,0 +1,1304 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf,len=1303 +page_content='AI model GPT-3 (dis) informs us better than humans – v3 23012023 [PREPRINT] 1|29 AI model GPT-3 (dis)informs us better than humans Giovanni Spitale 0000-0002-6812-0979 Institute of Biomedical Ethics and History of Medicine, University of Zurich, Zurich, Switzerland giovanni.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='spitale@ibme.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='uzh.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='ch Nikola Biller-Andorno 0000-0001-7661-1324 Institute of Biomedical Ethics and History of Medicine, University of Zurich, Zurich, Switzerland biller-andorno@ibme.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='uzh.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='ch Federico Germani (corresponding author) 0000-0002-5604-0437 Institute of Biomedical Ethics and History of Medicine, University of Zurich, Zurich, Switzerland federico.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='germani@ibme.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='uzh.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='ch +41 44 634 40 80 Institute for Biomedical Ethics and History of Medicine (IBME), Winterthurerstrasse 30, 8006 Zürich (CH) Abstract Artificial intelligence is changing the way we create and evaluate information, and this is happening during an infodemic, which has been having dramatic effects on global health.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' In this paper we evaluate whether recruited individuals can distinguish disinformation from accurate information, structured in the form of tweets, and determine whether a tweet is organic or synthetic, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=', whether it has been written by a Twitter user or by the AI model GPT-3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Our results show that GPT-3 is a double-edge sword, which, in comparison with humans, can produce accurate information that is easier to understand, but can also produce more compelling disinformation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' We also show that humans cannot distinguish tweets generated by GPT-3 and real Twitter users.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Starting from our results, we reflect on the dangers of AI for disinformation, and on how we can improve information campaigns to benefit global health.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Introduction Artificial intelligence text generators caught much attention over the last years, especially after the release of GPT-3 in 20201.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' GPT-3, the latest iteration of the Generative Pre-trained Transformers developed by OpenAI, is arguably the most advanced systems of pre-trained language representations2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' A generative pre- trained transformer, in its essence, is a statistical representation of language;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' an AI engine that based on AI model GPT-3 (dis) informs us better than humans – v3 23012023 [PREPRINT] 2|29 users’ prompts can produce very credible – and sometimes astonishing – text 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' In fact, an initial test on people’s ability to tell whether a ∼ 500 word article was written by humans or GPT-3 showed a mean accuracy of 52%;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' just slightly better than random guessing 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' GPT-3 does not have any mental representations or understanding of the language it operates on 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' The system relies on statistical representations of language for how it is used in real-life by real humans, or ‘a simulacrum of the interaction between people and the world’ 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Even keeping in mind these structural limitations, what GPT-3 can do is remarkable, and remarkable are also the possible implications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' While on one hand GPT-3 can be a great tool for machine translations, text classification, dialogue/chatbot systems, knowledge summarizing, question answering, creative writing 2,5,6, detecting hate speech 7, and automatic code writing 2,8, it can also be used to produce ‘misinformation, spam, phishing, abuse of legal and governmental processes, fraudulent academic essay writing and social engineering pretexting’ 1,9–11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' GPT-3 is essentially a lever, an amplifier of human intentions which can receive instructions in natural language and produce output that can be natural language as well, or formal language.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' In this sense, this tool is inherently neutral from an ethical point of view – and as every other similar technology, it is subject to the dual use problem12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' These advancements in AI text generators and the release of GPT-3 historically coincide with the ongoing infodemic13 – an epidemic-like circulation of fake news and disinformation, which, alongside the COVID-19 pandemic, has been greatly detrimental for global health.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Since GPT-3 can potentially be used to generate information, and given the possible misuse of such technology (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=', producing disinformation) and the devastating effects it may have on global health, it is of utmost importance to evaluate how text produced by GPT-3 can affect people’s understanding of information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' In this paper we aim at determining whether GPT-3 can be used to produce accurate information and disinformation in the form of tweets, and how credible this information or disinformation is when compared with information and disinformation produced by humans, and whether the same technology can be used to develop assistive tools to help identifying disinformation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' For clarity, we acknowledge that the definitions of disinformation and misinformation are diverse, but in this paper we refer to an inclusive definition, which considers as disinformation both false information (also partially false information) and/or misleading content14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' To achieve our goals, we asked GPT-3 to write tweets containing informative or disinformative tweets on a range of different topics, including vaccines, 5G and COVID-19, or the theory of evolution, among others, which are commonly subject to disinformation and public misconception.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' We collected a set of real tweets written by users on the same topics, and programmed a survey in which we asked respondents to classify whether randomly selected synthetic tweets (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' : written by GPT-3) and organic tweets (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' : written by humans) were true or false (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' whether they contained accurate information or disinformation), and whether they were written by a real Twitter user or by an AI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Results Study design and demographics In order to test for the use of GPT-3 AI model as a tool to generate accurate information or disinformation in the form of tweets,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' we crafted instruction prompts to instruct GPT-3 to produce fake tweets,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' either containing accurate information,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' or disinformation about the following topics: climate change,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' vaccines safety,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' theory of evolution,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' COVID-19,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' masks safety,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' vaccines and autism,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' homeopathy treatments for cancer,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' flat Earth,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' 5G technology and COVID-19,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' antibiotics and viral infections,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' and COVID-19 and influenza.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' We performed a Twitter search to identify accurate tweets and disinformation tweets generated by Twitter users.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' We call “synthetic” those tweets that are generated by GPT-3, and we call “organic” those AI model GPT-3 (dis) informs us better than humans – v3 23012023 [PREPRINT] 3|29 real tweets retrieved from Twitter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Human respondents were recruited online to participate in a quiz, in which they were asked to recognize whether a set of tweets were organic or synthetic, and true or false (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=', whether they contained accurate information or disinformation).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' GPT-3 was also questioned about whether tweets forming the same dataset were true or false (Figure 1A).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' We recruited 869 respondents.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' 157 responses were excluded because they were incomplete.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Of the 712 remaining responses, 15 additional responses were removed because the respondents were too fast to meaningfully complete the survey, for a total of 697 responses included in our analysis (Figure 1B).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Most of the respondents were from the UK, Australia, Canada, USA, and Ireland (Figure S1A), with more females than males (Figure S1B), a balanced age, with a high representation of people between 42 and 76 years old (Figure S1C), and a balanced education level profile, with most of the respondents holding a Bachelor’s degree (Figure S1D);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' among those with a Bachelor’s degree or above, their field of study was mostly in social sciences and humanities, natural sciences, or medical sciences (Figure S1E).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' GPT-3 AI model informs and disinforms us better We measured how accurately participants recognized whether a tweet was containing disinformation or accurate information (Disinformation Recognition Score), for four types of tweet: “Organic true”, which are tweets published by Twitter users (organic) and containing accurate information (true);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' “Synthetic true”, which are tweets generated by GPT-3 (synthetic) and containing accurate information (true);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' “Organic false”, which are tweets generated by Twitter users (organic) and containing disinformation (false);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' and finally “synthetic false”, which are tweets generated by GPT-3 (synthetic) and contain disinformation (false).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Participants recognized “organic false” tweets with the highest efficiency, better than synthetic false tweets (Scores 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='92 versus 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='89, respectively;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' p=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='0032) (Figure 1C).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Similarly, they recognized “synthetic true” tweets correctly more than “organic true” tweets (Scores 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='84 versus 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='72, respectively;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' p<0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='0001).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' This indicates that human respondents can recognize the accuracy of tweets containing accurate information more often when such tweets are generated by GPT-3, when compared with organic tweets retrieved from Twitter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Similarly, this means that disinformation tweets generated with GPT-3 achieve their deceiving goal more often when compared with disinformation tweets generated organically, even though in this case the effect is small.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' When evaluating the same dataset, segmenting the analysis for true versus false tweets – regardless of whether they are organic or synthetic – and for organic versus synthetic tweets – regardless of their truthfulness – tweets containing accurate information received lower scores when compared with tweets containing disinformation (Scores 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='78 versus 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='91, respectively;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' p<0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='0001).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Similarly, synthetic tweets were categorized more often correctly for the accuracy of the information they contained (Scores 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='87 versus 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='82, respectively;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' p<0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='0001) (Figure 1C’).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Participants required on average 29.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='14 seconds to determine whether an “organic true” tweet was accurate or contained disinformation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' This was significantly more when compared with “organic false” tweets, which required 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='28 seconds for evaluation, with “synthetic true” tweets requiring 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='02 seconds, and “synthetic false” tweets requiring 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='87 seconds (Figure 1D).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' True tweets required a longer time for evaluation when compared with false tweets (25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='07 vs 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='97 seconds, p<0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='0001), as well as organic tweets when compared with synthetic tweets (26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='21 vs 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='44 seconds, p<0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='0001).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' (Figure 1D’).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' The time required for evaluation was not dependent on the length of tweets (Figure 1E).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Further, we calculated Disinformation Recognition Scores for each category (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=', “climate change”, “vaccines and autism”), for each type of tweet (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=', “organic true”, “synthetic true”, “organic false”, “synthetic false”) (Figure S2), and plotted the average Disinformation Scores for each type of tweet (Figure S3), obtaining comparable results with the analysis run on the Disinformation Recognition Scores of each respondent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' This confirms that, for humans, accurate information is more difficult to evaluate when compared with disinformation, and that information produced by GPT-3 is not only more effective to inform and disinform humans, but also does so more efficiently, in less time (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' : respondents evaluated faster – correctly or incorrectly – these tweets).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' A list of the disinformation tweets recognized most often as accurate tweets can be seen in Figure S4, and a list of AI model GPT-3 (dis) informs us better than humans – v3 23012023 [PREPRINT] 4|29 tweets containing accurate information, recognized most often as disinformation tweets, can be seen in Figure S5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Humans evaluate the accuracy of information better than GPT-3 The respondents of our survey evaluated the accuracy or inaccuracy of the information contained in 220 tweets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Using the same dataset, we asked GPT-3 to evaluate whether the tweets were accurate or whether they contained disinformation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' For disinformation tweets, humans and GPT-3 performed similarly, even though respondents performed slightly better (Success rates: 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='92 vs 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='89, respectively).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' For accurate tweets, GPT-3, likewise human respondents, had more difficulties evaluating the accuracy of the information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' In comparison, human respondents performed better than GPT-3 (Success rates: 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='72 vs 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='64, respectively) (Figure 2A).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' A detailed analysis of the results for each category of tweets can be found in Figure S6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' These results suggest that human respondents can evaluate information better than GPT-3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Considering these respondents are not necessarily trained individuals in recognizing disinformation, with a high degree of information literacy, trained humans, at this stage, may perform much better than machines at performing this task.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' GPT-3 can “disobey” requests to produce disinformation As GPT-3 does not have mental representations nor anything that can resemble a proper intentionality15,16, we believe the use of quotes when referring to “obedience” or “disobedience” is needed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' As mentioned, we instructed GPT-3 to produce a set of true and false tweets (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=', accurate or disinformation tweets) (Figure 1A).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' To obtain the dataset, we instructed GPT-3 to produce 10 accurate and 10 disinformation tweets for each category.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Of these, we included in our survey only the tweets for which GPT-3 “obeyed” our request to produce accurate or disinformation tweets, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' We calculated the rate of obedience, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=', the percentage of requests that were satisfied by GPT-3 divided for the overall number of requests we made to GPT-3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' For accurate information, GPT-3 obeyed our requests 99 times out of 101, whereas for disinformation the rate of obedience was much lower (80/102) (Figure 2B), indicating that GPT-3 can “refuse” to produce disinformation, and in rarer instances, it may produce disinformation when asked to produce accurate information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' For a detailed analysis of the Obedience rate per category of tweet, we refer to Figure S7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Information generated by GPT-3 is undistinguishable from human-generated information We calculated the AI Recognition Score (or OS score), i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=', the ability of respondents to recognize whether tweets are organic (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=', produced by Twitter users) or synthetic (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=', produced by GPT-3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' As for the evaluation of the ability to recognize disinformation, we calculated the AI Recognition Score for each type of tweet (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=', “organic true”, “synthetic true”, “organic false”, “synthetic false”).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' On average, scores fluctuated around 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='5, indicating that the choice between synthetic and organic is random: respondents cannot understand if the tweet is produced by AI or has been really tweeted by a user on Twitter (Figure 3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' That said, respondents obtained a significantly higher score for “organic true” tweets and, to a lesser extent, for “organic false” tweets (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='67 and 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='60, respectively), whereas for “synthetic true” and “synthetic false” tweets, scores were below 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='5 (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='34 and 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='40, respectively) (Figure 3A).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Looking at true versus false tweets, and organic versus synthetic tweets, we note something interesting;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' whether tweets contain accurate information or disinformation, it does not influence people’s ability to determine whether a tweet is organic or synthetic;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' answers are perfectly random on average (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='50 vs 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='50, respectively, p=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='9576).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' However, when comparing organic versus synthetic tweets, organic tweets were recognized as organic more often when compared with synthetic tweets recognized as synthetic (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='63 vs 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='37, p<0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='0001) (Figure 3A’).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Therefore, both organic and synthetic tweets tend to be classified as “human”, indicating that GPT-3 can effectively mimic human-generated information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Further, we calculated AI Recognition Scores for each category (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=', “climate change”, “vaccines and autism”), for each type of tweet (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=', “organic true”, “synthetic true”, “organic false”, “synthetic false”) (Figure S8), and plotted the average AI Recognition Scores for each type of tweet (Figure S9), obtaining comparable results with the analysis run on the AI AI model GPT-3 (dis) informs us better than humans – v3 23012023 [PREPRINT] 5|29 Recognition Scores of each respondent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' A list of the organic tweets recognized most often as synthetic can be seen in Figure S10, and a list of synthetic tweets recognized most often as organic can be seen in Figure S11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Building versus crashing confidence: how the self-reported ability to recognize disinformation and AI-generated information changes after survey completion At the beginning of the survey, we asked respondents to define how confident they were in their ability to recognize disinformation, and in their ability to identify AI versus human-generated text using a 1 to 5 Likert scale (Figure 4A,B).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' The Disinformation Recognition Confidence before the test was higher than AI Recognition Confidence before the test (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='05 versus 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='69, respectively).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' After taking the survey (but before seeing their results), we asked again respondents to define how confident they were in their ability to recognize disinformation and AI versus human-generated text.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Respondents were more confident in their ability to recognize disinformation (Pre versus Post, 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='05 versus 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='49, respectively, p<0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='0001) (Figure 4A), whereas they were much less confident in their ability to recognize synthetic versus organic tweets (Pre versus Post, 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='79 versus 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='70, respectively, p<0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='0001) (Figure 4B).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' The increase in confidence to recognize disinformation could be explained by the inoculation theory of misinformation17, whereby critical exposure to disinformation could improve disinformation recognition capacity and resilience.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' On the opposite, the stark decrease in confidence to recognize synthetic tweets could depend on what we could call “resignation theory” – i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=', people may give up attempting to critically evaluate information when faced with a high volume of information, especially when it is difficult to understand its origin or intentionality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' This may lead to a sense of hopelessness or apathy towards information consumption, and a tendency to rely on heuristics or simple cues (such as the emotions evoked by the information).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Figures Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' GPT-3 AI model informs and disinform us better.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=" Study set-up: GPT-3 was provided instruction prompts to produce synthetic tweets containing accurate versus inaccurate information (information vs A c c' Study dataset Disinformation Recognition Score (0-1) Instruction Organic True Synthetic tweets 1." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='0 - prompts GPT3 Synthetic True 1 Organic False Twitter search Organic twe ets Synthetic False 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='5 - True or False?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Organic or Synthetic?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content="0 Human atic ns respondents GPT3 ns ns B D D' E ns ns ns ns 869 responses (oas) Removed 157 35 - 35 - 250- inco mplete Average Time to Response 30 - 30 - Tweet Characters Count responses 200- 25." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' 25 - 712 responses 20 - 20 - 150- Removed 15 responses 15- 15 100 697 responses from speeders 10 - 10- Included in the analysis 5- 5- 50- 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' c nic etic Tue True 2 the gnAI model GPT-3 (dis) informs us better than humans – v3 23012023 [PREPRINT] 6|29 disinformation).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Through a Twitter search, organic tweets from Twitter users were retrieved and classified as accurate information or disinformation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' The sum of synthetic and organic tweets, either containing information or disinformation, constitutes the study dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Human respondents were asked to recognize whether such tweets were true or false (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=', accurate information or disinformation) and whether the tweets were organic (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=', generated by Twitter users) or synthetic (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=', generated by GPT-3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' GPT-3 was asked to recognize whether the tweets were true or false (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=', accurate information or disinformation) (A).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Data collection: we gathered 869 responses to our survey.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' 157 responses were incomplete and were removed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Of 712 remaining responses, 15 were removed as they were completed too fast to be reliable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Our analysis was conducted on 697 complete and reliable responses (B).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' GPT-3 produces accurate and disinformation tweets that are recognized by human respondents as accurate more often than accurate and disinformation tweets, respectively, produced by humans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' “Organic true” tweets (green column bars) are accurate tweets generated by Twitter users;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' “Synthetic true” (dotted green column bars) tweets are accurate tweets generated by GPT-3;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' “Organic false” (red column bars) tweets are disinformation tweets generated by Twitter users;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' “Synthetic false” (dotted red column bars) tweets are disinformation tweets generated by GPT-3 (C).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Disinformation tweets (red column bars) are recognized more often correctly when compared with accurate tweets (green column bars).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Synthetic tweets (dotted grey column bars) are recognized more often correctly when compared with organic tweets (grey column bars).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Disinformation recognition score (or TF score) (0-1) is the average score for all 697 respondents (1= 100% correct answers;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' 0 = 0% correct answers);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Ordinary one-way ANOVA multiple-comparisons Tukey’s test, n=697, ** p<0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='01;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' ****p<0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='0001.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Error bars = SEM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' (C’).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Average time to response in seconds for “organic true”, “synthetic true”, “organic false” and “synthetic false” tweets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Organic true tweets required the most time to receive an evaluation from respondents, whereas synthetic true and synthetic false tweets required the least time to receive an evaluation (D).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' True tweets (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=', accurate) required longer to be evaluated by respondents than false tweets (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=', containing disinformation), and organic tweets required more time to be evaluated when compared with synthetic tweets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Ordinary one-way ANOVA multiple-comparisons Tukey’s test, n=697, ns = non-significant, p>0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='05;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' *p<0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='05;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' ****p<0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='0001.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Error bars = SEM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' (D’).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' The different time required to evaluate each type of tweet does not depend on the length of tweets, since the tweet characters count is no different between types.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Ordinary one-way ANOVA multiple-comparisons Tukey’s test, n(total)=220, n(type)= 55;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' ns = non-significant, p>0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='05 (E).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Figure 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Humans evaluate information and disinformation better than GPT-3, and GPT-3 can “disobey” requests to generate disinformation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Green column bars represent successful responses given by human respondents, whereas green dotted bars represent successful responses given by GPT-3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Red bars represent incorrect responses from human respondents, whereas red dotted bars represent incorrect AI model GPT-3 (dis) informs us better than humans – v3 23012023 [PREPRINT] 7|29 responses from GPT-3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' The success rate concerning the evaluation of disinformation is 89% and 92% for GPT-3 and human respondents, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' The success rate concerning the evaluation of accurate information is 64% and 72% for GPT-3 and human respondents, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' The evaluation was conducted on organic tweets retrieved from Twitter which were included in our survey (A).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Rate of “obedience” for GPT-3 – i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=', how often GPT-3 respected our request to generate information or disinformation tweets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' For accurate information tweets, GPT-3 “obeyed” our request 99 times out of 101 requests, whereas for disinformation tweets, it “obeyed” our request 80 times out of 102 requests (B).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Figure 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Human respondents cannot distinguish organic versus synthetic tweets, but recognize their origin better when they are generated by humans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' AI recognition score for “organic true” (green bars), “synthetic true” (green dotted bars), “organic false” (red bars) and “synthetic false” (red dotted bars) tweets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' AI recognition score (0-1) indicates the probability that human respondents can identify whether a tweet is produced organically (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=', by a Twitter user), or synthetically (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=', by GPT-3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Human respondents recognize whether organic true tweets are organic or synthetic tweets more effectively than all other type of tweets, whereas synthetic true tweets are recognized correctly the least (A).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Human respondents cannot predict whether true or false tweets (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=', accurate tweets or disinformation tweets, green versus red bars) are produced by humans or by GPT-3, and the truthfulness of the information does not have an impact on the AI recognition score.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Regarding organic versus synthetic tweets (grey versus grey dotted bars), human respondents recognize whether tweets are generated by humans or GPT-3 better when they are organic (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=', generated by Twitter users), when compared with synthetic tweets (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=', generated by GPT-3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' AI recognition score (0-1) is the average score for all 697 respondents (1= 100% correct answers;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' 0 = 0% correct answers);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Ordinary one-way ANOVA multiple-comparisons Tukey’s test, n=697;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' ns = non-significant, p>0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='05;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' **p<0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='01;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' ***p<0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='001;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' ***p<0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='0001.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Bars represent SEM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=" A B c EFFICIENT VS INEFFICIENT c' X I Recognition Confidence (1-5) 5 5 Initiation Humans Disinformation Recognition Initiation Confidence (1-5) 4 4 Information Information GPT3 campaign campaign 3 3 Is it information Humans Isit information 2 2 or disinformation?" metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' or disinformation?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Evaluation Evaluation GPT3 nfidenc 白 Pre Po st.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='AI model GPT-3 (dis) informs us better than humans – v3 23012023 [PREPRINT] 8|29 Figure 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' The Confidence in recognizing disinformation increases post-survey, whereas the confidence in recognizing AI-generated information decreases;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' and proposed model to launch information campaigns and evaluate information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Respondents were asked to provide a score of how confident they were in their ability to recognize disinformation tweets before taking the survey (grey bar), and after taking the survey (black bar).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Participants’ confidence in disinformation recognition increased significantly from 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='05 to 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='49 out of 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' n=697;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Welch’s t-test, ****p<0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='0001.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Bars represent SEM (A).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Respondents were asked to provide a score of how confident they were in their ability to recognize whether tweets were generated by humans (grey bar) or by AI (black bar).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Participant’s confidence in AI recognition dropped significantly from 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='69 to 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='7 out of 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' n=697;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Welch’s t-test, ****p<0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='0001.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Bars represent SEM (B).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Model for an efficient and inefficient communication strategy and launch of information campaign.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Based on our data, and with the AI model adopted for our analysis, an efficient system relies on accurate information generated by GPT-3 (initiation phase), whereas it relies on trained humans to evaluate whether a piece of information is accurate or whether it contains disinformation (evaluation phase) (C).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' An inefficient system relies on humans to generate information and initiate an information campaign, and it relies on AI to evaluate whether a piece of information is accurate or whether it contains disinformation (C’).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Discussion How to communicate and evaluate information Our findings show that tweets produced by GPT-3 can both inform and disinform better than organic tweets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Synthetic tweets containing reliable information are recognized as true better and faster than true organic tweets, while false synthetic tweets are recognized as false worse than false organic tweets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Moreover, GPT-3 does not perform better than humans in recognizing both information and disinformation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' The results suggest that GPT-3 may be more efficient at informing because it is able to generate text that is simpler to read and understand when compared with text written by humans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Based on these results, we propose a model for efficient communication and evaluation of information that challenges the current approach and consensus, according to which humans produce information and AIs assist in the evaluation18 (Figure 4C, C’).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' A well-tailored information campaign can be shaped by providing instruction prompts to GPT-3, which produces effective information campaigns targeting humans (initiation phase).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' The accuracy of information is then evaluated by trained humans (Figure 4C).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Instead, information campaigns written and prepared by humans would turn out to be less effective, and AIs would perform an inefficient evaluation of how truthful and reliable information is (Figure 4C’).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' The proposed model is of relevance in the context of a public health crisis and infodemic, given the need to communicate fast and clearly to large segments of the public.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' “Disobedience”, training datasets, and error propagation Our results show that, when asked, GPT-3 is less likely to produce misinformation on some specific topics, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' : vaccines and autism (Figure S7).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Being GPT-3 a statistical representation of language – for how language is used in the datasets it was trained on – we assume GPT-3’s “disobedience” depends on the composition of GPT-3’s training datasets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' If the training dataset contains volumes of information contradicting what the prompt asks for, the system will likely output that type of information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' We can therefore assume that the volume of information in the training dataset debunking causal links between vaccines and autism is higher than the volume of information debunking conspiracy theories on other topics taken into consideration by our study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Some control on the material fed into the training datasets is therefore crucial.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' GPT-3 is trained on data obtained from Common Crawl, WebText2, Books1, Books2 and Wikipedia19, which could include also misinformation and disinformation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' To reduce the risk of generating disinformation, we suggest that future text transformers should be trained on datasets regulated by the principles of accuracy and transparency: information entering the training datasets should be verified, and AI model GPT-3 (dis) informs us better than humans – v3 23012023 [PREPRINT] 9|29 its origin should be open for independent scrutiny.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Finally, the output of models trained on accurate and transparent datasets should report the sources used for its generation, thus increasing transparency, and allowing independent fact checking.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Fact checking may still be difficult given the amount of information that likely serves as a source but nonetheless declaring sources would be a good start.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' ‘As human as humans’: synthetic text identification and impersonation In line with previous research20, we found that both respondents and GPT-3 were not able to distinguish whether a tweet was organic or synthetic (data on GPT-3’s assessment are available in our study’s repository)21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' It might be possible to develop specific training courses to improve humans’ recognition of synthetic text, based on linguistic markers, grammatical structure, and syntax.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' However, since the release of ChatGPT (an interactive, conversational, and even simpler interface to GPT-3), users started to search for ways to circumvent OpenAI’s content policy blocks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' A common (and effective) strategy is impersonation: when GPT-3 refuses to generate output that could violate the content policy, users just ask it to impersonate a character – for which, apparently, content policies do not apply22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' With this approach, even more credible swathes of disinformation could be produced by first asking GPT-3 to generate fake profiles of people to impersonate, and in a second iteration, to generate tweets that these profiles could write.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Besides circumventing content policy blocks, this would add even more ‘human-like’ feel to the tweets, and make it even harder to identify them as synthetic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Based on these premises, synthetic text identification might soon be a hopeless battle to fight, for both people and AIs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Resignation theory According to our results, not only humans cannot distinguish synthetic text from organic text, but also the confidence in their ability to do so decreases significantly after having been asked to recognize the different origin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' This decrease in self confidence after exposure to both synthetic and organic texts may be due to the realization that there is no clear marker that allows users to identify whether a text has been generated by a machine or a human.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=" This is likely because of GPT-3's ability to mimic human writing styles and language patterns." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Additionally, respondents may have initially underestimated GPT-3’s abilities to write human-like text: this may be due to the fact that such technology is new and revolutionary, and people are not yet accustomed to how powerful it can be.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Another possible interpretation is that the survey may have made participants more aware of GPT-3’s potential to generate disinformation with a human-like feel, making them more sceptical of both synthetic and organic information, and thus decreasing their confidence in their ability to identify organic text as well.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Beyond Twitter We decided to focus our study on tweets for the following reasons: Twitter is currently used by over 368 million monthly active users 23 who use the platform several times a day24 to consume mostly news and political information 24,25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Furthermore, Twitter offers a very simple application programming interface (API) to develop bots, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' : programs able to post content and interact with posts or users without human supervision26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Recent research shows that only about 5% of Twitter users are bots – but that these bots cumulatively account for 20% - 29% of the content posted on Twitter27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Because of these characteristics, Twitter is the ideal target – and potentially a very vulnerable one – for AI-generated swathes of disinformation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Overall, our findings raise important questions about the potential uses and misuses of GPT-3 and other advanced AI text generators, and the implications for information dissemination in the digital age, particularly in relation to the spread of disinformation, particularly on social media.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' It is important to note that while we focused on tweets in this study, our results could be extended to other social media platforms and other forms of communication that can be used by bots via APIs, and that could be exploited to programmatically disseminate AI-generated disinformation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' In fact, we generated tweet- like social media posts that we call tweets, but in fact have features shared in other type of social media posts, such as Instagram or Facebook posts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' AI model GPT-3 (dis) informs us better than humans – v3 23012023 [PREPRINT] 10|29 The genie is out of the bottle Starting from our findings, we predict that advanced AI text generators such as GPT-3 could have the potential to greatly impact the dissemination of information, both positively and negatively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' To mitigate negative effects, taking action to regulate which training datasets are used to develop these technologies is crucial, thus ensuring transparency, truthfulness of the output information, and limiting misuse of the technology to generate deceiving information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Additionally, until we do not have efficient strategies for identifying disinformation (whether based on human skills or on future AI improvements) it might be necessary to restrict the use of these technologies, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' : licensing them only to trusted users (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=', research institutions), or limiting the potential of AIs to certain type of applications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Finally, it is crucial that we continue to critically evaluate the implications of these technologies and take action to mitigate any negative effects they may have on society.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' References 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Brown, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Language Models are Few-Shot Learners.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' (2020) doi:10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='48550/arXiv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='2005.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='14165.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Dale, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' GPT-3: What’s it good for?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Nat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Lang.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Eng.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' 27, 113–118 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' GPT-3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Update: Some Replies by GPT-3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Daily Nous https://dailynous.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='com/2020/07/30/philosophers- gpt-3/ (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Benzon, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' GPT-3: Waterloo or Rubicon?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Here be Dragons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' https://papers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='ssrn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='com/abstract=3667608 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Marlow, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' & Wood, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Ghost in the machine or monkey with a typewriter—generating titles for Christmas research articles in The BMJ using artificial intelligence: observational study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' BMJ 375, e067732 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Elkins, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' & Chun, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Can GPT-3 Pass a Writer’s Turing Test?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Cult.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Anal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' 5, 17212 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Chiu, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='-L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=', Collins, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' & Alexander, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Detecting Hate Speech with GPT-3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' ArXiv210312407 Cs (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Ugli, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Will Human Beings Be Superseded by Generative Pre-trained Transformer 3 (GPT-3) in Programming?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Int.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Orange Technol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' 2, 141–143 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Cabanac, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=', Labbé, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' & Magazinov, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Tortured phrases: A dubious writing style emerging in science.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Evidence of critical issues affecting established journals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' ArXiv210706751 Cs (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Dehouche, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Plagiarism in the age of massive Generative Pre-trained Transformers (GPT-3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Ethics Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Environ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Polit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' 21, 17–23 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Mindzak, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' & Eaton, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Artificial intelligence is getting better at writing, and universities should worry about plagiarism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' The Conversation http://theconversation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='com/artificial-intelligence-is- getting-better-at-writing-and-universities-should-worry-about-plagiarism-160481 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Forge, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' A Note on the Definition of “Dual Use”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Eng.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Ethics 16, 111–118 (2010).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' WHO.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Immunizing the public against misinformation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='who.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='int/news-room/feature- stories/detail/immunizing-the-public-against-misinformation (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Roozenbeek, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=', Suiter, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' & Culloty, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Countering Misinformation: Evidence, Knowledge Gaps, and Implications of Current Interventions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Preprint at https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='31234/osf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='io/b52um (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' AI model GPT-3 (dis) informs us better than humans – v3 23012023 [PREPRINT] 11|29 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Sobieszek, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' & Price, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Playing Games with Ais: The Limits of GPT-3 and Similar Large Language Models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Minds Mach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' 32, 341–364 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Floridi, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' A Defence of Constructionism: Philosophy as Conceptual Engineering.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Metaphilosophy 42, 282–304 (2011).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Cook, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=', Lewandowsky, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' & Ecker, U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Neutralizing misinformation through inoculation: Exposing misleading argumentation techniques reduces their influence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' PLOS ONE 12, e0175799 (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Ahmad, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=', Aliaga Lazarte, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' & Mirjalili, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' A Systematic Literature Review on Fake News in the COVID-19 Pandemic: Can AI Propose a Solution?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' 12, 12727 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Cooper, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' OpenAI GPT-3: Everything You Need to Know.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Springboard Blog https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='springboard.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='com/blog/data-science/machine-learning-gpt-3-open-ai/ (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Clark, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' All That’s ‘Human’ Is Not Gold: Evaluating Human Evaluation of Generated Text.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Preprint at https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='48550/arXiv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='2107.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='00061 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Spitale, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=', Germani, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' & Biller-Andorno, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Can AI Disinform Us Better?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Zack Witten [@zswitten].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Pretending is All You Need (to get ChatGPT to be evil).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' A thread.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Twitter https://twitter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='com/zswitten/status/1598088267789787136 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Dixon, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Twitter: number of worldwide users 2019-2024.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Statista https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='statista.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='com/statistics/303681/twitter-users-worldwide/ (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Kjarval, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=', Jeff Sonderman, Kevin Loker, Maria Ivancin, Nina.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' How people use Twitter in general.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' American Press Institute https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='americanpressinstitute.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='org/publications/reports/survey- research/how-people-use-twitter-in-general/ (2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Twitter news.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' How many people come to Twitter for news?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' As it turns out, a LOT.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' https://blog.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='twitter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='com/en_us/topics/insights/2022/how-many-people-come-twitter-for-news (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Garson, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' How to create a Twitter bot with Twitter API v2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' developer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='twitter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='com https://developer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='twitter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='com/en/docs/tutorials/how-to-create-a-twitter-bot-with-twitter-api-v2 (2023).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Carr, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Bots Likely Not A Big Part of Twitter’s Audience — But Tweet a Lot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Similarweb https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='similarweb.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='com/blog/insights/twitter-bot-research-news/ (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Shaver, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Using Facebook Advertising to Recruit Representative Samples: Feasibility Assessment of a Cross-Sectional Survey.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Med.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Internet Res.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' 21, (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Supplementary material Methods Definition of the topics As the focus of this study, we initially identified 14 topics on which disinformation exists.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' This preliminary list included: Climate change;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Vaccines safety;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' AI model GPT-3 (dis) informs us better than humans – v3 23012023 [PREPRINT] 12|29 Theory of evolution;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' COVID-19;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Masks safety;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Vaccines and autism;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Homeopathic treatments for cancer;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Flat Earth;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' 5G technology and COVID-19;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Bill Gates and population control;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Antibiotics and viral infections;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' COVID-19 = influenza;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Inferior human races;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Moral AI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Generation of synthetic tweets Based on the list defined above, we generated synthetic tweets passing input to GPT-3 via API (Application Programming Interface).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' The code asks to generate 10 true tweets and 10 false tweets for each of the topics detailed above (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' : prompt: ‘Write a tweet to explain why climate change is real’, category: ‘Climate change’).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' The tweet generation code consists of one function to pass input prompts to GPT-3, and of two different loops to iterate over categorized prompts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' The first function defines the parameters to pass to GPT-3 (temperature, max_token, top_p, best_of, frequency_penalty, presence_penalty), empirically defined in an iterative process as the most apt to produce text that resembles social media content.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=" GPT- 3's API returns also the reason for termination (e." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' : reaching the length specified in max_tokens).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' For these cases, the text sometimes contains unfinished sentences: these have been removed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' The loops to generate true and false tweets read input organized in .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='csv files (prompt and category) and generate the given number of texts per each prompt (in this example, 10).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' The output is then exported as a .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='xlsx file containing three columns: the text, the reason for termination, and the category.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' All the code, available in this study’s pre-registration repository, is organized in commented Jupyter lab notebooks for scrutiny and replication21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' The prompts and the output are available in the same repository.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Definitions Throughout the manuscript we adopt – and sometimes explain for added clarity – the terminology “true” and “false” tweets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' True tweets are those tweets containing accurate information, and false tweets are those containing inaccurate information, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=', disinformation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' As for the definition of accurate information and disinformation, we base ourselves on the current scientific knowledge and understanding of the topics and information under scrutiny.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' To avoid dubious and debatable cases, which may be subject to personal opinions and interpretations, we only analyzed and added to our questionnaire those tweets containing information that is clearly categorizable as true or false.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Of note, if a tweet contained partially incorrect information – meaning it contained more than 1 pieces of information, and at least one was incorrect, it was labelled as false.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' As discussed in the introductory section of the manuscript, we acknowledge that the definition of disinformation and misinformation is diverse, but we refer to an inclusive definition, which considers false information (also partially false information) and/or misleading content14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=" Retrieval of organic tweets Using Twitter's advanced search, we collected a random sample of recent organic tweets on the topics listed above, including both true and false tweets." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Our initial aim was to collect 50 tweets per category;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' however, this proved impossible for some categories, for various reasons – for example, for some categories tweets were ambiguous and difficult to categorize as true or false.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' For other categories, we were not able to retrieve enough tweets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Some categories were therefore dropped and excluded from the following phases of the study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='AI model GPT-3 (dis) informs us better than humans – v3 23012023 [PREPRINT] ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='13|29 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='Category ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='Organic tweets retrieved ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='Climate change ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='Vaccines safety ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='Theory of evolution ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='49 (1 duplicated tweet was ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='excluded) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='COVID-19 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='Masks safety ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='Vaccines and autism ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='Homeopathic treatments for ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='cancer ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='30 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='Flat Earth ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='5G technology and COVID-19 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='Bill Gates and population control ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='0 (dropped) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='Antibiotics and viral infections ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='COVID-19 = influenza ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='Inferior human races ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='10 (dropped) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='Moral AI ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='0 (dropped) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='Table 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Organic tweets retrieved, by category The tweets are available in the study’s repository21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Expert assessment of synthetic and organic tweets We evaluated synthetic and organic tweets to assess whether they contained disinformation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' The expert assessment was performed independently by FG and GS, and a following joint analysis was conducted by FG and GS to verify the correctness of their initial assessments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Selection of the tweets to include in the survey and generation of tweet images Based on the assessments defined above, we selected the following tweets for each category: 5 synthetic false;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' 5 synthetic true;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' 5 organic false;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' 5 organic true.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' We selected only tweets for which FG and GS agreed in their evaluation, following the expert assessment phases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' This resulted in a dataframe of 220 tweets (available in our repository21) used to generate the images of the tweets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' The code generates a random pseudonym and a random username for each tweet (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' : ‘John S.’, @john_s), and creates an image which resembles the screenshot of a tweet.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' The code, the dataframe containing the tweets, and the output images are available in the study’s repository21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' AI assessment of tweets The AI assessment was performed by GPT-3 (true/false evaluation and organic/synthetic evaluation).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=" The first evaluation function defines the parameters to pass to GPT-3 to produce a 'true/false evaluation' (i." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' : whether the tweet is true or false).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=" The second evaluation function defines the parameters to pass to GPT-3 to produce an 'organic/synthetic evaluation' (i." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' : whether the tweet was written by a person or by an AI).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' The loops for evaluation read the content of the files containing the tweets and evaluate them.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' The output is scored (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' : whether GPT-3’s assessment matches the expert assessment for true/false and whether it matches the origin of the tweet for the organic/synthetic classification) and then exported as a .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='xlsx file.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' The code and the files containing the assessments are available in the study’s repository21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' AI model GPT-3 (dis) informs us better than humans – v3 23012023 [PREPRINT] 14|29 Programming of the survey We programmed a Qualtrics survey to collect demographics, display the tweets to the respondents, and collect their assessments (true versus false, organic versus synthetic).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' For each tweet, respondents assess: Whether it is accurate or contains disinformation (single choice, accurate/misinformation);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Whether it was written by a real person or generated by a computer (single choice, real person/computer).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Additionally, respondents provide: Some demographic information (nationality, age, sex, education level, education field) Self-perceived (pre and post survey) ability to recognize, respectively, disinformation and synthetic text (Likert scale, 1 - very difficult - 5 - very easy) The images of the tweets are organized in nested randomizers within the survey structure: the first level randomizer randomizes the category order (climate change, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=').' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' All the categories are displayed to every respondent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' second level randomizers (for each category) randomize the single tweet displayed for each category to the respondent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Each category comprises a total of 20 tweets: 5 synthetic false, 5 synthetic true, 5 organic false, 5 organic true.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' The second level randomizers evenly present one tweet from the pool of 20 tweets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' The survey adopts a gamified approach to keep respondents engaged: at the beginning of the survey, respondents are told that, upon competition, they will obtain their score for both scales (disinformation recognition, and synthetic text recognition).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' This ensured a low dropout rate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=" In-survey scoring is achieved using the 'scoring' function in Qualtrics." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' The survey file and structure are available in the study’s repository21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Pilot testing We pilot tested the survey in two phases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' During the first phase we circulated the link to a convenience sample with the aim to test the usability and the layout.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' This led to minor modifications in the interface and in the wording.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' During the second phase we distributed the link via a Facebook ads campaign, structured as follows: Daily budget: 15€ Start: 04.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='2022 End: 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='2022 Age: 16 - 65+ Languages: English Title: True or False?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Organic or synthetic?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Description: Are you able to distinguish text written by an artificial intelligence from text written by a human being?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' And accurate information from misinformation?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Find out with this test, and contribute to research on information ethics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Image: generated by DALL·E 2 (available in this study’s repository21) The campaign had a total cost of 122.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='92€.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' It generated a total of 593 clicks on the link (cost per click: 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='21€) and a total of 276 responses (cost per response: 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='46€).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' The campaign was launched and completed in October 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Sample size and power analysis Based on pilot data, we conducted a power analysis to determine the sample size for the full study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' AI model GPT-3 (dis) informs us better than humans – v3 23012023 [PREPRINT] 15|29 Primary endpoint hypothesis Disinformation produced by a machine is more credible than disinformation produced by a human (synthetic versus organic disinformation).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Secondary endpoints hypotheses 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Accurate information produced by a machine is more credible than accurate information produced by a human (synthetic versus organic accurate information).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Users recognize and distinguish information produced by humans and by machines (regardless of the truthfulness of the information).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' The confidence of respondents in recognizing disinformation increases after the completion of the questionnaire.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' The confidence of respondents in recognizing synthetic versus organic information increases after the completion of the questionnaire.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Power analysis Based on the data resulting from the pilot study, available in the study’s repository21, we performed a power analysis to estimate the sample size necessary to draw sufficiently meaningful conclusions for Primary and Secondary Endpoints (PE and SEs).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Endpoints are continuous, and the study runs on two independent samples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Primary endpoint: Results Average group 1 Score (Synthetic tweets, disinformation)* = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='86 From 0 to 1, the score indicates how good the performance was in recognizing synthetic tweets containing disinformation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Stdev group 1 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='25 Average group 2 Score (Organic tweets, disinformation)* = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='89 From 0 to 1, the score indicates how good the performance was in recognizing organic tweets containing disinformation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Enrollment ratio = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='01194 Alpha = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='05 Power = 80% Sample Size Total = 2181 (Group 1: 1084;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Group 2: 1097) Secondary Endpoint 1 Average group 1 Score (Synthetic tweets, accurate information)* = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='78 From 0 to 1, the score indicates how good the performance was in recognizing synthetic tweets containing accurate information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Stdev group 1 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='35 Average group 2 Score (Organic tweets, accurate information)* = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='64 From 0 to 1, the score indicates how good the performance was in recognizing organic tweets containing accurate information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Enrollment ratio = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='991045 Alpha = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='05 Power = 80% Sample Size Total = 197 (Group 1: 99;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Group 2: 98) AI model GPT-3 (dis) informs us better than humans – v3 23012023 [PREPRINT] 16|29 Secondary Endpoint 2 Average group 1 Score (Synthetic tweets [accurate information + disinformation])* = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='315 From 0 to 1, the score indicates how good the performance was in recognizing synthetic tweets, regardless of whether they contained accurate information or disinformation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Stdev group 1 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='44 Average group 2 Score (Organic tweets, [accurate information + disinformation])* = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='59 From 0 to 1, the score indicates how good the performance was in recognizing organic tweets, regardless of whether they contained accurate information or disinformation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Enrollment ratio = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='001493 Alpha = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='05 Power = 80% Sample Size Total = 80 (Group 1: 40;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Group 2: 40) Secondary Endpoint 3 Average group 1 Score (Pre-confidence level in ability to recognize disinformation)* = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='932271 From 1 to 5 Stdev group 1 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='829093 Average group 2 (Post-confidence level in ability to recognize disinformation)* = 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='319149 From 1 to 5 Enrollment ratio = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='0680 Alpha = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='05 Power = 80% Sample Size Total = 145 (Group 1: 70;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Group 2: 75) Secondary Endpoint 4 Average group 1 (Pre-confidence level in ability to recognize synthetic versus organic contents)* = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='703557 From 1 to 5 Stdev group 1 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='897012 Average group 2 (Post-confidence level in ability to recognize synthetic versus organic contents)* = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='75 From 1 to 5 Enrollment ratio = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='0720 Alpha = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='05 Power = 80% Sample Size Total = 27 (Group 1: 13;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Group 2: 14) Sample size evaluation Taking the larger sample size resulting from our power analyses (n=2181 assessments for PE), and considering that we obtained 1348 assessments (organic, disinformation + synthetic, disinformation), and considering that the pilot study has generated full responses from 277 respondents, the ratio between target power (number of assessments) and sample size of the pilot study (number of assessments) is 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='617953.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Therefore, the number of users required for the study is 277*1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='617953 = 448.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='1728.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' We AI model GPT-3 (dis) informs us better than humans – v3 23012023 [PREPRINT] 17|29 established that the minimum number of respondents to achieve a properly powered analysis in the full study is n=449.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Data collection We distribute the survey via different Facebook ads campaigns in order to compensate for some demographic imbalances we noted from the pilot data (overrepresentation of women, underrepresentation of people aged 18 - 54) 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' The campaigns took place in October and November 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' We used a total budget of 492.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='24€, distributed as detailed in the following table: Campaign Age Sex Visualizations Cost USA, GBR, AUS, NZL, CAN 18-54 All 7226 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='22€ USA, GBR, AUS, NZL, CAN 16-65+ M 9907 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='24€ USA, GBR, AUS, NZL, CAN 16-65+ All 14710 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='78€ USA, GBR, AUS, NZL, CAN 16-25 M 83525 88.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='00€ USA, GBR, AUS, NZL, CAN 16-25 F 57780 44.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='00€ USA, GBR, AUS, NZL, CAN 26-41 M 8787 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='00€ USA, GBR, AUS, NZL, CAN 26-41 F 9544 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='00€ USA 26-41 F 21046 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='00€ USA 26-41 M 58146 93.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='00€ USA 16-25 All 99899 80.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='00€ Table 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Facebook dissemination campaigns for data collection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Our recruitment strategy aims to enroll a population of active social media users by utilizing a social media platform.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Due to this design, we were unable to recruit a representative sample upfront.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Instead, we chose to assess representativeness through a "rolling assessment" of demographics by targeting different segments of the population in sequential campaigns based on the demographics of already recruited participants28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Analysis Scoring and analysis are implemented in Python, using a Jupyter notebook.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' The code takes as input the results of our Qualtrics survey and generates the files needed for the analysis as output.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' The code is available for scrutiny and replication in the study’s repository21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Cleaning Data are cleaned removing incomplete responses, responses resulting from preview links, and responses submitted in less than 170.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='5 seconds (determined empirically as the minimum possible time to complete the survey – this was calculated as the average time required by a convenience sample to read, with a sustained rhythm, the questions and answers or the survey, and answer the questions).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Scoring True/false and organic/synthetic scores of each respondent are calculated by the rules defined in Qualtrics’ survey programming;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' furthermore, they are re-calculated using the dataframe containing the tweets and the expert assessments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' True/false average scores of the tweets are calculated as follows: for true tweets, the score is the average of the assessments;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' for false tweets, the score is 1 - the average of the assessments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Organic/synthetic average scores of the tweets are calculated as follows: for organic tweets, the score is the average of the assessments;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' for synthetic tweets, the score is 1 - the average of the assessments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' AI model GPT-3 (dis) informs us better than humans – v3 23012023 [PREPRINT] 18|29 Inferential statistics Correlation analyses are performed as follows: for quantitative/quantitative data arrays, we first perform a Pearson’s test, followed by Shapiro’s test to determine data normality, and by both Wilcoxon’s test and a T- test for hypothesis testing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' For qualitative/quantitative data arrays, we first perform an ANOVA test, followed by Shapiro’s test to determine data normality, and by a Kruskal-Wallis test.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Finally, we perform multiple comparisons with a Tukey test.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Effect sizes resulting from ANOVA and Kruskal-Wallis are interpreted as small when η2 ≤ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='01;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' medium when 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='01 < η2 < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='06, and as large when η2 ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' ‘The hard ones’ We defined tweets that were difficult to identify correctly for respondents (we called them ‘the hard ones’) as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' False identified as true: false tweets with average scores > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='75;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' true identified as false: true tweets with scores < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='25;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Synthetic identified as organic: synthetic tweets with average scores > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='75;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' organic identified as synthetic: organic tweets with scores < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Supplementary Results Correlations between study variables We evaluated whether any correlation between numerical and categorical variables in our analysis existed (Figure S12), as well as between numerical variables and other numerical variables (Figure S13).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' OS score and demographics We evaluated any potential correlation between OS Score and demographic variables, and identified the age of respondents to be a relevant factor, with a small effect size (Figure S12A).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Younger individuals (18- 41), seem to perform slightly better at recognizing synthetic versus human tweets when compared with very young individuals (16-17 years old), and especially older respondents (42+ years old) (Figure S12A’).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' TF score and demographics Similarly, we evaluated potential correlations between TF score and demographic variables.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' As for the OS Score, also for the TF Score, age correlated with a small effect size, in addition to the education level of respondents (Figure S12B).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' In this case, 42-57 years old individuals performed slightly better than older individuals aged 58 to 76, although the distribution of TF scores per age seems to be quite uniform across the board (Figure S12B’).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' As expected, a higher education level was associated with higher TF score.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' This effect was small but consistent: participants holding a doctorate/PhD degree had higher scores when compared with participants holding a Master’s degree, and those with a Master’s degree performed better than respondents with a Bachelor’s degree, and so on (Figure S12B’’).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Self-confidence and demographics Further, we evaluated the correlation between TF self-confidence PRE (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=', the score of how confident respondents were in their ability to recognize disinformation before the survey) and demographic variables (Figure S12C);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' as well as the correlation between TF self-confidence POST (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=', the score of how confident respondents were in their ability to recognize disinformation after the survey) and demographic variables (Figure S12D);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' and the correlation between OS self-confidence PRE (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=', the score of how confident respondents were in their ability to distinguish synthetic versus organic tweets disinformation before the survey) and demographic variables (Figure S12E);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' and the correlation between OS self-confidence POST (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=', the score of how confident respondents were in their ability to distinguish synthetic versus organic tweets disinformation after the survey) and demographic variables (Figure S12F).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' OS / TF self-confidence delta and OS / TF score For numerical versus numerical variables, we found no correlation between OS Delta (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=', the difference in confidence POST versus PRE in the ability to recognize AI-generated text) and OS Score (Figure S13A), but we found a small but significant correlation between TF Delta (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=', the difference in confidence POST versus AI model GPT-3 (dis) informs us better than humans – v3 23012023 [PREPRINT] 19|29 PRE in the ability to recognize disinformation) and TF Score (Figure S13B), suggesting that the higher the score, the more respondents built confidence in their abilities, despite participants were only shown how well they scored in the survey after evaluating their confidence level post-survey.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Duration and OS / TF scores Further, we found no significant correlation between duration (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=', how long respondents took to complete the survey) and OS Score (Figure S13C), as well as between duration and TF Score (Figure S13D).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Supplementary Figures Figure S1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Demographics data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Demographics from the study (n=697);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Country of origin of respondents (A), gender (B), age (C), education level (D), and, among those declaring at least a Bachelor’s degree, the field of study (E).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='A ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='B ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='c ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='UK- ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='Not disclosed - ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='Not disclosed - ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='Not disclosed ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='Prefers not to answer ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='Australia - ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='Prefers not to answer- ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='77+ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='Country ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='Canada- ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='Gender ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='Others ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='Age ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='58-76 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='USA ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='New Zealand - ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='Non-binary / third gender- ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='42-57- ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='26-41- ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='Ireland -+ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='Male - ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='Prefers not to answer- ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='18-25- ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='Others -+ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='Female- ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='16-17- ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='0100 200 300 400 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='250 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='500 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='100 200 300 400 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='Number of respondents ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='Number of respondents ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='Number of respondents ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='D ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='E ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='Not disclosed ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='Social sciences and humanities- ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='Prefers not to answer- ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='Field of study ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='Not disclosed - ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='Education le ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='PhD/Doctorate ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='Prefers not to answer- ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content="Master's Degree." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=" Medical sciences Bachelor's Degree High school graduate Others - Less than high school degree Natural sciences 0 100 200 300 0 125 250 Number of respondents Number of respondentsAI model GPT-3 (dis) informs us better than humans – v3 23012023 [PREPRINT] 20|29 Figure S2." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Disinformation Recognition Score per category of tweet.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' In the survey, for each category of tweets, 20 tweets were included, of which 5 were “organic true”, represented with green bars, 5 “synthetic true”, represented with green dotted bars, 5 “organic false”, represented with red bars, and 5 “synthetic false”, represented with red dotted bars.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' For each category and type of tweet, we analyzed the success of respondents in recognizing whether information contained in the tweet were accurate or inaccurate (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=', information or disinformation).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' For the categories “climate change”, ”vaccines safety”, “theory of evolution”, “COVID-19 and influenza”, “vaccines and autism”, ”homeopathy and cancer”, “flat Earth”, “5G and COVID-19”, “organic true” tweets were recognized the least correctly as accurate information (A-D, F- J), whereas for the categories “masks safety” and “antibiotics and viral infections”, “synthetic false” tweets have the lowest score (E, K).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Conversely, the highest score was generally relative to “organic false” tweets, as in the case of “vaccines safety”, “masks safety”, “COVID-19 and influenza”, “homeopathy and cancer” tweets (B, E, F, H), or “synthetic false” tweets, in the categories “climate change”, “theory of evolution”, “COVID-19”, “vaccines and autism”, “flat Earth”, “5G and COVID-19” (A, C-D, G, I-J).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' An exception is the category “antibiotics and viral infections”, in which “synthetic true” tweets were recognized correctly the most as accurate, and “synthetic false” tweets were recognized the least as disinformation, when compared with all other tweet types (K).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' n=5 for each type of tweet, for a total of n=20 for each category.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Ordinary one-way ANOVA multiple-comparisons Tukey’s test, ns = non-significant;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' *p<0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='05;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' **p<0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='01, ***p<0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='001, ****p<0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='0001.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Bars represent SEM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' AI model GPT-3 (dis) informs us better than humans – v3 23012023 [PREPRINT] 21|29 Figure S3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' GPT-3 AI model informs and disinform us better (a single tweet level analysis).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Confirming the results of Figure 1, the Disinformation recognition score was not extracted from the average score for each survey respondent, but rather from the average scores, for each type of tweet (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=', “Organic true” depicted with green bars, “synthetic true” depicted with green dotted bars, “organic false” depicted with red bars, and “synthetic false” depicted with red dotted bars), for each tweet (20 tweets, 5 for each type).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Organic true tweets were recognized the least correctly (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=', as accurate), when compared with other type of tweets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Organic false tweets were recognized correctly the most, when compared with other type of tweets (A).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' False tweets (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=', disinformation tweets) were recognized to contain inaccurate information correctly more often than true tweets (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=', accurate tweets) (green versus red bars) were recognized to contain accurate information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' There was no significant difference in how often organic and synthetic tweets (grey versus grey dotted bars) were recognized to contain accurate information or disinformation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' n=55 tweets based on n=5 tweets per type per category of tweet (11 categories, including, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=', climate change, antibiotics and viral infections, 5G and COVID-19, etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=').' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Ordinary one-way ANOVA multiple- comparisons Tukey’s test, ns = non-significant;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' *p<0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='05;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' ***p<0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='001;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' ****p<0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='0001.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Bars represent SEM (A’).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Sandra D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' @sandra_d Wearing a face mask may give you a false sense of security and prevent you from taking necessary precautions to protect yourself from COViD-19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='Robert O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' @robert_o Wearing a face mask may give you a false sense of security and prevent you from taking necessary precautions to avoid #COVID19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='AI model GPT-3 (dis) informs us better than humans – v3 23012023 [PREPRINT] 22|29 Figure S4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Disinformation tweets recognized as accurate tweets most often.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Disinformation tweets, either generated by Twitter users or by GPT-3, which are most often recognized by human respondents as accurate tweets (false tweets with mean TF score > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='75).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Figure S5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Accurate tweets recognized as disinformation tweets most often.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Tweets containing accurate information, either generated by Twitter users or by GPT-3, which are most often recognized by human respondents as disinformation tweets (true tweets with mean TF score < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='25).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Christopher N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' @christopher_n Thanks, my stepmom passed away from cancer after trusting all this stuff with her health.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Sometimes homeopathy can be truly predatory, praying financially on the hope of the vulnerable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='Sarah I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' @sarah_i Homeopathy is based on the idea that "like cures like" and that diluting a substance makes it more potent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' However.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' there is no scientific basis for this claim and homeopathic treatments have not been shown to be effective in treating cancer or any other illness.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='Mark T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' @mark_t Vaccines are safe and effectiveAI model GPT-3 (dis) informs us better than humans – v3 23012023 [PREPRINT] 23|29 Figure S6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Humans evaluate information and disinformation better than GPT-3 (a category breakdown).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Green column bars represent successful responses given by human respondents, whereas green dotted bars represent successful responses given by GPT-3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Red bars represent incorrect responses from human respondents, whereas red dotted bars represent incorrect responses from GPT-3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' The success rate (0-1) is used to compare humans’ versus GPT-3’s ability to recognize disinformation and accurate information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' The evaluation was conducted on organic tweets retrieved from Twitter which were included in our survey.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' In line with “overall” results (A), human respondents performed better than GPT-3 in recognizing disinformation related to “climate change”, “vaccines and autism”, “homeopathic treatments for cancer”, “flat Earth”, “antibiotics and viral infections”, and “COVID-19 and influenza” (B, G-I, K, L).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Instead, GPT-3 performed better than humans at recognizing disinformation in the categories “vaccines and safety”, “theory of evolution”, “COVID-19”, “masks safety”, and “5G and COVID-19” (C-F, J).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Concerning the correct identification of accurate information, in line with “overall” results (A), human respondents performed better than GPT-3 in the categories “COVID-19”, “masks safety”, “vaccines and autism”, “homeopathic treatments for cancer”, “flat Earth”, “5G and COVID-19”, “antibiotics and viral infections”, and “COVID-19 and influenza” (E-L).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Instead, GPT-3 performed better than human respondents at recognizing accurate information for the categories “climate change”, “vaccines safety”, and “theory of evolution” (B-D).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' AI model GPT-3 (dis) informs us better than humans – v3 23012023 [PREPRINT] 24|29 Figure S7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' GPT-3 Rate of “obedience” for each category.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' We calculated the number of requests (instruction prompts) to produce tweets containing accurate information (dotted green) and disinformation (dotted red), and the number of requests fulfilled (or “obeyed”) by GPT-3, for each category.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' For all categories, as shown in Figure 2, GPT-3 produced accurate tweets 99 times/101, and disinformation tweets 80 times/102.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' For the categories “climate change”,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' “vaccines safety”,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' “theory of evolution”,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' “COVID-19”,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' “masks safety”,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' “vaccines and autism”,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' “homeopathic treatment for cancer”,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' “flat Earth”,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' “5G and COVID- 19”,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' “antibiotics and viral infections”,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' “COVID-19 and influenza”,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' accurate information tweets were produced by GPT-3,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' respectively,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' 9/10,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' 10/10,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' 10/10,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' 10/10,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' 10/10,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' 10/10,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' 10/10,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' 10/10,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' 8/9,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' 9/9,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' 10/10 times,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' whereas disinformation tweets were produced,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' respectively,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' 10/10,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' 10/10,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' 10/10,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' 7/10,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' 8/10,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' 3/10,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' 5/9,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' 6/10,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' 10/10,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' 8/9,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' 3/4 times.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='99/101 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='10/10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='10/10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='10/10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='10/10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='10/10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='10/10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='10/10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='10/10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='10/10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='10/10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='10/10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='10/10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='6/6 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='Request: accurate information ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='9/10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='100 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='80/102 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='8/9 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='8/9 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='Request: disinformation ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='8/10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='Rate of obedience (%) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='7/10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='3/4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='6/10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='5/9 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='50 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='3/10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='0 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='cancer ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='19 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='safety ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='pue ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='Earth ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='and ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='f evolution ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='o ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='COVID- ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='for ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='treatment ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='Flat ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='COVID- ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='19 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='Climate ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='Vaccines s ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='For ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='Theory ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='5G and ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='COVID- ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='Vaccines ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='Antibiotics AI model GPT-3 (dis) informs us better than humans – v3 23012023 [PREPRINT] ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='25|29 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='Figure S8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' AI Recognition Score per category of tweet.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' In the survey, for each category of tweets, 20 tweets were included, of which 5 were “organic true”, represented with green bars, 5 “synthetic true”, represented with green dotted bars, 5 “organic false”, represented with red bars, and 5 “synthetic false”, represented with red dotted bars.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' For each category and type of tweet, we analyzed the success of respondents in recognizing whether information contained in the tweet were generated by a human or by GPT-3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' For most categories, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=', “theory of evolution”, “COVID-19”, “masks safety”, “COVID-19 and influenza”, “vaccines and autism”, “homeopathy for cancer”, “flat Earth”, “5G and COVID-19”, “organic true” tweets were recognized the most for being generated by a Twitter user (C-J), following the trend observed when all categories of tweet are overlapped (L).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Instead, for tweets concerning “climate change”, and “vaccines safety”, the category “organic false” obtained the highest score (A, B).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' For the categories “climate change”, “theory of evolution”, “COVID-19”, “COVID-19 and influenza”, “vaccines and autism”, “homeopathy for cancer”, “flat Earth”, “5G and COVID-19”, and “antibiotics and viral infections”, “synthetic true” tweets were recognized the least for being generated by AI, when compared with all other tweet types (A-D, F-K).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' The only exception is the category “masks safety”, in which “synthetic false” tweets obtained the lowest score (E).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' n=5 for each type of tweet, for a total of n=20 for each category.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Ordinary one-way ANOVA multiple-comparisons Tukey’s test, ns = non-significant;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' *p<0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='05;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' **p<0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='01, ***p<0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='001, ****p<0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='0001.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Bars represent SEM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' AI model GPT-3 (dis) informs us better than humans – v3 23012023 [PREPRINT] 26|29 Figure S9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Human respondents cannot distinguish organic versus synthetic tweets, but recognize their origin better when they are generated by humans (a single tweet level analysis).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Confirming the results of Figure 3, the AI recognition score was not extracted from the average score for each survey respondent, but rather from the average scores, for each type of tweet (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=', “Organic true, depicted with green bars “synthetic true” depicted with green dotted bars, “organic false” depicted with red bars, and “synthetic false” depicted with red dotted bars), for each tweet (20 tweets, 5 for each type).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Organic true tweets were recognized more often correctly to be generated by humans, whereas synthetic true tweets were recognized correctly the least to be generated by GPT-3 (A).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' There was no significant difference in how often true (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=', accurate) and false (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=', containing disinformation) tweets (green versus red bars) were recognized correctly to be generated by GPT-3 or by a Twitter user.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Organic tweets were recognized correctly more often to be generated by a human when compared with how often synthetic tweets were recognized correctly to be generated by GPT-3 (grey versus grey dotted bars).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' n=55 tweets based on n=5 tweets per type per category of tweet (11 categories, including, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=', climate change, antibiotics and viral infections, 5G and COVID-19, etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=').' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Ordinary one-way ANOVA multiple-comparisons Tukey’s test, ns = non- significant;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' *p<0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='05;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' ****p<0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='0001.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Bars represent SEM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Figure S10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Organic tweets recognized as synthetic most often.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Tweets generated by Twitter users which are most often recognized by human respondents as synthetic, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=', generated by GPT-3 (organic tweets with mean OS score < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='25).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Barbara G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' @barbara_g The goodness of homeopath can fight fatal ovarian and lung cancer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' #homeopathy #health #cancer #beatcancerAI model GPT-3 (dis) informs us better than humans – v3 23012023 [PREPRINT] 27|29 Sandra Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=" @sandra_z Antibiotics can't treat viral infections, but they can treat bacterial infections that can sometimes occur when a virus is present." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='Mary W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=" @mary_w Climate change is real because we're seeing the effects with our own eyes." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' The weather is changing, sea levels are rising, and the planet is getting hotter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' We need to take action now to protect our planet and future generations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='Charles R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' @charles_r There is no scientific evidence that vaccines cause autism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='Vaccines are safe and effective and save livesKaren P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' @karen_p Homeopathic treatments cannot cure cancer because they are nothing more than water and sugar pills.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' The treatments do not contain any of the active ingredients that would be necessary to effectively cure cancer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='Joseph Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' @joseph_z Evolution is NoT a hoax.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=" It's the scientific theory that explains how living things change over timeRichard G." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=" @richard_g The #Covid19 pandemic is a hoax There's no evidence that it's a real virus, and the symptoms are identical to those of other common illnesses This is just another way to scare people into giving up their rights and freedoms." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='Karen M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=" @karen_m The earth is flat because it's easier to draw that way!" metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='Lisa E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=" @lisa_e #vaccines don't cause autism - they save lives." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='Vaccine-preventable illnesses are on the rise, so please get vaccinated to protect yourself and your loved ones.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='Michael D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' @michael_d I can believe this my son has been sick since feb - flu + viral infections.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=" I'm even considering keeping him home, it can't be normal for a 2yr old to be on antibiotics twice for 2 weeks in a row." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=" I'll wait it out take him when he's 3 or 4." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Any advice?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='Nancy A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' @nancy_a Homeopathic treatments cannot cure cancer because they are based on the false premise that like cures like.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' There is no scientific evidence that this is true.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='James T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' @james_t Vaccines do cause autism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=" It's not a coincidence that the number of autism cases have skyrocketed as the number of yaccines kids receive has increased." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Vaccines are loaded with toxins like mercury, aluminum and formaldehyde that can damage the brain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='Patricia N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=" @patricia_n The Earth's climate has always been changing, but human activities are now accelerating the process." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=" Climate change is real, it's happening now, and it's a threat to our planet and our way of life." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='Linda L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' @linda_!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=" Climate change is real and it's happening right now." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=" The Earth is getting warmer every year and it's causing more extreme weather conditions." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' We need to take action to reduce our emissions and protect our planet.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='John J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' @john.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='j 5G technology is not a cause of COVID-19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' This technology is designed to improve internet connectivity and does not pose any health risksDaniel Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=" @daniel_q The climate is changing and it's happening faster than we thought it would." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' The science is clear, the evidence is clear, and the impacts are already being felt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=" We have to act now to protect our planet and our children's future." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='AI model GPT-3 (dis) informs us better than humans – v3 23012023 [PREPRINT] 28|29 Figure S11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Synthetic tweets recognized as organic most often.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Tweets generated by GPT-3 which are most often recognized by human respondents as organic, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=', generated by a Twitter user (synthetic tweets with mean OS score > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='75).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Figure S12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Correlations between demographics and other metrics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Correlation between Organic/Synthetic Score (OS Score) and demographics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' OS Score correlates with age with a small effect size.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' (A).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Young respondents (18-25 years old, and partly 26-41 years old) obtained higher AI Recognition scores when compared with older respondents;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Ordinary one-way ANOVA multiple-comparisons Tukey’s test;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=" Age A' A Correlation between OS score and demographics I Recognition Score (0-11) variables pval_anova eta_sq_anova pval_ shapiro pval_ kruskal eta _sq_kruskal os_ score and Country 0,216996 0,030426 3,66E-06 0,204146 0,006648 os_score and Age 8." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='78E-05**** 0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='042713 (small) 3,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='22E-06 0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='000228 *** 0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='030358 (small) os score and Gender 0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='618338 0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='005089 7,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='34E-06 0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='487723 0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='00081 os_ score and Education 0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='510743 0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='007574 0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='000538 0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='464434 0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='00052 os_score and Field 0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='578748 0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='006193 1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='23E-05 os_score and timecat 0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='596937 0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='001486 6,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='34E-07 0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='669532 0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='00173 0- Educ ation B\' B" B Correlation between TF score and demographics Age Disinformation Recognition Score (0-11) variables pval_anova eta_sq_anova pval_ s hapiro pval_kruskal eysnay bs era tf_score and Country 0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='768493 0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='018055 3,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='12E-20 0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='731724 0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='00579 11 tf_score and Age 3,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='57E-06 **** 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='052956 (small) 1,05E-17 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='00407 ** 0,020036 (small) tf_ score and Gender 3,71E-05 0,039569 2,51E-19 0,256441 0,002241 tf_score and Education 1,83E-07 **** 0,058906 (small) 6,14E-17 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='002931** 0,02009 (small) tf_score and Study field 0,566655 0,006346 3,47E-16 tf_ score and timecat 0,313104 0,003341 9,37E-22 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='223816 0,001432 C Correlation between TF self-confidence PRE and demographics variables pval_anova eta_sq_anova pval_ shapiro pval kruskal eta_sq_kruskal tf_easy_start and Country 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='004848 ** 0,051649 (small) 2,35E-17 0,023118 * 0,020172 (small) tf_easy_start and Age 0,214099 ns 0,013969 5,28E-17 0,152694 ns 0,005443 tf_easy_start and Gender 0,036661 * 0,017262 8,45E-22 0,22206 ns 0,002913 tf_ easy_start and Education 0,279765 ns 0,010906 1,91E-20 0,672196 ns 0,0029 tf_easy_start and Study field 0,757311 ns 0,004111 1,95E-16 tf_easy_start and timecat 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='410423 ns 0,002604 3,21E-20 0,551608 ns 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='00119 D Correlation between TF self-confidence POST and demographics variables pval _anova eta_ sq_ anova pval_ shapiro pval krus kal eta_sq kruskal tf_easy_end and Country 0,061126 ns 0,038895 2,01E-16 0,123444 ns 0,010261 tf_easy_end and Age 1,87E-05 **** 0,048474 (small) 5,31E-14 6,19E-05 **** 0,035416 (small) tf_easy_end and Gender 0,274725 ns 0,009257 7,01E-20 0,235928 ns 0,002647 tf_easy_end and Education 0,024213 * 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='021115 (small) 2,52E-17 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='030166 * 0,011713 (small) tf_easy_end and Study field 0,111155 ns 0,016305 5,82E-14 tf_easy_end and timecat 0,027894 * 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='010427 (small) 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='42E-18 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='02406 * 0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='007986 (small) E Correlation between OS self-confidence PRE and demographics variables pval_anova eta_sq_anova pval_ shapiro pval_kruskal eta_sq_kruskal os easy,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' start and Country 0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='00557 ** 0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='05101 6,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='68E-18 0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='068616 ns 0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='01397 0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='201193 ns 0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='014274 2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='48E-17 0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='248612 ns 0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='003033 os_easy_ start and Gender 0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='03978 * 0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='016962 1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='35E-20 0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='229291 ns 0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='002773 os_easy_start and Education 0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='472475 ns 0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='008153 2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='75E-19 0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='579196 ns 0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='00187 os_e asy_start and Study field 0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='007566 ** 0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='029993 3,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='59E-11 os_ easy_start and timecat 0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='302306 ns 0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='003497 5,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='05E-19 0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='29017 ns 0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='000695 Correlation between OS self-confidence POST and demographics variables pval_anova eta_ q_anova pval_ shapiro pval_ kruskal eta_ sq_ kruskal os_ easy_end and Country 0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='05608 0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='03938 3,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='41E-28 0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='479966 0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='00056 os_easy_end and Age 0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='02331 * 0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='023532 3,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='66E-27 0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='09763 ns 0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='007508 os_easy_end and Gender 4,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='66E-05 **** 0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='039482 (small) 4,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='09E-26 0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='033597 * 0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='010424 (small) os_easy_end and Education 0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='05328 ns 1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='55E-26 0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='035592 * 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='011063 (small) Play pnas pue pua Asea so 0,459497 0,007895 3,44E-23 os_easy_end and timecat 0,070596 ns 0,007732 (small) 4,82E-27 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='04353 * 0,00625 (small)AI model GPT-3 (dis) informs us better than humans – v3 23012023 [PREPRINT] 29|29 p<0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='05, **p<0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='01.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' (A’).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Correlation between True/False score (TF score) and demographics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' TF Score correlates with age and education level, with a small effect size (B).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' 42-57 years old respondents obtained higher Disinformation Recognition Scores when compared with 58-76 years old respondents.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Ordinary one- way ANOVA multiple-comparisons Tukey’s test;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' **p<0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='01.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' (B’);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' respondents with a higher education level generally obtained a higher Disinformation Recognition Score when compared with respondents with a lower education level.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Ordinary one-way ANOVA multiple-comparisons Tukey’s test;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' *p<0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='05, **p<0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='01.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' (B’’).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Correlation between TF Self-Confidence PRE and demographics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' The country of origin correlates with how confident respondents were to recognize disinformation before taking the survey, with a small effect size (C).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Correlation between TF self-confidence POST and demographics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Age, education level, and timecat (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=', how long respondents took to complete the survey), all correlate, with a small effect size, with how confident respondents were to recognize disinformation after completing the survey (D).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' There is no correlation between OS self-confidence PRE and demographics variables (E).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Correlation between OS self- confidence POST and demographics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Gender, education, and timecat correlate, with a small effect size, with how confident respondents were to recognize organic versus synthetic information after completing the survey (F).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' For all analyses: Reported p-values follow statistical analysis with ANOVA, Shapiro, and Kruskal-Wallis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' The effect size and statistical significance were determined with Kruskal-Wallis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' *p<0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='05;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' **p<0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='01, ***p<0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='001, ****p<0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='0001.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Bars represent SEM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Figure S13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Correlations between numerical variables.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' There is no correlation between OS Delta and OS Score;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' OS Delta is the difference between OS self-confidence POST and OS self-confidence PRE, and represents how the confidence level in recognizing organic versus synthetic information changed after taking the survey, when compared with the confidence level before taking the survey (A).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' Correlation between TF Delta and TF Score.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' TF Delta is the difference between TF self-confidence POST and TF self- confidence PRE, and represents how the confidence level in recognizing disinformation versus accurate information changed after taking the survey, when compared with the confidence level before taking the survey.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' The correlation is small (B).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' There is no correlation between duration (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=', how much time respondents took to complete the survey) and OS Score (C).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} +page_content=' There is no correlation between duration and TF Score (D).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/tdFKT4oBgHgl3EQf2i5t/content/2301.11924v1.pdf'} diff --git a/ttA0T4oBgHgl3EQfLf_G/vector_store/index.pkl b/ttA0T4oBgHgl3EQfLf_G/vector_store/index.pkl new file mode 100644 index 0000000000000000000000000000000000000000..a3b083ebafb379fe6e346de5b28c66966f627088 --- /dev/null +++ b/ttA0T4oBgHgl3EQfLf_G/vector_store/index.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:686f7dc96da1187569f560f96fef7549c97ee740e7df9f4507e4aea7a64cff5e +size 189124 diff --git a/wdE0T4oBgHgl3EQfswF7/content/tmp_files/2301.02583v1.pdf.txt b/wdE0T4oBgHgl3EQfswF7/content/tmp_files/2301.02583v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..35e9128a9812ef1f93a212109619791f0032151f --- /dev/null +++ b/wdE0T4oBgHgl3EQfswF7/content/tmp_files/2301.02583v1.pdf.txt @@ -0,0 +1,1913 @@ +arXiv:2301.02583v1 [math.DG] 6 Jan 2023 +ELASTIC DIFFEOLOGICAL SPACES +CHRISTIAN BLOHMANN +Abstract. We introduce a class of diffeological spaces, called elastic, on which +the left Kan extension of the tangent functor of smooth manifolds defines an +abstract tangent functor in the sense of Rosick´y. +On elastic spaces there is a +natural Cartan calculus, consisting of vector fields and differential forms, together +with the Lie bracket, de Rham differential, inner derivative, and Lie derivative, +satisfying the usual graded commutation relations. Elastic spaces are closed under +arbitrary coproducts, finite products, and retracts. Examples include manifolds +with corners and cusps, diffeological groups and diffeological vector spaces with +a mild extra condition, mapping spaces between smooth manifolds, and spaces of +sections of smooth fiber bundles. +1. Introduction +1.1. The quest for a Cartan calculus on diffeological spaces. A category that +contains smooth manifolds as a full subcategory but has better properties, such as +having all limits, colimits, and exponential objects, is often called a convenient set- +ting for differential geometry. The price to be paid for this convenience is that such +categories are usually too large as to allow for strong geometric results that hold +for all its objects. A typical example is the category of diffeological spaces. It is a +quasi-topos with all its good categorical properties. But since it contains arbitrary +quotients, arbitrary subsets, and arbitrary intersections of smooth manifolds, topo- +logical spaces, vector spaces of arbitrary cardinality, and much more, a theorem that +holds for all diffeological spaces must hold in all these cases. So instead of trying to +prove statements that would have to cover this impossible generality of situations, +the task is often to identify conditions that are strong enough to prove a desired +result, but weak enough to allow for a wide range of examples and applications. +A considerable part of the infinitesimal differential geometric computations on +a smooth manifold M can be carried out in its Cartan calculus, which consists of +the tangent bundle TM → M, the Lie bracket of vector fields, the graded algebra +of differential forms Ω(M), together with the de Rham differential d, the inner +derivative ιv and the Lie derivative Lv for every vector field v, which satisfy the +relations +[d, d] = 0 , +[ιv, ιw] = 0 , +[ιv, d] = Lv , +[Lv, ιw] = ι[v,w] , +[Lv, d] = 0 , +[Lv, Lw] = L[v,w] , +where the bracket is the graded commutator of graded derivations of Ω(M). For +example, local definitons and calculations of symplectic geometry can typically be +worked out in the Cartan calculus, such as hamiltonian vector fields, Poisson brack- +ets, hamiltonian actions, Dirac structures, generalized complex geometry, contact +structures, the L∞-algebra of a multisymplectic structure, homotopy momentum +Date: January 9, 2023. +2020 Mathematics Subject Classification. 58A40 (58A03, 18F15, 18F40). +Key words and phrases. Diffeological space, tangent structure, Cartan calculus. +1 + +2 +C. BLOHMANN +maps, infinitesimal models for equivariant cohomology, etc. Another example is lo- +cal Lagrangian Field Theory, where the derivation of the Euler-Lagrange equations, +local symmetries, Noether’s theorems, the theory of Jacobi fields, etc. take place in +the Cartan calculus of the infinite jet bundle, also known as the variational bicom- +plex [DF99]. In fact, the question we will address in this paper was motivated by +current developments in Lagrangian Field Theory and geometric deformation the- +ory, areas where the basic geometric objects, spaces of fields and paths in a moduli +space of structures, are naturally equipped with diffeologies. +Question 1.1. What are the conditions a diffeological space must satisfy so that it +is equipped with a natural Cartan calculus? +Of course, there are always the tautological conditions which promote the desired +outcome to axioms, in our case the existence of a Cartan calculus. The task is to +identify a set of conditions that is minimal or at least so small that it can be verified +in a wide range of cases. +The basic structures of the Cartan calculus on a smooth manifold M, the differ- +ential graded algebra of differential forms Ω(M) and the tangent bundle TM → M, +are local, that is, they can be defined first on the open subsets U ⊂ Rn of a chart +U ⊂ M and then glued together on an atlas. More precisely, the functor U �→ Ω(U) +is a sheaf and the tangent functor U �→ TU a cosheaf, so that +Ω(M) ∼= lim +U→M Ω(U) +TM ∼= colim +U→M TU , +where the limit in differential graded algebras and the colimit in manifolds are taken +over the category of charts of a maximal atlas of M. For a diffeological space X +we simply replace the category of charts by the category of plots and obtain the +definitions +Ω(X) := lim +U→X Ω(U) +TX := colim +U→X TU +of the de Rham complex and the tangent diffeological space of X. +The maps X �→ Ω(X) and X �→ TX are the pointwise left Kan extensions from +smooth manifolds to diffeological spaces, which shows that they are functorial in X. +The left Kan extension also applies to natural transformations, such as the bundle +projection πU : TU → U and the zero section 0U : U → TU. This suggests, that +the left Kan extension is the natural method to generalize the Cartan calculus of +smooth manifolds to diffeological spaces. +How do we define the Lie bracket of vector fields on a diffeological space? The +first guess is to start from the Lie algebras X(U) = Γ(U, TU) of vector fields on all +plots U → X. However, U �→ X(U) is not a functor, so that the left Kan extension +cannot be applied. We could map the vector fields to the space of derivations of +C∞(X) = Ω0(X), which is equipped with the commutator bracket. However, this +map is generally not injective, and even if it is, its image may not be closed under +the bracket. Worse, the map X �→ Der(C∞(X)) is still not a functor, so that this +does not solve the problem of naturality. The conclusion is that the spaces of vector +fields on plots are not a good starting point for the construction of a natural Cartan +calculus on diffeological spaces. + +ELASTIC DIFFEOLOGICAL SPACES +3 +Fortunately, the situation has been analyzed carefully by Rosick´y who has iden- +tified the natural structure of the tangent functor that is needed to define the Lie +bracket of vector fields. He defines an abstract tangent structure on a category C +to be an endofunctor T : C → C together with the natural transformations of the +bundle projection πX : TX → X, zero section 0X : X → TX, fiberwise addition ++X : TX ×X TX → TX, exchange of order of differentiation τX : T 2X → T 2X, +and inclusion of the tangent fibers into the vertical tangent space λX : TX → T 2X, +which have to satisfy a rather long list of axioms (Definition 2.7). It is instructive +to see how all these structures come together to define the Lie bracket (8) of vec- +tor fields, avoiding any reference to the commutator bracket of derivations of some +structure ring. +For us, the main advantage of Rosick´y’s approach is that all the structure is given +by functors and natural transformations, to which we can apply the left Kan exten- +sion. However, this does not yield an abstract tangent structure on all diffeological +spaces. The main issue is that the pointwise left Kan extension, which is given by a +colimit, does not preserve limits, in particular the pullback on which the fiberwise +addition of tangent vectors is defined. More precisely, the natural morphism +(1) +colim +U→X TU ×U TU −→ TX ×X TX , +is not an isomorphism for all diffeological spaces X. In fact, this map is generally +neither surjective nor injective, as the following two examples show. +Example 1.2 (Axis cross of the plane). Consider the subset {(x, y) ∈ R2 | xy = +0} ⊂ R2 with the subspace diffeology. +The two tangent vectors at the orgin in +the direction of the x-axis and the y-axis cannot be represented on the same plot +(Figure 1). It follows that (1) is not surjective. +Example 1.3 (Folded line). Consider the diffeological quotient space of the action +Z2 × R → R, (k, x) �→ kx, where Z2 = {1, −1}. The quotient map R → R/Z2 +is a plot. +The tangent vectors (0, 1) and (0, −1) on its domain represent the +same tangent vector on R/Z2. This implies that the pairs ζ = +� +(0, 1), (0, 1) +� +and +η = +� +(0, 1), (0, −1) +� +in TR ×R TR represent the same pair of tangent vectors in +T(R/Z2) ×R/Z2 T(R/Z2). Since the tangent morphism of every morphism of plots +preserves the sum of a pair of tangent vectors at a point and since the sum of ζ is zero +but that of η is not, the two pairs cannot be equivalent in colimU→R/Z2 TU ×U TU. +We conclude that (1) is not injective. +1.2. The axiom of elasticity. Only if (1) is an isomorphism, the left Kan extension +of the addition +U on on plots is a morphism +X : TX ×X TX → TX that can +be viewed as a fiberwise addition of tangent vectors on the diffeological space X. +Therefore, requiring (1) to be an isomorphism is the first condition we have to impose +for a diffeological space to have a natural Cartan calculus. +A k-form in Ω(X) is a family of k-forms on all plots U → X that are compatible +with the pullbacks along morphisms of plots. A vector field, however, is not repre- +sented by a family of vector fields on the plots. For this reason, there is no natural +operation of inner derivative on Ω(X). For the inner derivative, we have to define a +k-form as a fiberwise multilinear and antisymmetric morphism +α : TX ×X . . . ×X TX +� +�� +� +=:TkX +−→ R . + +4 +C. BLOHMANN +(We avoid defining a tensor product, which would entail the usual technical issues +of completion when the fibers are infinite-dimensional.) The notation TkX for the +k-fold fiber product is standard in the literature on abstract tangent structures. The +inner derivative of α with respect to a vector field v : X → TX is then given by +precomposition +ιvα : Tk−1X +∼ += +−−→ X ×X Tk−1X +v×Xid +−−−−−→ TkX +α +−−→ R . +If we define forms as maps TkX → R, how can we define the differential? The +differential of a function f : TX → X is given by the tangent map, +df : TX +Tf +−−−→ TR +∼ += +−−→ R × R +pr2 +−−−→ R . +However, the functions and exact 1-forms do not generate the ring of forms, so that +this construction cannot be extended to higher forms. +We are now in the following dilemma. +Either we define differential forms as +families of forms on the plots, in which case we have a differential but no inner +derivative. Or we define them as fiberwise multilinear and antisymmetric morphisms +TkX → R, in which case we have an inner derivative, but no differential. The way +out is to require that the two notions of differential forms coincide. +We have already imposed the condition that (1) is an isomorphism, which induces +an isomorphism +(2) +Hom(TX ×X TX, R) +∼ += +−−→ lim +U→X Hom(TU ×U TU, R) . +It is easy to see that this isomorphism is equivariant with respect to the exchange of +the two fractors for the fiber product. Moreover, the maps are fiberwise multilinear +on TkX if and only if they are on all TkU. This shows that the isomorphism (2) +induces an isomorphism from fiberwise multilinear and antisymmetric morphisms +on TX ×X TX to Ω2(X). Since we need such an isomorphism for forms of arbitrary +degree k, we have to impose the following axiom: +Axiom (E1). The natural morphisms +θk,X : colim +U→X TkU −→ TkX , +are isomorphisms for all k > 1. +This axiom has the following geometric interpretation. +Every tangent vector +vx ∈ TxX is represented by a path. One can picture this by stretching out x in +the direction of vx to a smooth path γ : (−ε, ε) → X of short but non-zero length +through γ(0) = x, such that the coordinate tangent vector +∂ +∂t at the origin of the +interval is mapped by T0γ to vx. In this sense, every point of a diffeological space +has some elasticity in a single infinitesimal direction. +However, we generally cannot simultaneously stretch out x in the directions of +several tangent vectors v1 +x, . . . , vk +x ∈ TXx. That is, we cannot always find a plot +p : U → X with p(0) = x such that (T0p) ∂ +∂ti = vi +x, where (t1, . . . , tk) are the +canonical coordinates of U ⊂ Rk. +And even if we can find such a plot, it may +happen that the tangent map Tp is not injective at 0, so that we cannot identify +the tangent vectors on X with the coordinate vectors on U. This identification is +possible at every point x ∈ X if and only if the morphism θk,X is a bijection. If in +addition we want this condition to be compatible with the smooth structure, then +we have to make the stronger assumption that θk,X is an isomorphism of diffeological + +ELASTIC DIFFEOLOGICAL SPACES +5 +Figure 1. Diffeological subspaces of R2 with non-elastic points +marked in red, at which two tangent directions cannot be represented +on the same plot. +spaces. In this sense, Axiom (E1) captures the geometric idea of the “elasticity” of +a diffeological space in which any finite set of tangent directions can be streched out +to a smooth “membrane” given by the image of a plot. +Example 1.4 (Pasta diffeologies). We can equip a smooth manifold M with an +alternative diffeology by defining the plots be all smooth maps p : U → M such +that the rank of Tp : TU → TM is everywhere less than or equal to r. Since (i) the +precomposition of p with a smooth function f does not increase the rank, (ii) the +rank is a local property, and (iii) the rank of constant maps is zero, this defines a +diffeology, which we call the rank-r-restricted diffeology. +For r = 0 we obtain the discrete diffeology. If r = 1, then every plot factors +through R, so that we obtain the Spaghetti diffeology [IZ13, Sec. 1.10, footnote +1]. +The case r = 2 might then be called the Fettuccine diffeology. +It was +suggested by the participants of the AMS-EMS-SMF meeting 2022 in Grenoble that +the case r = 3 should be called the Gnocchi diffeology. For the rank-r-restricted +diffeology the morphism θk,M of Axiom (E1) is an isomorphism for all k ≤ r but not +for r < k < dim M. +1.3. The additional axioms. So far we have the Axiom (E1) that ensures that we +have a fiberwise addtion on TX and an inner derivative on differential forms. For +the definition of the Lie bracket we need more structure. In particular, we need a +natural morphism τX : T 2X → T 2X that exchanges the order of differentiation when +we apply the tangent functor twice. On a euclidean space U ⊂ Rn, every tangent +vector is represented by a path R → U on some plot, so that a tangent vector on the +manifold of tangent vectors is represented by a smooth path of smooth paths, which +is the same as a smooth map R2 → U. Exchanging the order of differentiation is +achieved by exchanging the parameters, +τ1↔2 : R2 −→ R2 +(t1, t2) �−→ (t2, t1) , +which descends by the commutative diagram +(3) +C∞(R2, U) +C∞(R2, U) +T 2U +T 2U +τ ∗ +1↔2 +τU +to an endomorphism of T 2U. + +6 +C. BLOHMANN +When we extend τU to diffeological spaces, the problem arises that the left Kan +extension does not preserve the product of endofunctors, that is, the natural mor- +phism +θ2 +X : colim +U→X T 2U −→ T 2X +is generally not an isomorphism. +We could impose the condition that θ2 +X is an +isomorphism, but this would be unnecessarily strong. It suffices to require the left +Kan extension of τU to descend to a morphism τX : T 2X → T 2X. Since θ2 +X is a +subduction for all X (Proposition 3.26), such a τX is unique. This condition can +be expressed more intuitively in terms of the smooth families in the same way as +for euclidean spaces. We can show that we can represent elements in T 2X by plots +R2 → X. More precisely, we have a subduction +Dflg(R2, X) −→ T 2X , +where Dflg denotes the inner hom of diffeological spaces, that is, the set of morphisms +equipped with the functional diffeology. The second axiom can now be expressed in +a way that is completely analogous to diagram (3). +Axiom (E2). There is a natural morphism τX : T 2X → T 2X, such that the +diagram +Dflg(R2, X) +Dflg(R2, U) +T 2X +T 2X +τ ∗ +1↔2 +τX +commutes. +Next, consider the natural morphism λX : TX → T 2X that maps v ∈ TX to +the vertical tangent vector on TX represented by the path t �→ tv. On a smooth +manifold, this morphism induces an isomorphism between every tangent space and +the tangent space of the tangent space. For diffeologial vector spaces this can fail, +as the following example shows. +Example 1.5. Consider Rn equipped with k-times differentiable maps as plots. +This is a diffeological vector space that we denote by Rn +Ck. Its tangent diffeological +space is given for k > 0 by +TRn +Ck ∼= Rn +Ck × Rn +Ck−1 , +which shows that the vector space and its tangent fiber are not isomorphic. Assume +that k > 1, so that we can apply the tangent functor twice. The vertical lift, +λRn +Ck : Rn +Ck × Rn +Ck−1 −→ Rn +Ck × Rn +Ck−1 × Rn +Ck−1 × Rn +Ck−2 +(x, v) �−→ (x, 0, 0, v) , +is not a subduction. +The definition of the Lie bracket in terms of the tangent structure yields a map +from X to the vertical subbundle of T 2X restricted to the zero section of TX. +We have to be able to identify this bundle with TX for the bracket to be again a +vector field. This condition is not specific to diffeological spaces. A vector field on +a Ck-manifold is a Ck-map. The commutator of two such vector fields is a Ck−1- +map which is, therefore, not a vector field on the Ck-manifold. To exclude such +phenomena we have to impose the following axiom: + +ELASTIC DIFFEOLOGICAL SPACES +7 +Figure 2. Elastic diffeological subspaces of R2. The tangent spaces +are 0 at the marked points, R at points on the black lines, and R2 at +gray points in the interior. +Axiom (E3). The vertical lift λX : TX → T 2X is an induction. +There are two more axioms. For smooth manifolds the tangent functor commutes +with pullbacks over submersions. +This follows from the local standard form of +submersions, which is proved using the implicit function theorem. Such a genuinely +analytic result cannot hold for all diffeological spaces, which is why we need to +impose the following axiom: +Axiom (E4). The tangent functor commutes with fiber products of the tangent +bundle, TTkX ∼= TkTX. +Finally, we want the diffeological spaces that satisfy our axioms to form a category. +This requires the collection of diffeological spaces that satisfy the axioms to be closed +under the functors Tk, which leads to the following axiom: +Axiom (E5). For every finite set of positive integers k1, . . . , kn the diffeological +space X′ := Tk1 · · · TknX satisfies axioms (E1) through (E4). +A diffeological space that satisfies Axioms (E1)-(E5) will be called elastic. If we +drop Axiom (E5), then we still have a natural Cartan calculus on X. We call a +diffeological space that satisfies Axioms (E1)-(E4) weakly elastic. The category of +weakly elastic spaces is not closed under the functors Tk. +1.4. Summary. The main result about elastic diffeological spaces is the follow- +ing: The left Kan extension of the tangent structure on euclidean spaces defines +a tangent structure with scalar R-multiplication on the category of elastic spaces +(Theorem 4.2). The proof of this statement, which is very long and technical, is +carried out in detail in a much longer paper [Blo]. Here we will present an overview +of the conceptual framework, the main properties, and important examples of elastic +spaces. +In Section 2 we review Rosick´y’s concept of abstract tangent structures. +We +also spell out the conditions for a compatible scalar multiplication, which is only +mentioned briefly in the original paper [Ros84]. For clarity, we spell out the tangent +structure of euclidean spaces explicitly. +In Section 3 we state some new results about the left Kan extension from eul- +cidean spaces to diffeological spaces, that will be needed later. We use the definition +of diffeological spaces as concrete sheaves on the site of euclidean spaces, which +the best approach for the categorical constructions we will study. We then state, +without proof, our results on the compatibility of the left Kan extension with prod- +ucts, coproducts, subductions, composition of endofunctors, and the D-topology of +diffeological spaces, which are all needed for the proof of the main Theorem 4.2. + +8 +C. BLOHMANN +Section 4 contains the formal definition of elastic spaces an the statement, without +proof, of the main Theorem 4.2. We discuss some alternative choices of axioms for +which the theorem remains true. First, we observe that we can drop Axiom (E5) +from the defintion of elastic spaces and still obtain a Cartan calculus on the space +X. +This category of weaker diffeological spaces will no longer be closed under +the tangent functor and its fiber products, so that we no longer have a category +with an abstract tangent structure in the sense of Rosick´y. We can also slightly +relax the Axiom (E1) of elasticity by requiring the the condition only holds for +k = 2. This weaker condition will be sufficient to prove Theorem 4.2. As explained +in the introduction, our choice of the stronger Axiom (E1) is motivated by our +wish to obtain not just a tangent structure, but a full-fledged Cartan calculus. In +an earlier version of the notion of elastic spaces presented in talks, Axioms (E1), +(E2), and (E4) were replaced by a single condition, which later turned out to be +unnecessarily strong. Finally, we state, without proof, that the category of elastic +spaces is closed under restrictions to open subsets, coproducts, finite products, and +retracts. +In Section 5 we will give a number of examples for elastic diffeological spaces that +show that, while the conditions of elasticity are quite strong, they still allow for an +interesting range of applications. The first main result, Theorem 5.2, shows that a +diffeological Lie group G is elastic if and only if the natural map g → T0g from the +vector space g = TeG to its tangent space at 0 is an induction. This is a surprisingly +weak condition, which is not particular to diffeological spaces. For example, it is +not satisfied by differentiable group structure on a Ck-manifold, k < ∞. The proof +of Theorem 5.2, which is long and techincal, will be given in [Blo]. The second main +result, Theorem 5.11, states that the diffeological space of sections of a smooth fiber +bundle F → M is elastic. The proof of this theorem is again long and involved, so +that it will be given in [Blo]. More examples of elastic spaces in this sections are: +manifolds with corners and cusps, diffeological vector spaces satisfying a mild extra +condition, manifolds modelled on elastic vector spaces, mapping spaces Dflg(X, A) +to diffeological vector spaces satisfying A ∼= T0A, the space of smooth R-valued +functions on a diffeological space, the mapping space of smooth manifolds. +1.5. Outlook. One of the motivations to develop the concept of elastic spaces came +from classical field theory, where the basic strucure, the “space” of fields is the set +of sections of a smooth fiber bundle F → M leaving it often unclear or implicit +what “space” means mathematically. It is often observed that F = Γ(M, F) is a +Fr´echet manifold, which is subsequently viewed as blanket license to treat F as if +it were an ordinary finite-dimensional smooth manifold. For example, it is often an +implicit assumption that there is a natural differential bigraded algebra of smooth +forms on F × M that restricts to the variational bicomplex on J∞F [DF99]. In +the same vein, in the study of symmetries, such as Noether’s theorems or BV- +theory, the constructions are often explained rigorously only for finite Lie groups +acting on finite-dimensional manifolds and then generalized with a leap of faith to +group-valued functions or diffeomorphisms acting on the spaces of fields. A closer +analysis shows that only the diffeological structure that is being used. For example, +a variation of a field is a smooth path of sections and a tangent vector to the space +of solutions of the field equations (i.e. a generalized Jacobi field) is represented by a + +ELASTIC DIFFEOLOGICAL SPACES +9 +smooth path of fields. All this suggests that there is a diffeological construction of +a Cartan calculus on F. This approach is validated by Theorem 5.11. +Another motivation comes from geometric deformation theory. Conceptually, a +deformation is a path in the moduli space of structures, such as the morphisms +of an algebraic structure, riemannian metrics, or complex structures, all of which +are equipped with a natural functional diffeology. This suggests that the geomet- +ric moduli spaces can be conceptualized by (higher) stacks that are presented by +(higher) diffeological groupoids. The infinitesimal deformation theory should then +be given by the fibers of the tangent bundle of the moduli space, which should be +presented by the corresponding (higher) Lie algebroid. In order to define this pro- +cedure rigorously, a Lie theory for diffeological groupoids has to be developed. This +has lead us to the conclusion that we need a tangent structure on the diffeological +spaces of the groupoid. It is encouraging that for diffeological Lie groups the con- +dition of elasticity is surprisingly weak. Lie theory for diffeological groupoids and +their application to geometric deformation theory is work in progress. +2. Abstract tangent structures +It is fairly straightforward to generalize the de Rham complex Ω(M), which is +a contravariant functor from smooth manifolds to differential graded algebras, to +other categories. While vector fields are in some sense dual to differential forms, +their generalization is a much more difficult problem. An immediate obstacle is +that the map M → X(M) that sends a manifold to its Lie algebra of vector fields +is not a functor. It is the tangent bundle TM → M that is functorial in M and, +therefore, lends itself easily to generalizations. Given a generalized tangent bundle +πX : TX → X in some category, the vector fields are naturally defined as the +sections of the morphism πX. The obvious question is now the following: +Question 2.1. Given a morphism TX → X in some catgory, what is the natural +structure needed to equip its space of sections with the structure of a Lie algebra? +This question turns out to be quite involved. A vector field on a smooth manifold +can be identified with a derivation of its ring of smooth functions C∞(M), which +is closed under the commutator bracket of the ambient ring of endomorphisms of +C∞(M). However, M �→ Der(C∞(M)) is still no functor. Moreover, in a generalized +setting, the identification of sections of TX → X with derivations on some structure +ring on X seems to be an overly strong requirement that is extraneous to differential +geometric considerations. So how can we define the Lie bracket of vector fields on +M directly in terms of the tangent functor using a categorical approach that lends +itself to generalizations? +This issue has been solved by Rosick´y in [Ros84]. In a first step, we observe that on +manifolds the vector space structure on vector fields is induced by the vector space +structure on the tangent fibers. To allow for categories that do not contain the real +numbers as object, we relax the structure of R-vector space to that of an abelian +group. The structure we then need on a generalized tangent bundle TX → X is +the natural transformatios of addition +X : TX ×X TX → TX and a zero section +0X : X → TX that equip TX → X with the structure of an abelian group over X. +For the definition of the Lie bracket, we start from the coordinate formula +� +vi ∂ +∂xi wj ∂ +∂xj +� += +� +vi∂wj +∂xi − wi∂vj +∂xi +� ∂ +∂xj + +10 +C. BLOHMANN +for vector fields on Rn. The right hand side is given by the derivation of w with +respect to v minus the derivation of v with respect to w. In order to generalize this +formula we must make sense of the differentiation of one vector field with respect to +another and the subtraction of the two terms. +The derivation of w : X → TX with respect to v : X → TX is given by the +composition +X +v +−−→ TX +Tw +−−−→ T 2X . +However, we cannot yet subtract Tw(vx) and Tv(wx) since the basepoint of Tw(vx) +in πTX : T(TX) → TX is wx, whereas that of Tv(wx) is vx. +We first have to +exchange the order of differentiation of the twofold tangent bundle. That is, we +need a natural transformation τX : T 2X → T 2X that satisfies τX ◦ πTX = TπX. +Then the basepoint of τX(Tv(wx)) is also wx, so that we can take the difference +(4) +Tw(vx) − τX +� +Tv(wx) +� += +� ++TX ◦ (Tw ◦ v, −τX ◦ Tv ◦ w) +� +x . +The result lies in the vertical tangent bundle of T 2X → TX, that is, the kernel of +TπTX. In the last step we have to be able to identify at every point wx ∈ TX the +vertical tangent space with TxX itself. +In a smooth manifold, there is a morphism λ2,M : TM ×M TM → T 2M that maps +the pair (wx, ux) to the vertical tangent vector in T 2M that is represented by the +path t �→ wx + tux. This map induces an isomorphism TM ×M TM ∼= ker TπTM. In +the generalized setting this structure is promoted to an axiom: We require a natural +morphism λ2,X : TX ×X TX → T 2X that induces an isomorphism TX ×X TX ∼= +ker TπTX. Using this isomorphism, the expression (4) can be viewed as an element +in TX ×X TX that can be projected onto the second factor which produces an +element in TX, which is the value of the bracket [v, w] at x. +For this bracket to satisfy the Jacobi identity, a number of compatibility relations +and properties of the various structures, bundle projection, zero section, fiberwise +addition, exchange of the order of differentiation, and the vertical lift have to be +required [Ros84]. Rosicky’s axiomatization of all this structure is the basis of this +paper. +2.1. Preliminary remarks on terminology and notation. +Terminology 2.2. Let Wibble be an algebraic theory. Let X be an object in a +category C such that the overcategory C ↓ X has all finite products (i.e. pullbacks +over X). A Wibble object in C ↓ X will be called a bundle of Wibbles over X. +In this paper Wibble will be one of: monoid, group, abelian group, module, R- +vector space (for categories containing R as an object). If W → X is a bundle of +Wibbles and if the pullback Wx = ∗ ×X W over a point x : ∗ → X exists in C, then +Wx is a Wibble object in C. In other words, every fiber of a bundle of Wibbles is a +Wibble object in C, which justifies the terminology. Note, that the notion of bundle +of Wibbles does not make any assumptions on local trivializations, whatsoever. So +a bundle of vector spaces over a manifold M is more general than a vector bundle +over M. +Remark 2.3. The main purpose of Terminology 2.2 is to unify (for the purpose of +this paper) the varied terminology found in the literature and to use a term that +is self-explanatory for a category theorist. In [Ros84, p. 1] a bundle of (abelian) +groups over an endofunctor F : C → C is called an “natural (abelian) group bundle + +ELASTIC DIFFEOLOGICAL SPACES +11 +over F”. A bundle of vector spaces over a diffeological space X is called a “regular +vector bundle” in [Vin08], a “diffeological vector space over X” in [CW16], and a +“diffeological vector pseudo-bundle” in [Per16]. +Notation 2.4. We will follow [Ros84] for the notation of the compositions of func- +tors and natural transformations. The composition of functors G : A → B and +F : B → C will be denoted by juxtaposition FG : A → C. Therefore, the horizontal +composition of natural transformations α : F → F ′ and β : G → G′ (the Godement +product) will also be denoted by juxtaposition αβ : FG → F ′G′. Its components +are given by the following commutative diagram: +FG(A) +FG′(A) +F ′G(A) +F ′G′(A) +αG(A) +F (βA) +(αβ)A +αG′(A) +F ′(βA) +The identity natural transformation F → F will be denoted by F, so that +(Fβ)A = F(βA) +(αG)A = αG(A) . +The vertical composition of α with a natural transformation α′ : F ′ → F ′′ will be +denoted by α′ ◦ α : F → F ′′. Its components are given by (α′ ◦ α)A = α′ +A ◦ αA. The +monoidal category of endofunctors will be denoted by End(C). +2.2. Rosick´y’s axioms. In [Ros84], Rosick´y introduced the notion of abstract +tangent functor, which captures much of the categorical structure of the tangent +functor of manifolds. The following notion is implicit in Rosick´y’s definition: +Definition 2.5. Let F : C → C be a functor and τ : F 2 → F 2 a natural transfor- +mation. Let τ12 := τ F and τ23 := F τ be the two trivial extensions of τ to natural +transformations F 3 → F 3. We call τ a braiding on F if it satisfies the braid rela- +tions τ12 ◦ τ23 ◦ τ12 = τ23 ◦ τ12 ◦ τ23. A braiding τ is called a symmetric structure +on F if it satisfies τ ◦ τ = F 2. +Remark 2.6. A symmetric structure on F defines an action of the symmetric group +Sn on F n. +A bundle of groups over X consists of a morphism π : A → X, the bundle +projection, together with the morphisms 0 : X → A and + : A ×X A → A of the +group structure. Let π′ : A′ → X′, 0′ : X′ → A′, +′ : A′ ×X′ A′ → A′ be another +bundle of groups. A morphism of bundles is a commutative diagram +A +A′ +X +X′ +ϕ +π +π′ +ψ + +12 +C. BLOHMANN +There is a unique morphism ϕ ×ψ ϕ : A ×X A → A′ ×X′ A′ that makes the following +diagram commutative: +A ×X A +A ×X A +A × A +A′ × A′ +ϕ×ψϕ +ϕ×ϕ +The pair (ϕ, ψ) is a morphism of bundles of groups if the diagram +A ×X A +A′ ×X A′ +A +A′ +ϕ×ψϕ ++ ++′ +ϕ +commutes. An endofunctor F preserves the fiber product if the natural mor- +phism of bundles over FX, +(5) +νk,X : F(A ×π,π +X . . . ×π,π +X A) −→ FA ×F π,F π +F X +. . . ×F π,F π +F X +FA , +where both sides have the same number k of factors, is an isomorphism for all k. +Definition 2.7 (Sec. 2 in [Ros84], Def. 2.3 in [CC14]). A tangent structure of a +category C consists of a functor T : C → C together with natural transformations +π : T → 1, 0 : 1 → T, + : T2 → T, λ : T → T 2, and τ : T 2 → T 2, such that the +following axioms hold: +• Fiber products: The pullbacks +Tk := T ×1 T ×1 . . . ×1 T +� +�� +� +k factors +over T +π→ 1 exist for all k ≥ 1, are pointwise, and preserved by T. +• Bundle of abelian groups: T +π→ 1 with neutral element 0 and addition + +is a bundle of abelian groups over 1 (Terminology 2.2). +• Symmetric structure: τ : T 2 → T 2 is a symmetric structure on T (Def- +inition 2.5). Moreover, τ is a morphism of bundles of groups. That is, the +diagrams +T 2 +T 2 +T +τ +Tπ +πT +and +TT2 +T 2 ×Tπ,Tπ +T +T 2 +T 2T +T 2 +T 2 +ν2 +T+ +τ×T τ ++T +τ +commute, where ν2 is morphism (5) for A = TX +π→ X, F = T, and k = 2. + +ELASTIC DIFFEOLOGICAL SPACES +13 +• Vertical lift: The diagrams +T +T 2 +1 +T +λ +π +πT +0 +T +T 2 +T 2 +T 3 +λ +λ +λT +Tλ +commute. Moreover, the first diagram is a morphism of bundles of groups, +that is (+T) ◦ (λ ×0 λ) = λ ◦ +. +• Compatibility of vertical lift and symmetric structure: The diagrams +T +T 2 +T 2 +λ +λ +τ +T 2 +T 3 +T 3 +T 2 +T 3 +Tλ +τ +τT +Tτ +λT +commute. +• The vertical lift is a kernel: The diagram +(6) +T +T 2 +1 +T2 +λ +π +(πT,Tπ) +0×10 +is a pointwise pullback. +Terminology 2.8. In [CC14] and subsequent work, Rosick´y’s original condition +that T → 1 be a bundle of abelian groups was relaxed to a bundle of abelian +monoids. In this terminology, Rosicky’s stronger notion is called a tangent structure +with negatives. All tangent structures in this paper will be with negatives. +Remark 2.9. Diagram (6) is a pointwise pullback if and only if +T +T 2 +T +λ +πT +Tπ +0◦π◦πT +is a pointwise triple equalizer. This condition is the original axiom in [Ros84]. +Remark 2.10. The vertical lift can be extended by the additive bundle structure +to the map +(7) +λ2 : T2 +T0×0λ +−−−−−→ T2T ++T +−−−→ T 2 +τ +−−→ T 2 . +It was shown in [CC14, Lem. 3.10], assuming all other axioms of a tangent structure +(with negatives), that axiom (6) is satisfied if and only if +T2 +T 2 +1 +T +λ2 +π◦pr1 +Tπ +0 +is a pointwise pullback. + +14 +C. BLOHMANN +2.3. Scalar multiplication. Let R be a ring object in the category C. This gives +rise to an endofunctor R × 1 : C → C, X �→ R × X, which is equipped with the +projection pr1 : R × 1 → 1. The ring structure of R equips R × 1 → 1 with the +structure of a ring internal to endofunctors over 1. Let π : T → 1 be an abelian group +object in the category of endofunctors over 1. An (R × 1 → 1)-module structure on +T → 1 is given explicitly by a natural transformation +κX : R × TX −→ TX , +such that the following diagrams commute for all X ∈ C: +(i) Morphism of bundles: +R × TX +TX +X +κX +πX◦pr2 +πX +(ii) Associativity: +R × R × TX +R × TX +R × TX +TX +idR×κX +·×idR×T X +κX +κX +(iii) Unitality: +{1} × TX +R × TX +TX +∼ += +κX +(iv) Linearity in R: +R × R × TX +R × TX +(R × TX) ×X (R × TX) +TX ×X TX +TX ++×idT X +idR2×∆T X +κX +κX×XκX ++X +Here ∆TX : TX → TX ×X TX is the diagonal morphism and the factors of +the codomain are reordered. +(v) Linearity in TX: +R × TX ×X TX +R × TX +(R × TX) ×X (R × TX) +TX ×X TX +TX +id×+X +∆R×idT2X +κX +κX×XκX ++X + +ELASTIC DIFFEOLOGICAL SPACES +15 +Here ∆R : R → R × R is the diagonal morphisms and the factors of the +codomain are reordered. +We will call this structure more succinctly an R-module structure on T → 1 +and T → 1 a bundle of R-modules (Terminology 2.2). If T is part of a tangent +structure on C, then we also have to require the compatibility with the symmetric +structure and the vertical lift. +Definition 2.11. Let R be a ring internal to a category C with a tangent structure. +An R-module structure κX : R×TX → TX will be called a scalar multiplication +of the tangent structure if the following diagrams commute for all X ∈ C: +(vi) Compatibility with the symmetric structure: +R × T 2X +R × T 2X +T 2X +idR×τX +κT X +TκX +(vii) Compatibilty with the vertical lift: +R × TX +R × T 2X +TX +T 2X +idR×λX +κX +κT X +λX +The tangent structures we consider here will all be equipped with an R-scalar +multiplication. +Remark 2.12. As is the case for any module structure, the commutative dia- +gram (v) implies that the scalar multiplication by 0 ∈ R sends TX to the zero +section, that is, the diagram +{0} × TX +R × TX +X +TX +πX◦pr2 +κX +0X +is commutative. If κ is such that this diagram and diagrams (i)-(iii) are commutative, +then κ will be called an R-cone structure and T → 1 a bundle of R-cones. +2.4. The Lie bracket of vector fields. +Definition 2.13. Let C be a category with a tangent structure. A vector field on +X ∈ C is a section of πX : TX → X. +The bracket of two vector fields v, w : X → TX is defined as follows. +The +composition of v and Tw : TX → T 2X satisfies +πTX ◦ Tw ◦ v = w ◦ πX ◦ v = w ◦ idX += w . +When we exchange v and w, we have πX ◦Tv◦w = v. In order to be able to subtract +the two terms in the fiber product T 2X ×TX T 2X, we have two apply the symmetric + +16 +C. BLOHMANN +structure on T 2, so that we obtain +πTX ◦ τX ◦ Tv ◦ w = TπX ◦ Tv ◦ w = TidX ◦ w = idTX ◦ w += w . +This shows that Tw◦v and τX ◦Tv◦w project to the same fiber of πTX : T 2X → TX, +so that we can take the difference +δ(v, w)(x) := (Tw ◦ v)(x) − (τX ◦ Tv ◦ w)(x) , +where the minus denotes the difference in the bundle of abelian groups πTX : T 2X → +TX. We have +πTX ◦ δ(v, w) = 0 = TπX ◦ δ(v, w) , +so that the map δ(v, w) : X → T 2X takes values in the kernel of TπX : T 2X → TX, +which is isomorphic to TX ×X TX. By projecting on the second factor we thus +obtain the vector field [v, w] : X → TX. This construction can be summarized by +the following commutative diagram: +(8) +X +X × X +TX × TX +T 2X × T 2X +TX +TX ×X TX +T 2X +T 2X ×TX T 2X +T 2X × T 2X +X +TX +TX +TX × TX +∆X +[v,w] +∃! +∃! +v×w +Tw×Tv +idX×τX +⌟ +pr2 +λ2,X +πX +TπX +⌟ +−T X +πT X×πT X +0X +∆T X +This shows that all of the tangent structure is needed for the definition of the bracket +of vector fields. It was announced in [Ros84] and proved in [CC15] with the input +of Rosick´y that [v, w] satisfies the Jacobi relation. +The set of vector fields Γ(X, TX) has the structure of an abelian group with +addition +v + w := +X ◦ (v × w) ◦ ∆X , +where ∆X : X → X × X is the diagonal morphism. When the tangent structure +has a scalar multiplication by R, then Γ(X, TX) is a module over the ring C(X, R) +of R-valued functions, given by +κ(f, v) = κX ◦ (f × v) ◦ ∆X . +2.5. The tangent structure of euclidean spaces. The eponymous example for +tangent structures is the tangent functor of open subsets of real vector spaces, which +is the local model for the tangent functor of smooth manifolds. Let Eucl denote the +category which has open subsets of Rn, n ≥ 0 as objects and smooth maps as +morphisms. +Eucl will be called the category of euclidean spaces. +Its tangent +functor will be denoted by +T : Eucl −→ Eucl . + +ELASTIC DIFFEOLOGICAL SPACES +17 +On an open subset U ⊂ Rn, the functors that appear in the definition 2.7 of a +tangent category are given explicitly by +TU = U × Rn +T 2U = U × Rn × Rn × Rn +T kU = U × (Rn)2k−1 +T2U = U × Rn × Rn +TkU = U × (Rn)k . +On a smooth map f : U → V ⊂ Rm the functors are given by +Tf : (u, ui +0) �−→ +� +f(u), ∂f a +∂xi ui +0 +� +T 2f : (u, ui +0, ui +1, ui +01) �−→ +� +f(u), ∂f a +∂xi ui +0, ∂f a +∂xi ui +1, ∂f a +∂xi ui +01 + ∂2f a +∂xi∂xj ui +0uj +1 +� +T2f : (u, ui +0, ui +1) �−→ +� +f(u), ∂f a +∂xi ui +0, ∂f a +∂xi ui +1 +� +. +The formulas for T k and Tk are analogous. +The natural transformations of the +tangent category structure are given by +πU : (u, u0) �−→ u +0U : u �−→ (u, 0) ++U : (u, u0, v0) �−→ (u, u0 + v0) +λU : (u, u0) �−→ (u, 0, 0, u0) +τU : (u, u0, u1, u01) �−→ (u, u1, u0, u01) . +The commutativity of T2 and T is given by the isomorphism +T(T2U) −→ T2(TU) +� +(u, u0, v0), (u1, u01, v01) +� +�−→ +� +(u, u1), (u0, u01), (v0, v01) +� +The bundle projection extends to T 2 as +(πT)U = πTU : (u, u0, u1, u01) �−→ (u, u0) +(Tπ)U = TπU : (u, u0, u1, u01) �−→ (u, u1) . +The other natural transformations that appear in the definition, +T, T+, λT, Tλ, +τT, and Tτ, are obtained in a similar way. The extension (7) of the vertical lift is +given by +λ2 : (u, u0, v0) �−→ (u, u0, 0, v0) . +The following propositions can be checked by explicit elementary calculation: +Proposition 2.14. Eucl with the tangent functor T and the natural transformations +π, 0, +, τ, and λ is a tangent structure on Eucl. +Proposition 2.15. The fiberwise multiplication by real numbers, +κU : R × TU −→ TU +� +r, (u, u0) +� +�−→ (u, ru0) , +is a scalar multiplication of the tangent structure (Definition 2.11). + +18 +C. BLOHMANN +3. Left Kan extension to diffeological spaces +The structures on smooth manifolds that we wish to generalize to diffeological +spaces, such as the tangent bundle and the algebra of differential forms, are local +and universal in the sense that they are defined on all open subsets of Rn and then +glued together along an atlas. In categorial terms, the local structure is given by a +functor F : Eucl → C and the glueing operation by the colimit +FM := colim +U→M FU +over a maximal atlas. In categorical terms, FM is the pointwise left Kan extension +of F along the inclusion of euclidean spaces into smooth manifolds. For the gen- +eralization of this construction to diffeological spaces we replace the charts of the +smooth manifold M with the plots of the diffeological space X, +FX := colim +U→X FU . +This is the pointwise left Kan extension of F along the inclusion of euclidean spaces +into diffeological spaces. +In order to use the left Kan extension as universal tool to generalize differential +geometric structures to diffeological spaces, we have to study its categorical prop- +erties in some detail. For this it is best to work with the definition of diffeological +spaces as concrete sheaves on euclidean spaces, which was elucidated in [BH11]. +The site Eucl of euclidean spaces is concrete, which means that there is a faith- +ful functor Eucl → Set, U → |U| that maps covers to surjective maps. A sheaf +D : Euclop → Set is concrete if it is a subsheaf of U �→ Set(|U|, D(∗)). Explicitly, +this means that D(U) is a collection of maps of sets |U| → X := D(∗), called plots, +that satisfy the properties of a sheaf. In this way, we recover the original definition +of diffeology. +As is the case for any category of concrete sheaves, the category of diffeological +spaces Dflg is a quasi-topos, a category with a classifier for strong subobjects, which +has a number of good properties (Proposition 3.6). Other good properties of Dflg +are inherited from the site Eucl. For example, the category of plots of a diffeological +space, the index category used to compute the pointwise left Kan extension, is sifted, +which suggest a compatibility with finite products. +Every representable presheaf is a concrete sheaf, so that the Yoneda embedding +factors through a full and faithful functor +y : Eucl −→ Dflg . +While y is simply the Yoneda embedding restricted on its codomain, the restriction +changes the computation of colimits. +A colimit in Dflg is given by first taking +the pointwise colimit in the functor category SetEuclop and then applying the left +adjoint of the inclusion Dflg → SetEuclop. This second step has consequences for the +properties of the left Kan extension, which is given by a colimit. +Most structures that we will consider are given by endofunctors F : Eucl → +Eucl. Since Eucl is not cocomplete and since we want to obtain an endofunctor of +diffeological spaces, we have to place the codomain of F in diffeological spaces by +composing with y before taking the Kan extension. The Kan extended endofunctor +will be denoted by +LF := Lany yF : Dflg −→ Dflg . +The main question we will address in this section is the following. + +ELASTIC DIFFEOLOGICAL SPACES +19 +Question 3.1. What are the categorical properties of L : End(Eucl) → End(Eucl) +and which properties of F are preserved by L? +It follows from the naturality of the Kan extension that L is a functor +L : End(Eucl) −→ End(Dflg) +of categories of endofunctors, which means that the vertical composition of natural +transformations and, therefore, commutative diagrams of natural transformations +are preserved. This is the most important property for our purposes, since it im- +plies that the commutative diagrams that appear in the Definition 2.7 of tangent +structures carry over to the diffeological setting. +Unfortunately, this is where the good news about the left Kan extension to dif- +feological spaces end. Unlike the Kan extension to presheaves, the Kan extension +of a functor to concrete sheaves does generally not preserve colimits, not even finite +coproducts. Nor does L preserve the composition of endofunctors. Fortunately, the +functors F we want to extend have some good categorical properties, that entail +good properties of their Kan extensions LF. +Using that the category of plots U → X is sifted, we show that if F preserves finite +products, then so does its Kan extension LF (Proposition 3.19). It also implies that +L preserves finite products of endofunctors (Proposition 3.20). For the compatibility +with coproducts we have to assume that F is a cosheaf, that is, F : Euclop → +Euclop is a sheaf. Then LF preserves coproducts (Corollary 3.23) and subductions +(Proposition 3.24). +While L does not preserve the composition of endofunctors, there is a natural +morphism +(9) +L(FG) −→ (LF)(LG) , +which is generally not an isomorphism. We can show that if F is a cosheaf, then (9) +applied to a diffeological space is a subduction (Proposition 3.26). The morphism +L(FGH) −→ L(F)L(G)L(H) +we obtain by applying (9) twice does not depend on whether we first apply it to +(FG)H or to F(GH) (Proposition 3.27). In this sense µ is associative. It is straight- +forward to see that (9) is natural in F and G (Proposition 3.28). +Finally, we study the compatibility of the Kan extension with the D-topology +of diffeological spaces. We observe that many of the functors on euclidean spaces +we are interested in come with a natural transformation F → 1 such that the +pullback along any open embedding V → U satisfies FV ∼= V ×U FU. We call +such an F → 1 a local bundle, by default of a better term. We can show that if +F → 1 is local, then so is its Kan extension LF → 1 (Proposition 3.35). Then we +prove that a morphism FX → GX of local bundles is an induction, subduction, +epimorphism, or isomorphism if all restrictions to the open subsets of a cover of X +are (Proposition 3.34). +3.1. Diffeological spaces as concrete sheaves. Recall that Eucl denotes the +category which has all open subsets of euclidean spaces Rn, n ≥ 0 as objects and all +smooth maps as morphisms. Open covers define a Grothendieck pretopology. +Definition 3.2. The small category Eucl together with the Grothendieck topology +generated by the pretopology of open covers will be called the site of euclidean +spaces. + +20 +C. BLOHMANN +The terminal object in Eucl is ∗ := R0. The functor of points, +| +| : Eucl −→ Set +U �−→ Eucl(∗, U) , +is faithful, so that it equips Eucl with the structure of a concrete category. More- +over, every cover {Ui → U} is surjective on the underlying sets. A site with these +properties is called concrete. +Let X : Euclop → Set be a presheaf. Then there is a morphism of presheaves +defined by +(10) +X(U) −→ Set +� +|U|, |X| +� +p �−→ +� +(∗ +u→ U) �→ Xu(p) +� +, +where Xu ≡ X(u) : X(U) → X(∗) is the restriction of X(U) to the point u. +Definition 3.3. A presheaf X : Euclop → Set on a concrete site is concrete if (10) +is a monomorphism, i.e. if the maps defined in (10) are injective for all U ∈ Eucl. +A sheaf is concrete if it is concrete as a presheaf. A morphism between concrete +sheaves is a morphism of the underlying presheaves. +Definition 3.4. A concrete sheaf on the site of euclidean spaces is called a diffeo- +logical space. A morphism of diffeological spaces is a morphism of sheaves. The +category of diffeological spaces will be denoted by Dflg. +Theorem 3.5 (Thm. 5.25 in [BH11]). The category of diffeological spaces is a qua- +sitopos with small limits and small colimits. +Theorem 3.5 implies that the category of diffeological spaces has a number of +convenient properties. +For clarity and later reference, we will spell out some of +them. +Proposition 3.6. The category Dflg of diffeological spaces has the following prop- +erties: +• Dflg is locally cartesian closed, i.e. for every object X in Dflg the overcate- +gory Dflg ↓ X is cartesian closed. +• Strong monomorphisms and strong epimorphisms are effective. +• (Strong) monomorphisms and (strong) epimorphisms are stable under pull- +back. +• Dflg is quasiadhesive, that is, the pushout of a strong monomorphism is a +strong monomorphism and the pushout square is a pullback square. +• The initial object is strict, i.e. every morphism X → ∅ is an isomorphism. +• Coproducts are disjoint, i.e. X → X ⊔ Y ← Y are monomorphisms and +X ×X⊔Y Y ∼= ∅. +• The functor of points Dflg → Set, X → Dflg(∗, X) is faithful. It has a left +and a right adjoint, so that it preserves limits and colimits. +Terminology 3.7. The strong epimorphisms in Dflg are called subductions, the +strong monomorphisms inductions. +Example 3.8. Here are some of the most basic examples for diffeologies: + +ELASTIC DIFFEOLOGICAL SPACES +21 +(a) The fine diffeology or discrete diffeology on a set S is the diffeology for +which the plots are the locally constant maps.1 +(b) The coarse diffeology, or indiscrete diffeologoy, or trivial diffeology +on a set S is given by U �→ Set +� +|U|, S +� +, i.e. all maps are plots. +(c) Every topological space X is equipped with the continuous diffeology +given by U �→ Top(U, X), i.e. the plots are the continuous maps. +(d) Every smooth finite-dimensional manifold M is equipped with the natural +diffeology given by U �→ Mfld(U, M), i.e. the plots are the infinitely often +differentiable maps. +(e) We will denote the exponential objects in Dflg by +Dflg(X, Y ) ≡ Y X +and call them the diffeological mapping spaces. The diffeology, which is +given by the universal property +Dflg +� +U, Dflg(X, Y ) +� ∼= Dflg(U × X, Y ) , +is called the functional diffeology. +Remark 3.9. By Proposition 3.6, the forgetful functor Dflg → Set, X �→ |X| has a +left and a right adjoint. The right adjoint equips a set S with the coarse diffeology. +The left adjoint equips it with the fine diffeology. In other words, the fine diffeology +on a set is the free diffeology, the coarse diffeology is the cofree diffeology. +Remark 3.10. The map that sends a smooth manifold M to its natural diffeology +U �→ Mfld(U, M) defines a full, faithful, and injective functor Mfld → Dflg. +Remark 3.11. Every diffeological space X is naturally equipped with the finest +topology such that all plots are continuous, which is called the D-topology. This +topology is determined by the smooth curves only, so that many different diffeologies +induce the same topology [CSW14, Thm. 3.7]. Mapping a diffeology on X to the +induced topology is left adjoint to mapping a topology to the continuous diffeology +[CSW14, Prop. 3.3]. The topology induced by the discrete (trivial) diffeology is +the discrete topology. In general, however, neither the unit nor the counit of the +adjunction is an isomorphism. +The maps p ∈ X(U) ⊂ Set(|U|, |X|) of a diffeological space X are called plots. +If we spell out the defining conditions of a concrete sheaf, we obtain the traditional +definition of diffeological spaces in terms of plots. +For every open cover {Ui → U} in Eucl, U is the coequalizer of � +i,j Ui ∩ Uj ⇒ +� Ui. In other words, the site of euclidean spaces is subcanonical, so that every +representable presheaf is a sheaf. Since every representable presheaf is concrete, it +follows that all representable presheaves on Eucl are concrete sheaves. We conclude +that the Yoneda embedding Y : X �→ Dflg( , X) factors as +SetEuclop +Eucl +Dflg +Y +y +I +1In [BH11, Example (2), p. 5794] it is stated incorrectly that the discrete diffeology is given by +the constant maps. + +22 +C. BLOHMANN +through a functor y. Since Y and I are full and faithful, so is y. Since I is full +and faithful, the Yoneda lemma implies that the evaluation of the concrete sheaf +X ∈ Dflg on U ∈ Eucl is given by +X(U) ∼= SetEuclop(Y U, IX) ∼= SetEuclop(IyU, IX) +∼= Dflg(yU, X) . +It follows that limits in Dflg are computed pointwise and that I preserves limits. +By the adjoint functor theorem, I has a left adjoint, +K : SetEuclop +Dflg : I , +which was computed and studied in [BH11, Sec. 5.3]. Explicitly, K is given by a +procedure called concretization followed by the Grothendieck plus construction. +The left adjoint K is a retract, KI ∼= idDflg, which implies that the colimit of a +diagram in X : I → Dflg can be computed as +colim +i∈I +Xi ∼= colim +i∈I +KIXi +∼= K colim +i∈I +IXi , +that is, by first computing the colimit in presheaves and then applying K. As a +further consequence, it can be shown that y is dense: +Proposition 3.12 (Prop. 51 in [BH11]). Every X ∈ Dflg is the colimit of y ↓ X → +Eucl → Dflg, which we will write as +X ∼= colim +yU→X yU . +Terminology 3.13. The comma category y ↓ X is called the category of plots of +X. +Remark 3.14. It is customary and convenient to identify notationally the domain +of a plot U ∈ Eucl with the diffeological space yU ∈ Dflg. In this paper, however, we +deal with a number of subtleties of Kan extensions along y where this identification +would invite wrong proofs by notation (a trap the author has fallen into more than +once). Therefore, we will always spell out the embedding y. +3.2. Left Kan extension to diffeological spaces. +Notation 3.15. Let F : Eucl → Eucl be an endofunctor. The left Kan extension of +yF along the embedding y : Eucl ֒→ Dflg will be denoted by +(11) +LF := Lany yF , +which is an endofunctor of Dflg. +The left Kan extension will be our device to extend the tangent structure of +euclidean to diffeological spaces. L is functorial, which means that L preserves the +vertical compostion of natural transformations ˆα : ˆF → ˆF ′ and ˆα′ : ˆF ′ → ˆF ′′ +between endofunctors ˆF, ˆF ′, ˆF ′′ ∈ End(Eucl), that is, +L(α′ ◦ α) = (Lα′) ◦ (Lα) . + +ELASTIC DIFFEOLOGICAL SPACES +23 +Since Eucl is small and Dflg is cocomplete, LF exists and is pointwise, that is, it +can be computed by the colimit [ML98, Thm. X.5.3] +(LF)(X) ∼= colim(y ↓ X −→ Eucl +yF +−→ Dflg) += colim +yU→X yFU , +for all X ∈ Dflg. Let α : F → G be a natural transformation of functors Eucl → +Eucl. Then yα : yF → yG is a natural transformation of functors Eucl → Dflg. +The left Kan extension Lany yF is functorial in yF, so that we have a natural +transformation +(12) +Lα := Lany yα : LF −→ LG . +Together (11) and (12) define a functor +(13) +L : End(Eucl) −→ End(Dflg) , +where End(C) denotes the category of endofunctors and natural transformations of +the category C. +Proposition 3.16. The diagram +Eucl +Eucl +Dflg +Dflg +y +F +y +LF +commutes for all endofunctors F, that is +(LF)yU ∼= yFU +for all U ∈ Eucl. +Proof. Since y is full and faithful, the statement follows from [ML98, Cor. 3, Sec. X.3] +or from [Kel05, Prop. 4.23]. +□ +Corollary 3.17. The functor (13) is full and faithful. +3.3. Compatibility with products, coproducts, and subductions. Since y : +Eucl → Dflg is full and faithful, a smooth map f : U → V of euclidean spaces is a +strong epimorphism if and only if yf : yU → yV is a strong epimorphism, which is +the same thing as a subduction. For this reason we will call a strong epimorphism +f a subduction. This is the case if every point v0 ∈ V has an open neighborhood +V0 ⊂ V such that there is a smooth map g0 : V0 → U satisfying f ◦ g0 = idV0. +In short, f is a subduction if it has local sections. In particular, every surjective +submersion is a subduction. +Proposition 3.18. Let α : F → G be a natural transformation of endofunctors of +Eucl. If αU : FU → GU is a subduction for all U ∈ Eucl, then (Lα)X : (LF)X → +(LG)X is a subduction for all X ∈ Dflg. +Proof. Since αU is a subduction, so is yαU. Subductions in Dflg are the same as +regular epimorphisms, so that yαU is a regular epimorphism for all U ∈ Eucl. The +left Kan extension αX = (Lα)X is given by the colimit over the category of plots +y ↓ X. Since colimits preserve regular epimorphisms, αX is a regular epimorphism, +that is, a subduction. +□ + +24 +C. BLOHMANN +Proposition 3.19. If a functor F : Eucl → Eucl preserves finite products, then so +does LF : Dflg → Dflg. +Let F : I → End(Eucl), i �→ Fi be a functor. Due to the universal properties of +colimits and limits, we have for every X ∈ Dflg the natural morphism +colim +yU→X lim +i∈I yFiU −→ lim +i∈I colim +yU→X yFiU . +Assuming that the limit limi∈I Fi exists in End(Eucl), it can be written as the natural +transformation +L lim +i Fi −→ lim +i LFi , +where we have used that y preserves limits. This is not an isomorphism unless the +colimit and the limit commute. +Let G : J → End(Eucl) be another diagram, such that limi Gi exists. Any natural +transformation αi : Fi → Gi induces a commutative diagram +L limi Fi +L limi Gi +limi LFi +limi LGi +L(limi αi) +limi Lαi +Proposition 3.20. Let F1, . . . , Fk ∈ End(Eucl) be a finite family of endofunctors. +Then we have an isomorphism +L(F1 × . . . × Fk) ∼= LF1 × . . . × LFk . +It is well-known, that the left Kan extension of an arbitrary functor along the +Yoneda embedding Y : Eucl → SetEuclop preserves all colimits. This is not true for +Kan extensions along y : Eucl → Dflg. Already for the preservation of coproducts +we have to make additional assumptions. Recall that a functor F : Eucl → C is a +cosheaf if F op : Euclop → Cop is a sheaf. +Example 3.21. The following functors on Eucl are cosheaves: +(a) the tangent functor T : Eucl → Eucl; +(b) fiber products of the tangent functor Tk : Eucl → Eucl; +(c) if F : Eucl → C and G : Eucl → Eucl are cosheaves, then so is their +composition FG; +(d) the de Rham functor Ω : Eucl → dgAlgop, which maps U to the differential +graded algebra of differential forms and smooth maps to the pullback of +forms; +(d) if F : Mfldop → C is a sheaf on the big site of manifolds and open covers, +then the restriction F : Eucl ֒→ Mfld → Cop is a cosheaf; +Proposition 3.22. If F : Eucl → C is a cosheaf, then its left Kan extension along +y : Eucl → Dflg preserves coproducts. +Corollary 3.23. If F : Eucl → Eucl is a cosheaf, then LF preserves coproducts. +Proposition 3.24. If F : Eucl → Eucl is a cosheaf, then LF preserves subductions. +Proposition 3.25. Let X : I → Dflg be a functor. If F : Eucl → Eucl is a cosheaf, +then the natural morphism +colim(LF)X −→ (LF) colim X + +ELASTIC DIFFEOLOGICAL SPACES +25 +is a subduction. +3.4. Compatibility with the composition of endofunctors. Let F, G : Eucl → +Eucl be endofunctors. The left Kan extension of their product is given by the colimit +L(FG)X ∼= colim +yU→X yFGU +∼= colim +yU→X (LF)yGU , +(14) +where we have used Proposition 3.16. The product of the Kan extensions can be +written as +(15) +(LF)(LG)X ∼= (LF) colim +yU→X yGU . +Due to the universal property of the colimit, we have a natural morphism +(16) +colim +yU→X (LF)yGU −→ (LF) colim +yU→X yGU . +Composing this morphism with the isomorphism (14) on its domain and with iso- +morphism (15) on the codomain, we obtain a natural morphism +(17) +µF,G : L(FG)X −→ (LF)(LG)X . +This is an isomorphism if and only if (16) is, which is generally not the case. +Proposition 3.26. If F is a cosheaf, then (17) is a subduction for all X ∈ Dflg. +Proof. Since F is a cosheaf, it follows from Proposition 3.25 that (16) is a subduction, +which implies that (17) is a subduction. +□ +The morphism (17) is associative in the followoing sense. +Proposition 3.27. Let F, G, H : Eucl → Eucl be endofunctors. Then the diagram +of natural transformations +L(FGH) +(LF)(LGH) +L(FG)(LH) +(LF)(LG)(LH) +µF,GH +µF G,H +(LF )µG,H +µF,G(LH) +is commutative. +Proposition 3.28. Let α : F → F ′ and β : G → G′ be natural transformations of +endofunctors of Eucl. Then the diagram +L(FG) +L(F ′G′) +(LF)(LG) +(LF ′)(LG′) +L(αβ) +µF,G +µF ′,G′ +(Lα)(Lβ) +is commutative. + +26 +C. BLOHMANN +3.5. Compatibility with the D-topology. +Definition 3.29 (Sec. 2.8 in [IZ13]). The D-topology on a diffeological space is +the finest topology (on the underlying set) such that every plot is continuous. +Explicitly, a subset Y ⊂ X is open in the D-topolgy if and only if for every plot +p : yU → X, the preimage p−1(Y ) ⊂ U is open. Every morphism of diffeological +spaces is continuous with respect to the D-topologies. In the following “open” and +”continuous” are always meant with respect to the D-topology. An open subset +S ⊂ X of a diffeological space is naturally equipped with the subspace diffeology, so +that the inclusion i : S → X is an open induction. +Let {Si ⊂ X}i∈I be an open cover of a diffeological space X. Then the diagram +(18) +� +i,j Sij +� +i Si +X , +where Sij = Si ×X Sj, is a coequalizer. A functor F : Dflg → Dflg is a cosheaf if +F preserves the coequalizer (18), that is, if +� +i,j FSij +� +i FSi +FX +is a coequalizer for every open cover. A special kind of cosheaf is given by a natural +bundle that satisfies the following locality condition. +Definition 3.30. A bundle π : F → 1 of endofunctors of diffeological spaces will +be called local if for every open induction i : S → X the commutative diagram +FS +FX +S +X +πS +F i +πX +i +is a pullback. +Proposition 3.31. If a bundle π : F → 1 of endofunctors of diffeological spaces is +local, then F is a cosheaf. +Proposition 3.32. If a bundle π : F → 1 of endofunctors of diffeological spaces is +local, then F preserves open inductions. +Proposition 3.33. Let π : F → 1 and ρ : G → 1 be bundles of endofunctors of +diffeological spaces. If both bundles are local, then the fiber product F ×1 G → 1 and +the composition FG → 1 is local. +Proposition 3.34. Let π : F → 1 and ρ : G → 1 be bundles of endofunctors of +diffeological spaces and α : F → G a morphism of bundles, ρ◦α = π. If both bundles +are local, then the following are equivalent: +(i) αX : FX → GX is an induction (subduction, epimorphism, isomorphism). +(ii) There is an open cover {Si → X}, such that αSi : FSi → GSi is an induction +(subduction, epimorphism, isomorphism) for all i. +Definition 3.30 applies also to bundles of endomorphisms of euclidean spaces. +Explicitly, a bundle π : F → 1 is local if π−1 +U (V ) ∼= FV for every open subset +V ⊂ U. The next proposition shows that this notion locality is preserved by the left +Kan extension to diffeological spaces. +Proposition 3.35. If a bundle π : F → 1 of endofunctors of euclidean spaces is +local, then so is its left Kan extension Lπ : LF → 1. + +ELASTIC DIFFEOLOGICAL SPACES +27 +4. Elastic diffeological spaces +The main result for the category of elastic spaces is that the left Kan extension of +the tangent structure on euclidean spaces defines a tangent structure with scalar R- +multiplication (Theorem 4.2). The proof of this statement is quite long and will be +given in [Blo]. It uses a variety of techniques, some categorical, some geometric, and +all of the results about the left Kan extension given in the preceeding Section 3.2. +4.1. The tangent structure of elastic spaces. The tangent structure of eu- +clidean spaces consists of the tangent functor ˆT : Eucl → Eucl together with the nat- +ural transformations of the bundle projection ˆπ : ˆT → 1, the zero section ˆ0 : 1 → ˆT, +the addition ˆ+ : ˆT2 → ˆT, the symmetric structure ˆτ : ˆT 2 → ˆT 2, and the vertical +lift ˆλ : ˆT → ˆT 2, which we from now one decorate with hats in order to distinguish +them from their Kan extensions to diffeological spaces. The structure was spelled +out explicitly in Section 2.5. +We would like to extend this structure to diffeological spaces by applying the Kan +extension functor L = Lany y +. The Kan extension of the tangent functor will be +denoted by +T := L ˆT : Dflg → Dflg . +Definition 4.1. A diffeological space X is called elastic if the following axioms +hold: +(E1) The natural morphisms +θk,X : (L ˆTk)X −→ TkX +are isomorphisms for all k > 1. +(E2) There is a natural morphism τX : T 2X → T 2X, such that the diagram +(L ˆT 2)X +(L ˆT 2)X +T 2X +T 2X +(Lˆτ)X +θ2 +X +θ2 +X +τX +commutes. +(E3) The natural morphism +λX : TX +(Lˆλ)X +−−−−→ (L ˆT 2)X +θ2 +X +−−−→ T 2X +is an induction. +(E4) The natural morphisms +νk,X : TTkX −→ T 2X ×TπX,TπX +TX +. . . ×TπX,TπX +TX +T 2X +are injective for all k > 1. +(E5) For every finite set of positive integers k1, . . . , kn the diffeological space X′ := +Tk1 · · · TknX satisfies axioms (E1) through (E4). +The full subcategory of elastic diffeological spaces will be denoted by Elst ⊂ Dflg. +Theorem 4.2. The category of elastic diffeological spaces has a tangent structure +given by the Kan extended tangent functor T = L ˆT, bundle projection πX := (Lˆπ)X, +and zero section 0X := (Lˆ0)X, the addition ++X := θ−1 +2,X ◦ (Lˆ+)X ◦ θ2,X , + +28 +C. BLOHMANN +the symmetric structure τX of Axiom (E2) of Definition 4.1, and the vertical lift +λX of Axiom (E3). Moreover, the Kan extension of the scalar R-multiplication is a +scalar R-multiplication in the sense of Definition 2.11. +4.2. Alternative axioms. The axioms for abstract tangent structures are to hold +for the entire category. +This is why the Axiom (E5) has to be included in the +Definition 4.1 of elastic spaces, so that the application of Tk does not lead out of the +subcategory of elastic spaces. However, Rosick´y’s axioms still make sense pointwise +for a single object X that lies in an ambient category where Tk is defined. This is +our situation, which suggests the following more general concept. +Definition 4.3. A diffeological space X is called weakly elastic if the Axioms (E1)- +(E4) of Definition 4.1 hold. +On a weakly elastic space we still have most of the structure of differential calculus, +like a Lie algebra of vector fields. We only have to observe that TX and its fiber +products may no longer share the same good properties. +Remark 4.4. Theorem 4.2 still holds if Axiom (E1) of Definition 4.1 is replaced +with the following weaker version: +(E1’) The natural morphism +θk,X : (L ˆTk)X −→ TkX +is an isomorphism for k = 2 and an epimorphism for all k > 2. +As explained in the introduction, we need the stronger Axiom (E1) so that we obtain +a Cartan calculus. +In earlier versions of the definition of elastic space, we have used the following +axiom: +(E0) The natural morphisms +L( ˆTk ˆT)X −→ TkTX +are isomorphisms for all k ≥ 1. +Proposition 4.5. The Axiom (E0) implies the Axioms (E1), (E2), and (E4) of +Definition 4.1. +While this proposition shows that Axiom (E0) is logically stronger than (E1), +(E2), and (E4), we currently do not know an example of an elastic space that does +not satisfy the stronger Axiom (E0). +4.3. Stability properties of elastic spaces. +Proposition 4.6. Let X be a diffeological space. The following are equivalent: +(i) X is elastic. +(ii) X has an open cover {Si → X} by elastic spaces Si. +Corollary 4.7. Let X be a diffeological manifold modelled on the diffeological vector +space A. Then X is elastic if and only if A is elastic. +Corollary 4.8. Let {Xi}i∈I be a small family of diffeological spaces. The following +are equivalent: +(i) The coproduct ⊔iXi is elastic. + +ELASTIC DIFFEOLOGICAL SPACES +29 +(ii) Every Xi is elastic. +Proposition 4.9. Finite products of elastic spaces are elastic. +Proposition 4.10. Retracts of elastic spaces are elastic. +5. Examples +The conditions for a diffeological space to be elastic are quite strong. Limits, +colimits, subspaces, and mapping spaces of elastic spaces are generally no longer +elastic. If by considering elastic spaces we have given away many of the conventient +properties of the category of diffeological spaces, the question arises whether there +are enough interesting examples and applications for the concept to be useful. +We have already stated that finite products and small coproducts of elastic spaces +are elastic. We have also seen that elastic spaces are stable under retracts, which +allows for the construction of elastic spaces with rather benign singular behaviour. +Basic examples are manifolds with corners [Joy12] and cusps. +The original example that motivated the concept of diffeology by Souriau is that +of diffeological groups. Our main result states that a diffeolgical group is elastic if +and only if the vertical lift λG : TG → T 2G is an induction (Theorem 5.2). This +mild condition is needed to avoid that the bracket of vector fields takes values in a +tangent bundle with a weaker diffeology, as is the case for vector fields on groups on +a Ck-manifold. This shows that almost all diffeological groups that come to mind +are elastic. Even a seemingly pathological group like the quotient R/Q is elastic. +Every diffeological vector space has an underlying abelian group, so that we can +apply the characterization of diffeological groups. +It follows that a diffeological +vector space A is elastic if the natural map T0A → T0T0A that maps va to the tangent +vector represented by the path t �→ tva is an induction. A diffeological manifold +modelled on A is elastic if and only if A is elastic. +A stronger condition which +ensures elasticity is that A → T0A is an isomorphism, which yields a trivialization +TA ∼= A × A of the tangent bundle. We call such vector spaces tangent stable. All +fine diffeological vector spaces have this property. +If A is tangent stable then the diffeological mapping space Dflg(X, A) is elastic +for all X. An important example is the algebra C∞(X) ∼= Dflg(X, R) of smooth +functions on X. The diffeological space of sections Γ(M, F) of a smooth fiber bundle +ρ : F → M is elastic (Theorem 5.11). As expected, its tangent space is given by the +sections of the vertical tangent bundle ker Tρ → M. As a corollary, the diffeological +space Dflg(M, N) of smooth maps of manifolds is elastic, the tangent space being +given by +T Dflg(M, N) ∼= Dflg(M, TN) . +More examples can be constructed by forming retracts, which allows for mildly +singular situations. +5.1. Manifolds with corners. Consider the set [0, ∞) ⊂ R equipped with the +subspace diffeology. Every smooth map p ∈ U → R with image p(U) ⊂ [0, ∞) has +vanishing derivatives to all orders at every point u0 with p(u0) = 0. It follows that +T0[0, ∞) = 0 . +The tangent space at an interior point x ∈ (0, ∞) is given by Tx[0, ∞) = R. + +30 +C. BLOHMANN +We want to show that [0, ∞) is elastic. For this, we consider the maps +π : R −→ [0, ∞) +x �−→ x2 +and +σ : [0, ∞) −→ R +x �−→ √x , +which satisfy π ◦σ = id[0,∞) as maps of sets. We have to show that σ is smooth. Let +p : U �→ [0, ∞) be a plot. Since σ is smooth on the interior (0, ∞), σ ◦ p is smooth +at a all points in U that are mapped to the interior (0, ∞). Assume that p(u0) = 0. +Since all derivatives of a plot p vanish at u0, p vanishes to all orders at u0, i.e. +p(u) +∥u − u0∥k +u→u0 +−−−→ 0 , +for all k ≥ 0. This implies that +� +p(u) = (σ ◦ p)(u) vanishes to all orders at u0 as +well, so that σ ◦ p is differentiable at u0. We conclude that σ is smooth, so that +[0, ∞) is a smooth retract of R. +By Proposition 4.10, we conclude that [0, ∞) is elastic and by Proposition 4.9 +that any finite product +Rn +k := [0, ∞)k × Rn−k +is elastic. Since the diffeological tangent functor commutes with products, the tan- +gent spaces are given by +T(x1,...,xn)Rn +k = Tx1[0, ∞) × . . . Txk[0, ∞) × Rn−k . +Finally, it follows from Proposition 4.6 that every diffeological space modeled locally +on Rn +k is elastic. +Such spaces are called manifolds with corners [Joy12]. +We +conclude: +Proposition 5.1. Manifolds with corners are elastic. +5.2. Manifolds with cusps. Consider the following subset of R2, +X := +� +(x, y) | x ≥ 0 ∧ |y| ≤ x +� +, +with the subspace diffeology. +We can squeeze or stretch the corner at (0, 0) by +multiplying the y coordinate by a smooth function f ∈ C∞� +[0, ∞) +� +(see Figure 3), +ϕ : X −→ Xf +(x, y) �−→ +� +x, f(x) y +� +, +where +Xf := +� +(x, y) | x ≥ 0 ∧ |y| ≤ f(x) +� +. +Assume that f(x) > 0 for x > 0. Then ϕ has an inverse map given by ϕ−1(0, 0) = +(0, 0) and +ϕ−1(x, y) = +� +x, +y +f(x) +� +otherwise. Let us equip Xf with the pullback diffeology of ϕ−1. Since ϕ−1 is sur- +jective, ϕ is an isomorphism of diffeological spaces. X is [0, ∞) × [0, ∞) rotated by +minus 45 degrees, so it is elastic by Proposition 5.1. Since ϕ is an isomorphism Xf +is elastic, too. + +ELASTIC DIFFEOLOGICAL SPACES +31 +∼= +Figure 3. Squeezing a corner by multiplying the y-coordinate with +the function f(x) = x +3 +2. The boundary of the resulting diffeological +subspace of R2 is the curve x2 = y5 with a cusp at (0, 0). +We cannot describe here in general, what a manifold with cusps or similar defects +is, since any squeezing operation that is a smooth retract will produce a new model +for elastic subspaces of Rn. In Figure 2 on page 7 we have given a few examples of +elastic subspaces of R2 that can be obtained in this way. +5.3. Diffeological groups. A diffeological group is a group object (G, m, e) in Dflg. +As for ordinary groups, the inverse i : G → G, g �→ g−1 is unique, so it is a property +rather than a structure. By applying an endofunctor F : Dflg → Dflg that preserves +products, we obtain a diffeological group (FG, Fm, Fe). Examples for F are T and +Tk (see Proposition 3.19). (TG, Tm, Te) is called the tangent group. +From the multiplication of the tangent group we obtain the left G-translation of +TG given by +L : G × TG +0G×idT G +−−−−−−→ TG × TG +Tm +−−−→ TG . +If we restrict the second argument to the tangent fiber at e, we obtain the map +(19) +ϕG : G × TeG −→ TG +(g, ve) �−→ Lgve , +where TeG = {e} ×G TG is the tangent fiber at the group identity. It has an inverse +given by +ϕ−1 +G : TG +(i◦πG,idT G) +−−−−−−−→ G × TG +L +−−→ TeG , +which maps vg �→ Lg−1vg. We conclude that (19) is an isomorphism. In analogy to +Lie groups, we will denote +g := TeG , +so that we obtain the trivialization of the tangent bundle, +TG ∼= G × g . +TG is itself a diffeological group with neutral element 0e. Using the isomorphism +T(x,y)(X, Y ) ∼= {(x, y)} ×X×Y T(X × Y ) +∼= ({x} ×X TX) × ({y} ×Y TY ) +∼= TxX × TyY , +we obtain the trivialization +T 2G ∼= TG × T(0e)TG +∼= G × g × T(e,0)(G × g) +∼= G × g × TeG × T0g +∼= G × g × g × T0g . + +32 +C. BLOHMANN +In this trivialization the vertical lift λG : TG → T 2G is given by +G × g −→ G × g × g × T0g +(g, a) �−→ +� +g, 0, 0, λ⊥ +g (a) +� +where +λ⊥ +g : g −→ T0g , +maps a ∈ g to the tangent vector represented by the path t �→ ta. +Theorem 5.2. A diffeological group G is elastic if and only if λ⊥ +g : g → T0g is an +induction. +It follows from Theorem 5.2 and Theorem 4.2 that g and T0g are diffeological +vector spaces. For an elastic group λ⊥ +g is an isomorphism and g is equipped with +the Lie bracket of invariant vector fields. +Example 5.3. Every Lie group G is elastic when G is a smooth manifold. However, +when equipp G with the Ck-diffeology, then g = Rn +Ck and T0g = Rn +Ck−1, so that λ⊥ +g +is no longer an induction (cf. Example 1.5). +Example 5.4. The diffeomorphism group of a smooth manifold is elastic. +5.4. Diffeological vector spaces. A diffeological vector space is an R-vector space +object in Dflg. Explicitly, this means that the addition and scalar multiplication are +morphisms of diffeological spaces. Diffeological vector spaces are a rich and subtle +structure [CW19]. +Proposition 5.5. A diffeological vector space A is elastic if and only if the natural +linear map T0A → T0T0A is an induction. +Proof. This is Theorem 5.2 for the additive diffeological group A. +□ +In many cases, elastic diffeological vector spaces satisfy the stronger condition +A ∼= T0A, which is equivalent to +TA ∼= A × A . +We will call diffeological vector spaces with this property tangent stable. Tangent +stable vector spaces are elastic. +Proposition 5.6. All fine diffeological vector spaces are tangent stable (hence elas- +tic). +5.5. Diffeological manifolds. We recall that a diffeological manifold modelled +on the diffeological vector space A is a diffeological space X such that every point +of X has an open neighborhood that is isomorphic as diffeological space to an open +subset of A. +Proposition 5.7. A diffeological manifold is elastic if and only if it is modelled on +an elastic diffeological vector space. +Proof. This follows from Proposition 4.6. +□ + +ELASTIC DIFFEOLOGICAL SPACES +33 +5.6. Mapping spaces. If A is diffeological vector space, then the mapping space +Dflg(X, A) is a diffeological vector space with pointwise addition and scalar multi- +plication. +Proposition 5.8. Let X be a diffeological space and A a diffeological vector space. +If A is tangent stable, then so is Dflg(X, A). +Corollary 5.9. If A is a tangent stable diffeological vector space then we have a +natural isomorphisms +T Dflg(X, A) ∼= Dflg(X, A) × Dflg(X, A) ∼= Dflg(X, TA) +for all X ∈ Dflg. +Corollary 5.10. The diffeological space +C∞(X) := Dflg(X, R) +of smooth R-valued functions on a diffeological space X is elastic. +Theorem 5.11. Let ρ : F → M be a fiber bundle of smooth manifolds. Then the +diffeological space of sections Γ(M, F) is elastic with tangent space +TΓ(M, F) ∼= Γ(M, V F) , +the space of sections of the vertical tangent bundle V F := ker Tρ → M. +Corollary 5.12. The diffeological mapping space Dflg(M, N) of smooth manifolds +M and N is elastic with tangent space +T Dflg(M, N) ∼= Dflg(M, TN) . +Corollary 5.13. The diffeological vector space of sections Γ(M, A) of a smooth +vector bundle A → M is tangent stable. +References +[BH11] +John C. Baez and Alexander E. Hoffnung. Convenient categories of smooth spaces. Trans. +Amer. Math. Soc., 363(11):5789–5825, 2011. +[Blo] +Christian Blohmann. Tangent structure and Cartan calculus on elastic diffeological +spaces. In preparation. +[CC14] +J. R. B. Cockett and G. S. H. Cruttwell. Differential structure, tangent structure, and +SDG. Appl. Categ. Structures, 22(2):331–417, 2014. +[CC15] +J. R. B. Cockett and G. S. H. Cruttwell. The Jacobi identity for tangent categories. Cah. +Topol. G´eom. Diff´er. Cat´eg., 56(4):301–316, 2015. +[CSW14] J. Daniel Christensen, Gordon Sinnamon, and Enxin Wu. The D-topology for diffeolo- +gical spaces. Pacific J. Math., 272(1):87–110, 2014. +[CW16] +J. Daniel Christensen and Enxin Wu. Tangent spaces and tangent bundles for diffeological +spaces. Cah. Topol. G´eom. Diff´er. Cat´eg., 57(1):3–50, 2016. +[CW19] +J. Daniel Christensen and Enxin Wu. Diffeological vector spaces. 2019. +[DF99] +Pierre Deligne and Daniel S. Freed. Classical field theory. In Quantum fields and strings: +a course for mathematicians, Vol. 1, 2 (Princeton, NJ, 1996/1997), pages 137–225. +Amer. Math. Soc., Providence, RI, 1999. +[IZ13] +Patrick Iglesias-Zemmour. Diffeology, volume 185 of Mathematical Surveys and Mono- +graphs. American Mathematical Society, Providence, RI, 2013. +[Joy12] +Dominic Joyce. On manifolds with corners. In Advances in geometric analysis, volume 21 +of Adv. Lect. Math. (ALM), pages 225–258. Int. Press, Somerville, MA, 2012. +[Kel05] +G. M. Kelly. Basic concepts of enriched category theory. Repr. Theory Appl. Categ., +(10):vi+137, 2005. Reprint of the 1982 original [Cambridge Univ. Press, Cambridge; +MR0651714]. + +34 +C. BLOHMANN +[ML98] +Saunders Mac Lane. Categories for the working mathematician, volume 5 of Graduate +Texts in Mathematics. Springer-Verlag, New York, second edition, 1998. +[Per16] +Ekaterina Pervova. Diffeological vector pseudo-bundles. Topology Appl., 202:269–300, +2016. +[Ros84] +J. Rosick´y. Abstract tangent functors. Diagrammes, 12:JR1–JR11, 1984. +[Vin08] +Martin +Vincent. +Diffeological +differential +geometry. +Master’s +thesis, +Depart- +ment of Mathematical Sciences, +University of Copenhagen, +2008. Available at +https://www.math.ku.dk/english/research/tfa/top/paststudents/ms-theses/martinvincent.msthesis.pdf, +downloaded on 4/15/2019. +Max-Planck-Institut f¨ur Mathematik, Vivatsgasse 7, 53111 Bonn, Germany +Email address: blohmann@mpim-bonn.mpg.de + diff --git a/wdE0T4oBgHgl3EQfswF7/content/tmp_files/load_file.txt b/wdE0T4oBgHgl3EQfswF7/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..02f50447e650d9a23fb4f58ae8350764a8bf8a22 --- /dev/null +++ b/wdE0T4oBgHgl3EQfswF7/content/tmp_files/load_file.txt @@ -0,0 +1,1144 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf,len=1143 +page_content='arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content='02583v1 [math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content='DG] 6 Jan 2023 ELASTIC DIFFEOLOGICAL SPACES CHRISTIAN BLOHMANN Abstract.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' We introduce a class of diffeological spaces, called elastic, on which the left Kan extension of the tangent functor of smooth manifolds defines an abstract tangent functor in the sense of Rosick´y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' On elastic spaces there is a natural Cartan calculus, consisting of vector fields and differential forms, together with the Lie bracket, de Rham differential, inner derivative, and Lie derivative, satisfying the usual graded commutation relations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Elastic spaces are closed under arbitrary coproducts, finite products, and retracts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Examples include manifolds with corners and cusps, diffeological groups and diffeological vector spaces with a mild extra condition, mapping spaces between smooth manifolds, and spaces of sections of smooth fiber bundles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Introduction 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' The quest for a Cartan calculus on diffeological spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' A category that contains smooth manifolds as a full subcategory but has better properties, such as having all limits, colimits, and exponential objects, is often called a convenient set- ting for differential geometry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' The price to be paid for this convenience is that such categories are usually too large as to allow for strong geometric results that hold for all its objects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' A typical example is the category of diffeological spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' It is a quasi-topos with all its good categorical properties.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' But since it contains arbitrary quotients, arbitrary subsets, and arbitrary intersections of smooth manifolds, topo- logical spaces, vector spaces of arbitrary cardinality, and much more, a theorem that holds for all diffeological spaces must hold in all these cases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' So instead of trying to prove statements that would have to cover this impossible generality of situations, the task is often to identify conditions that are strong enough to prove a desired result, but weak enough to allow for a wide range of examples and applications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' A considerable part of the infinitesimal differential geometric computations on a smooth manifold M can be carried out in its Cartan calculus,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' which consists of the tangent bundle TM → M,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' the Lie bracket of vector fields,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' the graded algebra of differential forms Ω(M),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' together with the de Rham differential d,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' the inner derivative ιv and the Lie derivative Lv for every vector field v,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' which satisfy the relations [d,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' d] = 0 ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' [ιv,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' ιw] = 0 ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' [ιv,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' d] = Lv ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' [Lv,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' ιw] = ι[v,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content='w] ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' [Lv,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' d] = 0 ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' [Lv,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Lw] = L[v,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content='w] ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' where the bracket is the graded commutator of graded derivations of Ω(M).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' For example, local definitons and calculations of symplectic geometry can typically be worked out in the Cartan calculus, such as hamiltonian vector fields, Poisson brack- ets, hamiltonian actions, Dirac structures, generalized complex geometry, contact structures, the L∞-algebra of a multisymplectic structure, homotopy momentum Date: January 9, 2023.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' 2020 Mathematics Subject Classification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' 58A40 (58A03, 18F15, 18F40).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Key words and phrases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Diffeological space, tangent structure, Cartan calculus.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' 1 2 C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' BLOHMANN maps, infinitesimal models for equivariant cohomology, etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Another example is lo- cal Lagrangian Field Theory, where the derivation of the Euler-Lagrange equations, local symmetries, Noether’s theorems, the theory of Jacobi fields, etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' take place in the Cartan calculus of the infinite jet bundle, also known as the variational bicom- plex [DF99].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' In fact, the question we will address in this paper was motivated by current developments in Lagrangian Field Theory and geometric deformation the- ory, areas where the basic geometric objects, spaces of fields and paths in a moduli space of structures, are naturally equipped with diffeologies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Question 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' What are the conditions a diffeological space must satisfy so that it is equipped with a natural Cartan calculus?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Of course, there are always the tautological conditions which promote the desired outcome to axioms, in our case the existence of a Cartan calculus.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' The task is to identify a set of conditions that is minimal or at least so small that it can be verified in a wide range of cases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' The basic structures of the Cartan calculus on a smooth manifold M, the differ- ential graded algebra of differential forms Ω(M) and the tangent bundle TM → M, are local, that is, they can be defined first on the open subsets U ⊂ Rn of a chart U ⊂ M and then glued together on an atlas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' More precisely, the functor U �→ Ω(U) is a sheaf and the tangent functor U �→ TU a cosheaf, so that Ω(M) ∼= lim U→M Ω(U) TM ∼= colim U→M TU , where the limit in differential graded algebras and the colimit in manifolds are taken over the category of charts of a maximal atlas of M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' For a diffeological space X we simply replace the category of charts by the category of plots and obtain the definitions Ω(X) := lim U→X Ω(U) TX := colim U→X TU of the de Rham complex and the tangent diffeological space of X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' The maps X �→ Ω(X) and X �→ TX are the pointwise left Kan extensions from smooth manifolds to diffeological spaces, which shows that they are functorial in X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' The left Kan extension also applies to natural transformations, such as the bundle projection πU : TU → U and the zero section 0U : U → TU.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' This suggests, that the left Kan extension is the natural method to generalize the Cartan calculus of smooth manifolds to diffeological spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' How do we define the Lie bracket of vector fields on a diffeological space?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' The first guess is to start from the Lie algebras X(U) = Γ(U, TU) of vector fields on all plots U → X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' However, U �→ X(U) is not a functor, so that the left Kan extension cannot be applied.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' We could map the vector fields to the space of derivations of C∞(X) = Ω0(X), which is equipped with the commutator bracket.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' However, this map is generally not injective, and even if it is, its image may not be closed under the bracket.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Worse, the map X �→ Der(C∞(X)) is still not a functor, so that this does not solve the problem of naturality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' The conclusion is that the spaces of vector fields on plots are not a good starting point for the construction of a natural Cartan calculus on diffeological spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' ELASTIC DIFFEOLOGICAL SPACES 3 Fortunately, the situation has been analyzed carefully by Rosick´y who has iden- tified the natural structure of the tangent functor that is needed to define the Lie bracket of vector fields.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' He defines an abstract tangent structure on a category C to be an endofunctor T : C → C together with the natural transformations of the bundle projection πX : TX → X, zero section 0X : X → TX, fiberwise addition +X : TX ×X TX → TX, exchange of order of differentiation τX : T 2X → T 2X, and inclusion of the tangent fibers into the vertical tangent space λX : TX → T 2X, which have to satisfy a rather long list of axioms (Definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content='7).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' It is instructive to see how all these structures come together to define the Lie bracket (8) of vec- tor fields, avoiding any reference to the commutator bracket of derivations of some structure ring.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' For us, the main advantage of Rosick´y’s approach is that all the structure is given by functors and natural transformations, to which we can apply the left Kan exten- sion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' However, this does not yield an abstract tangent structure on all diffeological spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' The main issue is that the pointwise left Kan extension, which is given by a colimit, does not preserve limits, in particular the pullback on which the fiberwise addition of tangent vectors is defined.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' More precisely, the natural morphism (1) colim U→X TU ×U TU −→ TX ×X TX , is not an isomorphism for all diffeological spaces X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' In fact, this map is generally neither surjective nor injective, as the following two examples show.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Example 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content='2 (Axis cross of the plane).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Consider the subset {(x, y) ∈ R2 | xy = 0} ⊂ R2 with the subspace diffeology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' The two tangent vectors at the orgin in the direction of the x-axis and the y-axis cannot be represented on the same plot (Figure 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' It follows that (1) is not surjective.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Example 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content='3 (Folded line).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Consider the diffeological quotient space of the action Z2 × R → R, (k, x) �→ kx, where Z2 = {1, −1}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' The quotient map R → R/Z2 is a plot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' The tangent vectors (0, 1) and (0, −1) on its domain represent the same tangent vector on R/Z2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' This implies that the pairs ζ = � (0, 1), (0, 1) � and η = � (0, 1), (0, −1) � in TR ×R TR represent the same pair of tangent vectors in T(R/Z2) ×R/Z2 T(R/Z2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Since the tangent morphism of every morphism of plots preserves the sum of a pair of tangent vectors at a point and since the sum of ζ is zero but that of η is not, the two pairs cannot be equivalent in colimU→R/Z2 TU ×U TU.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' We conclude that (1) is not injective.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' The axiom of elasticity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Only if (1) is an isomorphism, the left Kan extension of the addition +U on on plots is a morphism +X : TX ×X TX → TX that can be viewed as a fiberwise addition of tangent vectors on the diffeological space X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Therefore, requiring (1) to be an isomorphism is the first condition we have to impose for a diffeological space to have a natural Cartan calculus.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' A k-form in Ω(X) is a family of k-forms on all plots U → X that are compatible with the pullbacks along morphisms of plots.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' A vector field, however, is not repre- sented by a family of vector fields on the plots.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' For this reason, there is no natural operation of inner derivative on Ω(X).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' For the inner derivative, we have to define a k-form as a fiberwise multilinear and antisymmetric morphism α : TX ×X .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' ×X TX � �� � =:TkX −→ R .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' 4 C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' BLOHMANN (We avoid defining a tensor product, which would entail the usual technical issues of completion when the fibers are infinite-dimensional.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=') The notation TkX for the k-fold fiber product is standard in the literature on abstract tangent structures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' The inner derivative of α with respect to a vector field v : X → TX is then given by precomposition ιvα : Tk−1X ∼ = −−→ X ×X Tk−1X v×Xid −−−−−→ TkX α −−→ R .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' If we define forms as maps TkX → R, how can we define the differential?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' The differential of a function f : TX → X is given by the tangent map, df : TX Tf −−−→ TR ∼ = −−→ R × R pr2 −−−→ R .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' However, the functions and exact 1-forms do not generate the ring of forms, so that this construction cannot be extended to higher forms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' We are now in the following dilemma.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Either we define differential forms as families of forms on the plots, in which case we have a differential but no inner derivative.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Or we define them as fiberwise multilinear and antisymmetric morphisms TkX → R, in which case we have an inner derivative, but no differential.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' The way out is to require that the two notions of differential forms coincide.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' We have already imposed the condition that (1) is an isomorphism, which induces an isomorphism (2) Hom(TX ×X TX, R) ∼ = −−→ lim U→X Hom(TU ×U TU, R) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' It is easy to see that this isomorphism is equivariant with respect to the exchange of the two fractors for the fiber product.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Moreover, the maps are fiberwise multilinear on TkX if and only if they are on all TkU.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' This shows that the isomorphism (2) induces an isomorphism from fiberwise multilinear and antisymmetric morphisms on TX ×X TX to Ω2(X).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Since we need such an isomorphism for forms of arbitrary degree k, we have to impose the following axiom: Axiom (E1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' The natural morphisms θk,X : colim U→X TkU −→ TkX , are isomorphisms for all k > 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' This axiom has the following geometric interpretation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Every tangent vector vx ∈ TxX is represented by a path.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' One can picture this by stretching out x in the direction of vx to a smooth path γ : (−ε, ε) → X of short but non-zero length through γ(0) = x, such that the coordinate tangent vector ∂ ∂t at the origin of the interval is mapped by T0γ to vx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' In this sense, every point of a diffeological space has some elasticity in a single infinitesimal direction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' However, we generally cannot simultaneously stretch out x in the directions of several tangent vectors v1 x, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' , vk x ∈ TXx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' That is, we cannot always find a plot p : U → X with p(0) = x such that (T0p) ∂ ∂ti = vi x, where (t1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' , tk) are the canonical coordinates of U ⊂ Rk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' And even if we can find such a plot, it may happen that the tangent map Tp is not injective at 0, so that we cannot identify the tangent vectors on X with the coordinate vectors on U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' This identification is possible at every point x ∈ X if and only if the morphism θk,X is a bijection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' If in addition we want this condition to be compatible with the smooth structure, then we have to make the stronger assumption that θk,X is an isomorphism of diffeological ELASTIC DIFFEOLOGICAL SPACES 5 Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Diffeological subspaces of R2 with non-elastic points marked in red, at which two tangent directions cannot be represented on the same plot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' In this sense, Axiom (E1) captures the geometric idea of the “elasticity” of a diffeological space in which any finite set of tangent directions can be streched out to a smooth “membrane” given by the image of a plot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Example 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content='4 (Pasta diffeologies).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' We can equip a smooth manifold M with an alternative diffeology by defining the plots be all smooth maps p : U → M such that the rank of Tp : TU → TM is everywhere less than or equal to r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Since (i) the precomposition of p with a smooth function f does not increase the rank, (ii) the rank is a local property, and (iii) the rank of constant maps is zero, this defines a diffeology, which we call the rank-r-restricted diffeology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' For r = 0 we obtain the discrete diffeology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' If r = 1, then every plot factors through R, so that we obtain the Spaghetti diffeology [IZ13, Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content='10, footnote 1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' The case r = 2 might then be called the Fettuccine diffeology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' It was suggested by the participants of the AMS-EMS-SMF meeting 2022 in Grenoble that the case r = 3 should be called the Gnocchi diffeology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' For the rank-r-restricted diffeology the morphism θk,M of Axiom (E1) is an isomorphism for all k ≤ r but not for r < k < dim M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' The additional axioms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' So far we have the Axiom (E1) that ensures that we have a fiberwise addtion on TX and an inner derivative on differential forms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' For the definition of the Lie bracket we need more structure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' In particular, we need a natural morphism τX : T 2X → T 2X that exchanges the order of differentiation when we apply the tangent functor twice.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' On a euclidean space U ⊂ Rn, every tangent vector is represented by a path R → U on some plot, so that a tangent vector on the manifold of tangent vectors is represented by a smooth path of smooth paths, which is the same as a smooth map R2 → U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Exchanging the order of differentiation is achieved by exchanging the parameters, τ1↔2 : R2 −→ R2 (t1, t2) �−→ (t2, t1) , which descends by the commutative diagram (3) C∞(R2, U) C∞(R2, U) T 2U T 2U τ ∗ 1↔2 τU to an endomorphism of T 2U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' 6 C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' BLOHMANN When we extend τU to diffeological spaces, the problem arises that the left Kan extension does not preserve the product of endofunctors, that is, the natural mor- phism θ2 X : colim U→X T 2U −→ T 2X is generally not an isomorphism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' We could impose the condition that θ2 X is an isomorphism, but this would be unnecessarily strong.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' It suffices to require the left Kan extension of τU to descend to a morphism τX : T 2X → T 2X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Since θ2 X is a subduction for all X (Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content='26), such a τX is unique.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' This condition can be expressed more intuitively in terms of the smooth families in the same way as for euclidean spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' We can show that we can represent elements in T 2X by plots R2 → X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' More precisely, we have a subduction Dflg(R2, X) −→ T 2X , where Dflg denotes the inner hom of diffeological spaces, that is, the set of morphisms equipped with the functional diffeology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' The second axiom can now be expressed in a way that is completely analogous to diagram (3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Axiom (E2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' There is a natural morphism τX : T 2X → T 2X, such that the diagram Dflg(R2, X) Dflg(R2, U) T 2X T 2X τ ∗ 1↔2 τX commutes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Next, consider the natural morphism λX : TX → T 2X that maps v ∈ TX to the vertical tangent vector on TX represented by the path t �→ tv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' On a smooth manifold, this morphism induces an isomorphism between every tangent space and the tangent space of the tangent space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' For diffeologial vector spaces this can fail, as the following example shows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Example 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Consider Rn equipped with k-times differentiable maps as plots.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' This is a diffeological vector space that we denote by Rn Ck.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Its tangent diffeological space is given for k > 0 by TRn Ck ∼= Rn Ck × Rn Ck−1 , which shows that the vector space and its tangent fiber are not isomorphic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Assume that k > 1, so that we can apply the tangent functor twice.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' The vertical lift, λRn Ck : Rn Ck × Rn Ck−1 −→ Rn Ck × Rn Ck−1 × Rn Ck−1 × Rn Ck−2 (x, v) �−→ (x, 0, 0, v) , is not a subduction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' The definition of the Lie bracket in terms of the tangent structure yields a map from X to the vertical subbundle of T 2X restricted to the zero section of TX.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' We have to be able to identify this bundle with TX for the bracket to be again a vector field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' This condition is not specific to diffeological spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' A vector field on a Ck-manifold is a Ck-map.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' The commutator of two such vector fields is a Ck−1- map which is, therefore, not a vector field on the Ck-manifold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' To exclude such phenomena we have to impose the following axiom: ELASTIC DIFFEOLOGICAL SPACES 7 Figure 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Elastic diffeological subspaces of R2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' The tangent spaces are 0 at the marked points, R at points on the black lines, and R2 at gray points in the interior.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Axiom (E3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' The vertical lift λX : TX → T 2X is an induction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' There are two more axioms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' For smooth manifolds the tangent functor commutes with pullbacks over submersions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' This follows from the local standard form of submersions, which is proved using the implicit function theorem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Such a genuinely analytic result cannot hold for all diffeological spaces, which is why we need to impose the following axiom: Axiom (E4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' The tangent functor commutes with fiber products of the tangent bundle, TTkX ∼= TkTX.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Finally, we want the diffeological spaces that satisfy our axioms to form a category.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' This requires the collection of diffeological spaces that satisfy the axioms to be closed under the functors Tk, which leads to the following axiom: Axiom (E5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' For every finite set of positive integers k1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' , kn the diffeological space X′ := Tk1 · · · TknX satisfies axioms (E1) through (E4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' A diffeological space that satisfies Axioms (E1)-(E5) will be called elastic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' If we drop Axiom (E5), then we still have a natural Cartan calculus on X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' We call a diffeological space that satisfies Axioms (E1)-(E4) weakly elastic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' The category of weakly elastic spaces is not closed under the functors Tk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Summary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' The main result about elastic diffeological spaces is the follow- ing: The left Kan extension of the tangent structure on euclidean spaces defines a tangent structure with scalar R-multiplication on the category of elastic spaces (Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content='2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' The proof of this statement, which is very long and technical, is carried out in detail in a much longer paper [Blo].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Here we will present an overview of the conceptual framework, the main properties, and important examples of elastic spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' In Section 2 we review Rosick´y’s concept of abstract tangent structures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' We also spell out the conditions for a compatible scalar multiplication, which is only mentioned briefly in the original paper [Ros84].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' For clarity, we spell out the tangent structure of euclidean spaces explicitly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' In Section 3 we state some new results about the left Kan extension from eul- cidean spaces to diffeological spaces, that will be needed later.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' We use the definition of diffeological spaces as concrete sheaves on the site of euclidean spaces, which the best approach for the categorical constructions we will study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' We then state, without proof, our results on the compatibility of the left Kan extension with prod- ucts, coproducts, subductions, composition of endofunctors, and the D-topology of diffeological spaces, which are all needed for the proof of the main Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' 8 C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' BLOHMANN Section 4 contains the formal definition of elastic spaces an the statement, without proof, of the main Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' We discuss some alternative choices of axioms for which the theorem remains true.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' First, we observe that we can drop Axiom (E5) from the defintion of elastic spaces and still obtain a Cartan calculus on the space X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' This category of weaker diffeological spaces will no longer be closed under the tangent functor and its fiber products, so that we no longer have a category with an abstract tangent structure in the sense of Rosick´y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' We can also slightly relax the Axiom (E1) of elasticity by requiring the the condition only holds for k = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' This weaker condition will be sufficient to prove Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' As explained in the introduction, our choice of the stronger Axiom (E1) is motivated by our wish to obtain not just a tangent structure, but a full-fledged Cartan calculus.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' In an earlier version of the notion of elastic spaces presented in talks, Axioms (E1), (E2), and (E4) were replaced by a single condition, which later turned out to be unnecessarily strong.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Finally, we state, without proof, that the category of elastic spaces is closed under restrictions to open subsets, coproducts, finite products, and retracts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' In Section 5 we will give a number of examples for elastic diffeological spaces that show that, while the conditions of elasticity are quite strong, they still allow for an interesting range of applications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' The first main result, Theorem 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content='2, shows that a diffeological Lie group G is elastic if and only if the natural map g → T0g from the vector space g = TeG to its tangent space at 0 is an induction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' This is a surprisingly weak condition, which is not particular to diffeological spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' For example, it is not satisfied by differentiable group structure on a Ck-manifold, k < ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' The proof of Theorem 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content='2, which is long and techincal, will be given in [Blo].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' The second main result, Theorem 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content='11, states that the diffeological space of sections of a smooth fiber bundle F → M is elastic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' The proof of this theorem is again long and involved, so that it will be given in [Blo].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' More examples of elastic spaces in this sections are: manifolds with corners and cusps, diffeological vector spaces satisfying a mild extra condition, manifolds modelled on elastic vector spaces, mapping spaces Dflg(X, A) to diffeological vector spaces satisfying A ∼= T0A, the space of smooth R-valued functions on a diffeological space, the mapping space of smooth manifolds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Outlook.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' One of the motivations to develop the concept of elastic spaces came from classical field theory, where the basic strucure, the “space” of fields is the set of sections of a smooth fiber bundle F → M leaving it often unclear or implicit what “space” means mathematically.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' It is often observed that F = Γ(M, F) is a Fr´echet manifold, which is subsequently viewed as blanket license to treat F as if it were an ordinary finite-dimensional smooth manifold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' For example, it is often an implicit assumption that there is a natural differential bigraded algebra of smooth forms on F × M that restricts to the variational bicomplex on J∞F [DF99].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' In the same vein, in the study of symmetries, such as Noether’s theorems or BV- theory, the constructions are often explained rigorously only for finite Lie groups acting on finite-dimensional manifolds and then generalized with a leap of faith to group-valued functions or diffeomorphisms acting on the spaces of fields.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' A closer analysis shows that only the diffeological structure that is being used.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' For example, a variation of a field is a smooth path of sections and a tangent vector to the space of solutions of the field equations (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' a generalized Jacobi field) is represented by a ELASTIC DIFFEOLOGICAL SPACES 9 smooth path of fields.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' All this suggests that there is a diffeological construction of a Cartan calculus on F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' This approach is validated by Theorem 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content='11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Another motivation comes from geometric deformation theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Conceptually, a deformation is a path in the moduli space of structures, such as the morphisms of an algebraic structure, riemannian metrics, or complex structures, all of which are equipped with a natural functional diffeology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' This suggests that the geomet- ric moduli spaces can be conceptualized by (higher) stacks that are presented by (higher) diffeological groupoids.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' The infinitesimal deformation theory should then be given by the fibers of the tangent bundle of the moduli space, which should be presented by the corresponding (higher) Lie algebroid.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' In order to define this pro- cedure rigorously, a Lie theory for diffeological groupoids has to be developed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' This has lead us to the conclusion that we need a tangent structure on the diffeological spaces of the groupoid.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' It is encouraging that for diffeological Lie groups the con- dition of elasticity is surprisingly weak.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Lie theory for diffeological groupoids and their application to geometric deformation theory is work in progress.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Abstract tangent structures It is fairly straightforward to generalize the de Rham complex Ω(M), which is a contravariant functor from smooth manifolds to differential graded algebras, to other categories.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' While vector fields are in some sense dual to differential forms, their generalization is a much more difficult problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' An immediate obstacle is that the map M → X(M) that sends a manifold to its Lie algebra of vector fields is not a functor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' It is the tangent bundle TM → M that is functorial in M and, therefore, lends itself easily to generalizations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Given a generalized tangent bundle πX : TX → X in some category, the vector fields are naturally defined as the sections of the morphism πX.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' The obvious question is now the following: Question 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Given a morphism TX → X in some catgory, what is the natural structure needed to equip its space of sections with the structure of a Lie algebra?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' This question turns out to be quite involved.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' A vector field on a smooth manifold can be identified with a derivation of its ring of smooth functions C∞(M), which is closed under the commutator bracket of the ambient ring of endomorphisms of C∞(M).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' However, M �→ Der(C∞(M)) is still no functor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Moreover, in a generalized setting, the identification of sections of TX → X with derivations on some structure ring on X seems to be an overly strong requirement that is extraneous to differential geometric considerations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' So how can we define the Lie bracket of vector fields on M directly in terms of the tangent functor using a categorical approach that lends itself to generalizations?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' This issue has been solved by Rosick´y in [Ros84].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' In a first step, we observe that on manifolds the vector space structure on vector fields is induced by the vector space structure on the tangent fibers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' To allow for categories that do not contain the real numbers as object, we relax the structure of R-vector space to that of an abelian group.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' The structure we then need on a generalized tangent bundle TX → X is the natural transformatios of addition +X : TX ×X TX → TX and a zero section 0X : X → TX that equip TX → X with the structure of an abelian group over X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' For the definition of the Lie bracket, we start from the coordinate formula � vi ∂ ∂xi wj ∂ ∂xj � = � vi∂wj ∂xi − wi∂vj ∂xi � ∂ ∂xj 10 C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' BLOHMANN for vector fields on Rn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' The right hand side is given by the derivation of w with respect to v minus the derivation of v with respect to w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' In order to generalize this formula we must make sense of the differentiation of one vector field with respect to another and the subtraction of the two terms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' The derivation of w : X → TX with respect to v : X → TX is given by the composition X v −−→ TX Tw −−−→ T 2X .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' However, we cannot yet subtract Tw(vx) and Tv(wx) since the basepoint of Tw(vx) in πTX : T(TX) → TX is wx, whereas that of Tv(wx) is vx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' We first have to exchange the order of differentiation of the twofold tangent bundle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' That is, we need a natural transformation τX : T 2X → T 2X that satisfies τX ◦ πTX = TπX.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Then the basepoint of τX(Tv(wx)) is also wx, so that we can take the difference (4) Tw(vx) − τX � Tv(wx) � = � +TX ◦ (Tw ◦ v, −τX ◦ Tv ◦ w) � x .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' The result lies in the vertical tangent bundle of T 2X → TX, that is, the kernel of TπTX.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' In the last step we have to be able to identify at every point wx ∈ TX the vertical tangent space with TxX itself.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' In a smooth manifold, there is a morphism λ2,M : TM ×M TM → T 2M that maps the pair (wx, ux) to the vertical tangent vector in T 2M that is represented by the path t �→ wx + tux.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' This map induces an isomorphism TM ×M TM ∼= ker TπTM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' In the generalized setting this structure is promoted to an axiom: We require a natural morphism λ2,X : TX ×X TX → T 2X that induces an isomorphism TX ×X TX ∼= ker TπTX.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Using this isomorphism, the expression (4) can be viewed as an element in TX ×X TX that can be projected onto the second factor which produces an element in TX, which is the value of the bracket [v, w] at x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' For this bracket to satisfy the Jacobi identity, a number of compatibility relations and properties of the various structures, bundle projection, zero section, fiberwise addition, exchange of the order of differentiation, and the vertical lift have to be required [Ros84].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Rosicky’s axiomatization of all this structure is the basis of this paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Preliminary remarks on terminology and notation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Terminology 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Let Wibble be an algebraic theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Let X be an object in a category C such that the overcategory C ↓ X has all finite products (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' pullbacks over X).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' A Wibble object in C ↓ X will be called a bundle of Wibbles over X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' In this paper Wibble will be one of: monoid, group, abelian group, module, R- vector space (for categories containing R as an object).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' If W → X is a bundle of Wibbles and if the pullback Wx = ∗ ×X W over a point x : ∗ → X exists in C, then Wx is a Wibble object in C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' In other words, every fiber of a bundle of Wibbles is a Wibble object in C, which justifies the terminology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Note, that the notion of bundle of Wibbles does not make any assumptions on local trivializations, whatsoever.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' So a bundle of vector spaces over a manifold M is more general than a vector bundle over M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Remark 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' The main purpose of Terminology 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content='2 is to unify (for the purpose of this paper) the varied terminology found in the literature and to use a term that is self-explanatory for a category theorist.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' In [Ros84, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' 1] a bundle of (abelian) groups over an endofunctor F : C → C is called an “natural (abelian) group bundle ELASTIC DIFFEOLOGICAL SPACES 11 over F”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' A bundle of vector spaces over a diffeological space X is called a “regular vector bundle” in [Vin08], a “diffeological vector space over X” in [CW16], and a “diffeological vector pseudo-bundle” in [Per16].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Notation 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' We will follow [Ros84] for the notation of the compositions of func- tors and natural transformations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' The composition of functors G : A → B and F : B → C will be denoted by juxtaposition FG : A → C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Therefore, the horizontal composition of natural transformations α : F → F ′ and β : G → G′ (the Godement product) will also be denoted by juxtaposition αβ : FG → F ′G′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Its components are given by the following commutative diagram: FG(A) FG′(A) F ′G(A) F ′G′(A) αG(A) F (βA) (αβ)A αG′(A) F ′(βA) The identity natural transformation F → F will be denoted by F, so that (Fβ)A = F(βA) (αG)A = αG(A) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' The vertical composition of α with a natural transformation α′ : F ′ → F ′′ will be denoted by α′ ◦ α : F → F ′′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Its components are given by (α′ ◦ α)A = α′ A ◦ αA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' The monoidal category of endofunctors will be denoted by End(C).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Rosick´y’s axioms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' In [Ros84], Rosick´y introduced the notion of abstract tangent functor, which captures much of the categorical structure of the tangent functor of manifolds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' The following notion is implicit in Rosick´y’s definition: Definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Let F : C → C be a functor and τ : F 2 → F 2 a natural transfor- mation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Let τ12 := τ F and τ23 := F τ be the two trivial extensions of τ to natural transformations F 3 → F 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' We call τ a braiding on F if it satisfies the braid rela- tions τ12 ◦ τ23 ◦ τ12 = τ23 ◦ τ12 ◦ τ23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' A braiding τ is called a symmetric structure on F if it satisfies τ ◦ τ = F 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Remark 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' A symmetric structure on F defines an action of the symmetric group Sn on F n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' A bundle of groups over X consists of a morphism π : A → X, the bundle projection, together with the morphisms 0 : X → A and + : A ×X A → A of the group structure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Let π′ : A′ → X′, 0′ : X′ → A′, +′ : A′ ×X′ A′ → A′ be another bundle of groups.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' A morphism of bundles is a commutative diagram A A′ X X′ ϕ π π′ ψ 12 C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' BLOHMANN There is a unique morphism ϕ ×ψ ϕ : A ×X A → A′ ×X′ A′ that makes the following diagram commutative: A ×X A A ×X A A × A A′ × A′ ϕ×ψϕ ϕ×ϕ The pair (ϕ, ψ) is a morphism of bundles of groups if the diagram A ×X A A′ ×X A′ A A′ ϕ×ψϕ + +′ ϕ commutes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' An endofunctor F preserves the fiber product if the natural mor- phism of bundles over FX, (5) νk,X : F(A ×π,π X .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' ×π,π X A) −→ FA ×F π,F π F X .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' ×F π,F π F X FA , where both sides have the same number k of factors, is an isomorphism for all k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content='7 (Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' 2 in [Ros84], Def.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content='3 in [CC14]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' A tangent structure of a category C consists of a functor T : C → C together with natural transformations π : T → 1, 0 : 1 → T, + : T2 → T, λ : T → T 2, and τ : T 2 → T 2, such that the following axioms hold: Fiber products: The pullbacks Tk := T ×1 T ×1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' ×1 T � �� � k factors over T π→ 1 exist for all k ≥ 1, are pointwise, and preserved by T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Bundle of abelian groups: T π→ 1 with neutral element 0 and addition + is a bundle of abelian groups over 1 (Terminology 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content='2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Symmetric structure: τ : T 2 → T 2 is a symmetric structure on T (Def- inition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content='5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Moreover, τ is a morphism of bundles of groups.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' That is, the diagrams T 2 T 2 T τ Tπ πT and TT2 T 2 ×Tπ,Tπ T T 2 T 2T T 2 T 2 ν2 T+ τ×T τ +T τ commute, where ν2 is morphism (5) for A = TX π→ X, F = T, and k = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' ELASTIC DIFFEOLOGICAL SPACES 13 Vertical lift: The diagrams T T 2 1 T λ π πT 0 T T 2 T 2 T 3 λ λ λT Tλ commute.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Moreover, the first diagram is a morphism of bundles of groups, that is (+T) ◦ (λ ×0 λ) = λ ◦ +.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Compatibility of vertical lift and symmetric structure: The diagrams T T 2 T 2 λ λ τ T 2 T 3 T 3 T 2 T 3 Tλ τ τT Tτ λT commute.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' The vertical lift is a kernel: The diagram (6) T T 2 1 T2 λ π (πT,Tπ) 0×10 is a pointwise pullback.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Terminology 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content='8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' In [CC14] and subsequent work, Rosick´y’s original condition that T → 1 be a bundle of abelian groups was relaxed to a bundle of abelian monoids.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' In this terminology, Rosicky’s stronger notion is called a tangent structure with negatives.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' All tangent structures in this paper will be with negatives.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Remark 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content='9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Diagram (6) is a pointwise pullback if and only if T T 2 T λ πT Tπ 0◦π◦πT is a pointwise triple equalizer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' This condition is the original axiom in [Ros84].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Remark 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content='10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' The vertical lift can be extended by the additive bundle structure to the map (7) λ2 : T2 T0×0λ −−−−−→ T2T +T −−−→ T 2 τ −−→ T 2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' It was shown in [CC14, Lem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content='10], assuming all other axioms of a tangent structure (with negatives), that axiom (6) is satisfied if and only if T2 T 2 1 T λ2 π◦pr1 Tπ 0 is a pointwise pullback.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' 14 C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' BLOHMANN 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Scalar multiplication.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Let R be a ring object in the category C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' This gives rise to an endofunctor R × 1 : C → C, X �→ R × X, which is equipped with the projection pr1 : R × 1 → 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' The ring structure of R equips R × 1 → 1 with the structure of a ring internal to endofunctors over 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Let π : T → 1 be an abelian group object in the category of endofunctors over 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' An (R × 1 → 1)-module structure on T → 1 is given explicitly by a natural transformation κX : R × TX −→ TX ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' such that the following diagrams commute for all X ∈ C: (i) Morphism of bundles: R × TX TX X κX πX◦pr2 πX (ii) Associativity: R × R × TX R × TX R × TX TX idR×κX ×idR×T X κX κX (iii) Unitality: {1} × TX R × TX TX ∼ = κX (iv) Linearity in R: R × R × TX R × TX (R × TX) ×X (R × TX) TX ×X TX TX +×idT X idR2×∆T X κX κX×XκX +X Here ∆TX : TX → TX ×X TX is the diagonal morphism and the factors of the codomain are reordered.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' (v) Linearity in TX: R × TX ×X TX R × TX (R × TX) ×X (R × TX) TX ×X TX TX id×+X ∆R×idT2X κX κX×XκX +X ELASTIC DIFFEOLOGICAL SPACES 15 Here ∆R : R → R × R is the diagonal morphisms and the factors of the codomain are reordered.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' We will call this structure more succinctly an R-module structure on T → 1 and T → 1 a bundle of R-modules (Terminology 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content='2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' If T is part of a tangent structure on C, then we also have to require the compatibility with the symmetric structure and the vertical lift.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content='11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Let R be a ring internal to a category C with a tangent structure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' An R-module structure κX : R×TX → TX will be called a scalar multiplication of the tangent structure if the following diagrams commute for all X ∈ C: (vi) Compatibility with the symmetric structure: R × T 2X R × T 2X T 2X idR×τX κT X TκX (vii) Compatibilty with the vertical lift: R × TX R × T 2X TX T 2X idR×λX κX κT X λX The tangent structures we consider here will all be equipped with an R-scalar multiplication.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Remark 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content='12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' As is the case for any module structure, the commutative dia- gram (v) implies that the scalar multiplication by 0 ∈ R sends TX to the zero section, that is, the diagram {0} × TX R × TX X TX πX◦pr2 κX 0X is commutative.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' If κ is such that this diagram and diagrams (i)-(iii) are commutative, then κ will be called an R-cone structure and T → 1 a bundle of R-cones.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' The Lie bracket of vector fields.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content='13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Let C be a category with a tangent structure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' A vector field on X ∈ C is a section of πX : TX → X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' The bracket of two vector fields v, w : X → TX is defined as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' The composition of v and Tw : TX → T 2X satisfies πTX ◦ Tw ◦ v = w ◦ πX ◦ v = w ◦ idX = w .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' When we exchange v and w, we have πX ◦Tv◦w = v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' In order to be able to subtract the two terms in the fiber product T 2X ×TX T 2X, we have two apply the symmetric 16 C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' BLOHMANN structure on T 2, so that we obtain πTX ◦ τX ◦ Tv ◦ w = TπX ◦ Tv ◦ w = TidX ◦ w = idTX ◦ w = w .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' This shows that Tw◦v and τX ◦Tv◦w project to the same fiber of πTX : T 2X → TX, so that we can take the difference δ(v, w)(x) := (Tw ◦ v)(x) − (τX ◦ Tv ◦ w)(x) , where the minus denotes the difference in the bundle of abelian groups πTX : T 2X → TX.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' We have πTX ◦ δ(v, w) = 0 = TπX ◦ δ(v, w) , so that the map δ(v, w) : X → T 2X takes values in the kernel of TπX : T 2X → TX, which is isomorphic to TX ×X TX.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' By projecting on the second factor we thus obtain the vector field [v, w] : X → TX.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' This construction can be summarized by the following commutative diagram: (8) X X × X TX × TX T 2X × T 2X TX TX ×X TX T 2X T 2X ×TX T 2X T 2X × T 2X X TX TX TX × TX ∆X [v,w] ∃!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' ∃!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' v×w Tw×Tv idX×τX ⌟ pr2 λ2,X πX TπX ⌟ −T X πT X×πT X 0X ∆T X This shows that all of the tangent structure is needed for the definition of the bracket of vector fields.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' It was announced in [Ros84] and proved in [CC15] with the input of Rosick´y that [v, w] satisfies the Jacobi relation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' The set of vector fields Γ(X, TX) has the structure of an abelian group with addition v + w := +X ◦ (v × w) ◦ ∆X , where ∆X : X → X × X is the diagonal morphism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' When the tangent structure has a scalar multiplication by R, then Γ(X, TX) is a module over the ring C(X, R) of R-valued functions, given by κ(f, v) = κX ◦ (f × v) ◦ ∆X .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' The tangent structure of euclidean spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' The eponymous example for tangent structures is the tangent functor of open subsets of real vector spaces, which is the local model for the tangent functor of smooth manifolds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Let Eucl denote the category which has open subsets of Rn, n ≥ 0 as objects and smooth maps as morphisms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Eucl will be called the category of euclidean spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Its tangent functor will be denoted by T : Eucl −→ Eucl .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' ELASTIC DIFFEOLOGICAL SPACES 17 On an open subset U ⊂ Rn, the functors that appear in the definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content='7 of a tangent category are given explicitly by TU = U × Rn T 2U = U × Rn × Rn × Rn T kU = U × (Rn)2k−1 T2U = U × Rn × Rn TkU = U × (Rn)k .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' On a smooth map f : U → V ⊂ Rm the functors are given by Tf : (u, ui 0) �−→ � f(u), ∂f a ∂xi ui 0 � T 2f : (u, ui 0, ui 1, ui 01) �−→ � f(u), ∂f a ∂xi ui 0, ∂f a ∂xi ui 1, ∂f a ∂xi ui 01 + ∂2f a ∂xi∂xj ui 0uj 1 � T2f : (u, ui 0, ui 1) �−→ � f(u), ∂f a ∂xi ui 0, ∂f a ∂xi ui 1 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' The formulas for T k and Tk are analogous.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' The natural transformations of the tangent category structure are given by πU : (u, u0) �−→ u 0U : u �−→ (u, 0) +U : (u, u0, v0) �−→ (u, u0 + v0) λU : (u, u0) �−→ (u, 0, 0, u0) τU : (u, u0, u1, u01) �−→ (u, u1, u0, u01) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' The commutativity of T2 and T is given by the isomorphism T(T2U) −→ T2(TU) � (u, u0, v0), (u1, u01, v01) � �−→ � (u, u1), (u0, u01), (v0, v01) � The bundle projection extends to T 2 as (πT)U = πTU : (u, u0, u1, u01) �−→ (u, u0) (Tπ)U = TπU : (u, u0, u1, u01) �−→ (u, u1) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' The other natural transformations that appear in the definition, +T, T+, λT, Tλ, τT, and Tτ, are obtained in a similar way.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' The extension (7) of the vertical lift is given by λ2 : (u, u0, v0) �−→ (u, u0, 0, v0) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' The following propositions can be checked by explicit elementary calculation: Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content='14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Eucl with the tangent functor T and the natural transformations π, 0, +, τ, and λ is a tangent structure on Eucl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content='15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' The fiberwise multiplication by real numbers, κU : R × TU −→ TU � r, (u, u0) � �−→ (u, ru0) , is a scalar multiplication of the tangent structure (Definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content='11).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' 18 C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' BLOHMANN 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Left Kan extension to diffeological spaces The structures on smooth manifolds that we wish to generalize to diffeological spaces, such as the tangent bundle and the algebra of differential forms, are local and universal in the sense that they are defined on all open subsets of Rn and then glued together along an atlas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' In categorial terms, the local structure is given by a functor F : Eucl → C and the glueing operation by the colimit FM := colim U→M FU over a maximal atlas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' In categorical terms, FM is the pointwise left Kan extension of F along the inclusion of euclidean spaces into smooth manifolds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' For the gen- eralization of this construction to diffeological spaces we replace the charts of the smooth manifold M with the plots of the diffeological space X, FX := colim U→X FU .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' This is the pointwise left Kan extension of F along the inclusion of euclidean spaces into diffeological spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' In order to use the left Kan extension as universal tool to generalize differential geometric structures to diffeological spaces, we have to study its categorical prop- erties in some detail.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' For this it is best to work with the definition of diffeological spaces as concrete sheaves on euclidean spaces, which was elucidated in [BH11].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' The site Eucl of euclidean spaces is concrete, which means that there is a faith- ful functor Eucl → Set, U → |U| that maps covers to surjective maps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' A sheaf D : Euclop → Set is concrete if it is a subsheaf of U �→ Set(|U|, D(∗)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Explicitly, this means that D(U) is a collection of maps of sets |U| → X := D(∗), called plots, that satisfy the properties of a sheaf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' In this way, we recover the original definition of diffeology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' As is the case for any category of concrete sheaves, the category of diffeological spaces Dflg is a quasi-topos, a category with a classifier for strong subobjects, which has a number of good properties (Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content='6).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Other good properties of Dflg are inherited from the site Eucl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' For example, the category of plots of a diffeological space, the index category used to compute the pointwise left Kan extension, is sifted, which suggest a compatibility with finite products.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Every representable presheaf is a concrete sheaf, so that the Yoneda embedding factors through a full and faithful functor y : Eucl −→ Dflg .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' While y is simply the Yoneda embedding restricted on its codomain, the restriction changes the computation of colimits.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' A colimit in Dflg is given by first taking the pointwise colimit in the functor category SetEuclop and then applying the left adjoint of the inclusion Dflg → SetEuclop.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' This second step has consequences for the properties of the left Kan extension, which is given by a colimit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Most structures that we will consider are given by endofunctors F : Eucl → Eucl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Since Eucl is not cocomplete and since we want to obtain an endofunctor of diffeological spaces, we have to place the codomain of F in diffeological spaces by composing with y before taking the Kan extension.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' The Kan extended endofunctor will be denoted by LF := Lany yF : Dflg −→ Dflg .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' The main question we will address in this section is the following.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' ELASTIC DIFFEOLOGICAL SPACES 19 Question 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' What are the categorical properties of L : End(Eucl) → End(Eucl) and which properties of F are preserved by L?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' It follows from the naturality of the Kan extension that L is a functor L : End(Eucl) −→ End(Dflg) of categories of endofunctors, which means that the vertical composition of natural transformations and, therefore, commutative diagrams of natural transformations are preserved.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' This is the most important property for our purposes, since it im- plies that the commutative diagrams that appear in the Definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content='7 of tangent structures carry over to the diffeological setting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Unfortunately, this is where the good news about the left Kan extension to dif- feological spaces end.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Unlike the Kan extension to presheaves, the Kan extension of a functor to concrete sheaves does generally not preserve colimits, not even finite coproducts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Nor does L preserve the composition of endofunctors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Fortunately, the functors F we want to extend have some good categorical properties, that entail good properties of their Kan extensions LF.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Using that the category of plots U → X is sifted, we show that if F preserves finite products, then so does its Kan extension LF (Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content='19).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' It also implies that L preserves finite products of endofunctors (Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content='20).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' For the compatibility with coproducts we have to assume that F is a cosheaf, that is, F : Euclop → Euclop is a sheaf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Then LF preserves coproducts (Corollary 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content='23) and subductions (Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content='24).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' While L does not preserve the composition of endofunctors, there is a natural morphism (9) L(FG) −→ (LF)(LG) , which is generally not an isomorphism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' We can show that if F is a cosheaf, then (9) applied to a diffeological space is a subduction (Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content='26).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' The morphism L(FGH) −→ L(F)L(G)L(H) we obtain by applying (9) twice does not depend on whether we first apply it to (FG)H or to F(GH) (Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content='27).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' In this sense µ is associative.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' It is straight- forward to see that (9) is natural in F and G (Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content='28).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Finally, we study the compatibility of the Kan extension with the D-topology of diffeological spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' We observe that many of the functors on euclidean spaces we are interested in come with a natural transformation F → 1 such that the pullback along any open embedding V → U satisfies FV ∼= V ×U FU.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' We call such an F → 1 a local bundle, by default of a better term.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' We can show that if F → 1 is local, then so is its Kan extension LF → 1 (Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content='35).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Then we prove that a morphism FX → GX of local bundles is an induction, subduction, epimorphism, or isomorphism if all restrictions to the open subsets of a cover of X are (Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content='34).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Diffeological spaces as concrete sheaves.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Recall that Eucl denotes the category which has all open subsets of euclidean spaces Rn, n ≥ 0 as objects and all smooth maps as morphisms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Open covers define a Grothendieck pretopology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Definition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' The small category Eucl together with the Grothendieck topology generated by the pretopology of open covers will be called the site of euclidean spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' 20 C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' BLOHMANN The terminal object in Eucl is ∗ := R0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' The functor of points, | | : Eucl −→ Set U �−→ Eucl(∗, U) , is faithful, so that it equips Eucl with the structure of a concrete category.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' More- over, every cover {Ui → U} is surjective on the underlying sets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' A site with these properties is called concrete.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Let X : Euclop → Set be a presheaf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Then there is a morphism of presheaves defined by (10) X(U) −→ Set � |U|, |X| � p �−→ � (∗ u→ U) �→ Xu(p) � , where Xu ≡ X(u) : X(U) → X(∗) is the restriction of X(U) to the point u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Definition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' A presheaf X : Euclop → Set on a concrete site is concrete if (10) is a monomorphism, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' if the maps defined in (10) are injective for all U ∈ Eucl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' A sheaf is concrete if it is concrete as a presheaf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' A morphism between concrete sheaves is a morphism of the underlying presheaves.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Definition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' A concrete sheaf on the site of euclidean spaces is called a diffeo- logical space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' A morphism of diffeological spaces is a morphism of sheaves.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' The category of diffeological spaces will be denoted by Dflg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content='5 (Thm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content='25 in [BH11]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' The category of diffeological spaces is a qua- sitopos with small limits and small colimits.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content='5 implies that the category of diffeological spaces has a number of convenient properties.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' For clarity and later reference, we will spell out some of them.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' The category Dflg of diffeological spaces has the following prop- erties: Dflg is locally cartesian closed, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' for every object X in Dflg the overcate- gory Dflg ↓ X is cartesian closed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Strong monomorphisms and strong epimorphisms are effective.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' (Strong) monomorphisms and (strong) epimorphisms are stable under pull- back.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Dflg is quasiadhesive, that is, the pushout of a strong monomorphism is a strong monomorphism and the pushout square is a pullback square.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' The initial object is strict, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' every morphism X → ∅ is an isomorphism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Coproducts are disjoint, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' X → X ⊔ Y ← Y are monomorphisms and X ×X⊔Y Y ∼= ∅.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' The functor of points Dflg → Set, X → Dflg(∗, X) is faithful.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' It has a left and a right adjoint, so that it preserves limits and colimits.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Terminology 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' The strong epimorphisms in Dflg are called subductions, the strong monomorphisms inductions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Example 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content='8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Here are some of the most basic examples for diffeologies: ELASTIC DIFFEOLOGICAL SPACES 21 (a) The fine diffeology or discrete diffeology on a set S is the diffeology for which the plots are the locally constant maps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content='1 (b) The coarse diffeology, or indiscrete diffeologoy, or trivial diffeology on a set S is given by U �→ Set � |U|, S � , i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' all maps are plots.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' (c) Every topological space X is equipped with the continuous diffeology given by U �→ Top(U, X), i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' the plots are the continuous maps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' (d) Every smooth finite-dimensional manifold M is equipped with the natural diffeology given by U �→ Mfld(U, M), i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' the plots are the infinitely often differentiable maps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' (e) We will denote the exponential objects in Dflg by Dflg(X, Y ) ≡ Y X and call them the diffeological mapping spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' The diffeology, which is given by the universal property Dflg � U, Dflg(X, Y ) � ∼= Dflg(U × X, Y ) , is called the functional diffeology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Remark 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content='9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' By Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content='6, the forgetful functor Dflg → Set, X �→ |X| has a left and a right adjoint.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' The right adjoint equips a set S with the coarse diffeology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' The left adjoint equips it with the fine diffeology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' In other words, the fine diffeology on a set is the free diffeology, the coarse diffeology is the cofree diffeology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Remark 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content='10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' The map that sends a smooth manifold M to its natural diffeology U �→ Mfld(U, M) defines a full, faithful, and injective functor Mfld → Dflg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Remark 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content='11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Every diffeological space X is naturally equipped with the finest topology such that all plots are continuous, which is called the D-topology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' This topology is determined by the smooth curves only, so that many different diffeologies induce the same topology [CSW14, Thm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content='7].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Mapping a diffeology on X to the induced topology is left adjoint to mapping a topology to the continuous diffeology [CSW14, Prop.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content='3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' The topology induced by the discrete (trivial) diffeology is the discrete topology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' In general, however, neither the unit nor the counit of the adjunction is an isomorphism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' The maps p ∈ X(U) ⊂ Set(|U|, |X|) of a diffeological space X are called plots.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' If we spell out the defining conditions of a concrete sheaf, we obtain the traditional definition of diffeological spaces in terms of plots.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' For every open cover {Ui → U} in Eucl, U is the coequalizer of � i,j Ui ∩ Uj ⇒ � Ui.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' In other words, the site of euclidean spaces is subcanonical, so that every representable presheaf is a sheaf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Since every representable presheaf is concrete, it follows that all representable presheaves on Eucl are concrete sheaves.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' We conclude that the Yoneda embedding Y : X �→ Dflg( , X) factors as SetEuclop Eucl Dflg Y y I 1In [BH11, Example (2), p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' 5794] it is stated incorrectly that the discrete diffeology is given by the constant maps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' 22 C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' BLOHMANN through a functor y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Since Y and I are full and faithful, so is y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Since I is full and faithful, the Yoneda lemma implies that the evaluation of the concrete sheaf X ∈ Dflg on U ∈ Eucl is given by X(U) ∼= SetEuclop(Y U, IX) ∼= SetEuclop(IyU, IX) ∼= Dflg(yU, X) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' It follows that limits in Dflg are computed pointwise and that I preserves limits.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' By the adjoint functor theorem, I has a left adjoint, K : SetEuclop Dflg : I , which was computed and studied in [BH11, Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content='3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Explicitly, K is given by a procedure called concretization followed by the Grothendieck plus construction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' The left adjoint K is a retract, KI ∼= idDflg, which implies that the colimit of a diagram in X : I → Dflg can be computed as colim i∈I Xi ∼= colim i∈I KIXi ∼= K colim i∈I IXi , that is, by first computing the colimit in presheaves and then applying K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' As a further consequence, it can be shown that y is dense: Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content='12 (Prop.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' 51 in [BH11]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Every X ∈ Dflg is the colimit of y ↓ X → Eucl → Dflg, which we will write as X ∼= colim yU→X yU .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Terminology 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content='13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' The comma category y ↓ X is called the category of plots of X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Remark 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content='14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' It is customary and convenient to identify notationally the domain of a plot U ∈ Eucl with the diffeological space yU ∈ Dflg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' In this paper, however, we deal with a number of subtleties of Kan extensions along y where this identification would invite wrong proofs by notation (a trap the author has fallen into more than once).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Therefore, we will always spell out the embedding y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Left Kan extension to diffeological spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Notation 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content='15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Let F : Eucl → Eucl be an endofunctor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' The left Kan extension of yF along the embedding y : Eucl ֒→ Dflg will be denoted by (11) LF := Lany yF , which is an endofunctor of Dflg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' The left Kan extension will be our device to extend the tangent structure of euclidean to diffeological spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' L is functorial, which means that L preserves the vertical compostion of natural transformations ˆα : ˆF → ˆF ′ and ˆα′ : ˆF ′ → ˆF ′′ between endofunctors ˆF, ˆF ′, ˆF ′′ ∈ End(Eucl), that is, L(α′ ◦ α) = (Lα′) ◦ (Lα) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' ELASTIC DIFFEOLOGICAL SPACES 23 Since Eucl is small and Dflg is cocomplete, LF exists and is pointwise, that is, it can be computed by the colimit [ML98, Thm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content='3] (LF)(X) ∼= colim(y ↓ X −→ Eucl yF −→ Dflg) = colim yU→X yFU , for all X ∈ Dflg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Let α : F → G be a natural transformation of functors Eucl → Eucl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Then yα : yF → yG is a natural transformation of functors Eucl → Dflg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' The left Kan extension Lany yF is functorial in yF, so that we have a natural transformation (12) Lα := Lany yα : LF −→ LG .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Together (11) and (12) define a functor (13) L : End(Eucl) −→ End(Dflg) , where End(C) denotes the category of endofunctors and natural transformations of the category C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content='16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' The diagram Eucl Eucl Dflg Dflg y F y LF commutes for all endofunctors F, that is (LF)yU ∼= yFU for all U ∈ Eucl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Since y is full and faithful, the statement follows from [ML98, Cor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' 3, Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content='3] or from [Kel05, Prop.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content='23].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' □ Corollary 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content='17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' The functor (13) is full and faithful.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Compatibility with products, coproducts, and subductions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Since y : Eucl → Dflg is full and faithful, a smooth map f : U → V of euclidean spaces is a strong epimorphism if and only if yf : yU → yV is a strong epimorphism, which is the same thing as a subduction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' For this reason we will call a strong epimorphism f a subduction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' This is the case if every point v0 ∈ V has an open neighborhood V0 ⊂ V such that there is a smooth map g0 : V0 → U satisfying f ◦ g0 = idV0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' In short, f is a subduction if it has local sections.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' In particular, every surjective submersion is a subduction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content='18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Let α : F → G be a natural transformation of endofunctors of Eucl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' If αU : FU → GU is a subduction for all U ∈ Eucl, then (Lα)X : (LF)X → (LG)X is a subduction for all X ∈ Dflg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Since αU is a subduction, so is yαU.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Subductions in Dflg are the same as regular epimorphisms, so that yαU is a regular epimorphism for all U ∈ Eucl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' The left Kan extension αX = (Lα)X is given by the colimit over the category of plots y ↓ X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Since colimits preserve regular epimorphisms, αX is a regular epimorphism, that is, a subduction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' □ 24 C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' BLOHMANN Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content='19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' If a functor F : Eucl → Eucl preserves finite products, then so does LF : Dflg → Dflg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Let F : I → End(Eucl), i �→ Fi be a functor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Due to the universal properties of colimits and limits, we have for every X ∈ Dflg the natural morphism colim yU→X lim i∈I yFiU −→ lim i∈I colim yU→X yFiU .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Assuming that the limit limi∈I Fi exists in End(Eucl), it can be written as the natural transformation L lim i Fi −→ lim i LFi , where we have used that y preserves limits.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' This is not an isomorphism unless the colimit and the limit commute.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Let G : J → End(Eucl) be another diagram, such that limi Gi exists.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Any natural transformation αi : Fi → Gi induces a commutative diagram L limi Fi L limi Gi limi LFi limi LGi L(limi αi) limi Lαi Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content='20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Let F1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' , Fk ∈ End(Eucl) be a finite family of endofunctors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Then we have an isomorphism L(F1 × .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' × Fk) ∼= LF1 × .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' × LFk .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' It is well-known, that the left Kan extension of an arbitrary functor along the Yoneda embedding Y : Eucl → SetEuclop preserves all colimits.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' This is not true for Kan extensions along y : Eucl → Dflg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Already for the preservation of coproducts we have to make additional assumptions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Recall that a functor F : Eucl → C is a cosheaf if F op : Euclop → Cop is a sheaf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Example 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content='21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' The following functors on Eucl are cosheaves: (a) the tangent functor T : Eucl → Eucl;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' (b) fiber products of the tangent functor Tk : Eucl → Eucl;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' (c) if F : Eucl → C and G : Eucl → Eucl are cosheaves, then so is their composition FG;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' (d) the de Rham functor Ω : Eucl → dgAlgop, which maps U to the differential graded algebra of differential forms and smooth maps to the pullback of forms;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' (d) if F : Mfldop → C is a sheaf on the big site of manifolds and open covers, then the restriction F : Eucl ֒→ Mfld → Cop is a cosheaf;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content='22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' If F : Eucl → C is a cosheaf, then its left Kan extension along y : Eucl → Dflg preserves coproducts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Corollary 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content='23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' If F : Eucl → Eucl is a cosheaf, then LF preserves coproducts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content='24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' If F : Eucl → Eucl is a cosheaf, then LF preserves subductions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content='25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Let X : I → Dflg be a functor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' If F : Eucl → Eucl is a cosheaf, then the natural morphism colim(LF)X −→ (LF) colim X ELASTIC DIFFEOLOGICAL SPACES 25 is a subduction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Compatibility with the composition of endofunctors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Let F, G : Eucl → Eucl be endofunctors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' The left Kan extension of their product is given by the colimit L(FG)X ∼= colim yU→X yFGU ∼= colim yU→X (LF)yGU , (14) where we have used Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content='16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' The product of the Kan extensions can be written as (15) (LF)(LG)X ∼= (LF) colim yU→X yGU .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Due to the universal property of the colimit, we have a natural morphism (16) colim yU→X (LF)yGU −→ (LF) colim yU→X yGU .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Composing this morphism with the isomorphism (14) on its domain and with iso- morphism (15) on the codomain, we obtain a natural morphism (17) µF,G : L(FG)X −→ (LF)(LG)X .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' This is an isomorphism if and only if (16) is, which is generally not the case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content='26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' If F is a cosheaf, then (17) is a subduction for all X ∈ Dflg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Since F is a cosheaf, it follows from Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content='25 that (16) is a subduction, which implies that (17) is a subduction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' □ The morphism (17) is associative in the followoing sense.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content='27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Let F, G, H : Eucl → Eucl be endofunctors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Then the diagram of natural transformations L(FGH) (LF)(LGH) L(FG)(LH) (LF)(LG)(LH) µF,GH µF G,H (LF )µG,H µF,G(LH) is commutative.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content='28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Let α : F → F ′ and β : G → G′ be natural transformations of endofunctors of Eucl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Then the diagram L(FG) L(F ′G′) (LF)(LG) (LF ′)(LG′) L(αβ) µF,G µF ′,G′ (Lα)(Lβ) is commutative.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' 26 C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' BLOHMANN 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Compatibility with the D-topology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Definition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content='29 (Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content='8 in [IZ13]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' The D-topology on a diffeological space is the finest topology (on the underlying set) such that every plot is continuous.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Explicitly, a subset Y ⊂ X is open in the D-topolgy if and only if for every plot p : yU → X, the preimage p−1(Y ) ⊂ U is open.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Every morphism of diffeological spaces is continuous with respect to the D-topologies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' In the following “open” and ”continuous” are always meant with respect to the D-topology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' An open subset S ⊂ X of a diffeological space is naturally equipped with the subspace diffeology, so that the inclusion i : S → X is an open induction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Let {Si ⊂ X}i∈I be an open cover of a diffeological space X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Then the diagram (18) � i,j Sij � i Si X , where Sij = Si ×X Sj, is a coequalizer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' A functor F : Dflg → Dflg is a cosheaf if F preserves the coequalizer (18), that is, if � i,j FSij � i FSi FX is a coequalizer for every open cover.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' A special kind of cosheaf is given by a natural bundle that satisfies the following locality condition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Definition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content='30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' A bundle π : F → 1 of endofunctors of diffeological spaces will be called local if for every open induction i : S → X the commutative diagram FS FX S X πS F i πX i is a pullback.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content='31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' If a bundle π : F → 1 of endofunctors of diffeological spaces is local, then F is a cosheaf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content='32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' If a bundle π : F → 1 of endofunctors of diffeological spaces is local, then F preserves open inductions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content='33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Let π : F → 1 and ρ : G → 1 be bundles of endofunctors of diffeological spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' If both bundles are local, then the fiber product F ×1 G → 1 and the composition FG → 1 is local.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content='34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Let π : F → 1 and ρ : G → 1 be bundles of endofunctors of diffeological spaces and α : F → G a morphism of bundles, ρ◦α = π.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' If both bundles are local, then the following are equivalent: (i) αX : FX → GX is an induction (subduction, epimorphism, isomorphism).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' (ii) There is an open cover {Si → X}, such that αSi : FSi → GSi is an induction (subduction, epimorphism, isomorphism) for all i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Definition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content='30 applies also to bundles of endomorphisms of euclidean spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Explicitly, a bundle π : F → 1 is local if π−1 U (V ) ∼= FV for every open subset V ⊂ U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' The next proposition shows that this notion locality is preserved by the left Kan extension to diffeological spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content='35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' If a bundle π : F → 1 of endofunctors of euclidean spaces is local, then so is its left Kan extension Lπ : LF → 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' ELASTIC DIFFEOLOGICAL SPACES 27 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Elastic diffeological spaces The main result for the category of elastic spaces is that the left Kan extension of the tangent structure on euclidean spaces defines a tangent structure with scalar R- multiplication (Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content='2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' The proof of this statement is quite long and will be given in [Blo].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' It uses a variety of techniques, some categorical, some geometric, and all of the results about the left Kan extension given in the preceeding Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' The tangent structure of elastic spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' The tangent structure of eu- clidean spaces consists of the tangent functor ˆT : Eucl → Eucl together with the nat- ural transformations of the bundle projection ˆπ : ˆT → 1, the zero section ˆ0 : 1 → ˆT, the addition ˆ+ : ˆT2 → ˆT, the symmetric structure ˆτ : ˆT 2 → ˆT 2, and the vertical lift ˆλ : ˆT → ˆT 2, which we from now one decorate with hats in order to distinguish them from their Kan extensions to diffeological spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' The structure was spelled out explicitly in Section 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' We would like to extend this structure to diffeological spaces by applying the Kan extension functor L = Lany y .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' The Kan extension of the tangent functor will be denoted by T := L ˆT : Dflg → Dflg .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Definition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' A diffeological space X is called elastic if the following axioms hold: (E1) The natural morphisms θk,X : (L ˆTk)X −→ TkX are isomorphisms for all k > 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' (E2) There is a natural morphism τX : T 2X → T 2X, such that the diagram (L ˆT 2)X (L ˆT 2)X T 2X T 2X (Lˆτ)X θ2 X θ2 X τX commutes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' (E3) The natural morphism λX : TX (Lˆλ)X −−−−→ (L ˆT 2)X θ2 X −−−→ T 2X is an induction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' (E4) The natural morphisms νk,X : TTkX −→ T 2X ×TπX,TπX TX .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' ×TπX,TπX TX T 2X are injective for all k > 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' (E5) For every finite set of positive integers k1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' , kn the diffeological space X′ := Tk1 · · · TknX satisfies axioms (E1) through (E4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' The full subcategory of elastic diffeological spaces will be denoted by Elst ⊂ Dflg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' The category of elastic diffeological spaces has a tangent structure given by the Kan extended tangent functor T = L ˆT, bundle projection πX := (Lˆπ)X, and zero section 0X := (Lˆ0)X, the addition +X := θ−1 2,X ◦ (Lˆ+)X ◦ θ2,X , 28 C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' BLOHMANN the symmetric structure τX of Axiom (E2) of Definition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content='1, and the vertical lift λX of Axiom (E3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Moreover, the Kan extension of the scalar R-multiplication is a scalar R-multiplication in the sense of Definition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content='11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Alternative axioms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' The axioms for abstract tangent structures are to hold for the entire category.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' This is why the Axiom (E5) has to be included in the Definition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content='1 of elastic spaces, so that the application of Tk does not lead out of the subcategory of elastic spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' However, Rosick´y’s axioms still make sense pointwise for a single object X that lies in an ambient category where Tk is defined.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' This is our situation, which suggests the following more general concept.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Definition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' A diffeological space X is called weakly elastic if the Axioms (E1)- (E4) of Definition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content='1 hold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' On a weakly elastic space we still have most of the structure of differential calculus, like a Lie algebra of vector fields.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' We only have to observe that TX and its fiber products may no longer share the same good properties.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Remark 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content='2 still holds if Axiom (E1) of Definition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content='1 is replaced with the following weaker version: (E1’) The natural morphism θk,X : (L ˆTk)X −→ TkX is an isomorphism for k = 2 and an epimorphism for all k > 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' As explained in the introduction, we need the stronger Axiom (E1) so that we obtain a Cartan calculus.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' In earlier versions of the definition of elastic space, we have used the following axiom: (E0) The natural morphisms L( ˆTk ˆT)X −→ TkTX are isomorphisms for all k ≥ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Proposition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' The Axiom (E0) implies the Axioms (E1), (E2), and (E4) of Definition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' While this proposition shows that Axiom (E0) is logically stronger than (E1), (E2), and (E4), we currently do not know an example of an elastic space that does not satisfy the stronger Axiom (E0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Stability properties of elastic spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Proposition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Let X be a diffeological space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' The following are equivalent: (i) X is elastic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' (ii) X has an open cover {Si → X} by elastic spaces Si.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Corollary 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Let X be a diffeological manifold modelled on the diffeological vector space A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Then X is elastic if and only if A is elastic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Corollary 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content='8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Let {Xi}i∈I be a small family of diffeological spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' The following are equivalent: (i) The coproduct ⊔iXi is elastic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' ELASTIC DIFFEOLOGICAL SPACES 29 (ii) Every Xi is elastic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Proposition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content='9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Finite products of elastic spaces are elastic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Proposition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content='10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Retracts of elastic spaces are elastic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Examples The conditions for a diffeological space to be elastic are quite strong.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Limits, colimits, subspaces, and mapping spaces of elastic spaces are generally no longer elastic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' If by considering elastic spaces we have given away many of the conventient properties of the category of diffeological spaces, the question arises whether there are enough interesting examples and applications for the concept to be useful.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' We have already stated that finite products and small coproducts of elastic spaces are elastic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' We have also seen that elastic spaces are stable under retracts, which allows for the construction of elastic spaces with rather benign singular behaviour.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Basic examples are manifolds with corners [Joy12] and cusps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' The original example that motivated the concept of diffeology by Souriau is that of diffeological groups.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Our main result states that a diffeolgical group is elastic if and only if the vertical lift λG : TG → T 2G is an induction (Theorem 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content='2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' This mild condition is needed to avoid that the bracket of vector fields takes values in a tangent bundle with a weaker diffeology, as is the case for vector fields on groups on a Ck-manifold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' This shows that almost all diffeological groups that come to mind are elastic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Even a seemingly pathological group like the quotient R/Q is elastic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Every diffeological vector space has an underlying abelian group, so that we can apply the characterization of diffeological groups.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' It follows that a diffeological vector space A is elastic if the natural map T0A → T0T0A that maps va to the tangent vector represented by the path t �→ tva is an induction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' A diffeological manifold modelled on A is elastic if and only if A is elastic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' A stronger condition which ensures elasticity is that A → T0A is an isomorphism, which yields a trivialization TA ∼= A × A of the tangent bundle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' We call such vector spaces tangent stable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' All fine diffeological vector spaces have this property.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' If A is tangent stable then the diffeological mapping space Dflg(X, A) is elastic for all X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' An important example is the algebra C∞(X) ∼= Dflg(X, R) of smooth functions on X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' The diffeological space of sections Γ(M, F) of a smooth fiber bundle ρ : F → M is elastic (Theorem 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content='11).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' As expected, its tangent space is given by the sections of the vertical tangent bundle ker Tρ → M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' As a corollary, the diffeological space Dflg(M, N) of smooth maps of manifolds is elastic, the tangent space being given by T Dflg(M, N) ∼= Dflg(M, TN) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' More examples can be constructed by forming retracts, which allows for mildly singular situations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Manifolds with corners.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Consider the set [0, ∞) ⊂ R equipped with the subspace diffeology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Every smooth map p ∈ U → R with image p(U) ⊂ [0, ∞) has vanishing derivatives to all orders at every point u0 with p(u0) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' It follows that T0[0, ∞) = 0 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' The tangent space at an interior point x ∈ (0, ∞) is given by Tx[0, ∞) = R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' 30 C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' BLOHMANN We want to show that [0, ∞) is elastic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' For this, we consider the maps π : R −→ [0, ∞) x �−→ x2 and σ : [0, ∞) −→ R x �−→ √x , which satisfy π ◦σ = id[0,∞) as maps of sets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' We have to show that σ is smooth.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Let p : U �→ [0, ∞) be a plot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Since σ is smooth on the interior (0, ∞), σ ◦ p is smooth at a all points in U that are mapped to the interior (0, ∞).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Assume that p(u0) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Since all derivatives of a plot p vanish at u0, p vanishes to all orders at u0, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' p(u) ∥u − u0∥k u→u0 −−−→ 0 , for all k ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' This implies that � p(u) = (σ ◦ p)(u) vanishes to all orders at u0 as well, so that σ ◦ p is differentiable at u0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' We conclude that σ is smooth, so that [0, ∞) is a smooth retract of R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' By Proposition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content='10, we conclude that [0, ∞) is elastic and by Proposition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content='9 that any finite product Rn k := [0, ∞)k × Rn−k is elastic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Since the diffeological tangent functor commutes with products, the tan- gent spaces are given by T(x1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=',xn)Rn k = Tx1[0, ∞) × .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Txk[0, ∞) × Rn−k .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Finally, it follows from Proposition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content='6 that every diffeological space modeled locally on Rn k is elastic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Such spaces are called manifolds with corners [Joy12].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' We conclude: Proposition 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Manifolds with corners are elastic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Manifolds with cusps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Consider the following subset of R2, X := � (x, y) | x ≥ 0 ∧ |y| ≤ x � , with the subspace diffeology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' We can squeeze or stretch the corner at (0, 0) by multiplying the y coordinate by a smooth function f ∈ C∞� [0, ∞) � (see Figure 3), ϕ : X −→ Xf (x, y) �−→ � x, f(x) y � , where Xf := � (x, y) | x ≥ 0 ∧ |y| ≤ f(x) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Assume that f(x) > 0 for x > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Then ϕ has an inverse map given by ϕ−1(0, 0) = (0, 0) and ϕ−1(x, y) = � x, y f(x) � otherwise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Let us equip Xf with the pullback diffeology of ϕ−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Since ϕ−1 is sur- jective, ϕ is an isomorphism of diffeological spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' X is [0, ∞) × [0, ∞) rotated by minus 45 degrees, so it is elastic by Proposition 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Since ϕ is an isomorphism Xf is elastic, too.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' ELASTIC DIFFEOLOGICAL SPACES 31 ∼= Figure 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Squeezing a corner by multiplying the y-coordinate with the function f(x) = x 3 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' The boundary of the resulting diffeological subspace of R2 is the curve x2 = y5 with a cusp at (0, 0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' We cannot describe here in general, what a manifold with cusps or similar defects is, since any squeezing operation that is a smooth retract will produce a new model for elastic subspaces of Rn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' In Figure 2 on page 7 we have given a few examples of elastic subspaces of R2 that can be obtained in this way.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Diffeological groups.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' A diffeological group is a group object (G, m, e) in Dflg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' As for ordinary groups, the inverse i : G → G, g �→ g−1 is unique, so it is a property rather than a structure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' By applying an endofunctor F : Dflg → Dflg that preserves products, we obtain a diffeological group (FG, Fm, Fe).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Examples for F are T and Tk (see Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content='19).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' (TG, Tm, Te) is called the tangent group.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' From the multiplication of the tangent group we obtain the left G-translation of TG given by L : G × TG 0G×idT G −−−−−−→ TG × TG Tm −−−→ TG .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' If we restrict the second argument to the tangent fiber at e, we obtain the map (19) ϕG : G × TeG −→ TG (g, ve) �−→ Lgve , where TeG = {e} ×G TG is the tangent fiber at the group identity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' It has an inverse given by ϕ−1 G : TG (i◦πG,idT G) −−−−−−−→ G × TG L −−→ TeG , which maps vg �→ Lg−1vg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' We conclude that (19) is an isomorphism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' In analogy to Lie groups, we will denote g := TeG , so that we obtain the trivialization of the tangent bundle, TG ∼= G × g .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' TG is itself a diffeological group with neutral element 0e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Using the isomorphism T(x,y)(X, Y ) ∼= {(x, y)} ×X×Y T(X × Y ) ∼= ({x} ×X TX) × ({y} ×Y TY ) ∼= TxX × TyY , we obtain the trivialization T 2G ∼= TG × T(0e)TG ∼= G × g × T(e,0)(G × g) ∼= G × g × TeG × T0g ∼= G × g × g × T0g .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' 32 C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' BLOHMANN In this trivialization the vertical lift λG : TG → T 2G is given by G × g −→ G × g × g × T0g (g, a) �−→ � g, 0, 0, λ⊥ g (a) � where λ⊥ g : g −→ T0g , maps a ∈ g to the tangent vector represented by the path t �→ ta.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Theorem 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' A diffeological group G is elastic if and only if λ⊥ g : g → T0g is an induction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' It follows from Theorem 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content='2 and Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content='2 that g and T0g are diffeological vector spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' For an elastic group λ⊥ g is an isomorphism and g is equipped with the Lie bracket of invariant vector fields.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Example 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Every Lie group G is elastic when G is a smooth manifold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' However, when equipp G with the Ck-diffeology, then g = Rn Ck and T0g = Rn Ck−1, so that λ⊥ g is no longer an induction (cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Example 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content='5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Example 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' The diffeomorphism group of a smooth manifold is elastic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Diffeological vector spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' A diffeological vector space is an R-vector space object in Dflg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Explicitly, this means that the addition and scalar multiplication are morphisms of diffeological spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Diffeological vector spaces are a rich and subtle structure [CW19].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Proposition 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' A diffeological vector space A is elastic if and only if the natural linear map T0A → T0T0A is an induction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' This is Theorem 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content='2 for the additive diffeological group A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' □ In many cases, elastic diffeological vector spaces satisfy the stronger condition A ∼= T0A, which is equivalent to TA ∼= A × A .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' We will call diffeological vector spaces with this property tangent stable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Tangent stable vector spaces are elastic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Proposition 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' All fine diffeological vector spaces are tangent stable (hence elas- tic).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Diffeological manifolds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' We recall that a diffeological manifold modelled on the diffeological vector space A is a diffeological space X such that every point of X has an open neighborhood that is isomorphic as diffeological space to an open subset of A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Proposition 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' A diffeological manifold is elastic if and only if it is modelled on an elastic diffeological vector space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' This follows from Proposition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' □ ELASTIC DIFFEOLOGICAL SPACES 33 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Mapping spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' If A is diffeological vector space, then the mapping space Dflg(X, A) is a diffeological vector space with pointwise addition and scalar multi- plication.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Proposition 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content='8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Let X be a diffeological space and A a diffeological vector space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' If A is tangent stable, then so is Dflg(X, A).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Corollary 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content='9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' If A is a tangent stable diffeological vector space then we have a natural isomorphisms T Dflg(X, A) ∼= Dflg(X, A) × Dflg(X, A) ∼= Dflg(X, TA) for all X ∈ Dflg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Corollary 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content='10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' The diffeological space C∞(X) := Dflg(X, R) of smooth R-valued functions on a diffeological space X is elastic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Theorem 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content='11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Let ρ : F → M be a fiber bundle of smooth manifolds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Then the diffeological space of sections Γ(M, F) is elastic with tangent space TΓ(M, F) ∼= Γ(M, V F) , the space of sections of the vertical tangent bundle V F := ker Tρ → M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Corollary 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content='12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' The diffeological mapping space Dflg(M, N) of smooth manifolds M and N is elastic with tangent space T Dflg(M, N) ∼= Dflg(M, TN) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Corollary 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content='13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' The diffeological vector space of sections Γ(M, A) of a smooth vector bundle A → M is tangent stable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' References [BH11] John C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Baez and Alexander E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Hoffnung.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Convenient categories of smooth spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Amer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=', 363(11):5789–5825, 2011.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' [Blo] Christian Blohmann.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Tangent structure and Cartan calculus on elastic diffeological spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' In preparation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' [CC14] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Cockett and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Cruttwell.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Differential structure, tangent structure, and SDG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Categ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Structures, 22(2):331–417, 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' [CC15] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Cockett and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Cruttwell.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' The Jacobi identity for tangent categories.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Cah.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Topol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' G´eom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Diff´er.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Cat´eg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=', 56(4):301–316, 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' [CSW14] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Daniel Christensen, Gordon Sinnamon, and Enxin Wu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' The D-topology for diffeolo- gical spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Pacific J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=', 272(1):87–110, 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' [CW16] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Daniel Christensen and Enxin Wu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Tangent spaces and tangent bundles for diffeological spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Cah.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Topol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' G´eom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Diff´er.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Cat´eg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=', 57(1):3–50, 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' [CW19] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Daniel Christensen and Enxin Wu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Diffeological vector spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' [DF99] Pierre Deligne and Daniel S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Freed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Classical field theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' In Quantum fields and strings: a course for mathematicians, Vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' 1, 2 (Princeton, NJ, 1996/1997), pages 137–225.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Amer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=', Providence, RI, 1999.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' [IZ13] Patrick Iglesias-Zemmour.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Diffeology, volume 185 of Mathematical Surveys and Mono- graphs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' American Mathematical Society, Providence, RI, 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' [Joy12] Dominic Joyce.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' On manifolds with corners.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' In Advances in geometric analysis, volume 21 of Adv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Lect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' (ALM), pages 225–258.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Int.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Press, Somerville, MA, 2012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' [Kel05] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Kelly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Basic concepts of enriched category theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Repr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Theory Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Categ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=', (10):vi+137, 2005.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Reprint of the 1982 original [Cambridge Univ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Press, Cambridge;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' MR0651714].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' 34 C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' BLOHMANN [ML98] Saunders Mac Lane.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Categories for the working mathematician, volume 5 of Graduate Texts in Mathematics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Springer-Verlag, New York, second edition, 1998.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' [Per16] Ekaterina Pervova.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Diffeological vector pseudo-bundles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Topology Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=', 202:269–300, 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' [Ros84] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Rosick´y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Abstract tangent functors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Diagrammes, 12:JR1–JR11, 1984.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' [Vin08] Martin Vincent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Diffeological differential geometry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Master’s thesis, Depart- ment of Mathematical Sciences, University of Copenhagen, 2008.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Available at https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content='math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content='ku.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content='dk/english/research/tfa/top/paststudents/ms-theses/martinvincent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content='msthesis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content='pdf, downloaded on 4/15/2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content=' Max-Planck-Institut f¨ur Mathematik, Vivatsgasse 7, 53111 Bonn, Germany Email address: blohmann@mpim-bonn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content='mpg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} +page_content='de' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/wdE0T4oBgHgl3EQfswF7/content/2301.02583v1.pdf'} diff --git a/xtE4T4oBgHgl3EQfYAyx/content/2301.05046v1.pdf b/xtE4T4oBgHgl3EQfYAyx/content/2301.05046v1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..64951a6111ac4fb19f40adfb31bebec332c25511 --- /dev/null +++ b/xtE4T4oBgHgl3EQfYAyx/content/2301.05046v1.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:f513439f78b932021685892e3eb109dbc7517da03a4935e4819584b8c6614b2e +size 643664 diff --git a/xtE4T4oBgHgl3EQfYAyx/vector_store/index.pkl b/xtE4T4oBgHgl3EQfYAyx/vector_store/index.pkl new file mode 100644 index 0000000000000000000000000000000000000000..ae5854bbc6acf4171136a09928e05341f522eb71 --- /dev/null +++ b/xtE4T4oBgHgl3EQfYAyx/vector_store/index.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:60c25d20437afb09c21c970e65d7ec72634323bf8db26f0d4a2939eb54d7dba5 +size 242691